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ABSTRACT 

 

The purpose of this study was to assess the diversity of epiphytic lichens growing on Acacia 

karroo, A. caffra and Jacaranda mimosifolia trees in Pretoria, and to investigate the influence 

of air pollution, land use, altitude and climate on lichen diversity. Lichen diversity was first 

studied at 12 sampling sites under different land use types (high traffic areas, residential areas 

and industrial areas) and in protected areas (open-air museums and nature reserves). The 

“European guidelines for monitoring lichen diversity as an indicator of environmental stress” 

were then tested in 29 sites using the same tree species and under two main land use types 

(“Industrial areas and busy roads” and “Parks and nature reserves”). Lichen Diversity Values 

(LDVs) were calculated for 164 trees. Correlations of LDVs and single lichen species with 

environmental parameters were studied by descriptive statistics, univariate analysis, Principal 

Component Analysis (PCA) and Generalized Linear Models (GLM). A naturality/alteration 

interpretative scale based on the percentile deviation of LDVs from natural conditions was 

developed for the first time in South Africa. Altogether 25 taxa, predominantly foliose and 

subtropical to tropical species, were recorded and are reported with their ecology and 

distribution. An identification key was developed for easy identification of species in the field. 

The highest lichen diversity was found in protected areas. The LDVs of Jacaranda are lower 

than values for both Acacia species. “Parks and nature reserves” have significantly higher 

LDVs than “industrial areas and busy roads”, as demonstrated by the PCA. The GLM models 

were significant for LDV and some lichen species. Sampling sites in industrial areas and the 

proximity of busy roads are negatively related to LDV and with the frequency of many lichen 

species. Higher atmospheric concentrations of NOx were negatively related to LDV and to the 

frequency of the species Candelaria concolor, Lepraria spp. and Pyxine cocoes. Culbersonia 

nubila and Lepraria spp. were respectively positively and negatively correlated with 

atmospheric SO2. The intensity of land use appears to have a negative impact on lichen 

diversity. In conclusion, lichens respond well to human disturbances in Pretoria and can be 

used as bioindicators of naturality/alteration. The European standardised monitoring method 

can be applied to estimate the degree of environmental alteration in South Africa, by adopting 

a stratified random sampling and a more flexible strategy for tree selection.  

 

Keywords: lichen, biodiversity, distribution, monitoring, disturbance, Pretoria, South Africa 
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CHAPTER 1: INTRODUCTION 

 

1.1 Introduction and background 

Lichens are not single organisms but a symbiosis among fungal partners (mycobiont) and 

photosynthetic partners (photobionts), which are green algae or cyanobacteria, with each 

partner contributing in various ways to the symbiosis (Nash, 2008; Atala et al., 2015). Although 

the symbiosis among mycobionts and phobionts is well acknowledged, it is less well known 

that the lichens actually host other types of organisms such as yeasts and other fungi, virus, 

bacteria as well as small animals, and can be therefore regarded as a sort of microhabitat 

(Grube et al., 2015; Zedda and Rambold, 2015; Cernava et al., 2016; Spribille et al., 2016; 

Muggia and Grube, 2018). Spribille et al. (2016) recently discovered that basidiomycete yeasts 

growing in the cortex of ascomycete macrolichens can play an important function in the 

symbiosis and may influence lichen traits. 

  

The main advantage of the symbiosis for the photobionts is that the fungal hyphae protect 

them from intense insolation and drying out, and absorb mineral nutrients from the substratum 

and the atmosphere to share with the photobionts. The photobionts synthesise organic 

compounds by photosynthesis and cyanobiontal photobionts are even able to fix nitrogen 

compounds (Hale, 1983; Purvis, 2000; Nash, 2008).  

 

Lichens are perennials and maintain a uniform morphology over time (Nash, 2008). They 

develop gradually and rely heavily on the environment for long-term nutrition (Hale, 1983; 

Asplund and Wardle, 2017). 

 

Lichens are traditionally classified into three main growth forms, with many intermediate forms. 

The main forms are the crustose, foliose and fruticose (Hale, 1983; Nash, 2008; Asplund and 

Wardle, 2017). These forms, which are in no sense natural divisions, are at best points on a 

scale of continuous differentiation from primitive to highly structured thalli. Each form has 

different arrangements of cortical, algal and medullary tissues as well as different modes of 

attachment to the substrate, and each form represents an ecological adaptation to 

environmental conditions (Hale, 1983).  

 

Lichens colonise tree bark, wood, rocks, man-made substrate and soil and are found in all 

terrestrial ecosystems, where they cover between 6-8% of the earth’s land surface (Nimis et 

al., 2002; Nash, 2008; Purvis and Pawlik-Skowrońska, 2008; Colesie et al., 2014; Bajpai           

et al., 2016; Asplund and Wardle, 2017). Lichens can live in a variety of habitats and can 
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survive extreme environmental conditions (heat or cold), for instance deserts, cold regions, 

tropical rain forests, natural and managed environments (Nimis et al., 2002; Purvis, 2014; 

Zedda and Rambold, 2015; Bajpai et al., 2016).  

 

Ecological factors such as climate, topography and geology as well as the prevailing land use, 

the extent of pollution (Hauck et al., 2013), the age and type of trees, and bark pH influence 

the occurrence of lichens (Nascimbene et al., 2013; Nelson et al., 2015). Other factors include 

bark properties and light availability (Mulligan, 2009). James et al. (1977), as cited by Mulligan 

(2009), noted humidity of the environment, age of the bark surface, inclination of tree, degree 

of bark leaching by rain, degree of impregnation of bark with organic nutrients, air pollution, 

soil pollution by agricultural chemicals, pH of the bark surface and basic nutrient status of bark 

as factors that can affect lichen distribution.  

 

The growth of lichen species on given tree species is dependent on bark, crown features and 

tree structure (Cáceres et al., 2007; Frati et al., 2008; Mežaka et al., 2012; Ódor et al., 2013; 

Frisch et al., 2015).  

 

Lichens were perceived as potential indicators of air pollution as early as the 1860s in Europe 

where a progressive loss of lichens in major cities was noticed (Hale, 1967). Since then, 

lichens have played important roles as bioindicators of sulphur dioxide (SO2) air pollution 

throughout the world (Nimis et al., 2002; Tiwari, 2008; Gibson et al., 2013; Tregidgo et al., 

2013). Furthermore, lichens accumulate large amounts of elements, especially heavy metals, 

from wet and dry deposition sources (Nash, 1996; Hussan et al., 2013; Purvis, 2014). 

Accumulation mostly exceeds their physiological requirements (Nash, 2008). The analysis of 

elements in epiphytic lichens provides information on the possible sources of pollution (Budka 

et al., 2002; Nash, 2008; Maphangwa et al., 2012a; Monaci et al., 2012; Loppi, 2014). For this 

reason, lichens can be used as bioaccumulators of heavy metals such as mercury (Grangeon 

et al., 2012) and lead (Sujetoviene and Sliumpaite, 2013) and for biomonitoring environmental 

pollution (Puckett, 1988; Garty, 2001; Kularatne and de Freitas, 2013). Many species, such 

as the epiphytic, foliose lichen Flavoparmelia caperata (L.) Hale have been widely utilised to 

assess atmospheric depositions and air quality (Loppi et al., 1998).  

 

Epiphytic lichen diversity has also been effectively used for evaluating other effects of 

anthropogenic disturbances, not only atmospheric pollution. Changes in lichen diversity can, 

for instance, indicate the intensity of land use and habitat fragmentation in urbanised and rural 

environments, especially in woodlands (Budka et al., 2002; Nimis et al., 2002; Ohnuki et al., 

2002; Ng et al., 2005; Werth et al., 2006; Brunialti et al., 2012; Benítez et al., 2012; 2018; 
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Benítez, 2016). This is possible because many species of epiphytic lichens are very sensitive 

to even minor environmental changes, while others are more resistant (Nimis et al., 2002; 

Zedda, 2002; Brodekovà et al., 2006; Nash, 2008; Danesh et al., 2013).  

 

Lichens are more sensitive to pollution than plants because they lack cuticles and stomata 

and have no roots. For this reason, they absorb much of their raw materials and also pollutants 

directly from the air and moisture around them without restrictions (Nash, 2008; Sett and 

Kundu, 2016; Asplund and Wardle, 2017). Lichens are furthermore perennial and grow slowly 

(Zvěřina et al., 2018). Pollutant uptake by lichens is considerably higher than by vascular 

plants (Nash, 2008). 

 

Lichen functional traits such as growth forms (foliose, fruticose and crustose), reproductive 

strategy (sexual, asexual), photobiont type (green algal or cyanobacterial), production of 

secondary metabolites such as photoprotective, antioxidant compounds, thickness of thallus 

layers, substrate preference and geographical distribution are dependent on environmental 

factors, especially air and substrate humidity, sun radiation, rainfall, temperature, light and 

land use intensity. These ecological factors determine lichen distribution and can be detected 

through analyses of functional types or morphotypes (Diaz and Cabido, 2001; Zedda et al., 

2011a; Benítez et al., 2012; Ellis, 2012; Giordani et al., 2012; Pinho et al., 2012; Gauslaa, 

2014; Atala et al., 2015; Nelson et al., 2015; López et al., 2016; Rubio-Salcedo et al., 2017).  

 

Since various lichen species have a wide scope of ideal conditions concerning humidity, 

temperature, substrate quality and stability, and nutrients needs, certain traits such as the 

ones listed above, are related to various environmental factors (Weber et al., 2010; Marini  

et al., 2011). 

 

1.2 Problem statement  

South Africa is a well-known biodiversity hotspot for phanerogams (Myers et al., 2000; 

Mittermeier et al., 2004). However, lichen diversity still remains relatively underexplored 

(Crous et al., 2006, Maphangwa et al., 2012b, Mayrhofer et al., 2014). One problem is due to 

the fact that herbarium vouchers of South African lichens are very scattered throughout 

numerous herbaria in South Africa, Europe and North America and are therefore difficult to 

check (Fryday, 2015). This hinders further floristic investigation of South Africa's lichen 

diversity (Maphangwa et al., 2018).  
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As illustrated above, lichens are excellent bioindicators of environmental pollution. In 

particular, epiphytic species growing on the bark of trees and bushes, are regularly utilised in 

assessing air pollution in urbanised areas (Budka et al., 2002, 2004; Ohnuki et al., 2002) and 

rural environments (Ng et al., 2005). As fruticose lichens are the most sensitive to air pollution, 

they are the first group to vanish from polluted sites, followed by foliose lichens. In contrast, 

crustose lichens are generally the most resistant to air pollution (Boonpragob, 2003; Díaz-

Escandón et al., 2016). One example is the lichen Lecanora conizaeoides Nyl. ex Cromb., 

which grows typically in SO2-polluted areas (Boonpragob, 2003).  

 

Epiphytic lichens have been used as ecological indicators for several decades (Brunialti et al., 

2012). Most investigations have, however, been restricted to Europe and the US (Asta et al., 

2002a, 2002b; VDI-Richtlinien, 2005; Thormann, 2006; Geiser and Neitlich, 2007; Munzi et 

al., 2007; Hauck et al., 2013). Some studies have been carried out in Asian countries, for 

example, lichens were utilised as indicators of air quality in Northern Thailand (Budka et al., 

2002). Also Wolseley and Aguirre-Hudson (1997) have used epiphytic lichen communities as 

bioindicators of environmental change in Thailand. Lichen communities were valuable 

indicators of succession stages in tropical rainforests (Koch et al., 2013). In Venezuelan 

tropical lowland rainforest, Komposch and Hafellner (2000) assessed the diversity and 

distribution of lichen in relation to changing conditions. 

 

The indicator value of lichen diversity in urban environments of South Africa has been poorly 

investigated, with limited studies focusing on lichens as bioaccumulators of heavy metals in 

the Pretoria area of Gauteng (Forbes et al., 2009; Olowoyo et al., 2010; Trüe et al., 2012; 

Panichev et al., 2019). The diversity of epiphytic lichens and their ecology in relation to urban 

pollution or to other types of human disturbances in the city of Pretoria has not been fully 

explored, although lichens are important bioindicators of air quality and environmental 

disturbance.  

 

Only a few studies on epiphytic lichens or on lichens as bioindicators have been carried out in 

Africa and in Southern Africa (Aptroot, 2001; Crous et al., 2006; Swinscow and Krog, 1988; 

Schultz et al., 2009; Zedda and Rambold, 2004; Zedda et al., 2009, 2010a, 2010b; 

Boamponsem et al., 2010). While other studies have been carried out in desert and semi-

desert habitats of South Africa (Zedda and Rambold, 2004, 2009; Zedda et al., 2010a, b), this 

is the first study on the biodiversity of lichens and its value for ecological indication in a South 

African urban environment.  
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The purpose of this study was to assess the diversity of epiphytic lichens on selected trees in 

Pretoria, and to investigate to what extent lichen diversity is influenced by the phorophyte type 

on which lichens are growing, by human activities, especially by air pollution and land use, or 

by other environmental factors such as altitude and climate. The study aimed also to explore 

the potential for using lichens as bioindicators of air pollution in the city. 

 

1.3 The need for this research 

Different authors have published numerous taxonomical revisions, ecological and floristic 

studies on lichens from South Africa (for example, Almborn, 1966; Hale, 1984; Brusse, 1986; 

Zedda and Rambold, 2009). These studies focused, however, mainly on saxicolous (i.e. 

Kärnefelt, 1988; Matzer and Mayrhofer, 1996) and terricolous lichens (i.e. Zedda and 

Rambold, 2004), and on given regions of South Africa, such as the Cape region, while 

epiphytic lichens and the Pretoria area have been less explored (Maphangwa et al., 2018). 

Lichen diversity and ecology studies in South Africa are detailed in section 2.2. In order to 

improve knowledge on lichen diversity, especially on epiphytic lichens in different 

environments of South Africa, floristic and ecological studies remain necessary. 

 

Urbanisation has been attributed to rampant environmental pollution and urban transportation 

is among the major cause of atmospheric pollution. The City of Tshwane (Pretoria) is affected 

by different kinds of environmental pollutants. Among the air pollutants are particulates (ash 

and aerosols), sulphur dioxide (SO2), sulphur oxides (SOx), oxides of nitrogen (NOx), carbon 

monoxide (CO), carbon dioxide (CO2), volatile organic compounds (VOCs), semi-volatile 

organic compounds (SVOCs), methane (CH4), ammonia (NH3), hydrogen chloride (HCI), 

hydrogen sulphide (H2S), ozone (O3), lead (Pb) and other secondary pollutants and numerous 

trace elements (Liebenberg-Enslin and Petzer, 2005). Organic compounds released into the 

air include benzene, PCBs and dioxins and furans (Liebenberg-Enslin and Petzer, 2005; 

Forbes et al., 2009; Olowoyo et al., 2011). The sources of these organic pollutants are power 

generation (Rooiwal and Pretoria West power stations), industrial areas (ceramic, cement, 

iron and steel), transport (diesel and petrol vehicle emissions) and household fuel combustion. 

The City of Tshwane has seven air quality monitoring stations to check if the pollution is within 

set standards (Liebenberg-Enslin and Petzer, 2005; Olowoyo et al., 2011, South African Air 

Quality Information Systems (SAAQIS), 2018 http://www.saaqis.org.za/), but none of the 

monitoring systems use bioindicators.  

 

This study not only assesses lichen diversity, but also analyses lichen occurrence in 

relationship to changing ecological conditions. Understanding the reaction of lichens to the 

http://www.saaqis.org.za/
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investigated environmental parameters and to air pollution would facilitate estimation of air 

quality or of naturality/alteration conditions on a wider area so as to ascertain the possibility of 

using lichens as bioindicators in environmental monitoring, thus limiting costs associated with 

setting and sustaining monitoring stations. Biomonitoring also allows detecting the synergistic 

effects of the different pollutants on living organisms, which cannot be detected by monitoring 

stations. 

 

The present study focused on the biodiversity of epiphytic lichens in Pretoria and its value for 

ecological indication. It represents a first assessment of the biodiversity of epiphytic lichens in 

an urban environment in South Africa. To allow the elaboration of a monitoring methodology, 

the floristic evaluation was restricted to the three most widespread tree species: the native 

Acacia caffra (Thunb.) Willd and A. karroo Hayne and the exotic Jacaranda mimosifolia D.Don. 

The lichen biota of these phorophytes was investigated for the first time. Comparisons have 

been made between the different trees. The research further provides new scientific 

information on the diversity of epiphytic lichens occurring in Pretoria in relation to different 

levels of environmental disturbance, due to air pollution (industry, traffic), plantations of exotic 

plants and habitat fragmentation. This study is important for the town of Pretoria, as it develops 

a methodology to estimate air quality and other disturbances (environmental 

naturality/alteration) in a cheaper and more reliable way than by using monitoring stations. A 

long-term monitoring approach using lichens as bioindicators could be established on the 

basis of the present research work, and could be extended to other southern African towns as 

well. This study adds information about the importance of lichens and their conservation, and 

supports building expertise on these organisms in South Africa, where lichen experts are rare. 
 

1.4 Research questions 

• What is the richness, distribution and composition of lichen diversity in Pretoria on 

selected tree species (Acacia caffra, Acacia karroo and Jacaranda mimosifolia)? 

• How do lichen communities vary across the selected tree species, considering 

taxonomy as well as native vs exotic species?  

• How do lichen species respond to environmental pollution and disturbances?  

• To what extent is lichen diversity related to air quality in the town?  

• Which lichen species are more sensitive and related to the given environmental 

conditions?  

• What is the indicator value of the different species occurring on trees? 

• Can lichens be used reliably for biomonitoring to estimate air quality and the level of 

human disturbance (naturality/alteration) in Pretoria? 
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1.5 Research objectives 

The objectives of the research were:  

• To assess the diversity of lichens growing on selected trees (epiphytic) in the urban 

environment of Pretoria. 

• To analyse the ecological conditions under which given lichen species occur.  

• To evaluate the diversity of lichens in relationship to tree species (two native Acacia 

caffra, A. karroo and one exotic, Jacaranda mimosofolia) and human disturbance, with 

special reference to air quality (comparison of areas with different degrees of pollution). 

• To analyse lichen communities (spatial changes in species composition, diversity and 

frequency) in relation to changing environmental factors (human disturbance).  

• To identify the indicator value of lichen species growing on trees and develop a long-

term monitoring approach for detecting air quality changes and/or environmental 

naturality/alteration using lichens as biodindicators. 

 

1.6 Ethical considerations 

The study required collection and monitoring of lichens in nature reserves, open-air museums 

and public areas around the City of Tshwane. Ethical considerations to conduct research were 

followed. Permission to conduct the study and to collect lichen samples from different trees 

was obtained from the City of Tshwane, Voortrekker Monument and Pionier Museum through 

an official letter before the study commenced (see Appendices 1, 2 and 3). The aim and 

purpose of the study were included in the permission letter. Ethical clearance for this study 

was obtained by the researcher from University of South Africa, College of Agriculture and 

Environmental Science (Ref: 2014/CAES/157) (see Appendix 4). 

 

1.7 Study limitations  

This study focused on epiphytic lichens growing on only three different tree species. The 

identification of lichens was difficult at the beginning of the research as identification keys and 

reference material on epiphytic lichens is very limited for the region. This was also why the 

study was limited to the three trees and did not consider the entire epiphytic diversity of the 

investigated area. 

Though the study intended to cover the wider Tshwane area, it was difficult to collect and 

monitor lichens in more protected areas such as Onderstepoort Nature Reserve, Pretoria 

Metal Pressing and Pretoria Zoological Gardens. The researcher tried several times 

unsuccessfully to obtain permission to access and collect data. Some residential areas could 

not be visited due to safety concerns. Some of the trees in the study were not suitable for 
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lichen monitoring as they did not meet the selection criteria of international guidelines. Certain 

trees were not sufficiently straight or were affected by termite mounds (see Appendix 5). Some 

trees were too thin (less than 60 cm trunk diameter) whereas other were too large (more than 

1 m in diameter). In addition, people often pin advertisements and notices on Jacaranda trees, 

which makes these not suitable for monitoring (see Appendix 6). This was observed mostly in 

the city centre, Brooklyn and Hatfield. In the rural sites like Hermanstad, Saulsville and 

Suiderberg, trees had been often cut down for firewood.  

 

For this study, each site was only monitored once. Monitoring was only spatial and not 

repeated in different years (long-term monitoring) for the following reasons. The first part of 

the study was dedicated to the collection and identification of species (assessment of lichen 

diversity in the study area), a work that had never been done before. This investigation took 

more than one year of my PhD-period. During the second and third year the monitoring was 

started and methodology from Europe tested, with a focus on spatial monitoring (investigation 

of different sites and environments). However, the examined trunks were accurately and 

durably marked for long-term monitoring purposes, so that this can be carried out in the future. 

  

In protected areas like Rietvlei Nature Reserve and Voortrekker Monument Nature Reserve, 

there were signs that certain wild animals were eating lichens. Some animals also use Acacias 

to scratch their bodies as observed in the field. Often Acacias were multi-stemmed and not 

wide enough for monitoring. All these factors made many trees unsuitable for monitoring in 

the protected areas. In the Akasia site, vegetation had recently been burnt, so the trees here 

were unsuitable for monitoring. The European guidelines for choosing plots and trees to 

monitor lichen diversity, according to Asta et al. (2002a, 2002b) could therefore not always be 

applied.  

 

The pollution and climate data for this study was obtained from the South African Air Quality 

Information System (SAAQIS). However, only data from five monitoring stations, relatively 

close to the sampling areas, were used as the datasets for pollution and climate were not 

complete for the other stations. Data for benzene and xylene could not be considered in the 

elaborations because it was not complete. 

 

1.8 Chapter breakdown 

This thesis comprises five chapters. The first chapter includes an introduction, describes the 

significance of the research as well as the study objectives, limitations of the study and 

includes a chapter breakdown. The second chapter presents a literature review, while Chapter 
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Three contains a description of the study sites and the materials and methods of the research 

(site selection, lichen collection, identification, and monitoring and data analysis). The fourth 

chapter describes results and is split into two sections. The first section reports on the general 

diversity of epiphytic lichens found in Pretoria and includes an annotated list of all species with 

information on their distribution and ecology worldwide recorded at the study sites. The second 

part of Chapter Four reports on monitoring and elaborates on statistics. The fifth chapter 

presents a discussion, recommendations and conclusions. References and appendices are 

included at the end of the thesis. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Lichen morphology 

The mycobiont is reponsible for the appearance of a lichen thallus. In a few cases, the 

photobiont determines the pattern of the entire thallus (Nash, 2008). As reported in section 

1.1, lichens generally have three principal growth habits: these are the crustose, foliose and 

fruticose types, with several intermediate forms (Hale, 1983; Nash, 2008).  

 

Crustose lichens expose a limited surface, are firmly attached to the substrate (often bark of 

trees and shrubs, wood, rock, soil, and tree leaves in moist forests) with their lower surface 

(Figure 2.1), and may not be detached from it without decimation (Nash, 2008; Asplund and 

Wardle, 2017). Water uptake and loss is limited fundamentally to the upper, uncovered surface 

(Nash, 2008). These features enable crustose lichens to tolerate the environmental conditions 

of extreme habitats such as bare and exposed rock surfaces or soil in dry zones (Zedda and 

Rambold, 2011). Sub-types of crustose lichens include: powdery, endolithic, endophloeodic, 

squamulose, peltate, pulvinate, lobate, effigurate and subfruticose crusts. The thallus 

association of crustose lichens is either homoiomerous or heteromerous (Nash, 2008). In the 

homoiomerous thallus, the mycobionts and photobionts are evenly distributed, whereas in a 

heteromerous thallus they are well structured and distributed in well-defined thallus layers 

(Nash, 2008). 

  

Figure 2.1. Crustose lichen: Caloplaca haematodes (A. Massal.) Zahlbr. (image by Felix 
Schumm, from http://dryades.units.it/italic, CC BY-SA4.0) 
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Foliose lichens are leaf-like horizontally and are only partly connected to the substrate (Figure 

2.2). These thalli are either homoiomerous (i.e. gelatinous lichens) or heteromerous. Usually 

they have a dorsiventral structure with different upper and lower surfaces (Nash, 2008). 

Frequently, the thallus is partitioned into lobes, which show different degrees of expanding 

branching. Occasionally the lobes overlap like tiles, and the lower side can frequently have 

fixing rhizinae (Hale, 1983; Asplund and Wardle, 2017). Common foliose genera are 

Anaptychia, Cetraria, Heterodermia, Parmelia s.l., Physcia and Xanthoria. This well-

established form has given rise to an extraordinary range of thallus sizes and diversity (Hale, 

1983; Nash, 2008). 

 

 
Figure 2.2. Foliose lichen: Parmotrema austrosinense (Zahlbr.) Hale (image by Felix Schumm, 

from http://dryades.units.it/italic, CC BY-SA4.0) 

 

Fruticose lichens stand out from the substrate and are attached to it with only a very small part 

of the thallus (Figure 2.3). They may present hair-like, strap-shaped or shrubby ramifications, 

and can be flat or cylindrical. They can have dorsiventrally arranged (e.g. Evernia prunastri 

(L.) Ach.) or radial symmetric thalli (e.g. Usnea species). The branching pattern of lobes varies 

considerably among different systematic groups and also within a single genus. There are 

considerable variations in size with some Usnea species growing to a few metres while certain 

minute species measure only 1 or 2 mm. Fruticose lichens are found in different climates, 

ranging from desert to wet rainforest and on different kinds of substrates, but all require high 

levels of air humidity or fog (Hale, 1983; Nash, 2008).  
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Figure 2.3. Fruticose lichen: Evernia prunastri (L.) Ach. (image by Simonetta Peruzzi, from 

http://dryades.units.it/italic, CC BY-SA4.0) 

 

2.2 Lichen diversity and ecology in South Africa 

Most relevant among the existing taxonomic and floristic studies concerning South African 

lichens are those of Massalongo (1861), Crombie (1876a; 1876b), Van der Byl (1931), Doidge 

(1950), Almborn (1966, 1987, 1988), Hale (1971, 1984, 1990), Brusse (1984, 1985, 1986, 

1988, 1994), Kärnefelt (1986, 1987, 1988), Thomas and Bhat (1994, 1995, 1996), Jürgens 

and Niebel-Lohmann (1995), Elix (1999, 2002, 2003), Zedda and Rambold (2004, 2009), 

Schultz et al. (2009), Wirth (2010), Zedda et al. (2009, 2010a, 2010b, 2011b, 2011c), Ahti et 

al. (2016), Wirth and Sipman (2018), Wirth et al. (2018) and Maphangwa et al. (2018).  

 

The first checklist of South African lichens was compiled by Doidge (1950) and supplemented 

by Almborn (1988), Feuerer and Zedda (2001), Fryday (2015), Feuerer (2016) and Ahti et al. 

(2016). Online versions of the checklists of Fryday (2015) and Feuerer (2016) are available 

and updated periodically. However, checklists are still provisional and far from being complete 

(Feuerer and Zedda, 2001; Maphangwa et al., 2018).  

 

The preliminary version of a checklist of the lichens and lichenicolous fungi of South Africa 

compiled by Feuerer (2016)1 lists 1 728 lichen taxa, which comprises 9.2% of the total global 

                                                           
1 The website http://www.lichens.uni-hamburg.de/lichens/africa/south-africa_checklists_switch.htm 
was last visited on 22 October 2018. At present (September 2019), it is not available and it is not clear 
when it will be online again.  

http://www.lichens.uni-hamburg.de/lichens/africa/south-africa_checklists_switch.htm
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list of 18 882 lichen species (Feuerer, 20092; Feuerer and Hawksworth, 2007). The Pretoria 

Centralised Information System database (PRECIS) registers 1 460 quarter degree square 

distribution records for 412 lichen species, comprising 105 genera in South Africa 

(Maphangwa, 2010). Lichen species in South Africa are estimated to be about 2 000 (Crous 

et al., 2006). The diversity of soil lichens in South Africa, covering different biomes of the 

Western and Northern Cape, is of 73 taxa (Zedda et al., 2010a, 2010b), most of which are not 

yet included in Feuerer’s checklist (2009).   

 

Concerning ecology, physio-ecological works have been carried out in northern areas of South 

Africa, the Karoo and other areas by Wessels and van Vuuren (1986), Wessels and Schoeman 

(1988), Wessels and Wessels (1991), Wessels and Kappen (1994). Maphangwa et al. (2012b) 

examined the effects on lichens of raised temperatures and reduced amounts of rainfall, 

resembling impending climate scenarios that would harmfully influence the photosynthesis of 

sensitive lichen species in the arid southern African Succulent Karoo Biome. These authors 

concluded that climate change will cause lichen death. Maphangwa et al. (2012a) examined 

the interception and evaporation of fog, dew and water vapour by soils and lichens in a coastal 

desert of South Africa and investigated the chemical analysis. These authors found that 

atmospheric water vapour and fog plays a crucial role in driving lichen photosynthesis and 

distribution in a coastal desert. Maphangwa et al. (2014) tested the deadly photosynthetic 

temperature edges of lichens in a southern African arid region. It was found that only atypical 

conditions of lichen exposure in a hydrated state to extreme temperatures at midday with high 

levels of solar irradiances during summer could affect photosynthetic thresholds in sensitive 

lichen species (Maphangwa et al., 2014). Musil et al. (2010) examined the reaction of dwarf 

succulent plants, lichens and soils to experimental climate warming in an arid South African 

ecosystem and found that lichens are more sensitive indicators of climate change than other 

plants. Mukherjee et al. (2010) investigated the potential importance of lichens in enriching 

spider diversity and richness on Robben Island and reported that habitat structure and 

epiphytic lichen abundance may be reasons for the greater number of spiders on the island.  

 

Lalley and Viles (2005, 2006) assessed the diversity and the vehicle track disturbances of soil-

growing lichens in the fog of the Namib Desert (which extends from South Africa, Namibia, 

and into Angola) and found that global climate change can cause significant changes in the 

composition of lichen communities. Büdel et al. (2010) investigated the ecophysiology of 

biological soil crusts including lichens from the arid and semi-arid regions of South Western 

                                                           
2 The website http://www.lichens.uni-hamburg.de/lichens/africa/south-africa_checklists_switch.htm 
was last visited on 22 October 2018. At present (September 2019), it is not available and it is not clear 
when it will be online again.  

http://www.lichens.uni-hamburg.de/lichens/africa/south-africa_checklists_switch.htm
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Africa. These authors found the biological soil crusts among the most diverse worldwide. 

Weber et al. (2010) used remote sensing data to map the biological soil crust in the succulent 

Karoo and found many biological soil crusts. Pfiz et al. (2010) assessed the fluctuating 

patterns of lichen growth form distributions in central Namib within the lichen field and reported 

wind erosion as an important functional parameter of the lichen species. Wirth et al. (2010) 

investigated the distribution of lichens along an ocean-inland gradient in the fog zone of the 

Central Namib, where 42 lichen species were reported.  

 

Recently, lichen diversity and its changes due to land use and climate change have been 

investigated at the South African BIOTA biodiversity observatories (www.biota-africa.org) and 

lists of species together with ecological analyses, concerning mainly soil lichens and lichens 

on pebbles, were reported by Zedda and Rambold (2004, 2009) and Zedda et al. (2010a, 

2010b, 2011a, 2011b, 2011c). These authors reported lichens as a valuable bioindicator for 

climate and soil change. Data on these collections (1 930 records) are now available through 

the GBIF online database (http://data.gbif.org/datasets/resource/12005/). Descriptive data on 

South African lichens were included within the BIOTA-projekt in the online LIAS light database, 

from which identification keys can be automatically generated (Rambold et al., 2001 onwards; 

2014).  

 

Trüe et al. (2012) determined mercury levels in epiphytic lichens and tree bark in the cities of 

Pretoria and Witbank. Tree bark had lower concentrations of mercury compared to lichens 

from both cities. Monna et al. (2006) differentiated the various sources of lead from epiphytic 

lichens in and around Johannesburg and it was found that leaded antiknock compounds added 

to gasoline were the main source of lead around Johannesburg. Forbes et al. (2009) used the 

lichen Parmotrema austrosinense (Zahlbr.) Hale as a bioindicator of air quality to determine 

the effects of the phasing out of leaded petrol and the simultaneous introduction of manganese 

anti-knock additives to fuel in South Africa. Specimens were collected from the Pretoria central 

business district (CBD), as well as from three sites to the east of Pretoria: the National 

Botanical Gardens, the CSIR campus and the suburb of Lynnwood. The highest 

concentrations of lead were found in the CBD. 

 

Panichev and McCrindle (2004) assessed the levels of metals in topsoil, dust, leaves, grass, 

lichens and bark from the Kruger National Park utilising electro thermal atomic absorption 

techniques. Lichens and bark were found to be more sensitive to air pollution than grasses 

and trees leaves. Olowoyo et al. (2011) used Parmelia sulcata Taylor to evaluate the possible 

sources of trace elements in the Tshwane metropolis, with the objective of assessing the 

capacity of this lichen species to screen air contaminations in a polluted environment. It was 

file:///C:/Users/maphakw/Desktop/PhD%20file/2019%20documents/Chapters%20Corrections%20March%202019/22%20July%202019%20Corrections/www.biota-africa.org
http://data.gbif.org/datasets/resource/12005/
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observed that P. sulcata can be used as bioindicator of air pollution because higher 

concentrations were reported in the polluted sites. Panichev et al. (2019) used Parmelia 

caperata (current name: Flavoparmelia caperata (L.) Hale) as bioindicators for mercury in 

South African provinces. It was shown that P. caperata can be used to assess mercury and 

the highest concentration was found in lichens from Secunda (Mpumalanga province).  

 

Despite these previous works, many regions of southern Africa remain underexplored in terms 

of lichens. Numerous taxa have not yet been described and taxonomical groups need to be 

reviewed. Identification keys are missing for several families and genera. More floristic and 

ecological investigations are necessary to better understand the influence of anthropogenic 

impacts on these sensitive organisms, which could be used more often as bioindicators in 

southern Africa (Crous et al., 2006; Maphangwa, 2010).  

 

2.3 Ecological roles of lichens 

Lichens support numerous ecosystem services, for example soil richness, nutrient cycling, 

and soil development, nitrogen and carbon fixing (De Bello et al., 2010; Zedda and Rambold, 

2015). Additionally, they bolster the diversity of various organisms through the provision of 

nutrients, habitat, shelter, camouflage and nesting material, among others (Zedda and 

Rambold, 2015). Lichens are principal colonisers and on rock surfaces and they are involved 

in physical and chemical weathering of rocks, playing a leading role in soil formation and 

nutrient enrichment in an ecosystem (Nash, 2008; Zedda and Rambold, 2015; Giordani et al., 

2016). The physical impacts are reflected by the mechanical disturbance of rocks brought 

about by hyphal infiltration, development and compression of lichen thallus, swelling activity 

of the natural and inorganic salts originating from lichen action (Chen et al., 2000). Chemical 

breakdown occurs when oxalic acids are secreted and react with mineral components of rocks 

to form various metal oxalates and acidic polysaccharides that dissolve the cementing material 

in sandstones releasing the quartz crystals (Nash, 2008). Organic matter produced by lichen 

thalli contributes to improving soil even in arid to semi-arid ecosystems (Chen et al., 2000; 

Zedda and Rambold, 2009; Maphangwa, 2010; Jackson, 2015). Lichen also promotes 

vegetation succession as the soil cover by terricolous lichens can influence vascular plant 

germination (Zedda and Rambold, 2015; Gypser et al., 2016). 

 

Lichens accumulate and store a pool of nutrients through wet and dry atmospheric deposition 

(Pike, 1978; Loppi and Pirintsos, 2003; Nash, 2008; Maphangwa, 2010; Asplund and Wardle, 

2017; Gupta et al., 2017). They do not have cuticles and stomata making them very effective 

at absorbing nutrients (Nieboer et al., 1978; Asplund and Wardle, 2017). Fruticose lichens 
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such as Teloschistes capensis (L.f.) Müll. Arg. are particularly effective at capturing both dew 

and fog, which often contain more nutrients than rain (Nash, 2008; Maphangwa et al., 2012a). 

 

Some lichens play an important role in ecosystems by fixing atmospheric nitrogen 

(cyanolichens) and other elements into nutrient poor soils and by contributing to nutrient 

cycling (Nieboer et al., 1978; Knops and Nash, 1996; Longton, 1997; Asplund and Wardle, 

2017). The fixed nitrogen by lichen even facilitates the colonisation and growth of vascular 

plants (Asplund and Wardle, 2017). The captured nutrients reach other ecosystem 

components through leaching, litter fall, decomposition and consumption by animals or by 

bacterial incorporation (Pike, 1978; Asplund and Wardle, 2017). Lichens are also important 

carbon sinks and therefore play a role in mitigating atmospheric greenhouse effects 

(Maphangwa, 2010; Nash, 2008; Palmqvist et al., 2008; Ding et al., 2013; de Guevara et al., 

2014). 

 

Lichens are an important source of food for animals worldwide (Zedda and Rambold, 2015). 

Monkeys, snails, bacteria, protozoa, nematodes, reindeer, caribou and rodents consume 

lichens as source of food (Pekkarinen et al., 2015; Zhao et al., 2015; Asplund and Wardle, 

2017). Monkeys prefer fruticose lichens such as Usnea longissima Ach. (current name: 

Dolichousnea longissima (Ach.) Articus) and Bryoria species (Grueter et al., 2012). In China, 

some monkeys such as Rhinopithecus roxellana Milne-Edwards eat lichens as their 

fundamental source of nourishment (Yiming, 2006; Liu et al., 2013). Sheep in Libyan deserts 

graze extensively on the lichen Lecanora esculenta (Pall.) Eversm. (current name: Circinaria 

esculenta (Pall.) Sohrabi) (Hale, 1983). Cladonia rangiferina (L.) Weber ex F.H. Wigg. are 

significant winter forage for caribou and reindeer in northern ecosystems (Seaward, 2008; 

Athukorala and Piercey-Normore, 2014).  

 

Flying squirrels feed on fruticose lichens of the genus Bryoria. For example, Northern flying 

squirrels consume Bryoria fremontii (Tuck.) Brodo and D. Hawksw. (Hayward and 

Rosentreter, 1994; Seaward, 2008). Different groups of terrestrial invertebrates feed on 

lichens, in particular arthropods such as mites and bark lice (Mukherjee et al., 2010; Asplund 

and Wardle, 2017) and snails (Baur et al., 1995; Asplund and Wardle, 2017).  

 

In addition, birds use lichen material to build their nests (Richardson and Young, 1977). 

Ploceus olivaceiceps Reichenow and Carduelis spinus (Linnaeus) construct their nests fully 

from Usnea species (Purvis, 2000). Hummingbirds in Colombia and in Arizona protect their 

nests with the foliose Parmotrema reticulatum (Taylor) M. Choisy (Hale, 1983). Bowerbirds 
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use lichens for decorating their nests (Seaward, 2008). Rufous-bellied bush tyrant birds build 

their nest using Unsea lichens in Peru and western Bolivia (Kingwell and Londoño, 2015). 

 

Some spiders on Robben Island (South Africa) are reportedly dependent on lichens as their 

primary habitat and the giant crab spider uses lichens of the genus Usnea (Mukherjee et al., 

2010) for their nests. Lichens also give shelter to other animals, such as water bears, mites 

and lizards (Mukherjee et al., 2010). Some invertebrates (peppered moth) and vertebrates 

(amphibians) animals are able to camouflage themselves using lichens (Purvis, 2000; 

Sewards, 2008; Mukherjee et al., 2010).  

 

Lichens are sensitive biological indicators of environmental change (details are provided in 

section 2.4). Human beings are at present the biggest threats for lichen, devastating their 

habitats worldwide through deforestation, agricultural practices, urbanisation, pollution and 

habitat degradation, fragmentation and overuse of natural resources and biological invasion 

(Gradstein, 2008; Hulme et al., 2008; Seaward, 2008; Ardelean et al., 2015; Zedda and 

Rambold, 2015; Boch et al., 2016; Zarabska-Bożejewicz and Kujawa, 2018).  

 

2.4 Lichen as a bioindicator of human disturbances 

Lichens have been acknowledged as indicators of environmental quality, especially air quality, 

since 1866 by Nylander (1866), as cited by Olowoyo et al. (2010), and have been used as 

such worldwide (Aptroot and van Herk, 2007; Dyer and Letourneau, 2007; Pinho et al., 2012; 

Li et al., 2013). The impact of different types of human disturbances on lichens and their role 

as bioindicators is discussed below.  

 

2.4.1 Air pollution 
Lichens are recognised as excellent indicators of environmental stress caused by various 

pollutants (Lupšina, 1992; Budka et al., 2004; Lisowska, 2011; Sett and Kundu, 2016; Giordani 

and Malaspina, 2017). Epiphytic lichens are, in particular, used for assessing air quality in 

urbanised and industrial areas (Budka et al., 2004; Giordani, 2007). They show differing 

sensitivities to air pollution (Branquinho et al., 1999), with sensitive species disappearing with 

even low levels of pollution (Hawksworth and Rose, 1970; Nash, 1976; Eversman, 1978). 

More tolerant species include Candelaria concolor (Dicks.) Arnold (tolerant to NOx), 

Hypogymnia physodes (L.) Nyl. (fairly tolerant to SO2), Lecanora conizaeoides Nyl. ex Cromb. 

(very tolerant to SO2) and Physcia tenella (Scop.) DC. (tolerant to NOx) (Conti and Cecchetti, 

2001; Sujetovienė, 2010; Sett and Kundu, 2016; Manninen, 2018). Other species such as 

Lobaria pulmonaria (L.) Hoffm. or Usnea spp. are very sensitive to SO2 (Conti and Cecchetti, 
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2001; Sett and Kundu, 2016). Isocrono et al. (2007) reported on changes in lichen diversity in 

Italy between 1960 and 1996 due to changes in environmental conditions especially pollution. 

 

Apart from SO2, a variety of other elements and chemical compounds in the atmosphere affect 

lichen development and spreading. These comprise nitrous oxides, fluoride, and other 

secondary pollutants formed through chemical reactions in the atmosphere, for example, 

ozone, peroxy-acetyl nitrate, sulphuric and nitric acids (Tiwari, 2008). Thus lichens have been 

used as indicators of a range of pollutants. The influence of different pollutants on lichens is 

discussed below. 

 

Information on air pollution and pollution sources in South Africa and in Pretoria are reported 

in Chapter 1, section 1.3. Data on air pollutants and their concentration in Pretoria are reported 

in Chapter 4, section 4.4.1. 

 

2.4.1.1 Pollution by sulphur dioxide (SO2) and lichen diversity 
Sulphur oxides, especially sulphur dioxide (SO2), affect lichen communities (Hawksworth and 

Rose, 1970; Aarrestad and Aamlid, 1999; Pescott et al., 2015). SO2 pollution is the primary 

cause of death of lichens in most urban and industrial areas (Gilbert, 1970; Nimis et al., 2002; 

Tiwari, 2008). The main human source of SO2 pollution is due to burning of fossil fuels such 

as coal, oil and natural gas, i.e. from thermoelectric power plants, road traffic and heating 

systems. Additionally, smaller sources of SO2 are released from industrial processes (Giordani 

et al., 2002; Tiwari, 2008). This kind of pollution was most serious in Europe and in North 

America until the nineties but has been declining in the last few decades. However, SO2 

remains a significant pollutant in developing countries such as China and India. Lichens 

respond to sulphur dioxide pollution with different sensitivities as confirmed by studies carried 

out throughout the world (Beekley and Hoffman, 1981; Aarrestad and Aamlid, 1999; Giordani 

et al., 2002; Wolseley, 2002; Nash, 2008). Nimis et al. (1996) and Giordani et al. (2002) 

reported that SO2 was the main pollutant affecting lichen biodiversity in Italy for the period from 

1996 to 1999. Pollution from vehicle exhausts and SO2 clearly damaged the lichen Ramalina 

menziesii Taylor in Los Angeles (Riddell et al., 2008). 

 

High levels of SO2 pollution causes lichen death in most urban and industrial areas and the 

consequent reduction of lichen cover (“lichen deserts”). For instance, in England and Wales it 

was observed that at SO2 levels of about 125 µg/m3 most lichens disappeared from trees and 

only few very tolerant species such as Lecanora conizaeoides still occured (Aarrestad and 

Aamlid, 1999; Gilbert, 1970; Nimis et al., 2002; Tiwari, 2008). In northeastern South Dakota 
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(United State) photosynthesis and respiration of the lichens Physconia grisea (Lam.) Poelt 

and Physcia stellaris (L.) Nyl. decreased significantly after fumigation with 2.5 ppm of SO2 

(Beekley and Hoffman, 1981). After the decline in SO2 since the beginning of this century, due 

to changes in legislation regarding pollution (Larsen et al., 2007), lichens have been 

recolonising urban and industrial areas across Europe (Kandler, 1987; Seaward and Letrouit-

Galinou, 1991).  

 

In London, fruticose and foliose lichens such as E. prunastri, Ramalina farinacea (L.) Ach. and 

Parmelia caperata, which are among the most sensitive to SO2 pollution, are now found in 

central parks (Hawksworth and McManus, 1989). The reduction of SO2 pollution in London 

has led in the last years to re-establishment of sensitive lichens such as Ramalina farinacea  

and Parmelia caperata (Hawksworth and McManus, 1989). Lisowska (2011) has also reported 

the same trend in Poland. In Finland, the reduction of SO2 levels led to the decline of SO2-

resistent lichen species L. conizaeoides (Manninen, 2018). This was also noticed in other 

European countries and in North America (Beekley and Hoffman, 1981; Seaward and Letrouit-

Galinou, 1991; Aarrestad and Aamlid, 1999; Wolseley, 2002; Nash, 2008). In Seoul (Korea), 

the SO2 concentration declined from 0.094 ppm in the 1980s to 0.04 ppm post-1992 leading 

to the re-colonisation of lichens (Ahn et al., 2011). There is no longer a lichen desert in Rome 

(Italy) as a result of CO, NOx and SO2 pollution reduction (Munzi et al., 2007). In Sudbury 

(Canada), Evernia mesomorpha Nyl. and Usnea hirta (L.) Weber ex F.H. Wigg., known to be 

very sensitive to pollution, are now found in areas where they were not previously found as a 

result of the reduction in SO2 pollution (Gunn et al., 1995).  

 

2.4.1.2 Pollution by nitrogen compounds and lichen diversity 
Nitrogen oxides (NOx, NO and NO2) are the main causes of atmospheric nitrogen deposition 

(Truscott et al., 2005). NOx are among the most significant pollutants at present in urban areas 

worldwide (Davies et al., 2007; Ahn et al., 2011). They are produced by coal burning and by 

automobile emissions. NOx resulting from domestic heating and traffic emissions are also 

responsible for changes in lichen diversity worldwide (Fuentes and Rowe, 1998; Purvis et al., 

2001; Loppi and Corsini, 2003). NOx have been reported to reduce chlorophyll concentrations 

in lichens, even at a concentration of only 4 ppm NO2 (Nash, 1976; Davies et al., 2007; Tiwari, 

2008). In the lichens Lecanora chrysoleuca (Sm.) Ach. (current name: Rhizoplaca chrysoleuca 

(Sm.) Zopf), Usnea cavernosa Tuck. and Parmelia praesignis Nyl., 4 ppm nitrogen dioxide 

resulted in significant chlorophyll reductions (Nash, 1976). NOx was considered as the factor 

that prevented the growth of lichen Parmelia saxatilis (L.) Ach. next to busy roads (Batty et al., 

2003) and caused poor health of Parmelia sulcata Taylor in London (Purvis et al., 2003). Large 
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amounts of NOx hinder photosynthesis of Flavoparmelia caperata (Tretiach et al., 2007). In 

the Netherlands and in other European countries, SO2 reduction led to an increased 

abundance of nitrophilous lichens belonging to the Xanthorion association (van Dobben and 

ter Braak, 1998), which are tolerant of nitrogen pollution. An example of a more tolerant 

species is Phaeophyscia orbicularis (Neck.) Moberg recorded this species, for example, in an 

area with high peaks of NOx in London (Larsen et al., 2007).  

 

Lichens have been furthermore utilised to monitor ammonia deposition (NH3) in rural areas 

(Fangmeier et al., 1994; van Dobben and ter Braak, 1998; Wolseley et al., 2006; Jovan and 

Carlberg, 2007; Sparrius, 2007; Nash, 2008; Paoli et al., 2014; Paoli et al., 2015a). Paoli et al. 

(2015a) used the lichens Flavoparmelia caperata and Xanthoria parietina (L.) Th. Fr., as 

indicators of ammonia concentration in the environment. These lichens were exposed to NH3 

for eight weeks and for F. caperata, both the photobiont and the mycobiont were affected, 

while in X. parietina, only the photobiont was altered. In F. caperata there was decrease in 

chlorophyll content, photosynthesis performance and alteration of the secondary metabolite 

usnic acid, whereas in X. parietina there was only alteration of photosynthesis. In the 

Netherlands, the decrease of ammonia in polluted areas was followed by a quick increase in 

nitrogen-sensitive species such as Bryoria fuscescens (Gyeln.)  Brodo and D. Hawksw. and 

E. prunastri (Sparrius, 2007).  

 

2.4.1.3 Pollution by particulate matter (PM10, PM2.5) and lichen diversity 
Particulate matter (PM) is a combination of dense particles suspended in the air, which differ 

in size and originate from different anthropogenic sources (Degtjarenko, 2018). These 

particles can be both fine and coarse. Coarse PM (PM10,  particulate matter 10 micrometers or 

less in diameter) is primary in nature and originates from point sources such as abrasion and 

combustion and crushing processes, soil disturbances, desiccation of marine aerosol, rock 

quarrying and limestone quarry road surfaces (Zaharopoulou et al., 1993; Grantz et al., 2003; 

Degtjarenko, 2018). Fine PM (PM2.5, particulate matter 2.5 micrometers or less in diameter) is 

secondary in nature and contains condensates of volatile organic compounds, volatilised 

metals and products of incomplete combustion (Grantz et al., 2003). PM is one of the most 

dangerous group of pollutants, exceeding the acceptable levels in many countries worldwide 

(Degtjarenko, 2018; Varela et al., 2018; Rola and Osyczka, 2019). The PM2.5 concentration of 

more than 60 μg.m-3 affect lichen abundance negatively in Chile (Varela et al., 2018).  

 

Despite the increase in PMs in many urban areas worldwide, there are few studies 

investigating their effects on lichens (Varela et al., 2018). In Thessaloniki (Greece), limestone 
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dust caused reduction in chlorophyll content of foliose lichen Physcia adscendens H. Olivier 

(Zaharopoulou et al., 1993). Lichen growth forms and reproductive strategies, as well as 

species richness and abundance have been used as bioindicators of PM in Chile and Estonia 

(Degtjarenko, 2018; Varela et al., 2018). Crustose lichens with sexual reproduction can be 

utilised as indicators of alkaline dust pollution, as they are more resistant to this kind of 

pollution than foliose narrow-lobed and fruticose species, due to their smaller surface of thalli 

exposed to the dust particles (Giordani et al., 2012; Degtjarenko, 2018; Varela et al., 2018). 

Lichen abundance, not only lichen presence, can be used as an ecological indicator of PM2.5 

concentrations in urban environments (Varela et al., 2018).  

 

2.4.1.4 Pollution by heavy metals and lichens as biomonitors 
Lichens are also used as bioindicators of heavy metals (Agnan et al., 2017), for instance lead, 
in different countries including Italy, South Africa, Sri Lanka and in the Antarctica (Conti and 

Cecchetti, 2001; Forbes et al., 2009; Gunathilaka et al., 2011; Zvěřina et al., 2018) and of 

mercury (Bargagli, 2016; Vasilevich and Vasilevich, 2018; Zvěřina et al., 2018). In Pretoria, 

the lead concentrations in lichen Parmotrema austrosinense (Zahlbr.) Hale found in the central 

business district (CBD) (181.1 ± 98.0 μg.g-1) were significantly higher than in those growing 

outside of the CBD area (41.5 ± 36.4 μg.g-1) (Forbes et al., 2009). There was a significant 

difference in accumulation of mercury by lichens of different genera in northwest of Russia 

(Vasilevich and Vasilevich, 2018). The average content was 113.4 ±22.6 μg/kg for the genus 

Usnea and 192.0±40.0 μg/kg for Bryoria (Vasilevich and Vasilevich, 2018). 

 

Hypogymnia physodes was utilised as a bioindicator of mercury and methyl mercury in 

Slovenia (Lupšina et al., 1992) and Usnea antarctica Du Rietz in Antarctica (Zvěřina et al., 

2014; 2018). The highest concentration of mercury (115-188 μg.g-1) was found next to the 

smelting house in H. physodes whereas the lowest concentration was found at the control site 

in a mountain area (0.4 μg.g-1) (Lupšina et al., 1992). López Berdonces et al. (2017) used the 

lichen genera Ramalina and Xanthoria as biomonitors of mercury in Spain. The highest 

concentration was found next to the emitting source of mercury (110 ng.m-3) and the lowest 

far away from sources (20-40 ng.m-3) (López Berdonces et al., 2017). Panichev et al. (2019) 

used P. caperata as a bioindicator for mercury concentration in South African provinces. The 

highest concentration was found in Secunda (Mpumalanga Province) which has many power 

stations and the lowest was recorded in Limpopo Province, which has fewer power stations 

(Panichev et al., 2019). This shows that lichens can be used as indicators of mercury. 
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Lichens were also used as indicators of nitrogen pollution and cadmium in California (Sierra 

Nevada) and Antarctica (Jovan and Carlberg, 2007; Zvěřina et al., 2018). The concentration 

of cadium was 0.04 mg.kg-1 for lichen Usnea antarctica Du Rietz in James Ross Island, 

Antarctica (Zvěřina et al., 2018). The lichen Ramalina fastigiata (Pers.) Ach. was used as a 

biomonitor of copper dust emissions from coal mines in Portugal and the highest concentration 

was found next to the mine (Branquinho et al., 1999).  

 

Lichens have furthermore been used as biomonitors of uranium in many countries (Beckett 

et al., 1982; Garty, 2001; Di Lella et al., 2003; Loppi et al., 2003; Rosamilia et al., 2004; 

Golubev et al., 2005; Boryło et al., 2017). They accumulate and retain uranium for numerous 

decades even after the source is no longer in existence (Fahselt et al., 1995). Sources of 

uranium includes milling of uranium, mining, ammunition repository and yellow cake 

production (Beckett et al., 1982; Di Lella et al., 2003; Loppi et al., 2003; Jeran et al., 2005). 

The elemental contents of lichens decrease with increasing distance from the emission source 

as indicated by Beckett et al. (1982) in Ontario (Canada) for the lichen Cladonia rangiferina 

(L.) Weber ex F.H. Wigg. Hypogymnia physodes was also used as biomonitor of uranium in 

Russia by Golubev et al. (2005). These authors reported high concentrations of uranium (1.45 

mg kg-1) next to the contaminated site and low concentrations (0.106 mg.kg-1) in the clean site. 

Boryło et al. (2017) reported the highest concentration of uranium next to the Orle settlements 

belonging to Sobieszewo Island in Poland. These authors reported the highest concentration 

of uranium in the crustose lichen Lepraria incana (L.) Ach., followed by the fruticose lichen 

Evernia prunastri, while the smallest concentration was observed in Platismatia glauca (L.) 

W.L. Culb. and C.F. Culb. Jeran et al. (2005) also observed the highest concentration of 

uranium of transplanted Hypogymnia physodes next to an emission source in Slovenia 

compared to in areas far away from this source.  

 

In Yugoslavia, Di Lella et al. (2003) found the highest concentration of uranium in lichen 

Physcia adscendens (4.26 µg.g-1) and Phaeophyscia orbicularis (2.15 µg.g-1) followed by 

Physcia biziana (A. Massal.) Zahlbr. (1.44 µg.g-1) and the lowest concentration in Xanthoria 

parietina (0.11 µg.g-1). In the Balkan area, Loppi et al. (2003) evaluated the contribution of the 

conflict of 1999 to the environmental levels of uranium by means of lichens, but they did not 

find high concentrations related to depleted uranium. Lichen species such as P. sulcata and 

P. saxatilis were also used as biomonitors of depleted uranium dusts in Bosnia-Herzegovina 

(Rosamilia et al., 2004). Lichen are also used to monitor Perfluorinated contaminants (PFCs). 

Lichen species Usnea aurantiaciparvula A. Gerlach and P. Clerc was used as indicator of 

PFCs in Antarctic Peninsula – 60% of PFCs were detected in this lichen species (Alava et al., 

2015). 
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2.4.1.5 Methods used to detect and monitor air pollution 
Different methods are used to monitor pollution. Commonly used worldwide are scales and 

maps of air quality. In the past, scales had been based on the calculation of an Index of 

Atmospheric Purity (I.A.P.), which considered the number of lichen species and their 

frequency-abundance, sometimes also their degree of toxiphoby (Nimis et al., 2002). They 

evolved later in scales of air quality based on a calculation of Lichen Diversity Values (LDV) 

(Asta et al., 2002a; VDI-Richtlinien, 2005). A different sampling design may be more or less 

appropriate in different ecological situations (Leedy and Ormrod, 2016). The LDV of a sample 

unit is a measurable estimator of the environmental conditions in that unit. The initial phase in 

calculating the LDV of a sampling unit is to sum the frequencies of all lichen species found on 

selected trees at different orientations (N, S, W and E). Since considerable variances in lichen 

development might be normal on various sides of the trunks, the frequencies must be summed 

independently for every aspect (Asta et al., 2002a, b). The sums of lichen frequencies at each 

aspect of one tree were used to calculate mean values. Later, average values were calculated 

for all the trees within a sampling unit (plot). The LDV of an area was obtained by adding the 

average sum of LDVs resulting from all sampling units of that area (Asta et al., 2002a, b) (see 

Appendix 7). 

 

During recent years, these guidelines have been further modified in European countries by 

considering the occurrence of eutrophic species as well as nitrogen-tolerant species which 

have become more frequent in urban areas because of increasing nitrogen pollution 

(Kirschbaum and Wirth, 2010). Different authors (i.e. Asta et al., 2002b) introduced scales of 

“naturality/alteration” based on LDVs and this method is also applied in the present study. 

There are several applications and further developments of such scales in Italy by Loppi et al. 

(2002), Giordani et al. (2002), Brunialti et al. (2008), Cocozza et al. (2016), Cecconi et al. 

(2019). The following publications were also consulted to design the monitoring approach for 

the Pretoria area: Larsen et al., 2007; Jovan, 2008; Paoli et al., 2015b. These authors 

indicated that all aspects of the trees must be monitored (N, S, E and W) and the trees must 

be straight and not damaged. Lichen diversity values are generally lower in urban areas than 

rural areas due to vehicular traffic (Loppi et al., 2002; Frati and Brunialti, 2006). For example, 

Giordani et al. (2002) found very high alteration (low lichen diversity value) in areas 

characterised by high pollution such as urban and industrial districts of the towns Genova and 

Savona in Italy. Isocrono et al. (2007) reported highest lichen diversity value in the areas 

characterised by lower vehicular traffic and industries in Turin (Italy). The lowest lichen 

diversity value was limited to the area characterised by industries and municipal rubbish dump 

(Isocrono et al., 2007) (see Appendix 7). 
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2.5 Lichens’ response to global warming  

Lichens are among the most sensitive organisms to global warming (Insarov and Insarova, 

2002; Aptroot and Van Herk, 2007; Giordani et al., 2014; Root et al., 2014; Aptroot et al., 2015; 

Nascimbene and Marini, 2015; Zedda and Rambold, 2015; Allen and Lendemer, 2016; Bajpai 

et al., 2016; Nascimbene et al., 2016) due to their particular physiological and ecological 

characteristics (Matos et al., 2015). Specifically, epiphytic lichens are climate-sensitive and 

may give early warning signs of climate change (Nash and Olafsen, 1995; Insarov and 

Schroeter, 2002; Ellis et al., 2007; Nascimbene and Marini, 2015). Lichen thallus size and 

growth-form, secondary metabolites and photobiont type are lichen characters known to be 

related to climatic conditions and to respond to climate change. For instance, green-algae 

lichens show less vulnerability to climate change than cyanolichens (Rubio-Salcedo et al., 

2017). Crustose lichens are more tolerant than foliose and fruticose species to increasing 

temperature in arid regions of the world as well as in temperate and Mediterranean ones 

(Maphangwa et al., 2014; Nascimbene and Marini, 2015).  

 

Lichen growth is especially dependent on climate (temperature and precipitation), which 

means that a minor change in the climate may change the lichen community structure of a 

given site (Aptroot and Van Herk, 2007; Sancho et al., 2007). Global warming is the main 

cause of fast changes in the epiphytic lichen flora in some parts of Europe (Van Herk et al., 

2002; Aptroot et al., 2015). Changes in temperature and humidity can severely affect the 

structure of epiphytic communities and may cause local extinction of several species in Spain 

(Aragón et al., 2012). Climate change poses a substantial risk especially to montane lichens 

and in cold environments, where future decline of lichens is expected (Allen and Lendemer, 

2016). For instance, Lobaria species, which require temperate-humid conditions, are facing a 

high extinction risk in Italy because of climate change (Nascimbene et al., 2016). They are 

among the most vulnerable lichens in Europe (Nascimbene et al., 2013; Otalora et al., 2015). 

Søchting (2004) reported the first signs of global warming effects on lichen distribution in 

Denmark. Soil lichens are threatened by global change in natural alpine environments, 

especially on moss-dominated soils, where there is a decline of mosses and lichens and 

replacement by vascular plants (Bueno de Mesquita et al., 2017).  

 

Soil lichens have declined in response to climate warming in lower-altitude sub-arctic and mid-

arctic ecosystems as well (Cornelissen et al., 2001). Warming experiments resulted in the 

decrease of lichen cover in the tundra biome (Walker et al., 2006).  
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Climate change effects could lead to the extinction of rare and endemic terricolous lichen 

vegetation in the arid Succulent Karoo Biome and in the Desert Biome (Alexander Bay, Namib) 

in southern Africa (Zedda and Rambold, 2009; Maphangwa et al., 2012b; 2014). This will have 

possibly significant consequences for such biomes, which host a huge variety of lichen taxa 

with high endemism (Zedda and Rambold, 2009; Zedda et al. 2011b, 2011c).  

 

Increased temperatures influence lichens negatively in two ways: through direct effects on 

metabolic rates, and by increasing evaporation in tropical lowlands (Zotz and Bader, 2009). 

Slight increments in temperature might make tropical lowlands not habitable to lichens (Zotz 

and Bader, 2009). 

 

The diversity of epiphytic species is however increasing in other regions such as in the 

Netherlands because of the colonisation of trees by Mediterranean lichen species as a result 

of global warming in Western Europe (Aptroot and Van Herk, 2007). In Denmark and the 

Netherlands, growth rates of F. caperata, a drought resistant, warm-temperate lichen, have 

increased over the last 100 years (Van Herk and Aptroot, 1996, 2004; Van Herk et al., 2002). 

This appears to be linked to the increase of temperatures during the last 20 years (Van Herk 

and Aptroot, 1996, 2004; Søchting, 2004). Other warm-temperate species such as 

Candelariella reflexa (Nyl.) Lettau, Lecidella flavosorediata (Vězda) Hertel and Leuckert, 

Parmelia borreri Turner and P. soredians Nyl. have increased in frequency in the Netherlands 

as well, while species characteristics of colder environments have either declined or become 

extinct (Van Herk et al., 2002; Hauck, 2009). Species most rapidly increasing contain 

Trentepohlia as phycobiont, which is often associated with warm-humid environmental 

conditions (Aptroot and Van Herk, 2007) because of the increase of temperature.  

 

P. borreri has also increased its frequency in the Netherlands (Spier and Van Herk, 1997) and 

Physcia tribacioides Nyl. and Heterodermia japonica (M. Satô) Swinscow and Krog (current 

name: Heterodermia obscurata (Nyl.) Trevis.) have been found here for the first time 

(Wolfskeel and Van Herk, 2000 as cited by Aptroot and Van Herk, 2007).  

 

Climate change might also have positive effects on some Mediterranean species such as 

Buellia cedricola Werner (current name: Diplotomma cedricola (Werner) Etayo) and Cladonia 

mediterranea P.A. Duvign. and Abbayes, as well as in Pyrrhospora lusitanica (Räsänen) 

Hafellner, Solenopsora holophaea (Mont.) Samp. and Waynea adscendens V.J. Rico with a 

Mediterranean Atlantic distribution and preferring higher temperature and low precipitation 

(Rubio-Salcedo et al., 2017). This is because in the Mediterranean, temperature is expected 

to increase and precipitation to decrease in future (Rubio-Salcedo et al., 2017).  
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2.6 Other kinds of human-driven ecosystem disturbance on lichens  

Forest disturbances and deforestation are major human activities affecting lichen diversity 

and composition on trees. This can lead to the disappearance of epiphytic lichens, especially 

the most sensitive ones (Seaward, 2008; Boch et al., 2016), such as foliose and pendulous 

forms as well as cyanolichens as their habitat is affected (Seaward, 2008). In the tropical 

montane rainforests, deforestation causes significant loss in the species diversity of epiphytic 

macrolichens and lichen total richness (Gradstein, 2008; Benítez et al., 2012, 2015). Lichens 

are also used as indicators of forest disturbance in Ethiopia, Uganda and Kenya (Yeshitela, 

2008).  

 

When land use is intense due to agricultural practice or overgrazing, lichen diversity is 

reportedly low as compared to areas with lower land use intensity (Gilbert, 1980; Ruoss, 1999; 

Giordani et al., 2010; Boch et al., 2016). Overgrazing by small stock is likely to be the 

responsible factor for the relative low species diversity in some rangeland areas of South 

Africa, where climatic conditions are potentially feasible for lichen growth (Zedda and 

Rambold, 2010a). Overgrazing by sheep and goats causes trampling impacts on lichen crusts 

(Weber et al., 2010; Zedda and Rambold, 2010a; Zedda et al., 2011b). The future of soil-

inhabiting fruticose lichens, which are dominant in arctic and sub-arctic landscapes, is 

uncertain due to commercial exploitation of oil, minerals and timber (Seaward, 2008).  
 

Biological invasions by alien plant species are viewed as another main environmental 

problem (Osyczka, 2010; Hulme et al., 2008; Zedda et al., 2010c; Cogoni et al., 2011). In USA, 

invasive plants frequently occupied former biologically crusted interspaces (Belnap, 2001). 

Under such conditions, biological soil crusts including lichens have lower diversity and cover. 

In the Mediterranean areas, lichen and bryophyte covers on sand dunes along the coast 

decrease significantly or these organisms tend to vanish by an increasing cover of alien plants 

such as Carpobrotus spp. (Zedda et al., 2010c; Cogoni et al., 2011). The thick deposits of litter 

produced by some exotic trees rot slowly and may promote acidic and dry top soil conditions, 

which are not favourable for the growth of numerous bryophyte and lichen species (Babu and 

Kandasamy 1997; Zedda et al., 2010c). 

 

Lichen diversity is also affected by human trampling, off-road driving, fire and mining 
activities (Zedda et al., 2010c; Cogoni et al., 2011) in different parts of the world. In Northern 

Sweden, it has been shown that trampling decreases species richness of lichens (Jägerbrand 

and Alatalo, 2017). In Namibia, open cast mining and extensive off-road driving affect lichen 

distribution (Lalley and Vleis, 2005). High fire intensities in savanna cause changes in woody 
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vegetation composition and structure (Trollope and Trollope, 1997; Smit et al., 2010). It led, 

for instance, to the reduction of woody vegetation in Kruger National Park (Smit et al., 2010). 

This may affect also the diversity of epiphytic lichens in affected areas as the trees will be 

reduced or destroyed and lichens burnt. In the eastern Iberian Peninsula, fire was found to 

affect the diversity of lichens on holm oak trees (Garrido-Benavent et al., 2015). Previous 

lichen richness had still not recovered 20 years after fires (Garrido-Benavent et al., 2015). Fire 

appears also to disturb lichen growth in the Cape region of South Africa (Zedda and Rambold, 

2010b).  

 

2.7 Economic importance of lichens 

Lichens are important natural resources which have been utilised for various purposes for a 

long time all over the world by people. They are used for medication, nourishment, grain, 

aroma, fuel, flavours, dyes and other purposes (Llano, 1948; Malhotra et al., 2007; Nash, 

2008; Basile et al., 2015; Crawford, 2015; Vitalini et al., 2015; Zedda and Rambold, 2015; Xu 

et al., 2016; Devkota et al., 2017; Poulin, 2017).  

 

In South Africa (Cape area), species of the family Parmeliaceae are used for the treatment of 

back torment and kidney trouble and against other diseases (Van Wyk et al., 2008; De Beer 

and Van Wyk, 2011). They are also used for anointing babies (Van Wyk et al., 2008; De Beer 

and Van Wyk, 2011). The Khoisan utilised lichens for treating general torments, wounds and 

bladder sicknesses (De Beer and Van Wyk, 2011). Additionally, they utilised them for sore 

throats and oral thrush in new-born children, abdominal pain and kidney sicknesses (Van Wyk 

and Gericke, 2000). The Xhosa people use the lichen Xanthoparmelia conspersa (Ehrh. ex 

Ach.) Hale to treat syphilis eruptions, both known and suspected snakebites (Crawford, 2015). 

The Xhosas in the Eastern Cape also used lichen Usnea filipendula Stirt. for the treatment of 

mammary infections in cattle (Afolayan et al., 2002).  

 

Considering the lack of comprehensive information on lichen diversity studies in urban 

environments with a considerable number of anthropogenic activities, there is a need to 

undertake studies on determining lichen diversity and their environmental relevance.  As 

evidenced from a plethora of evidence on the potential applications of lichens in 

environmental/ air pollution bioindication, there is a need to explain the biodiversity of lichens 

in Pretoria in relation to possible use as indicator of pollution and climate change.  
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CHAPTER 3: MATERIALS AND METHODS 

 

3.1 Study area 

This study was carried out in Pretoria and its metropolis (Figure 3.1A). Pretoria lies in the 

northern part of Gauteng Province (25°44′46 S; 28°11′1 E) and is located around 55 km north-

northeast of Johannesburg in the north-east of South Africa. It is divided into three sections: 

west, east and north, with respect to the central business district. Pretoria is located inside the 

City of Tshwane Metropolitan Municipality. It is known as the ‘Jacaranda City’ (see Appendix 

8) because of the large number of Jacaranda trees growing in its streets, parks and gardens 

(Henderson, 1990; Joseph, 2006; Coetzee et al., 2015). Pretoria is located in a transitional 

belt between the level of the Highveld towards the south and the lower-lying Bushveld towards 

the north. 

 

The town has a population of around 2.9 million (Statistics South Africa, 2011). It has a dry, 

sunny climate, except for incidental late evening storms between October to April. 

Temperatures are usually fairly mild because of the city's high elevation (1,271 m a.s.l.) with 

the normal maximum daytime temperature of 21.5°C in January, dropping to a normal limit of 

11°C in July (Olowoyo et al., 2010). Snow is very uncommon and the mean annual rainfall is 

784 mm. June to August are the coldest months (Olowoyo et al., 2013). 

 

All study sites fall within the Savannah biome with the exception of one located in the 

Grassland biome (see section 3.2. below). The Savannah biome, the most far-reaching biome 

in Africa, covers 32.8% of South Africa (399 600 km2). Savannah occupies northern Gauteng 

with more isolated occurrences in the south of this province (Mucina and Rutherford, 2006). 

Much of the Savannah prospered during early geographical periods under hot, wet climatic 

conditions (Mucina and Rutherford, 2006). The Grassland biome covers a large part of central 

South Africa and has a high frequency of lightning flashes making the incidence of fire 

relatively high (Mucina and Rutherford, 2006).  
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Figure 3.1A. Study area and sampling sites. Sampling sites are marked with alphabetical letters 
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3.2 Sampling sites 
Sampling was carried out from 32 different sites. A first floristic survey was carried out at 

twelve sampling sites. Further sites were later selected for monitoring according to a stratified 

sampling method (see 3.7, 3.8). The first sites were identified with the help of a local map and 

field surveys were carried out in July 2016 to March 2018. The sites were selected so as to 

be representative of different kinds of land use activities in Pretoria, e.g. high traffic areas, 

residential areas, industrial areas (metal pressings), open-air museums and nature reserves. 

The study sites where lichens were collected for a first floristic survey are listed below and 

their distribution is shown on the map in Figure 3.1A. Some were visited again for lichen 

monitoring and further sites were identified for monitoring (see 3.7). Each visited site is defined 

by a progressive code (e.g. S01). When the same locality was visited several times, different 

codes were assigned to the different sampling/monitoring sites. Study sites are described in 

the sections that follow and section 3.7 covers the monitoring sites (see also Figure 3.1B). 

 

3.2.1 (A) Waterkloof 
This is a residential area situated in the East of Pretoria around 10 km from the city centre. 

The site falls within the Savannah biome. Sampling was done at Rigel Avenue (around 

25o47”44 S; 28o14’36 E, elevation 1546 m a.s.l.) from three trees. There are many Jacaranda 

mimosifolia trees planted along the streets. Traffic is heavy only along the main avenues and 

roads, but lower compared to the city centre. Visited on 18 July 2016. Code S07. 

 

3.2.2 (B) Pretoria central business district 
This site is located in the city centre and falls within the Savannah biome. Collections were 

done at Nana Sita Street (around 25o74’50'' S; 28o19’25'' E, elevation 1354 m a.s.l.) from one 

tree. This is a high traffic area frequented by heavy trucks, buses, small cars and taxis. The 

street is lined with J. mimosifolia trees. Visited on 19 July 2016. Code S016. 

 

3.2.3 (C) Groenkloof Nature Reserve 
The nature reserve is located adjacent to Fountains Valley (Christina De Wit Ave), about 5 km 

south of the city centre. The reserve is about 600 ha in size and falls within the Savannah 

biome. In terms of vegetation, there is semi-open thicket but this is dominated by woody 

species such as Acacia karroo, A. caffra, Commelina erecta L. and Drimia multisetosa (Baker) 

Jessop (Marais, 2004). Collections were made in several spots (around 25o47’22'' S; 

28o11’54'' E, elevation 1390 m a.s.l.) from seven trees. Visited on 19 July 2016. Code S05. 
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3.2.4 (D) Magalies 
This is a mountainous area approximately 15 km NW of the city centre. It falls within the 

Savannah biome. The sampling site was situated along the Hornsnek Road (around 25°68’12'' 

S; 28°06’82'' E, elevation 1453 m a.s.l.) and collection was done from two trees. The area was 

characterised by the presence of A. caffra and other Acacia species and grasses. Visited on 

19 July 2016. Code S014. 

 

3.2.5 (E) Arcadia 
This area is situated around the Union Buildings. It falls within the Savannah biome. The 

collecting site was located at Stanza Bopape Street from one tree (around 25°44’41'' S; 

28°12’30'' E, elevation 1332 m a.s.l.) next to the Union Buildings. Traffic is very heavy. The 

street is lined up with many J. mimosifolia trees, on the bark of which citizens often pin notices 

and advertisements. Visited on 20 July 2016. Code S010. 

 

3.2.6 (F and J) Pretoria West  
This area is situated approximately 7-8 km west of the city centre and falls within the Savannah 

biome. Two sites were investigated here. The first was along Quagga Road (F) (around 

25°45’24'' S; 28°08’32'' E, elevation 1340 m a.s.l.), near a coal-fired power plant belonging to 

the City of Tshwane, a road busy with cars and trucks and lined with old J. mimosifolia trees. 

Collection was done from three trees. Visited on 13 September 2017. Code S030. 
 
The second site was in the Pretoria West industrial area at Staal Road (J) (around 25°45’50'' 

S; 28°07’52'' E, elevation 1360 m a.s.l.) from one tree, opposite the metal pressings. J. 

mimosifolia trees are found along the street. There are also other small industries and traffic 

is heavy. Visited on 04 February 2017. Code S02. 

 

3.2.7 (G) Pionier Museum 
This area is approximately 10 km east of the city centre and falls within the Savannah biome. 

The collecting site was situated at Keuning Drive (around 25°44’07'' S; 28°18’36'' E, elevation 

1315 m a.s.l.) from seven trees. The vegetation here includes A. karroo, A. caffra and other 

indigenous trees. Visited on 14 November 2016. Code S04. 

 

3.2.8 (H) Hercules 
This is a residential area located north-west of the city centre. The site falls within the 

Savannah biome. Collections were made at Van Der Hoff Road (25°43’03'' S; 28°08’25'' E, 

elevation 1293 m a.s.l.), at a site dominated by A. karroo and J. mimosifolia trees. Car traffic 
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is very heavy. Collection was done from four trees. There is also coal burning by households 

in winter. Visited on 18 November 2016. Code S03. 

 

3.2.9 (I) Sunnyside 
This area is situated less than 3 km from the city centre and falls within the Savannah biome. 

The collecting site was located in Jorissen Street (around 25°45’27'' S; 28°12’56'' E, elevation 

1343 m a.s.l.). Collection was done from six trees. This is a busy street with heavy traffic, lined 

with J. mimosifolia trees. Visited on 03 February 2017. Code S031. 

 

3.2.10 (K) Lotus Gardens 
This residential area is situated approximately 10 km from the city centre and falls within the 

Savannah biome. The collecting site was located at WF Nkomo Street (around 25°75’90'' S; 

28°08’68'' E, elevation 1389 m a.s.l.). Collection was done from four trees. The area has heavy 

traffic. Residents also burn coal for heating their homes during winter months. Vegetation 

found in this site includes planted J. mimosifolia and other woody trees, as well as different 

grasses. Visited on 04 February 2017. Code S032. 

 

3.2.11 (L) Rietvlei Nature Reserve 
This reserve is located along the R21 highway, 18 km SSE of the centre of Pretoria and 38 km 

north of OR Tambo International Airport. The area is approximately 3 800 ha and falls within 

the Grassland biome. Tree vegetation includes Acacia caffra, A. decurrens Willd., A. karroo, 

Euclea crispa (Thunb.) Gürke. Lichen collections were made at one site close to Rietvlei Dam 

(around 25°53’47'' S; 28°15’50'' E, elevation 1529 m a.s.l.). Collection was done from five 

trees. Visited on 23 July and 17 February 2017. Code S09. 

 

3.2.12 (M) SANBI 
This is a Botanical Garden situated in the east of Pretoria around 10 km from the city centre 

along Cussonia Avenue. It falls within the Savannah biome (around 25°44’12'' S; 28°16’17'' E, 

elevation 1356 m a.s.l.). Collection was done from one tree. Car traffic is very low inside the 

garden but high in the areas surrounding the garden. Visited 08 April 2018. Code S06. 

 

3.3 Phorophytes 

All available epiphytic lichen species were collected from selected native and exotic trees. 

Sampling was focused on the following three tree species:  
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3.3.1 Jacaranda mimosifolia D.Don 

This species is commonly known as jacaranda and belongs to the family Bignoniaceae 

(Walker, 1986; Henderson, 1990). Jacaranda is a fast-growing tree, 15 to 22 m tall, with a 

fairly dark green, rounded and spreading crown. The young bark is smooth and pale grey, but 

with age it becomes rougher and darker brownish-grey (Henderson, 1990). Jacaranda is 

indigenous to North-Western Argentina (Coetzee et al., 2015), where it is found mostly on river 

banks in warm temperate sub-humid conditions. The species is cultivated for ornamental 

reasons (particularly on streets which become carpeted with its purple flowers during October 

and November), shade and timber (Van Wyk and Van Wyk, 1997; Henderson, 2007). This 

beautiful tree, however, is invasive and presents potential risk for indigenous vegetation in the 

subtropical regions of the country, and specifically in Mpumalanga and Lowveld (Henderson, 

1990). According to Department of Agriculture (1985), Jacaranda is an invader plant (Category 

3 of CARA List) which may no longer be propagated or sold, but its existing plants do not need 

to be removed. 

 

3.3.2 Acacia karroo Hayne (current name: Vachellia karroo (Hayne) Banfi and Glasso 

This is a shrub to medium-sized tree, variable in shape but typically with a somewhat rounded 

spreading crown (Van Wyk and Van Wyk, 1997; Boon, 2010) and is usually single stemmed 

with pendulous branches. Its bark is dark, coarse, fissured, reddish in cracks when old, while 

young stems are red-brown. A. karroo is a heterogeneous species best split into a number of 

distinct entities (Van Wyk and Van Wyk, 1997; Boon, 2010). This is one of the most 

widespread trees in Africa occurring in many different habitats (Palgrave, 1977; Boon, 2010), 

in particular in bushveld, grassland and in coastal dune forest. It ranges from the South 

Western Cape northwards into Angola, Botswana, Namibia, Swaziland, Zambia and 

Zimbabwe (Pooley, 1993; O'Connor, 1995). The wood is used for building and furniture and 

the tree is valued for shade, shelter and firewood. It has many medicinal uses from poultices 

for wounds to gargles for sore throats (Palgrave, 1977; Pooley, 1993; Boon, 2010).  

 

3.3.3 Acacia caffra (Thunb.) Willd. (current name: Senegalia caffra (Thunb.) P.J.H.Hurter  

and Mabb.)  

This is a shrub to medium-sized deciduous tree up to 12 m in height, often with a twisted trunk 

and rather thin spreading somewhat rounded crown and drooping foliage. It is single or multi-

stemmed (Palgrave, 1977; Pooley, 1993; Boon, 2010). Its bark is dark brown to black and 

rough, sometimes fissured and horizontally cracked forming squares. A. caffra is one of the 

least thorny Acacia species (Palgrave, 1977; Boon, 2010). It occurs in bushveld, grassland 

and coastal shrub, often also on rocky ridges up to 1700 m altitude. It is found in South Africa, 

Botswana, south Mozambique and Zimbabwe (Boon, 2010). Bark, leaves and roots of the 
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plant are used for medicinal purposes (Palgrave, 1977; Van Wyk and Van Wyk, 1997). It can 

be easily distinguished from A. karroo because of its narrow, straight, brown seed pods, which 

are narrow, flat and crescent shaped in A. karroo. 

 

These tree species were selected for the investigation as they are widespread across the 

town. Jacaranda trees are planted and widely distributed in Pretoria along most roads and 

avenues. Acacia karroo and A. caffra are part of the natural savannah vegetation and are 

widespread in urbanised areas where they are able to survive (Alexander Heunis; personal 

communication, 2016). These trees were simple to identify and were mostly easily accessible 

for sampling (Walker, 1986). 

 

3.4 Floristic survey: Sampling of lichen species and identification methods 

Different epiphytic lichen species were collected mainly from tree trunks with the aid of a knife 

as well as with a chisel and hammer for woodworking. The samples were placed in paper 

bags, on which sampling information was indicated (locality, coordinates, tree species, land 

use, date, and operators). Collected specimens were transported to the laboratory for 

preparation and identification.  

 

After identification, the specimens were sealed in paper envelopes and labels were prepared 

with the taxon name, the collection site, elevation and coordinates, the collector’s name, the 

date of collection, the date of identification, and the name of the identifying person. 

Identification was made using the LIASLight online interactive identification keys 

(http://www.lias.net) and the following publications: Swinscow and Krog (1988), Brodo et al. 

(2001), Nash et al. (2002, 2004) and Sipman (2003). Further publications with identification 

keys were used for given genera or families, i.e. for the family Physciaceae (Moberg, 2004), 

for the genera Chrysothrix (Elix and Kantvilas, 2007; Elix 2009) and Rinodina (Matzer and 

Mayrhofer, 1996; Mayrhofer et al., 2007, 2014).  

 

Taxonomical nomenclature follows the databases:  

• “LIASnames” (www.lias.net) 

• “Index Fungorum” (www.indexfungorum.org/) and  

• “Species Fungorum” (http://www.speciesfungorum.org/Names/Names.asp). 

 

Identification was performed at the University of South Africa (UNISA), the Botanical Garden 

and Botanical Museum Berlin and in Bonn (Germany) in 2016 and 2017. The identification of 

some specimens of Culbersonia nubila was confirmed by DNA analsyis (Aptroot et al., 2019). 

http://www.lias.net/
http://www.lias.net/
http://www.indexfungorum.org/
http://www.speciesfungorum.org/Names/Names.asp
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Some specimens were compared with herbarium specimens stored at the South African 

National Biodiversity Institute (SANBI) in Pretoria (South Africa) (February 2017) and at the 

Botanical Garden and Botanical Museum Berlin (Germany) (in March-April 2017). 

 

Lichen traits were observed with a binocular microscope capable of magnification up to 40×. 

Microscopic features (thallus, apothecia and asci anatomy or spores of some species) were 

observed by cutting thin vertical slices of lichen thalli or of fruiting bodies with a razor blade. 

Sections were placed in a drop of water or on potassium hydroxide on a microscope slide and 

examined with a microscope having 10×, 40× and 100× objectives (the last one with oil 

immersion), following the methodology described by Purvis et al. (1992) and Nash et al. 

(2002).  

 

Reagent tests of thalli were performed during microscopic examination to detect the presence 

of lichen secondary metabolites through colour reaction of thalli or fruiting bodies. The 

following reagents were used: pure bleach (sodium hypochlorite solution) (C), 10% potassium 

hydroxide solution (K), paraphenylenediamine (Pd), and Lugol’s iodine solution for studying 

asci. Pictures of some of the species were taken with an Olympus DP72 digital color camera 

for microscopes, with 2×, 7× and 10× magnification. The Olympus SZX7 stereomicroscope 

and an Olympus BX50 compound microscope with interference contrast, connected to a Nikon 

Coolpix digital camera, were also used to identify some species.  

 

Thin Layer Chromatography (TLC) was carried out on some of the collected lichens, following 

the methodology described by Orange et al. (2001). TLC is important for the identification of 

lichens. Thin vertical slices of dry lichen material were cut with a razor blade and placed in 

numbered plastic phials into which cold acetone was added to extract lichen substances. A 

glass capillary tube was used to transfer the acetone extracts from each phial to corresponding 

numbered points on the TLC plates. Three applications per spot were used on three different 

plates. Acetone extracts from voucher specimens of Evernia divaricata (L.) Ach. and Cladonia 

impexa Harm. were used as references for usnic, divaricatic, perlatolic acids and other lichen 

substances. The prepared plates from each application were placed into three developing 

chambers each containing a different solvent (A, B and C). The solvents used were toluene-

dioxan-acetic acid (A), hexane-diethyl ether-formic acid (B) and toluene-acetic acid (C) (see 

Appendix 9A, B and C). The plates were removed from the developing chambers when the 

solvent reached the terminating front line and dried with a hairdryer. 

 

Water from the tap was brushed over the three plates to mark fatty acids. A 10% solution of 

sulphuric acid was also brushed over the three plates to mark more spots. All spots were 
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marked with a dotted outline. The plates were subsequently transferred to a pre-heated oven 

at 110ºC for a few minutes for colour development. The plates were then allowed to cool before 

being transferred to the lab to check the spots under UV light. The coloured spots on the dried 

plates were examined under UV-B (254 nm) and UV-A (365 nm) light. All spots illuminated 

under UV light were marked by circling spots with an unbroken outline and also with the first 

letter of the name of the seen colour. The occurring secondary metabolites were finally 

identified on the basis of their retention factor and colour of spots. 

 

Voucher specimens have been deposited in the Horticulture Centre Herbarium of the 

University of South Africa. Duplicates of the specimens will also be deposited in the Herbarium 

of Pretoria (PRE) at the South African National Biodiversity Institute (SANBI). A list of the 

identified species was reported in a Microsoft Excel table. Information on species (description, 

ecology, distribution worldwide, in Africa and in Southern Africa, was gathered from the 

literature and reported in the same table or in a text file. Graphs were elaborated using 

Microsoft Excel for the frequency of occurrence of the different lichen species, world 

distribution and diversity of species occurrence. An identification key, based on the collected 

lichen descriptions, was prepared with the aim of facilitating monitoring and the identification 

of species in the field for this study, but also for future investigations. Descriptions and the key 

are going to be published in Bothalia (Maphangwa et al., in preparation).  

 

3.5 Molecular analyses of specimens of the genus Culbersonia 

To detect the phylogenetic position of Culbersonia nubila (Moberg) Essl., which had not been 

studied before, molecular analyses were carried out. Analyses consisted of DNA extraction, 

amplification and sequencing according to a methodology described in detail by Aptroot et al. 

(2019). Total DNA was extracted from dry specimens employing a modified protocol based on 

Murray and Thompson (1980). PCR amplification was performed with the primers ITS1F and 

ITS4 (White et al., 1990; Gardes and Bruns, 1993) for the rDNA internal transcribed spacer 1, 

5.8S and internal transcribed spacer 2 (collectively referred to as ITS), and LR0R and LR5 

(Vilgalys and Hester, 1990; Cubeta et al., 1991) were used to amplify the 28S rDNA of the 

nuclear ribosomal repeat. PCR reactions were performed with a programme consisting of a 

hot start at 95°C for 5 min, followed by 35 cycles at 94°C, 54°C and 72°C (45, 30 and 45 s 

respectively) with a final 72°C step for 10 minutes. PCR products were checked in 1% agarose 

gels and positive reactions were sequenced with one of the PCR primers. BLAST (Altschul et 

al., 1997) of 5.8S-ITS2 and 28S rDNA sequences was used to select the most closely related 

taxa; 5.8S-ITS2 and 28S rDNA were the only regions amplified from the samples. Sequences 

were first aligned in MEGA 5.0 (Tamura et al., 2011) with the ClustalW application and then 
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corrected manually. Ambiguous regions were not removed from the alignment. ITS1 was 

excluded because insertions/deletions make alignment difficult. 

 

3.6 Lichen monitoring: Sampling design  

Lichen spatial monitoring was carried out following the European guidelines for mapping lichen 

diversity as an indicator of environmental stress (Asta et al., 2002b; Van Haluwyn and Van 

Herk, 2002; VDI-Richtlinien, 2005; EN 16413, 2014; Giordani and Brunialti, 2015) described 

in Chapter Two, section 2.4.1.5. The following publications were also consulted to design the 

monitoring approach for the Pretoria area: Saipunkaew et al., 2005, 2007; Geiser and Neitlich, 

2007; Larsen et al., 2007; Jovan, 2008; Poličnik et al., 2008; Samsudi et al., 2012; Mulligan, 

2009; Paoli et al., 2015b. The European sampling design recommends the use of a grid for 

the selection of sampling units. Grid density and the number of sampling units can be variable 

for different geographical scales and type of study. It depends also on the presence of 

perturbation. Grid density can vary from 0.25 km x 0.25 km to 12 km x 12 km. Sampling tactics, 

concerning the size of the sampling units, the quantity of trees to be sampled and their 

selection within the sampling units, is also indicated in the European guidelines (Asta et al., 

2002a, b). The quantity of trees per sampling unit relies on its size, on the within-unit data 

variability and on the accessibility of appropriate trees in small areas. The recommended 

minimum number of trees to be investigated for sampling units of 0.25 km x 0.25 km is 3-4, in 

larger units of 1 km x 1 km, 6-12 trees (EN 16413, 2014) (see Appendix 7). 

 

This design of the present study had to be slightly modified and adapted to different South 

African environmental conditions, especially concerning the selection of suitable trees at 

monitored sites. For this investigation a “stratified random sampling” design was preferred to 

a random/raster (grid) method for selecting of sampling units, as most sites were 

heterogeneous and characterised by different land use types. This design consists of 

separating habitats into non-overlapping strata and choosing independent simple random 

sampling from each of these strata (Manly, 2001; Leedy and Ormrod, 2016). Moreover, some 

parts of the town are not easily accessible (i.e. private areas, unsafe townships) to allow a 

faster investigation. 

 

Within this study, smaller sampling units were chosen (100 m × 100 m) and here at least two 

trees were sampled. In each area with different ecological and land use conditions, 2 to 4 

sampling units were selected, according to the area’s size. These are shown in Figures 3.2 

and 3.3. At least two trees were chosen randomly and monitored per plot (or sampling unit). 

In many cases, there were not enough trees or these where damaged, so only two trees could 
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be considered. The monitoring was exclusively spatial monitoring carried out in 2017 and 

2018. It was not repeated during different periods at the same site. Surveys were carried out 

as reported under Chapter 3.8. 

 

3.7 Lichen monitoring: Monitored sites 

Most of the sites where lichens had been collected for a floristic survey, were revisited for 

carrying out monitoring of lichen diversity. All these sites are already described in section 3.2 

and thus only information relative to monitoring is reported below. These areas were:  

 

• Pretoria central business district. Monitoring was conducted on 20 May 2018 from six 

trees. Code S016.  

• SANBI. Monitoring was conducted on 8 April 2018 from five trees. Code S06. 

• Pretoria West. Three sites were monitored here. The first site was situated around 

industrial area at Staal Road. Monitoring was conducted on 26 August 2017 from two 

trees. Code S02. Second site was at WF Nkomo Street (around 25°45’03'' S; 28°07’29'' 

E, elevation 1344 m a.s.l). There is heavy traffic throughout the area, which is situated 

5 km west of the city centre. Monitoring was conducted on 26 August 2017 from seven 

trees. Code S01. The third site was Es'kia Mphahlele Drive, which is 2 km from city 

centre (around 25°45’03'' S; 28°07’29'' E, elevation 1344 m a.s.l). There is heavy traffic 

all around the area. Trees were scattered and not straight. Citizens also pin notices 

and advertisements on trees. Visited on 22 July 2018. Code S026. Monitoring was 

conducted from five trees. 

• Waterkloof. Monitoring was conducted on 24 April 2018 (around 25°48’24'' S; 

28°14’53'' E, elevation 1535 m a.s.l.) from four trees. Code S07. 

• Groenkloof Nature Reserve. Monitoring was conducted on 21 March 2018 from nine 

trees. Code S05. 

• Magalies. Monitoring was conducted on the 19 May 2018 from four trees. Code S014. 

• Arcadia. Monitoring was conducted on (around 25°44’24'' S; 28°13’02'' E, elevation 

1393 m a.s.l.) on 13 May 2018 from six trees. Code S010. 

• Pionier Museum. Monitoring was conducted on 18 March 2018 from six trees. Code 

S04. 

• Hercules. Monitoring was conducted on 27 August 2017 from three trees. Code S03. 

• Rietvlei Nature Reserve, Monitoring was conducted on 28 April 2018 from four trees. 

Code S09. 
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The following sites were investigated additionally according to the monitoring approach 

described in sections 3.6 and 3.8. 

 

3.7.1 Muckleneuk  
This is a residential area situated about 3 km from the city centre. Monitoring was conducted 

along Celliers Street (around 25°45’42'' S; 28°12’11'' E, elevation 1358 m a.s.l.) from four 

trees. The area is lined with J. mimosifolia trees that are big and mostly not straight. Termite 

mounds also disturb trees. Visited on 24 April 2018. Code S08. 

 

3.7.2 Queenswood 
This is a residential area situated in the north-east of Pretoria around 9 km from the city centre. 

Monitoring was done at CR Swart Drive (around 25°42’52'' S; 28°15’28'' E, elevation 1300 m 

a.s.l.) from five trees. The area has many J. mimosifolia trees. Traffic volume is very high. 

Some trees have termite mounds. Visited on 13 May 2018. Code S011. 

 

3.7.3 Akasia 
This is a residential area situated in the north-west of Pretoria around 11 km from the city 

centre. Monitoring was done at Brits Road (around 25°40’36'' S; 28°06’58'' E, elevation 1304 

m a.s.l.) from nine trees. The area has high traffic and is characterised by the presence of 

many Acacia trees, which are mostly multi-stemmed and not straight. Some have recently 

been cut. Visited on 18 May 2018. Code S012. 

 

3.7.4 Mayville  
This is a park situated in the north-east of Pretoria, 9 km from city centre along Es'kia 

Mphahlele Drive (around 25°41’49'' S; 28°11’06'' E, elevation 1233 m a.s.l.) from five trees. It 

has many very old and not straight Acacia trees, some of which have been recently cut. Traffic 

by vehicles is very high. Visited on 18 May 2018. Code S013. 

 

3.7.5 Hermanstad 
This is an industrial area (cement industry) situated around 7 km north-west from the city 

centre. The survey of lichen diversity was done at Moot Street (around 25°42’59'' S; 28°09’58'' 

E, elevation 1262 m a.s.l.) from four trees. The area has several Acacia trees, but many are 

either very small in diameter or have been damaged by termite mounds. Furthermore, people 

often fell the trees. Traffic is very high. Visited on 20 May 2018. Code S015. 
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3.7.6 Kameeldrift  
This is an open area situated in the east of Pretoria around 20 km from the city centre. 

Monitoring was done along Sefako Makgatho Drive (around 25°41’06'' S; 28°17’00'' E, 

elevation 1262 m a.s.l.) from four trees. This is a rural area with high vehicle traffic. The area 

has numerous Acacias and is used for church services. Not all trees are suitable for monitoring 

as some are very young while others are not straight enough. Visited on 20 May 2018. Code 

S017. 

 

3.7.7 Saulsville  
This is a residential area situated in the west of Pretoria around 16 km from the city centre. 

Monitoring was carried out along the Masopha Street (around 25°45’48'' S; 28°03’27'' E, 

elevation 1389 m a.s.l.) from four trees. The area is rich in Acacia trees but some have termite 

mounds and others are not straight. It is used by people for church services and meetings. 

This is a rural area with high traffic. Visited on 10 June 2018. Code S018. 

 

3.7.8 Philip Nel Park 
This site is in a residential area in the north-west of Pretoria around 6 km from the city centre. 

Monitoring was carried out along the Transoranje Road (around 25°44’22'' S; 28°08’08'' E, 

elevation 1329 m a.s.l.) from five trees. The road is lined with J. mimosifolia trees, most of 

which have termite mounds and/or large trunks. People often damage tree trunks by pinning 

notices and advertisements onto them. Traffic is very high. Visited on 10 June 2018. Code 

S019. 

 

3.7.9 Brooklyn 
This is a residential area situated in the east of Pretoria around 8 km from the city centre. 

Monitoring was done along Roper Street (around 25°45’26'' S; 28°13’52'' E, elevation 1371 m 

a.s.l.) from eleven trees. The area has both Jacaranda and Acacia trees, but they are often 

disturbed by people pinning notices and advertisements onto their trunks which are also 

affected by termite mounds. Some Acacia trees are not straight. Traffic levels are high. Visited 

on 23 June 2018. Code S020. 

 

3.7.10 Hatfield 
This area is next to a shopping centre situated east of Pretoria around 8 km from the city 

centre. Monitoring was done at two sites. The first was along the Duxbury Road (around 

25°45’21'' S; 28°14’23'' E, elevation 1369 m a.s.l.) from five trees. Visited on 23 June 2018. 

Code S021.  
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The second site was along Pretorius Street (around 25°44’39'' S; 28°14’32'' E, elevation 1356 

m a.s.l.) from four trees. Visited on 7 July 2018. Both areas have Jacaranda trees, on which 

people often pin notices and advertisements. Some trees have large trunks; on others termite 

mounds are evident. Traffic levels are very high. Visited on 23 June 2018. Code S022. 

 

3.7.11. Gezina  
This is a residential area situated in the north-east of Pretoria around 6 km from the city centre. 

Monitoring was carried out along Rose Street (around 25°43’53'' S; 28°12’24'' E, elevation 

1309 m a.s.l.) from four trees. The area has many Jacaranda trees, but several were not 

suitable for monitoring being too big, not straight or with termite mounds. Traffic levels are not 

very high. Visited on 7 July 2018. Code S023. 

 

3.7.12 Voortrekker Monument Nature Reserve 
This nature reserve is in the south of Pretoria around 7.8 km from city centre. The reserve is 

located along Eeufees Road and there are numerous Acacia trees. Monitoring surveys were 

carried out on sixteen trees (around 25°46’36'' S; 28°10’25'' E, elevation 1470 m a.s.l.) 

although some were either not old enough (low trunk diameter) or not straight. Some lichens 

had been eaten or damaged by wild animals that use acacias to scratch their bodies. Traffic 

levels inside the reserve are low. Visited on 8 July 2018. Code S024. 

 

3.7.13 Suiderberg 
This is a residential area situated in the north-east of Pretoria around 13 km from the city 

centre. Monitoring was done along Sarel Avenue (around 25°42’03'' S; 28°08’39'' E, elevation 

1256 m a.s.l.) from four trees. Different Acacias are evident though some had termite mounds 

or were not straight. Traffic levels are not very high. The area is used to dump waste. Visited 

on 21 July 2018. Code S025. 

 

3.7.14 The Willows 340-Jr  
This is a residential area situated in the north-east of Pretoria around 23 km from the city 

centre. Monitoring was done along Solomon Mahlangu Drive (around 25°45’22'' S; 28°21’53'' 

E, elevation 1317 m a.s.l.) from four trees. The area has some Acacias, most of which are too 

old or not straight enough for monitoring. Traffic levels are very high. Visited on 18 August 

2018. Code S027. 
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3.7.15 Mamelodi 
This is a residential area situated in the north-east of Pretoria around 30 km from the city 

centre. Monitoring was done along Tsamaya Avenue (around 25°43’05'' S; 28°20’48'' E, 

elevation 1302 m a.s.l.), using Jacaranda trees, many of which have termite mounds and/or 

are damaged by pinned notices and advertisements. Traffic is very high. Visited on 18 July 

2018. Monitoring was conducted from four trees. Code S028. 

 

3.7.16 Koedoespoort 456-jr 
This is a park situated in the east of Pretoria around 10 km from the city centre. Monitoring 

was done along the N4 Highway (around 25°44’34'' S; 28°14’59'' E, elevation 1335 m a.s.l.) 

from twelve trees. The area has many different Acacias trees, which are mostly very old and 

not straight or too small in diameter for monitoring. Traffic levels are very high. Visited on 19 

August 2018. Code S029. 

 

 
Figure 3.1B. The town of Pretoria showing distribution of the lichen monitoring sites  
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Figure 3.2. Groenkloof Nature Reserve with sampling points (Google Earth, 2019) 
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Figure 3.3. Voortrekker Nature Reserve with sampling points (Google Earth, 2019) 
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Figure 3.4. Monitoring grid attached to tree J. mimosifolia 
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3.8 Lichen monitoring: Survey of Lichen Diversity 

The same tree species (Jacaranda mimosifolia, Acacia karroo and A. caffra) used for floristic 

surveys were used for the monitoring survey as well within the sampling units. Trees of the 

above mentioned species were selected according to the criteria suggested by the European 

guidelines (Asta et al., 2002a, 2002b). These include: free-standing trees, whose trunks must 

have an inclination lower than 10° from the vertical position, must receive direct solar radiation 

for at least part of the day and have a trunk circumference not less than 40 cm and not larger 

than 150 cm (Asta et al., 2002a, 2002b; Minganti et al., 2003; Brunialti et al., 2008). Trees of 

the same size must be used within a survey for monitoring. Injured trees are not appropriate 

for survey purposes and they were therefore not considered during this monitoring work. Trees 

evidently affected by actions such as liming, removal of the bark or of the lichens by humans 

or by grazing animals are additionally not appropriate and were excluded from survey as well 

as trees with termite nests (Asta et al., 2002a,b; Minganti et al., 2003). If it was not possible to 

place at least three ladders of the grid onto one tree, the tree was not surveyed. Parts of the 

tree with greater than 25% cover of bryophytes were not used (Asta et al., 2002a, 2002b).  

 

A sampling grid composed of four ladders each with five quadrats sized 10 cm × 10 cm (Figure 

3.4), was appended vertically to the trunk so that the lower edge of the ladder was 1 m above 

the highest point of the ground (Asta et al., 2002a, 2002b; Cristofolini et al., 2014). The four 

ladders of the sampling grid were placed to correspond to the four aspects (NSEW) of the tree 

trunk. The examined trunks were accurately and durably marked with numbers for long-term 

monitoring purposes with permanent marker (Asta et al., 2002a,2002b; Cristofolini et al., 2014) 

see Appendix 7. 

 
All lichen species present within each quadrat portion were recorded using a survey form (see 

Appendix 10) together with their frequency occurrence in the five quadrats of each ladder. 

Even if more individuals of the same species occurred in one quadrat (10 cm × 10 cm square), 

only the frequency value “1” was given to that species for each square. For this reason, the 

value 5 can be the maximal value for each species in one 10 cm × 50 cm ladder. Lichens 

within the quadrat segments were not collected, but identified in the field. If there was a new 

species not previously collected during floristic investigation, a specimen was collected near 

the sampling grid but not inside the quadrats. This was done to allow future monitoring on the 

same plots. All the information regarding the areas where the trees were assessed was 

recorded on the survey form and later collected in Excel tables (Asta et al., 2002a, 2002b). 
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3.9 Calculation of the Lichen Diversity Value (LDV) for trees and sites and further 
data elaborations 
For each tree, four totals of frequencies can be recorded at four different aspects (N, S, W and 

E) (Asta et al., 2002a). The sums of lichen frequencies at each aspect of one tree were used 

to calculate mean values. Later, average values were calculated for all the trees within a 

sampling unit (plot). The Lichen Diversity Value (LDV) of an area was obtained by adding the 

average sum of LDVs resulting from all sampling units of that area.   

 

Lichen diversity values were related to the type of land use (categories), to tree species and 

to climatic and pollution data. Land use was categorised into two main classes. The first is 

“industrial areas and busy roads”, which includes industrial, urban and rural areas and roads 

with high vehicle traffic, all characterised by higher levels of human disturbance. Here the 

felling of trees is common. The second land use category was “parks and nature reserves”, 

which includes savannahs with low disturbance located in nature reserves, private gardens 

and more natural areas, with lower levels of car traffic, pollution levels and other kinds of man-

made disturbance.  

 

Seven pollutants were considered for elaborations, namely CO (ppb) measured with Carbon 

monoxide analyser, NO (ppb) measured with NOx analyser, NO2 (ppb) measured with NOx 

analyser, NOx (ppb) measured with Nox analyser, O3 (µg/m3) measured with Ozone analyser, 

PM10 measured with Particulate matter analysers and SO2 (ppb) was measured with Sulphur 

dioxide analysers. Climatic variables considered were pressure PRES (kPa) measured with 

Atmospheric pressure Sensor, RAIN (mm) measured with Rain gauge and solar radiation 

(SOL) (W/m2) was measured with Solar radiation Sensor. These information was obtained 

from the South African Air Quality Information System (SAAQIS). Correlation analyses with 

these parameters were tested. A naturality/alteration interpretative scale was developed for 

the first time for a town in South Africa. This was based on the percentile deviations from the 

maximum lichen diversity observed in the study area.  

 

The influence of land use and tree species on LDV and on lichen species was studied by 

statistical analyses, carried out with the freeware software R (R Core Team 2017) and 

Quantum GIS 2.18.22. The following analyses were applied: 

• ANOVA and Kruskal Wallis test, Wilcoxon test for paired data.  

• Principal Component Analysis (PCA), used as explorative unsupervised multivariate 

analysis to study the relationships among the response variables (lichen diversity, 

lichen species) and the predictive variables (i.e., climate, pollution, photophyte, land 

use).  
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• A multiple factor analysis (MFA), on the whole dataset in order to test correlation 

between the same variable mentioned above. 

• Generalised Linear Models, applied to fit the relationship between the same set of 

environmental predictors and the response variables. 

This dataset was interpolated (Inverse Distance Weighting) to assign missing values to each 

of the 29 lichen monitoring stations. Results are presented graphically and in table format in 

the next chapter. 
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CHAPTER 4: RESULTS 

 

4.1 List of recorded species 

This study recorded 25 lichen taxa on the three selected trees. Altogether, 362 specimens of 

these species were collected and identified. The recorded lichens are listed below with notes 

on sampling sites, ecology and distribution of each species in the world and in Southern Africa. 

The pictures of all the lichens are in Appendix 11A, B, C and D. The results of Thin Layer 

Chromatography (TLC) are included for some species as the detection of given lichen 

substances by TLC is important for the identification of lichens (see Appendix 12).  

 

Amandinea natalensis (Vain.) Marbach – Magalies, Hornsnek Road, on A. caffra, 

Maphangwa and Zedda KWM_0032 (PRE).  

This subtropical crustose species has been reported only once in South Africa, in particular 

from Howick in KwaZulu-Natal (Marbach, 2000). Marbach (2000) provided a detailed 

description of this species, and Sipman (2003) included this in a global identification key of 

the genus Amandinea. Fryday (2015) also included it in the checklist of South African lichens. 

In Pretoria, it was found once during this study, in a mountain area, where traffic is very low.  

 

Candelaria concolor (Dicks.) Arnold – Groenkloof Nature Reserve, Christina De Wit Ave, on 

A. karroo and A. caffra, Maphangwa and Zedda KWM_0009; KWM_0012 (PRE). Magalies, 

Hornsnek Road, on A. caffra, Maphangwa and Zedda KWM_0031 (PRE). Hercules, Van Der 

Hoff Road, on A. karroo and J. mimosifolia, Maphangwa KWM_0039; KWM_0056 (PRE). 

Pionier Museum, Keuning Dr, on A. karroo, Maphangwa KWM_0082 (PRE). Pretoria West, 

Staal Road, on J. mimosifolia, Maphangwa KWM_0115 (PRE). Lotus Gardens, WF Nkomo 

Street, on J. mimosifolia, Maphangwa KWM_0119 (PRE). Pretoria West, Quagga Road, on J. 

mimosifolia, Maphangwa KWM_0140 (PRE). Sunnyside, Jorissen Street, on J. mimosifolia, 

Maphangwa KWM_0148 (PRE). Rietvlei Nature Reserve, OR Tambo (R21), on A. karroo and 

A. caffra, Maphangwa KWM_0182; KWM_0197 (PRE). Arcadia, Stanza Bopape Street, on J. 

mimosifolia, Maphangwa and Zedda KWM_0207 (PRE). Central, Nana Sita Street, on J. 

mimosifolia, Maphangwa and Zedda KWM_0210 (PRE). Waterkloof, Rigel Avenue, on J. 

mimosifolia, Maphangwa and Zedda KWM_0218 (PRE). 

This is a cosmopolitan species common on nutrient-rich substrates (Almborn, 1966; Brodo et 

al., 2001). It is common in tropical and temperate regions of the world and in East Africa at an 

altitude of 1000 to 2000 m a.s.l. (Swinscow and Krog, 1988). Almborn (1966) and Zedda et al. 

(2009) reported it on different trees in Namibia and Almborn (1966, 1988) and Fryday (2015) 

in South Africa as well. In Pretoria, it was widespread across all sampling sites.  



50 
 

 

Canoparmelia texana (Tuck.) Elix and Hale   ̶  Waterkloof, Rigel Avenue, close to house 

number 226, on J. mimosifolia, Maphangwa and Zedda KWM_0004 (PRE). Groenkloof Nature 

Reserve, Christina De Wit Ave, on A. caffra and A. karroo, Maphangwa and Zedda 

KWM_0014, KWM_0023 (PRE). Hercules, Van Der Hoff Road, on A. karroo, Maphangwa 

KWM_0041 (PRE). Pionier Museum, Keuning Dr, on A. karroo, Maphangwa KWM_0086 

(PRE). Lotus Gardens, WF Nkomo, on J. mimosifolia, Maphangwa KWM_0128 (PRE). 

Sunnyside, Jorissen Street, on J. mimosifolia, Maphangwa KWM_0156 (PRE). Rietvlei Nature 

Reserve, OR Tambo (R21), on A. karroo and A. caffra, Maphangwa KWM_0184 (PRE).  

This species (pantropical world distribution) is found in in Southern and East Africa (Swinscow 

and Krog, 1988) and in Madagascar (Aptroot, 2016), where it grows in dry, sun-exposed 

habitats on lowlands and coastal hills at up to 1000 m a.s.l., and. It has been reported in South 

Africa by Fryday (2015). In Pretoria, it is relatively common and was found in both human 

disturbed and undisturbed areas. Atranorin and divaricatic acid were found in the specimens 

examined by TLC in KWM_0041, KWM_0094, and KWM_0203.  

 

Chrysothrix xanthina (Vain.) Kalb   ̶ Groenkloof Nature Reserve, Christina De Wit Ave, on 

A. caffra, Maphangwa KWM_0232 (PRE).  

The species is known across Africa, Asia, Macaronesia, Madagascar, New Zealand, Norfolk 

Island, North and South America (Laundon, 1981; Kalb, 2001; Elix and Kantvilas, 2007; 

Fryday, 2015). In Pretoria, it was found only once during this study in a nature reserve. 

 

Culbersonia nubila (Moberg) Essl.   ̶ Groenkloof Nature Reserve, Christina De Wit Ave, on 

A. karroo and A. caffra, Maphangwa and Zedda KWM_0011; KWM_0025 (PRE). Pionier 

Museum, Keuning Dr, on A. caffra, Maphangwa KWM_0103 (PRE). Lotus Gardens, WF 

Nkomo Street, on J. mimosifolia, Maphangwa KWM_0138 (PRE). Sunnyside, Jorissen Street, 

on J. mimosifolia, Maphangwa KWM_0150 (PRE). Arcadia, Stanza Bopape Street, on J. 

mimosifolia, Maphangwa and Zedda KWM_0205 (PRE). Waterkloof, Rigel Avenue, close to 

house number 226, on J. mimosifolia, Maphangwa and Zedda KWM_0218 (PRE).  

This species is also known as Pyxine nubila Morberg. It has a scattered distribution in dry, 

subtropical areas of Africa, America, Australia and Eurasia, where it can occur on trees and 

rocks (Swinscow and Krog, 1988; Moberg, 2004, Obermayer et al., 2009). In Southern Africa, 

the species has been reported in South Africa (Eastern Cape, Free State, Mpumalanga and 

KwaZulu-Natal provinces) and Lesotho (Moberg, 2004). It has also been reported in Gauteng 

Province by Obermayer et al. (2009). In Pretoria, it is common and was found in the less 

disturbed areas during this study. No recognisable substances were found by TLC in 
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KWM_0103, KWM_0138 and KWM_0204. The phylogenetic position of this monotypic genus 

is explained under 4.2. 

 

Dirinaria applanata (Fée) D.D. Awasthi   ̶ Pionier Museum, Keuning Dr, on A. karroo, 

Maphangwa KWM_0078 (PRE). D. applanata is a common corticolous and saxicolous lichen 

widespread in all tropical regions worldwide (Nash et al., 2004). The species has been 

reported in Tanzania, Kenya, South Africa, Ethiopia and Uganda, where it occurs in natural 

woodlands, parks, avenues, and plantations, from sea level up to 2300 m a.s.l. (Swinscow 

and Krog, 1988; Fryday, 2015; Aptroot, 2016). In Pretoria, it was recorded only once, in a 

protected area.  

 

Flavopunctelia flaventior (Stirt.) Hale  ̶  Groenkloof Nature Reserve, Christina De Wit Ave, 

on A. karroo and A. caffra, Maphangwa and Zedda KWM_0008; KWM_0016 (PRE). Hercules, 

Van Der Hoff Road, on A. karroo and on J. mimosifolia, Maphangwa KWM_0044; KWM_0047 

(PRE). Pionier Museum, Keuning Dr, on A. karroo, Maphangwa KWM_0069 (PRE). Lotus 

Gardens, WF Nkomo Street, on J. mimosifolia, Maphangwa KWM_0117 (PRE). Sunnyside, 

Jorissen Street, on J. mimosifolia, Maphangwa KWM_0155 (PRE). Rietvlei Nature Reserve, 

OR Tambo (R21), on A. karroo and A. caffra, Maphangwa KWM_0179; KWM_0200 (PRE). 

Waterkloof, Rigel Avenue, close to house number 226, on J. mimosifolia, Maphangwa and 

Zedda KWM_0217 (PRE).  

This species is widespread in temperate as well as tropical regions of Africa, Europe, India, 

North and South America at moderate elevations (Swinscow and Krog, 1988; Nash et al., 

2004; Fryday, 2015). It is common in East Africa (Swinscow and Krog, 1988; Killmann and 

Fischer, 2005) and Schultz et al. (2009) and Zedda et al. (2009) reported it in Namibia. In 

Pretoria it has been previously collected by Degelius in the Fountains Valley (UPS:BOT:L-

053801). During this study, it was found at many of the research sites. The collected 

specimens had usnic and lecanoric acids as detected by TLC in KWM_0099, KWM_0122, and 

KWM_0186. 

 

Flavopunctelia soredica (Nyl.) Hale   ̶ Waterkloof, Rigel Avenue, close to house number 226, 

on J. mimosifolia, Maphangwa and Zedda KWM_0002 (PRE). Groenkloof Nature Reserve, 

Christina De Wit Ave, on A. caffra and A. karroo, Maphangwa and Zedda KWM_0007; 

KWM_0224 (PRE). Hercules, Van Der Hoff Road, on A. karroo and on J. mimosifolia, 

Maphangwa KWM_0048 (PRE). Pionier Museum, Keuning Dr, on A. karroo, Maphangwa 

KWM_0095 (PRE). Lotus Gardens, WF Nkomo Street, on J. mimosifolia, Maphangwa 

KWM_0130 (PRE). Sunnyside, Jorissen Street, on J. mimosifolia, Maphangwa KWM_0146 
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(PRE). Rietvlei Nature Reserve, OR Tambo (R21), on A. karroo, Maphangwa KWM_0179 

(PRE).  

This species is prevalent in temperate areas of Asia, North and South America where it grows 

on bark and wood of different tree species (Nash et al., 2004). Fryday (2015) reported it in 

South Africa, while Brusse (1988) recorded it on Jacaranda trees in Windhoek (Namibia) as 

Parmelia soredica Nyl. Also Zedda et al. (2009) reported it as an epiphyte from Namibia. In 

Pretoria, it has the same distribution as F. flaventior (Maphangwa et al., 2018). The specimens 

investigated by TLC (KWM_0134, KWM_0189 and KWM_0224) were found to contain usnic 

and lecanoric acids as secondary metabolites. 

 

Heterodermia speciosa (Wulfen) Trevis.   ̶ Groenkloof Nature Reserve, Christina De Wit Ave, 

on A. karroo and A. caffra, Maphangwa and Zedda KWM_0008; KWM_0022 (PRE). Pionier 

Museum, Keuning Dr, on A. karroo, Maphangwa KWM_0067 (PRE). Lotus Gardens, WF 

Nkomo Street, on J. mimosifolia, Maphangwa KWM_0120 (PRE). Pretoria West, Quagga 

Road, on J. mimosifolia, Maphangwa KWM_0140 (PRE). Sunnyside, Jorissen Street, on J. 

mimosifolia, Maphangwa KWM_0157 (PRE). Rietvlei Nature Reserve, OR Tambo (R21), on 

A. karroo and A. caffra, Maphangwa KWM_0175; KWM_0203 (PRE). Arcadia, Stanza Bopape 

Street, on J. mimosifolia, Maphangwa and Zedda KWM_0206 (PRE). Waterkloof, Rigel 

Avenue, close to house number 226, on J. mimosifolia, Maphangwa and Zedda KWM_0218 

(PRE).  

H. speciosa is widely distributed in subtropical to temperate areas of the world (Nash et al., 

2002). It is common on sheltered tree trunks in natural and artificial habitats at 1100 to 3600 m 

altitude in East Africa (Swinscow and Krog, 1988), while in North America it grows on sunny, 

but moist rocks or on tree trunks in humid conditions (Nash et al., 2002). The species has 

been reported from East Africa, Madagascar and South Africa (Swinscow and Krog, 1988; 

Killmann and Fischer, 2005; Fryday, 2015; Aptroot, 2016). In Pretoria, it is common as an 

epiphyte and was found at several sites. TLC applied to specimens KWM_0079, KWM_0162, 

and KWM_0204 revealed the presence of atranorin and zeorin. 

 

Hyperphyscia adglutinata (Flörke) H. Mayrhofer and Poelt   ̶ Hercules, Van Der Hoff Road, 

on J. mimosifolia, Maphangwa KWM_0045 (PRE). Pionier Museum, Keuning Dr, on A. karroo, 

Maphangwa KWM_0066 (PRE). Lotus Gardens, WF Nkomo Street, on J. mimosifolia, 

Maphangwa KWM_0124 (PRE). Pretoria West, Quagga Road, on J. mimosifolia, Maphangwa 

KWM_0139 (PRE). Sunnyside, Jorissen Street, on J. mimosifolia, Maphangwa KWM_0149 

(PRE). Rietvlei Nature Reserve, OR Tambo (R21), on A. karroo, Maphangwa KWM_0198 

(PRE). Arcadia, Stanza Bopape Street, on J. mimosifolia, Maphangwa and Zedda KWM_0209 

(PRE). Waterkloof, Rigel Avenue, close to house number 226, on J. mimosifolia, Maphangwa 
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and Zedda KWM_0211 (PRE). Groenkloof Nature Reserve, Christina De Wit Ave, on A. caffra, 

Maphangwa and Zedda KWM_0221 (PRE). 

This species is widespread and common worldwide from tropical to temperate regions 

(Swinscow and Krog, 1988; Purvis et al., 1992; Zedda et al., 2009). In South Africa, it has a 

wide distribution and grows mainly on nutrient-rich or nutrient-enriched tree trunks, branches, 

twigs and rocks in open or partly shaded habitats, even in polluted areas (Swinscow and Krog, 

1988; Moberg, 2004, Fryday, 2015). It is frequent and widespread in Pretoria. 

 

Hyperphyscia granulata (Poelt) Moberg   ̶ Lotus Gardens, WF Nkomo Street, on J. 

mimosifolia, Maphangwa KWM_119 (PRE). Waterkloof, Rigel Avenue, close to house number 

226, on J. mimosifolia, Maphangwa and Zedda KWM_0214 (PRE).  

H. granulata is widespread in tropical-subtropical regions of East Africa, Madagascar, 

Southern Africa, South America and Asia (Swinscow and Krog, 1988; Moberg, 2004; Schultz 

et al., 2009; Zedda et al., 2009; Fryday, 2015; Aptroot, 2016). In South Africa, it has been 

collected in Gauteng, KwaZulu-Natal and Limpopo provinces (Moberg, 2004). It grows on 

trunks, branches, and twigs mixed with other Hyperphyscia species at 850 to 2470 m a.s.l. 

(Swinscow and Krog, 1988; Moberg, 2004). In Pretoria, it was only found in residential areas. 

 

Hyperphyscia isidiata Moberg   ̶ Hercules, Van Der Hoff Road, on A. karroo and J. 

mimosifolia, Maphangwa KWM_0042; KWM_0051 (PRE). 

The species is uncommon, but known worldwide from Angola, Australia, Costa Rica, South 

Africa and a few localities in Kenya (Swinscow and Krog, 1988; Moberg, 2004; Fryday, 2015). 

Moberg (2004) reported it from one locality in Pretoria (UPS:BOT:L-057759). It grows on tree 

trunks in open conditions associated with other species of Hyperphyscia at 800 to 1600 m 

a.s.l. (Swinscow and Krog, 1988; Moberg, 2004). In this study, it was found only once in a 

residential area with high traffic. 

 

Hyperphyscia pandani (H. Magn.) Moberg   ̶ Hercules, Van Der Hoff Road, on J. mimosifolia, 

Maphangwa KWM_0052 (PRE). Magalies, Hornsnek Road, on A. caffra, Maphangwa and 

Zedda KWM_0062 (PRE). Lotus Gardens, WF Nkomo Street, on J. mimosifolia, Maphangwa 

KWM_0119 (PRE). Pretoria West, Quagga Road, on J. mimosifolia, Maphangwa KWM_0144 

(PRE). Sunnyside, Jorissen Street, on J. mimosifolia, Maphangwa KWM_0165 (PRE). Rietvlei 

Nature Reserve, OR Tambo (R21), on A. caffra, Maphangwa KWM_0199 (PRE). 

The species is found in tropical to subtropical areas of America, Australia, East Africa, the 

Hawaiian Islands and South Africa (Swinscow and Krog, 1988; Moberg, 2004; Fryday, 2015). 

It grows on trunks, branches, and twigs of different tree species, often with other species of 

Hyperphyscia (Swinscow and Krog, 1988; Moberg, 2004). It appears to be widespread in 
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South Africa, where it occurs in the Eastern Cape, Gauteng, KwaZulu-Natal and Limpopo 

Provinces (Moberg, 2004). In Pretoria, it is common and was found in disturbed and protected 

areas.  

 

Hyperphyscia pruinosa Moberg   ̶ Magalies, Hornsnek Road, on A. caffra, Maphangwa and 

Zedda KWM_0033 (PRE). Pionier Museum, Keuning Dr, on A. karroo, Maphangwa 

KWM_00087 (PRE). Sunnyside, Jorissen Street, on J. mimosifolia, Maphangwa KWM_0160 

(PRE). This species is found in Australia (Moberg, 1987), Lesotho, South Africa (Eastern and 

Northern Cape) (Moberg, 2004; Fryday 2015), Namibia (Zedda et al., 2009) and East Africa 

(Moberg, 2004; Swinscow and Krog, 1988). The species is uncommon and is found on old 

decorticated wood and on bark of trees and shrubs at 1500 to 2900 m a.s.l. in East Africa 

(Swinscow and Krog, 1988). In Pretoria, it was found in mountain, rural areas and once at 

downtown Sunnyside. 

 

Lepraria spp.   ̶ Groenkloof Nature Reserve, Christina De Wit Ave, on A. caffra, Maphangwa 

and Zedda KWM_0013 (PRE). Magalies, Hornsnek Road, on A. caffra, Maphangwa and 

Zedda KWM_0063 (PRE). Pionier Museum, Keuning Dr, on A. karroo, Maphangwa 

KWM_0104 (PRE). Sunnyside, Jorissen Street, on J. mimosifolia, Maphangwa KWM_0171 

(PRE). Rietvlei Nature Reserve, OR Tambo (R21), on A. karroo, Maphangwa KWM_0188 

(PRE). Waterkloof, Rigel Avenue, close to house number 226, on J. mimosifolia, Maphangwa 

and Zedda KWM_0213 (PRE). 

Lepraria species are widespread worldwide, however the highest number of species is found 

in temperate areas (Saag et al., 2009). They look similar and are difficult to distinguish, without 

TLC analyses. The only traits enabling identification are differences in colour, thallus 

thickness, substrate and especially chemistry of secondary metabolites (Brodo et al., 2001). 

Saag et al. (2009) have reported few taxa from Africa so far. These include Lepraria 

nigrocincta Diedrich, Sérus and Aptroot, L. pallida Sipman, L. rigidula (de Lesd.) Tønsberg, L. 

leuckertiana (Zedda) L. Saag, L. sipmaniana (Kümmerl. and Leuckert) Kukwa, L. umbricola 

Tønsberg, L. usnica Sipman, L. glaucella Ach., L. incana (L.) Ach. and L. yunnaniana (Hue) 

Zahlbr. Most have been found in Northern or East Africa. L. sipmaniana, L. usnica, L. glaucella 

and L. incana have been recorded from Southern Africa as well (Fryday, 2015). The collected 

specimens from Pretoria could not be identified to species level within this study. Either 

important thallus traits or characteristic secondary metabolites could not be observed or 

detected (Maphangwa et al., 2018). The genus as a whole is widespread in Pretoria but the 

thalli are always poorly developed. TLC in KWM_0018, KWM_0061 and KWM_0104 detected 

atranorin and unidentified traces of other compounds. 
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Parmotrema austrosinense (Zahlbr.) Hale   ̶ Groenkloof Nature Reserve, Christina De Wit 

Ave, on A. karroo and A. caffra, Maphangwa and Zedda KWM_0005; KWM_0019 (PRE). 

Hercules, Van Der Hoff Road, on A. karroo and J. mimosifolia, Maphangwa KWM_0040; 

KWM_0055 (PRE). Pionier Museum, Keuning Dr, on A. karroo, Maphangwa KWM_0072 

(PRE). Lotus Gardens, WF Nkomo Street, on J. mimosifolia, Maphangwa KWM_0116 (PRE). 

Pretoria West, Quagga Road, on J. mimosifolia, Maphangwa KWM_0143 (PRE). Sunnyside, 

Jorissen Street, on J. mimosifolia, Maphangwa KWM_0152 (PRE). Rietvlei Nature Reserve, 

OR Tambo (R21), on A. karroo, Maphangwa KWM_0177 (PRE). Arcadia, Stanza Bopape 

Street, on J. mimosifolia, Maphangwa and Zedda KWM_0207 (PRE). Waterkloof, Rigel 

Avenue, close to house number 226, on J. mimosifolia, Maphangwa and Zedda KWM_0216 

(PRE).  

This species is widespread in tropical and temperate regions (Swinscow and Krog, 1988; 

Brodo et al., 2001). It is known from Africa, Australia, North and South America, and Oceania 

(Nash et al., 2002; Kukwa et al., 2012). In Africa, it is relatively common and it has been 

recorded in East Africa, Madagascar, Namibia, and South Africa (Almborn, 1988; Swinscow 

and Krog, 1988; Thomas and Bhat, 1994; Killmann and Fischer, 2005; Forbes et al., 2009; 

Schultz et al., 2009; Zedda et al., 2009; Trüe et al., 2012; Fryday, 2015; Aptroot, 2016). In 

Pretoria, it was also very common at most sites. Atranorin and lecanoric acid were found by 

TLC in KWM_0117, KWM_0188 and KWM_0216. 

 

Parmotrema reticulatum (Taylor) M. Choisy   ̶ Pionier Museum, Keuning Dr, on A. karroo, 

Maphangwa KWM_0089 (PRE).  

This species is widespread throughout the tropical and temperate regions of Africa, 

Australasia, Europe, India, North and South America, Oceania and southern Asia (Swinscow 

and Krog, 1988; Purvis et al., 1992; Nash et al., 2002; Aptroot and Feijen, 2002; Purvis et al., 

1992; Nash et al., 2002). In Africa, the species was found in East Africa (Swinscow and Krog, 

1988), Madagascar (Aptroot, 2016) and Southern Africa (Doidge, 1950; Almborn, 1988; 

Fryday, 2015). P. reticulatum is corticolous, saxicolous, and terricolous in a wide variety of 

natural and artificial, and more or less open habitats. In East Africa, it is common and 

widespread at 1000 to 3000 m a.s.l. (Swinscow and Krog, 1988). In Pretoria, it is infrequent 

and was found only once, in a protected area. Atranorin and salazinic acid were detected by 

TLC. 

 

Physcia biziana (A. Massal.) Zahlbr.  ̶  Lotus Gardens, WF Nkomo Street, on J. mimosifolia, 

Maphangwa KWM_0126 (PRE). Pretoria West, Quagga Road, on J. mimosifolia, Maphangwa 

KWM_0142 (PRE). Rietvlei Nature Reserve, OR Tambo (R21), on A. caffra, Maphangwa 

KWM_0199 (PRE). 
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This is a Mediterranean to mild-temperate species (Nimis and Martellos, 2017), known from 

Africa, Australia, Europe, North and South America (Swinscow and Krog, 1988; Moberg, 

2004). The species has been previously reported in Africa from East Africa (Swinscow and 

Krog, 1988), Namibia (Zedda et al., 2009), South Africa (Almborn, 1988; Moberg, 2004; 

Fryday, 2015), and Tunisia (Guttová et al., 2015). In East Africa, it is found at 1500 to 2100 m 

a.s.l. and is uncommon (Swinscow and Krog, 1988). In South Africa it is established in 

Mpumalanga province so far, where it grows on tree trunks and branches in open conditions 

(Moberg, 2004) and in the Botanical Garden of Pretoria (collected by Almborn, specimens in 

B and UPS:BOT:L-012954). During this investigation, it was found on roadside trees in streets 

with heavy traffic and once in a nature reserve in Pretoria. 

 

Physcia erumpens Moberg   ̶  Waterkloof, Rigel Avenue, close to house number 226, on 

J. mimosifolia, Maphangwa and Zedda KWM_0003 (PRE). Groenkloof Nature Reserve, 

Christina De Wit Ave, on A. caffra, Maphangwa and Zedda KWM_0021 (PRE).  

This species is subtropical (Nimis and Martellos, 2017) and known from Europe, Asia, East 

Africa, Madagascar, North America and South Africa (Moberg, 2004; Aptroot, 2016). In South 

Africa, it has been reported in scattered localities in the Eastern and Western Cape, KwaZulu-

Natal and Mpumalanga provinces (Moberg, 2004; Fryday, 2015). It grows on trees and rocks 

in more or less open conditions (Moberg, 2004). In Pretoria it was found only at two sites, on 

roadside trees in a green residential area and in a nature reserve. 

 

Physcia poncinsii Hue   ̶  Pionier Museum, Keuning Dr, on A. karroo, Maphangwa 

KWM_0104 (PRE). 

P. poncinsii is found in tropical to subtropical regions of America, Australia, East Africa, 

Madagascar and Southern Africa (Nash et al., 2002; Moberg, 2004; Fryday, 2015; Aptroot, 

2016). It is known in South Africa (Eastern and Western Cape, Mpumalanga and KwaZulu-

Natal provinces) (Moberg, 2004) and Zedda et al., (2009) reported it on trees in Namibia. In 

southern Africa, it grows on tree trunk, wood and rocks in open conditions (Moberg, 2004). In 

Pretoria, it is uncommon and was found only once in a protected area. 

 

Physcia tribacia (Ach.) Nyl.   ̶ Groenkloof Nature Reserve, Christina De Wit Ave, on Acacia 

caffra, Maphangwa and Zedda KWM_0016 (PRE). Hercules, Van Der Hoff Road, on A. karroo 

and J. mimosifolia, Maphangwa KWM_0043; KWM_0043 (PRE). Pionier Museum, Keuning 

Dr, on A. karroo, Maphangwa KWM_0113 (PRE). Rietvlei Nature Reserve, OR Tambo (R21), 

on A. karroo and A. caffra, Maphangwa KWM_0188; KWM_0196 (PRE).  

This species is widely distributed but not common in temperate regions (Swinscow and Krog 

1988; Nash et al., 2002; Moberg, 2004). According to Nimis and Martellos (2017), it is a 
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Mediterranean to sub-tropical lichen, usually growing on rather exposed rocks and rarely on 

bark (Swinscow and Krog, 1988; Moberg, 2004). In Africa P. tribacia is known from East Africa, 

Lesotho and South Africa (Swinscow and Krog, 1988; Moberg, 2004; Fryday, 2015). In South 

Africa, it is well-known in the Eastern and Northern Cape, Free State, KwaZulu-Natal and 

Mpumalanga provinces (Moberg 2004). In Pretoria, it was found mainly in protected areas and 

once in a street with heavy traffic.  

 

Physcia undulata Moberg   ̶ Groenkloof Nature Reserve, Christina De Wit Ave, on A. caffra, 

Maphangwa and Zedda KWM_0027 (PRE). 

It is known in Africa, Australia and South and Central America (Swinscow and Krog, 1988; 

Moberg, 2004) and has probably a tropical-subtropical distribution. In Africa, it has been 

reported in Kenya (Moberg, 1986), Namibia (Zedda et al., 2009), Lesotho and South Africa, in 

particular in the Eastern and Northern Cape and KwaZulu-Natal provinces (Moberg, 2004; 

Fryday, 2015). It grows on trunks and branches of solitary trees in open sites (Nash et al., 

2002) at 500 to 3000 m a.s.l. (Swinscow and Krog, 1988). In Pretoria, it was found once in a 

protected area. 

 

Pyxine cocoes (Sw.) Nyl.   ̶ Groenkloof Nature Reserve, Christina De Wit Ave, on A. karroo 

and A. caffra, Maphangwa and Zedda KWM_0008; KWM_0017 (PRE). Magalies, Hornsnek 

Road, on A. caffra, Maphangwa and Zedda KWM_0030 (PRE). Hercules, Van Der Hoff Road, 

on A. karroo and J. mimosifolia, Maphangwa KWM_0039; KWM_0058 (PRE). Pionier 

Museum, Keuning Dr, on A. karroo, Maphangwa KWM_0068 (PRE). Lotus Gardens, Church 

Street, on J. mimosifolia, Maphangwa KWM_0121 (PRE). Rietvlei Nature Reserve, OR Tambo 

(R21), on A. karroo and A. caffra, Maphangwa KWM_0181; KWM_0196 (PRE). Waterkloof, 

Rigel Avenue, close to house number 226, on J. mimosifolia, Maphangwa and Zedda 

KWM_0220 (PRE).  

This is a pantropical species with scattered records from the subtropics and Laurimacaronesia 

(Nash et al., 2002). Swinscow and Krog (1988) reported it as widespread in the tropics and 

sub-tropics. It is common and widespread in East Africa, where it occurs on bark and wood of 

trees and shrubs, sometimes on rocks in sunny or partial shaded conditions, from sea level 

up to about 2500 m a.s.l. It even thrives in artificial habitats (Swinscow and Krog, 1988). Zedda 

et al. (2009) and Schultz et al. (2009) reported it in Namibia and Aptroot (2016) in Madagascar. 

It seems to be rather common in South Africa, as it has been reported by Moberg (2004) and 

Fryday (2015) from Eastern and Northern Cape and Mpumalanga provinces as corticolous 

and saxicolous. In Pretoria, it was collected during the present study in nature reserves, rural 

areas and on avenue trees in residential areas. Lichexanthone and terpenoids were detected 

by TLC in KWM_0223. 
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Pyxine petricola Nyl.   ̶ Pretoria Botanical Garden, Cussonia Avenue on Acacia caffra, 

Maphangwa KWM_0233 (PRE). Pretoria Voortrekker Monument, on Acacia karroo, 

Maphangwa KWM_0234 (PRE). 

This is a pantropical to nearly cosmopolitan species (Zedda et al., 2009) reported from tropical 

East Africa (Swinscow and Krog, 1988), Namibia (Schultz et al., 2009; Zedda et al., 2009) and 

Zimbabwe (Becker, 2002). It has also formerly been reported from South Africa (Doidge, 1950; 

Moberg, 2004; Fryday, 2015). In East Africa it is common on trees, shrubs, and rocks in 

exposed or partly shaded places in artificial as well as natural habitats up to 2000 m altitude 

(Swinscow and Krog, 1988). In Pretoria, it was only found in nature reserves. 

 

Rinodina sp.   ̶ Rietvlei Nature Reserve, OR Tambo (R21), on A. karroo, Maphangwa 

KWM_0176 (PRE). 

A recent revision of corticolous species of the genus Rinodina is available for Southern Africa 

(Mayrhofer et al., 2014). Four species are reported: Rinodina albocincta Zahlbr., R. 

australiensis Müll. Arg., R. capensis Hampe and R. ficta (Stizenb.) Zahlbr. R. ficta has been 

previously reported from Pretoria (Zwartdam) on bark of Acacia, Transvaal and Namibia, while 

the other listed species have been found mainly in the Cape regions and along the coast so 

far (Mayrhofer et al., 2014). Fryday (2015) lists further Rinodina spp. The collected specimen 

could not be identified to the species level due to a lack of well-developed ascospores, is most 

likely R. ficta. In Pretoria, it was found once in a nature reserve. 

 

4.1.1 Additional species reported from Pretoria in the literature 
The following specimens were reported from Pretoria by other authors but were not found 

during the present study. 

 

Parmelia sulcata Taylor, reported around Garankuwa in Pretoria and Johannesburg by 

Olowoyo et al. (2011) and Monna et al. (2006). It is a cosmopolitan, pantemperate to southern 

boreal species (CNALH, 2017; Swinscow and Krog, 1988). It is mainly saxicolous in the lower 

alpine zone at 3500 to 4200 m a.s.l. and rare in East Africa (Swinscow and Krog, 1988).  

 

Phaeophyscia adiastola (Essl.) Essl., reported in Fountains Valley in Pretoria on tree bark 

by Moberg (2004). It is also known to exist in Ethiopia, Kenya, Lesotho, Tanzania, Uganda, 

North America and Eastern Russia (Swinscow and Krog, 1988; Moberg, 2004). In South 

Africa, it was found in the Eastern Cape, Gauteng and Western Cape provinces as well 

(Moberg, 2004; Fryday, 2015). The species is corticolous, but occasionally also saxicolous, in 

well-lit sites at 900 to 3600 m a.s.l. (Swinscow and Krog, 1988).  
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Phaeophyscia orbicularis (Neck.) Moberg, reported by Moberg (2004) from the zoological 

garden of Pretoria. It is also known in the Eastern Cape, Gauteng, Lesotho and North West 

provinces in South Africa (Moberg, 2004; Fryday, 2015). It occurs worldwide in temperate 

regions of the northern hemisphere, where it is very common on tree trunks in open conditions 

(Moberg, 2004). 

 

Rinodina ficta (Stizenb.) Zahlbr. reported in Pretoria by Mayrhofer et al. (2014) (Zwartdam, 

on bark of an Acacia tree) and in South Africa by Fryday (2015). It is also known in Namibia 

(Zedda et al., 2009, reported as Rinodina aff. boleana; Mayrhofer et al., 2014), Italy, New 

Zealand and USA (Giralt and Mayrhofer, 1995; Mayrhofer et al., 2007; Sheard et al., 2011). It 

occurs in parkland and woodlands, where it grows on bark (Giralt and Mayrhofer, 1991; 

Mayrhofer et al., 2014).  
 

4.1.2 Frequency and phytogeography of the recorded lichens  
Of the 25 taxa of epiphytic lichens recorded during this study in Pretoria, the most frequent 

species were Candelaria concolor (18.2% occurrence), Parmotrema austrosinense (12.2%), 

Heterodermia speciosa (11.9%), Flavopunctelia flaventior (8.3%), Hyperphyscia adglutinata 

(7.7%), Pyxine cocoes (7.2%), F. soredica and Lepraria spp. (6.4%), Canoparmelia texana 

(6.1%) and Culbersonia nubila (3.3%) (Figure 4.1). The percentage occurrences of 

Hyperphyscia pandani and Physcia tribacia were 3.0%. Physcia biziana occurrence was 1.4%, 

whereas the rest of the species had less than 1% occurrence; this means they were found 

only once. More than half of the species belong to the family Physciaceae.  

 

As shown in Figure 4.2, the majority of the species recorded in this study are subtropical to 

tropical (31%), tropical (17%) and tropical-temperate (17%), making a total of 65%. The 

subtropical (9%) and subtropical-temperate (9%) taxa amount together to 18%. The 

cosmopolitan species are 9%, while the Mediterranean-subtropical (4%) and Mediterranean-

mild temperate (4%) are 8% of the study samples. 
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Figure 4.1. Frequency occurrence (%) of the different lichen species at the investigated sites 

(n=362; n= number of lichen specimen collected) 

 

 
Figure 4.2. World distribution (phytogeography) of the collected lichen species in percentage 

occurrence (n=25; n = number of recorded species) 

 

The lichen diversity (in terms of number of species on the three different phorophytes, 

Jacaranda mimosifolia, Acacia caffra and A. karroo) does not differ much (17, 18 and 19 taxa 

respectively) (Figure 4.3). However, cosmopolitan and more disturbance-tolerant species 
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such as Candelaria concolor and Hyperphyscia adglutinata are more common on alien 

Jacaranda (blue bars). Most of the rare species collected in Pretoria such as Chrysothrix 

xanthina, Dirinaria applanata, Parmotrema reticulatum and Rinodina sp. were found growing 

exclusively on native A. karroo. A. caffra usually hosts more common and widespread species. 

 

 
Figure 4.3. Differences in species distribution between the phorophytes and lichen diversity 

on each tree species 

 

Most of the recorded species are foliose-narrow lobed (60%), followed by foliose-broad-lobed 

species (24%), while leprose (8%) and crustose (8%) lichens are rare (Figure 4.4). No 

fruticose lichens were found. 

 

The greater diversity of specimens collected is found in protected sites such as Pionier 

Museum, Rietvlei Nature Reserve and Groenkloof Nature Reserve (Figure 4.5). Followed by 

Sunnyside (low traffic area), Lotus Gardens, Hercules, Waterkloof and Magalies. The sites 

with lower diversity are Pretoria central and Pretoria West (industrial area, Staal Road), 

hosting only the widespread Candelaria concolor. At SANBI and Voortrekker Monument 

(protected areas) a higher diversity of lichens was observed, but only Pyxine petricola was 

collected there, as no collecting permit was available during the first phase of the study.  
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Figure 4.4. Percentage occurrence of growth forms of the recorded species 

 

 

 
Figure 4.5. Number of specimens collected at each site 
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4.2 Simplified identification key to the most common species on trees 

A preliminary simplified identification key to the most common species found on trees in the 

city was developed. This can be used in the field, e.g. during monitoring, or in the laboratory, 

even without an optical microscope. But the use of a good magnifying glass, binocular 

microscope and of a UV-lamp is recommended. The key and more detailed descriptions of 

species are going to be published in Bothalia. 

 
1a Thallus crustose (crust-like or whole surface granular)…..……………….………………… 2 

2a Thallus leprose (surface entirely granular, without corticated thallus).……………….... 3 
3a Thallus bright yellow to yellowish green …………………………Chrysothrix xanthina 

3b Thallus whitish to blue-grey, rarely pale yellowish green, sterile ..……..….. Lepraria  

2b Thallus not leprose (crust-like, ± corticated, at least in some parts) .…………………. 4 

4a Thallus crustose, thin with small black, lecideine (without a corticated thalline 

margin) apothecia, 0.2-0.6 mm diam., superficial ...….…………Amandinea natalensis 

4b Thallus crustose, thick with lecanorine (with a corticated thalline margin) 

……………………………………                                                         …….. Rinodina sp. 

1b Thallus foliose (leaf-like, with an upper and lower cortex ±easily separable from the 

substratum of growth)………………………………………………………………….………….…5 

5a Thallus small foliose (lobes less than 2 mm wide) ………………………………………. 6 

6a Thallus yellow, lobes branched and up to 0.5 mm wide; minutely granular isidia and 

soredia marginal and laminal present ..……………………………Candelaria concolor 

6b Thallus white to pale grey, dark grey or brownish grey, with or without pruina…..…7 

7a Tightly adnate, small foliose thalli, almost crustose in appearance, brownish grey 

to grey, lower surface pale to black, without (or with few) rhizines; Cortex PD-, K-, 

KC-, C-……………………………………………………………………………………...8 

8a Thallus with soralia ……………………………………………………………….. 9 

9a Thallus orbicular to irregular to 2 cm diameter, closely or loosely adnate; 

soralia laminal, maniculiform or capitate, near lobe apices with marginal 

granular soredia; medulla white …….……………….. Hyperphyscia adglutinata 

9b Thallus orbicular up to 3 cm in diameter, firmly adnate to substrate, upper 

surface usually paler at the lobe tips; soralia laminal, maculiform, capitate to 

crateriform, occasionally confluent and covering central parts of the thallus, 

often dark coloured or rusty red; medulla orange-red to red-brown (with 

skyrin) …                                                                  …. Hyperphyscia pandani 

9c Thallus usually orbicular to 2 cm in diameter firmly adnate to substrate, 

distinctly lobate at margins; thallus mostly with a white to blue-grey pruina; 
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soralia starting as marginal, delimited patches on inner lobes, developing into 

more or less confluent soredia-covered areas with granular to almost isidiate 

soredia, medulla white …………………………………... Hyperphyscia pruinosa 

8b Thallus with isidia ………………………………………………………………. 10 

10a Thallus without pruina; isidia globular; medulla orange to red (skyrin) 

mainly in the lowest part ………………………...….. Hyperphyscia granulata 

10b Thallus mostly with a whitish, thin pruina; isidia cylindrical, sometimes 

coralloid to 0.5 mm high, often crowded; medulla white 

…………………………………………………………..…Hyperphyscia isidiata 

7b Lobes non-tightly adnate, and not crustose in appearance ……..……………. ..11 
11a Thallus K+ yellow …………………..……….….………………………………. 12 

12a with apothecia; rhizines scattered, white to dark grey; medulla K-

………………………………………………………………….…... Physcia biziana 

12b without apothecia, with laminal soralia ………………………………...…. 13 
13a Soralia crateriform to almost capitate; thallus to 5 cm in diameter; 

lower surface white to weakly brownish grey, rhizines white to dark grey; 

medulla K+ yellow ……………………………….………….. Physcia poncinsii 

13b Soralia crateriform,± capitate; thallus to 3 cm diameter, lower surface 

black except at tips, rhizines black; medulla K+ yellow 

………………………………………………………….…..... Physcia erumpens 

13c Soralia hemispherical, sometimes erose and crateriform; thallus to 6 

cm diameter, white; lower surface dark grey to black without rhizines; 

medulla K- ………………………………………….…Dirinaria applanata 

12c mostly without apothecia, with marginal soralia .……..……..………...… 14 
14a Upper surface grey to dark grey and frosted; lobes loosely adnate to 

ascending to 2 mm wide, tips rounded ….……….………Physcia undulata 

14b Upper surface whitish grey to dark-grey or cream coloured, glossy and 

epruinose or rarely pruinose, with darker margins; lobes to 1 mm wide 

…………………………………………………………..…... Physcia tribacia 

14c Upper surface cream-colored or brownish to bluish gray, ± shiny, the 

lobe-tips sometimes darkening, very rarely pruinose; lobes plane, not 

ascending; soredia gray to bluish gray, in labiate soralia on lateral lobes 

………………………………………………….………Heterodermia speciosa 

11b Thallus K- ……………………………………………………………………….. 15 

15a Thallus appressed but loosely adnate to 4 cm in diameter, lobes 1-3 mm 

wide, rounded and overlapping; upper surface gray, usually with bluish tint, 

evenly pruinose; soralia marginal first and then laminal; lower surface mostly 
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pale, moderately rhizinate, the rhizines simple to irregularly furcate, pale; 

thallus UV- ……………………………………………………Culbersonia nubila 

15b Thallus closely attached to 10 cm in diameter, lobes to 1 mm wide; upper 

side white to yellowish grey with a distinct and patchy pruina; soralia marginal; 

lower surface dark, with black rhizines. Apothecia common to 1.5 mm in 

diameter without pruina; thallus UV+ yellow …………………. Pyxine cocoes  

15c Thallus more or less closely appressed to 5 cm in diameter, lobes flat to 

0.7-1 mm wide; upper side gray, greenish gray or whitish with pruina; 

pseudocyphellae present sparse, laminal and marginal, usually restricted to 

the peripheral parts of the lobes, sometimes reticulate; soralia absent; lower 

surface black, paler towards lobe tips, with black rhizines. Apothecia common 

to 1.5 mm in diameter without pruina; thallus UV+ yellow …. Pyxine petricola 

5b Thallus broad foliose (lobes more than 2 mm wide) ………….……………………….. 16 

16a Lobes usually more than 1 cm wide, with a distinct marginal zone without rhizines 

on the underside; thallus pale grey to grey ……………………………………………… 17 

17a Lobes 1-3 cm wide, rounded, without cilia; upper cortex weakly maculate; 

thallus C+ yellow, P-; underside black; soralia marginal and sub marginal; medulla 

K-, C+ red, P- …………………………………..……………Parmotrema austrosinense 

17b Lobes 0.5-1.5(2) cm wide, rounded to deeply incised, ciliate; upper cortex 

reticulately maculate and cracked; thallus C-, P+ yellow; soralia laminal or marginal, 

linear to orbicular/subcapitate; medulla K+ yellow turning red, C-, P+ orange 

…………………………………………………………………… Parmotrema reticulatum 

16b Lobes usually less than 1 cm wide, without a distinct marginal zone without 

rhizines on the underside; thallus pale grey or yellowish-green ………………………. 18 
18a Thallus grey, closely adnate, lobes mostly 2-4 mm wide with a wrinkled surface 

and course, granular, laminal soredia mainly along the crests of the wrinkles, 

maniculae absent or very inconspicuous; lower surface dull reddish brown 

darkening to almost black in the centre of the thallus. Photobiont green. Medulla 

white. Chemistry: Soralia and medulla PD-, K-,C-, KC- or KC+ faint purple, UV+ 

bright blue-white (divaricatic acid)…                …………….....Canoparmelia texana 

18b Thallus greenish yellow to yellow-green; lobes sometimes with white maculae; 

pseudocyphellae common; soredia in round, laminal soralia arising from 

pseudocyphellae, sometimes coalescing; medulla K-, C+ red, P- 

…………………………………………………………………… Flavopunctelia flaventior 

18c Thallus pale green, greenish yellow to yellow-green; lobes frequently with white 

maculae; pseudocyphellae absent or rare; soredia mostly in marginal soralia; 

medulla K-, C+ red, P-  ……….………………………….……. Flavopunctelia soredica 
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4.3 Phylogenetic position of Culbersonia nubila  
The genus Culbersonia was hitherto thought to belong to the family Physciaceae Zahlbr. 

because its morphology resembles that of the genus Physconia Poelt (Esslinger, 2000). 

During this study and according to phylogenetic analyses of collected specimens, it has been 

demonstrated that it belongs to the family Caliciaceae (Aptroot et al., 2019). For more 

information on methods and the sequencing results of Culbersonia nubila, see Appendix 13 

(published paper). 

 

4.4 Monitoring results 
 

4.4.1 Descriptive statistics 
Table 4.1 below reports on the descriptive statistics regarding the air pollution and climate 
data available from five measuring stations (Booysens, Mamelodi, Pretoria West, 

Oliovienhoutbosch and Rossylin Monitoring station) for eight years, from 2010 to 2017. These 

stations were relatively close to the sampling areas. The annual average values of the different 

parameters were used for elaboration. 

 

Table 4.1. Descriptive statistics for the average annual values of air pollution and climate 
variables 

 Variables  Mean SD Median Min Max CV National 
limit 

CO (Carbon monoxide)  0.84 0.25 0.62 0.62 1.19 30.13 10 

NO (Nitric oxide)  19.91 2.21 21.81 16.93 21.81 11.08 50 

NO2 (Nitrogen dioxide)  17.02 7.74 11.65 11.65 28.96 45.46 40 

NOx (Nitrogen oxide)  36.97 3.27 35.41 33.18 41.9 8.85 50 

O3 (Ozone)  16.09 4.83 11.94 11.94 22.68 30.01 120 

PM10  (Particulate matter)  82.28 35.19 64.78 43.6 135.62 42.76 40 

SO2 (Sulphur dioxide)  4.85 0.5 5.3 4.29 5.3 10.3 50 

PRES (Atmospheric pressure)  387.25 201.29 208.7 208.7 657.79 51.98  

RAIN (Rainfall)  60.33 50.71 105.61 3.29 105.61 84.06  

SOL (Solar radiation)  130.19 90.35 51.14 51.14 266.1 69.4  

 

PM10 has a mean annual value of 82.28 µg/m3, which is higher in comparison to national limits 

(40 µg/m3). NOx has mean annual value of 36.97 ppb and compared to national limits, it is low 

(50 ppb). NO is lower than national limits (50 ppb) with a mean annual value of 19.91 ppb. 

NO2 has a mean value of 17.02 ppb and is lower than the limits reported for RSA (40 ppb). O3 

with mean 16.09 µg/m3 is low compared to national limits (120 µg/m3). SO2 with mean value 

of 4.85 (ppb) is also low compared to national limits (50 ppb) as is CO (mean: 0.84 ppb) in 
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comparison to national limits (10 ppb). The national limits are reported in  

https://www.gov.za/documents/national-environmental-management-air-quality-act-national-

ambient-air-quality-standards (accessed 30 September 2019). 

 

PRES has mean values of 387.25 (kPa), with Standard Deviation (SD): 201.29, min and max: 

208.7 and 657.79 respectively; Coefficient of Variation (CV): 51.98. The mean value of SOL 

is 130.19 (W/m2); SD: 90.35; min and max: 51.14 and 266.1 respectively; CV: 69.4. RAIN 

shows (mean values of 60.33 mm/year; SD: 50.71; min and max: 3.29 and 105.61 

respectively; CV: 84.06).  

 

Table 4.2. shows the average monthly values of air pollution and climate data from the five 

monitoring stations. The variables RAIN and SOL were excluded from the subsequent 

analyses because the data set was not complete nor therefore reliable. 

 

Table 4.2. Average monthly values of the selected variables in the five monitoring stations 
for the period 2010 to 2014 (5 years) 

Monitoring station CO 
(ppb) 

NO 
(ppb) 

NO2 
(ppb) 

NOx 
(ppb) 

SO2 
(ppb) 

O3 
(ppb) 

PM10 
(µg/m3) 

HUM 
(%) 

PRES 
(hPa) 

TEMP 
(° C) 

WIND 
DIR 
(°) 

WIND 
SPEED 
(m/sec) 

Booysens 1.113 7.364 7.739 16.48 3.249 16.8 37.08 60.47 834.4 19.45 153.7 1.311 

Mamelodi 1.687 34.36 69.41 78.3 2.893 24.46 44.94 54.67 774.6 19.04 116.5 1.776 

Oliovienhoutbosch 0.507 17.41 10.68 25.4 3.54 22.45 56.69 55.7 754.6 18.46 169.3 2.131 

PTAWest 0.618 10.94 15.15 24.92 5.343 19.57 104.1 NA 781.6 17.28 183.5 2.414 

Rosslyn 0.747 7.308 12.15 19.11 5.394 22.64 23.14 50.97 906.8 18.9 184.3 1.876 

 

There is a difference in pollutant concentration between the monitoring stations. The highest 

values for pollutants, exceeding national limits, were found for PM10 in Pretoria West (PTA), 

Oliovienhoutbosch and Mamelodi. Booysens and Rosslyn have lower values than the national 

limit of 40 µg/m3. For NO, the highest value was recorded at Mamelodi and Oliovienhoutbosch, 

whereas PTA West, Booysens and Rosslyn have much lower values. For NO2 and NOx, the 

highest value, exceeding national limits, was found at Mamelodi, while all other stations have 

much lower values. In Oliovienhoutbosch, PTAWest, Rosslyn and Booysens, much lower 

values were recorded for NO2 and NOx. In contrast to the concentration of the NO compounds, 

the highest values of SO2 were recorded at Rosslyn and PTAWest; these are however below 

the national limits. O3 has the highest value at Mamelodi similarly to NO-compounds, followed 

by Rosslyn, Oliovienhoutbosch, PTA West and Booysens. But these values are below the 

national limit of 120 µg/m3. The highest value of CO was also observed at Mamelodi (but it 

https://www.gov.za/documents/national-environmental-management-air-quality-act-national-ambient-air-quality-standards
https://www.gov.za/documents/national-environmental-management-air-quality-act-national-ambient-air-quality-standards
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does not exceed national limits) followed by Booysens, Rosslyn, PTAWest and 

Oliovienhoutbosch, which show much lower values. 

 

There is a climatic difference between the stations. Humidity ranges from 54.65 to 60.47 

(higher value in Booysens). Pressure ranges from 754.6 µg/m3 to 906.8 µg/m3 (higher value in 

Rosslyn). Temperature ranges from 17.28°C to 19.45°C (higher value in Booysens). Wind 

direction ranges from 116.5° to 184.3° (higher value in Rosslyn) between stations whereas 

wind speed ranges from 1.311 m/sec to 2.414 m/sec (higher value in PTAWest).  

 

Descriptive statistics of the variables related to site and tree features (altitude, distance from 

emission sources and tree circumference) and to lichen diversity data (Lichen Diversity 

Value (LDV)), frequency occurrence of each lichen species) are reported in Table 4.3. One 

hundred and sixty-four trees, belonging to the investigated species (A. caffra: 24, A. karroo: 

70, J. mimosofolia: 70) were sampled from 29 sites (2-16 trees per site), according to the 

methodology reported in Chapter 3. 

 

Regarding lichen species, Candelaria concolor (mean: 16.51; SD: 5.45; median: 20; min and 

max: 0 and 20 respectively), Hyperphyscia adglutinata (mean: 8.12; SD: 6.33; median: 8; min 

and max: 0 and 20 respectively), Lepraria spp. (mean: 5.98; SD: 7.61; median: 1; min and 

max: 0 and 20 respectively) and Parmotrema austrosinense (mean: 6.73; SD: 6.2; median: 5; 

min and max: 0 and 20 respectively) have higher frequency occurrence as shown by mean 

and median values in contrast to other species. However, SD, the range between minimum 

and maximum values, is relatively high for some species as indicated in Table 4.2, this 

showing high variability among trees. Species with the lowest frequency occurrence are 

Hyperphyscia granulata (mean: 0.25; SD: 1.86; median: 0; min and max: 0 and 18 

respectively), Hyperphyscia pandani (mean: 0.01; SD: 0.11; median: 0; min and max: 0 and 1 

respectively), Physcia undulata (mean: 0.1; SD: 0.71; median: 0; min and max: 0 and 7 

respectively) and Pyxine petricola (mean: 0.09; SD: 0.47; median: 0; min and max: 0 and 4 

respectively). LDV is in average of 53.26 with an SD of 32.67 and CV of 61.35. 

 

Concerning environmental and tree parameters, the mean altitude is 1357 m a.s.l. with an SD 

of 70.2 and a low CV. The mean distance from emission sources is 0.4 km, with an SD of 1.28 

and high CV. Tree circumference has mean value of 87.34 cm with an SD of 16.13 and CV of 

18.47.  
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Table 4.3. Descriptive statistics of the variables related to site, tree level and to lichen 
diversity data 

 Variables  Mean SD Median Min Max CV 
Si

te
 a

nd
 

tre
e 

le
ve

l 
da

ta
 Altitude  1357 70.2 1343.5 1233 1536 5.17 

Distance from emission sources  0.4 1.28 0.03 0 10.01 324.34 

Tree circumference  87.34 16.13 86 56 142 18.47 

Li
ch

en
 d

iv
er

si
ty

 d
at

a 

LDV  53.26 32.67 49.5 3 140 61.35 

Candelaria concolor  16.51 5.45 20 0 20 33.03 

Canoparmelia texana  0.93 2.35 0 0 14 253.41 

Culbersonia nubila  1.63 3.05 0 0 17 186.75 

Flavopunctelia flaventior  1.8 3.46 0 0 15 192.6 

Flavopunctelia soredica  3.71 6 0 0 20 161.65 

Heterodermia speciosa  2.43 4.38 0 0 19 180.46 

Hyperphyscia adglutinata  8.12 6.33 8 0 20 77.98 

Hyperphyscia granulata  0.25 1.86 0 0 18 744.55 

Hyperphyscia pandani  0.01 0.11 0 0 1 902.76 

Lepraria spp.  5.98 7.61 1 0 20 127.18 

Parmotrema austrosinense  6.73 6.2 5 0 20 92.15 

Physcia tribacia  2.8 3.61 1 0 17 128.93 

Physcia undulata  0.1 0.71 0 0 7 728.95 

Pyxine cocoes  2.21 3.07 1 0 14 138.76 

Pyxine petricola  0.09 0.47 0 0 4 511.16 

 

4.4.1.1 Comparison of habitat and land use types 
Two classes of land use were distinguished for analysis: “Industrial areas and busy roads”, 

which includes industrial, urban and rural areas with higher levels of human disturbance due 

to traffic and pollution, and “Parks and nature reserves”, which includes savanna, private 

gardens and more natural areas or with less human disturbance. Table 4.4. reports the 

descriptive statistics of sites and of lichen variables under the two classes of land use. “Parks 

and nature reserves” show significantly higher Lichen Diversity Values (LDV) than “Industrial 

areas and busy roads”. This is also confirmed by the Wilcoxon test (p<0.001) as shown in 

Figure 4.6. In particular, mean LDVs are 40.44±23.37 and median LDVs 38.5 in “Industrial 

areas and busy roads”. In “Parks and nature reserves” mean LDVs are 88.2±28.77 and 

median values 83.5. However, the variability of LDVs among sites is quite high as shown by 

SD and Min-Max-values. In “Industrial areas and busy roads” LDVs range between 3 and 97, 

and in “Parks and nature reserves” between 43 and 140. All species are more frequently found 

in parks and reserves with the exception of Hyperphyscia granulata which is more frequently 

found in industrial areas and along busy roads. 
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Table 4.4. Descriptive statistics of the values of the variables in the two classes of land use 
(only species occurring at least more than 5% considered in the analysis) 

Variables 
Industrial areas and busy roads  Parks and nature reserves 

Mean±SD Median Min-Max CV  Mean±SD Median Min-Max CV 

Altitude 1333.46±56.06 1331 1233-1536 4.2  1421.2±64.97 1451 1305-1505 4.57 
Distance.emission.sources 0.15±0.92 0.01 0-10.01 615.51  1.07±1.8 0.45 0.25-7.5 169.3 

Tree.circumference 89.3±16.29 89.5 56-142 18.25  82±14.54 78 60-110 17.73 
LDV 40.44±23.37 38.5 3-97 57.77  88.2±28.77 83.5 43-140 32.62 

Candelaria.concolor 15.82±5.89 19 0-20 37.23  18.36±3.43 20 4-20 18.68 
Canoparmelia.texana 0.25±0.76 0 0-5 303.48  2.77±3.81 1 0-14 137.58 

Culbersonia.nubila 0.82±1.56 0 0-7 189.65  3.84±4.66 2 0-17 121.33 
Flavopunctelia.flaventior 0.96±2.21 0 0-14 230.13  4.09±4.97 1.5 0-15 121.46 
Flavopunctelia.soredica 1.57±3.21 0 0-17 205  9.57±7.75 9 0-20 81.03 
Heterodermia.speciosa 0.77±1.81 0 0-10 235.97  6.95±5.91 6.5 0-19 85.04 

Hyperphyscia.adglutinata 7.48±6.45 6.5 0-20 86.13  9.84±5.72 10.5 0-20 58.1 
Hyperphyscia.granulata 0.34±2.17 0 0-18 635.48  0±0 0 0-0 NA 
Hyperphyscia.pandani 0±0 0 0-0 NA  0.05±0.21 0 0-1 463.56 

Lepraria spp. 3.12±5.4 0 0-20 173.27  13.8±7.3 17.5 0-20 52.91 
Parmotrema.austrosinense 5.68±5.9 4 0-20 103.78  9.59±6.18 10 0-20 64.4 

Physcia.tribacia 1.96±2.59 1 0-12 132.13  5.09±4.85 6 0-17 95.18 
Physcia.undulata 0.08±0.54 0 0-5 716.09  0.16±1.06 0 0-7 663.32 

Pyxine.cocoes 1.55±2.66 0 0-14 171.15  4.05±3.4 3.5 0-11 84.12 
Pyxine.petricola 0.08±0.4 0 0-3 481.59  0.11±0.62 0 0-4 543.99 

 

 

 
Figure 4.6. Wilcoxon test of LDV values in the two land use classes 
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4.4.1.2 Comparison of phorophytes  
Table 4.5 reports the descriptive statistics of selected ecological variables concerning site and 

tree features (Altitude, Distance from emission sources, Tree circumference) and the most 

common lichen species for the three different phorophytes. Regarding species distribution on 

the tree species, the species less frequently found on exotic Jacaranda and more common on 

Acacias are: Canoparmelia texana, Flavopunctelia flaventior, F. soredica, Heterodermia 

speciosa, Hyperphyscia adglutinata, Lepraria spp., Parmotrema austrosinense, Physcia 

tribacia, P. undulata and Pyxine cocoes.  

 

Candelaria concolor is only slightly more frequently found on Acacias than on Jacaranda. The 

frequency of Hyperphyscia granulata and Pyxine petricola is higher on Jacaranda in contrast 

to A. karroo and A. caffra. Between the two Acacias there are also some differences: 

Culbersonia nubila, Flavopunctelia flaventior, F. soredica, Lepraria spp., Parmotrema 

austrosinense and Pyxine cocoes more common on A. karroo. On the contrary, Heterodermia 

speciosa, Hyperphyscia adglutinata, H. pandani, Physcia tribacia and P. undulata are slightly 

more frequent on A. caffra.  

 

The Jacarandas in this study were closer in distance from emission sources when compared 

to both A. karroo and A. caffra. This is because these trees were found mostly downtown and 

next to the industries. A. caffra and A. karroo have smaller average tree circumferences than 

Jacarandas. Both Acacias are also found at slightly higher altitudes in comparison to 

Jacarandas. 

 

LDVs are significantly different on the three species as also confirmed by the Kruskal-Wallis 

test (p<0.001, Figure 4.7), especially on Jacaranda in comparison to the two Acacias. 

Jacaranda trees show the lowest average LDV (mean±SD: 34.39±19.85; median: 35.5) 

compared with Acacia karroo (mean±SD: 68.34±35.48; median: 67.5) and A. caffra 

(mean±SD: 64.29±26.52; median: 58). The Wilcoxon tests between plots with Jacaranda vs 

A. karroo and of Jacaranda vs A. caffra are very significant (see Table 4.6). The two species 

of Acacia show similar LDVs as confirmed also by the W and p-values of Wilcoxon test (see 

also Table 4.7 that shows the number of investigated trees for the different species). A. karroo 

has the highest average and median LDVs, but also the highest SD. 
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Table 4.5. Descriptive statistics of the values of the variables for the different tree substrates 

Variables  
Acacia caffra 

 
Acacia karroo 

 
                           Jacaranda mimosifolis 

MEAN± SD MEDIAN MIN- MAX CV MEAN± SD MEDIAN MIN- MAX CV MEAN± SD MEDIAN MIN- MAX CV 

Altitude  1353.12±64.38 1346.5 1262-1456 4.76  1364.41±83.63 1342 1233-1505 6.13  1350.91±56.28 1344.5 1292-1536 4.17 

Distance.emission.sources  0.63±0.28 0.6 0.3-1.2 43.88  0.56±1.53 0.1 0-7.5 274.19  0.15±1.2 0 0-10.01 777.29 

Tree.circumference  80.21±15.94 76 56-107 19.87  82.87±14.81 79 60-130 17.87  94.26±14.97 92 60-142 15.88 

LDV  64.29±26.52 58 8-131 41.25  68.34±35.48 67.5 5-140 51.92  34.39±19.85 35.5 3-87 57.72 

Candelaria concolor  18.17±3.68 20 4-20 20.25  16.91±5.6 20 0-20 33.09  15.53±5.68 18 2-20 36.59 

Canoparmelia texana  1.54±3.71 0 0-14 240.41  1.46±2.65 0 0-13 182.02  0.19±0.67 0 0-4 358.5 

Culbersonia nubila  0.38±0.92 0 0-4 246.33  2.96±4.05 1 0-17 136.9  0.74±1.48 0 0-7 199.38 

Flavopunctelia flaventior  1.42±3.61 0 0-15 254.86  3.16±4.04 2 0-15 127.91  0.57±2.06 0 0-14 360.71 

Flavopunctelia soredica  3.17±4.04 1 0-12 127.57  6.5±7.37 2 0-20 113.35  1.11±3.25 0 0-17 291.72 

Heterodermia speciosa  4.17±4.91 2.5 0-14 117.93  3.64±5.3 1 0-19 145.56  0.61±1.8 0 0-10 293.69 

Hyperphyscia adglutinata  11.54±5.73 11.5 0-20 49.67  8.34±6.05 8 0-20 72.46  6.71±6.4 5 0-20 95.35 

Hyperphyscia granulata  0±0 0 0-0 NA  0.27±2.15 0 0-18 793.21  0.31±1.88 0 0-15 597.21 

Hyperphyscia pandani  0.04±0.2 0 0-1 489.9  0.01±0.12 0 0-1 836.66  0±0 0 0-0 NA 

Lepraria spp.  7.17±7.53 5.5 0-20 105.12  9.9±8.6 11 0-20 86.84  1.66±2.97 0 0-13 179.39 

Parmotrema austrosinense  6.29±6.36 5.5 0-20 101.12  9.23±5.97 10 0-19 64.73  4.39±5.45 2 0-20 124.36 

Physcia tribacia  7±4.99 6.5 0-17 71.24  2.51±2.72 2 0-11 108.29  1.64±2.73 0 0-12 166.47 

Physcia undulata  0.29±1.43 0 0-7 489.9  0.04±0.36 0 0-3 836.66  0.09±0.61 0 0-5 709.04 

Pyxine cocoes  3.21±3.35 2.5 0-11 104.38  3.26±3.57 2 0-14 109.73  0.83±1.54 0 0-8 186.03 

Pyxine petricola  0.04±0.2 0 0-1 489.9  0.09±0.5 0 0-4 587.31  0.11±0.5 0 0-3 435.41 
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Figure 4.7. Distribution of LDV values for the three tree species  

 

Table 4.6. Wilcoxon test between pairs of tree species 

Acacia caffra - Acacia karroo: 
Wilcoxon rank sum test with continuity correction 
data: LDV by Tree.species W = 779.5, p-value = 0.6028 alternative hypothesis: true 
location shift is not equal to 0 
Acacia karroo - Jacaranda 

Wilcoxon rank sum test with continuity correction 
data: LDV by Tree.species W = 3885, p-value = 2.242e-09 alternative hypothesis: true 
location shift is not equal to 0 
Acacia caffra - Jacaranda 

Wilcoxon rank sum test with continuity correction 
data: LDV by Tree.species W = 1398, p-value = 1.328e-06 alternative hypothesis: true 
location shift is not equal to 0 
LDV sampled in the three tree species are significantly different (Kruskal-Wallis test, 
p<0.001). The main differences are drived by the Jacaranda trees. The two species of 
Acacia show similar LDV. 
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Table 4.7 Descriptive statistics of LDV at tree and site level 

Spatial level N Mean ± SD Median Min-Max 
Tree total 164 53.3 ± 32.7 49 3-141 

Acacia caffra 24 64.4 ± 26.5 58.5 8-132 
Acacia karroo 70 68.3 ± 35.5 68.5 5-141 

Jacaranda mimosifolia 70 34.5 ± 19.9 35 3-87 
Site 29 46.7 ± 24.8 44.5 10.7-113.7 

 

4.4.1.3 Comparison of sites 
LDV values measured at each site are reported in Figure 4.8. The highest LDV values were 

observed in the protected areas such as Site 24 (Voortrekker Monument Nature Reserve), 

Site 6 (SANBI Botanical Garden), Site 5 (Groenkloof Nature Reserve), Site 9 (Rietvlei Nature 

Reserve) and Site 4 (Pionier Museum). Higher values were also found at site 25 (Suiderberg), 

which is characterised by low traffic. On the contrary, the sites with lower lichen diversity were 

Site 27 (The Willows 340-Jr,), Site 28 (Mamelodi), Site 22 (Hatfield) and Site 16 (Pretoria 

Central Business District, Nana Sita Street), all characterised by high traffic and tree 

disturbance.  
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Figure 4.8. LDV values measured at each site (n: 29) 

 

4.4.2 A naturality/alteration interpretative scale 
A naturality/alteration interpretative scale was developed based on the percentile deviations 

from the maximum lichen diversity observed in the study area (Figure 4.9, Table 4.8). All 

examined sites were attributed to five naturality/alteration classes: 

1) Lichen desert (LDV 0) 

2) Alteration (LDV 1-35) 

3) Semi-alteration (LDV 35-70) 

4) Semi-naturality (LDV 70-100) 

5) Naturality (LDV ˃ 100) 
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Table 4.8. A naturality/alteration interpretative scale based on the percentile deviations 

min 3 
10° percentile 13 
20° percentile 23 
30° percentile 35 
40° percentile 43 
50° percentile 49.5 
60° percentile 55 
70° percentile 67.1 
80° percentile 79.2 
90° percentile 96.1 
95° percentile 124.1 
98° percentile 134.7 
max 140 

 

 

 
Figure 4.9. Percentile distribution of the LDV values detected at site level 

 

The number of sites (n=29) within the five selected naturality/alteration classes is reported 

below in Figure 4.10. Most sites have LDVs between 1 and 70 (alteration and semialteration), 

while conditions of seminaturality (LDV 70-100) and of naturality (LDV>100) are poorly 

represented. A “lichen desert” condition was never found. 
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Figure 4.10. Distribution of LDV values at site level (n=29) categorised into five 

naturality/alteration classes  

 

 

Figure 4.11. Interpolated LDV map of the study area with air monitoring stations, monitoring 

sites, main roads and five naturality/alteration classes  

 

The alteration class (LDV 1-35) comprises industrial, urban and rural areas such as Mamelodi, 

Pretoria central business district, Pretoria west (Staal road) and Philip Nel among others. The 
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semi-alteration class (LDV 35-70) comprises, for instance, the sites Magalies, Mayville, 

Waterkloof and Pionier Museum. To the semi-naturality class (LDV 70-100) belong parks and 

nature reserves, like Rietvlei Nature Reserve, Groenkloof Nature Reserve, SANBI and 

Suiderberg. Voortrekker Monument Nature Reserve represents the only naturality class  

(LDV > 100).  

 

Most trees found in “Industrial areas and busy roads” belong to the class “semi-alteration” and 

“alteration” (50+56), only 14 to the “semi-naturality” class, while no tree from sites with this 

land use type occur under the class “naturality”. No trees belonging to the class “alteration” 

are found in “Parks and natural reserves”. Thirteen trees from these sites are found in the 

class “semi-alteration”, 16 in “semi-naturality and 15 in “naturality” (Table 4.9). 

 

Table 4.9. Number of trees and Mean LDV under the 5 naturality/alteration classes and their 
distribution under the two land use categories 

LDV Naturality/alteration 
classes 

Mean 
LDV 

N 
trees 

Industrial areas and busy 
roads 

(n=120) 

Parks and natural 
reserves 

(n=44) 

0 lichen desert - 0 0 0 

0-35 alteration 18.5 50 50 0 

35-70 semi-alteration 50.8 69 56 13 

70-100 semi-naturality 82.4 30 14 16 

>100 naturality 122.6 15 0 15 

 

As shown in Table 4.10, Jacaranda mimosifolia is exclusively found in “Industrial areas and 

busy roads” and is most frequent in the class “alteration”, but also common in the “semi-

naturality” class. Acacia caffra trees are found both in “Industrial areas and busy roads“ and 

in “Parks and nature reserves“, but this tree species is more frequent in the last land use type 

and in the classes “semi-alteration” and “semi-naturality”. A. karroo also occurs under both 

land use types, but is more common in “Industrial areas and busy roads” rather than in “Parks 

and nature reserves”. It is also more common in the classes “semi-alteration” and “semi-

naturality”. Considering all tree species, trees belonging to “Industrial areas and busy roads” 

occur more frequently in the classes “alteration” and “semi-alteration”, while the tree species 

found in “Parks and nature reserves” follow within the categories “semi-alteration” to 

“naturality”. 
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Table 4.10. Comparison of host tree species (phorophytes) with regard to their occurrence in 
the five naturality/alteration classes and within the two land use types  

  Total  Land use 
 Industrial areas 

and busy roads  
Parks and 

nature reserves 
Jacaranda mimosifolia      

N of trees  70  70 0 
Mean LDV  34.4  34.4 - 

LDV, range min-max  3 - 87  3 - 87 - 
Naturality/alteration classes (n trees, %)      

lichen desert  0 (0%)  0 (0%) - 
alteration  35 (50%)  35 (50%) - 

semi-alteration  4 (6%)  4 (6%) - 
semi-naturality  31 (44%)  31 (44%) - 

naturality  0 (0%)  0 (0%) - 
Acacia caffra      

N of trees  24  4 20 
Mean LDV  64,3  29,7 71,2 

LDV, range min-max  8 - 131  8 - 43 43 - 131 
Naturality/alteration classes (n trees, %)      

lichen desert  0 (0%)  0 (0%) 0 (0%) 
alteration  3 (13%)  3 (75%) 0 (0%) 

semi-alteration  12 (50%)  1 (25%) 11 (55%) 
semi-naturality  6 (25%)  0 (0%) 6 (30%) 

naturality  3 (13%)  0 (0%) 3 (15%) 
Acacia karroo      

N of trees  70  46 24 
Mean LDV  68,3  50,6 102,4 

LDV, range min-max  5 - 140  5 - 97 53 - 140 
Naturality/alteration classes (n trees, %)      

lichen desert  0 (0%)  0 (0%) 0 (0%) 
alteration  12 (17%)  12 (26%) 0 (0%) 

semi-alteration  26 (37%)  24 (52%) 2 (8%) 
semi-naturality  20 (29%)  10 (22%) 10 (42%) 

naturality  12 (17%)  0 (0%) 12 (50%) 
Total      

N of trees  164  120 44 
Mean LDV  53,3  40,4 88,2 

LDV, range min-max  3 - 140  3 - 97 43 - 140 
Naturality/alteration classes (n trees, %)      

lichen desert  0 (0%)  0 (0%) 0 (0%) 
alteration  50 (30%)  50 (42%) 0 (0%) 

semi-alteration  69 (42%)  56 (47%) 13 (30%) 
semi-naturality  30 (18%)  14 (12%) 16 (36%) 

naturality  15 (9%)  0 (0%) 15 (34%) 
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4.4.3 Multivariate analysis 
The results of a multivariate analysis (Principal Component Analysis, PCA) performed at tree 

level for different parameters are presented in Figures 4.12  to 4.15. Lichen species present 

in less than 5% of trees were excluded from the analysis. Axis 1 explains 50.29%, while Axis 

2 explains 11.7% (Table 4.11).  

 

Concerning single variables (Table 4.12), lichen diversity (LDV) correlates positively and 

significantly with Axis 1 (coefficient=0.992) but much less with Axis 2 (coefficient=0.083). The 

parameter “Number of species” correlates positively with Axis 1 (coefficient=0.883) but less 

with Axis 2 (coefficient=0.159). Also the occurrence of the following single species correlates 

positively with Axis 1: Canoparmelia texana, Culbersonia nubila, Flavopunctelia flaventior, F. 

soredica, Heterodermia speciosa, Lepraria spp., Parmotrema austrosinense, and Pyxine 

cocoes. Canoparmelia texana, Culbersonia nubila, Flavopunctelia flaventior, F. soredica, 

Heterodermia speciosa and Lepraria spp. are negatively related to Axis 2. Distance from 

emission sources" is positively related to Axis 1, while "Tree circumference" is negatively 

related. In contrast, Candelaria concolor, Hyperphyscia adglutinata and Physcia tribacia are 

more positively related to Axis 2 than to Axis 1. These relationships are charted in Figure 4.12.  

 

Table 4.11. Eigen values of the PCA solution 

 
Dimensions 

1 2 3 4 5 6 7 8 9 10 11 12 13 

Variance 6.53
7 

1.52
4 0.988 0.805 0.678 0.58 0.506 0.444 0.328 0.293 0.173 0.142 0.002 

% of 
variance 

50.2
85 

11.7
21 7.597 6.193 5.218 4.458 3.891 3.412 2.524 2.256 1.332 1.095 0.018 

Cumulative 
% of 

variance 

50.2
85 

62.0
06 

69.60
3 

75.79
6 

81.01
4 

85.47
2 

89.36
2 

92.77
4 

95.29
9 

97.55
5 

98.88
7 

99.98
2 100 
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Table 4.12. Significant correlation coefficients of the variables with Axis 1 and 2 (p<0.001) 

Variables Axis 1 Axis 2 
LDV 0.992 0.083 

N of species 0.883 0.159 
Flavopunctelia soredica 0.851 -0.317 

Lepraria spp. 0.823 -0.134 
Flavopunctelia flaventior 0.778 -0.092 

Culbersonia nubila 0.762 -0.306 
Parmotrema austrosinense 0.736 0.109 

Heterodermia speciosa 0.684 -0.206 
Canoparmelia texana 0.674 -0.358 

Pyxine cocoes 0.570 0.282 
Candelaria concolor 0.478 0.617 

Hyperphyscia adglutinata 0.375 0.607 
Physcia tribacia 0.159 0.509 

Distance from emission sources 0.072 ns 
Tree circumference -0.235 ns 

   
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12. Loadings plot of the PCA ordination of lichen diversity parameters (LDV, N. of 

species, lichen taxa) 

 

Figure 4.13. compares LDV and lichen species within the two land use types and shows 

significant differences between “Parks and natural reserves” and “Industrial areas and busy 

roads”. “Parks and natural reserves” are also far from emission sources and are therefore 

distinct from “Industrial areas and busy roads”, which are more directly impacted by emissions. 
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Figure 4.13. Score plot of the PCA ordination of LDV and lichen species on sampled trees 

within different land use types: “Industrial areas and busy roads” and “Parks and natural 

reserves” 

 

Figure 4.14 below shows differences in LDV and lichen species composition among the tree 

species. In this aspect, Jacaranda trees are clearly distinguished from Acacias, with only some 

overlap with A. karroo, with Jacaranda generally closer to emission sources in contrast to the 

other two species. 

 

 
Figure 4.14. Score plot of the PCA ordination of LDV and lichen species on the selected tree 
substrates Acacia caffra, A. karroo and Jacaranda mimosifolia 
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Figure 4.15 shows which environmental variables correlate significantly with the two axes. 

Axis 1 has a positive relationship with the factor “Distance from emission sources” and a 

negative relationship with the parameter “Tree circumference”.  

 

 
Figure 4.15. Loadings plot of the PCA ordination showing vectors with statistically significant 

relationship to the environmental variables “Distance from emission sources” and “Tree 

circumference” 

 

4.4.4 Interpolation of air pollution and climate data 
As air pollution and climate data were only available for five monitoring stations, an 

interpolation was carried out to obtain data for all 29 lichen sampling sites to test correlations 

with lichen diversity variables (see 4.4.5-4.4.7). Table 4.13 shows the interpolated values 

(IDW) of the air pollution, climate variables obtained with the elaboration and LDV at each site. 

“Industrial areas and busy roads” are coloured orange  and sites from “Parks and nature 

reserves” are coloured green.  
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Table 4.13. Interpolated values (IDW) of the air pollution, climate variables and LDV 
obtained for the 29 lichen sampling sites  

Site ID CO NO NO2 NOX PRES SO2 TEMP WIND 
dir 

WIND 
Speed PM10 O3 HUM LDV 

1 Pretoria West - Nkomo 
Street 0.73 10.3 13.8 23.4 794 4.86 17.8 177 2.16 87.72 19.1 59.5 33.9 

2 Pretoria West - Staal Road 0.72 10.7 14.3 23.9 793 4.89 17.8 177 2.19 88.06 19.3 58.7 15 
3 Hercules - Van Der Hoff 1.09 7.6 8.2 17.0 832 3.36 19.3 155 1.37 40.29 17.0 60.4 33 
7 Waterkloof - Rigel Avenue 1.00 17.2 27.7 37.5 796 4.04 18.4 158 1.95 63.22 20.9 56.2 61 

8 Muckleneuk - Celliers 
Street 0.84 12.3 17.9 27.5 799 4.50 18.1 169 2.04 75.12 19.6 57.6 56.5 

10 Arcadia - Government 
Avenue 0.93 13.6 21.0 30.3 803 4.27 18.4 164 1.94 67.41 19.9 57.3 62.8 

11 Queenswood - CR Swart 
Drive 1.22 21.4 39.0 48.2 797 3.70 18.7 145 1.85 54.83 21.7 55.8 32.4 

12 Akasia - Brits Road 0.96 8.6 11.0 19.6 840 4.01 19.0 164 1.61 43.80 18.7 57.8 53 

13 Mayville - Es'kia Mphahlele 
Drive 0.94 10.5 14.5 23.5 819 4.09 18.7 164 1.76 57.69 18.9 58.4 59.2 

15 Hermanstad - Moot Street 0.93 9.4 12.0 21.1 816 4.06 18.7 165 1.74 60.31 18.3 59.6 29.8 

16 Pretoria Central Business 
District - Skinner Street 0.75 10.9 14.9 24.5 795 4.80 17.8 175 2.15 85.38 19.3 58.6 22 

17 Kameeldrift - Sefako 
Makgatho Drive 1.41 26.6 51.3 60.3 790 3.38 18.9 134 1.81 49.63 22.9 55.2 44.5 

18 Saulsville - Masopha Street 0.83 10.8 13.5 23.2 812 4.30 18.5 169 1.90 62.23 19.5 57.4 43 

19 Philip Nel Park - 
Transoranje Road 0.79 9.9 12.9 22.3 801 4.61 18.1 173 2.03 79.65 18.7 59.9 27.8 

20 Brooklyn - Roper Street 0.98 15.5 25.0 34.4 800 4.17 18.4 160 1.95 65.65 20.4 56.7 46.8 
21 Hatfield - Duxbury Road 1.04 17.0 28.4 37.8 799 4.05 18.5 157 1.92 62.94 20.7 56.4 36.8 
22 Hatfield - Pretorious Street 1.07 17.7 30.2 39.6 799 3.98 18.5 155 1.90 61.07 20.9 56.3 13.5 
23 Gezina - Rose Street 0.90 12.3 18.2 27.6 806 4.32 18.3 166 1.94 68.25 19.5 57.8 28.2 

26 Pretoria West - Es'kia 
Mphahlele Drive 0.75 10.7 14.5 24.1 795 4.82 17.8 176 2.15 85.87 19.2 58.9 26.8 

27 The Willows - Solomon 
Mahlangu Drive 1.57 31.4 62.3 71.3 780 3.08 19.0 123 1.80 47.01 23.9 54.8 10.8 

28 Mamelodi - Tsamaya 
Avenue 1.68 34.2 69.0 77.9 775 2.90 19.0 117 1.78 45.06 24.4 54.7 13 

29 Koedoespoort - N4 
Highway 1.12 19.0 33.3 42.6 798 3.89 18.6 152 1.89 59.30 21.2 56.1 46 

25 Suiderberg - Sarel Avenue 1.06 7.9 9.0 17.8 831 3.49 19.2 157 1.43 42.96 17.3 60.1 80 
14 Magalies - Hornsnek Road 0.87 9.0 12.5 20.8 853 4.50 18.8 171 1.77 42.62 20.1 55.3 58.2 

4 Pionier Museum - Keuning 
Drive 1.60 32.0 63.7 72.7 779 3.04 19.0 122 1.79 46.71 24.0 54.8 68.5 

5 Groenkloof Nature Reserve 0.84 13.1 18.8 28.5 797 4.46 18.1 168 2.05 74.18 19.9 57.1 80.3 
6 SANBI - Cussonia Avenue 1.34 24.9 47.2 56.3 790 3.49 18.8 138 1.84 52.76 22.5 55.4 82.2 

9 Rietvlein Nature reserve - 
R21 1.00 18.6 28.9 39.1 792 3.86 18.6 155 1.94 57.88 21.5 55.8 71.8 

24 Voortrekker Monument - 
Eeufees Road 0.71 11.1 15.2 24.9 791 4.93 17.7 177 2.22 89.90 19.5 58.2 113.7 

 

Some of the obtained values are questionable as many sites with high traffic have low values 

of NO, NO2 and NOx. For example, Site 2 (Pretoria West - Staal Road) has lower values of 

these pollutants, while site 24 (Voortrekker Monument - Eeufees Road), in a more protected 

area with low traffic, has higher values for those pollutants. This is despite LDV being much 

higher in Voortrekker Monument compared to Pretoria West. The same results were observed 

at site 6 (SANBI), with levels of NO, NO2 and NOx very high compared to site 22 (Hatfield - 

Pretorious Street) which is characterised by high traffic but low values of these pollutants. As 

the table shows, the LDV was higher at SANBI compared to Hatfield. This shows that LDV is 

a more reliable indicator of good air quality compared to interpolated pollution data which does 
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not give a true reflection of the degree of pollution in Pretoria, due to insufficient numbers of 

monitoring stations. Other interpolated pollution parameters also proved unreliable: SO2, PM10 
and O3 were lowest at site 28 (Mamelodi - Tsamaya Avenue) which is however characterised 

by high traffic and low LDV, while the highest values were found at Voortrekker Monument, 

an area with the highest LDV.  

 

Figures 4.16 and 4.17 show the interpolated maps for NOx and SO2 in the study area. They 

confirm that interpolated data does not give true reflections. NOx is mainly concentrated in the 

eastern part of the study area according to the map, whereas SO2 is concentrated in the 

western and northern sites of the study area. This is erroneous and can also be explained by 

the low number of monitoring stations in the municipality, which do not provide representative 

data for the entire area and all investigated sites. 

 
Figure 4.16. Interpolated map (IDW) of NOx (ppb) concentrations in the study area 
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Figure 4.17. Interpolated map (IDW) of SO2 (ppb) concentrations in the study area 

 

4.4.5 Multiple Factor Analysis (MFA) with interpolated environmental data 
A Multiple Factor Analysis (MFA) was carried out with the interpolated environmental data. 

Table 4.14 shows the correlation coefficients of the three groups of variables with the 

dimensions of the Multiple Factor Analysis (MFA). The first two dimensions explain 

respectively only 34.2% (Dim.1) and 18.4% (Dim.2) of the variance (see Figures 4.18 and 

4.20). The climatic variables PRES, WIND, WINDS and HUM correlate positively with Dim.1, 

whereas TEMP correlates negatively. All variables, excepting WINDS, correlate negatively 

with Dim.2. PRES and TEMP correlate positively with Dim.3, WINDS negatively. Pollutants 

CO, NO, NO2, NOx and O3 are negatively correlated with Dim.1, while SO2 and PM10 are 

positively correlated. NO, NO2, NOx, PM10 and O3 correlate positively with Dim. 2. Correlations 

with Dim. 3 are weaker and in most cases negative.  

 

Lichen diversity (LDV) and a large group of lichen species (Candelaria concolor, Canoparmelia 

texana, Flavopunctelia flaventior, F. soredica, Heterodermia speciosa, Parmotrema 

austrosinense and Lepraria spp. are positively correlated with all three Dim. Physcia tribacia 

is negatively related to Dim.1, but positively to the other two Dim. Hyperphyscia adglutinata 

and Pyxine cocoes are significantly and positively correlated only with Dim.2 and Dim.3.  
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Table 4.14. Correlation coefficients of the variables with the three dimensions of the Multiple 
Factor Analysis. The highest correlations (>0.2) with the 3 dimensions are highlighted. 

Groups Variables Dim.1 Dim.2 Dim.3 

C
lim

at
ic

 
va

ria
bl

es
 PRES 0,205 -0,774 0,517 

TEMP -0,789 -0,400 0,454 
WIND 0,969 -0,189 -0,062 

WINDS 0,600 0,583 -0,521 
HUM 0,746 -0,429 -0,018 

Po
llu

ta
nt

s 

CO -0,972 0,149 0,084 
NO -0,859 0,483 -0,152 
NO2 -0,870 0,460 -0,140 
NOX -0,862 0,474 -0,150 
SO2 0,944 0,060 -0,234 
PM10 0,795 0,376 -0,457 
O3 -0,796 0,545 -0,177 

Li
ch

en
 d

iv
er

si
ty

 v
ar

ia
bl

es
 

LDV 0,391 0,579 0,703 
Candelaria concolor 0,284 0,103 0,518 

Canoparmelia texana 0,220 0,544 0,332 
Culbersonia nubila 0,459 0,502 0,269 

Flavopunctelia flaventior 0,278 0,534 0,465 
Flavopunctelia soredica 0,397 0,580 0,415 
Heterodermia speciosa 0,261 0,560 0,332 

Hyperphyscia adglutinata 0,062 0,202 0,335 
Hyperphyscia granulata 0,022 -0,045 -0,037 
Hyperphyscia pandani 0,119 0,095 -0,020 

Lepraria spp. 0,420 0,331 0,595 
Parmotrema 

austrosinense 
0,232 0,410 0,544 

Physcia tribacia -0,209 0,245 0,321 
Physcia undulata -0,031 0,139 0,069 

Pyxine cocoes 0,104 0,213 0,576 
Pyxine petricola 0,081 0,121 0,009 

 
 

As shown in Figures 4.18 and 4.19, the increasing gradient of lichen diversity (LDV and a large 

group of species) along positive values of Dim. 1 is positively related to climatic variables such 

as wind direction and speed, and humidity, and pollutants PM10 and SO2. On the contrary, 

most of the other pollutants (NO, NO2, NOx, CO and O3) show an increasing gradient for 

negative values of Dim.1. Almost no lichens relate to temperature (Figures 4.18 to 4.20).  
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Figure 4.18. Loadings plot of the MFA ordination. Vectors show the axes of the single PCA 

performed on each of the three groups (climatic, pollutants and lichens) 

 

 
Figure 4.19. Loadings plot of the MFA ordination. Vectors show the correlation of 

environmental variables separated in the main three factors (climatic, pollutants and lichens) 

with the three dimensions of the MFA. 
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Figure 4.20. Score plot of the MFA ordination showing the distribution of the sampled trees 

and the partial contribution of the three environmental factors (climatic, pollutants and lichens) 

to the variance 

 

4.4.6 Multivariate analysis (PCA) with interpolated environmental data 
Table 4.15 shows the correlation coefficients of the variables with Axis 1 and 2. Axis 1 of the 

ordination explains 29.8% of variance and Axis 2 17.7%. Figures 4.21 to 4.25 report the PCA 

ordination results. Regarding site and tree parameters, only “Altitude” correlates significantly 

and positively with Axis 2. Other correlations were not significant. Pollutants CO, NO, NO2, 

NOx and O3 are positively correlated with Axis 2, but in most cases correlations are not 

significant (only for O3), while their negative relationships with Axis 1 are significant. SO2 and 

PM10 are positively correlated with Axis 1. The negative correlations with Axis 2 are not 

significant. Significant correlations of the climatic variables with both axes are: WIND and 

HUM, which correlate positively with Axis 1 and negatively with Axis 2. TEMP correlates 

negatively with Axis 1. WINDS correlate positively with Axis 1 (Table 4.15).  

 

Lichen diversity (LDV) and a numerous group of lichen species (Canoparmelia texana, 

Culbersonia nubila, Flavopunctelia flaventior, F. soredica, Heterodermia speciosa, Lepraria 

spp., and Parmotrema austrosinense are positively related to Axis 2 (Table 4.15).  
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Table 4.15. Correlation coefficients of the variables with Axis 1 and 2. Values >0.2 are 
highlighted. 

 PC 1 
(expl. var. 29.82%) 

PC 2 
(expl. var. 17.67%) 

Altitude 0.158 0.211 
Distance.emission.sources 0.011 0.088 
Tree.circumference -0.022 -0.086 
CO -0.311 0.116 
NO -0.277 0.197 
NO2 -0.281 0.190 
NOX -0.278 0.194 
PRES 0.075 -0.207 
SO2 0.299 -0.064 
TEMP -0.245 -0.031 
WIND 0.310 -0.128 
WINDS 0.185 0.099 
PM10 0.245 0.018 
O3 -0.254 0.217 
HUM 0.227 -0.210 
LDV 0.167 0.328 
Candelaria concolor 0.114 0.111 
Canoparmelia texana 0.096 0.260 
Culbersonia nubila 0.171 0.215 
Flavopunctelia flaventior 0.121 0.277 
Flavopunctelia soredica 0.163 0.290 
Heterodermia speciosa 0.111 0.264 
Hyperphyscia adglutinata 0.034 0.124 
Hyperphyscia granulata 0.002 -0.032 
Hyperphyscia pandani 0.042 0.030 
Lepraria spp. 0.171 0.220 
Parmotrema austrosinense 0.103 0.238 
Physcia tribacia -0.053 0.162 
Physcia undulata -0.007 0.062 
Pyxine cocoes 0.058 0.174 
Pyxine petricola 0.028 0.042 

 

Positive values of Axis 2 show therefore a clear increasing gradient of lichen diversity, from 

alteration to naturality classes (Figure 4.21). An increasing gradient is also present in relation 

to land use in “Parks and natural reserves” (Figure 4.22), where Acacia trees (both A. karroo 

and A. caffra) are mainly distributed (Figure 4.23). Lichen diversity is lower in “Industrial areas 

and busy roads’ and on Jacaranda trees, which are distributed in the lower parts of plots, 

having low or negative correlations with Axes 1 and 2 (Figure 4.22 and 4.23). 
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Figure 4.21. Score plot of the PCA ordination with tree substrates categorised by LDV classes 

 

 
Figure 4.22. Score plot of the PCA ordination with sampled trees categorised by land use: 

industrial areas and busy roads, parks and natural reserves 
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Figure 4.23. Score plot of the PCA ordination with tree substrates categorised by tree species 

(Acacia caffra, A. karroo and Jacaranda mimosifolia) 

 

In addition, SO2, wind, pressure and humidity are negatively correlated with Axis 2, even if 

with low correlation values (Figure 4.24). LDV and most of the lichen species such as 

Candelaria concolor, Canoparmelia texana, Culbersonia nubila, Flavopunctelia flaventior, F. 

soredica, Heterodermia speciosa, Hyperphyscia adglutinata and Lepraria spp. are distributed 

in the positive values of Axis 1, with an opposite trend with respect to the main atmospheric 

pollutants (O3, NO, NO2, NOx and CO). These are distributed in the positive values of Axis 2, 

thus showing a clear negative influence of these variables on lichen diversity (Figure 4.24). 
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Figure 4.24. Loadings plot of the PCA ordination. Vectors show the correlation of 

environmental variables with the two axes. 

 
The distribution of LDV in relation to land use and tree species is shown in Figure 4.25 below. 

Independently from the phorophyte, the lowest values were found in industrial areas and busy 

roads, and this is particularly evident for Jacaranda trees, that are mostly found under these 

conditions. The highest lichen diversity values where found in the parks and natural reserves 

where Acacia caffra and A. karroo are most frequently found. 
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Figure 4.25. Distribution of LDV values in the species substrates in relation to the two land 

use categories. Boxplot: median, interquartile range, 1.5 interquartile range, outliers. 

 

In order to explore in more detail the multivariate relationship between environmental variables 

and LDV of the tree species, and to discover any specific trends, PCA was also performed 

separately for each tree species. Figures 4.26 to 4.28 reported the PCA ordinations for 

Jacaranda trees, Figures 4.29 to 4.31 for Acacia caffra, and Figures 4.32 to 4.34 for Acacia 

karroo. 

 

A general trend of lichen diversity is evident in relation to land use, with “industrial areas and 

busy roads” showing LDV values mainly included in the alteration classes, and, on the 

contrary, “parks and natural reserves” within naturality classes (Figures 4.26 to 4.27, 4.29 to 

4.30 and 4.32 to 4.33). This trend is clearly related to the distribution of the atmospheric 

pollutants, which are negatively correlated with LDV values and with the frequency of lichen 

species (Figures 4.28, 4.31 and 4.34).  
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Figure 4.26. Jacaranda trees. Score plot of the PCA ordination with tree substrates 

categorised by LDV classes 

 

 
Figure 4.27. Jacaranda trees. Score plot of the PCA ordination with sampled trees categorised 

by land use: industrial areas and busy roads, parks and natural reserves 
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In terms of results for Jacaranda mimosifolia, pressure and altitude are negatively correlated 

with Axis 2, but positively with Axis 1, together with LDV and Candelaria concolor, 

Canoparmelia texana, Culbersonia nubila, Hyperphyscia adglutinata, Parmotrema 

austrosinense, and Physcia tribacia. Other species are negatively related to both axes. These 

are Flavopunctelia flaventior, F. soredica, Heterodermia speciosa, Hyperphyscia granulata, H. 

pandani, Lepraria spp., Physcia undulata, Pyxine cocoes and P. petricola. In contrast, the 

pollutants CO, NO, NO2 and NOx are negatively related to Axis 1 and slightly positively with 

Axis 2. PM10, Humidity and SO2 are positively related to both axes and show no positive 

correlations with lichen diversity (Figure 4.28). 

 

 
Figure 4.28. Jacaranda trees. Loadings plot of the PCA ordination. Vectors show the 

correlation of environmental variables with the two axes. 
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Figure 4.29. Acacia caffra. Score plot of the PCA ordination with tree substrates categorised 

by LDV classes 

 

 
Figure 4.30. Acacia caffra trees. Score plot of the PCA ordination with sampled trees 

categorised by land use: industrial areas and busy roads, parks and natural reserves 
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In considering the dataset of Acacia caffra, LDV and the majority of lichens are positively 

related to Axis 1 and negatively to Axis 2. These species include Canoparmelia taxana, 

Flavopunctelia flaventior, Heterodermia speciosa and Pyxine petricola. SO2, PM10, Altitude, 

Winds and a few species such as Candelaria concolor, Culbersonia nubila, Hyperphyscia 

pandani and Lepraria spp. correlate negatively with Axis 1, whereas Humidity and Pressure 

correlate positively with Axis 2. The Distance from emission sources and Temperature 

positively correlated with both Axis (Figure 4.31).  

 

 
Figure 4.31. Acacia caffra. Loadings plot of the PCA ordination. Vectors show the correlation 

of environmental variables with the two axes. 
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Figure 4.32. Acacia karroo. Score plot of the PCA ordination with tree substrates categorised 

by LDV classes 

 

 
Figure 4.33. Acacia karroo. Score plot of the PCA ordination with sampled trees categorised 

by land use: industrial areas and busy roads, parks and natural reserves 
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In considering the dataset of Acacia karroo, CO, NO, NO2 and NOx and O3 are positively 

correlated with Axis 1 while PM10 and SO2 are negatively correlated with Axis 1 and Axis 2. 

Humidity and Wind are also negatively correlated with Axis 1, but positively with Axis 2. 

Pressure and Temperature are positively correlated with Axis 2. LDV and the majority of lichen 

species such as Canoparmelia texana, Flavopunctelia flaventior and F. soredica as well as 

the Distance from Emission sources and Altitude are negatively correlated with Axis 1 and 

Axis 2. Other species, such as Pyxine cocoes, Lepraria spp., but as well as Humidity, are 

negatively correlated with Axis 2 (Figure 4.34).  

 

 
Figure 4.34. Acacia karroo. Loadings plot of the PCA ordination. Vectors show the correlation 

of environmental variables with the two axes. 

 
4.4.7 Generalised linear regression models (GLM) with interpolated 
environmental data 
Table 4.16 reports the results of the multiple linear regression models describing the effects 

of the selected environmental variables on LDV and species frequency (also see Appendix 

14). The models were significant (p<0.001) for LDV and for 10 of the 15 lichen species, thus 

confirming the relationship with some variables as already shown with MFA and PCA.  

Although the altitude range of the study area is rather small (min-max: 1233-1536 m), this 

variable is positively correlated with the frequency of Flavopunctelia flaventior (p <0.05) and 

F. soredica (p <0.001).  
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The circumference of tree trunks does not correlate significantly with lichen diversity, 

despite the high range of this variable on the sampled trees (median: 86 cm; min-max: 56-142 

cm) see appendix 14.  

 

Higher land use impact in industrial areas and at the proximity of busy roads is clearly 

negatively related to LDV and to the frequency of the following lichens: Canoparmelia texana, 

Culbersonia nubila, Flavopunctelia flaventior and F. soredica, Heterodermia speciosa, 

Lepraria spp. and Pyxine cocoes.  

 

In terms of the tree species, Acacia karroo trees show a positive relationship with lichen 

diversity and an abundance of some species, such as Culbersonia nubila, Pyxine cocoes, 

Flavopunctelia. flaventior, F. soredica, Lepraria spp. and Parmotrema austrosinense.  

 

Acacia caffra is not strongly related to the variable LDV, but it is positively related with an 

abundance of H. adglutinata and P. tribacia. On the contrary, it has a negative relationship 

with the frequency of C. nubila, F. soredica and Lepraria. Higher atmospheric concentrations 

of NOx are negatively related to LDV and the frequency of Candelaria concolor, Lepraria spp. 

and Pyxine cocoes. The frequencies of Culbersonia nubila and Lepraria spp. are positively 

and negatively correlated with atmospheric SO2 respectively. This pollutant does not show 

any significant effect on LDV. All other relationships are not significant. 
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Table 4.16. Multiple Linear Regression Models describing the effects of the environmental 
variables on LDV and species frequencies. Estimated values are reported together with 
statistically significant p values (* p<0.05; ** p<0.01; *** p<0.001). Last column shows the 
summary statistics of each model (156 df), with Multiple R2 (Mult R2), Adjusted R2 (Adj R2), 
F-statistic (on 7 and 156 df), p value. 
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model 

LDV 37.4 0.06 -44.26*** -4.12 17.61*** 0.02 -0.48* -4.91 Mult R2: 0.565; Adj R2: 0.546 
F: 29; p<0.001 

Candelaria 
concolor 

12.8 0.01 -1.39 2.52 0.82 0.02 -0.14** -1.68 Mult R2: 0.148; Adj R2: 0.109 
F: 3.854; p<0.001 

Canoparmelia 
texana 

-1.86 0.002 -2.45*** -0.67 0.43 -0.001 0.01 0.33 Mult R2: 0.264; Adj R2: 0.231 
F: 7.976; p<0.001 

Culbersonia 
nubila 

2.16 -0.004 -4.22*** -3.30*** 1.05* 0.003 0.01 1.65** Mult R2: 0.468; Adj R2: 0.444 
F: 19.63; p<0.001 

Flavopuntelia 
flaventior 

-16.6* 0.015** -2.04* -0.85 1.73** 0.008 -0.007 -0.35 Mult R2: 0.318; Adj R2: 0.287 
F: 10.38; p<0.001 

Flavopuntelia 
soredica 

-25.3* 0.03*** -6.87*** -3.81* 2.38** -0.01 -0.05 -1.00 Mult R2: 0.608; Adj R2: 0.591 
F: 34.63; p<0.001 

Heterodermia 
speciosa 

9.70 -0.001 -7.12*** -2.40 0.50 -0.01 -0.006 0.16 Mult R2: 0.439; Adj R2: 0.414 
F: 17.45; p<0.001 

Hyperphyscia 
adglutinata 

1.18 -0.002 0.65 5.79* 2.04 -0.003 0.02 1.66 Mult R2: 0.073; Adj R2: 0.0315 
F: 1.758; p>0.05 

Hyperphyscia 
granulata 

1.52 -0.004 0.11 0.14 0.28 0.02 0.005 0.42 Mult R2: 0.0395; Adj R2: -0.0036 
F: 0.916; p>0.05 

Hyperphyscia 
pandani 

-0.09 0.000 -0.025 0.025 0.004 0.000 0.000 0.021 Mult R2: 0.0464; Adj R2: 0.00358 
F: 1.084; p>0.05 

Lepraria spp. 33.7* 0.006 -13.1*** -4.94** 2.93** -0.019 -0.24*** -3.98** Mult R2: 0.650; Adj R2: 0.635 
F: 41.42; p<0.001 

Parmotrema 
austrosinense 

-5.83 0.010 -2.64 0.10 3.96** 0.02 -0.034 -0.47 Mult R2: 0.190; Adj R2: 0.154 
F: 5.225; p<0.001 

Physcia 
tribacia 

5.85 0.000 -1.70 3.49** 0.18 -0.001 0.01 -0.78 Mult R2: 0.282; Adj R2: 0.250 
F: 8.766; p<0.001 

Physcia 
undulata 

-1.18 0.000 0.08 0.32 0.04 0.004 0.005 0.12 Mult R2: 0.0236; Adj R2: -0.0202 
F: 0.539; p>0.05 

Pyxine cocoes 15.6* -0.004 -3.08** -0.16 1.30* 0.001 -0.05* -1.13 Mult R2: 0.221; Adj R2: 0.186 
F: 6.333; p<0.001 

Pyxine 
petricola 

-0.14 0.000 -0.07 -0.12 -0.04 0.000 0.002 0.07 Mult R2: 0.0112; Adj R2: -0.0332 
F: 0.252; p>0.05 
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CHAPTER 5: DISCUSSION, RECOMMENDATIONS AND 
CONCLUSIONS 

 

5.1 Discussion 

 

5.1.1 Lichen taxa on the investigated trees under different land use types 
Twenty-five taxa of epiphytic lichens were recorded during this study. Lichens were 

investigated only on three selected tree species and the trees provided comparison data for 

lichens on native and exotic phorophytes and for different land use conditions. Furthermore, 

an analysis of relationships among environmental factors, in particular land use, climate and 

pollution and lichens, was another important goal of the work. 

 

The diversity of epiphytic lichens from Pretoria is clearly considerable as observed especially 

at the more natural sites (Botanical Garden, nature reserves) and further phorophytes and 

sites still need to be investigated to assess the full diversity of epiphytic lichens in the city. 

There are only very few studies concerning the diversity of epiphytic lichens in Africa and 

Southern Africa with which to compare the diversity in Pretoria. A comparison with the study 

carried out in Namibia by Zedda et al. (2009) shows that the recorded epiphytic lichen diversity 

of Pretoria is lower as these authors reported 37 taxa. However, the observations in Namibia 

were on different tree species, on a wider area and mainly outside towns. Aptroot (2001) 

reported 27 epiphytic lichens from Gambia. Frisch et al. (2015) recorded 191 epiphytic lichen 

species from 276 trees in Uganda (Bwindi National Park), but investigated different habitats 

in other climatic conditions.  

 

Interestingly, most of the recorded species are subtropical to tropical or subtropical-/ tropical-

temperate. A few are more widely spread and are present also in the Mediterranean area. An 

initial floristic survey of the area at the beginning of the project revealed that the entire lichen 

mycota collected from all tree parts (branches, twigs, trunks) across the city does not differ so 

much in terms of number of species on the tree phorophytes (17 species on Jacaranda 

mimosifolia, 18 on Acacia caffra and 19 on A. karroo). However, the composition of lichen 

communities is different as the exotic Jacaranda hosts more widely-found and more 

disturbance-tolerant species than the two Acacias.  

 

A clear difference emerged moreover between the two identified land use types “Industrial 

areas and busy roads” and “Parks and nature reserves”. More protected sites such as Pionier 
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Museum, Rietvlei Nature Reserve and Groenkloof Nature Reserve have the highest lichen 

diversity (Maphangwa et al., 2018). Most of the rare species in this study such as Chrysothrix 

xanthina, Dirinaria applanata, Parmotrema reticulatum, Physcia poncinsii, Pyxine petricola 

and Rinodina sp. were found exclusively in protected areas. The sites with less human 

disturbance are predominantly colonised by subtropical to tropical species, such as 

Hyperphyscia granulata, H. isidiata, H. pandani, H. pruinosa, Pyxine cocoes, Physcia poncinsii 

and P. undulata.  

 

The most disturbed sites, Pretoria central and Pretoria West (Staal Road), show the lowest 

diversity as only Candelaria concolor was observed there. The protected areas are 

characterised by low traffic whereas Pretoria central and Pretoria West are characterised by 

high traffic and the presence of industrial activities. Disturbed sites host more cosmopolitan 

species such as Candelaria concolor and Hyperphyscia adglutinata, which were mostly found 

on Jacaranda, as this is the dominant tree across the city, especially along avenues with high 

car traffic, and under disturbed conditions. These lichen species prefer nutrient-enriched and 

sun exposed barks (Almborn, 1966, Killmann and Fischer, 2005, Zedda et al., 2009). They 

are usually found in areas with high man-made disturbance such as urban areas (Güvenç and 

Öztürk, 2017).  

 

Candelaria concolor appeared to be widespread in a study by Coffey and Fahrig (2012), 

assessing the effects of vehicle pollution in Canada. C. concolor flourishes under high 

nitrogen-contaminated air situations (Leith et al., 2005). Canoparmelia texana, Flavopunctelia 

flaventior, F. soredica and Heterodermia speciosa prefer sites with nitrogen deposition, but 

are sensitive to acid deposition, e.g. by SO2 (United States Forest Service, 2019). Also 

Parmotrema austrosinense and P. reticulatum prefer sites with nitrogen deposition. The latter 

is also tolerant to acid deposition (United States Forest Service, 2019). Pyxine cocoes is 

tolerant to both nitrogen and SO2 pollution (Abas and Awang, 2017; Abas et al., 2018). 

Chrysothrix xanthina prefers moderate pollution (Abas et al., 2018).  

 

The results of this study show that many of the recorded species belong to the family 

Physciaceae. In particular, the genus Hyperphyscia is very species-rich. This is in agreement 

with the findings of Zedda et al. (2009), who found that the majority of epiphytic lichens in 

Namibia also belong to this family. Several species of the Physciaceae are known from other 

regions of the world to be tolerant to nitrogen pollution, while many crustose lichens are 

relatively sensitive. 
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The findings that fruticose lichens were absent, is also in agreement with Zedda et al. (2009), 

who did not record any fruticose lichens in the Savannah biome of Namibia, probably because 

air humidity is low in savannas and/or disturbance factors, such as fire and grazing, frequent. 

Foliose lichens were much more frequently found than crustose lichens both in Pretoria and 

in Namibia. It remains unclear if the scarcity of crustose lichen is affected by human influences, 

in particular by air pollution by nitrogen compounds, or only by, for example, the dry climate. 

Certainly the checklist of South Africa (Fryday, 2015) contains numerous epiphytic crustose 

lichens, which might potentially be present in Pretoria. This aspect needs to be better 

investigated. 

 

5.1.2 The indicator value of lichen diversity  
The results of the monitoring carried out using the grid on the tree trunk of 164 trees and at 

29 sites also showed that the most frequent species are the cosmopolitans Candelaria 

concolor and Hyperphyscia adglutinata. Also common are Parmotrema austrosinense and 

Lepraria spp.  

 

Descriptive statistics, univariate analysis as well as PCA confirmed that lichen diversity on tree 

trunk differs according to area and anthropogenic activities. Sites under the category “Parks 

and nature reserves” shows also in this case significantly higher LDVs than sites under the 

land use category “Industrial areas and busy roads”. LDVs and species composition also vary 

among the photophytes. Acacia karroo and A. caffra have higher values in contrast to 

Jacaranda mimosifolia. Both are native species and more frequently found in the protected 

areas compared to Jacaranda, which is only found at disturbed sites.  

 

According to the monitoring results, some species are more frequently found on Jacaranda 

like Hyperphyscia granulata and Pyxine petricola. Other lichens are more common or 

restricted to Acacias such as Canoparmelia texana, Flavopunctelia flaventior, F. soredica, 

Heterodermia speciosa, Hyperphyscia adglutinata, Lepraria spp., Parmotrema austrosinense, 

Physcia tribacia, P. undulata and Pyxine cocoes. Between the two Acacias there are also 

some differences, Culbersonia nubila, Flavopunctelia flaventior, F. soredica, Lepraria spp., 

Parmotrema austrosinense and Pyxine cocoes are more common on A. karroo. Heterodermia 

speciosa, Hyperphyscia adglutinata, H. pandani, Physcia tribacia and P. undulata are slightly 

more frequent on A. caffra.  

 

Based on the results of the monitoring study, a naturality/alteration interpretative scale with 

five classes could be developed and this was done for the first time for an African urban 

environment. The scale was used to produce a map of naturality/alteration for the city. 
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Alteration classes have very low LDVs, such as in Mamelodi, Pretoria central business district 

and Pretoria west (Staal Road), whereas more natural and less impacted sites, like the 

Voortrekker Monument Nature Reserve, have higher levels of naturality and LDVs. Such 

scales have been developed and used for several years by different researchers worldwide to 

define the alteration degree of an environment (Giordani and Brunialti, 2015). Giordani et al. 

(2002) defined, for instance, naturality/alteration classes for the region of Liguria in Italy. These 

authors found very high alteration in areas characterised by high pollution such as urban and 

industrial districts (towns of Genova and Savona), with frequent lichen desert conditions. 

Isocrono et al. (2007) reported lichen desert in areas characterised by higher traffic and 

industries in Italy in contrast to natural areas. Frati and Brunialti (2006) found alteration classes 

near emission sources in Italy (Ancona), while naturality classes were found in areas 

characterised by less anthropogenic impacts. 

 

In other regions, like Slovakia, Svoboda et al. (2010) found higher LDV in semi natural and 

natural sites characterised by low air pollution, and lowest values in areas with high pollution 

from various sources. The naturality/alteration scale of this study differs only slightly from the 

scale developed by Loppi et al. (2002) for Toscana and Liguria in Italy, wherein LDV = 0 

represents a lichen desert condition and LDV ˃ 75 represents a natural class. In this study, 

the lichen desert class was not found.  

 

These scales can be useful to estimate the effects of air pollution on lichen diversity (Giordani 

et al., 2002), but also of the impact of land use in general in a cheap and reliable way (Asta et 

al., 2002b; Brunialti et al., 2008). They could be used in Southern Africa in areas where there 

are no monitoring stations, like in remote rural areas. The public authorities of the City of 

Tshwane and/or the governmental Department of Environmental Affairs, could apply these 

scales to extend similar monitoring to other parts of Pretoria and/or to other towns of South 

Africa. Practitioners and other stakeholders could also profit from using these scales for 

identifying areas with higher impact by land use.  

 

According to PCA (Figure 4.12), there is a significant relationship among LDV, the number of 

species found on tree trunk, and species composition in Pretoria. The most important gradient 

is related to the distance from emission source. This is in agreement with numerous studies 

carried out worldwide on epiphytic lichens, for instance Li et al. (2013) found that 

anthropogenic disturbances severely affect the diversity of epiphytes lichens in the subtropical 

forests of southwest China, Käffer et al. (2011) in Brazil, Łubek et al. (2018) in Poland, Aragón 

et al. (2010) in the Mediterranean and Hauck et al. (2012) in the Mongolian Altai. Other 

examples have been reported in Chapter Two. 
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Although the parameter “land use type” showed a strong relationship with lichen diversity, the 

tested relationships among LDVs, single species and measured ecological parameters 

(climate, pollution) were not very strong in Pretoria. This is surely due to the fact that only 

climate and pollution data from five monitoring stations were available, with many gaps in the 

dataset. The data from these stations appears not to be representative for the entire town, 

while lichen parameters (LDV, N. of species and lichen species composition) respond better 

to changing environmental conditions, as demonstrated by the significant relationship with the 

parameter “distance from emission source” which was measured within the monitoring survey 

of the present study. 

 

To fill the data gaps, an interpolation of air pollution and climate data was carried out for the 

29 lichen sampling sites and these new datasets were then correlated with lichen parameters. 

The results were, however, also in this case unsatisfactory and not realistic and reliable for all 

sites. For instance, Pretoria West - Staal Road, characterised by higher traffic and industries, 

showed lower (interpolated) values of NO, NO2 and NOx pollutants, while the Voortrekker 

Monument Nature Reserve had higher values of these pollutants, although it was 

characterised by low traffic and human impacts, and higher LDV compared to Pretoria West. 

The same trend was also observed at Rietvlei Nature Reserve that has low traffic, but here 

the same interpolated values of the same pollutants were high compared to Pretoria central 

business district, which has higher traffic and much lower LVDs (Chapter 4.2, Table 4.13).  

 

Despite the poor reliability of some of the interpolated data, the multivariate analyses and the 

generalised linear regression models (GLM) give an indication of significant relationships 

among some of the tested parameters, for instance the climatic parameters wind direction and 

speed, and also air humidity positively relate to lichen diversity.  

 

The relationship of lichen diversity to air humidity is well-known from many studies and in 

agreement, for instance, with the findings of Nimis (1986), Loppi et al. (2002), Brunialti et al. 

(2008) and Giordani and Brunialti (2015) for Italy. Concerning Southern Africa, air humidity is 

considered one of the most important ecological factors influencing lichen diversity as 

demonstrated in the studies of Zedda and Rambold (2009), Maphangwa et al. (2012a, 2014) 

and Zedda et al. (2011a) for soil and stone lichens. In particular, the predominance of green 

algal photobionts and the occurrence of foliose lichens are demonstrative of raised air humidity 

in the desert biome, where green algal lichens can utilise tremendously small amounts of water 

and water vapour for photosynthetic activity (Zedda et al., 2011b). Also in this study, only 

green algal lichens were found and these were mostly foliose.  
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Altitude, which was measured in the field during monitoring work (not interpolated), was 

positively related to the occurrence of some lichen species such as Flavopunctelia flaventior 

and F. soredica. The finding that altitude has a positive influence on the frequency of epiphytic 

lichens is in accordance with the results of numerous authors, who investigated diversity 

changes along altitudinal gradients. For instance, Güvenç and Öztürk (2017) found altitude to 

be the main factor influencing lichen distribution in Turkey. Also in Mediterranean forests, 

altitude is one of the main factors affecting lichen distribution together with management 

intensity (Aragón et al., 2010). In Kenya, Kirika et al. (2018) reported altitude as the main factor 

influencing lichen assemblage, whereas Loppi et al. (1997) reported altitude as an important 

parameter in Tuscany (Italy). According to Zedda et al. (2011b), altitude does not influence 

soil lichen diversity directly in Namibia and in the western part of South Africa, but altitude may 

have an indirect positive effect on the occurrence of dewfall events, because of lower 

temperatures during the night. Dewfall is an important water source for lichens in semi-arid to 

arid regions of the world (Maphangwa et al., 2012a). 

 

The factors most strongly related to lichen diversity and composition on the investigated trees 

and sites were, however, the “phorophyte” and “land use” type. Regarding the phorophyte, 
see what is reported on page 104. The dependence of lichen species on certain tree species 

is well documented by numerous studies carried out worldwide. This is mainly due to bark and 

crown features, as well as to ecological conditions of sites where trees grow (Cáceres et al., 

2007; Frati et al., 2008; Mežaka et al., 2012; Trüe et al., 2012; Ódor et al., 2013; Frisch et al., 

2015). The circumference of trees does not correlate significantly with lichen communities 

in the present study, despite the high range of this variable on the sampled trees.  

 

Concerning land use, the negative correlation of sites with high traffic, in the proximity of busy 

roads and located in industrial areas with lichen parameters is clear, and confirmed by the 

different elaborations. The finding that epiphytic lichen diversity is higher in protected areas 

than in more disturbed urban areas is in agreement with the results of several authors, among 

others, Nimis et al. (2002), Bergamini et al. (2005), Stofer et al. (2006) and Aragón et al. 

(2010). The last authors found that when land use (forestry practice, agricultural and livestock 

use) increases, lichen species richness and the richness of functional groups tend to decrease 

in eight European countries (Switzerland, Ireland, United Kingdom, Finland, France, Portugal, 

Spain and Hungary) and in six different biogeographic zones (Bergamini et al., 2005; Aragón 

et al., 2010). Hauck et al. (2012) reported that epiphytic lichen diversity is affected by different 

land use activities in Asia, such as grazing and fuelwood collection (Mongolian Altai). In the 

Mediterranean area and in the USA, lichen diversity is also influenced by different land uses 

such as traffic and air quality (Washburn and Culley, 2006; Llop et al., 2012; Giordani and 
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Brunialti, 2015). McCune et al. (1997) also reported a higher diversity of lichens in remote 

areas and lower diversity in urban and industrial areas in the USA. Svoboda et al. (2010) 

reported similar results for Slovakia. According to Ahn et al. (2011), the diversity of lichens 

increases with increasing distance from the city centre in Seoul (Korea). In contrast with the 

findings of this study and most findings worldwide, Perlmutter (2010) did not find any 

correlation between LDV and traffic in North Carolina in the USA.  

 
The correlations with interpolated data show that the pollutants NO, NO2, NOx, CO and O3 are 

negatively related to lichen diversity and to a group of species. The finding that N-compounds 

affect lichen diversity in this study is in agreement with the works of Giordani et al. (2002) and 

Giordani et al. (2013) carried out in Italy. NO2 from traffic emissions affects lichen diversity in 

Spain (Fuentes and Rowe, 1998; Purvis et al., 2001) and in Italy (Lorenzini et al., 2003). 

Hawksworth and Rose (1970), Davies et al. (2007) and Larsen et al. (2007) reported that SO2 

and NOx limit lichen diversity in England and Wales and in London, a large amounts of NOx 

are found next to busy roads. Parmelia saxatilis (L.) Ach. is prevented from growing next to 

busy roads in London because of NOx concentrations (Batty et al., 2003). NOx is also reported 

to injure the lichens Parmelia sulcata Taylor and Hypogymnia physodes (L.) Nyl. in London 

(Purvis et al., 2003). Ahn et al. (2011) reported NOx as the main pollutants affecting lichen 

diversity in Seoul in Korea. NOx is one of the main pollutants in most urban areas today 

worldwide (Davies et al., 2007; Ahn et al., 2011). Heterodermia speciosa was used as an  

indicator of N-pollution in Sri Lanka and the highest pollution was found in the congested urban 

area in Colombo with industries (Gunathilaka et al., 2011). The lowest pollution was reported 

in Kurunegala city, which is less congested and has few industries (Gunathilaka et al., 2011).  

 

The results of the present work in relation to pollution are in accordance with studies carried 

out by Liebenberg-Enslin and Petzer (2005) in the City of Tshwane. These authors reported 

that N-pollutants, which emanate from tyre burning, domestic burning and industries, are a 

priority, and that Pretoria West is the most affected area. Also in the present study, the lowest 

lichen diversity was observed in these areas, which have high concentrations of mercury as 

indicated by Trüe et al. (2012), who analysed thalli of Parmotrema austrosinense. Mercury 

concentrations were in contrast lower in Hatfield, which is a more natural area. The highest 

annual concentration of SO2 was in Pretoria West (Wright et al., 2011), normally found in 

winter, where coal domestic burning is high. This is also in agreement with the observations 

of Forbes et al. (2009) and Olowoyo et al. (2010, 2011), who observed that sites situated away 

from Pretoria central such as Pionier Museum are characterised by low pollution compared to 

Pretoria central. 
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The coal-fired power stations of the energy sector are the biggest emission sources of NOx 

and SO2 in South Africa (Wright et al., 2011; Pretorius et al., 2015; Girmay and Chikobvu, 

2017; Muyemeki et al., 2017). The power stations that are mostly owned by Eskom contribute 

enormously to energy supply in South Africa (Girmay and Chikobvu, 2017; Muyemeki et al., 

2017). Nitrogen dioxide concentration in South Africa is a big concern, especially in 

Mpumalanga Province, which has many coal-fired power stations (Collett et al., 2010). Coal 

and fuel burning in South African townships such as Garankuwa, Mamelodi and Soshanguve 

are a main source of pollution as well (Wright et al., 2011). NOx concentrations are higher in 

winter months (Broccardo et al., 2008; Collett et al., 2010; Naidoo et al., 2014). Pretorius et 

al. (2015) also reported vehicle emissions and industries as other sources of pollution in South 

Africa, where between 2006 and 2012, NOX emission increased by 10% and by 2030 is 

projected to increase by 40%. 

 

In this study, only the frequency of Culbersonia nubila was positively related to SO2, while SO2 

was negatively related to Lepraria spp. There was no other significant relationship between 

SO2 and further lichen species. SO2 is also often a main cause of lichen diversity decline in 

both urban and industrial areas, although pollution by SO2 has become less severe during the 

last decades in many countries (Gilbert, 1970; Nimis, 1986; Nimis and Purvis, 2002; Nimis et 

al., 1996; Nimis et al., 2002; Giordani, 2007; Brunialti et al., 2008; Svoboda et al., 2010; Tiwari, 

2008; Giordani and Brunialti, 2015). 

 

Domestic coal burning, power stations, traffic emissions and industries are some of the main 

causes of SO2 pollution in South Africa (Collett et al., 2010; Girmay and Chikobvu, 2017; 

Muyemeki et al., 2017; Sangeetha and Sivakumar, 2019). SO2 is of great concern in South 

Africa as it poses threats to different organisms (Muyemeki et al., 2017). In Pretoria West, the 

main sources of pollution are industrial and residential areas (Sangeetha and Sivakumar, 

2019) and SO2 pollution is high next to power stations (Muyemeki et al., 2017). The SO2 

emission is projected to increase in South Africa, as coal is the main source of energy supply 

(Henneman et al., 2016); for this reason the monitoring of environmental impacts is very 

important. Pretorius et al. (2015) projected SO2 emissions to increase by 38% under worst-

case scenarios by the year 2030. The relationship between SO2 and lichens therefore needs 

to be better analysed in future studies. 

 

5.2 Contribution of the study  
This study adds to new knowledge on epiphytic lichens in Pretoria and in South Africa. Lichen 

descriptions and information on species distribution and frequency in Pretoria, South Africa, 

Africa and worldwide, as well as information on ecology of each species are provided in this 
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work and in the published papers (see Appendix 15) (Maphangwa et al., 2018). This study 

has developed a lichen identification key that can be used in Pretoria and in other cities of 

South Africa. This will encourage more lichen studies in urban areas of South Africa, which 

still remain unexplored (Crous et al., 2006; Maphangwa et al., 2012b) as many people in South 

Africa are not familiar with lichens and find their identification difficult (Mukherjee et al., 2010). 

Identification keys are missing for many areas of South Africa and taxonomic lichen groups. 

 

This is the first study investigating epiphytic lichens and their importance as bioindicators in 

urban environments of Africa, and tests a methodology to monitor environmental impact and 

air quality using lichens, which was developed for other regions of the world. Relationships 

among lichen species and lichen diversity with the phorophyte type, the land use type and 

some climatic and pollution parameters could be demonstrated. This study also developed a 

naturality/alteration interpretative scale, which can be used to monitor environmental alteration 

in Pretoria and similar areas in South Africa. The use of such scales is a cheaper way of 

monitoring effects of land use and estimating air quality (Rindita et al., 2015) and could be 

applied all over South Africa.  

 

Three more papers will be published soon from this study (see Appendix 16) and results have 

been presented at an international conference (see Appendix 17). The results will also be 

presented at an international conference in 2020 (see Appendix 17).  

 

The identified material is available for future studies at SANBI (National Herbarium) and 

UNISA Horticulture Centre where the identified specimens will be stored. This contributes to 

the availability of identified specimens for further lichenological surveys in the country. 

 

This study also revealed that the phylogenetic position of Culbersonia is in the Caliciaceae (as 

per paper published from this study in the Appendix, Aptroot et al., 2019). This has never been 

studied before, according to Lücking et al. (2016) and Aptroot et al. (2019).  

 

5.3 Conclusion and recommendations  
In conclusion, human disturbances and land-use in Pretoria appear to have a negative impact 

on lichen diversity, reducing species number and changing species composition, and 

influencing morphological and biogeographical groups. There is good evidence from the 

present study that epiphytic lichens are, in South Africa, suitable indicators of given climatic 

and air quality conditions as well as indicators of land use type, even if species composition is 

different in comparison to European towns.  
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The European standardised monitoring method for mapping lichen diversity as an indicator of 

environmental stress (Asta et al., 2002b; VDI-Richtlinien, 2005; EN 16413, 2014; Giordani and 

Brunialti, 2015) needs, however, to be adapted to South African conditions. The methodology 

can be more easily applied in South Africa, by adopting a stratified random sampling and a 

more flexible spatial selection of suitable trees. It would be interesting to extend such studies 

to more sites in Pretoria, also assessing the lichen diversity on other tree species. These sites 

should include more mountainous and protected areas such as nature reserves that are 

situated far from industries and pollution sources. Other cities could furthermore be assessed 

for comparison, for instance Johannesburg, which has similar climatic and altitudinal 

conditions as Pretoria. Future studies should use more sampling units so that more suitable 

trees can be found.  

 

In future studies, the bark properties of trees need to be investigated, so that trees with similar 

bark properties such as structure, pH and nutrient content can be identified and used for 

monitoring in the future. In order to better define the indicator value of given lichen species, 

the different pollution and climate parameters should be measured at more sites and 

relationships further tested.  

 

More training, identification facilities and financial support are needed in South Africa to 

facilitate further studies on the rich lichen diversity and for building new generations of lichen 

experts, who are presently missing in the country. 
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Appendix 1A: City of Tshwane  
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Appendix 1B: City of Tshwane  
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Appendix 2: Pionier Museum  
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Appendix 3: Voortrekker Monument Nature Reserve 
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Appendix 4: Ethical clearance 

 



150 
 

 

 

 



151 
 

Appendix 5: Tree with termite mounds 
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Appendix 6: Jacaranda tree with advertisement notice 
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Appendix 7: Protocol for lichen monitoring 
 

Protocol for lichen monitoring from the “European guideline for mapping lichen diversity as an 

indicator of environmental stress” (Asta et al. 2002) that this study tested in Pretoria. Also the 

European standard protocol EN 16413 (2014) was consulted for applying the methodology in 

South Africa. 

 

The European procedure for monitoring environmental alteration using lichens is universally 

applicable, but interpretation of the results has to be adapted to the regional characteristics of 

the lichen flora and to the prevalent types of environmental stress. 

 

The sampling design defines rules to objectively select monitoring sites (sampling units). If 

the source of perturbation is not distinct in the monitored area, the sampling units are located 

at the intersections of the gridlines within a grid covering the areas (case A). In case of distinct 

perturbation, i.e. an emission source (case B), they are located around the emission source. 

Sampling density (= number of sampling units) can be variable for different geographical 

scales and type of study. This is calculated with a specific formula according to grid size. 

 
The size of each sampling unit of a grid can vary from 0.25 km x 0.25 km to 12 km x 12 km, 

considering the presence of perturbation, the type of study and the geographical scale.  

 

Sampling tactic also defines the quantity of trees to be sampled and their selection within the 

sampling units. The quantity of trees per sampling unit relies on its size, on the within-unit data 

variability and on the accessibility of appropriate trees in small areas. The recommended 

minimum number of trees to be investigated for sampling units of 0.25 km x 0.25 km is 3-4, in 

larger units of 1 km x 1 km, 6-12 trees should be investigated (see also EN 16413, 2014). If 

the minimal number of trees is not available, the sampling unit has to be shifted according to 
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given rules. When many suitable trees occur in a sampling unit, trees for monitoring are 

selected according to a statistically valid method. 

 

The sampling procedure indicates the investigation of free-standing trees, whose trunks 

must have an inclination lower than 10° from the vertical position, must receive direct solar 

radiation for at least part of the day and have a trunk circumference not less than 40 cm and 

not larger than 150 cm. Trees of the same size must be used within a survey for monitoring. 

Injured trees are not appropriate for survey purposes and they should not be considered for 

monitoring work. Trees evidently affected by actions such as liming, removal of the bark or of 

the lichens by humans or by grazing animals are additionally not appropriate and excluded 

from survey. If it is not possible to place at least three ladders of the grid onto one tree, the 

tree is not surveyed. Parts of the tree with greater than 25% cover of bryophytes are not used. 

A sampling grid composed of four ladders each with five quadrats sized 10 cm × 10 cm is 

appended vertically to the trunk so that the lower edge of the ladder is 1 m above the highest 

point of the ground. The four ladders of the sampling grid are placed to correspond to the four 

aspects (NSEW) of the tree trunk.  

This sampling procedure in Pretoria is also explained in Chapter 3, section 3.8. 

 

Data analysis consists in the calculating of the Lichen Diversity Values (LDV). The LDV 

of a sample unit is a measurable estimator of the environmental conditions in that unit. Since 

considerable variances in lichen development might be normal on various sides of the trunks, 

the frequencies must be summed independently for every aspect. The initial phase in 

calculating the LDV of a sampling unit (j) is to sum the frequencies of all lichen species found 

on selected tree (i) at different orientations (N, S, W and E). For each tree, there are four Sums 

of Frequencies (tree i: SFiN, SFiE, SFiS, SFiW). After that, the arithmetic mean of the Sums of 

Frequencies (MSF) for sampling unit j are calculated using the following formula for each 

aspect: 

 
Wherein:  

• MSF: Mean of the sums of frequencies of all the sampled trees of unit j 

• SF: Sum of frequencies of all lichen species found at one aspect of tree i 

• N, E, S, W: north, east, south, west 

• n: number of trees sampled in unit j 

 

The Lichen Diversity Value of a sampling unit j (LDVj) is the sum of the MSFs of each aspect 
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Example of calculating LDV 

 

 

Lichen Diversity Classes (LDC) are then defined by grouping LDV into classes. Standard 

errors of LDV can help to define the size of classes. If these are large, the classes will be 

broad. If standard errors are small, a finer distinction of lichen diversity values will be possible 

(smaller classes). 
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For data Interpretation LDV classes are assigned to an interpretation scale to detect 

geographic patterns of LDV and relate these to environmental alteration (deviation from 

background conditions). In the European guideline, lichen diversity is defined as “very high - 

high - moderate - low - very low“. Examples for the scale of different geographical areas are 

reported as follow. 

The LDV classes are assigned to different colours in the interpretation scale. 

 

 

 

If an interpretation scale is not available, interpretations can be based on the differences 

between maximum and minimum LDV values within the survey area.  

 

Further examples from other publications are reported below. 

 

Naturality/alteration scale obtained from Loppi et al. (2002) for Tyrrhenian Italy 

 

LB values % deviation from 
normal conditions 

Interpretation 

0 
1-25 
25-50 
50-75 

> 75 

100 
75-99 
50-75 
25-50 
0-25 

       Lichen desert 
       Alteration 

Semi-alteration 
Semi-naturality 
Naturality 
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Naturality/alteration scale obtained by Frati and Brunialti (2006) for the town Ancona in Italy. 

 

% Deviation from 
normal conditions 

 
Classes 

 
LB 

 
LDV 

0-25 
26-50 

1. Naturality 
2. Semi-naturality 

>70 
41-70 

>115 
76-115 

51-75 3. Semi-alteration 21-40 41-75 
76-99 4. Alteration 1-20 1-40 
100 5. Lichen desert 0 0 
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Appendix 8: Jacaranda trees 
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Appendix number 9A: TLC plate run with Solvent A (toluene-dioxan-acetic 
acid) 
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Appendix number 9B: TLC plate run with Solvent B (hexane-diethyl ether-
formic acid) 
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Appendix number 9C: TLC plate run with Solvent C (toluene-acetic acid) 
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Appendix 10: Survey form 
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Appendix 11A: Pictures of lichens  

 
A. Candelaria concolor, B. Parmotrema austrosinense, C. Flavopunctelia flaventior,  

D. F. soredica, E. Heterodermia speciosa and F. Hyperphyscia adglutinata 
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Appendix 11B: Pictures of lichens  

 
A. Pyxine cocoes, B. Lepraria spp., C. Canoparmelia texana, D. Culbersonia nubila,  

E. Hyperphyscia pandani and F. Physcia tribacia 
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Appendix 11C: Pictures of lichens  

 

A. Amandinea natalensis, B. Chrysothrix xanthina, C. Dirinaria applanata, D. Hyperphyscia 

granulata, E. Hyperphyscia pruinosa and F. Hyperphyscia isidiata (H. isidiata picture 

obtained from Nimis and Martellos, 2017: http://dryades.units.it/italic, CC BY-SA4.0) 
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Appendix 11D: Pictures of lichens 

 

A. Physcia biziana, B. Physcia erumpens, C. Physcia poncinsii, D. Physcia undulata,  

E. Parmotrema reticulatum, F. Pyxine petricola and G. Rinodina ficta. Picture D, E, F and G 

are from Nimis and Martellos, 2017: http://dryades.units.it/italic, CC BY-SA4.0 
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Appendix 12: TLC Retention factors (Rf) and identities of detected secondary 
metabolites 

 TLC - Rf (retention factor) Comments 

Secondary 
Compound 

 

Solvent A Solvent A Solvent A  

atranorin 
 

75 73 79  

divaricatic acid 
 

39 68 51  

lecanoric acid 
 

28 44 22  

lichexanthone 
 

72 66 75  

perlatolic acid 
 

44 75 54  

salazinic acid 
 

10 7 4  

terpenoids 
 

   “A pool of 
different 
compounds with 
different Rf not 
identifiable by 
TLC”. 

usnic acid 
 

70 66 71  

zeorin 
 

52 42 43  

unidentified 
traces 

   Obtained from 
Lepraria spp. 
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Appendix 13: Published paper 
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Appendix 14: Generalised linear regression models (GLM) with interpolated 
environmental data 
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Appendix 15: Published paper 
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Appendix 16: Papers to be published  
 

1. Most common epiphytic lichens in Pretoria: description and identification key. Bothalia 

Journal 

2. Feasibility study for the application of European guidelines for mapping lichen diversity 

as environmental indicator in Pretoria (Republic of South Africa). Journal of 

Environmental Monitoring and Assessment  

3. Modelling lichen diversity in relation to environmental predictors. The case study of the 

city of Pretoria (South Africa). Ecological Indicators Journal 
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Appendix 17: Conference attendance 
 

1. XXXII Congress of the Italian Lichen Society (Bologna, Italy from 18th - 20th 

September 2019).  
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Abstract A 
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Abstract B 

 
 

 

2. IX International Lichenological Symposium (IAL9), in Bonito, Mato Grosso do Sul, 
Brazil from 2 - 7 August 2020. 
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