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Abstract

This thesis aims to develop a domain-independent system for repairing faulty

Datalog-like theories by combining three existing techniques: abduction, belief

revision and conceptual change. Accordingly, the proposed system is named the ABC

repair system (ABC). Given an observed assertion and a current theory, abduction

adds axioms, or deletes preconditions, which explain that observation by making

the corresponding assertion derivable from the expanded theory. Belief revision

incorporates a new piece of information which conflicts with the input theory by

deleting old axioms. Conceptual change uses the reformation algorithm for blocking

unwanted proofs or unblocking wanted proofs. The former two techniques change

an axiom as a whole, while reformation changes the language in which the theory is

written. These three techniques are complementary. But they have not previously been

combined into one system. We are working on aligning these three techniques in ABC,

which is capable of repairing logical theories with better result than each individual

technique alone. Datalog is used as the underlying logic of theories in this thesis, but

the proposed system has the potential to be adapted to theories in other logics.
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Chapter 1

Introduction

1.1 Motivation and Hypothesis

Knowledge can be represented as logical theories, which play an important role

in many AI tasks, e.g., question answering, planning, learning, reasoning and so

on (Barr and Feigenbaum, 2014). However, logical theories can become faulty

when incorporating new information, or when they are used in another system with

a different representation, or even born to be faulty due to the mistakes of their

developers. These faults are usually refer to inconsistency, incorrect and so on. In this

thesis, the faults will be defined as the theory’s insufficiency and the incompatibility in

terms of describing the users’ observations of the real world.

An example of a faulty theory is given in Example 1.1.1 below. It has four axioms

saying that German is part of Europe, all European swans are white, and the swan

named Bruce is German. One theorem is that Bruce is white. Imagine the user observes

the fact that Bruce is black. In this scenario, the theory is insufficient to conclude that

Bruce is black and incompatible with saying that Bruce is white. Thus it needs to be

repaired.

Example 1.1.1. Swan Theory.

German(x) Ô⇒ European(x).

European(x)∧Swan(x) Ô⇒ White(x).

Ô⇒ German(Bruce).

Ô⇒ Swan(Bruce).

The issue is how to repair a faulty theory. When comparing automatic repair

1



2 Chapter 1. Introduction

techniques, domain experts are still the most reliable authority to do the job. This

is because the techniques of theory repair usually overproduce and are not able to

generate desired repairs in various forms as a human can. For example, abduction (Cox

and Pietrzykowski, 1986) and belief revision (Gärdenfors, 2003) add or delete axioms

but are not be able to modify the signature of the theory, while conceptual change via

the more recent approach of reformation (Bundy and Mitrovic, 2016) operates on the

signature but not axioms1. On the other hand, repair techniques usually require varying

levels of human intervention from both domain experts and ontology engineers (Flouris

et al., 2006).

However, even human work is not perfect. The domain experts may make mistakes

or fail in repairing a faulty theory when the search space is too large to deal with for

a human. Additionally, human resource and labour are limited so that it is hard and

expensive to find experts covering all jobs. Therefore, the automation of the repair

process is vital.

The first step of narrowing the gap between an automatic repair technique and the

domain experts is that the former should be able to generate as many kinds of repairs

as the latter do. This task includes developing novel repair operations and combining

existing ones.

The task of automatically producing a wider range of repairs is the aim of

this project. Among the existing repair techniques, abduction, belief revision and

conceptual change via reformation are complementary: abduction adds new axioms,

belief revision deletes conflicting axioms, while reformation changes the language of

the theory. In this thesis, these three techniques are combined in one repair system,

named the ABC Repair System (ABC), so it is capable of producing best repairs based

on the benchmark of a logical theory’s correctness, called the preferred structure,

which describes users’ observations, formally defined by Definition 4.2.3.

Best repairs are the sets of necessary repair operations for producing theories that

are not only fault-free w.r.t. the benchmark, but also follow certain commonsense

meanings of the predicates and constants in the theory. The repairs which cannot

be produced by any of the three repair technique individually but can by their

combinations are called the hybrid. The hybrid repairs tend to be better than

non-hybrid ones in terms of embracing commonsense meanings, which can be seen

from #H column in Table 8.2 in the evaluation chapter on page 167, where the most

of gold standards of best repaired theories contain hybrid repairs. Imagine that the

1These repair techniques will be introduced in details in the rest of this thesis.
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theory in Example 1.1.1 is faulty because that Bruce is a Germany resident while

only European variety swans are white. In this scenario, best repairs that can fully

represent that reason are hybrids, e.g., the one shown in Example 1.1.2, is the hybrid

of reformation, which increases the arity of European and German, and abduction,

which adds axiom Black(Bruce).

For comparison, the original paper of Example 1.1.1 is (Gärdenfors, 1992), where

their best repairs are deleting one of the original axioms. Then none of their repairs

correctly describes the above scenario.

Example 1.1.2. Swan Theory.

German(x, y) Ô⇒ European(x, y).

European(x, Variety)∧Swan(x) Ô⇒ White(x).

Ô⇒ German(Bruce, Resident).

Ô⇒ Swan(Bruce).

Ô⇒ Black(Bruce).

In principle, ABC can be used in any logic, because all of its three repair techniques

have been applied to other logics, e.g., reformation has been applied to FOL (Bundy

and Mitrovic, 2016). In this project, Datalog (Ceri et al., 1989) is chosen for

the sweet-point between expressibility and feasibility2. Accordingly, the hypothesis

driving this project is:

Hypothesis: by combining abduction, belief revision and conceptual change via

reformation, ABC is capable of repairing Datalog theories with the best results

within the scope of the repair operations based on all the individual techniques.

A fully repaired theory will be fault-free by respecting its preferred structure.

And, in addition, a fully repaired theory is one of the best results if it is produced

with non-redundant repair operations and embraces commonsense meanings. The

satisfaction of preferred structure and the selection of the equally good repairs

which solve the most faults with fewest operations are objective. Still, to go

further, the heuristic measure of human judgement can check which repairs embrace

commonsense meanings. Just like in chess, a move is objective good if it follows rules

and leads to a win, but subjectively, a chess expert can judge whether a move is smart

or not. Main challenges of this project include the conflicts between three candidate

2More details are discussed at the end of §3.1
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techniques and the over-production of repairs, which are discussed more detailed in

§2.3.5.

1.2 Organisation of Thesis

This thesis has nine chapters. The remaining chapters are briefly introduced here.

Chapter 2 is the literature survey where the state of the art w.r.t. our

research is discussed in terms of automated reasoning; typical logics; theory repair

techniques including abduction, belief revision, conceptual change and inductive logic

programming; Max-Sat which provides a strategy to reduce the search space of the

repair generation and machine learning which is a technique that some theory repair

algorithms are based on. In this thesis, Max-Sat is not employed as our sub-optimal

pruning algorithm but a non-SAT-based version.

Chapter 3 is the background of this project which introduces the prior work based

on which our work is built, including: Datalog which is the logic used in this project;

Herbrand structure, the foundation of the benchmark of the correctness of a theory; the

selected literal resolution implemented as the automated theorem prover for Datalog;

repair techniques to combine which are abduction, belief revision, conceptual change,

and epistemic entrenchment, which can refine repairs.

Chapter 4 describes our original work which defines the faults to repair; discusses

the fault detection; provides the postulates for guiding the design of repair process

and analyses the candidate repair techniques. These analyses constitute the theoretical

basis of the repair algorithm introduced in Chapter 5.

Chapter 5 introduces the algorithm for generating repair plans w.r.t. a fault in

ABC, which is the key work in this thesis. The algorithm has two components: the

repair plans generated based on a targeted resolution step and the analogical abduction

based on an existing rule.

Chapter 6 is the original work which refines ABC’s repair process by introducing

the unique name assumption with exceptions (UNAE) to simplify the representation of

the equalities and the inequalities; an algorithm to grade preference entrenchment of an

axiom, a precondition in a rule, and a signature element (a predicate name and each of

its arguments); the computation of maximal sets of commutative repair plans to reduce

the search space of fault-free theories; the sub-optimal pruning based on estimated

cost score to get rid of bad search branches of repairs, and a set of specifications and

heuristics to assist the repair process.
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Chapter 7 introduces the implementation of ABC in Prolog, where UNAE is

built based on equivalence classes together with inference rules for equalities and

inequalities; the representation of a proof (or the evidence of a partial proof) in ABC

is built so that the original axiom which introduces a predicate name or a constant can

be found by tracing back that proof. In the end, the repair generation algorithm is

summarised based on that represented proof and evidence.

Chapter 8 evaluates the hypothesis. Seven test plans are performed to test the

features of ABC. These evaluation results are analysed which shows the advantages

and some limitations of our work.

Chapter 9 summarises our work by outlining the original work and the limitations

of ABC followed by the suggestions for future work. In addition, some possible

applications are discussed.

1.3 Contributions

The contributions of the original work involved in this thesis are summarised briefly.

• A repair system is established, which blocks unwanted proofs and builds wanted

proofs by combining abduction, belief revision and conceptual change via

reformation.

• Variants of abduction and belief revision have been developed. The former

deletes a precondition from a rule to unblock a proof for a previously unprovable

goal while the latter adds a new precondition to a rule to block an unwanted

proof.

• An algorithm of analogical abduction has been established based on reasoning

with a goal and the most relevant rule for proving that goal. The algorithm will

retain as many existing preconditions as possible by only deleting unprovable

ones. By combining with variant belief revision, new preconditions will be

added if the produced rule is involved in unwanted proofs. As a result, the

analogised rule unblocks a proof of the goal while not being involved in any

unwanted proofs.

• Reformation has been supplemented with trace-back so that when the fault

is caused by the signature element contained an unwanted precondition, the
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original axiom where that precondition comes can be traced back and then the

repair can be generated to correct that element.

• Based on the common requirement of blocking proofs or unblocking proofs, a

framework has been established which produces fault-free theories w.r.t. the

preferred structure when it terminates by combining all candidates of repair

techniques including abduction, belief revision and conceptual change via

reformation.

• Sub-optimal pruning based on SL-Resolution has been developed to reduce the

search space of repair generation.

• The unique name assumption with exceptions (UNAE) has been developed to

simplify the representation of the equalities and the inequalities. Similar to

the original UNA, inequalities do not need to be written explicitly in UNAE.

Meanwhile, equalities are allowed in UNAE as exceptions.

• Based on the preferred structure, algorithms for scoring the entrenchment of

axioms, preconditions in a rule, and signature elements including predicate

name and arguments, have been developed. The entrenchment of axioms and

preconditions reduce the search space of the fault-free theories, and the one for

signature ranks the final fault-free theories.

• Some optional heuristics are provided to the user to add domain knowledge to

the repair system. Consequently, repair operations on what is entrenched (and

therefore should not be changed) can be avoided. These heuristics are domain

independent, but their choices rely on the user’s domain knowledge. They are

optional because they only reduce the number of bad repairs but not the best

ones.

• Evaluation has been done by employing faulty theories from relevant literature,

based on which, the performance of ABC is evaluated from the perspectives

of its ability to generate hybrid repairs, the quality of its output, the effects of

sub-optimal pruning and optional heuristics, the influence of preferred structures

that are consistent but in different sizes, the informational loss and its running

time.

Together, these innovations allow the ABC system to find fault-free theories

automatically and efficiently with belief revision, abduction, conceptual change, or
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hybrid repairs if they exist.

1.4 Publications

Some of the work in this thesis has previously been published, summarised as below.

1. Li, X., Bundy, A. and Smaill, A., 2018. ABC Repair System for Datalog-like

Theories. In KEOD (pp. 333-340).

2. Urbonas, M., Bundy, A., Casanova, J. and Li, X., 2020, December. The Use

of Max-Sat for Optimal Choice of Automated Theory Repairs. In International

Conference on Innovative Techniques and Applications of Artificial Intelligence

(pp. 49-63). Springer, Cham.

3. Bundy, A., Philalithis, E., and Li, X. (2020). Modelling virtual bargaining

using logical representation change. In Machine Intelligence 21 workshop (pp.

1135–1149).

The first paper contains content from Chapter 4 and §5.1. The second paper is built

based on an earlier version of ABC which only contains content from Chapter 4 and 5,

where I am a co-author due to my contribution of providing the implementation of that

ABC. My work in the last paper is about the application of ABC to the theories which

model virtual bargaining games.

The algorithm of the variant belief revision and abduction, the analogical abduction

and the whole Chapter 6 have not been published yet. They are currently being written

up in a comprehensive journal paper.

The system code and the evaluation data are available at https://github.com/

XuerLi/ABC_Datalog.

https://github.com/XuerLi/ABC_Datalog
https://github.com/XuerLi/ABC_Datalog




Chapter 2

Literature Survey

This chapter describes relevant literature to this project including automated reasoning

(AR) in §2.1; typical logics in §2.2; theory repair techniques including abduction,

belief revision, conceptual change, inductive logic programming, and a sub-optimal

pruning method based on Max-Sat in §2.3, followed by applications of theory repair

in Knowledge Graph (KG)s and programme debugging in §2.4. Basic ideas about

machine learning and its differences from automated reasoning are discussed in §2.5.

In the end, §2.6 summarises this chapter.

2.1 Automated Reasoning

Reasoning is one of the core cognitive capabilities of human beings. Before making

a decision, we (ideally) evaluate the consequences of each option based on existing

knowledge. For example, we select the best means of transport by considering

their features, including efficiency, ticket price, traffic situation and so forth. These

problems and information about the real world can be represented in a way that

allows computers to utilise them. Then the software can reason automatically based

on the logical theories, a set of inference rules and logics (such as first-order logic,

non-monotonic logic and so on) (Wos et al., 1984). AR covers a broad range of

applications including proving mathematical theorems (Paulson, 1990), developing

reliable software (Benavides et al., 2005), robot planning (Zhang et al., 2014), query

answering (Nuamah and Bundy, 2018) and so forth.

AR performs logical reasoning by being interactive or totally automated. By

employing automated manipulations, e.g., inference rules, AR does its job based on

logical theories which represents theorems in a formal language.

9
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There are several limitations which make AR semi-automatic in real tasks. For

example, there can be infinite branching, as with finding lemmas for inductive proofs;

the logic it works on can be undecidable; the theorem prover can be incomplete which

cannot find all existing proofs, due to time, space limits; or the input theory being not

adequate to convey all necessary information, e.g., an input theory of incomplete flight

information for a task of finding the best flight for the user.

2.2 Typical Logics

Logic plays an important role in both knowledge representation and reasoning

including first-order logic (its decidable fragment: Datalog and description logic),

higher-order logic (especially second-order logic) and non-monotonic logic. Those

typical logics are briefly introduced in this section.

2.2.1 First-Order Logic (FOL)

First-order logic is also known as predicate logic, whose subsets include propositional

logic, Datalog and most description logics as special cases (Van Harmelen et al., 2008).

The syntax of FOL will be introduced by listing the key components briefly, after

which, the semantic interpretation of a FOL signature will be given.

The primitives of FOL include the following members (Smullyan, 1995), among

which some complicated ones are giving by BNF expressions.

Variables: symbols e.g., X, Y1.

Quantifiers: the universal and the existential quantifiers are ∀ and ∃ respectively. A

variable is free if it is not in any scope of ∀ or ∃, otherwise, it is a bound variable.

Logical connectives: ¬ for not, ∧ for and, ∨ for or, Ô⇒ for implies, ⇐⇒ for if and

only if.

Equality symbols: equality and inequality are denoted as = and ≠ respectively.

A signature in first-order logic contains the following elements.

Function symbols: a function symbols maps individuals to individuals, whose arity

is a non-negative integer.
1To be consistent with Prolog, variables in this thesis will start with uppercase while constants,

functions and predicates with lowercase.
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Predicate symbols: a predicate symbols maps individuals to truth values: true and

false, whose arity is a non-negative integer.

Constant symbols: a constant symbols stands for an individual. It can be a function

or a predicate of zero arity.

The components of a theory in FOL include terms, propositions, literals, formula,

sentences and axioms. In FOL, a proposition is an atomic formula.

Term: a term is a variable, a constant or an n-place function, e.g., f (t1,t2, ...tn) where

f is a function symbol and ti, 1 ≥ i ≥ n are other terms. The BNF expression of a

term is:

Term ∶∶=ConstantSymbol∣Variable∣ f unctionSymbol(Term1, Term2, ..., Termn)

Proposition: if p is a predicate symbol, and ti, 1 ≥ i ≥ n is a term, then p(t1,t2, ...tn) is

a proposition.

Literal: a literal is either a positive proposition, e.g., +p(t1,t2, ...tn) or a negative

proposition, which is a negated proposition, e.g., ¬p(t1,t2, ...tn).

Ground proposition/literal: a proposition/literal is ground if it does not contain any

free variable.

Formula: a formula is constituted by propositions connected with logical connectives

and/or quantifiers. Equation 2.1 is the BNF expression of a formula where C
is one of the logical connectives includes ¬, ∧, ∨, Ô⇒ , ⇐⇒ and QV are

quantifier variables, e.g., ∀X , ∃Z. A formula is also called well-formed formula

(WFF).

Formula ∶∶=Proposition∣¬Proposition∣ (2.1)

Proposition C Proposition∣QV Proposition

Sentence: if there are no free variables in a formula, then it is a sentence.

The meaning of a FOL formula is conveyed by an interpretation (I) which is a

mapping between its signature and a non-empty universe (U), a.k.a. domain. Each

constant symbol is mapped to an individual (object) in U , each predicate symbol to

a property (unary predicate) or a relation (non-unary predicate) on U , each function
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symbol to a function on U , and then each sentence is assigned a truth value under I.

If I assigns True to a sentence or all the axioms of a theory, then I is a model of that

sentence or theory (Van Harmelen et al., 2008).

Inference rules for FOL include modus ponens, and-introduction, and-elimination,

paramodulation, resolution and so on (Bundy, 1985), among which resolution is a basic

component of ABC. The rule of a full resolution is given by Equation 2.2. Predicate ≡
means ‘is identical with’.

C′∨P′1∨ ...∨P′m C′′∨¬P′′1 ∨ ...∨¬P′′n
(C′∨C′′)φ

Resolution (2.2)

where a most general unifier of P′1∨ ...∨P′m and P′′1 ∨ ...∨P′′n is φ:

φ = φ1φ2 (2.3)

(P′1∨ ...∨P′m)φ1 ≡ (P′′1 ∨ ...∨P′′n )φ2 (2.4)

In automated reasoning, FOL formulae are converted into an equivalent conjunctive

normal form (CNF) where skolemization is employed to remove existential quantifiers

by introducing new constants and functions called Skolem constants and Skolem

functions respectively (Bundy, 1985). CNF is a widely used form not only because it

is the form for many inference rules, e.g., SL-resolution, and the practical satisfiability

algorithms (a.k.a. SAT solvers), but also because it is natural to describe problems with

a conjunction of preconditions or rules where a conjunction of preconditions imply a

proposition (Van Harmelen et al., 2008).

From the view of theorem proving, FOL is semi-decidable. Although all theorems

of a FOL theory can be proved with an exhaustive search, there is no limit to the search

space so a conjecture cannot be concluded as unprovable even if its proof is not found

(Smullyan, 1992).

There are decidable fragments of FOL, including Description Logic introduced in

the next section and Datalog in §3.1. Because Datalog is the logic on which the theory

to repair is based in this thesis, so it is introduced as a part of background.

2.2.1.1 Description Logic

Description logics (DLs) are a family of decidable fragments of FOL, which are the

basis for widely used ontology languages including W3C Web Ontology Language

(OWL) (Antoniou and Van Harmelen, 2004). Domain knowledge is described based

on its concepts (a.k.a. classes), roles (a.k.a. relationships), and individuals in DL
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(Baader et al., 2017). This section follows the upper/lower case convention in DL

literature which is the opposite to the convention in the rest of this thesis.

The basic DL is the attributive concept language with complements (ALC)

(Schmidt-Schauß and Smolka, 1991). The course theory Tc in Example 2.2.1 (Baader

et al., 2017) gives some ACL-concepts including concept names (Nc): teacher, person,

student; role names (Nr ): teaches, attends and individuals: Mary and Cs600. Its

equivalent FOL formulae is given in Example 2.2.2.

Example 2.2.1. Course Theory Tc in ACL.

Teacher ≡ Person∃teaches.Course,

Student ≡ Person∃attends.Course,

∃attends.⊺⊔¬Student,

Mary ∶ Person,

Cs600 ∶Course,

(Mary, Cs600) ∶ teaches.

Example 2.2.2. Equivalence FOL Formulae of ACL-concepts in Tc.

∀x (Teacher(x) ⇐⇒ Person(x)∧∃y (teaches(x, y)∧Course(y)),

∀x (Student ⇐⇒ Person(x)∧∃y (attends(x, y)∧Course(y)),

∀x (∃y (teaches(x, y)) Ô⇒ ¬Student(x)),

Person(Mary),

Course(Cs600),

teaches(Mary, Cs600).

An ALC knowledge base is a pair of a terminological box (TBox), which is a finite

set of concept inclusion axioms, and an assertional box (ABox), which is a finite set

of assertional axioms (Baader et al., 2017).

In Example 2.2.1, the TBox is constituted by the first three statements and the

ABox by the last three. When a TBox only contains definitions, it is definitorial, e.g.,

a TBox constituted by the first two statements in Example 2.2.1.

By separating the TBox and ABox, some reasoning processes can only deal with

one of them when the other is not relevant. Since the TBox usually plays an important

role in deciding the complexity of the reasoning so the separation highlights that key

part.
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DL has been widely used in the field of knowledge representation (Consortium,

2019; Sanfilippo et al., 2019; Janowicz et al., 2019) and reasoning with database

schema and queries (Kendall and McGuinness, 2019; Chu et al., 2020; Koopmann,

2019). There are also many computational services for ontology tools and applications

developed based on DL (Knublauch et al., 2004; Liebig and Noppens, 2004; Rector

et al., 1993; Visser et al., 2002).

Because a Description Logic (DL) concept has arity one and role arity two and

those are not changeable, reformation’s repair of changing the arity of a predicate,

introduced in §3.4.3, will break the TBox and the ABox of a DL theory. Thus, DL is

not the employed logic in this research, although it is decidable.

2.2.2 Higher-Order Logic (HOL)

First Order Logic allows variables ranging over objects but not over functions or

predicates. In HOL, functions and predicates can be represented by variables and

quantified. The HOL Prover (Gordon and Melham, 1993) is interactive so that the user

can give some guidance for the search of proofs. A more automatic prover is TPS,

which is equipped with the component search to handle larger search space (Bishop,

1999). Other well known HOL proof tools include Isabelle HOL (Nipkow et al., 2002),

PVS (Owre et al., 1996), Nuprl (Constable et al., 1986) and so on.

HOL is more expressive than FOL and proofs of HOL are usually shorter than

of FOL. But higher-order unification is considerably more complex than first-order

unification so that HOL provers are more complicated than FOL ones. For example,

there could be infinite independent most general unifiers for unifiable terms so the most

general unifier is not unique (Qian, 1993; Goldfarb, 1981).

2.2.3 Non-Monotonic Logic

In a non-monotonic logic (NML), logical consequences are not monotonic, e.g., adding

a new axiom can invalid old theorems (McDermott and Doyle, 1980). NMLs are

designed to employ defeasible inference where rules can have exceptions or there are

sub-classes that follow a different rule than others, so the truth of premises does not

always guarantee the truth of the conclusion (Strasser and Antonelli, 2019a).

When there are conflicts among rules, preferences play an important role in

deciding which rule should be applied. A common preference is that the most specific

subclass dominates more general ones (Delgrande et al., 2004). For example, from
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rules: all birds fly; penguins are birds; penguins do not fly and assertion: tweety

is a bird, we can conclude: tweety flies. However, if there is an extra assertion:

tweety is a penguin, then tweety’s most specific subclass is penguin rather than bird.

Consequently, it can be concluded that tweety cannot fly.

One issue of NML is that it is hard to formalise a theory which has intended

conclusions (Nebel, 2001). When preferences or conflicting rules are complicated,

unwanted logical consequences may be derived. By contrast, the repair technique

of reformation distinguishes sub-classes or exceptions by adding new argument to

the relevant predicate so that different rules can be applied based on the new label

argument. For example, the tweety example will be repaired by given predicate bird

an extra argument, e.g., normal and abnormal. Then the rules become all normal

birds fly and penguins are abnormal birds. Thus, it is not a theorem that penguins fly.

Consequently, reformation does NML’s job on a monotonic theory.

2.3 Theory Repair Techniques

The repair techniques that are combined in this thesis are introduced in this

section, including abduction, belief revision and conceptual change via reformation.

Additionally, inductive logic programming is described briefly. At the end of this

section, the relationship between these techniques is discussed.

2.3.1 Abduction

Abduction finds the hypotheses that explain a given set of observations. After adding

these hypotheses to the original theory, the observations can be logically entailed

(Sakama and Inoue, 2003). These hypotheses are called explanations sometimes.

To evaluate the explanations, (Thagard, 1978) and (Hobbs et al., 1993a) propose

the criteria of consilience, simplicity, consistency and analogy, while analogy is a

particular type of abduction rather than a criterion in some literature (Duval, 1991;

Schurz, 2008). As the first three criteria are more basic, they are briefly introduced

below.

• Consilience corresponds to a theory’s explanatory power. Thus, a theory is more

consilient if it proves more facts2 than another.
2The original definition of consilience is based on classes of facts rather than facts. But the notion

of a class of a fact relies on the background knowledge in a particular domain, we omit it in our general
introduction.
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• Simplicity is based on the size of the explanations, e.g., the number of the axioms

to add, with the smaller being the better.

• Consistency ensures that the theory has no contradictions after expanding the

explanation.

Besides theory repair, abduction also applies to a wide variety of reasoning tasks,

e.g., the medical diagnosis of a patient’s symptoms (Pople, 1973; Reggia et al., 1983);

the interpretation of why a sentence is said in natural language (Hobbs et al., 1993b).

In the field of view update in database theory, an abductive framework is developed

in (Sakama and Inoue, 2003) which not only works on finding the positive explanation

of observations but the negative ones which are the axioms to be removed to explain

observations, which is important for theories in NML. In (Fernandez et al., 1996), all

possible models from the base of observations are computed, then minimal models that

satisfy observations are constructed from those models.

2.3.2 Belief Revision

There are three generally considered kinds of belief changes3: contraction, expansion

and revision (Hansson, 2003).

• Contraction: some beliefs are retracted to obtain a consistent belief system.

• Expansion: new beliefs are added to expand the beliefs with no guarantee of

consistency after the operation.

• Revision: a new belief is added and some old ones may be retracted if it is

necessary to keep the belief system consistent.

Considering whether the justification for these beliefs should be considered or not,

belief revision research is divided into two groups: foundations and coherence

approaches. If there are no justifications for a belief, then it should not be accepted in

the foundations approaches. While in coherence approaches, one belief is acceptable

as long as it logically coheres with others (Doyle, 1992).

Belief revision can be seen as a function from one belief state into another. How is a

belief state represented? The simplest way is as a (possibly infinite) set of sentences K,

which satisfies the integrity constraint that K should have all the logical consequences

3A sentence in the belief system is considered to correspond to an axiom or a theorem in a logical
theory in this thesis.
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in it (De Raedt and Bruynooghe, 1992; Gärdenfors and Makinson, 1988; Katsuno and

Mendelzon, 1991). In formal epistemology, logically closed sets are called “corpora”,

“knowledge sets”, or (more commonly) “belief sets” (Keeler and Priss, 2013). Another

way of representing belief states is as a belief base which is a finite set of axioms that

are not closed under logical consequences. Based on a belief base, the additional

theorems (the belief set K) can be derived (Fuhrmann, 1991). Then, revision and

contraction functions defined on belief bases will be called base revisions and base

contractions, respectively. Compared to belief sets, belief bases seem easier to handle

in computer science since they are usually finite structures (Gärdenfors, 2003).

Since the 1980s, several algorithms for the implementation of belief revision have

been proposed by (Nebel, 1991; Alchourrón and Makinson, 1985; Jin and Thielscher,

2008) and so on. In addition, some researchers have incorporated belief revision within

different logics, such as description logic (Lee and Meyer, 2004), and conditional

beliefs logic (Dubois et al., 1994). As unaided computer system cannot understand the

semantics of theories, epistemic entrenchment (EE) is proposed for prioritising axioms

which evaluates the overall informational value of axioms (Gärdenfors, 1988). There

is a constructive approach which is adopted based on EE (Gärdenfors and Makinson,

1988). As EE plays an important role in this thesis, it is introduced in more detail in

§3.4.2.

2.3.3 Conceptual Change

In the field of psychology, conceptual change studies the process that the learner

substantially revises prior knowledge and acquires new concepts (Wrobel, 1994). In

this thesis, conceptual change refers to a technique of logical theory repair based on

algorithms rather than in psychology. Conceptual change here modifies the signature

in which the logical theory is written in the way of invent new predicates, constants or

modifying old ones (Bundy and Mitrovic, 2016).

Several relevant systems based on AR have been developed, which contain the

relevant algorithms, including the ORS (Ontology Repair System) (McNeill and

Bundy, 2007), the GALILEO System (Guided Analysis of Logical Inconsistencies

Leads to Evolved Ontologies) (Lehmann et al., 2013), and the Hyper System with a

form of knowledge reformation method (Prendinger et al., 2000). However, the first

two algorithms are domain-dependent and the last one only reforms function-free FOL

acyclic Horn theories to their logically equivalent propositional theories by introducing
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new predicates, which does not aim at repairing a faulty theory but rewriting a theory.

MIL is also a system which conduct conceptual change by inventing new predicates,

which is introduced in §2.3.4.

Reformation is an algorithm of conceptual change based on AR, which changes the

signature of a logical theory for blocking or unblocking proofs (Bundy and Mitrovic,

2016), which is introduced in more detailed in §3.4.3. It is particularly powerful

because it does not only invent new predicates as other techniques do, it can also

merge existing predicates according to the evidence of faults globally, or rename one

occurrence of a predicate name or individual name locally, or change the arity of a

predicate.

2.3.4 Inductive Logic Programming (ILP)

Based on inductive inference, ILP derives logic programs based on given observations

including the positive and negative ones and background knowledge, which employs

techniques from both machine learning (ML)4 and logic programming (Muggleton

and De Raedt, 1994). It is easier to apply ML algorithms in ILP than others, e.g., LISP

programs, because programmes in ILP are written in clausal logic so that their axioms

and literals can be changed independently without considering orders.

Given a set of positive examples E+; a set of negative example E− and background

knowledge T, ILP adds a hypothesis H to T so that:

∀α ∈ E+, T∪{H} ⊢ α (2.5)

∀β ∈ E−, T∪{H} ⊬ β (2.6)

Different degrees of satisfiability are defined to describe how much a hypothesis

follows the positive examples while avoiding the negative ones (Muggleton and

De Raedt, 1994). Also, induction is claimed to be a process of combining abduction

and justification. Here justification refers to evaluating the confidence of candidate

hypotheses (Muggleton and De Raedt, 1994).

In (Shapiro, 1982), the debugging of a Prolog bug is investigated employing

induction inference. A broken branch is found by examining the truth value of subgoals

in a top-down process, where only the true subgoals are carried for further debugging.

It is an interactive debugging system which addresses restricted types of bugs, while

ABC automatically repairs faults without type restrictions.

4Machine learning will be briefly introduced in §2.5.



2.3. Theory Repair Techniques 19

Among numerous ILP algorithms, MIL is particularly powerful which can achieve

automatic conceptual change in the way of introducing new predicates and also

decompose a concept to, e.g., introduce sub-definitions (Muggleton, 2015; Muggleton,

2017). Given meta-rules M, background knowledge B and ground positive and

negative examples, MIL finds the hypothesis H. Then the positive examples become

derivable from {M,B,H} while the negative examples are not derivable.

2.3.5 The Relation Among Repair Techniques

Deduction, induction5, and abduction (Hintikka, 1999) are three forms of inference.

Taking rule R1 as an example, deduction starts from knowing R1 and the truth of p(c)
then concluding the truth of q(c), while induction starts from knowing p(c) and q(c),

usually multiple p(c)s and q(c)s, then summarises R1 as the result for describing their

relations based on statistical data. When q(c) is observed, abduction seeks for its cause

(explanation) which is p(c) when R1 is known or R1 when p(c) is known.

p(X) Ô⇒ q(X) (R1)

Induction and abduction are ampliative in the way that the consequence goes

beyond its premise (Douven, 2017).

The common ground of abduction, belief revision, conceptual change and ILP is

that they do their job by blocking unwanted proofs and/or unblocking wanted proofs.

On the other hand, their differences include their repair operations and their default

inference of the repair generation.

Different literature have different views of each technique so that there are overlaps

among them especially when they serve similar tasks, e.g., forwarded induction

reasoning is interpreted based on the process of belief revision in (Battigalli and

Siniscalchi, 2002). To distinguish these techniques from the perspective of theory

repair in this thesis, belief revision is considered to be a technique which blocks

unwanted proofs; abduction unblocks wanted proofs and these two techniques change

a literal or an axiom as a whole. As for reformation, it modifies the signature of the

theory, which can do both blocking and unblocking.

In this thesis, abduction, belief revision and reformation are the techniques to

combine because they are complementary and all of them can be done based on

AR. Since reformation’s ability to change signature cannot be replicated by any other

5The induction in this thesis is not the mathematical induction, which is a form of deduction.
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technique currently to our knowledge, e.g., it can modify the arity of a predicate,

a repair system which combines reformation and reformation’s complementary

techniques of abduction and belief revision can generate richer repairs and then

narrows the gap between the automatic theory repair techniques and domain experts.

The main challenges of their combination include the conflicts between three

candidate techniques and the over-production of repairs. The former occurs in

particular scenarios. For example, a signature change from reformation is applied

by updating the axioms which are written in the changed signature element, e.g., a

predicate. If those axioms include ones that should be deleted by belief revision,

then belief revision won’t find these axioms after reformation is applied. Similarly,

reformation and abduction should not be applied together when abduction adds an

axiom that contains a predicate of two arguments and reformation changes that

predicate by increasing its arity into three, then that predicate will be overloaded by

having arities of both two and three. On the other hand, abduction and belief revision

can cause a loop when the former adds an axiom to unblock a proof while the latter

deletes that axiom to block another proof. These issues are avoided by calculating the

maximal set of commutative repair plans so that applying them together won’t cause

conflicts, introduced in §6.3. The latter challenge is tackled by resembling epistemic

entrenchment: calculate the entrenchment of axioms, signature, preconditions and then

only change the least entrenched ones, introduced in §6.2. Furthermore, repairs are

evaluated as either the optimal or the sub-optimal based on the number of the faults

remaining in their corresponding repaired theories. In the end, only the optimal ones

are provided as the final result, introduced in §6.4.

There is one further relevant repair technique in the recent literature: the

aforementioned Meta-Interpretive Learning (MIL) in the field of ILP. The key

advantage of MIL is that it can both create new predicates and induce appropriate

rules for using these new predicates. Moreover, although it employs ML, it can learn

from limited examples via logical inference rather than require a large training dataset.

And MIL is also an AR-based system (Muggleton, 2015), which fits the inference base

of our system. However, MIL is different from the repair techniques that we have

chosen in that it only adds new axioms while not changing any old one. As a result,

from the perspective of conceptual change, MIL cannot merge two existing predicates

whereas reformation can. Consequently, MIL is not suitable in the scenario when the

user wants to repair the input theory rather than purely expand it. We do not further

consider ILP or MIL in this thesis, but it is worthwhile to explore as a part of the
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future work because it is a complement of our work: where our method only create

new predicate MIL instead can also induce appropriate rules for using new predicates.

The difference of summarising a rule by induction and adding a rule by abduction,

is that the former is more based on statistics, while the latter aims at the best

explanations (Douven, 2017). For example, the grass is wet in the morning of most of

the days in Scotland. Then the grass will be wet tomorrow morning would be induced

based on the statistics, while most evenings are rainy in Scotland can be abduced as

the explanation of the wet grass in the morning.

2.3.6 The Sub-optimal Pruning based on Max-Sat

Similar to many repair techniques, our combination repair mechanism suffers the

common issue of overproducing repairs. Marius Urbonas has applied the Partial

Max-Sat algorithm to prune sub-optimal repairs (Urbonas et al., 2020), whose work

flow is shown in Figure 2.1.

C1. Convert to
Propositional Logic

C2. Calculate
Number of Faults

C3. Select Pareto
Optimal Repiars

⟨ (�), (�)⟩

{ (�), … , (�)}�1 �� ABC System { (�), … , (�)}��1
���

Pruning Mechanism (PM)

Inputs to PM Outputs from PM

Fault-free
 repairs

Input theory and
 observations

User

No repairs 
are found

Figure 2.1: The Partial Max-Sat sub-optimal pruning system whose components are

C1, C2 and C3.

In Figure 2.1, ABC is the repair mechanism which is introduced in Chapter 4 and

5. Note that it does not include any refinement introduced in Chapter 6. The input

Datalog theory is T and the set of suggested repairs by ABC is {ν1, ...,νk}. Here the

observation of the environment is formalised in ⟨T (S),F(S)⟩ and the output of the

Max-Sat pruning system is a set of optimal repairs.

The main work of the Max-Sat sub-optimal pruning system is to compare the

remaining faults after applying each Repair Plan (RP) to the faulty theory and then
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only retain the optimal ones which do not have more remaining faults than others from

the perspectives of both fault types that we considered.

This sub-optimal pruning should only be employed to evaluate the theories which

have applied the same number of RPs. Otherwise, it is unfair to compare the remaining

fault number if one theory T1 is generated based on three RPs while another T2 is based

on only one RP. In that example, if they are the only candidates to compare and have

the same number of remaining faults, then the comparison mechanism in (Urbonas

et al., 2020) will conclude that both are optimal while T1 should not be.

In addition, (Urbonas et al., 2020) relies on an external SAT algorithm by (Fu

and Malik, 2006), which requires the translation of the object theory from Datalog to

propositional logic. As SL Resolution has been implemented in ABC Repair System

(ABC), which is capable of evaluating whether a repair is optimal but does not need the

translation process. Therefore, resembling the idea of Urbonus’s work, SL Resolution

is employed to support the sub-optimal pruning mechanism introduced in §6.4.

2.4 Theory Repair in Knowledge Graphs

Knowledge engineering is a popular topic in AI which includes the Semantic Web,

Linked Data, data integration and so on. It has been explored how to automatically

detect faults in a knowledge represented database, e.g., Knowledge Graph (KG), but

how to repair such a faulty database is an open question currently.

In the field of KGs, fault detection, especially the inconsistency check, has become

a hot research topic for decades, especially in the sub-fields of entity embedding and

quality assessment. For example, the quality of links between entities from multiple

datasets are evaluated by a combination of graph metrics (van Harmelen et al., 2018;

Raad et al., 2018) and the inconsistencies among RDF triples w.r.t. their schema are

detected by schema aware triple classification (SATC), where the fault patterns are

formalised as logical rules (Wiharja et al., 2018).

But there is no solution of how to repair a detected inconsistency automatically.

The difficulties include the lack of a gold standard (GS) because a ground truth

database is often not available; the involvement of manual work which is prone to

error and cumbersome for large scale database; and the lack of experts with essential

domain knowledge.

To tackle that issue, (Dimou et al., 2015) has applied fault detection to the

embedding algorithm rather than the final RDF triples that embedding algorithm
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generates. Here the embedding algorithm is considered as the theory to repair. When

the embedding algorithm is fault-free, it will generate fault-free RDF triples, where the

fault-free is in terms of rules given in the detection process. Their work shows that the

earlier the fault detection and repair is applied, the better. This work is limited because

it is only applicable to RDF triples so they require that the embedding algorithm has

to be written as RDF triples as well. Meanwhile, their repair is semi-automatic so

that there will be a huge amount of manual work required to apply their method on a

large-scale embedding algorithm.

Because the published KGs are usually in a large scale, even an automatic

inconsistency check can be quite time consuming and the repair process still requires

manual work currently. Thus, it is nearly an impossible task to repair all of the detected

faults in KGs at the current stage. The reason why the existing automatic repair

techniques are not employed is that they only suggest repairs in limited form and they

overproduce at the same time (Li et al., 2018). Consequently, even if inconsistencies

are detected, they will usually continue to be included in KGs, which means that fault

detection is not incorporated in KGs’ construction or update.

Our work in this thesis aims at providing repairs in richer form which will narrow

the gap between what an automatic repair technique can provide and what a repair

agenda in KGs calls for.

2.5 Machine Learning (ML)

Machine learning is a sub-field of AI but is often also referred to as predictive analysis

or modelling. A general goal of ML is to develop algorithms so that patterns in data

can be learnt/discovered, and then predictions can be made accordingly (LeCun et al.,

2015). Some ML techniques employ background knowledge to learn from limited

examples rather than just learn statistically from large samples (Muggleton, 2015). In

this section, ML refers to the traditionally statistical ML techniques over large samples.

In ML, conceptual change refers to problems of concept formation where a new

predicate can be invented for aggregating a set of concepts (Wrobel, 1994). But it

can neither modify the name nor the arity of existing ones as (Bundy and Mitrovic,

2016) does. Since ML learns from the training dataset, it can only summarise existing

patterns, while ABC create novel patterns that may not follow a prior one, but are the

best fit for the given observations. More reasons why ML is not used in ABC are

discussed in detail in the following section.
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2.5.1 Relationship between AR and ML

The main difference between AR and ML is that the former starts from a theory and

then infers the consequences by employing theorem provers while the later needs to

learn the ‘theory’ by applying the ML algorithm on a training data and then use the

learnt ‘theory’ to compute its conclusion on test data.

As the theory in AR is given, symbols in their signatures usually follow

commonsense, or otherwise pre-established meanings so that theory is explainable.

However, the ‘theory’ learnt from ML could lack rich semantics. To solve that issue,

scientists working on the field of explainable AI are trying to find solutions (Samek

et al., 2019).

AR can be a good choice when the theory of the object data is known or can

be formalised in a logic, e.g., for a small set of observations. Alternatively, ML is

preferred when the pattern of the data is not clear to the user, e.g., a complex pattern

among the data or the data is of a large size and high quality. Good quality data is one

of the key factors enabling an ML algorithm to capture accurate features from the data.

In some tasks, AR and ML have been combined. For example, use ML techniques

to assist AR in theorem provers(Bridge et al., 2014; Urban et al., 2011), e.g., ML is

used to suggest which lemmas to include in a proof attempt. AR is incorporated to

make ML explainable (Bride et al., 2018).

In this thesis, AR is used but not ML for the following reasons. We define the gold

standard (GS) as the desired repairs which describes scenarios that make sense in the

real world. Since those scenarios are various as there are dynamic possibilities in the

real world, it is manual work to decide the GS. For small theories, it is still possible to

manually search for GS. But it is much harder to do it manually for large theories.

1. The algorithms of repair techniques we combined are explicit, so it is not needed

to learn them from examples by ML.

2. The open question of GS decides that ML is not employed because GS is an

essential part of the training set for ML techniques.

3. Assume that GS is available. If we want to use ML to learn repair plans, it is hard

to find high-quality training data of fault theories which can cover all patterns of

repair plans.

Therefore, AR is the basic technique of the ABC Repair System in this research.
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2.6 Summary

This section briefly introduces relevant literature to our project including AR in §2.1;

typical logics in §2.2; the repair techniques: abduction, belief revision, conceptual

change, ILP and the sub-optimal pruning based on the Max-Sat algorithm in §2.3; the

current stage of repairing a faulty KG in §2.4 and ML in §2.5. It can be seen that

only if a repair system can generate better repairs, the gap between its application

requirements and its capability can be narrowed. By analysing the relationship among

those repair techniques, our ABC Repair System can narrow that gap by combining

abduction, belief revision and reformation.





Chapter 3

Background

This chapter will introduce the background of our research about the ABC Repair

System (ABC). First of all, Datalog will be introduced in §3.1. In this project, the

theory to repair is based on Datalog, which is a decidable logic, so a proof can be

found if it exists. Herbrand structures are introduced in §3.2, on which the benchmark

of the correctness of a Datalog theory can be formalised. In ABC, a selected-literal

resolution is implemented for Datalog theories, which is discussed in 3.3. To repair a

faulty Datalog theory, our repair mechanism combines abduction, belief revision, and

a conceptual change via the reformation algorithm1, which will be discussed in §3.4.

The summary of this chapter is given in §3.5.

From now on, all constants and predicates start with lowercase while variables

start with uppercase. The logical connectives are represented as ¬ (negation), ∧
(conjunction), ∨ (disjunction) and Ô⇒ (implication). We use T ⊢ α to represent

that the formula α is provable within the theory T and T ⊬ α to show that α is not a

theorem of T.

3.1 Datalog

Datalog is a declarative logic programming language in first-order logic (FOL), which

has resurged in the database community in recent years (Ceri et al., 1989). As a

decidable subset of FOL (Ceri et al., 1989; Pfenning, 2006), Datalog is used as the

logic of this thesis, e.g., a piece of Datalog program is seen as a logical theory based

1These repair techniques cannot be directly integrated as originally they were implemented in a
different context. Therefore, they are revised to be incorporated into our framework. Also, we have
developed novel repair plans for belief revision and abduction respectively, e.g., splitting a rule. These
original works will be introduced in Chapters 4 and 6.

27
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on Datalog logic.

In comparison with FOL, Datalog excludes negations, non-nullary function

symbols, and existential quantification. Assertions and rules in Datalog are formalised

as Horn Clauses, which is a clause that has at most one positive literal. In this thesis,

clauses are written in Kowalski normal form (Bundy, 1985).

¬Q1∨ . . .∨¬Qm∨R1 (Disjunction Form)

Q1∧ . . .∧Qm Ô⇒ R1 (Kowalski Normal Form)

The grammar of a Datalog theory is given by Definition 3.1.1. Note that a constraint

axiom is a rule without head, which is in the same form as a goal clause.

Definition 3.1.1 (Grammar of Datalog Logic).
Term ∶∶=Constant ∣Variable

Proposition ∶∶= Predicate(Term1, . . . ,Termn)

Assertion ∶∶=Ô⇒ Proposition

Rule ∶∶= Proposition1∧ . . .∧Propositionm Ô⇒ Proposition

Constraint Axiom/Goal Clause ∶∶= Proposition1∧ . . .∧Propositionm Ô⇒

Empty Clause ∶∶=Ô⇒

where m ∈Z+, n ∈N, i.e., n might be 0.

For example, f ly(X) ∧ non f ly(X) Ô⇒ is a constraint axiom, which says that

an individual cannot be both flyable and non-flyable at the same time. Similar to

the integrity constraints in databases (Fan and Siméon, 2003), it can be fundamental

for constraint axioms to express semantic constraints without negation in Datalog.

Without constraint axioms, a Datalog theory is inherently consistent. Otherwise,

inconsistencies can be caused by the violation of constraint axioms. That potential

fault will be discussed in detail in the section of fault detection §4.3.

There are different variants of Datalog. Our project is restricted to the basic

Datalog, where a Datalog theory should satisfy the following safety conditions (Ceri

et al., 1989), which guarantee that all assertion theorems of a Datalog theory are ground

and the number of them is finite.

1. Each assertion does not contain any variables.

2. Each variable which occurs in the head of a rule also occurs in the body of the

same rule.
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Although the restriction of Datalog reduces the expressive power of the logic, it

brings significant advantages including that deduction is decidable (Pfenning, 2006),

Prolog unification is sufficient because the occurs check (Bundy, 1985) is not needed

as there is no function nesting, and the reformation algorithm is greatly simplified, as

will be introduced in §4.4.3.2. In fact, Datalog has been applied successfully in a wide

variety of problem domains (Bárány et al., 2017; Kaminski et al., 2016; Motik et al.,

2019; Shkapsky et al., 2016).

An example of a Datalog theory is given below. In Example 3.1.1, four axioms

say that Germany is part of Europe and all European swans are white and Bruce is a

German swan. One theorem of this theory is that Bruce is white. Imagine that Bruce is

black based on the user’s observation . In this scenario, the theory is faulty, so it needs

to be repaired.

Example 3.1.1. Swan Theory.

german(X) Ô⇒ european(X) (A1)

european(X)∧ swan(X) Ô⇒ white(X) (A2)

Ô⇒ german(bruce) (A3)

Ô⇒ swan(bruce) (A4)

Developing our repair process based on a basic version of Datalog allow us

applications of databases and various extensions in future work. Datalog was designed

to interact with large scale databases. The optimisation methods for various types of

Datalog rules and their efficiency have been studied (Bancilhon and Ramakrishnan,

1989; Ullman, 1985; Bancilhon and Ramakrishnan, 1988). There are various

extended Datalog variants for knowledge representation and reasoning. For example,

Disjunctive logic programming (DLP) is a system for knowledge representation and

reasoning that is suited to deal with larger amounts of input data whose kernel language

is the disjunctive Datalog (Leone et al., 2006). Existential rules is a paradigm for query

answering over ontologies, which extends Datalog with value invention so that the

existence of a new individual can be inferred from a given situation (Calı̀ et al., 2012).

Vadalog system is an implementation of Warded Datalog+/-, which is designed to

convey complex logic reasoning, e.g., in knowledge graphs (Bellomarini et al., 2018).

In summary, Datalog theories are decidable but they are still sufficiently expressive

to allow a wide range of practical applications.
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3.2 Herbrand Structure

A Datalog theory’s signature is constituted by predicates, constants and variables. For

simplification, a signature will be written as a triple ⟨P,C,V⟩, where P , C and V are

finite sets of predicates, constants, and variables respectively.

The Herbrand universe is a set of all possible expressions of ground terms in FOL

(Herbrand, 1930). As there are no non-nullary functions in a Datalog theory, the

Herbrand universe is simplified to be the set of the constants of that Datalog theory.

Definition 3.2.1 (Herbrand Universe). Given a Datalog theory, if its signature is

⟨P,C,V⟩, then the Herbrand universe of this Datalog theory is C.

Definition 3.2.2 (Herbrand Base(B)). Given a Datalog theory, if its signature is

⟨P,C,V⟩, then the Herbrand base B of this Datalog theory is defined by the following

rule.

B = {p(c1, ...cn)∣∀n, p/n ∈ P, ∀ci ∈ C, 1 ≤ i ≤ n}

where p/n denotes that p is a predicate of arity n.

Herbrand structure interprets a term as its semantic value, e.g., constant dog as

the animal “dog”. Accordingly, in a Herbrand structure, ground propositions from the

Herbrand base become both syntactic and semantic, and are assigned with the value of

either true or false.

Definition 3.2.3 (Herbrand Structure). Given a Datalog theory T, if its Herbrand base

is B, then a Herbrand structure S of that Datalog theory gives an interpretation in

which a subset of B is true.

∃B0 ⊂B, ∀P ∈ B0, S ⊧ P

In Definition 3.2.2, the subset B0 is a set of propositions while S is an interpretation

which interprets all propositions in B0 by assigning them true.

Definition 3.2.4 (Herbrand Model). Given a Datalog theory T, M is a Herbrand model

iff it is a Herbrand structure for T, and M ⊧ α, where α is a theorem of T.

Resembling the idea of Herbrand structure, the benchmark for the correctness of a

Datalog theory will be defined as the Preferred Structure (PS) in Definition 4.2.3 on

page 50. The Preferred Structure (PS) represents all the ground propositions explicitly

given by the user: like a Herbrand structure, the true ground propositions are the true
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set of PS; but unlike a Herbrand structure, the false ground propositions are a second,

false set of PS. Similar to a Herbrand structure, the propositions in the true set of PS
are interpreted to be true. Inversely to a Herbrand structure, the ones in the false set are

instead interpreted to be false. If a theory violates either set of PS, it will be regarded

as faulty and will then be repaired.

3.3 Linear Resolution with Selection Function

One of the core component of ABC is the automated theorem prover. The inference

rule, Linear Resolution with Selection Function (SL-Resolution) is employed, which

is not only sound and complete (Gallier, 2003), but also decidable (Pfenning, 2006) for

Datalog theories so that proofs can always be detected if there are any.

SL-Resolution (Kowalski and Kuehner, 1971) tries to derive the empty clause from

the goal clause and the axioms in the theory. The principles of the SL-Resolution for

Datalog implemented in ABC are as the following, where the resolution between a

goal and a clause is called a Resolution Step (RS).

• Select one of the most recently introduced literals from the goal to be resolved

upon.

• Resolve the selected literal with an input clause.

In Datalog, it is either an assertion or a rule to prove. To prove the former, the

goal clause is the negation of that assertion. As for the latter, if it is a constraint axiom,

which has no head but preconditions, e.g., p(X)∧q(Y) Ô⇒ , then the constraint axiom

is directly used as the goal clause. On the other hand, if it is a normal rule with a head,

e.g., p(X)∧q(Y) Ô⇒ r(X ,Y), then it has to be rewritten by the following steps first.

1. Negate the rule and push ¬ inwards. The rewritten rule is:

∃X ,Y.¬[p(X)∧q(Y) Ô⇒ r(X ,Y)]

2. Skolemise the above rule by replacing bound variables with Skolem constants c1

and c2 that are new to the signature2 of the theory (Bundy, 1985).

¬[p(c1)∧q(c2) Ô⇒ r(c1,c2)]
2The signature describes the representation language in which a logical theory is written (Hodges

and Scanlon, 2018).
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3. Write the above rule in conjunctive normal form. It becomes the three sentences

below.

Ô⇒ p(c1)

Ô⇒ q(c2)

r(c1,c2) Ô⇒

To prove the original rule p(X)∧q(Y) Ô⇒ r(X ,Y) equals to take r(c1,c2) Ô⇒ as

the goal clause and then to derive the empty clause with the other axioms in the theory

and the temporary assertions Ô⇒ p(c1) and Ô⇒ q(c2).

Suppose that the goal clause is p Ô⇒ 3. Then we resolve the goal with an input

clause whose head is p. Since an axiom in Datalog theory is a Horn clause, which

has at most one positive literal, the most recently introduced literals of a non-empty

resolvent could only be a disjunction of negative literals, called sub-goals. Then, we

continually resolve the first sub-goal, with an input clause. Again, the result is either an

empty clause or a clause of a disjunction of negative literals. This process is repeated

until no sub-goal is left, or no input clause is available to resolve the first sub-goal. If it

ends with the former (an empty clause), refutation occurs, which means that the input

theory proves the goal clause.

In our SL-Resolution, ancestor resolution, where a resulted clause from a previous

RS will be used to resolve the selected literal (Kowalski and Kuehner, 1971), cannot

arise because we are dealing with a set of Horn clauses, and our resolution starts with

resolving the goal clause. As a result, sub-goals in the current goal clause and all its

ancestors are negative literals, therefore they cannot resolve with each other. On the

other hand, occurs check is not needed because there is no function in a Datalog theory.

3.4 Repair Techniques

In this section, the existing repair techniques that are involved in our project will be

introduced. These techniques are evolved and combined in our repair framework. By

discussing their existing version, the motivation of our work will be revealed and it

will help the understanding of our original work in the following chapters.

3In Kowalski Form, ¬p is written as p Ô⇒ , which is more natural in resolution proofs (Bundy,
1985). Notice that ¬p only exists in proofs, rather than being an axiom in the logical theory. Writing
in Kowalski Form p Ô⇒ helps avoid the confusion caused by the occurrence of negation in ¬p,
considering that the negated assertion is not allowed in a Datalog theory.
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3.4.1 Belief Revision

When a new belief needs to be added, belief revision deletes some old ones to keep the

belief set consistent. The main question that belief revision algorithms seek to answer

is which old ones should be deleted.

Postulates (K+̇1) - (K+̇6) below show the most widely used framework of belief

revision: the AGM postulates, which is named after their proponents, Alchourrón,

Gärdenfors, and Makinson (Gärdenfors, 2003). Here +̇ and + are the operations of

revision and expansion respectively. Both of +̇ and + add a new belief to a belief

system and output a revised belief system. Note that +̇ may delete old ones while +
does not. K is a consistent belief set which is logically closed; φ and ψ are two beliefs,

and K⊥ is an inconsistent belief set, which is the set of all formulae.

(K+̇1) For any sentence φ and any belief set K, K+̇φ is a belief set.

(K+̇2) φ ∈K+̇φ.

(K+̇3) K+̇φ ⊆K +φ.

(K+̇4) If ¬φ /∈K, then K+φ ⊆K+̇φ.

(K+̇5) K+̇φ =K⊥, if and only if ¬φ is true.

(K+̇6) If φ↔ψ, then K+̇φ =K+̇ψ.

AGM postulates are the constraints that implementations of belief revision should

follow. The first three postulates are self-explanatory. Combining (K+̇3) with (K+̇4),

shows when the input φ does not contradict what is already in K, that is ¬φ /∈ K, then

revision is identified with expansion. (K+̇5) means the result of a revision should be a

consistent belief set unless the input φ is logically impossible. (K+̇6) explains that the

revision works on the knowledge level rather than syntactic level, which means two

beliefs will be considered as equivalent and will produce the same revised belief set if

they have the same content (Gärdenfors, 2003).

Based on the criterion of the informational economy: “information is in general

not gratuitous, and unnecessary losses of information are therefore to be avoided, the

underlying motivation for AGM postulates is to retain old beliefs as much as possible”

(Gärdenfors, 2003, p9). From the perspective of the relation between revision and

contraction, (Gärdenfors, 1992) argues that the process of revision can be reduced to
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that of contraction via the so-called Levi identity, shown in Equation 3.1, where −̇ is a

contraction operation, which deletes a belief from a belief set.

K+̇φ = (K−̇¬φ)+φ (3.1)

The explicit models of the contraction function include the following three kinds

(Alchourrón and Makinson, 1985).

• Maxi-choice contraction.

• Partial meet contraction.

• Full meet contraction.

The basic idea of maxi-choice contraction is to select one maximal consistent subset.

If φ is the belief to be contracted, then the definition of a maximal subset is that a belief

set K1 is the maximal subset of belief set K that fails to imply φ, if and only if:

1. K1 ⊆K,

2. φ /∈Cn(K1),

3. for any K2 such that K1 ⊂K2 ⊆K, ψ ∈Cn(K2).

Here Cn(K) represents the set of all logical consequences of K. Full meet

contraction contains only the beliefs that are common to all of the maximal subsets.

The maxi-choice contraction function generates max belief sets and the full meet

contraction function results in contracted belief sets that are too small sometimes.

As the result of the full meet contraction being too small, partial meet contraction

was developed, which chooses some of the maximal subsets. In ABC, maxi-choice

contraction is chosen to conduct the minimal change by keeping as many axioms as

possible. Because all axioms are potentially valuable, we do not want to delete more

than necessary for repairing a fault.
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Example 3.4.1. Swan Theory.

german(X) Ô⇒ european(X) (A1)

european(X)∧ swan(X) Ô⇒ white(X) (A2)

Ô⇒ german(bruce)(A3)

Ô⇒ swan(bruce) (A4)

The following theorem is derivable from S1 - S4:

Ô⇒ white(bruce) (A5)

The observation is:

Ô⇒ black(bruce) (A6)

In Example 3.4.1, the derived theorem A5 inconsistent with the observation

A6. To embed the observation, belief revision calculated based on maxi-choice

contraction will result in a theory constituted of {A1,A2,A3,A6} or {A1,A3,A4,A6} or

{A2,A3,A4,A6}. Revision from full meet contraction results in {A3,A6} and revision

from partial meet contraction outputs {A3,A6,A1} or {A3,A6,A2} or {A3,A6,A4}.

The algorithms which implement belief revision have been developed by

(Alchourrón and Makinson, 1985; Jin and Thielscher, 2008; Nebel, 1991) among

others.

3.4.2 Epistemic Entrenchment

In this section, the idea of epistemic entrenchment (EE) is introduced, which is a

component of ABC.

An unaided computer system cannot understand the semantics of theories, so it

cannot directly judge which axioms have the most overall informational value. For

example, an axiom from an academic book is more entrenched than a speculative one

from someone’s blog.

In belief revision, epistemic entrenchment is proposed for prioritising axioms

(Gärdenfors, 1988). The more entrenched an axiom is, the more valuable it is, and

the system will be less inclined to change it.

A set of postulates are given to describe the qualitative properties of EE by

(Gärdenfors and Makinson, 1988). We will use E to represent the function which

returns the EE value of a belief with higher values for more entrenchment; A, B, C for

distinct beliefs and K⊥ for an inconsistent belief set. The the range of EE is totally
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ordered by the relation represented in EE1. The name of each postulate is given in the

bracket on right.

EE1. If E(A) ≤ E(B) and E(B) ≤ E(C), then E(A) ≤ E(C). (Transitivity)

EE2. If A Ô⇒ B, then E(A) ≤ E(B). (Dominance)

EE3. ∀A, B,E(A) ≤ E(A∧B) or E(B) ≤ E(A∧B). (Conjunctiveness)

EE4. ∀B ∈K,K ≠K⊥, A ∉K, iff E(A) ≤ E(B). (Minimality)

EE5. If ∀B, E(B) ≤ E(A), then Ô⇒ A. (Maximality)

EE1 constrains a measurement to be transitive. EE2 decides that when either A or B

has to be retracted during revision process, then A should be retracted. Otherwise, B

would still be derived from A. EE3 claims that the retraction of A∧B can be done by

either retracting A or B. EE2 is also applicable because A∧B Ô⇒ A and A∧B Ô⇒ B.

Thus, combining EE2 and EE3, we have the following conclusion.

E(A) < E(B) Ô⇒ E(A∧B) = E(A)

EE4 describes that if A is not a part of a consistent K, then it is less entrenched than

a belief in K. EE5 gives the maximum entrenchment to a tautology belief A, which

follows EE2 as well because for all B, B implies A and then A is the most entrenched

belief.

Even though the properties above have been proposed, it is still hard to

quantitatively define a measurement for EE that works for all domains. Because the

factors that effect the value of EE are diverse and their interactions are complicated.

Thus, (Gärdenfors and Makinson, 1988) does not assume that one can quantitatively

measure degrees of EE (Gärdenfors, 1988).

For evaluating EE, it is natural to think about the factors which influence an axiom’s

place in its domain. For example, these factors could include the source where an

axiom comes from, the time when an axiom was established, and the impact of an

axiom’s semantic content in that domain, and how often it will change, e.g., compare

the position of a chair to the position of a house.

An academic publication is a good example of how the source of an axiom could

affect its EE. If a theory has been published and cited by lots of academic papers, then

it is more entrenched than one that has not.
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Even if all factors are successfully formalised, their impact on the entrenchment

can be opposite in different domains. Two examples are given for further explanation.

The following discussion is based on the unique name assumption so all constants are

unequal to all others.

Example 3.4.2. A Theory of Residence Postcode.

postcode(X , Z)∧ postcode(X ,Y) Ô⇒ Z =Y (A1)

Ô⇒ postcode(david,eh11ls) (A2)

Ô⇒ postcode(david,eh93dh) (A3)

In the above theory, each citizen should have only one residence postcode. But David

has two postcodes. In this scenario, it would be more likely that David has moved

to a new place, and then the newer recorded axiom should be the more entrenched

one than the older axiom. Here the background knowledge is that people can move to

another place. Or David might have a second home, which violates A1 and then the

background knowledge is that one person can have multiple addresses.

Different from the impact that time has on the addresses, in science, a classic theory

e.g., Newton’s physics, is more entrenched than a new discovery. An old theory is

long-tested and then be considered to be trustworthy, while a new discovery does not.

For example, the suggestion that neutrinos travelled 0.002% faster than light was made

in 2011, and later disproved in 2012. The mistake was caused by a loose fibre optic

cable which introduced a delay in the timing system (Cartlidge, 2012). Even before

the mistake was discovered, the result had been considered anomalous as it challenges

a cornerstone in physics. A new challenging theory is accepted if and only if there is

strong evidence, e.g., reliably replicated experiments.

EE for one sentence can be inverted in come cases. For example, the suspect of the

murder of a wife is her husband, because the evidence pointed to him. But along with

the investigation, more and more details and evidence come to light and they reveal the

innocence of the husband. Then the EE of his blame for the crime is inverted.

In summary, it is difficult to find all factors that influence the entrenchment of

a belief, especially domain-dependent ones, where a whole picture of background

knowledge is necessary. Besides, it is not clear how to quantitatively evaluate the

impact that these factors have on EE. Last but not the least, the same factor could have

different dynamic impacts in different scenarios.

Due to these difficulties, the measurement of epistemic entrenchment was an open
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question in the belief revision literature. In our project, EE is measured as the

preference entrenchment based on PS, which is introduced in §6.2. PS can be seen

as partial background knowledge that provides the truth value of some sentences, so

the entrenchment of an axiom can be measured according to how much it respects PS.

3.4.3 Conceptual Change via Reformation

Reformation is a domain-independent repair algorithm for conceptual change. Based

on changes at the syntactic level, reformation repairs a fault in a logical theory by

blocking unwanted but successful proofs or unblocking a partial but wanted proof

(Bundy and Mitrovic, 2016). A proof can be blocked by breaking one of the

unifications in its resolution steps and a partial proof can be turned into a proof by

repairing its necessary unifications. We call both predicate and function functor.

Case Before Condition Block Unblock

Base ⊺ Failure Success

CCs F =G Make F(s⃗m) ≠ F(t⃗m)
∧m = n ⋁n

i=1 Block si ≡ ti ⋀n
i=1 Unblock si ≡ ti

F(s⃗m) ≡G(t⃗n) ∨Block u ∧Unblock u

CC f ∧u F ≠G Success Make F(s⃗m) =G(t⃗n)
∨m ≠ n ⋀n

i=1 Unblock ν(si) ≡ ν(ti)
∧Unblock ν(u)

VCs x ≡ t ∧u x /∈ V(t) Make x ∈ V(t)
∨Block u{x/t} Unblock u{x/t}

VC f or t ≡ x∧u x ∈ V(t) Success Make x /∈ V(t)
∧Unblock ν(u{x/t})

Table 3.1: The Reformation Algorithm for First-Order Logic, where repair plans inverts

the outcome of the targeted proof step: F and G are functors; t is a non-variable term

and s is any term; si and t j are terms; m,n > 0; x and y are distinct variables; and u

is a unification problem; s ≡ t is the problem of unifying s and t; and V(t) is a set of

free variables of term t. CC names a rule that is applicable when the inputs are both

compound terms or constants, and VC when just one of the inputs is a variable. Their

s and f subscripts indicate rules resulting in success and failure, respectively (Bundy

and Mitrovic, 2016).
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Figure 3.1 describes the reformation algorithm which is adapted from unification

cases based on a non-standard version of the unsorted FOL unification algorithm in

clausal form. Each case in Figure 3.1 has a pair of complementary conditions leading

to success or failure respectively. For example, a unification is successful (CCs) iff it

satisfies CCs’s condition F = G∧m = n, while the condition F ≠ G∨m ≠ n refers to a

failed unification (CC f ).

By changing the signature, the result of a unification can be inverted from success

to failure and vice versa. For example, if a CCs unification is in an unwanted proof,

it can be broken by the repair which renames either F or G to make them unequal or

changes the arity of the functor in either side to make their arities different, provided

functors can be overloaded with different arities, as in Prolog.

In general, the typical signature changes of reformation include the splitting of

a functor into two functors, the merging of two distinct functors into one, and the

change of the arity of a functor or the insertion of a variable to fail the occurs check

(Bundy, 1985). Because arity changes in a description logic can have side effects,

e.g., turn a concept name to a role name, reformation’s arity change does not directly

work well for description logics. On the other hand, non-monotonic logics are not

necessary since reformation can add a new argument to distinguish sub-classes and

exceptions. Although reformation is based on full FOL, our ABC Repair System is

based on Datalog which is a decidable subset of FOL.

Reformation is self-inverse so that no information is lost during the repairing

processes, which shows that reformation repairs are in some sense minimal (Bundy

and Mitrovic, 2016). So far, various heuristics have been suggested and implemented

to control the search space of reformation. Additionally, reformation has been adapted

to several logics, such as unsorted first-order logic which is mentioned above (Bundy

and Mitrovic, 2016), many-sorted first-order logic (Mitrovic, 2013), and a common

description logic (Tsialos, 2015).

3.4.4 Abduction

Deduction, induction, and abduction (Hintikka, 1999) are three forms of inference.

In our project, deduction is the inference form of the framework of repair processes

and abduction is one of our repair techniques, which add the axioms of the cause of a

previously unprovable observation to the input Datalog theory.

A set of the desired properties of a cause w.r.t. an observation and the process
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of seeking for such a cause have been developed by (Cox and Pietrzykowski, 1986),

which is employed as a repair technique in our project.

We use K to represent a knowledge base written in well-formed formulae and D

for a domain which is a subset of K. A cause c of the observation o with K satisfies

c∧K Ô⇒ o. Here c and c′ represent distinct causes so c /≡ c′. The properties below

are based on a knowledge base K, which will not be mentioned repeatedly.

P1. c is minimal iff ∀c′, if c Ô⇒ c′ then c ≡ c′.

P2. c is acceptable iff there is a subset S of K and c∧S∧D is satisfiable.

P3. c is nontrivial iff c /Ô⇒ o.

P4. c is basic iff all the acceptable causes of c are trivial.

P5. c is fundamental iff it has all of the above properties.

P1 eliminates the causes which are unnecessary in deducing o. P2 corresponds to

consistency, e.g., when D = K, the condition that c∧ S ∧D is satisfiable, e.g., c is

consistent with K. Example 3.4.3 below is adapted from (Cox and Pietrzykowski,

1986) to illustrate why they propose P2 as a desired property, where the last axiom is

a constraint axiom.
Example 3.4.3. Inconsistent Bird Theory.

bird(X) Ô⇒ f ly(X) (A1)

bird(X)∧unusual(X) Ô⇒ non f ly(X) (A2)

penguin(X) Ô⇒ bird(X) (A3)

penguin(X) Ô⇒ unusual(X) (A4)

f ly(X)∧non f ly(X) Ô⇒ (A5)

Here K is constituted by five axioms (A1 − A5) by directly translating the

example sentences in (Cox and Pietrzykowski, 1986). Assuming the observation that

non f ly(lily), and S is (A2, A3, A4, A5) and then penguin(lily) is the cause. The

reason they abstract S from K is that if A1 is considered, then it is inconsistent so that

penguin(lily) would not be the cause.

It can be seen that their discussions are based on the accepting of an inconsistent

theory. But generally, a theory needs to be consistent before performing its duty of

providing information or knowledge. In our project, inconsistency will be repaired
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first. For example, reformation can increase the arity of predicate bird/1 and then only

the normal bird can fly, as formalised in Example 3.4.4. Alternatively, the predicate

symbol ‘bird’ can be split into ‘normalBird’ and ‘abnormalBird’.

Example 3.4.4. Repaired Bird Theory.

bird(X ,normal) Ô⇒ f ly(X) (A1)

bird(X ,abnormal) Ô⇒ non f ly(X) (A2)

penguin(X) Ô⇒ bird(X ,abnormal) (A3)

f ly(X)∧non f ly(X) Ô⇒ (A5)

Now given the observation non f ly(lily), the cause penguin(lily) can be added

by abduction as the cause. Therefore, we only discuss consistent theories, not only

because it is a basic property at a useful theory, but also because we are capable

at repairing an inconsistent one. In this case, we can revise P2 into P2’ where c is

acceptable iff it is consistent with K.

P3 prunes the cause which is irrelevant to the knowledge based but directly implies

the observation, e.g., the observation itself. From the view of repairing a faulty theory,

expansion of the observations to the input theory is desired in some scenarios and

this kind of repair is incorporated in belief revision, but not abduction. P4 eliminates

intermediate causes. In the end, only the causes which have all of these four properties

are fundamental.

These properties provide a good direction for evaluating whether an explanation

is of good quality. The task of abduction is to find the fundamental cause for an

observation.

The following five-step process to compute the fundamental causes of an

observation are also given by (Cox and Pietrzykowski, 1986). In Step1, the resolution

process may not terminate in First-order logic (FOL) but it does in Datalog.

Step 1. Resolution by refutation. Negate o and resolve ¬o with axioms in K. Continue

the resolution until the remaining sub-goals are irresolvable, which are called a

dead end of o. The set of dead ends w.r.t. one observation is written as G.

Step 2. Retain basic causes Gb. For each dead end b in G, negate all literals in it and

obtain a conjunction of positive literals P1∧ ...∧Pn. This conjunction is a basic

cause of o, written as cb. The set of all cb is Gb.

Step 3. Retain acceptable causes Gba. From the basic set, get the acceptable causes.



42 Chapter 3. Background

Gba = {cb ∣ cb ∈Gb,cb⋃K /Ô⇒}. For a Datalog theory, if there are no axioms in

the form of A5 in Example 3.4.3, it is always consistent so Gb =Gba.

Step 4. Retain nontrivial causes Gban. The set of basic, acceptable and nontrivial

causes is; Gban = {cba ∣ cba ∈Gba, cba /Ô⇒ o}.

Step 5. Retain minimal causes Gbanm. The set of fundamental causes Gbanm is;

Gbanm = {cban ∣ ∀cban1 ∈Gban, cban1 ≠ cban, cban /Ô⇒ cban1}.

The causes found by the above process are only assertions without rules. Based on

the categories of abduction defined in (Schurz, 2008), the above abduction is a factual

abduction, where both the observation and the cause are singular facts. Apart from this

factual abduction, we also developed an analogical abduction algorithm particularly

for finding a rule as the cause of an observation by splitting an existing rule in the input

theory, which is introduced in §5.2.

3.5 Summary

In this chapter, we briefly introduced the related work including Datalog, Herbrand

Structure, belief revision together with epistemic entrenchment, conceptual change

via reformation, abduction. Datalog is the logic of the input theory of our repair

processes. Although it has less expressive power than FOL, Datalog still has wide

applications. Meanwhile, it makes inference decidable and allows a simplified

reformation algorithm. To evaluate whether a Datalog theory is correct w.r.t. the

observations, a benchmark is needed which should be able to represent both the true

assertions and the false propositions. To formalise the desired benchmark, Herbrand

structure is employed, because its ground propositions are both syntactically and

semantically with true values.

Given a benchmark, a fault in a Datalog theory can be detected by the implemented

SL-Resolution, and then fixed by the repair techniques including abduction, belief

revision and reformation, which have been introduced in this chapter. In our project, a

framework is developed which not only combines these techniques but also introduces

new repair plans, e.g., a variant of abduction which deletes unprovable preconditions

from a rule.

These three techniques are applied mostly independently based on one targeted

proof of a fault, because their postulates don’t overlap with each other, e.g., the
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AGM postulates do not apply to reformation, and reformation’s algorithm do not

apply to the other two either (Bundy, 2015). As a theory is faulty usually due to

more than one incorrect proof steps, and each of them could be addressed by different

repair techniques, the final result will usually be the combination of repair operations

generated from different techniques.

The original work of fault definition, detection and repair generation are introduced

in Chapter 4 and 5. In addition, some refinements of the repair process in ABC are

given in Chapter 6. Their implementations are introduced in Chapter 7.





Chapter 4

ABC Repair System: Before Repair

Generation

The components of ABC Repair System is given by Figure 4.1. In this chapter1,

the processes before C3 are presented, which are C1 in §4.1 and C2 in §4.2-4.3. In

addition, §4.4 gives the theoretical basis of the repair generation of C3 by answering

the essential questions of what the postulates and search strategy of the repair

generation are and analysing the repair techniques of abduction, belief revision and

conceptual change based on the defined faults individually. Then the repair algorithm

of C3 is introduced in Chapter 5, the definition of maximal sets of commutative repair

plans (MSCR) and the sub-optimal pruning of C4 in Chapter 6. The properties of the

algorithm of repair generation are important but especially difficult to analyse, which

can be a good extended research topic. Although we do not pursue these analysis in

this thesis, we outline it as point 1 in the future work section §9.1 on page 183.

The inputs of ABC are a Datalog theory (T) and a Preferred Structure (PS) which

is defined in §4.2. The output is a set of repaired fault-free theories. Note that PS is

like a benchmark in our repair mechanism, which is not allowed to be changed in ABC.

Because each original repair technique could generate multiple alternative repairs for

each fault, it is also common that the repair algorithm generates more than one repair

solution. Thus, ABC outputs a set of the repaired theories, rather than a single one. It

is possible that no repair solution can be found, then the output is an empty set and the

repair process of the current branch ends in failure.

C1 is a pre-process which checks whether the PS is self-contradictory and

1Recall that all predicate symbols and constants start with lowercase letters, and variables start with
capital letters.

45
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Inputs:
𝕋, ℙ𝕊

Output:
{𝕋′1, 𝕋!2…}

Fail

C4. Prune the Sub-optimal

C1. Pre-Process C2. Detect Faults

C3. Repair Faults
(MSCR)

Success
Drop

Fault-
free

Yes

No

Figure 4.1: Flowchart of the ABC Repair System: green arrows deliver a set of theories

one by one to the next process; the blue arrow collects and delivers theories as a

set; When some faulty-theories are not repairable, they will be dropped from the repair

process.

calculates a minimal set of axioms by pruning redundancy, as discussed in §4.1. It

reduces the search space of both fault detection and repair generation. Given a minimal

set, faults are detected by C2. If there is no fault, then the theory is collected as a

output. Otherwise, the information about the fault, which could be either proofs or

failed proofs, is provided to C3 to generate repairs by combining abduction, belief

revision and reformation. If no repairs can be found or the resource threshold, defined

in Definition 4.0.1, is reached, the process will be terminated with the failure of finding

any repaired theory. The resource threshold may cause the problem of not being able to

find a solution even if there is one, especially when the threshold is improperly small,

but it helps to return the simplest repairs which contain the least repair operations, and

avoid non-termination of a long search branch. This threshold can be set to be infinite,

so no threshold is enforced.

Definition 4.0.1. The resource threshold includes the depth limit of search branches

and the maximum number of repair operations given by the user.

Otherwise, C3 generates all possible repair plans in parallel. There could be more

than ten repairs for one fault depending on the components of that fault’s proofs: the

more axioms or signature items are involved in its proofs, the more repair plans are

available. All of these repair plans are combined into MSCRs. Then C3 outputs a

candidate set of semi-repaired theories after applying the MSCRs respectively. Then

C2 will check the remaining faults of these candidates one by one. This search process

is introduced in §4.4.2.

By comparing the number of the remaining faults of all candidates, sub-optimal
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ones will be pruned by C4. Entrenchment is measured to order repairs. This is

discussed in §6.2 . If an optimal repaired theory is still faulty, it will be further repaired

by C3. Otherwise, it will be collected as one of the outputted fault-free theory. The

process among C2, C3 and C4 repeats until no repairable faulty theories are left in the

process.

4.1 Minimal Sets Computation

In a logical theory, any axiom which is derivable from the others can be seen as

a redundancy, which increases the search space of reasoning when detecting faults.

Worse still, if we repair a redundant axiom, the fault caused by it will still be derivable

from the others. Then further repairs to axioms have to be given. Therefore, pruning

redundant axioms first contributes a smaller search space for both detecting faults and

generating repairs. This section introduces how we compute a finitely minimal set of

axioms from the theory.

Based on SL-Resolution implemented by ourselves, the general process of

computing the minimal sets is to check the provability of each axiom by trying to prove

it from the others. If an axiom is provable, it will be deleted, resulting in a smaller set.

Repeat checking the provability until all of the sentences in a set are unprovable from

the others, then this set is a minimal set. It needs to be noticed that the minimal sets of

a theory can be multiple, so that an axiom in one minimal set could be a redundancy

in another.

Given an input theory, smaller sets are explored step by step for searching for

minimal sets. Depth-first is chosen as our search algorithm, just as in (Russell and

Norvig, 1995), which does not need to record all the search branches as breadth-first

does.

There can be multiple minimal sets for a given theory. Before discussing about

the selection among these minimal sets, their differences should be analysed first.

Although they contain different axioms and their size can be different as well, these

minimal sets are equal up to variable renaming in terms of their theorems and

signatures. Because they are all computed from one original theory.

Therefore, rather than interactively select an arbitrary one of the minimal sets as in

(Plotkin, 1971), the first one being and found by our depth-first search is automatically

chosen as the output of the computation of the minimal set in this thesis. This choice

keeps the whole process in ABC being automatic.
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It can be a future work to investigate whether the repairs are significantly different

depending on the minimal sets systematically, discussed as point 9 in §9.1.

Given one minimal set, the detection and repair of its faults are discussed in the

following sections.

4.2 Fault Definition Based on a Preferred Structure

Common faults of a logical theory are inconsistency and incompleteness. Without

constraint axioms2, a Datalog theory is guaranteed to be consistent by being unable to

prove a negative statement. When there are constraint axioms, a Datalog theory can be

inconsistent due to the constraint violation, as defined in Definition 4.2.1.

Definition 4.2.1 (Constraint Violation). The inconsistency caused by a constraint

axiom is a constraint violation, which occurs when all the preconditions of that

constraint axiom are provable as theorems of the Datalog theory.

As for completeness, it may be too strong a requirement.

Definition 4.2.2. A complete theory is one in which every sentence is either provable

or its negation is.

However, we do not have a complete theory in most of applications, e.g.,

knowledge graphs. Some existing theories are inherently incomplete, e.g., Peano

Arithmetic, as shown in Godel’s Incompleteness Theorem (Smullyan, 1992).

Meanwhile, it is unrealistic and unnecessary in some sense for a theory to be complete.

Instead of incompleteness, we are going to focus on those propositions which

should or should not be the theorems of an object theory according to the users’

requirements. For example, a scientist verifies a physics theory which gives the

information about a bottle by experimental observations. Then the observations are the

ground truth of the theory. Suppose that the observation tells that the bottle is white

and is located in a corner, then colour(bottle, white) and location(bottle, corner) should

be theorems of the theory. Meanwhile, if the observation is that the bottle is not empty,

then empty(bottle) should not be a theorem of the theory. As for statements which

make no sense to the theory, e.g., location(bottle, bottle), or the ones which makes

sense but describes not important things to the current experiment, e.g., clean(bottle),

2Constraint axioms are defined in Definition 3.1.1 on page 28.
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they are not interesting to the scientist and would not be of concern while verifying the

theory.

It can be seen that the guidance information for adjusting a logical theory could

be considered as the users’ requirements which tell which propositions should or

should not be the theorems of that theory, while ignoring the meaningless propositions.

Resembling the idea of Herbrand Structures (Wikipedia contributors, 2017), those

different sets of ground propositions are designed to constitute the following defined

Preferred Structure. In this context, structure refers to the relation constructed by

different sets of propositions based on their truth values according to the user.

Definition 4.2.3 (Preferred Structure). A Preferred Structure (PS) is a pair of

structures constructed over the signature of a logical theory (T):

True Set (T (PS)): The set of the ground propositions which should be provable by T.

These propositions are called the preferred propositions.

False Set (F(PS)): The set of the ground propositions which should not be proved by

T. These propositions are called the violative propositions.

A PS describes the user’s requirements that a faithful T should follow. As shown

in Figure 4.1, PS is a required input in addition to the logical theory. It is similar to

the positive and negative examples in the field of ML. Although a PS is unchangeable

in this thesis, it will be able to be modified for some extensions of ABC in the future,

discussed in point 6 in §9.1. Giving it a specific definition with a distinguishing name

contributes to a clear definition of the faults to repair in the following context. Also,

the intention of modifying a PS in future work is different from the operation of the

positive and negative examples in ML. Thus, another name helps to distinguish them

from each other.

Note that a PS could be partial. Some propositions could occur neither in the true

set, nor in the false set. Because the user’s knowledge is limited, or the user only

focuses on some particular assertions which represent the content that the user cares

about.

On the other hand, it is vital that T (PS) and F(PS) do not overlap. Otherwise, PS
is ineffective by being self-contradictory.

Theorem 4.2.1. No theory can respect PS if T (PS)∩F(PS) ≠ ∅.

Proof. Assume that α ∈ T (PS)∩F(PS) and T respect that PS.
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Then T should be sufficient to prove all propositions in T (PS) including α. Thus

we have:

T ⊢ α (4.1)

Meanwhile, T should be compatible with PS by not proving any proposition in

F(PS) including α. Thus we have:

T ⊬ α (4.2)

Because Equation 4.1 and 4.2 conflict with each other, the assumption of T respecting

that PS is false.

If there is a proposition in both T (PS) and F(PS), our system’s process stops with

a warning. In this case, the user has to correct the self-contradictory PS before giving

it as the input of the ABC system.

Example 4.2.1. Swan Theory.

german(X) Ô⇒ european(X) (A1)

european(X)∧ swan(X) Ô⇒ white(X) (A2)

Ô⇒ german(bruce) (A3)

Ô⇒ swan(bruce) (A4)

In Example 4.2.1, there are four axioms saying that Germany is part of Europe

(A1), all European swans are white (A2), and the swan named Bruce (A4) is a German

swan (A3). Then one theorem is that Bruce is white. Imagine the user observes the

fact that Bruce is black. In this scenario, the PS for formalising the user’s knowledge

that Bruce is black rather than white is:

T (PS) = {black(bruce)}

F(PS) = {white(bruce)}

An object theory should follow its PS by proving the preferred propositions, while

not proving the violative propositions, which can be written as logical notations 4.3

and 4.4. This makes the theory correct and useful to the user.

∀α, α ∈ T (PS), T ⊢ α (4.3)

∀β, β ∈ F(PS), T ⊬ β (4.4)

Accordingly, the possible faults of a logical theory are incompatibility and

insufficiency w.r.t. an effective PS.
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Definition 4.2.4 (Incompatible and Insufficient).

• An incompatible theory T w.r.t. PS is one which has a theorem that is in the false

set: ∃β, β ∈ F(PS), T ⊢ β.

• An insufficient theory T w.r.t. PS is one in which a proposition is in the true set,

but is not a theorem of the theory: ∃α, α ∈ T (PS), T ⊬ α.

The defined faults represent the conflicts between the input theory T and PS. In

the swan example, the original theory proves that Bruce is white, which is an

incompatibility, and does not prove that Bruce is black, which is an insufficiency. It

is clear that white(bruce) and black(bruce) are the sources of the incompatibility and

insufficiency respectively.

One application of our framework is in physical experiments. The observations

could be represented in a PS, and its corresponding logical theory should follow that

PS. If there is any conflict between a theory and the experimental results, then the

conflict corresponds to incompatibility and insufficiency.

Although formalising a PS by observations is a very important application, it is not

the limit of our framework. For example, PS can also formalise the user’s requirements

for guiding plan generation, or represent the secure operating specifications for an

automated operating system. As the benchmark for a fault-free logical theory, PS is

not allowed to change in this thesis.

Both the incompatibility and the constraint violations are caused by the existence

of unwanted proofs. Thus, constraint violation will be seen as a special case of

incompatibility which gives a compact discussion in terms of repair generation. In

conclusion, the faults of an object theory to be repaired in this thesis are insufficiency

and incompatibility w.r.t. a PS, which represents the user’s knowledge and opinion.

Note that PS is not allowed to be changed in ABC.

4.3 Fault Detection

This section shows how to detect the faults of a Datalog theory by employing selected

literal (SL) resolution.

To detect constraint violation, each constraint axiom is taken as the goal clause

directly. If the empty clause can be derived, then a proof of constraint violation is

found.
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To detect insufficiency or incompatibility, we need to check the provability of a

target proposition from a Datalog theory.

For detecting incompatibility, the negation of a violative proposition in F(PS)
is set as the initial goal for refutation based on the input theory. Each violative

proposition, in turn, is checked in the same way. Incompatibility is detected if the

input theory proves a violative proposition. In this thesis, � represents false.

A theory T is incompatible w.r.t. a violative proposition β,

iff T′ ⊢ �, where T′ =T∪{¬β}, β ∈ F(PS).
(4.5)

In this thesis, we use the left-hand side term of each resolution to represent a

goal/sub-goal, while the right is the input clause side. For example, Figure 4.3 shows

how the Swan theory proves the violative proposition of the PS, white(bruce). There

are four RSs in total with each highlighted in different colours. In RS1, the initial

goal is the negation of the violative proposition, white(bruce) Ô⇒ , which is resolved

by the head of axiom A2, white(X), by substituting bruce for X . In the same way,

european and german are resolved in RS2 and RS3 respectively. In RS4, the empty

clause is derived, which means that the input Swan theory proves white(bruce), so the

Swan theory is incompatible.

white(bruce) Ô⇒
european(bruce)∧ swan(bruce) Ô⇒ european(X)∧ swan(X) Ô⇒ white(X)

german(bruce)∧ swan(bruce) Ô⇒ german(X) Ô⇒ european(X)

swan(bruce) Ô⇒ Ô⇒ german(bruce)
Ô⇒ Ô⇒ swan(bruce)

Figure 4.3: RSs of the incompatibility w.r.t. white(bruce) of the Swan theory: same

colour is used to highlight a pair of propositions that unify with each other.

In a sufficient theory, all the preferred propositions should be logical consequences

of the object theory. Similar to detecting incompatibility, preferred propositions need

to be checked one by one. By negating a preferred proposition into a goal, the theory

can be concluded to be sufficient concerning the preferred proposition if and only if

resolving the goal with the input theory results in an empty clause. Otherwise, the

object theory is insufficient. Repeat the process until all the preferred propositions are

checked.
A theory T is insufficient w.r.t. a preferred proposition α,

iff T′ ⊬ �, where T′ =T∪{¬α}, α ∈ T (PS).
(4.6)
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The insufficiency of the Swan theory is caused by the failure to prove the preferred

proposition black(bruce). The inference of the insufficiency starts by negating the

proposition as the initial goal: black(bruce) Ô⇒ . In the Swan theory, there is no

available literal to resolve the goal, so the inference stops with black(bruce) Ô⇒
left. Because the inference ends with a non-empty clause, it can be concluded that the

input Swan theory fails to prove the preferred proposition black(bruce). Therefore,

the Swan theory is insufficient.

Insufficiency search has to be exhaustive in order to not miss any resolution

possibility. This kind of proof, which results in un-resolvable non-empty clauses, is

partial or a failed proof, which is called the evidence of the insufficiency in this thesis

and the evidence for short.

The statistical data of the faults of a theory can be formalised as in Definition

4.3.1. Given a theory (T) and a PS (PS), the fault sets of that theory are defined as the

incompatibility set (IC(T,PS)) and the insufficiency set (IS(T,PS)).

Definition 4.3.1 (The Incompatibility and Insufficiency sets). Let:

IS(T,PS) = {φ ∈ T (PS)∣T /⊢ φ}

IC(T,PS) = {φ ∈ F(PS)∣T ⊢ φ}

Theorem 4.3.1. A theory is fault-free if and only if its incompatibility and insufficiency

sets are both empty.

The detection of incompatibility and insufficiency of a theory are independent

processes that can be done separately. Again, as a special case of incompatibility,

constraint violation is detected during the detection of incompatibility. Therefore, it is

immaterial which fault should be checked for first.

4.4 Theoretical Basis of Repair Generation

In this section, a set of repair postulates is proposed, after which the search strategy for

fault-free theories is discussed, and then candidates of repair techniques: conceptual

change, belief revision and abduction, are analysed based on the faults of insufficiency

and incompatibility.
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4.4.1 Repair Postulates

Resembling the idea of the AGM postulates for belief revision (Gärdenfors, 1992),

several postulates are formulated in this section. These postulates are used for guiding

the design of repair generation, rather than properties to be proved. The underlying

motivation is that we want to generate reasonable repairs when abduction, belief

revision and conceptual change are combined.

Postulate 1 (Repair Generation). Let T and T′ be the logical theory and its repaired

theory, respectively. The empty set is written as ∅, and α, β are ground propositions.

The repaired theory T′ fully follows PS by:

∀α, α ∈ T (PS), T′ ⊢ α

∀β, β ∈ F(PS), T′ ⊬ β

Then the postulates for the repair generation are as the following.

1. T can be repaired, iff T (PS)∩F(PS) = ∅
An input theory can always be repaired, if and only if PS is not

self-contradictory. It can be seen that PS must not be self-contradictory in order

to achieve a faithful theory.

2. T′ =T, iff∀α, α ∈ T (PS), T ⊢ α;∀β, β ∈ F(PS), T ⊬ β.

Do nothing if the input theory already satisfies PS.

3. If T is a Datalog theory, then T′ is also a Datalog theory.

This postulate requires that the repaired theory also follows the restrictions of

Datalog if the input theory is a Datalog theory. We assume that no matter which

logic we are working in, repairs should not break the restriction of the logical

format convention. Otherwise, it would come up with something that the system

which uses T or T′ cannot understand, and cause unexpected problems.

4. Make minimal changes.

All the information conveyed by axioms is considered to be important, and we do

not want any unnecessary informational loss. Thus, the signature and all axioms

of the input theory are considered to be correct so that repairs should not change

them unless they are involved in an unwanted proof.

From the flowchart of ABC in Figure 4.1, it can be seen that the first two

postulates have been employed: C1 checks whether PS is self-contradictory and
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fault-free theories are output before C3 without further changes. In our system, the

maxi-choice belief revision (Gärdenfors, 1992) is chosen, which corresponds to the

minimal change. Meanwhile, all possible repairs are generated by applying the repair

techniques to the axioms or signature elements which are involved in the proofs of a

fault. However, as the over-production of repairs is a common issue for each of the

individual repair technique, and it becomes worse for the combination repair system

(Urbonas et al., 2020). Thus, optimal repairs, which solve the most faults with the

fewest operations, will be selected as the final repair solutions, discussed in §6.4.

When repairs are generated for the currently targeted fault, these new repairs will

be combined with the existing ones which solve previous faults. Then all of these

currently possible repair combinations will be evaluated, from which the sub-optimal

ones will be pruned to reduce the search space of the final solutions.

When the repair solution is compound, the prune sub-optimal repair is a necessary

stage in the whole repair process. Then a desired repair is possibly pruned as the

sub-optimal. But it rarely happens in our evaluation. If one hopes to loosen the

restriction of only applying the optimal repairs, a weight w can be employed to keep

all the repairs whose corresponding theories have at least w fewer faults than others.

4.4.2 Search Strategy for Fault-free Theories

The effect of a repair on the logical consequence of a theory is hard to predict, which

means that one repair can fix multiple faults, and alternatively, one repair can introduce

new faults while fixing its targeted fault. Then applying repairs of all detected faults

at the same time can be inaccurate. For example, there are two faults F1 and F2 in T,

of which R1 and R2 are repairs generated for F1 and F2 based on T respectively. It

is possible that R1 repairs F1 and its side effect fixes F2, in which case R2 becomes

either unnecessary or even incorrect by introducing new faults to the repaired theory

of R1. Then it is not a minimal change to apply both R1 and R2 to T.

To avoid the above discussed mistake, a basic solution is the search strategy shown

in Figure 4.4, where repairs are applied respectively, and then faults are detected

based on each resulting semi-repaired theories. As shown in Figure 4.4, repair R1

is generated for fixing fault F1, after which apply R1 to T resulting T1, and then detect

the faults of T1 and generate corresponding repairs until a fault-free theory is found or

no repairable theory is left. The same process is conducted for F2. Note that eitherR3

or R4 fixes the fault F3.
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Figure 4.4: Basic search strategy of fault-free theories: each edge is labelled with

< x,y >, where x refers to the repaired fault and y the repair which fixes x; a search

branch terminates with a fault-free theory denoted by green nodes or a non-repairable

theory denoted by red nodes3 or when it reaches resource threshold denoted by the red

nodes with ‘Reach Limit’.

A search branch terminates when it satisfies one of the following conditions.

1. A fault-free theory is found.

2. No repair can be generated for the detected fault.

3. The resource threshold is reached, which is either the depth limit of search

branches or the limit of the number of applied repairs in the current theory.

Although we aim at generating all possible repairs, it is possible that a repair is not

covered by any candidate repair technique that ABC combines. Then it is possible that

a fault cannot be repaired. As a repair can introduce new faults when repairing one, a

search branch can be infinite in an extreme situation. Thus, the resource threshold is

essential for ABC to stop that infinite search.

The search strategy in Figure 4.4 is basic because the refinement mechanism of

combining commutative repair plans as MSCRs and the sub-optimal pruning has been

developed to reduce the search space of fault-free theories, which are introduced in

§6.3 and §6.4, respectively.
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4.4.3 Repair Technique Analyses: Conceptual Change, Belief

Revision and Abduction

The existing repair techniques including abduction, belief revision and conceptual

change via reformation have been introduced in §3.4.4, §3.4.1 and §3.4.3 respectively.

In this section, these repair techniques are combined together with the variants of

the first two. The original abduction and belief revision add or delete axioms as

a whole respectively, while conceptual change via reformation focuses on changing

the signature of a theory. Additionally, the variants (of the first two) delete or add

preconditions to an axiom4.

The analysis of repair techniques in this section is the theoretical basis of the repair

algorithm introduced in Chapter 5.

In the following discussion, the argument of a proposition is written as a vector,

e.g., p(c⃗), and the argument vectors can be considered as sets in some equations, e.g.,

v ∈ c⃗ means that v is an argument of proposition p(c⃗). When an argument only contains

constants, it is written as a vector in lowercase, e.g., p(c⃗). When it is a mix of variables

and constants or only variables, it is represented with uppercase, e.g., p(T⃗).

4.4.3.1 Conceptual change

Conceptual change has different meanings in the literature. A clear definition of our

usage is necessary. In this section, we define and analyse possible conceptual changes

in a logical theory, and explain why each conceptual change is necessary.

First of all, let us start with analysing the Datalog theory of mothers (Tm) given in

Example 4.4.1. There are five facts and a rule in Tm, whose signature is constituted by

mum/2 and f emale/1.

Example 4.4.1. Motherhood Theory Tm.

Ô⇒ mum(lucy, tom)

Ô⇒ mum(lily, tina)

Ô⇒ mum(anna, david)

Ô⇒ mum(lily, victor)

Ô⇒ mum(anna, victor)

mum(X , Y) Ô⇒ f emale(X)

In Tm , the concept of mother is given by the predicate mum/2, which indicates that

there are two components of the concept of mother. The components include the

4The domain dependent repair of deleting or adding preconditions are proposed by (McNeill and
Bundy, 2007).
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mother and her child. Meanwhile, mothers are always female according to the rule.

Here the instances of mothers include that lucy is the mum of tom; lily is the mum of

tina, etc.

From the example, it can be seen that a predicate name and the arity of that

predicate are crucial for formalising the corresponding concept. The predicate symbol

corresponds to the name of a concept, which is the most important part. The arity of a

predicate could be seen as the number of components that constitute the corresponding

concept with a certain order. Apart from the predicate name and its arity, another

factor that plays a role in the signature are arguments. The two aspects of arguments

of a predicate include the order of the arguments and the domain of each argument.

The order of the arguments of a predicate is relevant to how the concept is

described. Taking code(lgw, london) as the example, the code of the airport of a

city is written by the predicate code/2, where the first argument is the code of an

airport, and the second argument is the name of the city where that airport is located.

Alternatively, code′(london, lgw) represents that the first argument is the city where

the airport is located, and the second argument is that airport’s code. It can be seen that

if the order of the arguments is different, the relation among arguments is different.

Therefore, apart from the predicate name and its arity, the concept represented by a

predicate also depends on the order of its arguments. Currently, reformation does not

change any argument order, so changing argument order is not a RP of ABC in this

thesis. But it is worthwhile to explore as a piece of future work, discussed as point

5 in §9.1. Particularly, repairing argument orders can be useful when aligning two

databases where the mismatch of argument orders can happen.

Apart from the order, argument domain is another property of an argument of a

predicate, defined in 4.4.1. For example, the domain of the first argument of predicate

mum/2 in the above motherhood theory is D(mum,1,Tm) = {anna, lucy, lily}. It can

be concluded that there are three mothers including Anna, Lucy and Lily, according

to the theory. When there is a constant disappearing or a new constant discovered, the

corresponding argument domain is retracted or expanded respectively.

Definition 4.4.1 (Argument Domain). In logical theory T, the domain of an argument

w.r.t. a predicate is the set of all constants that can appear in the position of that

argument in the theorems of the theory. The function D(p, n,T) returns the argument
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domain of the nth argument of predicate p in T.

D(p, i,T) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

{ci∣T ⊢ p(c⃗), ci = γ(p(c⃗), i)} 1 ≤ i ≤ arity(p)

∅ otherwise
(4.7)

where γ(p(c⃗), i) = γ(p(c1,c2, ...cn), i) = ci, and c1,c2..cn are constants.

As a part of conceptual change, the change of argument domain could be a vital

repair for the theory in sorted logic. But Datalog is unsorted, so the change of argument

domains is not an option of generating a repair but a possible consequence of repairing

a faulty theory because its theorems are changed.

In summary, a concept in a Datalog theory can be changed in three main ways:

expansion, contraction and revision.

Definition 4.4.2 (Conceptual Changes).

Concept Expansion: A new predicate/constant is added to the signature.

Concept Contraction: An existing predicate/constant is removed from the signature.

Concept Revision: The argument domain of a predicate is changed; or the arity of a

predicate is changed in the signature.

Concept expansion and contraction are easy to understand, while concept revision

is more complex. When the order of the arguments of a predicate is changed, the

concept represented by the predicate is changed regarding the relationship between the

arguments. On the other hand, the change of arity corresponds to the change of the

numbers of the components that constitute the concept which the predicate represents.

An example of concept revision of argument order is aligning the theories

from two different systems. Assume that it is the airport code from two different

systems to align, and one of them write the airport code as code(lgw, london), while

another as code(london, lgw). We decide to uniform the signature into the way

code(lgw, london) is expressed, then the arguments order of all instances of code/2
from the other system will have to be reversed.

Concept revision of arity change is necessary when the number of the components

of a concept changes. We need to increase the arity of a predicate when there is a

new component of the concept discovered which cannot be described by the existing

arity. Assume that Lily is Victor’s birth mother, and all other mothers are also birth

mothers, except that Anna is the stepmother of Victor. For distinguishing different
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types of mothers, a new argument could be added as the component of describing

motherhood type. The revised concept mum and the corresponding theory which

correctly represents the mum concept are shown in Example 4.4.2, with changes

highlighted in red.

Example 4.4.2. Enriched Motherhood Theory by Conceptual Change.

Ô⇒ mum(lucy,tom,birth)

Ô⇒ mum(lily,tina,birth)

Ô⇒ mum(anna,david,birth)

Ô⇒ mum(lily,victor,birth)

Ô⇒ mum(anna,victor,step)

mum(X ,Y,Z) Ô⇒ f emale(X)

It can be seen that the new argument tags each instances of the concept mother

into different groups. As for the rule, it is a new variable added as the new argument:

without the evidence of a non-female mum, all types of mum are concluded to be

female. This is an application of the minimal change: because there is no fault caused

by that rule, the rule is kept to express the same relation that all mums are female after

propagating the arity increment of mum.

Conceptual revision does not equal conceptual contraction followed by conceptual

expansion. For example, one may think that increasing the arity of a predicate would

be equivalent to remove the predicate’s old arity and then add that predicate’s new

arity. However, that is not true because the contraction causes informational loss, and

the expansion function does not know what axioms to add back. As aforementioned,

Example 4.4.1 is the input theory and Example 4.4.2 is the output theory repaired by

conceptual revision, where the fact that Anna is a different type of mum is represented

by the third argument of mum. To illustrate why the combination of contraction and

expansion cannot achieve what revision does, we model the process by assuming that

a contraction function deletes all axioms of mum/2 from the input theory. Then all

axioms of that predicate are lost. Even if the contraction function backs up the axioms

being deleted, they cannot be directly used as the input for conceptual expansion

because they have an incorrect arity. The gap is that a new argument needs to be

added to all the backed up axioms, which creates new axioms with a new arity for the

expansion function to add. A detailed question is what the value of the new argument

of these axioms’ should be. The discovery of the value is the trigger of the conceptual

revision: one axiom is of a different type from the others. In summary, a conceptual

revision function can be formalised by combining a conceptual contraction function

which records all deleted axioms, a new argument supplement function which creates
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new terms for the new argument positions, and a conceptual expansion function.

The components of a concept are dynamic. When a component becomes useless

for a concept, the corresponding argument should be abandoned, thus the arity of the

corresponding predicate decreases. For example, to distinguish British citizen and

British resident, the relevant information about David is represented as below:

Ô⇒ country(david,uk,citizen)
Ô⇒ country(david,uk,resident)

Imagine that policy changed, and the resident is the same as the citizen from all the

perspectives, then the last argument becomes useless. The axiom should be written as:

Ô⇒ country(david,uk)

Consequently, the arity of the predicate decreases along with the deletion of the

argument which describes the useless feature of the concept.

In this section, we have defined conceptual changes, which include concept

expansion, concept contraction and concept revision. We analysed that concept

revision is necessary by giving examples. However, we have not given an algorithm of

conceptual change yet. In the next section, reformation, an algorithm of conceptual

change is given for repairing the defined faults in our framework, together with

abduction and belief revision.

4.4.3.2 Repair Techniques Analysis based on the Defined Faults

The strategy for addressing each fault is shown in Table 4.1: incompatibility could

be repaired by blocking all unwanted proofs of each violative proposition, and

insufficiency could be repaired by unblocking a wanted proof of each preferred

proposition. Blocking a proof could be done by breaking any RS in it, while

unblocking a proof requires building all necessary RSs.

Incompatibility Insufficiency

Fault ∃β ∈ F(PS),T ⊢ β ∃α ∈ T (PS),T ⊬ α

Target T′ ⊬ β T′ ⊢ α

Core

Task

Blocking all proofs of β. Unblocking one failed proof of α.

Method Break one RS in each proof. Build all necessary RSs.

Table 4.1: The strategy of repairing a faulty theory T.



4.4. Theoretical Basis of Repair Generation 63

In this section, we discuss the repair strategy of technique candidates: abduction,

belief revision, and conceptual change, for repairing the defined faults. An algorithm,

reformation, is introduced for generating repairs of conceptual changes. Additionally,

a rule can be changed by deleting or adding a precondition (McNeill and Bundy, 2007),

which are the variants of abduction and belief revision.

Original Abduction.
The underlying reasoning of abduction is the inference to the best explanation. Given

an observation, abduction seeks for its explanation (Cox and Pietrzykowski, 1986). If

the observation is not a logical consequence of the original theory, abduction will add

the explanation as an axiom, which could be an assertion or a rule. With no extra

information, the solution of abduction is not unique because there could be different

ways of proving the observation.

Abduction in this Thesis.
1. The application of the original abduction. Regarding a preferred proposition

in T (PS) as the observation, abduction repairs insufficiencies by adding axioms.

Abduction could directly add a preferred proposition. However, directly adding

everything that is true would result in a clumsy theory, and generalising specific facts

into rules results in a better understanding and a theory from which we can derive all

theorems and discover similar facts that follow the rules. For example, a theory of

gases that just added all observations of gas pressure and volume is inferior to one

that includes Boyle’s law. Therefore, it is better to add a rule which proves not only

the targeted preferred proposition but also several other axioms and/or other preferred

propositions, while not proving any proposition in F(PS).

By summarising relevant theorems of the goal to prove, a new rule can be

generalised from the body of relevant theorems and the head of the goal. Alternatively,

the new rule can be found by analogising an existing and relevant rule.

2. The variant of abduction. The targeted observation can be unprovable due to

improperly restricted preconditions in rules. Then the observation can be provable

by deleting those improper preconditions, in which case the repaired rule is the

explanation of the corresponding observation. This kind of fault is detected when

a rule is involved in a partial proof of a preferred proposition and at least one of

its preconditions is unprovable. Then that proof can be unblocked by removing

all unprovable preconditions from that rule. In this case, the repair of deleting the

preconditions is classified as a variant of abduction.
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Original Belief Revision.
The underlying reasoning of belief revision is deduction. Belief revision works on

incorporating new information which is inconsistent with the original knowledge base

(Gärdenfors, 1992). The inconsistent new information is usually represented as a new

belief, e.g. β. Then the revision function adds the new belief and deletes old ones to

make the revised theory consistent, which is blocking all proofs of ¬β. From the view

of proofs, the task of a revision function is to break the unwanted proofs with minimal

changes.

Belief Revision in this Thesis.
1. The application of the original belief revision. To repair the incompatibility, belief

revision is used to block the proofs of the violative propositions from F(PS). In order

to block these unwanted proofs, belief revision deletes axioms from the logical theory.

2. The variant of the belief revision. When the preconditions of a rule is not strict

enough to summarise its conclusion, new preconditions should be added to block the

unwanted proofs. Thus, to block the unwanted proof of a violative proposition, a new

precondition is added to a rule which has been involved in the unwanted proof. This

new precondition should be unsatisfied w.r.t. the violative proposition. In this case, the

repair is classified as a variant of belief revision that blocks unwanted proofs.

Original Reformation.
Reformation is triggered by the reasoning failure that T proves an unwanted assertion

or fails in proving a wanted one (Bundy and Mitrovic, 2016). The underlying reasoning

of reformation is deduction, and was originally in FOL. By changing the signature of

a theory, reformation inverts the outcome of the targeted RS, which contributes to

blocking or unblocking proofs. The repair types of the reformation for FOL include

changing the name or the arity of a predicate or function, changing the name of a

constant or changing a constant into a term containing a variable.

Reformation in this Thesis.
Because our work is based on Datalog, reformation is much simpler than that for FOL.

For example, changing a constant into a term containing a variable would introduce a

function. As function symbols are not permitted in the circumstance of Datalog, that

kind of repair is omitted in our RPs of reformation.

Table 4.2 gives reformation RPs on different types of resolution problems, in which

R1 and R2 block unwanted but successful RSs (incompatibilities), while R3 unblocks

wanted but failed RS (insufficiencies). Each repair plan can be applied to either the

left side or the right side of the unification. For simplicity, only the ones applied to the
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RS Code Reformation Repair Plan

p(Ð→S n) ≡ p(Ð→T n)
R1.1 Rename input side p: p(Ð→S n) /≡ p′(Ð→T n).

R1.2 Rename one constant in
Ð→
T n, e.g., let si ≠ t′i , then

p(Ð→S n) /≡ p(Ð→T ′n)..

R1.3 Add distinguished constants c,c′ as new

arguments: p(Ð→S n,c) /≡ p(Ð→T n,c′).

c ≡ S R2 Weakening S to c′: c ≠ c′.

p1(
Ð→
S n) /≡ p2(

Ð→
T m) R3 Replace either side by the other: p1(

Ð→
S n) ≡

p1(
Ð→
S n).

Table 4.2: RPs of reformation for inverting the outcome of RS in this Thesis: the changes

are highlighted in red; unification is denoted by ≡, of which goal/sub-goal is on the

left-hand side, and input clause on the right; ’=’ denotes the equality between terms

or predicate symbols; P is a predicate; S and T are either constants or variables;

n≥0,m≥0; 1≤ i≤n; c and c′ are constants, c≠ c′; p refers to a constant when its arity is

0;the last row is for repairing the insufficiencies while the others for incompatibilities.

right side are denoted in Table 4.2.

R1 and R2 make the originally successful RSs fail: R1.1 renames a predicate

on either side, R1.2 changes one argument of the predicate on either side, and R1.3

increases arity by 1, and then adds distinguished constants as arguments to predicates

on both sides. R1.3 is an application of concept revision. When the resolution is

between a constant goal and a variable from input clause side, it can always succeed

unless weakening the variable to a distinguished constant as in R2. R3 replaces

p2(
Ð→
T m) by p1(

Ð→
S n) for making the originally failed RS between p1(

Ð→
S n) and p2(

Ð→
T m)

successful. Alternatively, p1(
Ð→
S n) can be replaced by p2(

Ð→
T m) to unblock the RS.

Considering the definition of PS, reformation is capable of repairing both

incompatibility by R1 or R2, and insufficiency by R3.

Incompatibility Insufficiency

Belief revision: deletes axioms; adds

unprovable preconditions to a rule.

Abduction: adds an assertion/ rule; deletes

unprovable preconditions from a rule.

Reformation: changes the signature of T.

Table 4.3: Technique candidates for repairing faults.
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To summarise, all technique candidates can be summarised according to the defined

faults of the incompatibility and the insufficiency in Table 4.3.

Although this section analyses each repair technique based on the defined faults, it

does not give the corresponding algorithms’ details. The algorithm will be described

in the next chapter.

4.5 Summary

In this chapter, a PS is defined for formalising user’s requirements. The possible

ways in which a faulty theory can fail in following its PS are by being insufficient or

incompatible. When there are constraint axioms, a Datalog theory can be faulty due to

constraint violations. The insufficiency is caused by the lack of wanted proofs, while

both of the incompatibility and the constraint violation are caused by the existence

of unwanted proofs. Thus, the constraint violation will be seen as a special case of

incompatibility for a compact discussion in this thesis.

A set of repair postulates are proposed for guiding the system to generate

reasonable repairs. Based on the signature of a logical theory, conceptual change is

defined including concept expansion, concept extraction and concept revision. The

definition of conceptual change can clearly reflect the concept changes both on the

level of predicates and the arity and arguments of a predicate. Repair techniques,

including abduction, belief revision, reformation and their variants are analysed based

on the defined faults of incompatibility and insufficiency. The above work constitute

the theoretical basis of the repair algorithm of ABC introduced in Chapter 5.



Chapter 5

ABC Repair System: Repair Algorithm

In this chapter1, the repair algorithm of the ABC Repair System (ABC) is presented,

which combines abduction, belief revision and conceptual change for repairing faulty

Datalog theories (Li et al., 2018).

As the Preferred Structure (PS) is not allowed to change in this thesis, the following

generation condition is applied to the repair algorithm to protect PS.

• Generation condition: the targeted proposition to repair is not from the

Preferred Structure.

This algorithm includes two parts: generating the Repair Plan (RP) based on a

targeted Resolution Step (RS) in the proof of an incompatibility or an evidence of a

partial proof of an insufficiency, which is discussed in §5.1, and adding a new rule by

analogising a useful existing rule for fixing an insufficiency, which is introduced in

§5.2. The evidence of a partial proof is called the evidence for short in this thesis.

5.1 Repair Plans

A proof or an evidence is a sequence of Resolution Steps (RSs). By targeting at one

RS to block or unblock, Repair Plans (RPs) are automatically generated following the

tables of the repair algorithm in this section.

1Recall that all predicate symbols and constants start with lowercase letters, and variables start with
capital letters.

67
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5.1.1 Incompatibility Repair

The proof of an incompatibility can be broken by blocking one RS of its. Table 5.1

gives the RPs which break the targeted RS in an incompatibility’s proof.

RS Repair Plan Technique

p(Ð→S n) ≡ p(Ð→T n)

CR1. Rename predicate on either side:

p(Ð→S n) /≡ p′(Ð→T n) or p′(Ð→S n) /≡ p(Ð→T n).

Reformation
CR2. si ≡ ti ≡ c, rename either to c′. Then:

Ð→
S n /≡ Ð→T ′n

∨Ð→S′ n /≡ Ð→T n

CR3. (si =X ∧ti = c)∨(si = c∧ti =X),

weaken variable X to c′.

CR4. Add different constants: p(Ð→S n,c) /≡ p(Ð→T n,c′).

CR5. Delete the axiom Au. Belief Revision

CR6. Add an unprovable precondition q(Ð→Zw) to Au. Belief Revision

(variant)

Table 5.1: Incompatibility Repair Plans: block a proof by breaking one RS of it. All

symbols mean the same as those in Table 4.2; the input clause is on the right of the

unification; p(Ð→S n) is either from a precondition of a rule or from PS, while only in

the former case p(Ð→S n) is changeable, and Au is the input clause where p(Ð→T n) comes

from.

New expressions: p′,
Ð→
Y ′, c′ are introduced into the theory in Table 5.1. Without

additional information, the meaning of a new expression is unknown to ABC.

Therefore, dummy terms are employed to name new expressions.

For newly introduced constants, we provide dummy as the initial argument. Instead

of a fixed dummy, we add a serial number at the end of it, such as dummy1, dummy2,

and so on. The serial number is crucial for distinguishing different dummy constants.

For example, in a motherhood theory, we added distinguished constants to the mother

predicate to describe the various types of mother. At the beginning, we introduced

dummy1 and dummy2, which could be interpreted as birth mother and stepmother

respectively. If a new type of mother needs to be represented, such as godmother,

which is different from the previously introduced dummy1 and dummy2, then this

new type could be represented by constant dummy3. As for the predicate symbol,

we retain the original predicate symbol between dummy and the serial number, e.g.,

dummymum1. The serial number and the connection are represented by S and ⊕
respectively. For example, dummy⊕S = dummy2 when S is 2.
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In the following section, the details of how to apply each incompatibility repair

plan to the input theory are introduced. The application of a substitution {c/X} to an

axiom A is written as A ⋅ {c/X}. The RS to break is the target RS, and the original

proposition in an input axiom to be changed is the target proposition. Because PS is

given by the user so it is not allowed to be changed. Therefore, the proposition from

PS cannot be the target proposition. The input axiom where a target proposition comes

form is a target axiom.

CR1. Break p(Ð→S n) ≡ p(Ð→T n) by renaming predicate symbol: p(Ð→S n) /≡ p′(Ð→T n).

The target RS can be broken by renaming the predicate symbol on its either side

unless the goal on the left is from PS. When renaming the right side, it is a local

repair without trace-back or propagation needed and the target axiom is the input axiom

which occurs in the targeted RS. Alternatively, when renaming the left side, the target

is the original input axiom which introduced the goal p(Ð→S n) Ô⇒ needs to be found

by tracing back to the previous RSs.

In a target axiom, predicate p is renamed as p′ which is constituted by the original

predicate symbol p, and the serial number S , given in equation 5.1.

p′ = dummy⊕ p⊕S (5.1)

Example 5.1.1. Faulty Motherhood Theory.

mum(X ,Y) ∧ mum(Z, Y) Ô⇒ X = Z (R1)

Ô⇒ mum(lily, tina) (A1)

Ô⇒ mum(lily, victor) (A2)

Ô⇒ mum(anna, victor) (A3)

F(PS) = {anna = lily, lily = anna}, T (PS) = ∅

anna = lily Ô⇒
mum(anna,Y)∧mum(lily,Y) Ô⇒ mum(X ,Y)∧mum(Z,Y) Ô⇒ X = Z

mum(lily,victor) Ô⇒ Ô⇒ mum(anna,victor)
Ô⇒ Ô⇒ mum(lily,victor)

Figure 5.1: The inference of the incompatibility of anna = lily in Example 5.1.12.

The theory in Example 5.1.1 is incompatible due to the theorem anna = lily.

Assume its the blue RS of mum(anna,Y) ≡mum(anna, victor) in Figure 5.1 to break,

and the target axiom is A3, then dummy⊕ p⊕S is dummymum1, as given in Example
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5.1.2. The change is highlighted in red. If interpreting dummymum1 as step-mum, then

the repaired theory concludes that Anna is Victor’s step mother.

Example 5.1.2. CR1: Repaired Motherhood Theory by Renaming

mum.

mum(X ,Y) ∧ mum(Z, Y) Ô⇒ X = Z (R1)

Ô⇒ mum(lily, tina) (A1)

Ô⇒ mum(lily, victor) (A2)

Ô⇒ dummymum1(anna, victor) (A3)

F(PS) = {anna = lily, lily = anna}, T (PS) = ∅

CR2. Break p(Ð→S n) ≡ p(Ð→T n) by renaming a constant: p(Ð→S n) /≡ p(Ð→T ′n).

Instead of renaming the predicate, we break the RS by changing a constant in the

arguments. Similarly, this repair plan can be applied to the target axiom which 1) on

the right side of the unification; or 2) introduced the goal in a previous RS and the

corresponding argument is a constant originally3.

Due to the minimal change, only one argument Ti is renamed. Then the repaired

arguments satisfy equation 5.2.

∃i, T ′

i ≠ Ti; ∀1 ≤ j ≤ n, j ≠ i, T ′

j = Tj (5.2)

Similar to predicate renaming, dummy term is given as the new argument. The new

argument can be written as:

T ′

i = dummy⊕Ti⊕S (5.3)

In Example 5.1.1, assume its the green RS, mum(lily,victor) ≡ mum(lily,victor),

to break and the target axiom is A2, then Ti can be either lily or victor. Their

corresponding new constants are dummylily1 and dummyvictor1, shown in Example

5.1.3 and 5.1.4 respectively. The repaired theory is as the following. The former

describes that dummylily1 is another name of anna so they refer to one individual,

while the latter denotes that dummyvictor1 is lily’s child, whose name was recorded

incorrectly as victor in the original theory.

3In the case that argument originally is a variable and is bound to a constant during the resolutions,
the repair plan is CR3 which weakens a variable to a constant, rather than CR2 which renames a constant.
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Example 5.1.3. CR2: Repaired Theory by Renaming lily.

mum(X ,Y) ∧ mum(Z, Y) Ô⇒ X = Z (R1)

Ô⇒ mum(lily, tina) (A1)

Ô⇒ mum(dummylily1, victor) (A2)

Ô⇒ mum(anna, victor) (A3)

F(PS) = {anna = lily, lily = anna}, T (PS) = ∅

Example 5.1.4. CR2: Repaired Theory by Renaming victor.

mum(X ,Y) ∧ mum(Z, Y) Ô⇒ X = Z (R1)

Ô⇒ mum(lily, tina) (A1)

Ô⇒ mum(lily, dummyvictor1) (A2)

Ô⇒ mum(anna, victor) (A3)

F(PS) = {anna = lily, lily = anna}, T (PS) = ∅

CR3. Break p(Ð→S n) ≡ p(Ð→T n) by weakening a variable X to c′: p(Ð→S n) /≡ p(Ð→T ′n).

When X is on the right side, it is a local repair where the target axiom is the input

axiom of this RS. When X is on the left, then trace-back is needed and the repair

will be applied to the input axiom which originally introduced X . Notice that all the

occurrences of X in the axiom should be replaced with c′.

The choice of the constant c′ depends on how the target axiom RX is involved in

the wanted proofs of propositions in T (PS). These involvements are summarised as as

the following cases. Recall that the target RS to break can be simplified as X ≡ c. The

constants to which X is bound in essential proofs are called X’s essential constants.

Case1. If RX is essential w.r.t. T (PS), and c is X’s unique essential constant, then this

repair is not applicable.

Case2. If the targeted axiom RX is not essential w.r.t. T (PS), then:

c′ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

cw ∃cw/X ∈ Sw

dummy⊕S otherwise
(5.4)

where Sw is the set of substitutions of X in wanted proofs.
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The repair of weakening a variable to a constant is not applicable in the first case,

because weakening X to any c′, where c′ ≠ c, will introduce new insufficiency.

Example 5.1.5. Faulty Motherhood Theory with Types.

mum(X ,Y, W) ∧ mum(Z, Y, W) Ô⇒ X = Z (R1)

Ô⇒ mum(lily, tina, birth) (A1)

Ô⇒ mum(lily, victor, step) (A2)

Ô⇒ mum(anna, victor, step) (A3)

F(PS) = {lily = anna, anna = lily}, T (PS) = ∅

The theory in Example 5.1.5 is incompatible because it derives anna= lily and lily=
anna. Semantically, R1 represents that all types of mother are unique, but combining

A2, A3 and PS, it can be concluded that step mother may be not unique. The unwanted

proof of anna = lily is shown in Figure 5.2.

anna = lily Ô⇒
mum(anna,Y,W)∧mum(lily,Y,W) Ô⇒ mum(X ,Y,W)∧mum(Z,Y,W) Ô⇒ X = Z

mum(lily,victor,step) Ô⇒ Ô⇒ mum(anna,victor,step)
Ô⇒ Ô⇒ mum(lily,victor,step)

Figure 5.2: The inference of the incompatibility of anna = lily in Example 5.1.5.

Assuming that the targeted unification is between W and step, then the targeted

input axiom is R1. As R1 is not essential, so c′ is dummy1 according to Equation

5.4. By weakening W as dummy1, the repaired theory is as the following, where only

mothers of dummy1 type are unique.

Example 5.1.6. CR3: Repaired Motherhood Theory with Types.

mum(X ,Y, dummy1) ∧ mum(Z, Y, dummy1) Ô⇒ X = Z (R1)

Ô⇒ mum(lily, tina, birth) (A1)

Ô⇒ mum(lily, victor, step) (A2)

Ô⇒ mum(anna, victor, step) (A3)

F(PS) = {lily = anna, anna = lily}, T (PS) = ∅

These dummy terms can be either repaired to something more meaningful on

subsequent repairs or renamed to something with meanings by the user. For example,

rule R1 will cause a lot of insufficiencies until dummy1 is instantiated to birth, and

then the corresponding axioms can be interpreted as birth mothers.
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CR4. Break p(Ð→S n) ≡ p(Ð→T n) by adding new argument: p(Ð→S n,c1) /≡ p(Ð→T n,c2).
Because PS is given by the user, and it is not allowed to change in this thesis,

therefore, this repair plan could be generated only if p does not occur in PS.

The targeted RS is broken by adding a new argument but with different constants to

the end of the target propositions on both side of the unification. Let the serial number

S = s, then the constants to be added are:

c1 = dummy⊕ s (5.5)

c2 = dummy⊕(s+1) (5.6)

Due to SL-Resolution, p(Ð→T n) is guaranteed to be an original proposition from an

input axiom. However, p(Ð→S n) could be a result of substitutions. Therefore, we need to

trace the proof back to find the other target proposition where the precondition p(Ð→S n)
comes from.

p(
Ð→
S′ n) ⋅σ = p(Ð→S n) (5.7)

In equation 5.7, p(Ð→S′ n) is the target precondition and σ represents the substitutions.

Then c1 is added to the target precondition p(Ð→S′ n) and c2 are added to p(Ð→T n),

alternatively, c2 to p(Ð→S′ n) and c1 to p(Ð→T n), where c1 ≠ c2 and c1 is the default value

which will be propagated to other instances of the predicate.

Newly added constants repair an incompatibility by defining types of the predicate.

For example, the bird theory TB below is incompatible, of which the inference is shown

in Figure 5.3.

Example 5.1.7. Bird Theory TB.

bird(X) Ô⇒ f ly(X) (R1)

penguin(Y) Ô⇒ bird(Y) (R2)

Ô⇒ penguin(lucy) (A1)

F(PS) = { f ly(lucy)}, T (PS) = ∅

f ly(lucy) Ô⇒
bird(lucy) Ô⇒ bird(X) Ô⇒ f ly(X)

penguin(lucy) Ô⇒ penguin(Y) Ô⇒ bird(Y)
Ô⇒ Ô⇒ penguin(lucy)

Figure 5.3: The inference of the incompatibility of f ly(lucy) in Example 5.1.7.

Assume the RS of bird(lucy) and bird(Y) is the one to break in Figure 5.3. The

right side of the unification is the blue bird(Y) in R2. The brown bird(lucy) is the left



74 Chapter 5. ABC Repair System: Repair Algorithm

side of the unification which is not an original proposition. Tracing the proof back,

it can be seen that the brown bird(lucy) is inherited from the red bird(X) in R1. To

repair the incompatibility, new arguments are added to the propositions with predicate

bird in these two original rules. The corresponding repaired theory is T′B.

Example 5.1.8. CR4: Repaired Bird Theory T′B.

bird(X ,dummy1) Ô⇒ f ly(X) (R1)

penguin(Y) Ô⇒ bird(Y,dummy2) (R2)

Ô⇒ penguin(lucy) (A1)

F(PS) = { f ly(lucy)}, T (PS) = ∅

The interpretation of this repair is that dummy1 represents the flyable type and

dummy2 non-flyable type. According to the repaired theory, penguin is a non-flyable

bird.

Heuristic 1 (Mirror Avoidance). Only switch the value of dummy1 and dummy2 when

the theory has another assertion containing the predicate, and that assertion is not

involved in the target unification.

Without the mirror avoidance heuristic, there would be another repaired bird theory

given in Example 5.1.9, which semantically equals to T′B by interpreting dummy2 as

the flyable and dummy1 as the non-flyable. Therefore, it is a redundant mirror of T′B.

This kind of redundancy is avoided by the mirror avoidance heuristic4. Heuristic 1 does

not bring new repairs but contributes to reducing the search space of final solutions by

avoiding redundant search branches which are syntactically different but semantically

identical, e.g., Example 5.1.8 and Example 5.1.9. By employing Heuristic 1, the repair

in Example 5.1.9 will be avoided as the redundant because it is produced after the other

in our implementation. Since they are identical in semantics, it does not matter which

is avoided.

4Similar heuristics can be applied to CR1 and CR2, e.g., do not switch the side of the unification
on which the dummy term is used when the predicate or the constant symbol only occurs twice in the
theory.
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Example 5.1.9. Redundancy: Mirror Bird Theory.

bird(X ,dummy2) Ô⇒ f ly(X) (R1)

penguin(Y) Ô⇒ bird(Y,dummy1) (R2)

Ô⇒ penguin(lucy) (A1)

F(PS) = { f ly(lucy)}, T (PS) = ∅

Because overloading predicates is not allowed in Datalog. Therefore, arity

increment has to be propagated to all the occurrences of that predicate whose arity

is increased. Before discussing the propagation, the independent variable and passive

propositions are defined.

• Independent Variable: a new variable that does not exist in that rule.

• Passive Propositions: all the propositions written in the predicate whose arity

will be increased, except the two involved in the target RS which triggers the

arity increment.

For automatically propagating arity increment, the propagation postulates

addressing the two challenges, are proposed in Postulate 2. The first three postulates

are proposed based on the idea of minimal change: the original axioms are considered

as correct unless they are involved in an unwanted proof. The last postulate makes the

repaired theory satisfy Datalog’s grammar.

Postulate 2 (Propagation of Arity Increment). To increase the arity of a predicate, the

propagation of that arity increment follows the steps below, where c1 or c2 are the

arguments newly added to the target propositions5.

1. If the axiom of a target proposition also contains passive propositions, then add

the same constant to these passive propositions.

2. Add the default constant c1 to the passive propositions of assertions.

3. Add an independent variable to those passive propositions of rules.

4. If a passive proposition is the head of a rule which does not contain the target

proposition, and the added new variable has not been added into the body of

that rule, then the new variable will be added into at least one predicate in the

body of that rule.
5Between the pair of new constants, the one with the smaller serial number is the default constant.
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5. New argument is added to the end of old arguments.

In the original theory, all instances of the predicate can be considered as of the

same default type which was omitted in the representation. Then the process of adding

new arguments to break an unwanted proof can be seen as a unique type is revealed

by the unwanted proof, which is represented by c2 and the previously omitted type is

represented by c1. Similarly, different preconditions with the target predicate in a rule

is considered to be of same type before the arity increment, so keeping them consistent

by adding same constant argument to the target rule according to the first postulate,

or adding an independent variable to passive rules according to the third postulate.

The independent variable represents that the rule is applicable to all types. Rule A′ in

Example 5.3.3 on page 109 is an example of adding an independent variable to a rule.

Example 5.1.10. CR4: Semi-Repaired Theory before Propagation.

mum(X ,Y) ∧ mum(Z, Y,dummy1) Ô⇒ X = Z (R1)

Ô⇒ mum(lily, tina) (A1)

Ô⇒ mum(lily, victor, dummy2) (A2)

Ô⇒ mum(anna, victor) (A3)

F(PS) = {anna = lily, lily = anna}, T (PS) = ∅

Taken the incompatible motherhood theory in Example 5.1.1 as the example,

assume that the green RS is targeted to break in the inference shown in Figure

5.1 on page 69. Then dummy2 is added as the new argument of predicate mum

to the input axiom A2 and dummy1 to the second precondition in R1, where the

goal mum(lily, victor) inherits from. The corresponding semi-repaired theory before

propagating the arity increment is shown in Example 5.1.10.

Example 5.1.11. CR4: Repaired Theory T′M after Propagation.

mum(X ,Y, dummy1) ∧ mum(Z, Y, dummy1) Ô⇒ X = Z (R1)

Ô⇒ mum(lily,tina,dummy1) (A1)

Ô⇒ mum(lily,victor,dummy2) (A2)

Ô⇒ mum(anna,victor,dummy1) (A3)

F(PS) = {anna = lily, lily = anna}, T (PS) = ∅

According to the propagation postulates, dummy1 is added as the new argument
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to other propositions of mum, then the repaired theory(T′M) is fault-free, shown in

Example 5.1.11.

The interpretation of the repair is that the original two arguments of mum/2
are not enough to represent all the components of the concept of mother. We

need a new argument to describe the type of mother. In the repaired theory,

mum(lily, victor, dummy2) is of the special type. Lily could be Victor’s stepmother,

or godmother or another type of mother, which is unknown without extra information.

On the other hand, the default constant and the independent variable represent the

other axioms’ neutrality in the new argument. The neutrality could be because an

axiom’s feature represented by the new argument is still unknown, or the feature is

the most common and basic one, e.g., birth-mum. These dummy terms can be either

repaired to something more meaningful on subsequent repairs or renamed to something

with meanings by users. For example, if the user renames dummy1 as birth, then the

corresponding axioms can be interpreted as birth mothers.

Example 5.1.12 shows another possible repair by switching the new constants in

the targeted unification: add dummy2 to R1’s second precondition and dummy1 to A2.

Then according to the first propagation postulate, the first precondition of R1 will be

added with dummy2 to keep preconditions of one rule in same kind. The Propagation

of adding dummy1 to A1 and A3 remains the same. As mum occurs more than twice,

switching the assignment won’t result in a mirror theory. In this case, the special type

(dummy2) of mum is unique, while the other type of mum are the majority.

Example 5.1.12. CR4: Another Arity Increment of the Motherhood Theory.

mum(X ,Y, dummy2) ∧ mum(Z, Y, dummy2) Ô⇒ X = Z (R1)

Ô⇒ mum(lily,tina,dummy1) (A1)

Ô⇒ mum(lily,victor,dummy1) (A2)

Ô⇒ mum(anna,victor,dummy1) (A3)

F(PS) = {anna = lily, lily = anna}, T (PS) = ∅

By interpreting dummy1 as stepmother, this repaired theory says that victor has

two stepmothers.

CR5. Break p(Ð→S n) ≡ p(Ð→T n) by deleting the axiom where p(Ð→T n) comes from.

This is a local repair where neither trace-back nor propagation is needed. The

target axiom where p(Ð→T n) comes from is the input clause in the current RS. To
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avoid introducing insufficiency, this repair is applicable when the targeted axiom is

not essential to T (PS).

By deleting any of A2 or A3 or R1 from the original theory in Example 5.1.1, its

incompatibilities can be fixed. One of the fault-free theory is given by Example 5.1.13.

Example 5.1.13. CR5: Repaired Motherhood Theory by Deleting A2.

mum(X ,Y) ∧ mum(Z, Y) Ô⇒ X = Z (R1)

Ô⇒ mum(lily,tina) (A1)

((((((((((((
Ô⇒ mum(lily,victor) (A2)

Ô⇒ mum(anna,victor) (A3)

F(PS) = {anna = lily, lily = anna}, T (PS) = ∅

CR6. Break p(Ð→S n) ≡ p(Ð→T n) by adding an unprovable precondition q(Ð→Zw).

This repair does not need trace-back, nor propagation. The key problem to address

is how to find the target precondition q(Ð→Zw), which blocks the unwanted proof by

adding a new restriction.

Postulate 3 (Unprovable Precondition). Let R be the input axiom where p(Ð→T n) comes

from, and the repaired axiom R′ is generated by adding q(Ð→Zw) to R. The corresponding

theory of R and R′ are T and T′ respectively. Then q(Ð→Zw) should make them have the

following properties.

1. The repair does not introduce new insufficiencies: T′ ⊢ P, if T ⊢ P, P ∈ T (PS).

2. The targeted proof is blocked by adding q(Ð→Zw) to R.

3. The new precondition is relevant to R in the way of sharing at least one variable

in its arguments
Ð→
Zw with other propositions in R. That variable is called the

shared variable.

The first two properties reflect the correctness of the repair and the last one

corresponds to the reasonableness and the generalisation of the repaired rule.

To denote why the shared variable mentioned in the last property is important,

Example 5.1.14 gives relevant rules of PhD awards, where RB is the basic rule to

repair which says that one is awarded with doctor degree if she/he writes a thesis. But

the fact is that she/he has to pass the viva to get the degree.
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To repair rule RB shown below, a new precondition viva(lucy, pass) with no

variable but constants is added in RI1, which makes it incorrect because it says that

whether an author of a thesis can get the doctor degree relies on the condition that

there is a Lucy who passes a viva. The new precondition fails in restricting to the same

individual as the other propositions do, because without a variable, it is too specific

to summarise general cases. Usually, the more variables q(Ð→Zw) contains, the more

general the cases it represents.

Example 5.1.14. Rules for PhD Awards.

thesis(X)∧author(Y,X) Ô⇒ degree(Y,doctor) (RB)

thesis(X)∧author(Y,X)∧viva(lucy, pass) Ô⇒ degree(Y,doctor) (RI1)

thesis(X)∧author(Y,X)∧viva(Z, pass) Ô⇒ degree(Y,doctor) (RI2)

thesis(X)∧author(Y,X)∧viva(Y, pass) Ô⇒ degree(Y,doctor) (RC)

If the new precondition contains a variable, but it is different from all the others, as

viva(Z, pass) in RI2 does, then the resulting rule is still incorrect because it concludes

that as long as there is one person who passes a viva, an author of a thesis can get the

degree, even if they are different individuals. The fault is caused by the mismatch of

variables, so the new precondition cannot restricts on the target individual as the others

do.

By adding a new precondition viva(Y, pass), RC is formalised which is a correct

rule describing that the author of a thesis should also pass the viva to get a doctor

degree. Here X is the shared variable, which enable all preconditions to restrict on

the same individual. Therefore, the shared variable lets the new precondition work

together with the others, so the third desired property of q(Ð→Zw) is claimed.

However, if it is viva(X , pass) not viva(Y, pass) added to RB, then it is a madly

incorrect rule which requires a thesis to pass a viva in an unsorted logic6. That mistake

can be avoided by checking the theorems of the theory, which would contain the

fact that PhD students have passed viva while no theorem of a thesis passing viva.

Therefore, the theorems of the input theory play an important role in the computation

of the new precondition.

In the rest of the discussion, Example 5.1.15 is used to illustrate the computation

of unprovable preconditions. It can be seen that the swan theory is incompatible w.r.t.

white(bruce) and insufficient w.r.t. black(bruce). Only incompatibility is repaired in

6In a sorted logic, it would be an ill-formed formula.
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this section and the other in the next section by analogical abduction7.

Example 5.1.15. Swan Theory.

swan(X) Ô⇒ white(X) (R1)

Ô⇒ swan(lily) (A1)

Ô⇒ swan(lucy) (A2)

Ô⇒ swan(bruce) (A3)

german(X) Ô⇒ european(X) (R2)

Ô⇒ german(lily) (A4)

Ô⇒ european(lucy) (A5)

Ô⇒ australian(bruce) (A6)

T (PS) = {black(bruce),white(lily),white(lucy)}

F(PS) = {white(bruce),black(lily),black(lucy)}

As rule R1 is involved in the incompatibility in the example, it is the target rule

which will be augmented with a new precondition. To calculate the precondition q(Ð→Zw)
which has the desired three properties, the following data is needed, where R is the

target rule.

• A predicate q/w in the signature;

• Theorem information of the target predicate q based on T2: TQ(q), where T2 =
T−{R}; the set of the arguments of these theorems A(q) and the domain of the

ith argument of q/w in T2: D(q, i,T2), where 1 ≤ i ≤w.

TQ(q) = {q(Ð→caw)∣ T2 ⊢ q(Ð→caw)} (5.8)

A(q) = {Ð→caw∣Ð→caw = (ca1,ca2, ...caw), q(Ð→caw) ∈TQ(q)} (5.9)

D(q, i,T2) = {cai∣
Ð→
caw = (ca1,ca2, ...caw), q(Ð→caw) ∈TQ(q)} (5.10)

• The set of the wanted proofs is: P(T,T (PS)), and the unwanted proof to block

is: Pblock(T,β), where β ∈ F(PS)∧R∈̇Pblock. R∈̇Pblock denotes that R is involved

in the proof Pblock.

• γ(R,P)k: the substitutions of the variables in the target rule R in the proof P.

∀1 ≤ k ≤ L, γ(R,P)k =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

{cx/X , cy/Y, ...}, R∈̇P

∅, Otherwise
(5.11)

where X , Y ... are the variables in R and cx, cy... are the constants which are

substituted for these variables respectively; L is the number of R being used in

P.
7Axiom A6 provides essential information for the abduction of the rule that Australian swans are

black in Example 5.2.2 in the next section.
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Example 5.1.16. CR6: Unprovable Precondition Computation 1.

The set of theorems of the input theory:

{european(lily), white(lily), white(lucy), white(bruce)}
The following predicate candidates are taken as examples to discuss:

european/1, australian/1, german/1.

The proofs are simplified with only its input axioms: R1,A1,A2,A3. The

following P1, P2, P are the proofs of white(lily), white(lucy) and white(bruce)
respectively.

Sufficiency proof: P(T,T (PS)) = {P1, P2}, where P1 = {R1,A1}, P2 = {R1,A2}.

Incompatibility proof to block: Pblock(T,white(bruce)) = {R1,A3}.

The corresponding γ(R1,Pi)k are:

γ(R1,P1)1 = {lily/X}, γ(R1,P2)1 = {lucy/X}, γ(R1,Pblock)1 = {bruce/X}.

The theorems information w.r.t. each predicate candidate is:

• TQ(european) = {european(lily), european(lucy)};

A(european) = {(lily), (lucy)}
D(european,1,T) = {lily, lucy}

• TQ(australian) = {australian(bruce)};

A(australian) = {(bruce)}
D(australian,1,T) = {bruce,}

• TQ(german) = {german(lily)};

A(german) = {(lily)}
D(german,1,T) = {lily,}

When there is a sequence of substitutions w.r.t. one variable, only the final result is

represented, e.g., Y /X ⋅Z/Y ⋅c/Z is written as c/X .

Based on γi, the set of the constants which substitute variable X in R in all the

wanted proofs is SC(R,X), called the bound constants of variable X .

SC(R,X) = {cxi∣∀Pi ∈ P(T,T (PS)),cxi/X ∈ γ(R, Pi)} (5.12)

Now the candidates of the argument of the precondition can be calculated by the

equation below, where vi is the ith argument of q(Ð→Zw). If the set of bound constants

of variable X is a subset of the domain of the ith argument of the predicate D(q, i,T),

then vi = X . Otherwise, write vi as a constant in its domain.
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vi =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

X , SC(R,X) ⊆ D(q, i,T)

c, otherwise,∀c ∈ D(q, i,T)
(5.13)

where ∀1 ≤ i ≤w.

To make the new precondition resolvable in wanted proofs, its argument
Ð→
Zw should

satisfy the resolvable condition in 5.14, which guarantees that the assigned arguments
Ð→
Zw match at least one argument of a theorem of p/w under the substitutions of each

wanted proofs. Meanwhile, after bounding
Ð→
Zw with the substitutions of the proof

to block γ(R,Pblock), the resulting argument cannot be unified with any theorem’s

argument, so that the corresponding precondition is irresolvable under Pblock. The

irresolvable condition is written in 5.15, where R is P1∧P2, ...,∧Pm Ô⇒ p(Ð→T n)

∀Pi ∈ P(T,T (PS)),∃
Ð→
caw ∈A(q) let

Ð→
Zw ⋅γ(R,Pi) ≡

Ð→
caw (5.14)

(q(Ð→Zw) ⋅γ(R,Pblock) /≡ p(Ð→T n))∧(/∃Ð→caw ∈A,Ð→Zw ⋅γ(R,Pblock) ≡
Ð→
caw) (5.15)

The following definition summarises the computation of the unprovable

precondition to add to R.

Definition 5.1.1 (Unprovable Precondition Computation). Get one predicate q/w,

where q/w exists in the signature but not in R. Based on Equation 5.13, calculate

the argument candidates
Ð→
Zws. If one candidate

Ð→
Zw 1) contains at least one variable,

and 2) satisfies the resolvable condition 5.14 and 3) the irresolvable condition 5.15,

then the unprovable precondition q(Ð→Zw) satisfies Postulate 3.

Based on the above definition, the faulty swan theory is fixed by adding

the unprovable precondition european(X) to R1. Then the unwanted proof of

white(bruce) is blocked.

It can be seen that the precondition calculated by Definition 5.1.1 is defined to have

the first property in Postulate 3. If the following equations in Theorem 5.1.1 are true,

then that precondition also has the other two properties.
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Example 5.1.17. CR6: Unprovable Precondition Computation 2.

SC(R1,X) = {lily, lucy}. The precondition candidate of each predicate is:

• q = european:

D(q,1,T) = {lily, lucy}; so SC(R1,X) ⊆ D(european,1,T).

Thus, v1 = X , so the candidate precondition is european(X).

• q = australian:

D(q,1,T) = {bruce}; so SC(R1,X) /⊆ D(australian,1,T).

Thus, v1 = bruce, so the candidate precondition is australian(bruce).

• q = german:

D(q,1,T) = {lily} so SC(R1,X) /⊆ D(german,1,T).

Thus, v1 = lily, so the candidate precondition is german(lily).

Due to the last two candidates do not contain variables, they are dropped, and

then only the first one is the new precondition to add. The semi-repaired theory

is:

european(X)∧ swan(X) Ô⇒ white(X) (R1’)

german(X) Ô⇒ european(X) (R2)

Ô⇒ swan(lily) (A1)

Ô⇒ swan(lucy) (A2)

Ô⇒ swan(bruce) (A3)

Ô⇒ german(lily) (A4)

Ô⇒ european(lucy) (A5)

Ô⇒ australian(bruce) (A6)

Theorem 5.1.1 (Correctness of Definition 5.1.1). If the following equations are true,

then the precondition found by Definition 5.1.1 has the desired properties given by

Postulates 3. Equation 5.16 corresponds to the first property, and 5.17 corresponds to

the second property.

∀P, P ∈ T (PS),T ⊢ P Ô⇒ T′ ⊢ P (5.16)

(A∪R′) /⊢ β, A = {α∣α ≠ R, α∈̇Pblock(T,β)} (5.17)

where R is the original rule, R′ and T′ are the repaired rule and the corresponding

repaired theory: T′ =T∪{R′}−{R}; the proof to block is of A∪{R} ⊢ β.

Proof of Equation 5.16.
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1. When R is not involved in the proofs of T ⊢ P. Let R be the axiom where p(Ð→T n)
comes from, and T2 =T−{R}, then T2 ⊢ P.

Due to T′ =T2+{R′}, then: T′ ⊢ P because T′ is monotonic8.

2. When R is involved in the proofs of T ⊢ P. In the original theory T, ∀P ∈
P(T,T (PS)), the RS in which R resolves with the goal clause in P can be written

as the inference in 5.18. By applying the substitution γ(R,Pi), all subgoals

are resolved and the empty clause is resulted. Here the resolution is based on

Equation 5.11, so (5.11) is written after the input theory to make it clear.

p(Ð→S n)∧G1, ...∧Gm Ô⇒
(P1, ...∧Pm∧G1...∧Gm Ô⇒)⋅γ(R,Pi)

Ô⇒ T(5.11)
P1, ...∧Pm Ô⇒ p(Ð→T n)

(5.18)

Replace R with R′, the updated inference is shown below. The new precondition

is highlighted in red. Based on Equation 5.14, q(Ð→Zw) ⋅ γ(R,P) is rewritten as

q(Ð→caw). According to Equation 5.8, q(Ð→caw) is a theorem of T2, so the subgoal

can be resolved away. As for the remaining subgoals, they are resolvable based

on the original theory T according to the inference above.

p(Ð→S n)∧G1, ...∧Gm Ô⇒
(q(Ð→Zw)∧P1, ...∧Pm∧G1...∧Gm Ô⇒)⋅γ(R,P)

q(Ð→Zw)∧P1, ...∧Pm Ô⇒ p(Ð→T n)

q(Ð→caw)∧(P1, ...∧Pm∧G1...∧Gm Ô⇒)⋅γ(R,P)
(5.14)

(P1, ...∧Pm∧G1...∧Gm Ô⇒)⋅γ(R,Pi)
T2(5.8)∗

Ô⇒ T∗

(5.19)

For the repaired theory T′, the starred RSs, the last two in inference 5.19, only

succeeds when the input theory is monotonic. As T′ is monotonic and T′ =
T2+{R′}, all the theorems of T2 are also theorems of T′.

If T′ is monotonic, then ∀G,T2 ⊢G Ô⇒ T′ ⊢G. (5.20)

Thus, the first starred RS succeeds with T′. Same as the second starred RS, it

succeeds with monotonic T′. There are two cases of the second starred RS.

1. When R is not involved in the process of resolving the remaining goal

clause (P1, ...∧Pm ∧G1...∧Gm Ô⇒ ) ⋅ γ(R,Pi) in 5.18, then T2 resolves

the goal clause. Based on 5.20, T′ also resolves the goal clause.
8The UNAE introduced in §6.1 is the only exception of non-monotony. But the equalities will be

computed in advance and will not be changed during the repair process, so the theory is monotonic
during repair generation.
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2. When R is involved, then there are extra q(Ð→vw
i ) introduced to the goal

clause. According to Equation 5.14, ∀i, the introduced q(Ð→vw
i ) in a wanted

proof are resolvable.

In summary, Equation 5.16 is true in the ABC Repair System.

Proof of Equation 5.17.

The proof to block can be written as the inference below where γ(R,Pblock)1 is

the first substitution of R.

β Ô⇒
p(Ð→S n)∧G2...∧Gn Ô⇒

(P1, ...∧Pm∧G2...∧Gn) ⋅ γ(R,Pblock) Ô⇒
Ô⇒ A∪{R}

P1, ...∧Pm Ô⇒ p(Ð→T n)
A

By replacing R with R′, the partial proof of Equation5.17 is as the following.

β Ô⇒
p(Ð→S n)∧G2...∧Gn Ô⇒

(q(Ð→Zw)∧P1, ...∧Pm∧G2...∧Gn) ⋅ γ(R,Pblock) Ô⇒
q(Ð→Zw) ⋅ γ(R,Pblock) Ô⇒

A∪{R′}
q(Ð→Zw)∧P1, ...∧Pm Ô⇒ p(Ð→T n)

A

(5.21)

Based on the second half of the irresolvable condition 5.15 and Equation 5.9:

/∃ q(Ð→caw), T2 ⊢ q(Ð→caw), q(Ð→Zw) ⋅γ(R,Pblock) ≡ q(Ð→caw)

Therefore, q(Ð→Zw) ⋅γ(R,Pblock) is irresolvable to T2.

Due to A ⊆T2, thus q(Ð→Zw) ⋅γ(R,Pblock) is irresolvable to A.

Based on the first part of the irresolvable condition 5.15, q(Ð→Zw)⋅γ(R,Pblock) does

not resolve with the head of R′.

Then conclude that q(Ð→Zw) ⋅ γ(R,Pblock) is irresolvable to A∪{R′}. So Equation

5.17 is true whose failed inference is 5.21 and its goal clause cannot be fully

resolved away due to q(Ð→Zw).

All of the repair algorithm’s incompatibility repair operations have been discussed

based on each repair plan. There can be new expressions introduced to the repaired

theory. However, they lack meanings, which could be addressed by using background

knowledge, which is a part of future work, introduced as point 4 in §9.1. Currently, it

needs the user to interpret.
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5.1.2 Insufficiency Repair

For insufficiency detection, each preferred proposition is negated as the initial goal

which would be resolved by the axioms in the theory. When a goal cannot be resolved,

the corresponding insufficiency is detected with its partial proof as the evidence. An

evidence can be completed into a proof by building all necessary RSs. Table 5.2 gives

RPs for building a targeted RS.

RS Repair Plan Technique

p1(
Ð→
S n) /≡ p2(

Ð→
T m)

SR1. Reform p2(
Ð→
T m) or reform p1(

Ð→
S n)

ReformationSR2. If si ≠ ti and p2(
Ð→
T m) is from a rule, extend

constant ti to a variable Z.

SR3. Add the assertion p1(
Ð→
S n).

Abduction
SR4. Add a rule which proves p1(

Ð→
S n).

SR5. Delete p1(
Ð→
S n), a precondition from its

original input axiom.

Abduction

(variant)

Table 5.2: Insufficiency repair plans: unblock a proof by building the targeted RSs.

Similarly, all symbols in Table 5.2 mean the same as in Table 4.2: p1(
Ð→
S n) is

an irresolvable remaining goal in the evidence of a partial proof, while p2(
Ð→
T m) is a

theorem of the input theory.

In Table 5.2, p1(
Ð→
S n) represents the unprovable goal, and p2(

Ð→
T m) is a positive

literal from the theory, which is either an assertion, or the head of a rule. The algorithm

of applying each Repair Plan (RP) for repairing the insufficiency is discussed below,

where F(PS) is default to be the empty set if it is not given explicitly in examples

below for simplicity.

SR1. Fix the failed RS p1(
Ð→
S n) /≡ p2(

Ð→
T m) by rewriting either side as the other.

The repair can be applied to either side of the unification but not when the left goal

proposition is the negated PS member. To rewrite p2(
Ð→
T m) as p1(

Ð→
S n), the following

changes need to be applied to the original input proposition where p2(
Ð→
T m) comes

from.

1. If p1 /≡ p2, then rename p2 to p1.

2. If
Ð→
S n /≡ Ð→T m, then replace

Ð→
T m with

Ð→
T ′n by following the operations below.
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(a) If n < m, then ∀i < n, if Ti ≠ Si, give Si as T ′

i , and delete the extra m− n

arguments in the end of p2(
Ð→
T ′m).

(b) If n ≥m, ∀i < n,T ′

i ≠ Si∨ /∃ T ′

i , give Si as T ′

i .

One special case of this repair is that the left goal proposition is the negated PS
member which has the same predicate with an axiom in the theory, but their arities are

different. Then the arity in the theory of that predicate will be updated, which means

the argument changes will be propagated to all the instances of that predicate to avoid

predicate overload.

In Example 5.1.18, the insufficiencies are caused by the mismatched arity of mum

between PS and the theory. Here the problematic RSs include:

mum(diana,william) /≡mum(diana,william,birth) (5.22)

mum(camilla,william) /≡mum(camilla,william,step) (5.23)

Example 5.1.18. SR1: The Input Theory.

Ô⇒ mum(diana,william) (A1)

Ô⇒ mum(camilla,william) (A2)

T (PS) = {mum(diana,william,birth),mum(camilla,william,step)}

To repair the faults, the arity of mum is increased by giving birth as the new

argument of mum(diana,william), and step of mum(camilla,william). The produced

fault-free theory is shown below.

Example 5.1.19. SR1: The Repaired Theory.

Ô⇒ mum(diana,william,birth) (A1)

Ô⇒ mum(camilla,william,step) (A2)

SR2. Fix the failed RS si ≠ ti by extending either to variable Z.

This is the reverse of CR3. By extending the constant si or ti to a variable Z, the

original failed RS becomes successful: Z ≡ si or Z ≡ ti.

The input theory in Example 5.1.20 is the semi-repaired theory from Example

5.1.24, where the proof of f emale(kate) is failed due to william ≠ george. By

extending william to a variable Y , the insufficiency w.r.t. f emale(kate) is fixed.
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Example 5.1.20. SR2: The Input.

mum(X ,william) Ô⇒ f emale(X)

Ô⇒ mum(diana,william)

Ô⇒ mum(kate,george)

T (PS) = { f emale(kate)}

Example 5.1.21. SR2: The Repair.

mum(X ,Y) Ô⇒ f emale(X)

Ô⇒ mum(diana,william)

Ô⇒ mum(kate,george)

T (PS) = { f emale(kate)}

SR3. Fix the failed RS p1(
Ð→
S n) /≡ p2(

Ð→
T m) by adding the assertion: p1(

Ð→
S n).

In this repair, the proposition p1(
Ð→
S n) is added as an axiom to the theory. To

maintain a Datalog theory, if the ith argument of p1(
Ð→
S n) is a variable, then the variable

would be replaced by a dummy constant in the added axiom.
Example 5.1.22. SR3: The Input.

Ô⇒ mum(camilla,william)

T (PS) = {mum(diana,william)}

Example 5.1.23. SR3: The Repair.

Ô⇒ mum(camilla,william)

Ô⇒ mum(diana,william)

SR4. Fix the failed RS p1(
Ð→
S n) /≡ p2(

Ð→
T m) by adding the rule shown in (5.26).

This is a local repair with no trace-back or propagation needed. The rule to add

should contain at least one variable, otherwise, it does not summarise different cases.

The formalisation of the new rule follows three steps.

1. When p2(
Ð→
T m) is a theorem p2(Ð→c m) of the input theory as the candidate of the

precondition of the rule, which has at least one argument that can unified with

an argument of the goal clause p1(
Ð→
S n).

∃ci ∈ Ð→c m, S j ∈
Ð→
S n, ci = S j (5.24)

2. Formalise the rule candidate.

p2(Ð→c m) Ô⇒ p1(
Ð→
S n) (5.25)

3. Generalise the candidate by replacing the unified arguments which occur on both

sides of the implication with a variable, and leave the rest as constants.

(p2(Ð→w m) Ô⇒ p1(Ð→v n)) ⋅γ (5.26)

where γ = {S/ci,S/S j∣∀1 ≤ i ≤ m,1 ≤ j ≤ n, ci ∈ Ð→c m, S j ∈
Ð→
S n, ci = S j}. Here

different variables should be employed for different pairs of unified terms.
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The selection of the precondition in the first step guarantees that there will be at least

a pair of shared arguments ci and Xi on both sides of the implication in the rule, which

will be replaced with a variable in the last step. Replacing shared arguments with

variables increases the general applicability of the new rule.

Except generating the rule in the above way, a new rule can be formalised by

analogising an existing useful rule, which is discussed in the next section of analogical

abduction.

Example 5.1.24 below is semi-repaired by adding a rule. The theorems of the input

theory are the two axioms listed. If the goal is f emale(diana), then the only candidate

of precondition is mum(diana,william) because the other mum(kate,george) shares

no argument with the goal proposition. The candidate rule is as the following.

mum(diana,william) Ô⇒ f emale(diana) (5.27)

The above rule is generalised by replacing diana with variable X because diana occurs

more than once. The corresponding theory is given below with the repair highlighted in

red, which is sufficient w.r.t. f emale(diana) but w.r.t. f emale(kate). The remaining

insufficiency can be further repaired by SR2 as in Example 5.1.20.

mum(X ,william) Ô⇒ f emale(X) (5.28)

Example 5.1.24. SR4: The Input

Theory.

Ô⇒ mum(diana,william)

Ô⇒ mum(kate,george)

T (PS) ={ f emale(diana), f emale(kate)}

Example 5.1.25. SR4: The

Semi-Repair.

mum(X ,william) Ô⇒ f emale(X)

Ô⇒ mum(diana,william)

Ô⇒ mum(kate,george)

SR5. Fix the failed RS p1(
Ð→
S n) /≡ p2(

Ð→
T m) by deleting the precondition p1(

Ð→
S n).

The goal p1(
Ð→
S n) comes from either a preferred proposition in PS or a precondition

of a rule in the theory. If p1(
Ð→
S n) is a precondition, then the insufficiency could be

repaired by deleting the original precondition p1(
Ð→
S′ n) from its input axiom where

p1(
Ð→
S n) is inherited from p1(

Ð→
S′ n) by substitutions.

Taken the theory and PS below as an example, Figure 5.4 depicts the inference of

the insufficiency.
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Example 5.1.26. SR5: The Input Theory.

p2(X)∧ p3(Y) Ô⇒ p1(X , Y) (R1)

p3(Z)∧ p4(Z) Ô⇒ p2(Z) (R2)

Ô⇒ p3(b) (A2)

Ô⇒ p4(a) (A3)

T (PS) = {p1(a,b)}

p1(a, b) Ô⇒
p2(a)∧ p3(b) Ô⇒ p2(X)∧ p3(Y) Ô⇒ p1(X , Y)

p3(a)∧ p4(a)∧ p3(b) Ô⇒ p3(Z)∧ p4(Z) Ô⇒ p2(Z)

p3(a)∧ p3(b) Ô⇒ Ô⇒ p4(a)

p3(a) Ô⇒ Ô⇒ p3(b)

Figure 5.4: Insufficiency caused by the unprovable precondition p3(a), originally from

the rule: p3(Z)∧ p4(Z) Ô⇒ p2(Z).

In this example, the original precondition is p3(Z); the substitution is {a/Z}, and

the resulting unprovable subgoal is p3(a). The unprovable subgoal and the targeted

rule are highlighted in red. By deleting the original precondition p3(Z), the repaired

theory is sufficient shown by Figure 5.5.

Example 5.1.27. SR5: The Repaired Theory.

p2(X)∧ p3(Y) Ô⇒ p1(X , Y) (R1)

p4(Z) Ô⇒ p2(Z) (R2’)

Ô⇒ p3(b) (A2)

Ô⇒ p4(a) (A3)

T (PS) = {p1(a,b)}

p1(a, b) Ô⇒
p2(a)∧ p3(b) Ô⇒ p2(X)∧ p3(Y) Ô⇒ p1(X , Y)

p4(a)∧ p3(b) Ô⇒ p4(Z) Ô⇒ p2(Z)

p3(b) Ô⇒ Ô⇒ p4(a)
Ô⇒ Ô⇒ p3(b)

Figure 5.5: The repaired theory is sufficient after deleting precondition p3(Z) from rule

p3(Z)∧ p4(Z) Ô⇒ p2(Z).
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In the above discussion, the details of each repair plan are given for repairing

insufficiency. Different RPs may be suitable for different scenarios. Without

background knowledge, it is unknown to the repair mechanism which ones are more

suitable than the others. Thus, all generated RPs are applied to the theory respectively.

If some of them are worse than the others in the aspect of remaining fewer faults, they

will be pruned by the sub-optimal pruning mechanism discussed in §6.4.

5.2 Repairs by Analogical Abduction

Analogical abduction seeks for an explanation of a given phenomenon by analogically

formalising a rule based on existing rules (Schurz, 2008; Haig, 2013). Different

from (Schurz, 2008), which discovers both new rules and new concepts, we allow

the analogical abduction to only produce a new rule. Consequently, our mechanism

can support the scenario where a concept is already in the theory, but some of its

properties remain unknown. Then when the rule-like phenomenon is observed, our

mechanism can analogically formalise the rule which describes the property revealed

by the phenomenon9.

The main materials of analogical abduction include a relevant existing rule to

analogise, the phenomenon to explain, and the new rule to abduce. The existing rule

is called the source rule, which does not explain the targeted phenomenon directly, but

it describes parts of the nature of that phenomenon’s causes. Therefore, conceiving a

new rule based on it allows the formalisation of the relational structures which explains

the targeted phenomenon. That new rule is called the target rule. Here the targeted

phenomenon are the base of the abduction, which are restricted to be written in ground

assertions.

Example 5.2.1 describes the analogical abduction whose inputs are the source rule

about the reflection of water waves and the phenomenon of the reflection of sound, and

the output is the target rule about sound waves.

9The abduction of adding assertions or rules based on the failed RS without analogising existing
axioms has been discussed in the last section as SR3 and SR4 respectively.
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Example 5.2.1. Sound Waves.

Source Rule: The law of reflection of water waves.

Targeted Phenomenon to be explained: The reflection of sound.

Target Rule: Sound is consists of sound waves which analogise water

waves and follow the reflection law too.

5.2.1 Algorithm of an Analogical Abduction

As far as we know, there was no automated method of analogical abduction. This

section gives such an algorithm which implements analogical abduction. To conduct

analogical abduction, the essential computing strategies to develop include:

1. The selection method which finds the relevant and useful source rules.

2. The search method which formalises the candidate target rules w.r.t. each source

rule.

3. The evaluation which makes plausibility judgements about target rules.

Note that our algorithm is formalised based on the PS.

1. The selection method.
First of all, the usefulness of a rule is defined, which corresponds to the definition of

the preference entrenchment of an axiom in §6.2.1.

Specification 1 (Usefulness). A rule is considered to be useful if and only if it

contributes to proving at least one proposition in the true set of PS.

All the proofs of the propositions in the true set of PS are considered useful. When

a rule is involved in such a proof, we say this rule is useful.

In an existing rule, its preconditions are not guaranteed to be relevant to the targeted

ground proposition and only the relevant ones are valuable for analogy.

Specification 2 (Relevant Precondition w.r.t. a Goal). In a logical theory T, R is a rule

in the form of p1(X⃗1)∧ p2(X⃗2)∧ ...∧ pm(X⃗m) Ô⇒ q(Y⃗). Given the ground proposition

goal g(c⃗), a precondition p(X⃗) in R is a relevant precondition w.r.t. g(c⃗), written as

p(X⃗) ∼ g(c⃗), if and only if it satisfies Equation 5.29, where µ is a substitution.

p(X⃗) ∼ g(c⃗) iff ∃µ, p(X⃗)µ ≡ p(c⃗1), T ⊧ p(c⃗1), c⃗1∩ c⃗ ≠ ∅ (5.29)



5.2. Repairs by Analogical Abduction 93

Based on Specification 2, a precondition is relevant when the theory has a theorem

Ô⇒ p(c⃗1) which resolves that precondition and shares at least one constant argument

with the targeted ground proposition goal g(c⃗). Thus, by adjusting the head and

the variables in the rule properly, relevant preconditions can be resolved away after

resolving the goal with the adjusted rule.

Recall the semi-repaired swan theory by Example 5.2.210, which is insufficient

w.r.t. black(bruce). For the goal proposition black(bruce), the relevant precondition is

swan(X) in R1 because A3 resolves the precondition swan(X) and shares the constant

argument bruce with the goal proposition. If the goal proposition is white(lily) or

black(lily), then both preconditions in R1 are relevant preconditions.

Example 5.2.2. The Semi-Repaired Swan Theory.

european(X)∧ swan(X) Ô⇒ white(X) (R1)

german(X) Ô⇒ european(X) (R2)

Ô⇒ swan(lily) (A1)

Ô⇒ swan(lucy) (A2)

Ô⇒ swan(bruce) (A3)

Ô⇒ german(lily) (A4)

Ô⇒ european(lucy) (A5)

Ô⇒ australian(bruce) (A6)

T (PS) = {black(bruce),white(lily),white(lucy)}

F(PS) = {white(bruce),black(lily),black(lucy)}

From the example, it can be seen the defined relevant preconditions describe some

feature of the entity in the goal proposition, e.g., bruce is the entity when black(bruce)
is the goal proposition, and the relevant precondition swan(X) describes the feature

that bruce is a swan.

Based on the relevant preconditions, the relevancy degree of a rule w.r.t. a targeted

ground proposition is defined as the following.

Definition 5.2.1 (Relevancy Degree of a Rule). In the logical theory T, rule R is

p1(X⃗1) ∧ p2(X⃗2) ∧ ...∧ pm(X⃗m) Ô⇒ q(Y⃗) . The targeted ground proposition G is

g(c⃗). Then the relevance degree of R w.r.t. g(c⃗) is a 2-tuple r(R,G) = (t1,t2), which is

calculated by the below equations.

10It is originally from Example 5.1.15.
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r(R, G) = (t1, t2), where

t1 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, q = g

0, q ≠ g

t2 = ∣S∣, where S = {pi(X⃗i)∣ ∀1 ≤ i ≤m, pi(X⃗i) ∼ g(c⃗)}

In Example 5.2.2, r(R1, white(lily)) = (1,2) where t1 = 1 because the head

predicate is the same as the goal proposition, and t2 = 2 because the two

preconditions of A1 can be resolved by A2 and A4 respectively. On the other hand,

r(A1, black(bruce)) = (0,1) because the head predicate does not match with the target

predicate and only the precondition swan(X) can be resolved by A3 which has an

overlap constant bruce with the target black(bruce).

A rule’s relevancy is higher than another’s if its 2-tuple is lexicographically bigger

than the other’s, e.g., (1,0) > (0,3) and (1,2) > (1,1).

Theorem 5.2.1 (The Transitivity of the Relevancy Degree). The relevancy degree

of rules is transitive, written as the following equation where r(R1,G), r(R2,G),

r(R3,G) be the relevancy degrees of rules R1,R2 and R3 w.r.t. goal G respectively.

r(R1,G) ≥ r(R2,G)∧ r(R2,G) ≥ r(R3,G) Ô⇒ r(R1,G) ≥ r(R3,G) (5.30)

Based on the transitivity of ≥, it can be seen that Theorem 5.2.1 is true.

Specification 3 (The selection method). The selection method γ takes the proofs of

efficiencies P and the ground goal proposition G as the inputs, and outputs the rules

which are involved in P with the highest relevancy w.r.t. G.

γ(P,G) = {R∣∀R′ ∈ P, r(R′, G) ≤ r(R, G)} (5.31)

In Example 5.2.2, γ(T,black(bruce)) = {R1}, because r(R1, black(bruce)) =
(0,1) > r(R2, black(bruce)) = (0,0). Therefore, R1 is the source rule by analogising

which target rule is formalised.

1. The search method.
The search method is the key of an analogical abduction which formalises the target

rule that explains the targeted ground proposition. To cover all possible cases, the

method below has to do multiple tasks. The swan theory will continue to be the

example discussed along with the definition of the method, where some steps are not

involved in its repairing process. A more complicated example is the game theory
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which is given in the next section, where the search for the target rule is described step

by step following the below definition.

Specification 4 (The search method). The search method ζ takes the input theory T,

the selected source rule R and the targeted ground proposition G as its inputs and

formalises a set of target rules R.

ζ(T, R, G) =R (5.32)

where ∀R′ ∈R,T∪R′ ⊧G, T /⊧G.

Let the parent R be p1(X⃗1)∧ p2(X⃗2)∧ ...∧ pm(X⃗m) Ô⇒ q(Y⃗) and G be g(c⃗). The

procedure of ζ consists of four steps.

Step 1. Duplicate R and reform the duplicate’s head based on the equations below.

According to the relation between the goal and R, there are four possible cases.

The resulting rule is R2. Notice that the source rule R is not changed. In Y⃗ ′, the

mismatched arguments are replaced by independent variables.

R2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1(X⃗1)∧ p2(X⃗2)∧ ...∧ pm(X⃗m) Ô⇒ g(Y⃗ ′), iff q ≠ g ⋀ /∃ µ, Y⃗ ⋅µ ≡ c⃗

p1(X⃗1)∧ p2(X⃗2)∧ ...∧ pm(X⃗m) Ô⇒ g(Y⃗), iff q ≠ g ⋀ ∃µ, Y⃗ ⋅µ ≡ c⃗

p1(X⃗1)∧ p2(X⃗2)∧ ...∧ pm(X⃗m) Ô⇒ g(Y⃗ ′), iff q = g ⋀ /∃ µ, Y⃗ ⋅µ ≡ c⃗

R, iff q = g⋀ ∃µ, Y⃗ ⋅µ ≡ c⃗

Step 2. Delete all irrelevant preconditions (I) from R2, which is represented by function

−̇, and then get the instantiated rule R3 based on the target g(c⃗), where µ is from

the last step, and k ≤m.

R3 = (R2 −̇I) ⋅µ = p1(X⃗1)∧ p2(X⃗2)∧ ...∧ pk(X⃗k) Ô⇒ g(Y⃗) (5.33)

I = {pi(X⃗i)∣ ∀i,1 ≤ i ≤m, pi(X⃗i) /∼ g(c⃗)} (5.34)

Step 3. Get the set of irresolvable preconditions S(R3) based on Equation 5.36, where

ν is a substitution.

g(Y⃗) ⋅γ ≡ g(c⃗) (5.35)

S(R3) = {pi(V⃗i)∣∀1 ≤ i ≤ k, ∀T ⊢ pi(c⃗), /∃ ν, pi(c⃗) ≡ pi(V⃗i) ⋅ν} (5.36)
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The inference is as below with irresolvable preconditions left in the final goal

clause, where n ≤ k:

g(c⃗) Ô⇒
(p1(X⃗1)∧ p2(X⃗2)∧ ...∧ pk(X⃗k)) ⋅γ Ô⇒

p1(X⃗1)∧ p2(X⃗2)∧ ...∧ pk(X⃗k) Ô⇒ g(Y⃗)

p1(V⃗1)∧ p2(V⃗2)∧ ...∧ pn(V⃗n) Ô⇒
T

(5.37)

Step 4. Get the minimal argument mismatches Mm(R) between irresolvable

preconditions and their corresponding theorems: 1) Equation 5.38 calculates

the argument mismatches M(p(c⃗)) between the instantiated precondition p(V⃗i)
and the theorem p(c⃗); 2) Equation 5.39 gets the minimal mismatch set; 3)

Equation 5.40 collects the set of all minimal mismatches for all preconditions in

R3.

∀T ⊢ p(c⃗), M(p(c⃗)) = {(Vj, c j)∣∀c j ∈ c⃗, p(V⃗) ∈ S(R),Vj ∈ V⃗ ,c j ≠Vj} (5.38)

Mmin(p(V⃗)) =M(p(c⃗n)), ∀p(c⃗l) /≡ p(c⃗n), ∣M(p(c⃗n))∣ ≤ ∣M(p(c⃗l))∣ (5.39)

Mm(R3) = {(v,c)∣∀pi(V⃗i)) ∈ S(R3),(v,c) ∈Mmin(pi(V⃗i)))} (5.40)

Step 5. Get R4 by replacing the mismatched argument in precondition pi(V⃗i) with its

paired argument based on Mmin(p(V⃗)), where R(pi(V⃗i), pi(C⃗i),R3) replaces

pi(V⃗i) with pi(C⃗i) in R3.

R4 =R(pi(V⃗i), pi(C⃗i),R3),∀1 ≤ i ≤ n (5.41)

Ci j =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

c, (Vi j,c) ∈Mm(R3)

Vi j, otherwise
(5.42)

where ∀1 ≤ j ≤ ∣V⃗i∣, Vi j ∈ V⃗i, Ci j ∈ C⃗i.

The remaining goal clause in 5.37 can be resolved as the following, where

the original irresolvable goal clause become resolvable after replacing their

mismatched arguments.

p1(V⃗1)∧ p2(V⃗2)∧ ...∧ pn(V⃗n) Ô⇒
p1(C⃗1)∧ p2(C⃗2)∧ ...∧ pn(C⃗n) Ô⇒

R(pi(V⃗i), pi(C⃗i),R3)

Ô⇒ T (5.43)

Step 6. Get R5 by adding the introduction preconditions in Imin to R4 to link the

mismatching arguments to their partners, which bound new arguments to certain
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theorems. Introduction preconditions are considered to represent the semantic

relations between mismatched pairs. Imin is the minimal subset of I which

satisfies the condition 5.45.

I = {q(u⃗)∣∃(c1,c2) ∈Mm(R3),T ⊢ q(u⃗),c1 ∈ u⃗,c2 ∈ u⃗} (5.44)

Imin ⊆ I, ∀(c1,c2) ∈Mc(R),∃q(u⃗) ∈ Imin,c1 ∈ u⃗,c2 ∈ u⃗ (5.45)

Analogise R1 to Prove black(bruce) in Swan Theory (Example 5.2.2).

g(c⃗) = black(bruce) and R1 is: european(X)∧ swan(X) Ô⇒ white(X).
The resulting rules of each search step is given below.

Step 1. R2: reform the head: european(X)∧ swan(X) Ô⇒ black(X)

Step 2. R3: delete the irrelevant precondition european(X) from R2:

swan(bruce) Ô⇒ black(bruce) (R3)

Step 3. - Step 6. No irresolvable precondition in R3 so no change to make

in these step: R5 = R4 = R3.

Step7a. Generalisation: R5: because O(bruce,R5) = 2 > 1, Therefore, Rc =
R(bruce, IV bruce, R5), where IV bruce is the independent variable

arising from the constant bruce:

swan(IV bruce) Ô⇒ black(IV bruce) (Rc)

Step7b. Faults caused: incompatibilities of black(lily) and black(lucy).

Step7c. Adjustment: the only remaining relevant theorem of black(bruce)
is australian(bruce). Add it to R5:

australian(bruce)∧ swan(bruce) Ô⇒ black(bruce)

Finish. Repeat Step 7 on the above rule and terminate with the targeted

rule below.

australian(IV bruce) ∧ swan(IV bruce) Ô⇒ black(IV bruce)
(T R)

Step 7. Generalise R5 and check if it causes incompatibilities. If yes, apply adjustment.

Otherwise, terminate.

(a) Generalisation: If a constant c occurs more than once in the resulting rule,

replace all the occurrences of that constant with an independent variable
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IV c arising from the constant c. In Equation 5.46, function O(c,R5)
returns the number of the occurrences of constant c in rule R5.

Rc = R5 ⋅γ (5.46)

γ = {IV c/c∣∀c, O(c,R5) > 1} (5.47)

(b) Fault Check: If Rc causes an incompatibility computed by Equation

5.48, continue to the step of Adjustment. If no incompatibility is caused,

terminate with Rc being the target rule abduced.

∃α ∈ F(PS), T /⊧ α, T∪Rc ⊧ α (5.48)

(c) Adjustment: Add an adjustment precondition P(C⃗p) to rule R5, where

the adjustment precondition has to be a relevant theorem w.r.t. the goal

proposition, and does not cause duplicates. Exhaustively get a set of all

possible adjusted rules, and generalise each of them, which results in a

set of candidates of the target rules Sc. Then the set of the abduced

target rules RC is one from Sc of which each target rule does not cause

incompatibilities.

RC = {Rc∣∀α ∈ F(PS), Rc ∈ Sc,T∪Rc /⊧ α}

Example 5.2.2 The Repaired Swan Theory.

european(X)∧ swan(X) Ô⇒ white(X) (R1)

australian(IV bruce)∧ swan(IV bruce) Ô⇒ black(IV bruce) (TR)

german(X) Ô⇒ european(X) (R2)

Ô⇒ swan(lily) (A1)

Ô⇒ swan(lucy) (A2)

Ô⇒ swan(bruce) (A3)

Ô⇒ german(lily) (A4)

Ô⇒ european(lucy) (A5)

Ô⇒ australian(bruce) (A6)

T (PS) = {black(bruce),white(lily),white(lucy)}

F(PS) = {white(bruce),black(lily),black(lucy)}
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It is possible that the target rule is not unique, or does not exist. The former

can be evaluated by the sub-optimal repair pruning mechanism described in the next

chapter, and the repair plan of analogising an existing rule will not be applied in the

latter case. By applying the analogical abduction, T R is formalised and added to the

swan theory in Example 5.2.2, which fixes the insufficiency w.r.t. black(bruce). In

commonsense reasoning we might appeal to the fact that Australian and European

both refer to continents. If there is such background knowledge available, the search

space of the precondition candidates can be reduced to the relevant domain, which can

be done in future work, discussed as point 7 in §9.1.

The underlying principles of the above searching function are:

1. The preconditions in the target rule should be relevant to the entity given in the

goal proposition;

2. Retain as much source rule as possible in the target rule;

3. Do not add new preconditions unless there is a reason for it.

Therefore, preconditions are deleted if they are not relevant to the entity of the goal

proposition and new preconditions are added only when incompatibility is caused.

3. The evaluation function.
The last step of the search method includes the fault check and the corresponding

adjustment, which can be seen as an evaluation of the correctness of the target rule. On

the other hand, all the preconditions that are newly added to the rule are from theorems

of the theory so they can be resolved by reversing the substitutions in the generalisation

step.

Theorem 5.2.2. The target rule formalised in the search method in Specification 4

proves the goal.

Proof. Let source rule R1 be p1(X⃗1) ∧ p2(X⃗2) ∧ ... ∧ pm(X⃗m) Ô⇒ q(Y⃗) and goal:

g(c⃗) Ô⇒ .

Let target rule T R be q1(X⃗1) ∧ q2(X⃗2) ∧ ...qn(X⃗n) ∧ p1(X⃗1) ∧ ...pk(X⃗k) Ô⇒ g(X⃗g),

where q1(X⃗1) ∧ q2(X⃗2) ∧ ...qn(X⃗n) are the newly added preconditions, and p1(X⃗1) ∧
...pk(X⃗k) are the remaining preconditions from R1.

Resolve the goal clause with T R: g(c⃗) ≡ g(X⃗g) ⋅µ.

Based on Step 7a: g(c⃗) ⋅γ ≡ g(X⃗g); Therefore, ∀c/X ∈ µ, ∃X/c ∈ γ.
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Therefore, there exist a substitution θ:

∃θ, X⃗ ′ ⋅µ ⋅θ = C⃗′, where C⃗′ ⋅γ ≡ X⃗ ′ (5.49)

In 5.51:

q1(V⃗1) ∧ ... ∧ qn(V⃗n) ∧ p1(V⃗1) ∧ ... ∧ pk(V⃗k) ≡ (q1(X⃗1) ∧ ... ∧ qn(X⃗n) ∧ p1(X⃗1) ∧ ... ∧
pk(X⃗k)) ⋅µ.

Based on Step 7a:

q1(X⃗1) ∧ ... ∧ qn(X⃗n) ∧ p1(X⃗1) ∧ ... ∧ pk(X⃗k)) ≡ (q1(C⃗1) ∧ ... ∧ qn(C⃗n) ∧ p1(C⃗1) ∧ ... ∧
pk(C⃗k)) ⋅γ,

Then substitution θ in 5.49 can be applied to 5.51:

q1(C⃗1)∧ ...qn(C⃗n)∧ p1(C⃗1)∧ ...pk(C⃗k) ≡ p1(V⃗1)∧ p2(V⃗2)∧ ...∧ pm(V⃗m) ⋅θ (5.50)

The resulting goal clause q1(C⃗1)∧ ...qn(C⃗n)∧ p1(C⃗1)∧ ...pk(C⃗k) is the R5 in Step 6,

where each subgoal is a theorem in the theory, because the mismatches variables

have been rewritten according to theorems in step 5 and only theorems are added as

preconditions in step 6. Therefore, the goal clause can be resolved with the input

theory.

g(c⃗) Ô⇒
q1(V⃗1)∧ ...qn(V⃗n)∧ p1(V⃗1)∧ ...pk(V⃗k) Ô⇒

T R

q1(C⃗1)∧ ...qn(C⃗n)∧ p1(C⃗1)∧ ...∧ pm(C⃗m) Ô⇒
θ

Ô⇒ T (5.51)

In this section, we defined analogical abduction by defining the selection method,

the search method and the evaluation of the formalised target rule. As a result,

by analogising an existing useful rule, a target rule can be formalised. Adding the

target rule to the input theory unblocks the proof of the goal, which was unprovable

previously.

5.2.2 Repair Game Theory by Analogical Abduction

In this section, the example of Analogically abducing target rules is given to illustrate

the strategy of selecting the source rule and searching for the target rule.

In the virtual bargaining game (Bundy et al., 2020), there are two players: the

sender and the receiver, and three boxes of two kinds: the helpful and the harmful.
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The sender knows all the boxes’ kinds and marks one of them to guide the receiver to

choose a helpful box. On the other hand, the receiver only knows which box is marked,

and then aims to select as many helpful boxes as possible. Two rounds of the game are

taken as our example. In the first round (g1), only box 1 (b1) is helpful and boxes b2

and b3 are harmful while the opposite is true in the second round (g2): b2 and b3 are

helpful and b1 is harmful.

Figure 5.6: The first round of the game (g1): b1 is the first box; the sender has marked

the only helpful box b1; the players win if the receiver selects b1.

Figure 5.7: The second round of the game (g2): the sender has marked the harmful

box b1; the players lose if the receiver selects b1.

The setup and the marks of both games are formalised in the theory in Example

5.2.3, where g1’s winning strategy is represented by rule A1. Assertion < (g1,hp,hm)
means that in game1, there are more harmful boxes than the helpful ones, while in

game2 the opposite is true (A3).
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select(g1,b1) Ô⇒
mark(g1,b1) Ô⇒ mark(X , Y) Ô⇒ select(X , Y)

Ô⇒ Ô⇒ mark(g1,b1)

Figure 5.8: The proof of select(g1,b1) in Example 5.2.3.

select(g2,b2) Ô⇒
mark(g2,b2) Ô⇒ mark(X , Y) Ô⇒ select(X , Y)

Ô⇒ Ô⇒ mark(g2,b1)

Figure 5.9: The broken proof of select(g2,b2) in Example 5.2.3: the RS in blue is

broken.

Example 5.2.3. Virtual Bargaining Game Theory.

mark(X , Y) Ô⇒ select(X ,Y) (A1)

Ô⇒ < (g1,hp,hm) (A2)

Ô⇒ < (g2,hm,hp) (A3)

Ô⇒ mark(g1,b1) (A4)

Ô⇒ mark(g2,b1) (A5)

Ô⇒ b1 ≠ b2 Ô⇒ b1 ≠ b3 Ô⇒ b2 ≠ b3 (A6-8)

T (PS) = {select(g1,b1), select(g2,b2), select(g2,b3)}
F(PS) = {select(g1,b2),select(g1,b3), select(g2,b1)}

PS depicts the result of each possible selection, where the choices in T (PS) win the

game while the ones in F(PS) fail. Now the task is to automatically repair the theory

to win both g1 and g2, which corresponds to repairing the insufficiencies caused by

select(g2, b2) and select(g2, b3) and the incompatibility caused by select(g2, b1).

The insufficiency is repaired first by the analogical abduction. Let the goal

proposition be select(g2,b2). Although there is only one rule in the theory, it still

needs to be checked whether it is qualified as a source rule. It can be concluded that

rule A1 is useful, because select(g1,b1) is from T (PS) and rule A1 contributes to

proving select(g1,b1), of which the proof is shown in Figure (5.8). Meanwhile, the

relevancy degree of A1 w.r.t. the target select(g2,b2) is (1, 2) according to Definition

5.2.1. Therefore, R1 is the source rule for the rest abduction process.
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Similar to the last example, the search of the target rule is given following the steps

in Definition 4.

Step 1. Duplicate rule A1. As the head predicate is the same as the target select(g2,b2),

no further change is needed in this step. The duplicated rule is R2.

mark(X ,Y) Ô⇒ select(X ,Y) (R2)

Step 2. Because no irrelevant precondition w.r.t. the targeted select(g2,b2) occurs in

R2, no deletion is made in this step. Get the instantiated rule R3 based on the

target select(g2,b2).

mark(g2, b2) Ô⇒ select(g2, b2) (R3)

Step 3. The precondition mark(g2, b2) is irresolvable due to the mismatch of b2 and

b1.

S(R3) = {mark(g2, b2)} (5.52)

Step 4. The minimal argument mismatches are selected based on two theorems of

mark/2: mark(g1,b1) and mark(g2,b1), where the latter is the minimal one.

Mmin(mark(g2, b2)) =M(mark(g2,b1)) = {(b2,b1)} (5.53)

Step 5. Get R4 by replacing the mismatched argument b2 with b1 according to Mmin.

Here the replacement isR(mark(g2, b2),mark(g2, b1),R3). The change made

in this step is highlighted in red.

mark(g2, b1) Ô⇒ select(g2, b2) (R4)

Step 6. Add introduction preconditions. The set of all candidates of the introduction

preconditions is I, where the argument of each candidate contains the pair of the

mismatches: b1 and b2. As there is only one candidate b1 ≠ b2, it is added to the

rule.

Imin = I = {b1 ≠ b2} (5.54)

b1 ≠ b2∧mark(g2, b1) Ô⇒ select(g2, b2) (R5)

Step 7. Generalisation, check and adjustment.
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(a) Generalisation: replace b1 with an independent variable IV b1 because b1

occurs more than once in R5. The generalised rule is R6.

IV b1 ≠ IV b2∧mark(IV g2, IV b1) Ô⇒ select(IV g2, IV b2)

The rule can be simplified by renaming variables.

X ≠Y ∧mark(Z, X) Ô⇒ select(Z, Y) (R6)

(b) Incompatibility check: fails due to the theorems of select(g1, b2) and

select(g1, b3).

(c) Adjustment: add an adjust precondition to R6. The relevant preconditions

w.r.t. select(g2, b2) that will not cause duplicates include b1 ≠ b2, b2 ≠ b3

and < (g2, hm, hp). Adding them to R6 resultes in the following rules

respectively.

b1 ≠ b3∧b1 ≠ b2∧mark(g2, b1) Ô⇒ select(g2, b2)

b2 ≠ b3∧b1 ≠ b2∧mark(g2, b1) Ô⇒ select(g2, b2)

< (g2, hm, hp)∧b1 ≠ b2∧mark(g2, b1) Ô⇒ select(g2, b2)

Generalise the adjusted rules. The following candidates of the target rules

are generated.

X ≠ b3∧X ≠Y ∧mark(Z, X) Ô⇒ select(Z, Y)

Y ≠ b3∧X ≠Y ∧mark(Z, X) Ô⇒ select(Z, Y)

< (Z, hm, hp)∧X ≠Y ∧mark(Z, X) Ô⇒ select(Z, Y)

Only the last candidate does not cause any incompatibility so the search

terminates with the following rule abduced as the target rule.

< (Z, hm, hp)∧X ≠Y ∧mark(Z, X) Ô⇒ select(Z, Y) (TR)

The revised theory is given in Example 5.2.4, where T R is the target rule. However,

the theory is still incompatible because select(g2, b1) is derivable due to A1.
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Example 5.2.4. Semi-Repaired Virtual Bargaining Game Theory.

mark(X , Y) Ô⇒ select(X , Y) (A1)

< (Z, hm, hp)∧ ≠ (X , Y)∧mark(Z, X) Ô⇒ select(Z, Y) (TR)

Ô⇒ < (g1,hp,hm) (A2)

Ô⇒ < (g2,hm,hp) (A3)

Ô⇒ mark(g1,b1) (A4)

Ô⇒ mark(g2,b1) (A5)

Ô⇒ b1 ≠ b2 Ô⇒ b1 ≠ b3 Ô⇒ b2 ≠ b3 (A6-8)

T (PS) = {select(g1,b1), select(g1,b3), select(g2,b2)}
F(PS) = {select(g1,b2),select(g2,b1), select(g2,b3)}

By applying CR6 (on page 78), the variant belief revision adds an unprovable

precondition to A1 to block the unwanted proofs. The repaired A1 is as the following.

< (X , hp, hm)∧mark(X , Y) Ô⇒ select(X , Y)

Now the repaired theory is fault-free, which is written in Example 5.2.5.

Example 5.2.5. Repaired Virtual Bargaining Game Theory.

< (X , hp, hm)∧mark(X , Y) Ô⇒ select(X , Y) (A1’)

< (Z, hm, hp)∧ ≠ (X , Y)∧mark(Z, X) Ô⇒ select(Z, Y) (TR)

Ô⇒ < (g1,hp,hm) (A2)

Ô⇒ < (g2,hm,hp) (A3)

Ô⇒ mark(g1,b1) (A4)

Ô⇒ mark(g2,b1) (A5)

Ô⇒ b1 ≠ b2 Ô⇒ b1 ≠ b3 Ô⇒ b2 ≠ b3 (A6-8)

T (PS) = {select(g1,b1), select(g1,b3), select(g2,b2)}
F(PS) = {select(g1,b2), select(g2,b1), select(g2,b3)}

All of the repair algorithms have been introduced in §5.1 and §5.2. In many cases,

only one repair may not be enough to achieve a fault-free theory. The recursion of the

repair algorithm is discussed in the next section.
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5.3 Combination of Techniques

The three candidate techniques are complementary: abduction and belief revision

operate on axioms in opposite directions, adding and deleting; while reformation works

by changing the signature. By combining them, the repair mechanism can fix faults

with new repairs. In some scenarios, a combined repair is necessary to fix the faulty

theory and deliver the accurate meaning, e.g., in Example 5.2.5, abduction and belief

revision are combined to repair the game theory and formalise the winning strategy

accurately.

It is fairly common that several faults appear in one theory. These faults are

detected in turn: after repairing one fault, a new one is detected. By repairing each

fault with all possible techniques exhaustively, different techniques can be combined

in the final fault-free theories. Except for the original existing faults, there could be

two kinds of introduced faults during a repair process:

1. New introduced faults. A repair may introduce an error which did not exist

previously. For example, if a predicate in an unwanted proof is changed, and this

predicate is also necessary for proving a preferred proposition, then this repair causes

newly introduced insufficiency.

2. Recurring faults. A repair may affect a previous one, especially when these two

repairs are provided by different algorithms, which could be difficult to avoid. For

example, an axiom is added by abduction, and it could be changed by reformation later

on. In this case, a heuristic is developed for avoiding looping, which is introduced in

Section 6.5.

For each fault, we can get all possible repairs by applying the three candidate

techniques in parallel. And then continue repairing the resulting theories until no

fault remains or no repairs are available. In other words, all solutions are searched

in parallel, and the ones with the fewest repairs are found first.

Each of the final repaired theories is the product of the combinations of the sequent

repairs on its search branch, shown in Figure 5.10. For example, if reformation

changes the signature of the theory for fixing fault F1, after which belief revision

deletes an axiom to tackle a remaining fault F2, then reformation and belief revision

are combined in this search branch.

The search branches of fault-free theories can be of different length. When a fault

cannot be repaired, the search branch terminates with failure. The final set of repaired

theories is output without redundancies.
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Figure 5.10: The original search space for fault-free theories: the length of each search

branch can be different; a search branch terminates with failure if there is no repair

available to fix a detected fault, whose end is highlighted in grey.

The game theory in the last section is repaired by combining analogical abduction

and the variant of belief revision. Recall the faulty swan theory in Example 4.2.1,

whose desired repair is given in Example 5.3.1, where reformation and abduction

which adds assertions are combined.
The Faulty Swan Theory.

german(X) Ô⇒ european(X) (A1)

european(X)∧ swan(X) Ô⇒ white(X) (A2)

Ô⇒ german(bruce) (A3)

Ô⇒ swan(bruce) (A4)

T (PS) = {black(bruce)},F(PS) = {white(bruce)}

The problem could be caused by the fact that the concept of ‘European swan’ is

ambiguous: it may mean that ‘the European variety of swans’ or ‘swans resident in

Europe’. In the scenario that all swans of European variety are white, but Bruce

is resident in Europe, the target theory is as below, where the desired repairs are

highlighted in red.
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Example 5.3.1. The Desired Repaired Theory.

german(X ,Y) Ô⇒ european(X ,Y) (TA1)

european(X ,variety)∧ swan(X) Ô⇒ white(X) (TA2)

Ô⇒ german(bruce,resident) (TA3)

Ô⇒ swan(bruce) (TA4)

Ô⇒ black(bruce) (TA5)

In the rest of this section, we are going to discuss how to repair the swan theory based

on the combination repair mechanism, and whether it can generate the targeted theory

as we proposed. The order of solving incompatibility and insufficiency is unimportant.

Firstly, incompatibility is repaired in multiple ways. The three repairs below are

examples.

1. Delete A4: swan(bruce).

2. Rename European in A1: german(X) Ô⇒ europeandash(X).

3. Add a constant argument to European in A2:

european(X, dummy2) ∧ swan(X) Ô⇒ white(X).

By deleting A4, the first repair blocks RS4, which is in blue in Figure 4.3. This repair

is proper in the scenario that Bruce is another kind of a bird rather than a swan. The

second repair blocks RS2, which is another way to distinguish resident from variety,

where europedash means resident in Europe. The last one is quite close to the desired

repairs, which applies concept revision by arity increment. As this repair adds a new

argument to predicate european, it has to be propagated to all instances of the predicate

european/1 following the propagation rules. Here European in A2 is seen as the

targeted literal, which is assigned a unique constant dummy2, while the other instances

are assigned the default constant dummy1 or an independent free variable for rules.

After propagation, the partially repaired theory is:

Example 5.3.2. The Semi-Repaired Theory.

Repairs: add argument(European), add argument(German).

german(X ,Y) Ô⇒ european(X ,Y) (A1’)

european(X ,dummy2)∧ swan(X) Ô⇒ white(X) (A2’)

Ô⇒ german(bruce,dummy1) (A3)

Ô⇒ swan(bruce) (A4)
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In this concept revision, A2 is the targeted axiom and all the others are passive axioms.

According to Postulate 2, the default constant dummy1 and free variable Y are added

as the new argument accordingly. Here the arity increment of german is because that

Datalog requires that each variable in the head of rule A1 must also exist in its body.

white(bruce) Ô⇒
european(bruce, dummy2)∧ swan(bruce) Ô⇒ european(X , dummy2)∧ swan(X) Ô⇒ white(X)
german(bruce, dummy2)∧ swan(bruce) Ô⇒ german(X , Y) Ô⇒ european(X , Y)

german(bruce,dummy2) Ô⇒ Ô⇒ swan(bruce)

Figure 5.11: Evidence of the blocked incompatibility of the Swan theory in Example

5.3.2 by reformation which increases the arity of predicate european and german.

The incompatibility is blocked in the current theory. The evidence of the blocking

is given by the Figure 5.11. It can be seen that the sub-goal german(bruce, dummy2)

cannot unify the input literal german(bruce, dummy1), neither other input literals. At

this point, the incompatibility has been solved. We will continue to repair insufficiency.

The best repair in our scenario is adding the preferred proposition as an axiom directly.

Example 5.3.3. The Repaired Theory.

german(X ,Y) Ô⇒ european(X ,Y) (A1’)

european(X ,dummy2)∧ swan(X) Ô⇒ white(X) (A2’)

Ô⇒ german(bruce,dummy1) (A3)

Ô⇒ swan(bruce) (A4)

Ô⇒ black(bruce) (A5)

The current theory is faithful concerning PS. The repair solution is generated by

combining reformation and abduction, and the solution satisfies the claimed repair

postulates. By interpreting dummy2 as variety and dummy1 as resident, the produced

theory is the desired one given at the beginning of this section. The semantic

interpretation for dummy terms is something worthwhile to research in the future,

discussed as point 4 in §9.1.

It can be seen that a single technique is not enough for generating the best repairs

for a theory in some scenarios. Therefore, the combination repair mechanism works

better than the individual techniques it combines.
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5.4 Summary

Different repair techniques could be combined when dealing with multiple faults in one

theory. By applying all possible repairs on each fault, a completely repaired theory is

generated by combining a sequent repair techniques.

We have successfully applied our repair mechanism on several examples. From

the result, it can be seen that new repair solutions with desired representations can be

produced by combining different repair techniques. Our repair mechanism fills the gap

of belief change, abduction and reformation, which operates at the levels of both the

axioms and the signature of the input theory.

However, the repair algorithm is manifestly insufficient, because the repairs are

generated purely from the view of logic. They are able to repair a faulty theory by

blocking or unblocking proofs. However, it is not enough to generate a good repair,

e.g., a repair makes the theory understandable, accurate, concise and easy to use. The

quality of a logical theory is an open question, and the measurement of the quality of

repairs is also a challenge. In Chapter 6, various refinements is developed to improve

the performance of our repair generation, e.g., given all possible repairs, we hope to

find the best ones while reducing the number of repairs.



Chapter 6

ABC Repair System: Refinements

Chapter 4-5 gives the basic framework of the ABC repair system and the algorithm for

repairing insufficiency and incompatibility. In this chapter, refinements that improve

the performance of the ABC repair system will be discussed. These refinements

include simplifying the formalisation of a theory1 by the unique name assumption

with exceptions (UNAE) in §6.1; defining and quantifying the entrenchment of axioms

and signature in §6.2; computing the maximal set of commutative repair plans so that

commutative repair plans can be applied together in §6.3; pruning all sub-optimal

repairs of a theory in §6.4; and developing heuristics to assist repair generation in

§6.5. The summary of this chapter will be given in §6.6

6.1 Unique Name Assumption with Exceptions

In Datalog, inequality cannot be represented because negation is not permitted in its

grammar. However, in lots of cases, syntactically non-identical constants are unequal

and then inequality is an important ingredient of logic.

One way to express constants being unequal in Datalog is to employ the unique

name assumption (UNA), which states that all distinct constants refer to different

individuals (Poole and Mackworth, 2010). However, UNA is too strict in many

applications, because it is fairly common that there exists one individual with two

or more names.

Therefore, this section will develop a mechanism of unique name assumption with

exceptions, which is based on UNA, but allows distinct constants to be equal. Symbol

1Recall that all predicate symbols and constants start with lowercase letters, and variables start with
capital letters.

111
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‘≠’ will be used for representing inequality as a separate predicate constant rather than

the negation of predicate ‘=’.

First of all, the equality set ES is defined. Notice, that in a theory T, there is only

one equality set. We will use c1 and c2 to represent syntactically distinct constants.

Definition 6.1.1 (Equality Set (ES)). The equality set of a theory T is a set of subsets,

where each subset contains syntactically distinct constants that are equal. c1 = c2

ES = {E∣∀c1,c2 ∈E, T ⊢ c1 = c2} (6.1)

It can be seen that ES is derived based on the equality theorems in a Datalog

theory. As in Example 6.1.1, there are five axioms, and ‘=’ occurs in two of them.

Based on the logical consequences of that theory, the equality set can be derived:

ES = {diana, lady di, camilla}. It can be seen that there are incompatibilities because

of camilla being a member, which will be discussed in the end of this section.

Example 6.1.1. Motherhood Theory.

Ô⇒ diana = lady di Ô⇒ mum(diana,william)

Ô⇒ mum(lady di,william) Ô⇒ mum(camilla,william)

mum(X ,Z)∧mum(Y,Z) Ô⇒ (X =Y)

T (PS) = ∅, F(PS) = {diana = camilla, lady di = camilla}

Based on the equality set, the inequality set includes any equation of inequality

between constants not known to be equal according to ES. This formalisation is

defined as UNAE in Definition 6.1.2.

Definition 6.1.2 (Unique Name Assumption with Exceptions (UNAE)). Let ES be

the equality set of a logical theory, then the UNAE conclusion of that theory is as the

following.

∃E ∈ES,c1,c2 ∈E ⇐⇒ T ⊢ c1 = c2

∀E ∈ES,c1 /∈E∨c2 /∈E ⇐⇒ T ⊢ c1 ≠ c2

(6.2)

UNAE is a modified UNA by allowing equalities. The traditional UNA can be

represented as a special case of UNAE, given by Equation 6.3, where ES is the equality

set in the theory.

∀E ∈ES,E = ∅ (6.3)
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Based on Equation 6.2, the theory in Example 6.1.1 has the theorems below. Here

X =Y = Z is a shorthand for X =Y ∧X = Z∧Y = Z.

diana = lady di= camilla

diana ≠william, lady di ≠william, camilla ≠william
(6.4)

If all the above inequalities are written as axioms, the size of the theory will become

much bigger than the current one formalised based on UNAE. Therefore, for a theory

with inequalities, its representation can be made more succinct by applying the defined

UNAE. Meanwhile, this succinct representation allows the existence of equalities.

Equation 6.4 conflicts with the given PS in Example 6.1.1 due to the equalities of

camilla. The theorems derived based on UNAE are a part of the logical consequences

of the input theory. Therefore, any fault caused by these theorems will be detected

as the corresponding incompatibility/insufficiency of the input theory w.r.t. PS.

Following the algorithm given by Chapter 5, the repairs will be generated.

Example 6.1.2. Repaired Motherhood Theory.

Ô⇒ diana = lady di

Ô⇒ mum(diana,william,dummy1)

Ô⇒ mum(lady di,william,dummy1)

Ô⇒ mum(camilla,william,dummy2)

mum(X ,Z,dummy1)∧mum(Y,Z,dummy1) Ô⇒ (X =Y)

T (PS) = ∅, F(PS) = {diana = camilla, lady di = camilla}

Example 6.1.2 gives one of the desired repairs of the faulty theory in Example

6.1.1, where the arity of mum is increased. By interpreting new argument dummy1 as

birth and dummy2 as step, the repaired theory says that diana and lady di are two

names of william’s birth mother, while camilla is william’s stepmother.

6.2 Entrenchment Based on a PS

When there are multiple candidates to change for repairing a theory, the least important

ones with least informational value should be selected. However, an unaided computer

system cannot understand the semantics of theories so that it cannot directly judge

which axioms, preconditions, predicates and constants own more overall informational

value than the others. For example, an axiom from the paper published in the
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best journal in its field is usually more entrenched than the one published in an

unknown workshop. But the repair system which does not have the relevant publication

knowledge will not able to conclude that.

In belief revision, Epistemic Entrenchment (EE) is proposed for prioritising axioms

(Gärdenfors, 1988). The more entrenched, the more valuable an axiom is, and the

less inclined a system is to change it. However, the automatic evaluation of EE

of an axiom is still an open question in the belief revision literature, because it is

difficult to find the complete background information and domain knowledge, which

can even be a challenge for domain experts sometimes. Although some properties to

describe EE have been given by (Gärdenfors, 1988), it is less clear how one can best

measure the epistemic entrenchment of an axiom quantitatively, e.g., with scores, by a

domain-independent automatic system. More details are discussed in §3.4.2.

In our framework, PS can be seen as the formalisation of a piece of additional

background knowledge. The propositions in the true set of a PS represents that the

user is confident that those assertions are true, while the ones in the false set refer to

something that the user is sure about its falsity. Although this background knowledge

is incomplete because PS does not cover all possible expressions over the signature, it

provides the basis of the quantitative measurement of the entrenchment of axioms in a

theory. Based on PS, a partial solution of evaluating epistemic entrenchment is given

in this section.

Therefore, we will discuss the entrenchment based on PS in terms of the axioms,

the preconditions and the signature of a logical theory respectively. When there are

multiple RPs to fix a fault, the ones changing the least entrenched items will be

preferred. Because a proof can be found automatically based on SL-Resolution2, all of

the calculations in this section can be done automatically without human interaction.

6.2.1 Axiom Entrenchment w.r.t. PS

An axiom’s entrenchment will be evaluated based on how much PS is supported by

that axiom. A logical theory should fully follow its PS.

The contribution of an axiom (a) to a goal (g) is the percentage of g’s proofs in

which a is involved, as given in Equation 6.5, where N(pg) is the total number of

the proofs of g, while N(pga) returns the number of g’s proofs in which axiom a is

involved.
2As discussed in §4.3, in Datalog, proofs can always be detected, if there are any, based on

SL-Resolution.
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c(a,g) = N(pga)
N(pg)

(6.5)

Based on the contribution c(a,g) of an axiom a to a goal g, the entrenchment based

on a PS is defined as the preference entrenchment (PE) below.

Definition 6.2.1 (Preference Entrenchment (PE)). The preference entrenchment of

an axiom PE(a) =< +Ct(a), −C f (a) >, is given by Equation 6.6 and 6.7, where the

propositions in T (PS) andF(PS) are t pi for 0≤ i≤n and f p j for 0≤ j ≤m respectively.

Ct(a) = (c(a,t p1),c(a,t p2), ...,c(a,t pn)) (6.6)

C f (a) = (c(a, f p1),c(a, f p2), ...,c(a, f pm)) (6.7)

Equation 6.6 gives the contribution of an axiom to the true set of PS, while Equation

6.7 refers to its involvement to prove members of the false set.

Theorem 6.2.1. For a fault-free theory T, we have:

IS(T,PS) = ∅, ⇐⇒ ∀pi ∈ T (PS),∃a,a ∈T,c(a, pi) ≠ 0 (6.8)

IC(T,PS) = ∅, ⇐⇒ ∀a,a ∈T, C f (a) = [0] (6.9)

A list whose members are all zeros is written as [0] and it is at the same length as

the list it equals or compares.

Example 6.2.1. Bird Theory.

bird(X) Ô⇒ f ly(X) (A1)

bird(X) Ô⇒ f eathered(X) (A2)

penguin(Y) Ô⇒ bird(Y) (A3)

Ô⇒ penguin(tweety) (A4)

Ô⇒ bird(polly) (A5)

T (PS)={penguin(tweety), f eathered(tweety), f ly(polly)}
F(PS) = { f ly(tweety)}

In Example 6.2.1, each proposition in T (PS) has one proof: penguin(tweety)’s

proof is constituted by A4; f eathered(tweety) by (A4,A3,A2), and f ly(polly) by

(A5,A1). The proposition f ly(tweety) in F(PS) is proved by axioms: (A4,A3,A1).

According to Definition 6.2.1, the preference entrenchment of each axiom is calculated
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as the following:
Ct(A1) = (0,0,1);C f (A1) = (−1)
Ct(A2) = (0,1,0);C f (A2) = (0)

Ct(A3) = (0,1,0);C f (A3) = (−1)

Ct(A4) = (1,1,0);C f (A4) = (−1)

Ct(A5) = (0,0,1);C f (A5) = (0)

(6.10)

The basic idea of preference entrenchment PE is that the more respectful to PS
an axiom is, the more entrenched that axiom is in the theory. For an axiom, its

single contribution to each of the propositions in PS plays a more important role than

its overall contribution. Assume that B1 and B2 are two axioms whose preference

entrenchments are shown by Equation 6.11 and 6.12, respectively. It can be seen that

B2 is essential to all the proofs of the first proposition in its T (PS), shown by the red

1 in Equation 6.12. Without B2, the first proposition in T (PS) would be unprovable,

while without B1, no new insufficiency would be introduced. Therefore, B2 should be

more entrenched than B1, although the sum of PE(B1) is greater than PE(B2).

PE(B1) =< [0.5,0.5,0.1],[0,0,0] > (6.11)

PE(B2) =< [1,0,0],[0,0,0] > (6.12)

Therefore, the comparison of PE needs a list comparison function. We will write

the length of a list A as L(A), and lists A > B when A is lexicographic bigger than B.

Definition 6.2.2 (Sorted List Comparison Function). A list comparison function γ is

used to compare two lists of the same length after sorting their elements from large to

small. If the sorted lists of C1 and C2 are C1s and C2s respectively, then γ comparison

results in:
C1 >γ C2 iff L(C1) = L(C2),C1s > C2s

C1 =γ C2 iff C1s = C2s
(6.13)

where L(C1) = L(C2).

Based on the above comparison function, the sorted lists need to be computed first,

e.g., [1,1,0] is the sorted list of Ct(A4) = (1,1,0), and [1,0,0] of Ct(A5) = (0,0,1).

Then the entrenchment of axioms in Equation 6.10 are compared based on T (PS) and

F(PS) respectively, shown in Equation 6.14.

Ct(A4) =γ [1,1,0] >γ Ct(A1) =γ Ct(A2) =γ Ct(A3) =γ Ct(A5) =γ [1,0,0]
C f (A2) =γ C f (A5) =γ [0] >γ C f (A1) =γ C f (A3) =γ C f (A4) =γ [−1]

(6.14)
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Breaking a proof is much easier than building one because the latter needs to build

all necessary proof steps, while the former can be done by breaking just one proof step.

Therefore, Ct is seen as more important than C f so that PEs can be compared based on

lexicographic order.

In Equation 6.14, the most preference entrenched axioms are A2 and A5, while the

least entrenched ones are A1 and A3, shown in Example 6.2.2.

PE(A2) = PE(A5) > PE(A4) > PE(A1) = PE(A3) (6.15)

Example 6.2.2. Bird Theory: order axioms from the most

entrenched to the least.

bird(X) Ô⇒ f eathered(X) (A2)

Ô⇒ bird(polly) (A5)

Ô⇒ penguin(tweety) (A4)

bird(X) Ô⇒ f ly(X) (A1)

penguin(Y) Ô⇒ bird(Y) (A3)

T (PS)={penguin(tweety), f eathered(tweety), f ly(polly)}
F(PS) = { f ly(tweety)}

Assuming that there are repairs which delete an axiom in Example 6.2.2, then

the ones which delete A1 or A3 will be suggested because they changed the least

entrenched axioms.

However, it can be seen that all Ct(A1)−Ct(A5) have 1 in their lists, which means

that all of axioms are necessary to prove the propositions in T (PS), thus deleting any

of the axioms will introduce insufficiency. Therefore, reformation will provide a better

repair as it changes the signature rather than axioms. The entrenchment of the signature

will be discussed in the following section.

6.2.2 Entrenchment of Preconditions

In this section, the entrenchment of a precondition in a rule will be analysed based

on PS. In a logical theory, when there is an extra precondition in a rule axiom, some

of the original theorems may become unprovable in the current theory. This theorem

difference is defined as the impact of a precondition.
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Definition 6.2.3 (Precondition Impact). In logical theory T, if the rule axiom R’s

preconditions are pi(t⃗i)s, 1 ≤ i ≤ n, then the impact of precondition pi(t⃗i) of R is the

theorems difference between T and T′ (6.17). This impact is given by Equation 6.18.

R′ = R− pi(t⃗i) (6.16)

T′ = (T−̇R)+̇R′, where R ∈T (6.17)

PI(pi(t⃗i)) = {α∣ α ∈ C(T′), α ∉ C(T)} (6.18)

In the above, T only contains axioms without theorems and R is one of its axioms;

function − removes a precondition from a rule; functions −̇, +̇ remove or add one

axiom to a set of axioms respectively and C returns all of the theorems of a theory.

Theorem 6.2.2. When the impact of a precondition is the empty set, that precondition

can be removed from the rule without changing the logical consequences of the theory.

PI(pi(t⃗i)) = ∅ ⇐⇒ C(T′) = C(T) (6.19)

Proof: If PI(pi(t⃗i)) = ∅, then according to Equation 6.18, /∃ α,α ∈ C(T′), α ∉ C(T).

Thus, ∀α,α ∈ C(T′), α ∈ C(T), which equals to

C(T′) ⊆ C(T) (6.20)

Meanwhile, all proofs that contain R remains after removing pi(t⃗i) from R and

T′ could have more theorems than T as there is one precondition less in R′.

C(T) ⊆ C(T′) (6.21)

Combining 6.20 and 6.21, Equation 6.19 is proved.

When the precondition impact overlaps with the propositions in PS, the

entrenchment of that precondition can be calculated as the following.

Definition 6.2.4 (Entrenchment of a Precondition (EoP)). The entrenchment of a

precondition is decided by its impact on PS, calculated by Equation 6.22, where the

rule R in T contains the precondition p(t⃗), but in T′; nis is the negated number of

insufficiencies caused by the inclusion of p(t⃗) in rule R and nic is the number of the

incompatibilities caused by the absence of p(t⃗) in rule R.

E(p(t⃗),R) = (nis, nic), (6.22)

nis = −∣{α∣∀α ∈ T (PS), T /⊢ α,T′ ⊢ α}∣ ≤ 0 (6.23)

nic = ∣α∣∀α ∈ F(PS), T /⊢ α,T′ ⊢ α∣ ≥ 0 (6.24)

where T′ =T−̇R+̇R′, R′ = R− p(t⃗).
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Based on Definition 4.3.1, Equation 6.23 and 6.24 can be rewritten as the following.

nis = −∣IS(T,PS)−IS(T′,PS)∣ (6.25)

nic = ∣IC(T′,PS)−IC(T,PS)∣ (6.26)

The more insufficiencies are caused by the inclusion of a precondition, the less

entrenched that precondition should be. Therefore, it is a negative integer in Equation

6.23. On the other hand, the more incompatibilities are caused by the absence of a

precondition, the more entrenched that precondition should be. Thus, it is a positive

integer in Equation 6.24.

Specification 5 (Precondition Entrenchment Comparison). One precondition is more

entrenched than another if and only if its corresponding theory dominates the other’s.

Let E(p1(t⃗1),R1) = (nis1, nic1), E(p2(t⃗2),R2) = (nis2, nic2),

then E(p1(t⃗1),R1) ≥ E(p2(t⃗2),R2) ⇐⇒ nis1 ≥∗ nis2∧nic1 ≥∗ nic2 (6.27)

≥∗: one of the signs has to be a strict inequality.

Similar to belief changes, the precondition changes include adding preconditions

and/or deleting preconditions. Taking the theories in Definition 6.2.3 as an example,

when the original theory is T, and the repaired theory is T′, the precondition change is

a deletion. On the other hand, if the original theory is T′, and the repaired theory is T,

the precondition change is an addition.

Based on the defined EoP, the precondition change which maximises the overall

EoPs of a rule while repairing the faults will be conducted to repair the faulty theory,

e.g., add the most entrenched and/or delete the least entrenched.

Based on the statistical set of faults given by Definition 4.3.1, the strictly dominated

repair is defined as the following.

Definition 6.2.5 (Strictly Dominated Repair). Given two repairs νk and ν j, ν j is

strictly dominated by νk iff:

∣IS(νk(T),PS)∣ ≤∗ ∣IS(ν j(T),S)∣∧

∣IC(νk(T),PS)∣ ≤∗ ∣IC(ν j(T),S)∣

≤∗ means one of the signs has to be a strict inequality.

Then the aforementioned EoP maximisation corresponds to the selection of the

repairs which are not dominated by others, which is Theorem 6.2.3.
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Theorem 6.2.3. The removal of a more entrenched precondition p1(t⃗1) is strictly

dominated by the removal of a less entrenched precondition p2(t⃗2) from rule R.

E(p1(t⃗1),R) ≥ E(p2(t⃗2),R) ⇐⇒

∣IS(T1,PS)∣ ≥∗ ∣IS(T2,PS)∣∧ ∣IC(T1,PS)∣ ≥∗ ∣IC(T2,PS)∣

where T1 =T−̇R+̇(R− p1(t⃗1)), T2 =T−̇R+̇.(R− p2(t⃗2)).

Proof. As E(p1(t⃗1),R) ≥ E(p2(t⃗2),R), bring Equation 6.23 and 6.24 to 6.27 so it can

be concluded that:

−∣IS(T,PS)−IS(T1,PS)∣ ≥∗ −∣IS(T,PS)−IS(T2,PS)∣∧

∣IC(T1,PS)−IC(T,PS)∣ ≥∗ ∣IC(T2,PS)−IC(T,PS)∣
(6.28)

∀α, if T ⊢ α, then T1 ⊢ α∧T2 ⊢ α, so it can be concluded that:

IS(T1,PS) ⊆ IS(T,PS)∧IC(T,PS) ⊆ IC(T1,PS)

IS(T2,PS) ⊆ IS(T,PS)∧IC(T,PS) ⊆ IC(T2,PS)
(6.29)

Then Equation 6.28 can be simplified as the following.

−(∣IS(T,PS)∣− ∣IS(T1,PS)∣) ≥∗ −(∣IS(T,PS)∣− ∣IS(T2,PS)∣)∧

∣IC(T1,PS)∣− ∣IC(T,PS)∣ ≥∗ ∣IC(T2,PS)∣−IC(T,PS)∣
(6.30)

By removing IS(T,PS) and IC(T,PS) from both sides of the above inequalities, the

following equation is derived.

∣IS(T1,PS)∣ ≥∗ ∣IS(T2,PS)∣∧ ∣IC(T1,PS)∣ ≥∗ ∣IC(T2,PS)∣ (6.31)

Thus, Theorem 6.2.3 is proved.

Theorem 6.2.4. The expansion of a more entrenched precondition p1(t⃗1) strictly

dominates the expansion of a less entrenched precondition p2(t⃗2) to rule R.

E(p1(t⃗1),R1) ≥ E(p2(t⃗2),R2) ⇐⇒

∣IS(T1,PS)∣ ≤∗ ∣IS(T2,PS)∣∧ ∣IC(T1,PS)∣ ≤∗ ∣IC(T2,PS)∣

where R1 = R+ p1(t⃗1), R2 = R+ p2(t⃗2), T1 =T−̇R+̇R1, T2 =T−̇R+̇R2.

Proof. Let T and T1in Theorem 6.2.4 be T′ and T in Equation 6.23 and 6.24

respectively. Then:

E(p1(t⃗1),R1) = (−∣IS(T1,PS)−IS(T,PS)∣, ∣IC(T,PS)−IC(T1,PS)∣)
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Similarly, E(p2(t⃗2),R1) can be written as the following.

E(p2(t⃗2),R2) = (−∣IS(T2,PS)−IS(T,PS)∣, ∣IC(T,PS)−IC(T2,PS)∣)

As E(p1(t⃗1),R1) ≥ E(p2(t⃗2),R2), bring the above equations to Equation 6.27.

−∣IS(T1,PS)−IS(T,PS)∣ ≥∗ −∣IS(T2,PS)−IS(T,PS)∣∧

∣IC(T,PS)−IC(T1,PS)∣ ≥∗ ∣IC(T,PS)−IC(T2,PS)∣
(6.32)

∀α, if T1 Ô⇒ α, then T ⊢ α and ∀β, if T2 Ô⇒ β then T ⊢ β, so it can be concluded

that:
IS(T,PS) ⊆ IS(T1,PS)∧IC(T1,PS) ⊆ IC(T,PS)

IS(T,PS) ⊆ IS(T2,PS)∧IC(T2,PS) ⊆ IC(T,PS)
(6.33)

Then Equation 6.32 can be simplified as the following.

−(∣IS(T1,PS)∣− ∣IS(T,PS)∣) ≥∗ −(∣IS(T2,PS)∣− ∣IS(T,PS)∣)∧

∣IC(T,PS)∣− ∣IC(T1,PS)∣ ≥∗ ∣IC(T,PS)∣− ∣IC(T2,PS)∣
(6.34)

By removing IS(T,PS) and IC(T,PS) from both sides of the above inequalities, the

following is derived.

∣IS(T1,PS)∣≤∗∣IS(T2,PS)∣∧ ∣IC(T1,PS)∣≤∗∣IC(T2,PS)∣ (6.35)

Thus, Theorem 6.2.4 is proved.

The defined EoP not only reflects the importance of a precondition w.r.t. PS, but

also details the exact faults it can cause, e.g., the proposition of an insufficiency which

T fails in proving. Therefore, it is known whether a precondition change repairs a

targeted fault. When there are multiple solutions of precondition changes to one fault,

the one maximising the overall EoP of that rule will be applied.

In summary, EoP is based on the impact of the precondition on PS, which is scored

by a pair (nis, nic), where nis ≤ 0 and −nis corresponds to the number of insufficiencies

caused by having that precondition in its rule; nic ≥ 0 where nic is the number of

incompatibilities caused by the absence of that precondition in its rule. By applying

lexicographical ordering, EoPs in a rule can be compared. Accordingly, when there

are multiple faults, the precondition change which minimises the number of faults is

applied. In addition, the candidates of precondition change that fix the targeted fault(s)

are computed during the evaluation of EoPs. Therefore, ones maximising the overall

EoPs of the rule are applied.
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6.2.3 Entrenchment of Signature

Conceptual change works by adapting the signature in which a logical theory is written.

Measuring the entrenchment of the signature helps to rank the repairs of conceptual

change.

In this section, entrenchment will be defined and measured from the perspectives

of different signature elements including predicate names and the arguments. An

argument can be a variable or a constant.

First we will analyse signature elements which will help us to define signature

entrenchment. Two signature elements can be independent of each other. For example,

a predicate can be independent of another predicate; the arity of predicate mum/2 is

independent of the arity of predicate swan/1. However, when a predicate occurs in the

head of a rule, it is linked to ones in the body of that rule and vice versa. Example

6.2.3 is given to illustrate the possible linkages among signature elements in a logical

theory.

Example 6.2.3. Swan Theory.

german(X) Ô⇒ european(X) (A1)

european(X)∧ swan(X) Ô⇒ white(X) (A2)

Ô⇒ german(bruce) (A3)

Ô⇒ swan(bruce) (A4)

The logical consequences of the theory include european(bruce) and

white(bruce). If the predicate german is split, and the predicate in A3 is renamed to

germanResidence, then the original logical consequences will become non-derivable.

On the other hand, if it is the argument of A3 being renamed, e.g., from bruce to

liza, then the logical consequences will include only european(liza). In addition,

if european has a new variable argument in A1, according to the Datalog safety

requirement, then the same variable needs to be added into german in the body of

A1 as well. Hence, the arity change of european results in the arity change of german.

It can be seen that when a predicate is involved in a rule, a change of it could result

in the corresponding changes in its linked predicates, especially the ones on the other

side of the implication in that rule. Therefore, rules play an important role in analysing

the signature structure, especially from the perspective of changing a signature.

For describing the relation between predicates, a directed graph comes to our aid
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as a descriptive device.

Definition 6.2.6 (Theory Graph). A theory graph represents the links between

predicates in a logical theory by a finite set of nodes and edges.

Node: each node corresponds to a predicate together with its arity.

Edge: each edge is an arrow that connects one or two nodes in the graph. The

components of an edge are its direction and label.

Path: a path is the nodes connected by a sequence of edges in same direction.

The axiom A1 in Equation 6.36, which has n propositions in its body and one

proposition in its head, could be drawn as Figure 6.1 based on Definition 6.2.6.

A1.
n
⋀
i=1

pi(t i
1, ...,t

i
m) Ô⇒ q(u1, ...,uk) (6.36)

The direction of an edge is from a node in the body of the rule to the head of that rule.

Meanwhile, each edge is labelled by a 3-tuple including the name of the axiom and the

arguments of the tail node followed by the arguments of the head node. Each tail node

corresponds to a proposition in the body of the rule and the head node represents the

proposition in the head of the rule.

pn/mnp1/m1

q/k

(A1, (t11,…,t1m),(u1,…,uk)) (A1, (tn1,…,tn𝑚),(u1,…,uk))

…

Figure 6.1: Theory sub-graph of A1 in Equation 6.36.

An assertion can be seen as a rule without preconditions. In a theory graph, an

assertion is drawn as a head node pointed by an edge with a special tail node of ‘true’.

A2. q(c1, ...,c j) (6.37)

The axiom A2 in Equation 6.37 is represented as in Figure 6.2.

Specification 6. If predicate p/m is in the signature of a logical theory, then node p/m
occurs exactly once in the theory’s corresponding theory graph.

Specification 6 requires that no duplicates are allowed in a theory graph. When a

predicate is involved in multiple axioms, there will be multiple edges corresponding
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q/j

(A2, (),(c1,…,cj))

true

Figure 6.2: Theory sub-graph of A2 in Equation 6.37.

to these axioms. In each edge, the first element of its label, which is the name of

the axiom e.g., A1 in Figure 6.1 and A2 in Figure 6.2, shows to which axiom the

edge belongs. Hence different axioms can be represented correspondingly. When a

predicate appears n times with different arguments in the body of a rule, there will be

n edges from the predicate to that rule’s head. Those edges should also be labelled by

the rule number and the arguments accordingly, so their labels are different due to the

distinct arguments. On the other hand, if a predicate appears in both the body and the

head of a rule, then the labelled edge should go from the predicate to itself.

Theorem 6.2.5. If there is no path from predicate p to predicate q in the theory’s

theory graph, then assertions of p cannot contribute to any proof of an assertion of q.

Proof. In Theorem 6.2.5, no path from predicate p to predicate q in the theory’s theory

graph means that there is no rule connection between p and q. Therefore, assertions of

p and q are independent from each other, so that assertions of p cannot contribute to

any proof of an assertion of q.

Theorem 6.2.5 decides whether adding a theorem of p has an impact of building

the proofs of q’s instances, which is important to the computation in §6.3.

Example 6.2.4. A Mixed European Theory.

Ô⇒ german(bruce,residence) (A1)

Ô⇒ swan(bruce) (A2)

german(X ,Y) Ô⇒ european(X ,Y) (A3)

european(X ,variety)∧ swan(X) Ô⇒ white(X) (A4)

f lag(X ,Y)∧white(Y) Ô⇒ surrender(X) (A5)

surrender(X)∧war(X ,worldWar2)∧
european(X , party)∧ leader(X ,hitler) Ô⇒ german(X ,nazi) (A6)

Example 6.2.4 is a Datalog-like logical theory with six axioms. The first four

axioms come from Example 6.2.3. The axiom A5 says that X surrenders if X gives a
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white flag Y . The last axiom describes that in the second world war, the surrendering

European party led by Hitler is the Nazi party which is from Germany.

Figure 6.3 depicts a theory graph, where the ‘true’ node depicts the assertions

in the theory3 of Example 6.2.4. It can be seen that there are two loops in that

theory graph. One loop is constituted of german/2, and european/2, and another is

(german/2, european/2, white/1, surrender/1).

Figure 6.3: Theory graph of Example 5.3.

A theory graph shows how predicates are linked in a theory. For example, in Figure

6.3, predicate german is linked to european via A3 and A6. The change of a predicate

could affect its linked ones. For example, if white is changed into black, then a flag in

black would mean surrender. As a consequence, the meaning of a flag in terms of its

colour is changed. It can be seen that the edges are essential for recovering a theory

from its theory graph.

The entrenchment of predicate symbols will be evaluated based on the defined

theory graph, following which the entrenchment of an argument will be evaluated

based on its argument domain.

6.2.3.1 Predicate Entrenchment

Given a PS, all predicates that occur in PS, called preferred predicates, are fully trusted

and most entrenched. Based on the preferred predicates, preferred distance is defined

3The ‘true’ node is not genuinely from the theory, and taking it into consideration will make analysis
complicated without benefits. Therefore, we ignore it in our discussion.
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to describe the predicate distance of a predicate symbol from the nearest preferred

predicate.

Definition 6.2.7 (Preferred Distance). The preferred distance dp(p) of a predicate

(p) is the is the number of edges on the shortest path from p to its nearest preferred

predicate following the direction of each arrow.

dp(p) = min
∀q◁PS

(d(p,q)) (6.38)

where q◁PS represents that q is a predicate and ∃q(c⃗), q(c⃗) ∈ T (PS)⋁q(t⃗) ∈F(PS),

When a predicate has no path to any preferred predicates, it is called an isolated

predicate. Here a path means a set of nodes connected by edges following one

direction which is from the tail to the head of an edge. According to Definition 6.2.7,

the preferred distance of an isolated predicate is infinity, and a preferred predicate’s

preferred distance is 0.

The motivation is that the further a predicate is from a preferred predicate pp, the

more problems could happen in terms of proving the statements of pp. On the other

hand, the nearer a predicate is from pp, the more important it is for the statements of

proving pp. In other words, the nearer a predicate p is to preferred predicates, the more

impact it has on the proofs of PS when changing p. Therefore, the predicate which is

nearer to a preferred predicate is more entrenched, and, therefore, is less likely to be

changed.

Specification 7. Based on the preferred distance, the important properties that

predicate entrenchment e(p) should have are as follows, where p, p1 and p2 are

predicates, and Sp is the set of predicates which occur in PS while St is the set of

predicates which occur in the theory but not in PS.

1. ∀p ∈ (St⋃Sp), e(p) has exactly one value.

The entrenchment of a predicate should be just one value.

2. 0 ≤ e(p) ≤ 1.

The range of an entrenchment should be [0,1], where 0 means that a predicate is

not trusted at all and 1 represents that the predicate is most entrenched and fully

trusted4.
4In Bayesian model and other probabilistic models (Gärdenfors, 1988), 1 is used as the value of

the most entrenched. Although there was no explicit measurement of entrenchment, but only certain
properties that entrenchment should have in the previous literature, it is good to be coherent with their
work, which is to employ 1 representing the most entrenched here.
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3. ∀p2 ∈ Sp, e(p2) = 1 ⋀ ∀p1 ∈ St , 0 < e(p1) < 1.

Because PS is more trusted than the theory, a preferred predicate is most

entrenched whose entrenchment is 1. Any predicate appearing only in the theory

is believed in some sense, but less than a preferred predicate. Meanwhile, any

predicate that occurs in the theory is considered to convey some information.

Therefore, its entrenchment should be bigger than 0 but smaller than 1.

4. ∀p1, p2 ∈ St , e(p1) > e(p2), iff dp(p1) < dp(p2).

When neither predicate occurs in PS, p1 is more entrenched than p2 if and only if

p1 is closer to preferred predicates in terms of its preferred distance. The smaller

dp(p1) is, the more impact on PS changing p1 will have. As preferred predicates

should not be changed or effected, by assigning p1 a bigger entrenchment value,

it is less likely to be modified.

5. If p1 ∈ (St⋃Sp), while p2 /∈ (St⋃Sp), then e(p1) > e(p2).

When p2 is a predicate which neither appears in the theory nor PS, it is an

unknown predicate. Unknown predicate p2 is considered to be less entrenched

than the ones occur in the theory or PS.

According to the above desired properties, Definition 6.2.1 is proposed as a

measurement of predicate entrenchment e(p) of a predicate p.

Definition 6.2.8 (Predicate Entrenchment). The entrenchment of a non-isolated

predicate p1 is given in terms of its preferred distance and the maximum preferred

distance of all non-isolated predicates in the theory graph:

e(p) = 1− dp(p)
dpMax+2

where dpMax = max
∀q∈St

(dp(q)), q is a non-isolated predicate.
(6.39)

On the other hand, the entrenchment of an isolated predicate p2 is normalised as

follows:

e(p2) =
1

dpMax+2

where dpMax = max
∀q∈St

(dp(q)), q is a non-isolated predicate.
(6.40)

If a predicate p3 is an unknown predicate5, which appears neither in the theory nor in

5The zero entrenchment is defined to reflect that the existence of a predicate in the theory means that
the predicate is trusted to have informational value.
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PS, then its entrenchment is initialised as 0.

e(p3) = 0 (6.41)

There are three disjoint kinds of predicates including non-isolated predicate(p1),

isolated predicate (p2) and unknown predicate (p3). A preferred predicate p is always

a non-isolated predicate.

Assuming that in Example 6.2.4, european/2 and white/2 are the preferred

predicates, which are highlighted in red in Figure 6.4, then the preferred distance and

the entrenchment of each predicate can be measured. The results are shown in Table

6.1.

Figure 6.4: Theory graph of Example 5.3 with preferred predicates and the

entrenchment of each predicate highlighted in red. The minimal path of f lag/2 is

highlighted in blue.

@
@
@
@

european white german swan war leader surrender f lag

dp 0 0 1 1 2 2 2 3

e(p) 1 1 0.8 0.8 0.6 0.6 0.6 0.4

Table 6.1: The preferred distance (dp) and the entrenchment (e(p)) of each predicate

in Example 6.2.4, where european and white are the preferred predicates.

As for Example 6.2.1, all predicates but bird/1 occur in PS, therefore, bird/1 is the

least entrenched predicate in that signature, as shown in 6.5.
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Figure 6.5: The theory graph of bird theory in Example 6.2.1: the red nodes are the

predicates in PS, and the predicate entrenchment is attached beside each predicate in

red.

In the following paragraphs, we will prove that the defined measurement has the

desired properties aforementioned.

Based on Equation 6.40 and 6.41, the entrenchment of an isolated predicate or an

unknown predicate has one fixed value. Meanwhile, because the preferred distance of

any non-isolated predicate has only one value, so that dpMax is a fixed value in a given

theory. Consequently, the entrenchment of a non-isolated predicate has only one value

too. In summary, property 1 is held by our measurement.

The preferred distance of a non-isolated predicate p1 satisfies:

0 ≤ dp(p1) ≤ dpMax (6.42)

According to Equation 6.39 and 6.42, the entrenchment of a non-isolated predicate p1

is in the range [ 2
dpMax+2 ,1]:

2
dpMax+2

≤ e(p1) ≤ 1 (6.43)

Based on Equation 6.43, 6.40 and 6.41, we can derive the following relation among

the entrenchments of predicates in all different types, which proves property 2, the first

half of property 3, the special case of property 4 and property 5.

0 = e(p3) <
1

dpMax+2
= e(p2) <

2
dpMax+2

≤ e(p1) ≤ 1 (6.44)

When p is from PS, then dp(p) = 0. A preferred predicate p is a non-isolated

predicate, whose entrenchment can be calculated according to Equation 6.39.

I f p ∈ Sp, then e(p) = 1− dp(p)
dpMax+2

= 1− 0
dpMax+2

= 1 (6.45)

Combining Equation 6.44 and 6.45, it can be seen that the property 3 is proved.
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Figure 6.6: Theorems of predicate mum/3 in Example 4.4.2.

The difference of entrenchment between two non-isolated predicates p11 and p12

are given in the following equation.

e(p11)−e(p12) = 1− dp(p11)
dpMax+2

−(1− dp(p12)
dpMax+2

) = dp(p12)−dp(p11)
dpMax+2

(6.46)

Based on Equation 6.42 and 6.46, property 4 can be proved:

e(p11) > e(p12)⇔
dp(p12)−dp(p11)

dpMax+2
> 0⇔ dp(p12) > dp(p11) (6.47)

In summary, the defined measurement of entrenchment has all the desired

properties given by Specification 7.

6.2.3.2 Argument Entrenchment

Argument entrenchment is evaluated based on the argument domain, which is defined

in Definition 4.4.1. The size of the domain of an argument reflects how diverse an

argument is.

Figure 6.6 gives all the theorems of the theory in Example 4.4.2. The argument

domains of predicate mum/3 are {lucy, lily, anna}, {tom, tina, victor, david}
and {birth,step} respectively. The sizes of these domains are three, four and two

respectively. Then the first two arguments with bigger domain are more diverse than

the last argument: the former represents different persons while the latter only gives

the type of mum, which is either birth or step in the current signature.

Assume that theorem mum(lucy,tom,birth) is unknown but the domain of each

argument, and each element in the domain is equi-probable. Then the probability

of recovering that theorem from mum( ,tom,birth) is the reciprocal of the size of

the missed first argument: 1/3 and it is 1/4 from mum(lucy, ,birth), 1/2 from

mum(lucy,tom, ).

Based on the known argument domain, the recovery probability of a lost argument

reflects the informational value of that argument. We assume that the smaller the
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recovery probability is, the more informational value that argument has. As epistemic

entrenchment is a notion describing the informational value of an element, the

entrenchment of an argument can be evaluated based on its domain size.

Definition 6.2.9 (The Entrenchment of an argument). Let Ea(p,n) be the entrenchment

of the nth argument of predicate p, n ≤ arity(p):

Ea(p,n) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∣D(p,n)∣, p ⋪ PS

Max(∣D(p′, i)∣)+1, p◁PS, p′ ⋪ PS, i ≤ arity(p′)
(6.48)

where p◁PS represents that ∃p(t⃗), p(t⃗) ∈ T (PS)⋁ p(t⃗) ∈ F(PS), and the function

D(p,n) returns the argument domain of the nth argument of predicate p and Max

returns the maximum value.

Therefore, in Figure 6.6, the third argument of mum/3 is the least entrenched.

Theorem 6.2.6. The defined argument entrenchment is greater than one.

∀p,n, Ea(p,n) ≥ 1 (6.49)

Proof. ∀p,n, n ≤ arity(p), ∣D(p,n)∣ ≥ 1. So Max(∣D(p, i)∣)+1 ≥ 2.

Therefore, ∀p,n, Ea(p,n) ≥ 1 based on Equation 6.48.

Theorem 6.2.7. A logical theory T can be simplified by omitting the nth argument of

predicate p if p is not in PS and the entrenchment is one Ea(p,n) = 1. If that argument

is a variable in a rule, then weaken the remaining occurrences of that variable with

the unique constant in the argument domain. Let the simplified theory be T′ and p be

the predicate of the omitted argument, then all theorems remains.

∀α,T ⊢ α,T′ ⊢ α∗ (6.50)

where α = α∗ if α is not a theorem with p, otherwise, α∗ is different from α by lacking

of the omitted argument.

Proof. As Ea(p,n) = ∣D(p,n)∣ = 1, let D(p,n) = {c}. Assume that R is the rule which

contains p(t⃗) where tn = X . Then in a proof which contains R, X can only be bound to

c. After deleting that argument from all propositions of p, the remaining Xs in other

propositions in R are replaced by c. These changes amount to binding X to c, so there

is no effect to any proof which contains R.

Therefore, all theorems of the theory remain the same except the ones in which p

lacks the omitted argument.
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From Theorem 6.2.7, it can be seen that the removal of the least entrenched

argument is a minimal change under the defined argument entrenchment.

In summary, the entrenchment of axioms, preconditions and signature items are

evaluated with scores, which is used to choose the repairs which change the least

entrenched items. Notice that the entrenchments from different aspects cannot be

compared, e.g., the entrenchment of a predicate and the entrenchment of an axiom.

Therefore, different entrenchments are employed by the corresponding kinds of repair

techniques independently, e.g., giving the proof of an incompatibility, the repair of

axiom deletion will choose the least entrenched axioms in that proof, while the repairs

of renaming a predicate will target at the least entrenched predicates which occur in

that proof.

6.3 Maximal Set of Repair Plans (MSCR)

In a theory, there can be multiple faults which are caused by different axioms or

signature items so that they can be repaired at the same time. In this case, their repairs

commute and then the efficiency of the basic search strategy introduced in §4.4.2 is

low because it cannot repair those faults at the same time. On the other hand, not all

repairs of different faults can commute, e.g., two repairs targeting at one axiom.

In this section, a new search method is introduced, which computes maximal set of

commutative repair plans (MSCR)s so that they can be applied together. As a result,

fault-free theories can be found in a much shorter time. This method dramatically

saves time especially when the number of independent faults are big.

6.3.1 Conditions of Combining Repair Plans

Each RP can have some side effects. Good side effects fix other faults simultaneously

and bad effects introduce new faults. So it is possible that after applying one RP R1,

another RP R2 won’t be needed because the applied one also solves the fault which R2

targets. On the other hand, R1 may have changed the objects of R2, e.g., R1 merges

predicate mother with mum, so all mother are replaced with mum; then if R2 aims

delete an axiom of mother, it cannot find it after R1’s application.

The condition of grouping RPs, e.g., R1 and R2, is that they commute: applying

them in different order does not change the resulting theory. By employing function ‘⋅’
to represent the application of a RP to a theory, the commutation between R1 and R2
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can be written as Equation 6.51.

T ⋅R1 ⋅R2 =T ⋅R2 ⋅R1 (6.51)

To check whether RPs commute, the scope of which axioms RPs change is defined.

Definition 6.3.1 (Scope of a Repair Plan R). Let T be the original theory and Tr be

the repaired theory by applying the RP R. Then the scope of R is S(R):

S(R) = {Axiom∣Axiom ∈T∧Axiom /∈Tr}

Accordingly, R1 and R2 commute when they satisfy the following conditions.

1. R1 and R2 do not repair the other’s fault.

2. The scope of R1 and R2 do not overlap: S(R1)∩S(R2) = ∅

The first condition guarantees that any grouped RP does fix at least one fault.

Otherwise, if R1 also fixes the fault which R2 aims to fix, then R2 is unnecessary,

in which case, R2 should not be applied after R1 according to the minimal change

postulate.

The second condition guarantees that the grouped RPs can be applied in any order.

If there is any overlap between their scopes, then after applying one RP, the other may

not be able to find its targeted axioms.

6.3.2 Compute the Maximal Sets of Commutative RPs

Given all RPs for all detected faults, we aim at computing maximal sets of commutative

repair plan (MSCR).

Definition 6.3.2 (Maximal Set of Commutative RP). Given the whole set of all possible

RPs for all detected faults, a maximal set of commutative repair plans is a collection

of most commutative Repair Plans.

Note that there could be multiple MSCRs and we compute all of them. Meanwhile,

a RP can belong to more than one MSCRs. The above definition has the following

properties.

The computation of MSCR is based on the following rules which check whether

two RPs commute. The path mentioned below is a path in the theory graph6 based on

6It is defined in Definition 6.2.6.
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the new theory produced by applying the RP. According to Theorem 6.2.5, if there is

no path from predicate p to predicate q in a theory graph, then an assertion of p will

never be involved in a proof of an assertion of q. Thus, if no head predicate of an axiom

is on a path to the predicate of an unprovable sub-goal, then any change on that axiom

cannot make the unprovable goal of the insufficiency provable.

Theorem 6.3.1 (Commutation between RP of Incomp vs Incomp). Let R1 and R2 be

two RPs for two incompatibilities, and P1, P2 the sets of input axioms which constitute

the proofs that R1 and R2 block. Then R1 and R2 commute if S(R1)∩(P2 ∪S(R2)) =
S(R2)∩(P1∪S(R1)) = ∅.

Proof. As S(R1)∩P2 = ∅, then ∀α ∈ P2.α ∈ T ⋅R1. Thus, after applying R1, the proof

of P2 still exists, so R2 will be generated by ABC to block the proof of P2.

Meanwhile, from S(R1)∩S(R2) = ∅, it can be concluded that R2 can be applied

after R1 because all the axioms it needs to change are not changed by R1.

Similarly, if R2 has been applied, R1 will still be generated and it can be applied.

Therefore, R1 and R2 commute because their generation and application do not affect

each other.

Theorem 6.3.2 (Commutation between RP of Insuff vs Insuff). Let R1 and R2 be two

RPs for two insufficiencies, and S(R1), S(R2) be the scopes of R1 and R2, respectively.

They commute if S(R1)∩S(R2) = ∅, and no head predicate of an axiom in one’s scope

is on a path to the predicate of an unprovable sub-goal of the other insufficiency.

Proof. ∀p1(t⃗1)∧ ...∧ pn(t⃗n) Ô⇒ q(t⃗) ∈ S(R1), q is not on a path to the predicate of

an unprovable sub-goal of the insufficiency targeted by R2. Then any assertion of q

will not unblock a proof of that insufficiency based on Theorem 6.2.5. Therefore, after

applying R1, R2 will be generated to fix that insufficiency.

Again, from S(R1)∩S(R2) = ∅, it can be concluded that R2 can be applied after R1

because all the axioms it needs to change are not changed by R1.

Similarly, if R2 has been applied, R1 will still be generated and it can be applied.

Therefore, R1 and R2 commute because their generation and application do not affect

each other.

Theorem 6.3.3 (Commutation between RP of Incomp vs Insuff). Let R1 and R2 be

two RPs for an incompatibility and an insufficiency, and S(R1), S(R2) be the scopes

of R1 and R2, respectively. They commute if S(R1)∩S(R2) = ∅, and no head predicate

of axioms in R1’s scope is on a path to the predicate of an unprovable sub-goal of the

insufficiency.
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The proof of Theorem 6.3.3 can be formalised based on the ones of Theorem 6.3.1

and 6.3.2, so it is not given to avoid repetition.

Based on the above rules, MSCRs can be computed. The computation of MSCRs

is similar to the computation of the minimal set given in 4.1.

By applying RPs in a MSCR together, the search space is reduced because the

search branches of grouped RPs are merged into one. The comparison of search spaces

are drawn in Figure 6.7 and 6.8.

Figure 6.7: Recall The original search space for fault-free theories:the length of each

search branch can be different, and a search branch terminates with failure if there is

no repair available to fix a detected fault.

In summary, the MSCR is defined to merge search branches when their repair plans

commute, which reduces the search space of fault-free theories in the ABC Repair

System.

6.4 Pruning-out Sub-Optimal MSCRs

Similar to many repair techniques, our combination repair mechanism suffers the

common issue of overproducing repairs: ABC suggests dozens of repaired theories

for a faulty theory. This issue of overproduction damages the quality of ABC’s output.
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Figure 6.8: The reduced search space of grouping commutative RPs.

The bird theory in Example 6.4.1 is used to illustrate the overproduction of repairs,

in which PS is formalised by a user’s observation. This theory is incompatible because

that its theorem f ly(tweety) is in the false set of PS, whose proof is in 6.52. Since

there is only one fault, the MSCRs of repairs are singleton sets. We will discuss these

repairs directly for this example.

Example 6.4.1. Bird Theory.

bird(X) Ô⇒ f ly(X) (A1)

bird(X) Ô⇒ f eathered(X) (A2)

penguin(Y) Ô⇒ bird(Y) (A3)

Ô⇒ penguin(tweety) (A4)

Ô⇒ bird(polly) (A5)

T (PS) = { f eathered(tweety), f ly(polly)}
F(PS) = { f ly(tweety)}

f ly(tweety) Ô⇒
bird(tweety) Ô⇒ bird(X) Ô⇒ f ly(X)

penguin(tweety) Ô⇒ penguin(Y) Ô⇒ bird(Y)
Ô⇒ Ô⇒ penguin(tweety) (6.52)
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Abbr. Repairs to the Input Axiom ResStep 1 ResStep 2 ResStep 3

Ref1. Rename its head predicate. 0 1 1

Ref2. Increase the arity of its head predicate. 0 1 1

Ref3. Change its variable into another constant. 1 1 0

BR1. Delete the input axiom. 1 1 1

BR2. Add unprovable precondition to the rule. 1 1 0

Table 6.2: The repairs of the bird theory in Example 6.4.1: 1 represents that the repair in

that row is applicable to the input axiom in the resolution step (ResStep) in that column,

while 0 represents that it is inapplicable. The red repair is the optimal one.

Example 6.4.2. Semi-Repaired Bird Theory T12: rename

the head predicate of the input rule in ResStep 2.

bird(X) Ô⇒ f ly(X) (A1)

bird(X) Ô⇒ f eathered(X) (A2)

penguin(Y) Ô⇒ birdDummy(Y) (A3’)

Ô⇒ penguin(tweety) (A4)

Ô⇒ bird(polly) (A5)

T (PS) = { f eathered(tweety), f ly(polly)}
F(PS) = { f ly(tweety)}

To repair the incompatibility, its proof, shown in 6.52, needs to be blocked by

breaking any of its resolution steps. Table 6.2 lists all of the repairs w.r.t. this

incompatibility suggested by the ABC system, among which the first three repairs are

generated by reformation and the last two by belief revision. The head predicates of

the first and the second resolution step are f ly/1 and bird/1 respectively. Because the

predicates that occur in PS are not allowed to change, so that the first and the second

repairs in Table 6.2 cannot be applied to the first resolution step (ResStep1). On the

other hand, since there are neither variables nor rules involved in the last resolution

step, repairs Ref3. and BR2. are not applicable to the last resolution step (ResStep3).

The resulting theory of applying the first repair on the second resolution step is Bird

Theory 12, given in Example 6.4.2 with the changed predicate highlighted in blue. It

can be seen that this repair introduces an insufficiency because that f eathered(tweety)
becomes unprovable.
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In total, there are eleven repairs for fixing the incompatibility of f ly(tweety),

among which, only the red 1 in Table 6.2 refers to a repair which does not introduce

any new fault. Therefore, that repair is considered to be better than the others. The

corresponding repaired theory is given in Example 6.4.3, where the new argument of

predicate bird/2 in the third rule is assigned with a unique constant: dummy2. New

constants were suggested by the observation that they often distinguish two kinds of

the concept represented by their predicate, e.g., dummy1 represents for the normal

birds that can fly and dummy2 for abnormal ones that cannot. Here the abnormal kind

comes from the input axiom in the now broken resolution step.

Example 6.4.3. Repaired Bird Theory T22: increase the

head predicate’s arity of the input rule in ResStep 2.

bird(X ,dummy1) Ô⇒ f ly(X) (A1’)

bird(X ,Y) Ô⇒ f eathered(X) (A2’)

penguin(Y) Ô⇒ bird(Y,dummy2) (A3’)

Ô⇒ penguin(tweety) (A4)

Ô⇒ bird(polly,dummy1) (A5’)

T (PS) = { f eathered(tweety), f ly(polly)}
F(PS) = { f ly(tweety)}

The overproduction of the repair system has been illustrated by Table 6.2. Based

on the notion of the strict domination given by Definition 6.2.5, repairs which are not

strictly dominated by others can be seen as the optimal ones.

Let the theories in Example 6.4.2 and 6.4.3 be T12 and T22 respectively. Then their

fault sets are as the following. It can be seen that T22 is fault-free.

IS(T12,PS) = { f eathered(tweety)}
IC(T12,PS) = IS(T22,PS) = IC(T22,PS) = ∅

(6.53)

By comparing all repairs in Table 6.2, it can be concluded that T22 is the one

produced by applying the only optimal repair plan.

Although the above discussion is based on repair plans rather than MSCRs, the

issue of overproduction exists for MSCRs too. MSCRs reduce the search space by

merging some of search branches into one branch, but they do not reduce the number

of the fully repaired theories suggested by ABC.

In ABC, it is common to set a depth limit for the search of fault-free theories.
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With a depth limit, more repaired theories could be suggested after applying MSCRs,

because the length of a search branch could be reduced by MSCRs. For example, if it

takes five rounds of fault detection and repair generation to produce a fault-free theory

T1 without MSCRs, and all of T1’s repair plans commute, then T1 can be produced in

one round by applying the MSCR. If the depth limit is three, then T1 can be produced

only when MSCR is applied. Therefore, it is essential to have a mechanism which

selects the optimal MSCRs while pruning the sub-optimal ones.

However, the strict domination given by Definition 6.2.5 cannot be directly applied

to MSCRs. Because it is unfair to compare the remaining fault number when theory

T′ is generated based on a MSCR of three RPs while another T′′ is based on a MSCR

of only one RP. In this example, if they are the only candidates to compare and have

the same number of remaining faults, then both theories would be concluded as the

optimal while T′ should not be.

To evaluate the fitness of MSCRs, their estimated cost is defined as the following.

Definition 6.4.1 (Estimated cost of a MSCR). Let M be the set of repair plans

combined by the MSCR, and Tg be the repaired theory after applying all RPs in M.

Then the estimated cost of the MSCR is c(M):

c(M) = ∣M∣ +Ninsu f f (Tg)+Nincomp(Tg)

where Ninsu f f (Tg) and Nincomp(Tg) are the number of inefficiencies and

incompatibilities of Tg respectively.

Accordingly, the revised strict domination w.r.t. MSCRs is defined as the

following.

Definition 6.4.2 (Strict Domination on MSCRs). A MSCR M1 is strictly dominated by

another M2 if c(M1) > c(M2).

MSCRs which are not strictly dominated by others are optimal, and then all the

sub-optimal ones which will be pruned from the repair process. Consequently, the

search space of fault-free theories are reduced. This sub-optimal pruning can be seen

as a simplified implementation of the entrenchment of axioms and preconditions by

regarding insufficiencies and incompatibilities as equally important.
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6.5 Other Specifications and Heuristics

A set of specifications and heuristics are developed developed to assist the ABC Repair

System. Some of them have been given in the previous discussion. This section

summarises the others that have not been introduced.

Specifications: desired behaviours of the ABC Repair System, especially for avoiding

the repair process being broken.

Optional heuristics: restrict the repair generation to avoid undesired repairs.

Specifications are essential to the repair mechanism. They protect the repair

mechanism by avoiding serious issues, e.g., loops. In contrast, heuristics are optional,

which provide an opportunity of avoiding unwanted repairs from the user side.

Consequently, the over production of repairs can be controlled and the rate of desired

repairs to the total repairs can be increased. Neither of them invents new repairs, but

they help to improve the general performance.

Specifications reflect the basic strategy of our repair framework, among which

some prevent a previous repair from being reversed. All specifications are listed below

where the reversal repairs are listed with ‘vs’ between them.

1. Minimal Change: do not change more than necessary. For example, only one

extra argument will be added to break a unification by increasing the arity of the

predicate, no more than that. Otherwise, the repair search space will be exploded

and the quality of repairs will be predictably low.

2. Preservation of PS: everything in PS is the most entrenched and is not changed

in any case7.

3. No duplicates: Same repaired theory could be generated by applying different

combinations of MSCRs. Duplicates check is necessary before output.

4. Axiom expansion vs deletion: if an axiom is added by a previous repair, the

identical axiom will not be deleted, and vice versa.

5. Precondition expansion vs deletion: if an precondition is added by a previous

repair, the identical precondition will not be deleted, and vice versa.

7PS comes from the user, repair system cannot change it. Investigating the communication between
a user and a repair system via PS will be a future work, discussed as bullet 6 in §9.1.
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6. Arity increment vs decrement: if an argument is added by a previous repair, it

will not be deleted, and vice versa.

7. Predicate merging vs splitting: if a predicate is merged by a previous repair, it

will not be split, and vice versa.

The violation of any of the above specifications can be seen as an error of the repair

mechanism. Heuristics are summarised below, each of which is followed by the sample

reasons why a user would choose it.

1. noAxiomDele: no axiom will be deleted. It is desired when all of the axioms in

the theory are considered to be useful, and then none of them should be deleted.

Here belief revision is banned, e.g., in Example 6.4.1.

2. noRuleDele: no rule will be deleted, which is a special case of noAxiomDele. It

can be chosen when the rules of a theory are essential, e.g., the rules of playing

a game.

3. noAxiomAdd: no axiom will be added. It can be chosen when the size of a

theory is limited or the current axioms are the target to modify. Here abduction

is banned.

4. noRuleAdd: no rule will be added. If the theory will be used in a platform

where only assertions are allowed, the user should employ this heuristic.

5. protection list: any element that is in the protection list will not be changed.

Candidates of the elements include whole axioms, predicate names, the arity of a

predicate, and constants. This list is different from the entrenchment evaluation.

Protection list is specified by the user while the entrenchment evaluation is

automatic based on the preferred structure. For example, when a predicate

is isolated from the preferred structure, its entrenchment score will be low.

However, if the user knows that the predicate should not be changed, e.g., ‘=’,

then it can be given in the protection list.

6. minArgDele: when deleting arguments of a predicate, delete the ones whose

domain is minimal in the size. The underlying idea is that the bigger the

argument domain is, the more information that argument can provide.

When multiple optional heuristics are employed, the condition that dominates the rest

of them will be applied, e.g., if both noRuleAdd and noAxiomAdd are employed, then

noAxiomAdd will be the one applied.
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Specifications are built-in by default with the repair mechanism, while a user can

choose from optional heuristics according to what kinds of repairs or repaired theories

are needed.

6.6 Summary

To achieve a succinct representation of inequalities, a mechanism of unique name

assumption with exceptions has been developed, which makes it possible to describe

how pairs of syntactically distinct constants are equal or unequal in the context of

Datalog. UNAE retains the original UNA’s advantage of having the inequalities by

default for a simple representation. On the other hand, UNAE successfully avoids

UNA’s deficiency of refusing the fact that one individual can have two distinct names.

The traditional epistemic entrenchment proposes postulates but lacks a

formalisation which can quantify the evaluation of it. Also, it only discusses axioms

and not the signature and its elements. Based on PS, we formalised the algorithms of

evaluating entrenchment from the level of both axioms and the signature:

1. The entrenchment of an axiom is formalised based on how much it respects its

PS.

2. The entrenchment of a precondition is evaluated based on how big influence it

has w.r.t. making the theory respect its PS.

3. The entrenchment of the signature is formalised for the following elements:

(a) Predicate names, whose entrenchment is calculated based on their distance

to preferred predicates on a defined theory graph;

(b) An argument of a predicate, whose entrenchment is evaluated based on its

influence on making the theory respect its PS.

Since there can be commutative RPs when the theory has multiple faults, a maximal

set of commutative repair plans is defined and computed to apply RPs together.

Accordingly, the sub-optimal pruning of MSCRs is developed based on their estimates

cost.

A set of specifications and heuristics are developed: the former addresses basic

issues so they are built by default, while the latter can be chosen by users to fit different

requirements. They are important to make the repair generation effective and efficient.
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Implementation

The implementation is written in the logic programming language: Prolog. There are

several reasons behind the choice. 1, Prolog is a logical programming language with

roots in first-order logic which is sufficient for our project. 2, Prolog’s free unification

algorithm and depth-first search can significantly simplify our code. Although Prolog

lacks the unification occurs check, it is not a problem in a Datalog theory, because

Datalog has no functions so the occurs check is not needed. On the other hand, all

searches in our project are exhaustive and finite, thus depth-first search does not suffer

from non-termination. 3, Prolog is declarative so that we only need to express the logic

of our computation, which makes our implementation more understandable than one

written in non-declarative languages. In summary, Prolog allows a sound and complete

implementation for our project which is succinct and easily readable.

In our implementation, an axiom of the input Datalog theory is written as a Horn

clause and each Horn clause is given as the argument of the predicate axiom/1, e.g.,

there are three axioms in the motherhood theory below. A Horn clause is a list of

literals among which the single positive one is its head and the negative ones constitute

its body.

We use predicate ‘=’ to represent the equality and ≠ inequality, while ‘≡’ represents

syntactically equal, whose negation is /≡. The predicate heuristics/1 in the following

Motherhood Example is for listing applied heuristics, e.g., ‘noAxiomDele’ means that

the repair of deleting an axiom is banned.

143
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Motherhood Example.

axiom([+mum(diana, william)])

axiom([+mum(camilla, william)])

axiom([-mum(X, Z), -mum(Y, Z), +(=(X, Y))])

heuristics([noAxiomDele]).

This chapter introduces the implementation of the work proposed in Chapter 4 and

6 first. And then the second half of this chapter discusses how we interact with the user

and what heuristics have been built to boost the repairing performance.

7.1 Unique Name Assumption with Exceptions

Based on the UNAE, constants in one subset of a theory’s equality set, ES in Definition

6.1.1, are equal, while ones in different subsets are unequal. This section discuss the

implementation of UNAE from the aspects of an efficient representation of the subsets

of the equality set, its calculation and the relevant inference processes.

Recall Example 6.1.1, the equality set can be derived from the axioms in a Datalog

theory. Before deriving ES, the properties of ‘=’ need to be considered, which are

listed below.

Reflexivity: ∀x. x = x.

Symmetry: ∀x,y. x = y Ô⇒ y = x.

Transitivity: ∀x,y,z. x = y∧y = z Ô⇒ x = z.

Monotonicity: ∀x⃗, y⃗. x⃗ = y⃗ Ô⇒ [p(x⃗) ⇐⇒ p(y⃗)], where x⃗ is a vector of n variables.

Here p is a predicate, because functions are not allowed in a Datalog signature.

Because of the monotonicity, the variable equality in a precondition of a rule axiom

can be removed following the rules defined below. This removal needs to be done

before any goal-proving task as it may influence the result of a derivation. Here ⊎ is

disjoint union, i.e., x⊎y = x∪y where x∩y = ∅;

Definition 7.1.1 (Variable Equality Precondition Removal Rules). When precondition

v = t or t = v is in a rule, it is removed by replacing all of the occurrences of v by t in

that rule (v↦ t). Two rules are required to cover the symmetry of =.

T⊎{⋀i−1
k=1 Rk∧v = t ∧⋀n

k=i+1 Rk Ô⇒ P}
T⊎{(⋀i−1

k=1 Rk∧⋀n
k=i+1 Rk Ô⇒ P){v↦ t}}

V E1
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aubergine

brinjal eggplant

Figure 7.1: The tree structure of the subset of an equality set: E =
{aubergine, brin jal, eggplant}, where the representative ‘aubergine’ is highlighted.

T⊎{⋀i−1
k=1 Rk∧ t = v∧⋀n

k=i+1 Rk Ô⇒ P} ES
T⊎{(⋀i−1

k=1 Rk∧⋀n
k=i+1 Rk Ô⇒ P){v↦ t}} ES

V E2

Now the equality theorems can be derived from the resulting theory T′ of variable

equality preconditions removal1. Apply an exhaustive search with the goal clause x =
y Ô⇒ to T′ and get all of ground answers which are in the form ci = c j. Based on

the symmetry property, reorder these equalities so that ci is alphabetically before c j,

after which duplicates are eliminated and then all the remaining equalities are ordered

according to their first constant in lexicographical order. The resulting set of ordered

equalities will be written as Eordered in the following discussion.

Recall the properties of ‘=’. They would need to be applied to the inference in

which an equality is involved, and the transitivity and the monotonicity can make

the inference quite difficult, sometimes even non-terminating. Therefore, a good

representation of each subset of ES is needed for easing the inference with equalities.

Thus, the equivalence class is defined, which organises ES by assigning each subset

with a representative.

Definition 7.1.2 (Equivalence Class). An equivalence class Ec summarises all the

subsets of the equality set by enriching each subset E as a tree structure T =< r,A⃗,E >,

in which each node corresponds to one constant in E, among which the root node in is

its representative (r); arcs are arrows A⃗, each of which points from a node to the root:

Ec = {T ∣∀E,T =< r,A⃗,E >},where r ∈E;∀a⃗ ∈ A⃗, a⃗ = (c,r),c ∈E (7.1)

According to Definition 7.1.2, the representative has its arrow pointing back to

itself. An example of a equality set in tree structure is given in Figure 7.1, where

aubergine is the representative.

1Here we are not aiming at the theorems inferred from equality’s properties, but the ones directly
derived by axioms in the theory.
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It can be seen that given a representative, and a subset of the equality set, the arrows

are uniquely decided, so the corresponding equality tree is.

If T1 =< r,A⃗1,E >⋀T2 =< r,A⃗2,E >, then A⃗1 = A⃗2∧T1 = T2 (7.2)

An equivalence class Ec can be calculated based on Eordered , given by Definition

7.1.3, where N is a function which returns the representative of a constant, e.g.,

N(eggplant) = aubergine based on the equality tree in Figure 7.1.

Definition 7.1.3 (Equivalence Classes Calculation). The equivalence class Ec is

calculated based on the set of sorted equalities Eordered following the processes below,

where if c1 = c2 ∈Eordered , then c1 is lexicographic smaller than c2.

1. Initialisation: initialise Ec by establishing a single-node tree Ti =< ci, A⃗i,{ci} >
for each constant ci in the signature. Here C is the set of all constants in the

signature of T, A⃗i is a singleton set whose member a⃗ii is a vector whose arrow

points from ci back to itself.

Ec = {Ti∣∀ci ∈ C, Ti =< ci, A⃗i,{ci} >}, where A⃗i = {a⃗ii}, a⃗ii = (ci, ci) (7.3)

2. Update: get the updated equivalence class from Ec to E′c for each equality c1 =
c2 ∈ Eordered . No changes are made in the update when c1 is already under the

same representative with c2. Otherwise, merge the original equivalence classes

of c1 and c2 into a new equivalence class whose representative is c1’s original

representative.

E′c =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ec, iff N(c1) = N(c2)

Ec−{< c1,A⃗c1,Ec1 >, < c2,A⃗c2,Ec2 >}⊎{< c1,A⃗c12,Ec1∪Ec2 >}
(7.4)

Where A⃗c12 = A⃗c1∪{(ci, c1rep)∣∀ci, (ci, c2) ∈ A⃗c2, (c1,c1rep) ∈ A⃗c1}.

3. Termination: when all equalities in Eordered have been incorporated in Ec, this

process is done.

To avoid the tediousness of equality’s transitivity and monotonicity in inference, a

normalisation of constants is pre-processed based on Ec: all constants that occur in Ec

will be replaced by their representatives in the theory T and the goal clause G.
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Definition 7.1.4 (Replacement of Constants with their Representatives). Let σ = {c1↦
r′1, . . .cn↦ r′n}, where N(ci) = ri ∈Ec, then the replacement is:

G T Ec
Gσ Tσ Ec

R

Note that we have abused the notation for substitution by using it for replacement.

The correctness of this rule is justified by the monotonicity of =. By replacing all

the constants by their representatives, the original ‘equal’ is translated to the ‘identical’.

Thus the properties of equality are not needed, except for reflexivity, during the

following inference. The condition of this translation is that the equivalence classes

calculation in Definition 7.1.3 and the replacement of constants in Definition 7.1.4

are pre-processed which should be done before any goal proving task and need to be

updated when the theory or the goals are changed.

So far, the whole pre-process for UNAE is done and it is ready to undertake

goal-proving tasks. When there is predicate = or ≠ in the subgoal, it can be resolved

based on the two new inference rules defined in Definition 7.1.5 to supplement SL

Resolution to remove ground equalities and ground inequalities. Notice that our

resolution always selects the left most subgoal.

Definition 7.1.5 (UNAE Inference Rule.). After replacing all constants with their

representative base on equivalence class, the subgoal c = c Ô⇒ or c1 ≠ c2 Ô⇒ is

resolved straight away, where c1 and c2 are syntactically distinct constants.

c = c Ô⇒ ∧ G
G (7.5)

c1 ≠ c2 Ô⇒ ∧ G
G (7.6)

Again, the above rules rely on the up-to-dated equivalence class, the theory and

goals. Otherwise, rule 7.6 will be applied incorrectly.

7.2 Fault Detection

By fault detection, we mean detecting an input theory’s insufficiency, incompatibility

based on a preferred structure2. The main flow of fault detection is illustrated by the

2Relevant theoretical discussion is in §4.2 and 4.3.
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pseudocode in Algorithm 1.

Algorithm 1: Fault Detection based on SL Resolution
Result: Proofs or the insufficiency evidences.

Input : Input theory, Preferred structure

if Preferred structure is Empty then
Insuff set = Incomp set = Proof sets = Evidence sets = Empty

Terminate.
else

while Get the next Goal from the True Set in Preferred structure do
/* get all the proofs and the evidence of partial

proofs. */

(ProofsInsuff, Evidences) = sl Resolution(GoalInsuff, Input theory).

if Proof Set is Empty. then
Insuff set = Insuff set + GoalInsuff

Evidence sets = Evidence sets + Evidences

Continue.
else

Not a fault

Proof sets = Proof sets + ProofsInsuff

Continue.
end

end
while Get the next Goal from the False Set in Preferred structure do

/* get all the proofs ignoring the partial proofs. */

(ProofsIncomp, ) = sl Resolution(GoalIncomp, Input theory).

if Proof Set is Empty. then
Not a fault.

Continue.
else

Incomp set = Incomp set + GoalIncomp

Proof sets = Proof sets + ProofsIncomp

Continue.
end

end

end

In this section, Horn clauses are written in their disjunction forms sometimes.

• The disjunction form of the rule P1∧ ...∧Pn Ô⇒ Q is −P1∨ ...∨−Pn∨+Q.
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• The disjunction form of the assertion Ô⇒ Q is +Q.

The rest of this section discusses the implementation of SL-Resolution in §7.2.1 and

the proof representation in §7.2.2.

7.2.1 Selected Literal Resolution without Ancestor Resolution

Although Prolog has free resolution, we need to implement a resolution algorithm

because: 1, we need the proof for generating repairs. 2, when repairing an

insufficiency, we want to unblock a failed proof. Thus, unlike the common proof

searching, we need the evidence of a failed proof as well as a complete proof. 3, we

need to embed the new inference rules developed for UNAE.

In this thesis, SL Resolution is used to search for proofs of a goal. It works by

refutation that the conjecture to be proved is negated and added to the axioms. If the

empty clause is derived, then that conjecture is proved.

In this project, the conjecture comes from the preferred structure, which is for fault

detection. As discussed in §4.3, to detect an insufficiency or an incompatibility, the

original goal is always a negated ground proposition. Additionally, the input clauses

are only Horn clauses, for which SL-resolution without ancestor resolution is complete.

Because we need all of the proofs and all of the evidence of incomplete proofs to

support the repair generation, the Prolog search operator f indall is employed, whose

search strategy is depth-first with chronological backtracking. In other words, the ‘OR’

choice in our resolution (Bundy, 1985) is made by iterating over all axioms. As for

one search branch, which is the ‘AND’ choice, it is fixed by choosing the left most

subgoal to resolve away. This fixed choice makes it easier for backtracking a proof

than randomly choosing a subgoal to resolve.

Table 7.1 depicts the resolution algorithm in terms of AND choice: a search branch

terminates with either a proof or an evidence of partial proof of the original goal. If

a variable name occurs both in the selected input clause and the goal clause, the ones

in the input clause will be renamed to avoid name collisions. For simplification, that

variable renaming is not described in the table.

In our thesis, the input of SL Resolution includes a goal and the input theory,

between which only the goal together with its derivation D is given in the first column

in Table 7.1. The second column depicts different forms of the first, left most subgoal,

and gives the condition of the resolution step. The condition is highlighted in blue,

which requires that the theory has an axiom in the form of (+P(t⃗)∨−B⃗,S), whose head
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can resolve with the goal. The third column is a check step in our resolution. If the

resulting new goal clause is a superset of a previous goal clause, then this resolution

step fails the check because it either makes the goal clause more complicated than

before or reproduces a previous goal. In this case, the derivation reaches ‘Retry’ in

the last column, and it will redo the resolution step by getting another axiom from

the theory for resolution, which has been highlighted in blue in the table. In ‘After’

column, there are three different colours: the red ones terminates with a proof or an

evidence; the blue one, as aforementioned, retrys another axiom to resolve the current

subgoal G1 =−P(s⃗); and the black ‘continue’ which updates the goal and the derivation

and use them as the input of the next step of resolution.

7.2.2 Proof Representation

The proof and the evidence of partial proofs of a goal found by SL Resolution need

to be recorded in a well formed representation, because they are the basics of repair

generation. This section gives the format of a proof or the evidence of a partial proof.

Our discussion will be based on evidence in the following.

An evidence (Pn) is constituted by a sequence of resolution steps (RS), shown in

7.7, and each RS (R) is represented by a five-tuple, shown in 7.8.

Pn = [R1,R2, ..Rn] (7.7)

R = (G0, Inc, γ, G1, (N, M)) (7.8)

where some elements are local, which will not be changed along with its following

RSs in the sequence; while some are global which updates when a new RS occurs.

• G0 is local, representing the current goal clause in the form of g1(c⃗1)∧g1(c⃗2)∧
...gn(c⃗n) Ô⇒ , whose first, left-most subgoal g1(c⃗1) is resolved in this RS;

• Inc is local, representing the input clause, Inc ∈ T, in the form of p1(X⃗1) ∧
p1(X⃗2)∧ ...pm(X⃗n) Ô⇒ q(Y⃗), whose head q(Y⃗) resolves g1(c⃗1) is resolved in

this RS.

• γ is global, which records the substitutions that have been applied on the input

clause Inc. It can be expanded during the following sequence of RSs. The

initialisation of γ is by the equation below.

g1(c⃗1) ≡ q(Y⃗) ⋅γ (7.9)
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• G1 is local, representing the resulting goal clause in this RS, which will be the

current goal for the next RS.

G1 = (p1(X⃗2)∧ ...pm(X⃗n)∧g1(c⃗2)∧ ...gn(c⃗n)) ⋅γ Ô⇒ (7.10)

• (N, M) is global, whose sum represents how many subgoals in the newest goal

clause are originally from Inc in this RS. The initialisation of N is the size of

the body of Inc, and M is zero. It can be seen that ∣G1∣ − ∣G0∣ +1 = N, where 1

is caused by the resolved g1(c⃗1). M works on recording the reorder of subgoals

when the goal is a mix of equalities/inequalities and non-equalities, which is

discussed latter. As long as N +M > 0, substitutions need to be added to γ in this

RS tuple.

G0 in Rn can be different from G1 in Rn+1 when the order of the subgoals is changed.

To reduce the search space, the subgoals with “=” or “≠” are resolved after all

the non-equality subgoals, so that all variables in the remaining subgoals have be

substituted if they can. Reordering reduces the search space especially when a variable

occurs in the inequality subgoal, e.g., c ≠ X , where X can be bound with all constants

that are unequal to c. By moving equalities and inequalities to the end, subgoals like

c ≠ X can be avoided when possible.

Based on the RS tuples, the operations in evidence Pn can be recorded by updating

its RS tuples. These operations include reordering the subgoals and resolving the first

subgoal, given as the following, where the existing evidence is Pn−1 = [R1,R2, ...Rn−1],
and the current goal clause is Gn.

1. Resolution of non-equalities: when RS occurs, the first non-equality subgoal in

Gn is resolved away, then the evidence needs to make the following changes:

(a) update the existing Pn−1 to P′n−1 by decreasing the last non-zero N in Pn−1

by 1, representing the remaining subgoals from that input clause is 1 less.

(b) append the updated existing evidence P′n−1 with a new RS tuple T , where

Gn is the current goal clause from Pn−1; Incn is the input clause which

resolves the first sub-goal of Gn; γn is the applied substitution; Gn+1 is the

resulting new goal clause; Nn is the number of the newly introduced new
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sub-goals from Incn and Mn is zero.

Pn = P′n−1+T (7.11)

P′n−1 = Pn−1⊖N 1 (7.12)

T = (Gn,Incn,γn,Gn+1,(Nn,Mn)) (7.13)

where ⊖N takes the last3 tuple Ri in the input list in which N is not zero,

and then decreases N in Ri by 1.

(c) append the substitution to RS tuples whose numbers satisfies N +M > 0. If

N+M = 0, e.g., (G,Inc,γ,G′,(0,0)) ∈Pn−1, it means that none of the current

subgoals are from Inc4. Thus the current substitution γn in 7.13 should not

be applied to Inc. Alternatively, there are remaining subgoals from the

input clause, so that new substitution is applied to that input clause.

2. Reorder: if ∃(Gi,Inci,γi,Gi+1,(Ni,Mi)) ∈ Pn−1, Ni ≠ 0, and the first subgoal is

of the equality/inequality, then move that first subgoal to the end of the goal

clause. Update the evidence by decreasing the last non-zero N in Pn−1 by 1, and

increasing its M by 1. Then the sum of all Ms in an evidence is the total number

of the moved equality/inequality subgoals.

P′n−1 = Pn−1⊖N 1⊕M 1 (7.14)

where ⊕M takes the same tuple Ri which ⊖N operates, and then increase that

tuple’s M by 1.

3. Resolve the equality/inequality subgoals: if ∀(Gi,Inci,γi,Gi+1,(Ni,Mi)) ∈ Pn−1,

Ni = 0, then there are only equality or inequality subgoals in Gn. Resolve the first

subgoal away, and the evidence needs to be updated by making the following

changes:

(a) update the existing Pn−1 to P′n−1 by decreasing the first non-zero M in Pn−1

by 1.

(b) append the updated existing evidence P′n−1 with a new RS tuple T . If all

of the newly introduced new sub-goals are of equality/inequality, then Mn

3The leftmost subgoal is one latest introduced, so that it is from the last input clause not the first.
4It happens when Inc is an assertion which does not introduce any subgoal, or Inc is a rule whose

preconditions had been introduced as subgoals by Inc, but those subgoals have been resolved away in
previous RSs.
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is the number of them and Nn = 0. Alternatively, if new sub-goals contain

non-equalities, then Nn is the number of them and Mn = 0.

Pn = P′n−1+T (7.15)

P′n−1 = Pn−1⊖M 1 (7.16)

T = (Gn,Incn,γn,Gn+1,(Nn,Mn)) (7.17)

where ⊖M takes the first5 tuple Ri in the input list in which M is not zero,

and then decrease M in Ri by 1.

(c) append the substitution to RS tuples whose numbers satisfies N +M > 0.

Theorem 7.2.1. The evidence Pk = [R1,R2, ...,Rk] recorded following the above

operations has the below property, where Ri = (Gi−1,Inci,γi,Gi,(Ni,Mi)), 1 ≤ i ≤ k.

∣Gi∣ = ∣G0∣ −1+
i=k
∑
i=1

Ni+Mi (7.18)

Proof. Because the reordering does not change the number of the subgoals, neither the

sum of Ni+Mi, thus it is omitted in the proof.

Let i=1, if the first subgoal is not of equality, then M = 0, and the new goal is the

original ones together with the body of the input clause without the one being resolved

away, therefore the number of the subgoals in the new goal ∣G1∣ is as the following,

which is the same as i=1 in 7.18.

∣G1∣ =M−1+N1+ ∣G0∣ −1 (7.19)

Let i = j, j < k, and assume that ∣G j∣ = ∣G0∣ − 1+∑i= j
i=1 N j +M j, then when a new RS

occurs, one subgoal resolved away (∣G j∣−1) and new subgoals introduced by the input

theory N j+1+M j+1.

∣G j+1∣ = ∣G j∣ −1+N j+1+M j+1 (7.20)

= ∣G0∣ −1+
i= j

∑
i=1

N j +M j −1+N j+1+M j+1 (7.21)

Because the existing evidence has been updated by either 7.12 or 7.16. Thus the

updated sum of P′j is decreased by 1.

i= j

∑
i=1

N′

j +M′

j =
i= j

∑
i=1

N j +M j −1 (7.22)

5Due to the reorder of equality/inequality subgoals, the leftmost equality/inequality subgoal is one
oldest introduced, so that it is from the first input clause not the last.
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Apply the updated evidence to 7.21. It can be seen that 7.18 is true for j+1.

∣G j+1∣ = ∣G0∣ −1+(
i= j

∑
i=1

N j +M j −1)+N j+1+M j+1 (7.23)

= ∣G0∣ −1+
i= j

∑
i=1

N′

j +M′

j +N j+1+M j+1 (7.24)

= ∣G0∣ −1+
i= j+1

∑
i=1+1

N j +M j (7.25)

In conclusion, the numbers in the evidence have the property written in 7.18.

The advantage of the defined representation are summarised as the following.

1. Given a proof, it is easy to get all input clauses involved in the proof.

2. Easy to trace-back. Specify one particular RS, Rk, the input clause which

introduced the ith remaining subgoal in Rk can be found by counting Ns and

Ms.

3. Easy to know the substitutions applied to the input clause in the proof. It is γ

given as the third element in each RS tuple.

For a proof, the fourth element in its last RS tuple is an empty clause. For a partial

proof, the fourth element in its last RS tuple is the remaining goal clause that cannot

be resolved.

7.3 Repair Generation

This section discusses the implementation of repair generation based on the repair

algorithm given by Chapter 5 by incorporating the mechanism of pruning sub-optimal

repairs in §6.4 and the heuristics in §6.5.

The proofs of propositions in the false set of the preferred structure are unwanted

(P1), while the proofs of propositions in the true set are wanted (P2). On the other hand,

the evidence of partial proofs of the propositions in the true set are potentially wanted

(E1). The repairs of an incompatibility block P1 and the repairs of the insufficiency

either unblock one of its partial proof in E1 or imitate a template proof in P2.

All of P1, P2 and E1 can be found by the Linear Resolution with Selection Function

discussed in §7.2.1. These proofs and evidence together with the input theory and
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Before Condition Repair Plan After

(-G, prefStruc) – – – – Termination.

([],D) – – – –

Continue with D.
((−G1∨−G⃗n),D,(A,S)),

where G1 = p(s⃗m)
A = +p(t⃗m)∨−B⃗

p /∈ Protected

S ≠ abduction
rename(A, p)

G1 /∈ Protected Arity inc(A, p)
ti ∈ t⃗m

si ∈ s⃗m

ti = si = c

c /∈ Protected

Rename(A, p,si,cdummy)

ti ∈ t⃗m

si ∈ s⃗m

si = c,ti = X

Weaken(A, p, i,cdummy)

A /∈ Protected

noAxiomDele /∈
Heuristics

Delete axiom A.

Table 7.2: Repair plan generator for blocking the proof of the incompatibility: A is an

input axiom whose source is S and body is B⃗; G1 is the left most subgoal which is

resolved by A’s head; s⃗m is a set of constants, while t⃗m is a set of terms which can be

the mix of constants and variables; Protected is a set of protected items and Heuristics

is a set of chosen heuristics. This generator outputs all possible repairs and the details

of applying each repair plan is given in §5.1.1 on page 68.

heuristics are the input of repair generation. A cost limit is employed to terminate

the repair process when its search is too deep or the applied RPs have been too many.

Heuristics decide whether a repair plan is applicable or not. Thus, the strategy of

searching for a fault-free theory is based on a depth-limited version of depth-first

search with chronological backtracking.

Table 7.2 gives the repair generation of all possible repairs w.r.t. a proof of an

incompatibility. A proof record starts from the end of a proof which is the empty clause

together with the evidence of the empty clause, as shown in the second row in the table.

The generator searches for repairs by backtracking the evidence and terminates when

reaching the original goal that comes from the preferred structure, as shown in the first

row of the table. In one resolution step, the unification is between the left most subgoal
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Proof/Evidence Condition Rpair Plan

Proofs of sufficiency P
γ(P,G) = R

noRuleAdd /∈Heuristics
Analogise(R)

Evidence of a partial proof:

((−G1∨−G⃗n),D))

A ∈T∧A /∈ Protected

T ⊢ B⃗, where A is (+P∨−B⃗)
Reform(AP)

noAxiomAdd /∈Heuristics Add(G1)

noRuleAdd /∈Heuristics

T ⊢ +F
Add(+G1∨−F)

(−G1∨−G⃗n)∼̇D(R,B) Delete(R,B)

Table 7.3: Repair plan generator for unblocking the proof of the insufficiency: the output

is a set of all possible repairs. All the symbols here are same with Table 7.2; F is

a theorem of the theory; function ∼̇D returns true when the sub-goals on its left is

originally from the rule R’s preconditions B⃗ in the evidence D.

G1 and the input axiom A. For each resolution step, there are five repair candidates.

If a candidate does not violate the protected set nor the heuristics, it is generated as a

repair plan.

Table 7.3 gives the repair generation based on a proof template or an evidence

w.r.t. an insufficiency. There is no recursion in this generator. When a rule in a proof

template is selected based on Equation 5.31 as the template of analogical abduction,

that rule is analogised to unblock a proof. Discussion of this repair is in §5.2. Given

an insufficiency evidence, the repair plans in Table 7.3 correspond to repair plans in

Table 5.2, where the last repair plan is to delete unprovable preconditions from a rule.

7.4 Summary

The implementation of unique name assumption with exceptions is described in this

chapter. By employing a tree structure, the equivalence class is defined. Accordingly

constants are replaced with the representatives in their ECs in both the input theory and

the preferred structure. Then the conflicts of the equality/inequality can be detected.

SL-resolution is the key component of the fault detection, of which the

implementation is summarised in Table 7.1. Once a fault is detected, its proof or

the evidence of partial proof is recorded in the structure given in §7.2.2. That structure

makes it convenient to trace back the original input precondition from which a subgoal
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is from. Meanwhile, it is easy to calculate the substitutions applied to an input axiom

in a proof. These advantages support repair generation.



Chapter 8

Evaluation

The purpose of this chapter is to provide evidence for the hypothesis outlined in the

introduction:

Hypothesis: by combining abduction, belief revision and conceptual change via

reformation, ABC is capable of repairing Datalog theories with the best results

within the scope of the repair operations based on all the individual techniques.

Best results are defined below.

Definition 8.0.1 (Best Results). The best results are the repaired theories with the

properties listed below.

1. they satisfy the preferred structure;

2. the applied repair operations on them are all necessary in terms of

fault-repairing;

3. they embrace commonsense meanings.

It can be seen that the first two properties are objective. Still, to go further,

the heuristic measure of human judgement can check which repairs embrace

commonsense meanings. And, in contrast to the objective measure, this is subjective.

Property 2 does not require a best repaired theory to be produced with the fewest

repair operations, because it is possible that a theory with commonsense meanings

needs a combination of more repair operations than the fewest ones. Therefore, as long

as there is no redundant repair operation which does not fix any fault, the corresponding

theory is not rejected to be best.

The evaluation criteria are defined as the Silver Standard and the Gold Standard

(GS) based on the aforementioned properties.

159
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Definition 8.0.2 (Silver Standard). The repaired theories that have Properties 1 and 2

in Definition 8.0.1.

Definition 8.0.3 (Gold Standard). the repaired theories which are not only at the Silver

Standard, but also have Property 3 in Definition 8.0.1.

The following objectives are outlined for the project that would fulfil this

hypothesis:

1. To develop an automatic mechanism for detecting insufficiency and

incompatibility w.r.t. a preferred structure, and generating repairs that combine

abduction, belief revision and conceptual change.

2. To provide a set of postulates that a repaired theory should satisfies. These

postulates are the guidance of the repair generation.

3. To establish an algorithm which evaluates the fitness of repairs and prunes

sub-optimal repairs.

4. To formalise heuristics to guide the repair process and enable the user to

customise wanted repairs while avoiding unwanted ones.

5. To evaluate these abilities against a representative set of examples of Datalog

theories with observations, formalised as the preferred structures, demonstrating

that these abilities are useful and can be successfully performed.

Preliminary

The terminology that will be used in this section is summarised as the follows.

• Semi-repaired theory: a theory that has been repaired but is not fault-free,

which needs further processing. It is not the output of ABC but an intermediate

product.

• Fully repaired theory: a fault-free theory while respecting its preferred

structure that has been found by ABC. Some of them may not be output as the

final results due to the sub-optimal pruning.

• Final repaired theory: a fully repaired theory output by ABC. If the input

theory is fault-free, then it is the output.
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• Best repairs (GS): the GS for the evaluation, which are a set of the fully repaired

theories that are at the gold standard based on Definition 8. As all fully repaired

theories are fault-free with fewest operations due to the sub-optimal pruning,

the standard of GS is aiming higher to embrace commonsense meanings. The

theories tested in this chapter are given in Appendix A, together with one of their

best repaired theories (GS).

Term GS is used when we discuss from the perspective of the whole set of the

best repairs, while ‘best repairs’ are used when our discussion is more about each

individual best repairs.

• Produced repairs: the repairs produced by ABC for resulting fully repaired

theories. Although all the produced repairs correspond to fault-free theories, it

is possible that not all of them are the best results mentioned in the hypothesis,

e.g., when they cannot be interpreted well based on commonsense meanings.

• Bad repairs: the produced repairs that are not the best ones. These repairs

correspond to the fault-free theories which violate commonsense or describe

scenarios that are unintuitive to be true.

• Repair length: the repair length is the number of repair operations (ROs)

applied to achieve a fully repaired theory. For example, if a fully repaired theory

is produced by ROs: {expand(a),rename(b),delete(c)}, then its repair length

is three.

• Two non-terminations: there are two kinds of non-terminations in this repair

system. The branch non-termination is caused by just one search branch of

ROs to achieve a fault-free theory. The search non-termination refers to the

whole search over the space of all search branches to output some final repaired

theories.

The former is because a repair operation may introduce new faults and then a

search branch could be endless. Without the sub-optimal pruning or the cost limit

on repair length, a branch non-termination will result a search non-termination.

On the other hand, an unbounded number of terminating search branches can

also cause the search non-termination.

• Non-Exhaustive Search (NES): when search non-termination occurs, the

system cannot exhaustively explore the whole search space due to space or time
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limit, and then it is a NES case where not all possible fully repaired theories are

produced by the system but only some of them.

• Hybrid repair: a hybrid repair is one which combines different repair

techniques to achieve a fully repaired theory, e.g., abduction and reformation.

• Execution time (E-time): the run time from the minimal set computation of the

input theory to the time when all fully repaired theories are output. E-time is

calculated with the equation below, where td , ta are the time at point d and a

respectively, which are drawn in the flow chart in Figure 8.1.

E-time = td − ta

E-time reflects the overall time cost of ABC.

• Single Fault Repair Time (SFR-Time): the average time cost for generating all

possible ROs w.r.t. one fault for an input theory. Based on Figure 8.1, SFR-Time

can be calculated with the equation below, where function E returns the average

value of all members in its input set; n is the total number of faults; tci and tbi are

the time at the ith c point and its corresponding b point respectively.

SFR-Time = E({tci− tbi,1 ≤ i ≤ n})

Analysing SFR-Time helps to see whether NES cases are caused by the long

time of repair generation for a particular fault.

8.1 Evaluation Methodology

This section outlines the methodology of our evaluation including the source of

Datalog theories for test, GS and the aims of evaluation.

8.1.1 Data Source and GS

Theories adapted from the literature are the main source of data for our evaluation. We

choose the theories which are originally problematic, e.g., inconsistent or incomplete

w.r.t. essential information, in the literature. Based on these essential information, the

formalisations of PSs in our evaluation can be divided into the following kinds:
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Figure 8.1: The flow chart of the ABC Repair System: blue background represents the

system operations while yellow the intermediate data including the detected faults and

their corresponding repair plans, whose correspondence is depicted by arrows with

dotted line in same colour; black dots are the time points used in calculating E-time or

SFR-Time.

• Represent explicit statements from the literature, e.g., the Super Penguin theory

from Example 3.1 in (Gómez et al., 2010).

• Represent desired theorems from which new rules can be analogised or existing

faulty rules can be repaired, e.g., the Families, the Parent theory and the Married

Women theory adapted from Example 3.6 in (Gómez et al., 2010).

To make the evaluation objective and unbiased, all the formalisation follows the

original literature and all the adaption respect commonsense meanings.

The key question of the evaluation is what is the appropriate GS for the GS.

Because authors usually focus on the promising output of their work rather than all

possibilities that make sense, it is not sufficient to only take the best repair originating

from the literature as our GS. Meanwhile, GS for a given faulty theory is usually not

unique for the following reasons.

• There could be different ‘correct’ scenarios for one faulty theory.

• One correct scenario can be represented by different signatures.

Because GS is still an open question in real theory repair tasks, e.g., correcting

knowledge graphs, manual work is required to generate GS currently. Even human
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work is not perfect because they make mistakes naturally and different experts may

give different answers due to personal preferences. Thus, it is hard to provide a set of

best repairs as the unique GS.

In our evaluation, given a pair of a Datalog theory and its preferred structure, GS is

decided based on Definition 8, which is a set of best repaired theories that describing

diverse scenarios that follow the preferred structure and could happen in the real world.

The scenarios in GS are various as there are dynamic possibilities in the real world. In

general, our GSs may include original repairs given in the literature when they follow

Definition 8; the repairs that interpret the same scenario with the original repairs but

in different signatures; and the repairs represent novel scenarios which are not covered

by the original repairs.

Although there is no comparison between ABC and human experts in this thesis, it

is an interesting topic for future work, discussed as point 11 in §9.1.

8.1.2 Test Plans

The test plans of the evaluation are outlined in terms of what needs to be evaluated

followed by the method of how to do it with tests. Here whether a fully repaired theory

is fault-free is omitted. Because if not, the repair process will continue working on it

until it is fault-free.

Superior Test. Are there hybrid repairs in the GS?

Method: flag the examples whose GS includes hybrid repairs 1.

As each member of GS is a representation for one scenario, and hybrids cannot

be generated by the original belief revision, abduction or conceptual change.

Thus, without ABC, the scenarios corresponding to the hybrids in GS would not

be able to be represented.

Therefore, the occurrences of hybrid repairs in GS show the importance of the

combination of repair techniques and the value of ABC.

Quality Test. How good are fully repaired theories in terms of the proportion of best

repairs in them?

Method: the quality is tested by calculating the ratio of the best repairs against

the total number of final repaired theories. Although the problem of counting the

1Because GS is open to be decidable, we cannot conclude how many best repairs the GS should
contains. Thus, ratio is not used for representing how many hybrids are in GS.
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best repairs in GS is undecidable, how many repaired theories from the outputted

theories satisfy GS are countable. Therefore, a ratio can be calculated in this test.

Refinement Test. How good is the sub-optimal pruning? Can it improve the ratio of

best repairs in the output?

Method: compare the total number of repaired theories and their quality with

and without sub-optimal pruning. Also, highlight any case that any best repairs

are unfortunately pruned.

Heuristics Test. How good are the heuristics? Can they improve the ratio of best

repairs in the output?

Method: there are optional heuristics which can be chosen by the user. Conduct

the quality test with and without heuristics respectively. The comparison of the

results reflect whether the heuristics are useful.

The user chooses the heuristics by looking at the original theory before

employing ABC. The chosen heuristics for each theory can be different

according to its meaning. For example, there can be items which are most

entrenched so they should not be rewritten. Then they can be added to a protected

list to avoid being changed. As the most entrenched items for different theories

are diverse, the protected lists are different. Similar to this protection list, the

customised heuristics provide the user the opportunity of using some background

knowledge.

Preferred Structure Test. How much do different but consistent preferred structures

affect ABC applied to an input faulty theory?

Method: adapt the preferred structure of an example by consistently increasing

the number of its propositions and collect the corresponding final repaired

theories. Then check how the differences among preferred structures affect the

quality of the final repaired theories.

Informational Loss (IL) Test. How much information is lost in final repaired

theories?

Method: given an original faulty theory T and its preferred structure PS, the

fault reverting preferred structure PS′ can be computed whose true set and false

set are given by Definition 8.2.1 on page 175. Based on the defined PS′, T
is fault-free. Thus, taking each of T’s best repaired theories T′, and the PS′

as the input of ABC, collect their output theories. Then compare the output
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Test Plan Need GS? Column in Table 8.2 Section

Superior Test Y #H §8.2.1.1

Quality Test Y Num. of FR-Theories §8.2.1.2

Refinement Test Y Comparison of #P and #NoP §8.2.1.2

Heuristics Test Y Comparison of #P and #NoH §8.2.1.2

Preferred Structure Test Y #FN §8.2.1.3

Running Time Test N Time §8.2.1.3

Informational Loss Test N Revert §8.2.1.4

Table 8.1: The general information about each experiment.

with the original theory T. If T is contained in the output, then it means that

the original input theory can be recovered from best repairs, which means that

the informational loss (IL) in generating best repairs is considered minimal.

Furthermore, if the original input theory T is the unique output, then IL is zero.

Running Time Test. How long it takes to repair a theory?

Method: get E-time and SFR-Time of ABC of the tests above. Then assess

them, e.g., find average case complexity by plotting a family of examples

parameterised by the size of the input theory and the size of faults against E-time,

respectively.

The result of the above test plans is given in the following section.

8.2 Evaluation Results

First of all, the general information of each experiment is given in Table 8.1. The first

column lists all the test plans given in the last section. The second column answers

whether human work is needed to determine the GS of best repairs in each experiment.

More details of some tests will be given in the following section in Table 8.2. The

corresponding column in Table 8.2 which shows the result of each test plan is given

in the third column of Table 8.1. In the end, column Section gives the section number

where the discussion of a test plan is.
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Theory Name Size #FN
No. of FR-Theories

#GP #H E-time Rev.
#P #NoP #NoH

Families 3-2-0 1-0 3/3 NES 4/5 N Y 12 ms N

Tweety 5-3-1 0-1 1/1 NES 1/1 N Y 9 ms Y

Married Woman 5-1-1 1-1 1/3 NES 1/3 N N 511 ms Y

Researcher 4-1-1 1-1 1/3 NES 1/9 N Y 200 ms Y

Super Penguin 6-1-1 0-1 2/6 NES 2/6 N Y 117 ms Y

Buy Stock 8-1-1 0-1 2/7 NES 2/10 N Y 26 ms Y

Working Student 5-2-1 1-1 2/3 NES 2/3 N Y 55 ms Y

Parent 6-3-3 3-0 1/1 NES 1/4 N Y 23 ms Y

Missing parent 9-4-4 2-0 1/6 NES 1/8 N Y 392 ms Y

Load Car 11-2-3 2-0 0/6 NES 0/25 Y Y 213 ms Y

Table 8.2: Experimental results showing the performance of ABC: More details of the

test result are given in Appendix A.

8.2.1 Experiment Results

From all test sets, ten faulty theories are selected to discuss, many of which were also

tested in (Urbonas et al., 2020). As the repair algorithm and the pruning mechanism2

are all different from the version in (Urbonas et al., 2020), the same test theories

allow a direct comparison. Moreover, these theories are selected from the literature of

belief revision, abduction, non-monotonic reasoning and inductive logic programming,

which test our system with a broader perspective than theories from one field of

literature.

The experimental results are given in Table 8.2, whose columns depicts the

following statistics:

Theory Name: The names of the 10 selected faulty theories in our test set. The

citation of each theory is as the following: Families (Bundy and Mitrovic, 2016);

Tweety (Strasser and Antonelli, 2019b); Married Woman, Super Penguin,

Buy Stock and Working Student (Gómez et al., 2010); Researcher (Rodler and

Eichholzer, 2019); Parent and Missing parent (Muggleton, 2017), and Load Car

(Svatoš et al., 2017). Adaption may be involved, e.g., to formalise the preferred

2We take the minimal sums of the heuristics scores instead of taking the Pareto optimal ones as
(Urbonas et al., 2020) does.
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structure and translate the original theory into Datalog.

Size: Figure is given in the form of X-Y-Z, where X is the number of axioms in the

tested minimal set of each faulty theory; Y and Z are numbers of propositions in

the true set and the false set of the preferred structure, respectively.

#FN: Figure is given in the form of X-Y, where X is the number of insufficiencies and

Y is of incompatibilities.

No. of FR-Theories: The numbers of the final repaired theories output by the system

under the conditions below respectively. Figure is given in the form of X/Y,

where X is the number of best theories contained in the output and Y is the total

number of the output final repaired theories. Test sets #P., #NoP. and #NoP. are

run to investigate the effects of the sub-optimal pruning and optional heuristics

on ABC’s performance respectively. Note that Silver repairs include the Gold

ones according to their definitions.

• #P. With the sub-optimal pruning and a set of optional heuristics chosen

for the best performance. Because the sub-optimal pruning guarantees

the output theories are of non-redundant repair operations, the outputted

theories are the fault-free ones with non-redundant repair operations, so

they all satisfy the Silver Standard in Definition 8.0.2. Therefore, this ratio

is the outputted theories at GS against the ones at the Silver Standard.

• #NoP. Without the sub-optimal pruning. This is the ratio of the outputted

theories at GS against all of the fault-free repaired theories including ones

that may not reach the Silver Standard.

• #NoH. Without optional heuristics chosen. This is also the ratio of the

outputted theories at GS against the ones at the Silver Standard, but for a

weaker system lacking optional heuristics.

#GP: Y if any best repairs are pruned as a sub-optimal one and N otherwise.

#H: Y if GS includes at least one best repair that is hybrid and N otherwise.

E-time: The E-time in milliseconds for each case in column #P, which employs the

sub-optimal pruning and applied the most suitable heuristics. Average of 3 runs,

computed on a single thread.
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Rev: Check whether the original theory can be reverted from a best repaired theory.

Y if the original input theory can be regenerated by taking any best repair and

the fault reverting preferred structure PS′, which is defined in Definition 8.2.1

on page 175 as the input and N if there is at least one best repaired theory which

cannot recover the original one. If yes, then the original theory is recovered

which means that IL of the repair process in that case is minimal.

More analysis of this table will be given in the following sections based on test plans

one by one.

8.2.1.1 Superior Test

From Table 8.2, it can be seen that in our test cases, hybrid repairs are needed for all

of the cases except the married women theory, which is depicts by column #H. Thus,

without ABC, there is at least one best repair in GS that cannot be produced in each

case.

For example, the combination of abduction and belief revision provides the repair

of an insufficiency that finds a cause of the previously unprovable goal, while not

resulting any incompatibility so no extra unwanted theorems are introduced. To avoid

duplicates, examples will be discussed based on Example 8.2.1 and Example 8.2.2

given in following sections.

In the married women theory, reformation alone is capable of generating the best

repair. Reformation is very powerful due to its ability to change the signature of the

theory and modify the local representation in a targeted axiom. The former changes all

occurrences of the repaired item and the later changes just one occurrence.

In general, the ability of combining abduction, belief revision and reformation

allows the generation of a wider range of repairs which covers more best repairs than

any individual repair technique it combines.

8.2.1.2 Quality, Refinement and Heuristics Tests

These three tests correspond to the column of Num. of FR-Theories in Table 8.2.

The quality of the output repaired theories (quality(T,FS)) can be evaluated by

the proportion of best repairs (best(T,FS)) contained by the final repaired theories

(final(T,FS)).

quality(T,FS) = ∣best(T,FS)∩final(T,FS)∣
∣final(T,FS)∣ (8.1)
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Figure 8.2: The number of fully repaired theories of different repair length found in NES

cases, which is from #NoP column in Table 8.2.

The average quality of #P is 0.512 while the average quality of #NoH is 0.382. Note

that all final repaired theories are fault-free so they are good in terms of respecting

the preferred structure. The quality here is calculated based on the best repairs that

describe meaningful scenarios. It can be seen that the optional heuristics are useful to

improve the output quality of the system. If the user has the background knowledge

about what should not be changed, e.g., the arity of a predicate, then optional heuristics

can be chosen at the beginning of the repair process. Alternatively, heuristics can be

chosen to avoid some unwanted repairs for the next round after all repaired theories

are suggested. Then the quality of the newly repaired theories can be improved.

No calculation is needed to compare #P with #NoP. Without the sub-optimal

pruning, all the tested cases become NES. Figure 8.2 is drawn based on the found fully

repaired theories in NES cases. The number of fault-free theories with short repairs is

generally more than one with long repair in Figure 8.2.

Figure 8.2 depicts that NES is caused by the huge number of search branches of

fully repaired theories and some of them are of long repair length, even longer than

15! From our tests, the repair length of best repairs is usually quite short. Therefore,

sub-optimal pruning is vital which can prune bad branches that are sub-optimal.

Meanwhile, a cost limit can be set to prune long ROs.

However, in the case of load car, the unique best repair is pruned before being fully
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generated, which can be found in the full repaired theories in the log of the no pruning

version.

The input of the load car theory is given in Example 8.2.1.

Example 8.2.1. Faulty Load Car Theory.

Ô⇒ boxShape(load3)

Ô⇒ hasCar(car1)

Ô⇒ hasCar(car2)

Ô⇒ hasCar(car3)

Ô⇒ hasCar(car4)

Ô⇒ notboxShape(load2)

Ô⇒ hasLoad(car1, load1)

Ô⇒ hasLoad(car2, load2)

Ô⇒ hasLoad(car4, load3)

T (PS) = {eastBound(car1),eastBound(car4)}
F(PS)={eastBound(car2),eastBound(car3),eastBound(load1)}

The best repair is to add rule: boxShape(Y) ∧ hasCar(Z) ∧ hasLoad(Z,Y) Ô⇒
eastBound(Z), which is generated by combining three repair techniques.

1. Abduction: to repair the insufficiency of eastBound(car1), expand the following

rule.

hasCar(Z)∧hasLoad(Z, load1) Ô⇒ eastBound(Z)

2. Reformation: to further repair the insufficiency of eastBound(car4), extend the

constant load1 to an independent variable Y .

hasCar(Z)∧hasLoad(Z,Y) Ô⇒ eastBound(Z)

3. Belief revision: to block the incompatibility of eastBound(car2), add a

precondition boxShape(Y).

boxShape(Y)∧hasCar(Z)∧hasLoad(Z,Y) Ô⇒ eastBound(Z)

The above best repair is produced in three steps. As there are fully repaired theories

found in two steps, that best repair is pruned as one of the sub-optimal ones. In this
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case, a solution is to improve the repair algorithm so that the repair can be generated

with fewer steps. Another possible solution is to develop more heuristics so that when

suitable heuristics are employed, those unwanted repairs of two steps can be avoided.

However, that does not guarantee a full avoidance of pruning a best repaired theory.

Consider the advantage of sub-optimal pruning and that its side effect rarely occurs,

it is fairly reasonable to keep it and improve it in future work, discussed as point 7 in

§9.1.

In summary, from Table 8.2, it can be seen that the best performance is with #P,

which shows the benefits of employing the sub-optimal pruning and optional heuristics.

This is because the customised heuristics add background knowledge, e.g., domain

knowledge to our domain independent repair process and the sub-optimal pruning

keeps exploring only the promising search branches of repair plans and abandons bad

ones. Both reduce the search space of repair generation so boost the performance of

the system.

8.2.1.3 Preferred Structure Test

The preferred structure determines how faulty an input theory is. Thus, it has a big

influence on the result of repaired theories. Rather than the size of the preferred

structure, the fault sets are the key factor, which is the column of #FN in Table 8.2.

It can be seen that the faults number has neither obvious effects on the quality of

fully repaired theories nor the running time. Because it is not the unique factor which

has an influence on these performance. For example, the best repairs are of different

forms. Some can be found easier and some are not, e.g., one requires the combination

of different techniques and one does not. Thus the sub-optimal pruning has different

amounts of impact on the quality of the output. Therefore, the effect of the preferred

structure is not reflected by Table 8.2.

To focus on the preferred structure, Example 8.2.2 is given to analyse.

Example 8.2.2. Faulty Missing Parent Theory T p.

Ô⇒ f emale(b)

Ô⇒ f emale(d)

Ô⇒ male(a)

Ô⇒ male(c)

Ô⇒ male( f )

Ô⇒ male(g)

Ô⇒ parent(a,b)

Ô⇒ parent(a,c)

Ô⇒ parent(d,b)

Based on different preferred structures for the missing parent theory, some typical

fully repaired theories are listed in Table 8.3, where the last column shows the new
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axioms expanded as a produced repair.

T (PS) F(PS) Produced Repairs of Expansion

father(a,c), NA Y ≠ Z Ô⇒ f ather(Y,Z)
mother(d,b), parent(Y,Z) Ô⇒ mother(Y,Z)
father(f,a)

father(a,c), mother(a,b), mother(a,c) Y ≠ Z Ô⇒ f ather(Y,Z)
mother(d,b), parent(Y,Z)∧ f emale(Y) Ô⇒ mother(Y,Z)
father(f,a)

father(a,c), mother(a,b), mother(a,c), Y ≠ Z∧male(Y) Ô⇒ f ather(Y,Z)
mother(d,b), father(d,b) parent(Y,Z)∧ f emale(Y) Ô⇒ mother(Y,Z)
father(f,a)

father(a,c), mother(a,b), mother(a,c), parent(Y,Z)∧male(Y) Ô⇒ f ather(Y,Z)
mother(d,b), father(d,b), father(g,a) parent(Y,Z)∧ f emale(Y) Ô⇒ mother(Y,Z)
father(f,a) Ô⇒ parent( f ,a)

Table 8.3: Typical fully repaired theory for Example 8.2.2 w.r.t. different preferred

structures: the last column gives the new axioms added in each repair.

The first three repairs are not the best one under the commonsense meanings of the

predicate but the last one is. It can be seen that as the preferred structure gets more

complete, the repairs generated get closer to the best one.

These repairs are hybrid because they are generated by combining abduction and

the variant belief revision: abduction finds a rule R which solves an insufficiency and

then the variant belief revision adds a precondition to R when R is involved in a proof

of incompatibility. For example, if the inputs are T p and the preferred structure given

in the last row of Table 8.3, then R is parent(Y,Z) Ô⇒ mother(Y,Z), which causes

an incompatibility of T p∪{R} Ô⇒ mother(a,c). Then the variant belief revision

adds f emale(Y) to R. Then their combination produces the target rule: parent(Y,Z)∧
f emale(Y) Ô⇒ mother(Y,Z).

Table 8.3 lists different versions of preferred structure. Each time, the bad repair

reveals the missing part of the corresponding concept, which is mother/2 and father/2

here. By upgrading the preferred structure to cover the missing part, the preferred

structure becomes more complete than the original. If the preferred structure is the

experimental results, then this process can be seen as improving the experiments.
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The input theory may also need similar upgrade. For Example 8.2.3, one of the

fully repaired theories suggested by ABC is shown in Example 8.2.4, which is incorrect

based on commonsense. That incorrectness is because the information about the

unique mother is not represented in the original input theory. By upgrading Example

8.2.3 to Example 8.2.5, the theory and the preferred structure stand for that the birth

mother diana is the mum of unique type to william. Then the unique final repaired

theory suggested by the system is the best one shown in Example 8.2.6.

Example 8.2.3. Faulty Motherhood Theory.

Ô⇒ mum(diana,william)

Ô⇒ mum(camilla,william)

mum(X ,Z)∧mum(Y,Z) Ô⇒ X =Y

T (PS) = ∅, F(PS) = {diana = camilla}

Example 8.2.4. Fully Repaired Motherhood Theory (undesired).

Ô⇒ mum(diana,william,dummymum2)

Ô⇒ mum(camilla,william,dummymum1)

mum(X ,Z,dummymum1)∧mum(Y,Z,dummymum1) Ô⇒ X =Y

T (PS) = ∅, F(PS) = {diana = camilla}

Example 8.2.5. Upgraded Faulty Motherhood Theory.

Ô⇒ mum(lady di,william)

Ô⇒ mum(diana,william)

Ô⇒ mum(camilla,william)

mum(X ,Z)∧mum(Y,Z) Ô⇒ X =Y

T (PS) = {diana = lady di}, F(PS) = {diana = camilla}
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Example 8.2.6. Fully Repaired Enriched Motherhood Theory (best).

Ô⇒ mum(lady di,william,dummymum1)

Ô⇒ mum(diana,william,dummymum1)

Ô⇒ mum(camilla,william,dummymum2)

mum(X ,Z,dummymum1)∧mum(Y,Z,dummymum1) Ô⇒ X =Y

T (PS) = {diana = lady di}, F(PS) = {diana = camilla}

In summary, the quality of fully repaired theories is affected by how complete the

preferred structure is and how much about a concept is described in the input theory.

On the other hand, when a bad repair is suggested, it reflects the missing part about

some concepts in the preferred structure and/or the input theory, which can be seen as

a trigger to upgrade these inputs.

8.2.1.4 Informational Loss Analysis

In Table 8.2 on page 167, the last column of ‘Revert’ gives the result of the IL test.

Let the original input theory, its original preferred structure and two fault

sets be T, PS, IC(T,PS), and IS(T,PS) respectively. Recall the definition of

incompatibility and insufficiency sets:

IS(T,PS) = {φ ∈ T (PS)∣T /⊢ φ}

IC(T,PS) = {φ ∈ F(PS)∣T ⊢ φ}

To analyse IL, the fault reverting preferred structure PS′ is defined.

Definition 8.2.1 (Fault reverting preferred structure (PS′)). The true set and the false

set of PS′ are T (PS′) and F(PS′) given below.

T (PS′) = IC(T,PS)∪(T (PS)−IS(T,PS))

F(PS′) = IS(T,PS)∪(F(PS)−IC(T,PS))
(8.2)

Based on the above definitions, the following theorems are satisfied.

∀α ∈ T (PS′), T ⊢ α

∀α ∈ F(PS′), T /⊢ α

(8.3)

Therefore, the original theory T is expected to be recovered based on PS′ whose true

set and false set are T (PS′) and F(PS′) respectively.
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The process of IL test is to take each of best repaired theories T′ based on GS and

PS′, test if the original input theory T can be recovered. Then IL is considered to

be minimal if Equation 8.4 is satisfied, which corresponds to ‘Y’ on ‘Revert’ column

in Table 8.2. Here R is the function which takes a Datalog theory and its preferred

structure as the input and the fully theories as its output; GS takes all fully repaired

theories as its input and then returns the best ones.

∃T′ ∈ GS(R(T, PS)) Ô⇒ T ∈ R(T′, PS′) (8.4)

It can be seen that all sampled best repaired theories in Table 8.2 can be recovered

except the families theory. Because nearly all repair plans in our system give the

minimal change according to the equations above. However, there is an exception:

repair plan of arity increment of a predicate.

The consanguinity theory T f is given in Example 8.2.7; its PS′ and one of its fully

repaired theories T f ′ is given in Example 8.2.8. The last argument of predicate parent

is deleted in T f ′. Taking T f ′ and its PS′ as the input, the closest recovered theory

T f ′′ to the original theory T f is shown in Example 8.2.9.

Example 8.2.7. Consanguinity Theory T f

Ô⇒ parent(a,b,birth)

Ô⇒ parent(a,c,step)

parent(X ,Y,birth) Ô⇒ consanguinity(X ,Y)

T (PS) = {consanguinity(a,b),consanguinity(a,c)}, F(PS) = ∅

Example 8.2.8. A Best Repaired Consanguinity Theory T f ′: decrease

the arity of parent

Ô⇒ parent(a,b)

Ô⇒ parent(a,c)

parent(X ,Y) Ô⇒ consanguinity(X ,Y)

T (PS′) = {consanguinity(a,b)}, F(PS′) = {consanguinity(a,c)}
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Example 8.2.9. The Recovered Consanguinity Theory T f ′′: increase

the arity of parent

Ô⇒ parent(a,b,dummy1)

Ô⇒ parent(a,c,dummy2)

parent(X ,Y,dummy1) Ô⇒ consanguinity(X ,Y)

T (PS′) = {consanguinity(a,b)}, F(PS′) = {consanguinity(a,c)}

It can be seen that the original constants birth and step become dummy1 and

dummy2 respectively. The informational loss here is the meaning of the original

constants.

Notice that even if an axiom is deleted, it can be recovered based on PS′.
Because it can be involved in a wanted proof to unblock, where the predicate

and arguments will be determined by the resolution steps that it will unblock.

For example, if T f ′′ in Example 8.2.9 is the input theory, and its T (PS) is

{parent(a,b,birth), parent(a,c,step)}, then dummy1 and dummy2 will be merged to

birth and step respectively by reformation.

In summary, most of repair plans except of arity increment are minimal changes in

the sense of being able to reverted.

8.2.2 Running Time Experiment

To make the experiment more complete, ABC is evaluated with faulty theories whose

faults number and axioms number are scaled gradually in this section.

Table 8.2 on page 167 gives the E-time of repairing each faulty theory under the

condition of pruning the sub-optimal and employing the most suitable heuristics. From

the results, it can be seen that their time cost is at the level of seconds, which is

acceptable. However, these theories are all of small sizes. As the field of automatic

theory repairing is still in its initial stage, it is common to perform the research on

small theories. Large theories is left for future work, discussed as point 10 in §9.1.

As the efficiency of algorithms and systems is desirable, we evaluate ABC’s

performance by applying it to a step in a real geographic KGs alignment task. The

sizes of theories in this sub-task are parameterized by n, so we can plot run time against

n and classify the resulting graph.

The main factors to analyse for aligning two geographic KGs include their entities’
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labels, types and locations, where the first two requires natural language analysis, and

the last is about the distance between two candidate entities to align. Given a threshold,

two entities can be aligned if their distance is smaller than the threshold. This threshold

can be set with different values for different types of entities. The propositions of

their distance judgement, range(X , Y, in) and range(X , Y, out), are used to declare

whether the distance between the entities that instantiated X and Y is smaller or bigger

than their threshold respectively.

In this evaluation, the input faulty theory is constituted by three parts:

• assertions of entity IDs from two databases together with their distance

judgements;

• a rule to determine whether two entries are correctly aligned w.r.t. their distance

judgements;

• a rule without a goal clause to represent that a distance cannot be both smaller

and bigger than the threshold.

The example of assertions and the two rules are given by Example 8.2.10, where the

entities idA1 and idB1 are concluded as a correct alignment. It can be seen that there

are only two rules in this input theory. Fortunately, in many practical applications, the

number of rules is small compared to the facts3. So proofs are quite short, even when

the number of axioms is large.

Example 8.2.10. Assertions and rules in KGs alignment task

Ô⇒ databaseA(idA1)

Ô⇒ databaseB(idB1)

Ô⇒ range(idA1, idB1, in)

range(X ,Y, in)∧databaseA(X)∧databaseB(Y) Ô⇒match(x,y)

range(X ,Y, in)∧ range(X ,Y,out) Ô⇒

The preferred structure is formalised by adding the known misalignments to the

false set and the correct alignments to the true set4. Then the repair process of a
3Personal communication from Frank van Harmelen. Based on the LOD-a-lot survey of

the Linked Open Data cloud, he estimates that of 23.8 billion unique statements only 565
million could be classified as rules - the rest being facts, i.e., rules make up just under
2% of the total. For more detail, see https://frankvanharmelen.home.blog/2020/07/13/
2-makes-all-the-difference-on-the-lod-cloud/ accessed 14.7.20.

4All the misalignments are given, so that the GS of the desired repair is determined, which helps to
evaluate the E-time of ABC.

https://frankvanharmelen.home.blog/2020/07/13/2-makes-all-the-difference-on-the-lod-cloud/
https://frankvanharmelen.home.blog/2020/07/13/2-makes-all-the-difference-on-the-lod-cloud/
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Figure 8.3: The quadratic fit of E-time of repairing the sampled theories in different sizes

and different numbers of faults using OriginLab (OriginPro Version 2019b5).

fault is to either delete or add an axiom to the alignment database or rename the third

argument of an assertion of range/3. This test illustrates a possible application of ABC

to a sub-task in a project with large theories.

In our experiment, the 20 samples of theory size are from 20 to 1020 with a gap

of 50 and the faults number are from 0 to 40 with a gap of 10. Figure 8.3 gives

the E-time of repairing each sampled faulty theory with dots and draws the quadratic

curves which fits these dots best. The fitting functions are parabola generated by

OriginLab (OriginPro Version 2019b5), whose equations are given in Figure 8.4. This

example shows that ABC can scale. Notice that the pre-process of converting an input

theory into one in the internal format is not covered in E-time. Because the user can

directly give the input in the internal format, so that pre-process can be omitted. Also

it is shared by all the samples, so only needs to be incurred once. In the case of FN = 0,

the time is cost by the fault detection which checks all the propositions in the PS.

The large scale theory is simple in terms of the rules it contains. It is common that

for large databases, the proportion of rules against assertions are usually lower than

small ones. For example, based on the LOD-a-lot survey (Garcia et al., 2017) of the

Linked Open Data cloud, under 2% of total statements are rules6.

5OriginPro Version 2019b: https://www.originlab.com/2019b
6For more details, please see https://frankvanharmelen.home.blog/2020/07/13/

2-makes-all-the-difference-on-the-lod-cloud/.

https://www.originlab.com/2019b
https://frankvanharmelen.home.blog/2020/07/13/2-makes-all-the-difference-on-the-lod-cloud/
https://frankvanharmelen.home.blog/2020/07/13/2-makes-all-the-difference-on-the-lod-cloud/
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Figure 8.4: The quadratic fit functions given by OriginLab.

To get a conclusion of how long it takes for generating all possible repair plans w.r.t.

one fault, which is SFR-Time, we have collected SFR-Time from the experiments that

have been done. From Figure 8.5, it can be seen that most of the SFR-Time is less

than 100 ms and the time cost by the cases with heuristics is usually smaller than one

without. However, there are two exceptions in the figure where the SFR-time with

heuristics is bigger, highlighted with red dots. In the case with heuristics, ROs on

the protected items become unavailable and other ROs will be produced. When those

unavailable operations are optimal, they will be produced as the solution in the case

without heuristics. If they cost less time to generate, then the SFR-Time with heuristics

is bigger than without heuristics. Note that heuristics are chosen based on domain

knowledge while whether a repair operation is optimal depends on how many faults it

solves. The former is based on semantics and the latter syntax. Thus, an optimal repair

may violate domain knowledge so it can be prevented by the chosen heuristics.

SFR-Time reflects the average time cost of one node in the search space of repair

plans’ generation. As SFR-Time is short so the main factor that affects E-time is the

size of the search space. Because the size of the input theory and its fault numbers

have a big impact on how large the search space, they are the main factors of influence

on E-time of ABC.

8.3 Discussion

Based on the tests we have reported, it can be seen that most of the best repairs include

the combination of different repair techniques. Furthermore, the final repaired theories

contain the best repairs in most of the cases. However, some best repairs may be pruned

as sub-optimal ones when they require more steps to produce than the optimal ones,

which means that they are best in terms of their meanings but not in terms of requiring

the minimal number of ROs.

Although the sub-optimal pruning may lose best repairs in some cases, it is vital
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Figure 8.5: The SFR-Time of generating repair plans: x-axis corresponds to the

sampled input of an original theory and its preferred structure; y-axis is the SFR-Time

by averaging data from more than 10 times of repairing single fault for each input; It

can be seen that the longest generation costs less than 50 ms; the exceptions when the

SFR-time with heuristics is bigger are highlighted with red dots.

to the system as it can reduce the search space of repair generation and collect the

final repaired theories rather than let the system fall into a black hole of search. A

search branch can be endless when repair plans keep introducing new faults. Thus it is

dangerous for the repair process to exhaustively search the whole search space. It has

been frequently detected as shown by #NoP column in Table 8.2, where all the tested

cases become of NES without the sub-optimal pruning.

There are usually bad repairs among all produced repairs, which are bad in

terms of lacking meanings. In some cases, bad repairs reflect the shortage of the

preferred structure and/or the diversity of the input theory. For example, a bad repair

f ather(X ,Y) Ô⇒ f emale(Y) is produced when all given father samples have a

daughter. Then the user can be inspired to improve the input to provide a full picture

by enriching the input theory and the preferred structure: a father of a son.

The information and the time cost of the repair process are reasonable. Most of

the original input theory can be reverted from its fully repaired theory. SFR-Time is

not long while E-time is affected by the size of the theory and the faults set. Reducing

E-time cost is the topic of improving search efficiency discussed as point 7 the future
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work in §9.1. For example, revise the repair process to make the search more efficient;

or keep a record of the deleted arguments so that they can be fully recovered when

needed and restructure the repair process to make its search more efficient. Currently,

there is no domain knowledge or other background knowledge incorporated into ABC

except by customising the optional heuristics. A search strategy which employs more

background knowledge and hence avoids best repairs being pruned as the sub-optimal

ones is also a good direction to explore.

8.4 Summary

This chapter has evaluated the performance of ABC from the perspectives of its ability

to generate hybrid repairs, the quality of its output, the effects of sub-optimal pruning

and optional heuristics, the influence of preferred structures that are consistent but in

different sizes, the informational loss and its running time. Terminology is given in the

preliminary section, after which the test plans and their methods are listed. Then the

evaluation results are analysed based on different tests, followed by the discussion of

the overall conclusion of the evaluation.

From the evaluation, it can be concluded that the developed repair system can

produce fully repaired theories that cannot be suggested by any original individual

technique it combines. Meanwhile, its repair generation w.r.t. one fault is reasonable

while the whole execution time is quadratic to the size of the input theory and its faults

number based on our evaluation. Furthermore, most of the repairs are minimal in the

sense of being possible to be reverted.
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Conclusion

Throughout the project, we have developed a repair system which combines abduction

belief revision and conceptual change via the reformation algorithm. Based on a finite

true set and false set given as the preferred structure, the faults in an input theory

are defined as insufficiency and incompatibility, which can be detected and repaired

automatically. A set of fault-free theories comprise the output of this process, and the

best repairs usually require the combination of different techniques which often cannot

be produced by any single repair technique alone.

In this chapter, we will outline the limitations and the corresponding future work

and then propose possible applications 1.

9.1 Limitations and Future Work

Although the evaluation of our repair system demonstrates the effectiveness of our

repair system, there are some limitations of the current work. The limitations, which

we now consider, are listed in italics below followed by the anticipated difficulties and

suggestions for future work that address them.

1. The algorithmic properties of ABC have not been analysed.

Future work: Analyse and prove the properties that ABC has, e.g., termination,

time complexity, correctness wrt specification, logical completeness, and

computational complexity.

• Difficulties: The subroutines of ABC include proof searching and repair

generation. The proof search algorithm has exponential worst-case

1The main contribution are summarised in §1.3.
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behaviour, and repair generation can make it worse when the repair solves

one fault but creates more or worse faults with complex or super long

proofs. Although we have not encountered such a case, it is theoretically

possible. In addition, the language change makes it harder to measure the

minimal change and the correctness of repair, e.g., after increase the arity

of mum/2 into mum/3, the model for the original theory does not apply to

the repaired one. Also, the creativity of repairs is unbounded, so it is hard

to conclude the completeness of repair operations.

• Suggestions: Analysing each property with defined scopes or in a particular

perspective, e.g., only prove the completeness within the scope of ABC’s

repair operations. The complexity of repair generation is relevant to the

total number of proofs, the length of each proof, and the signature size, e.g.,

how many predicates and constant symbols it has. The more predicates it

has, the more candidates for a new precondition to add there could be 2.

A possibility is to analyse the properties under extreme conditions, e.g.,

analyse the best performance and the worst. However, the worst maybe

too bad, which does not occur in practice. Alternatively, one can analyse

average case.

2. The evaluation of the current system is still limited. It has only been applied

to examples in the theory repair related literature and a task analogised from a

databases alignment project.

Future work: Explore more applications of the repair system, e.g., apply

ABC to large theories and perform systematically tests.. Some possibilities are

discussed in §9.2.

• Difficulties: It is hard to discover the whole set of the gold standard of the

best repairs.

• Suggestions: Consider theories coming from other fields where best repairs

are provided, and then test ABC with randomised choice of faulty theories.

Human repairs found manually can be a good source of the gold standard,

which can be found in applications where human behaviours are modelled

(Bundy et al., 2020). For example, in the field of program debugging, given

2The number of predicates is not the only factor that decides the number of repairs of adding a
new precondition: among these candidates of new preconditions, only adding the ones that cannot be
resolved are the desired repairs.
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a faulty program as the theory to repair, the corrected program provided by

the literature or the user is one of the gold standards. As a program can

be corrected in several ways usually, one should not aim at summarising

the whole set of the gold standard, but check how many outputted repaired

theories are correct and their ratio against the total repaired theories.

3. The input theory is currently restricted to Datalog.

Future work: Extend the system to other logics, e.g., description logic,

temporal logic, epistemic logic and so on.

• Difficulties: The completeness and soundness of the reasoning in ABC can

be challenging dealing with other logics, e.g., full FOL or higher order

logics.

• Suggestions: Start with the logics that are basic and widely used in the

possible applications of ABC, e.g., description logic, because it is more

likely to have useful research that supports the reasoning tasks.

4. Dummy terms in a repaired theory are not assigned with any meaning.

Future work: Replace dummy terms with semantically meaningful name.

• Difficulties: It requires domain/background knowledge which is not

available from the input of ABC.

• Suggestions: Consider user interaction or reasoning with background

knowledge, e.g., knowledge retrieving. In this task, the main questions to

solve include knowledge sources, data-mining techniques and the selection

of names from all candidates.

5. The repair which reorders arguments is not available.

Future work: Explore more repair operations which are not available in the

current ABC Repair System.

• Difficulties: It is an open question about what are other repair operations.

And for each repair operation, the strategy of applying them is challenging,

e.g., which order is correct when reordering arguments?

• Suggestions: It can be helpful to find inspirations from how human revise

and organise their knowledge. For example, when a person has some

inconsistencies in his knowledge, he/she may choose the repair solution
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which solves the most inconsistencies. Similarly, In terms of reordering

arguments, the order that results in the least remaining faults can be seen

as the best order.

6. The preferred structure is fixed, which limits the final repaired theories especially

when the preferred structure is not adequate.

Future work: Evolving the preferred structure as well as repair the input theory.

• Difficulties: The preferred structure is the benchmark of the correctness of

the input theory, whose more care needs to be taken when changing it. An

automatic mechanism of finding the trust worthy evolution of the preferred

structure is difficult to achieve.

• Suggestions: Could design and carry out experiments to determine the

truth value of ground propositions. And then evolve the preferred

structure accordingly. In the end, the repair process would be an

evolution constituted by a series of repair missions. At the beginning, this

could require user interactions, and then automatic mechanisms could be

established by analysing and modelling human’s work.

7. Although the search space of repair operations of a single fault is not big,

their combination for all faults can result in a large search space. Then the

consequence can be a long execution time or a non-exhaustive search.

Future work: Improve search efficiency.

• Difficulties: An expected possible side effect of increasing the search

efficiency is losing some best repairs, which should be avoided when

developing new search strategies.

• Suggestions: 1) One possibility is to reduce the search space of repair

operations of a single fault, e.g., only merge two predicates from one

sort or one class, which will be relevant to sorted logic or description

logic; reduce the search space of the precondition to add to the relevant

domain based on background knowledge available. 2) Another option is

to reduce the number of search branches. The existing relevant method is

sub-optimal pruning. It will be useful to explore if other techniques can

do further pruning or a better algorithm to improve the performance of the

sub-optimal pruning, e.g., prune some search branches when they tend to

violate background knowledge. 3) Besides, the reduction of the length of
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search branches will also help. For example, by analysing the problematic

proofs or evidence further, generate a compound repair operations which

solves multiple faults in one step of repair generation rather than one repair

operation in one step of generation.

8. The question of which produced fault-free theory is more likely to be involved in

the best repairs in terms of its semantic interpretations.

Future work: Employ probability based on the domain knowledge.

• Difficulties: Domain knowledge is required to make the decision.

• Suggestions: When the domain knowledge can be incorporated into the

repair system, it will be useful to develop an algorithm for calculating the

probability of a fault-free theory being the best repair. For example, when

the fault is with either the date or the day-of-week, then the latter has a

bigger chance to be correct. Because the possibility of the latter being

correct is 1/7 while the former usually 1/30.

9. A random minimal input theory is selected when there are multiple smallest

candidates. It is unknown whether a selection function is necessary to develop

for approaching the best repairs.

Future work: Investigate whether the repairs are significantly different

depending on various minimal input theories. If yes, then it is worthwhile to

develop a selection function for picking the minimal theory based on which the

best repairs can be generated.

• Difficulties: There could be huge numbers of minimal sets of one input

theory.

• Suggestions: Build an algorithm to automatically evaluate the relation

between different minimal sets and the quality of their repaired theories.

10. It has not been compared between human experts and ABC.

Future work: the gaps provide directions about how domain knowledge effects

repair result.

• Difficulties: This work requires domain experts.

• Suggestions: Collaborate with knowledge management projects where

repair tasks are involved and the gold standard given by domain experts

are provided.
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9.2 Applications

Theory repair is a common task in many AI fields. Except from applying our system

on a single theory repair task, some possible applications in a more complex context

in future are proposed.

• It can be a component of a strategy-making agent. For example, as a part

of an agent using a game theory to generate a winning strategy under certain

context (Bundy et al., 2020), where the setting of the game can be given as the

input theory with the unchanged part protected in optional heuristics and the

proposition representing winning in the true set of the preferred structure and

the losing ones in the false set.

Another example is to customise a travel plan where the places to go can be listed

in the true set and the places to avoid in the false set. Similarly, the preferences of

transportation can be also described in the preferred structure. Then the overall

information about the targeting area and transportation can be formalised as the

input theory together with rules which describe the basic plan strategy, e.g., the

time to leave a place should not be earlier than 9am if the user does not want to

get up early.

As the unexpected repairs can reflect the unknown elements of a system that

are not covered by the preferred structure, our system can be used to assist the

experiment designer (Bundy, 2019). By analysing these unexpected repairs,

more experiments can be designed to test whether these repairs are correct or

not. This would help to improve the completeness (in logical terms) of an

experimental research project.

• Our system can be used to address the mismatches found in Databases alignment

or merging. It can be done by formalising all information about the entries as

axioms, their alignment assertions and the alignment rules which decide a correct

alignment as the input theory. We then assume that all alignment assertions are

correct and derive the assumed properties that each aligned entry should have

based on alignment rules; and formalise these properties as propositions in the

preferred structure. If there is an incorrect alignment, the assumed property of

its entries will not be coherent with the actual property axioms, which will be

detected as incompatibilities and insufficiencies. Then repair system will adjust

alignment rules or remove incorrect alignment assertions.
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• It can be used to update a database by communicating with the user. For

example, when the user wants something that is inconsistent with the conclusion

derived from the database, the user’s wish can be formalised as the true set of the

preferred structure. Together with the data in the database as the input theory, the

repair system can produce a set of fault-free theories as candidates of updating

the database. Then it can ask the user about why that is.

As in Example 9.2.1, when the user asks the agent to play a song at 13 o’clock

on 16th July, which is a sunny day, the agent would play a rock song based on its

database. To save space, the year is omitted from the time stamp in the example.

Assume that the user refuses it and lets it play jazz. In this scenario, the preferred

structure can be formalised based on user’s choice, based on which, the repair

system can detect an insufficiency of play(131607,c) and an incompatibility of

play(131607,a). Then the theory can repair the database in different ways.

One repair plan is to rename the type of songs whose fault-free theory is shown in

Example 9.2.2. Or it can analogise the rule of which music to play as in Example

9.2.3. To confirm the user’s preference, the agent can ask the user, “Why would

you like to play c this time? Is it also a piece of rock music?” If the user replied,

“Yes, c is rock, but a isn’t”, then the repair in Example 9.2.2 is the best repair

and the dummy term can be renamed by further retrieving its information online

or by asking the user. On the other hand, if the user replied, “Because it is

working hours.” Then the repair in Example 9.2.4 is the best repair, which can

be produced by renaming dummy predicates with the keywords from the user’s

answer.

Example 9.2.1. Music Original.

Ô⇒ song(a,rock)

Ô⇒ song(c, jazz)

Ô⇒ timeStamp(131607)

Ô⇒ weather(131607,sunny)

timeStamp(X)∧weather(X ,sunny)∧ song(Y,rock) Ô⇒ play(X ,Y)

T (PS) = {play(131607,c)}, F(PS) = {play(131607,a)}
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Example 9.2.2. Music 1.

Ô⇒ song(a,dummy rock)

Ô⇒ song(c,rock)

Ô⇒ timeStamp(131607)

Ô⇒ weather(131607,sunny)

timeStamp(X)∧weather(X ,sunny)∧ song(Y,rock) Ô⇒ play(X ,Y)

T (PS) = {play(131607,c)}, F(PS) = {play(131607,a)}

Example 9.2.3. Music 2.

Ô⇒ song(a,rock)

Ô⇒ song(c, jazz)

Ô⇒ timeStamp(131607)

Ô⇒ weather(131607,sunny)

dummyPred1(X)∧notdummyPred1(X) Ô⇒

dummyPred1(X)∧ timeStamp(X)∧

weather(X ,sunny)∧ song(Y, jazz) Ô⇒ play(X ,Y)

notdummyPred1(X)∧ timeStamp(X)∧

weather(X ,sunny)∧ song(Y,rock) Ô⇒ play(X ,Y)

T (PS) = {play(131607,c)}, F(PS) = {play(131607,a)}
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Example 9.2.4. Music 3.

Ô⇒ song(a,rock)

Ô⇒ song(c, jazz)

Ô⇒ timeStamp(131607)

Ô⇒ weather(131607,sunny)

workingHour(X)∧notWorkingHour(X) Ô⇒

workingHour(X)∧ timeStamp(X)∧

weather(X ,sunny)∧ song(Y, jazz) Ô⇒ play(X ,Y)

notWorkingHour(X)∧ timeStamp(X)∧

weather(X ,sunny)∧ song(Y,rock) Ô⇒ play(X ,Y)

T (PS) = {play(131607,c)}, F(PS) = {play(131607,a)}

Although our repair system will need to be extended to fulfil some of the tasks for

the proposed applications listed, the core part of the automatic repair generations are

adequate to do the job. Especially in the last case, natural language processing will

also play an important role to make it work.

9.3 Summary

This section surveys the original work in this thesis. The hypothesis of this project

has been successfully evaluated. Section 1.3 outlines our contributions including

the combination of abduction, belief revision and conceptual change via reformation;

the variant belief revision; the variant abduction; the analogical abduction and the

trace-back reformation. Meanwhile, the sub-optimal pruning is developed to reduce

the search space of fault-free theories. Also, optional heuristics are provided to the

user so that the most entrenched items from the view of the domain knowledge can

be protected from being changed. Additionally, UNAE is developed to simplify the

representation of the equalities and inequalities. Based on the preferred structure,

algorithms for scoring the entrenchment of axioms, preconditions and the signature

elements have been created which support the repair generation and repaired theories

ranking. In the last chapter, the evaluation of ABC shows that the repair system

produces fully repaired theories that cannot be suggested by any of the original

individual techniques: belief revision, abduction or reformation. Section 9.1 lists the
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limitation of our current work and the corresponding future work that address them.

Section 9.2 proposes some possible applications of our work where the developed

repair system can serve real tasks.



Appendix A

Examples

The theories tested in Chapter 8 are given in this appendix, together with one of their

best repaired theories (the gold standard). Changes in repaired theories are highlighted

in red. These are the theories tested in the evaluation outlined in Chapter 8. ABC has

been tested in diverse domains, such as in (Bundy et al., 2020; Urbonas et al., 2020).

1. The Families Theory is repaired by enriching the constant birth into a variable

in A1.

Example A.0.1. Families Theory.

parent(X ,Y,birth) Ô⇒ f amilies(X ,Y) (A1)

Ô⇒ parent(a,b,birth) (A2)

Ô⇒ parent(a,c,step)] (A3)

T (PS) = { f amilies(a,b), f amilies(a,c)}
F(PS) = ∅

Example A.0.2. Repaired Families Theory.

parent(X ,Y,Z) Ô⇒ f amilies(X ,Y) (A1)

Ô⇒ parent(a,b,birth) (A2)

Ô⇒ parent(a,c,step)] (A3)

T (PS) = { f amilies(a,b), f amilies(a,c)}
F(PS) = ∅

2. The Tweety theory is repaired by increasing the arity of bird. The repaired theory

193



194 Appendix A. Examples

says that all birds have feathers and only normal types of birds fly, while penguin

is a special type.

Example A.0.3. Tweety Theory.

penguin(X) Ô⇒ bird(X) (A1)

bird(X) Ô⇒ f eather(X) (A2)

bird(X) Ô⇒ f ly(X) (A3)

Ô⇒ bird(polly) (A4)

Ô⇒ penguin(tweety) (A5)

T (PS) = { f eath(tweety), f eath(polly), f ly(polly)}
F(PS) = { f ly(tweety)}

Example A.0.4. Repaired Tweety Theory.

penguin(X) Ô⇒ bird(X ,dummy2) (A1)

bird(X ,Y) Ô⇒ f eather(X) (A2)

bird(X ,dummy1) Ô⇒ f ly(X) (A3)

Ô⇒ bird(polly,dummy1) (A4)

Ô⇒ penguin(tweety) (A5)

T (PS) = { f eath(tweety), f eath(polly), f ly(polly)}
F(PS) = { f ly(tweety)}

3. The Married Women theory is repaired by renaming the instance of predicate

hadHusband in A2 with hasHusband.
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Example A.0.5. Married Women Theory.

divorced(X)∧notDivorced(X) Ô⇒ (A1)

hadHusband(X) Ô⇒ marriedWoman(X) (A2)

marriedWoman(X) Ô⇒ notDivorced(X) (A3)

Ô⇒ hadHusband(leticia) (A4)

Ô⇒ hasHusband( f lor) (A5)

T (PS) = {notDivorced( f lor)}
F(PS) = {notDivorced(leticia)}

Example A.0.6. Repaired Married Women Theory.

divorced(X)∧notDivorced(X) Ô⇒ (A1)

hasHusband(X) Ô⇒ marriedWoman(X) (A2)

marriedWoman(X) Ô⇒ notDivorced(X) (A3)

Ô⇒ hadHusband(leticia) (A4)

Ô⇒ hasHusband( f lor) (A5)

T (PS) = {notDivorced( f lor)}
F(PS) = {notDivorced(leticia)}

4. The Researcher theory is repaired by adding a precondition to A2. By

interpreting dummyPred as paid, the repair says that only a paid author is

employed.

Example A.0.7. Researcher Theory.

writes(X , papers) Ô⇒ author(X) (A1)

author(X) Ô⇒ employee(X) (A2)

activeResearcher(X) Ô⇒ writes(X , papers) (A3)

Ô⇒ activeResearcher(ann) (A4)

T (PS) = {activeResearcher(ann)}
F(PS) = {employee(ann)}
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Example A.0.8. Repaired Researcher Theory.

writes(X , papers) Ô⇒ author(X) (A1)

dummyPred(X)∧author(X) Ô⇒ employee(X) (A2)

activeResearcher(X) Ô⇒ writes(X , papers) (A3)

Ô⇒ activeResearcher(ann) (A4)

T (PS) = {activeResearcher(ann)}
F(PS) = {employee(ann)}

5. The Super Penguin theory is repaired by adding a precondition to A4. By

interpreting dummyPred as non-super penguin, the repair says that a bird with

broken wings cannot fly if it is not a super penguin.

Example A.0.9. Super Penguin Theory.

cannotFly(X)∧ f ly(X) Ô⇒ (A1)

superPenguin(X) Ô⇒ penguin(X) (A2)

penguin(X) Ô⇒ bird(X) (A3)

bird(X)∧brokenWing(X) Ô⇒ cannotFly(X) (A4)

bird(X) Ô⇒ f ly(X) (A5)

Ô⇒ superPenguin(opus) (A7)

Ô⇒ brokenWing(opus) (A8)

T (PS) = { f ly(opus)}
F(PS) = ∅
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Example A.0.10. Repaired Super Penguin Theory.

cannotFly(X)∧ f ly(X) Ô⇒ (A1)

superPenguin(X) Ô⇒ penguin(X) (A2)

penguin(X) Ô⇒ bird(X) (A3)

dummyPred(X)∧bird(X)∧brokenWing(X) Ô⇒ cannotFly(X) (A4)

bird(X) Ô⇒ f ly(X) (A5)

Ô⇒ superPenguin(opus) (A7)

Ô⇒ brokenWing(opus) (A8)

T (PS) = { f ly(opus)}
F(PS) = ∅

6. The Buy Stock theory is faulty due to the of buyStock(acme) and

dontBuyStock(acme), which is repaired by adding a precondition to A6, and then

the wanted proof of riskyCompany(acme) is blocked. Here dummyPred(X) can

be interpreted as non-strong steel.

Example A.0.11. Buy Stock Theory.

buyStock(X)∧dontBuyStock(X) Ô⇒ (A1)

goodPrice(X) Ô⇒ buyStock(X) (A2)

goodPrice(X)∧ riskyCompany(Y) Ô⇒ dontBuyStock(X) (A3)

stong(steel)∧ inFusion(X ,steel) Ô⇒ notRiskyCompany(X) (A4)

closing(X ,Y) Ô⇒ riskyCompany(X) (A5)

inFusion(X ,steel) Ô⇒ riskyCompany(X) (A6)

Ô⇒ strong(steel) (A7)

Ô⇒ inFusion(acme,steel) (A8)

Ô⇒ goodPrice(acme) (A9)

T (PS) = {buyStock(acme)}
F(PS) = ∅
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Example A.0.12. Repaired Buy Stock Theory.

buyStock(X)∧dontBuyStock(X) Ô⇒ (A1)

goodPrice(X) Ô⇒ buyStock(X) (A2)

goodPrice(X)∧ riskyCompany(Y) Ô⇒ dontBuyStock(X) (A3)

stong(steel)∧ inFusion(X ,steel) Ô⇒ notRiskyCompany(X) (A4)

closing(X ,Y) Ô⇒ riskyCompany(X) (A5)

dummyPred(X)∧ inFusion(X ,steel) Ô⇒ riskyCompany(X) (A6)

Ô⇒ strong(steel) (A7)

Ô⇒ inFusion(acme,steel) (A8)

Ô⇒ goodPrice(acme) (A9)

T (PS) = {buyStock(acme)}
F(PS) = ∅

7. The axiom A3 in Working Student theory says that an undergraduate student is

an adult. Then the fault is caused by working(lily) and notWorking(lily). The

theory is repaired by adding a new argument to notWorking. By interpreting

dummy1 as full-time and dummy2 as part-time, the repaired theory says that an

undergraduate student cannot do full-time work.

Example A.0.13. Working Student Theory.

notWorking(X)∧working(X) Ô⇒ (A1)

undStudent(X) Ô⇒ student(X) (A2)

undStudent(X) Ô⇒ adult(X) (A3)

student(X) Ô⇒ notWorking(X) (A4)

adult(X) Ô⇒ working(X) (A5)

Ô⇒ undStudent(lily) (A6)

T (PS) = {undStudent(lily), working(lily)}
F(PS) = {}
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Example A.0.14. Repaired Working Student Theory.

notWorking(X ,dummy1)∧working(X) Ô⇒ (A1)

undStudent(X) Ô⇒ student(X) (A2)

undStudent(X) Ô⇒ adult(X) (A3)

student(X) Ô⇒ notWorking(X ,dummy2) (A4)

adult(X) Ô⇒ working(X) (A5)

Ô⇒ undStudent(lily) (A6)

T (PS) = {undStudent(lily), working(lily)}
F(PS) = {}

8. The Missing Parent theory is repaired by adding rule A11.

Example A.0.15. Missing Parent Theory.

male(X)∧ parent(X ,Y) Ô⇒ f ather(X ,Y) (A1)

Ô⇒ f emale(b) (A2)

Ô⇒ f emale(d) (A3)

Ô⇒ male(a) (A4)

Ô⇒ male(c) (A5)

Ô⇒ male( f ) (A6)

Ô⇒ male(g) (A7)

Ô⇒ parent(a,b) (A8)

Ô⇒ parent(a,c) (A9)

Ô⇒ parent(d,b) (A10)

T (PS) = { f ather(a,b), f ather(a,c), mother(d,b), f ather( f ,a)}

F(PS) = {mother(a,b), mother(a,c), f ather(d,b), f ather(g,a),

f ather(g,c)}
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Example A.0.16. Repaired Missing Parent Theory.

male(X)∧ parent(X ,Y) Ô⇒ f ather(X ,Y) (A1)

Ô⇒ f emale(b) (A2)

Ô⇒ f emale(d) (A3)

Ô⇒ male(a) (A4)

Ô⇒ male(c) (A5)

Ô⇒ male( f ) (A6)

Ô⇒ male(g) (A7)

Ô⇒ parent(a,b) (A8)

Ô⇒ parent(a,c) (A9)

Ô⇒ parent(d,b) (A10)

f emale(Y)∧ parent(Y,Z)Ô⇒ mother(Y,Z) (A11)

T (PS) = { f ather(a,b), f ather(a,c), mother(d,b), f ather( f ,a)}

F(PS) = {mother(a,b), mother(a,c), f ather(d,b), f ather(g,a),

f ather(g,c)}

9. The Parent theory is repaired by adding two rules: A7 and A8.

Example A.0.17. Parent Theory.

Ô⇒ f emale(c) (A1)

Ô⇒ f emale(d) (A2)

Ô⇒ male(a) (A3)

Ô⇒ parent(a,b) (A4)

Ô⇒ parent(a,c) (A5)

Ô⇒ parent(d,b) (A6)

T (PS) = { f ather(a,b), f ather(a,c), mother(d,b)}
F(PS) = {mother(a,b), mother(a,c), f ather(d,b)}
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Example A.0.18. Repaired Parent Theory.

Ô⇒ f emale(c) (A1)

Ô⇒ f emale(d) (A2)

Ô⇒ male(a) (A3)

Ô⇒ parent(a,b) (A4)

Ô⇒ parent(a,c) (A5)

Ô⇒ parent(d,b) (A6)

male(Y)∧ parent(Y,Z)Ô⇒ f ather(Y,Z) (A7)

f emale(Y)∧ parent(Y,Z)Ô⇒ mother(Y,Z) (A8)

T (PS) = { f ather(a,b), f ather(a,c), mother(d,b)}
F(PS) = {mother(a,b), mother(a,c), f ather(d,b)}

10. The LoadCar theory is repaired by summarising rule A12.

Example A.0.19. Load Car Theory.

boxShape(X)∧notboxShape(X) Ô⇒ (A1)

Ô⇒ boxShape(load1) (A2)

Ô⇒ boxShape(load3) (A3)

Ô⇒ hasCar(car1) (A4)

Ô⇒ hasCar(car2) (A5)

Ô⇒ hasCar(car3) (A6)

Ô⇒ hasCar(car4) (A7)

Ô⇒ notboxShape(load2) (A8)

Ô⇒ hasLoad(car1, load1) (A9)

Ô⇒ hasLoad(car2, load2) (A10)

Ô⇒ hasLoad(car4, load3) (A11)

T (PS) = {eastBound(car1), eastBound(car4)}
F(PS) = {eastBound(load1), eastBound(car2), eastBound(car3)}
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Example A.0.20. Repaired Load Car Theory.

boxShape(X)∧notboxShape(X) Ô⇒ (A1)

Ô⇒ boxShape(load1) (A2)

Ô⇒ boxShape(load3) (A3)

Ô⇒ hasCar(car1) (A4)

Ô⇒ hasCar(car2) (A5)

Ô⇒ hasCar(car3) (A6)

Ô⇒ hasCar(car4) (A7)

Ô⇒ notboxShape(load2) (A8)

Ô⇒ hasLoad(car1, load1) (A9)

Ô⇒ hasLoad(car2, load2) (A10)

Ô⇒ hasLoad(car4, load3) (A11)

boxShape(Y)∧hasCar(Z)∧hasLoad(Z,Y) Ô⇒ eastBound(Z) (A12)

T (PS) = {eastBound(car1), eastBound(car4)}
F(PS) = {eastBound(load1), eastBound(car2), eastBound(car3)}



Glossary

abduction A repair technique which adds new axioms to

prove a previously unprovable goal, introduced

in §3.4.4, §4.4.3.

analogical abduction Seek for an explanation of a given phenomenon

by analogically formalising a rule based on

existing rules, introduced in §5.2 .

conceptual change Repair the signature of a logical theory via

reformation, introduced in §3.4.3, §4.4.3.1,

§4.4.3.

constraint violation A constraint violation occurs when all the

preconditions of a constraint axiom are provable

as the theorems of the Datalog theory, Definition

4.2.1.

constraint axiom A constraint axiom is a rule without a head in a

Datalog theory, Definition 3.1.1 .

epistemic entrenchment Describe the informational value of axioms: The

more entrenched an axiom is, the more valuable

it is, introduced in §3.4.2, §6.2.

grammar of a Datalog theory Provide the format of terms, propositions,

assertions, rules, constraint axioms, goal clauses

and the empty clause, given by Definition 3.1.1.

Herbrand structure Interpret the Herbrand base by defining a subset

of the Herbrand base as true, Definition 3.2.3.
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Herbrand model A Herbrand structure that is a model of the

theory, Definition 3.2.4.

Herbrand base A set of all possible ground propositions written

in the signature of a Datalog theory, Definition

3.2.2.

Herbrand universe The set of all constants in the signature of a

Datalog theory, Definition 3.2.1.

incompatibility A fault that the theory proves a proposition in

the false set of the preferred structure, Definition

4.2.4.

insufficiency A fault that the theory fails to prove a proposition

in the true set of the preferred structure,

Definition 4.2.4.

maximal set of commutative repair plans a collection of most commutative repair plans,

Definition 6.3.2.

preferred proposition a proposition in the true set of the preferred

structure.

reformation a domain-independent repair algorithm for

conceptual change, introduced in §3.4.3, §4.4.3.

repair plan strategy to repair incompatibilities or

insufficiencies, shown in Table 5.1 and Table

5.2, respectively.

signature describe the representation language in which a

logical theory is written..

SL-Resolution The inference rule employed in the ABC Repair

System, which tries to derive the empty clause

by resolving the left most subgoal with an input

axiom .
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unique name assumption with exceptions a mechanism that makes it possible to describe

how pairs of syntactically distinct constants are

equal or unequal in the context of Datalog,

introduced in §6.1, §7.1.





Acronyms

PS Preferred Structure.

ABC ABC Repair System.

AR Automated Reasoning.

CNF Conjunctive Normal Form.

DL Description Logic.

E-time Execution time.

EE Epistemic Entrenchment.

FOL First-Order Logic.

GS Gold Standard.

HOL Higher-Order Logic.

IL Informational Loss.

ILP Inductive Logic Programming.

KG Knowledge Graph.

MIL Meta-Interpretive Learning.

ML Machine Learning.

MSCR maximal set of commutative repair plans.
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208 Acronyms

NES Non-Exhaustive Search.

NML Non-Monotonic Logic.

OWL W3C Web Ontology Language.

PE preference entrenchment.

RO Repair Operation.

RP Repair Plan.

RS Resolution Step.

SFR-Time Single Fault Repair Time.

SL-Resolution Linear Resolution with Selection Function.

UNAE Unique Name Assumption with Exceptions.
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Lecue, F., Cudré-Mauroux, P., Sequeda, J., Lange, C., and Heflin, J., editors, The

Semantic Web - ISWC 2017. Springer International Publishing, Cham.

Gärdenfors, P. (1988). Knowledge in flux: Modeling the dynamics of epistemic states.

The MIT press.

Gärdenfors, P. (1992). Belief revision: An introduction. In Gärdenfors, P., editor,

Belief Revision, pages 1–28. Cambridge University Press. Cambridge Tracts in

Theoretical Computer Science.

Gärdenfors, P. (2003). Belief revision, volume 29. Cambridge University Press.

Gärdenfors, P. and Makinson, D. (1988). Revisions of knowledge systems using

epistemic entrenchment. In Proceedings of the 2nd conference on Theoretical

aspects of reasoning about knowledge, pages 83–95. Morgan Kaufmann

Publishers Inc.

Goldfarb, W. D. (1981). The undecidability of the second-order unification problem.

Theoretical Computer Science, 13(2):225–230.



Bibliography 213
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hypothesis spaces using learned domain theories. In International Conference on

Inductive Logic Programming, pages 152–168. Springer.

Thagard, P. R. (1978). The best explanation: Criteria for theory choice. The journal of

philosophy, 75(2):76–92.

Tsialos, A. (2015). Repairing inconsistent description logic ontologies using

reformation,. UG4 Final Year Project, University of Edinburgh, UK.

Ullman, J. D. (1985). Implementation of logical query languages for databases. ACM

Transactions on Database Systems (TODS), 10(3):289–321.
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geographic information processing. Computers & Geosciences, 28(1):103–117.

Wiharja, K., Pan, J. Z., Kollingbaum, M., and Deng, Y. (2018). More is better:

Sequential combinations of knowledge graph embedding approaches. In Ichise,

R., Lecue, F., Kawamura, T., Zhao, D., Muggleton, S., and Kozaki, K., editors,

Semantic Technology, pages 19–35, Cham. Springer International Publishing.

Wikipedia contributors (2017). Herbrand structure — Wikipedia, the free

encyclopedia. https://en.wikipedia.org/w/index.php?title=Herbrand_

structure&oldid=800715701. [Online; accessed 5-February-2019].

https://en.wikipedia.org/w/index.php?title=Herbrand_structure&oldid=800715701
https://en.wikipedia.org/w/index.php?title=Herbrand_structure&oldid=800715701


Bibliography 219

Wos, L., Overbeek, R., Lusk, E., and Boyle, J. (1984). Automated Reasoning:

Introduction and Applications. Prentice-Hall.

Wrobel, S. (1994). Concept formation during interactive theory revision. Machine

Learning, 14(2):169–191.

Zhang, S., Sridharan, M., Gelfond, M., and Wyatt, J. (2014). Towards an architecture

for knowledge representation and reasoning in robotics. In International

conference on social robotics, pages 400–410. Springer.


	cover sheet.pdf
	Automating_the_Repair_of_Faulty_Logical_Theories_v2.pdf
	Introduction
	Motivation and Hypothesis
	Organisation of Thesis
	Contributions
	Publications

	Literature Survey
	Automated Reasoning
	Typical Logics
	First-Order Logic (FOL)
	Higher-Order Logic (HOL)
	Non-Monotonic Logic

	Theory Repair Techniques
	Abduction
	Belief Revision
	Conceptual Change
	Inductive Logic Programming (ilp)
	The Relation Among Repair Techniques
	The Sub-optimal Pruning based on Max-Sat

	Theory Repair in Knowledge Graphs
	Machine Learning (ml)
	Relationship between ar and ML

	Summary

	Background
	Datalog
	Herbrand Structure
	Linear Resolution with Selection Function
	Repair Techniques
	Belief Revision
	Epistemic Entrenchment
	Conceptual Change via Reformation
	Abduction

	Summary

	abc: Before Repair Generation
	Minimal Sets Computation
	Fault Definition Based on a Preferred Structure
	Fault Detection
	Theoretical Basis of Repair Generation
	Repair Postulates
	Search Strategy for Fault-free Theories
	Repair Technique Analyses: Conceptual Change, Belief Revision and Abduction

	Summary

	abc: Repair Algorithm
	Repair Plans
	Incompatibility Repair
	Insufficiency Repair

	Repairs by Analogical Abduction
	Algorithm of an Analogical Abduction
	Repair Game Theory by Analogical Abduction

	Combination of Techniques
	Summary

	abc: Refinements
	Unique Name Assumption with Exceptions 
	Entrenchment Based on a ps
	Axiom Entrenchment w.r.t. ps
	Entrenchment of Preconditions
	Entrenchment of Signature

	Maximal Set of Repair Plans (mscr)
	Conditions of Combining Repair Plans
	Compute the Maximal Sets of Commutative rps

	Pruning-out Sub-Optimal mscrs
	Other Specifications and Heuristics
	Summary

	Implementation
	Unique Name Assumption with Exceptions
	Fault Detection
	Selected Literal Resolution without Ancestor Resolution
	Proof Representation

	Repair Generation
	Summary

	Evaluation
	Evaluation Methodology
	Data Source and gs
	Test Plans

	Evaluation Results
	Experiment Results
	Running Time Experiment

	Discussion
	Summary

	Conclusion
	Limitations and Future Work
	Applications
	Summary

	Examples
	Glossary
	Acronyms
	Bibliography


