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Lay Summary 
 

Stem cells undergo a process called differentiation to give rise to the different types of cells 

that make up a fully developed organism. During differentiation, changes in the set of genes 

the cells express drive the changes in morphology that make different tissues. There are 

two stages of this: first the cells stop expressing the genes that maintain them as stem cells; 

second, they start expressing different sets of genes unique to each of the tissues they will 

become. The curious question is this – how do different cells come to express different 

genes, considering they all start from one single cell and also contain the same genetic 

information? 

Cells have evolved many mechanisms to regulate gene expression thereby achieving the 

ability to tightly control which proteins are expressed in a certain cell type. One of these 

regulatory mechanisms, is the folding and positioning of DNA itself in 3D space within the 

nucleus, where the genome resides. The nucleus has a double membraned structure, called 

the nuclear envelope, defining its boundaries. This envelope acts as giant scaffold, 

interacting with certain parts of the genome to anchor them, thereby freeing up the space 

inside the nucleus to allow for DNA-DNA and DNA-protein interactions that are important 

for cellular functions. Typically, genes that are expressed are found in the nuclear interior 

and those that need to be silenced are stowed away at the nuclear periphery, anchored to 

the nuclear envelope. 

The Schirmer lab has found that most of the proteins comprising the nuclear envelope are 

distinct for different tissues. Many of these tissue-specific nuclear envelope proteins direct 

the tissue-specific patterns of genome organisation and this in turn helps specify what genes 

are expressed in that particular tissue. This project is focused on the idea that even earlier, 

as a stem cell starts to differentiate to give rise to the different cell types, a similar change 

in nuclear envelope proteins directs genome organization and this is one of the mechanisms 

by which gene expression is controlled. 

While we know that genome organization changes during differentiation, we do not yet 

know the earliest stages of this or how quickly genome organisation changes once 

differentiation begins. This thesis demonstrates that during the differentiation of mouse 

embryonic stem cell, one of the first changes in genome organization occurs with the 

repositioning of the Rex1 locus from the nuclear interior, where the gene is expressed, to 
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the nuclear periphery. This repositioning occurs within the first hour of differentiation and 

is even reversible for the first few hours as cells cease to be stem cells. The cells continue 

to express REX1 protein for several hours after the gene is anchored at the nuclear 

periphery, suggesting that the repositioning of the gene is only one of the multiple steps 

required to shut the gene down. Interestingly, the composition of proteins in the nuclear 

envelope also changes in this same time frame with certain proteins starting to get 

expressed only after differentiation is induced in these cells. These new proteins and/or 

modifications such as phosphorylation on existing nuclear envelope proteins might be 

responsible for the anchoring of the Rex1 locus to the nuclear periphery. 

This thesis also demonstrates that when tissue specific nuclear envelope proteins like 

NET39, TMEM120A and TAPBPL are introduced in stem cells, these cells cease to be 

stem cells and start to differentiate. However, not all tissue specific proteins are able to 

tether the Rex1 locus to the periphery, suggesting that different nuclear envelope proteins 

act as specific anchors for different parts of the genome. Together, these studies provide an 

insight into the dynamics of genome organization and the role of the nuclear envelope in 

establishing this organization during early stages of differentiation required before an 

organism can develop. 
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Abstract 
 

The majority of Nuclear Envelope Transmembrane Proteins (NETs) are tissue specific and 

many of these facilitate tissue-specific genome organization. Genome organization changes 

dramatically during differentiation and these NETs impact this process: muscle-specific 

genome-organizing NETs NET39, WFS1 and TMEM38A are important for myogenesis 

(Robson et al, 2016) while fat-specific genome-organizing NETs TMEM120A and B are 

important for adipogenesis (Batrakou et al, 2015). Although during lineage specification of 

mouse embryonic stem cells (Peric-Hupkes et al, 2010), we do not yet understand the 

temporal dynamics of these changes nor the components of the nuclear envelope that 

orchestrate these changes during early stages of exit from pluripotency. In this thesis, I 

investigate the temporal dynamics of genome organization changes during pluripotency 

exit stimulated by LIF withdrawal. Using Fluorescence in-situ Hybridization (FISH) to 

label DNA, I demonstrate that some of the earliest changes in genome organization occur 

within the first hour of exit from pluripotency with the relocation of a locus containing 

three genes Triml1, Triml2 and Zfp42 (that encodes REX1, a well-known marker of 

pluripotency) from the nuclear interior to the nuclear periphery. The RNA and protein 

levels of these genes persist for several hours post exit, suggesting that reorganisation of 

the genome is among the very first of events occurring during lineage specification and is 

perhaps a higher order mechanism controlling differentiation as a change in genome 

organisation could affect the transcriptional profile of these cells. To try and identify the 

proteins involved in tethering the locus and the mechanism of release I also investigated 

the changes in the nuclear envelope composition as cells undergo an exit from pluripotency. 

I show that while certain proteins undergo post translational modifications such as 

phosphorylation, other new proteins are synthesised during the first two hours of exit. Using 

phospho-null mutants for LBR and LAP2α, I show that these play a role in the relocation 

of this genomic locus. Finally, I introduced tissue-specific genome-organizing NETs such 

as NET39 (muscle), TAPBPL (blood) and TMEM120A(fat) into embryonic stem cells and 

found that their introduction causes a forced exit from pluripotency. Interestingly, these 

NETs show specificity in their ability to affect the position of genomic loci encoding 

pluripotency factors like Rex1 and Nanog, strengthening the idea that these tissue specific 
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NETs act as tethers to very specific genomic regions in order to maintain a tissue specific 

genome organization. 

The results discussed here present for the first time, a temporal view of the changes in 

genome organisation during such early stages of in vitro differentiation. While Rex1 

repositioning has been studied in greater detail in this thesis, a more comprehensive study 

over the early stages of exit might reveal additional genomic loci that reposition during this 

phase. The rapid reorganisation of the genome following LIF withdrawal highlights the 

importance of tightly controlling and maintaining appropriate culture conditions for the 

study of pluripotency using embryonic stem cells as a model system. The study leads to 

conceptual advancement in stem cell biology by describing early events following exit from 

pluripotency and in the field of nuclear biology by identifying the NE composition in ES 

cells. Collectively the results demonstrate the role of the nuclear envelope in the 

maintenance of pluripotency and in orchestrating genome organisation changes during exit.  
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Chapter 1 
 

Introduction 
 

The study of the nucleus dates back to 1831, when Scottish botanist Robert Brown first 

described the organelle in orchids while pioneering the use of light microscopes (R. Brown 

1831). Following Brown’s observation, a lively debate about the contents of the nucleus 

and its importance to life took prominence in the scientific community. It took about 100 

years of work to establish that the nucleus is home to DNA and some proteins. Emil Heitz 

made one of the first significant observations on DNA compaction when he stained 

chromatin throughout various stages of the cell cycle. He reported that certain regions of 

the DNA stain more intensely than the rest and introduced the terms heterochromatin for 

the densely stained regions that remained compact during the cell cycle and euchromatin 

for regions that took up the stain lightly (Heitz 1928).   

About 12 million bp of DNA is housed within a Saccharomyces cerevisiae nucleus 

(Jorgensen et al. 2007) and an even larger 3 billion bp genome resides in a human nucleus 

(Venter et al. 2001). It is by supercoiling and tight compaction that this vast amount of 

genetic material fits inside the nucleus. This packaging must be achieved, however, without 

compromising the accessibility of DNA when it is required. Furthermore, access to certain 

parts of the genome at a given time without compromising the status of the rest of it is key 

to regulating physiological processes. Therefore, it goes without saying that there are strict 

rules governing both the coiling and uncoiling of DNA. The DNA itself is arranged in the 

nucleus so that the heterochromatin is typically found in close proximity to the nuclear 

envelope and nucleoli while euchromatin dominates the nuclear interior. This was first 

observed in early electron microscopic images (Moses 1956). Since then genome 

organisation has been extensively studied with an increasing number of congenital and 

developmental disorders being linked directly or indirectly to disruption of this 

organisation. 

In this chapter I will describe our understanding of non-random genome organisation 

followed by the discovery of tissue specific organisational patterns of genes and 

chromosomes. I will explain our present-day understanding of the hierarchical principles 

of chromatin folding and organisation into functional domains. I will then describe the role 
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of the nuclear envelope as a DNA-binding scaffold and elaborate on the specialised role of 

Nuclear Envelope Transmembrane Proteins (NETs) in facilitating tissue specific gene and 

chromosome positioning. I will describe the state of cells before they commit to lineages 

i.e. pluripotency and go on to provide a developmental time scale for changes in genome 

organisation, starting with how genome organisation in embryonic stem cells is different 

from that in adult cells and then delving into how dramatically this organisation changes 

during cellular differentiation. Specifically, I will talk about REX1, a well-known marker 

of naïve pluripotency, a state of pluripotency resembling the cells of the inner cell mass in 

a pre-implantation embryo, and summarise what we know about the protein and the 

organisation of the genetic locus that encodes this protein. I will elaborate on the state of 

embryonic stem cells as they undergo an exit from pluripotency and finally, I will integrate 

the various ideas discussed above to address the role of the nuclear envelope in 

orchestrating changes in genome organisation during differentiation and development.  

1.1 The genome is non-randomly organised 
 

Some of the earliest observations supporting the idea that DNA is not randomly floating 

about in the nucleus came from Carl Rabl at the end of the nineteenth century. During 

salamander cell division, he observed a clustering of centromeres on one side of the nuclear 

envelope, which presumably reflected the orientation of chromosomes from the preceding 

mitosis (Rabl 1885). However, it was Theodore Boveri who first proposed the idea that 

each chromosome visible in mitosis occupies a discrete and mostly non-overlapping 

territory in the nuclear space. He arrived at this conclusion from his observations of early 

stages of postzygotic development of Ascaris megalocephala, where he used protrusions 

of chromosome ends from prophase nuclei to mark out the order of chromosome territories 

(CTs) in interphase nuclei and continued to document the existence of these territories 

throughout mitosis, resulting in rather symmetrical arrangements of CTs in the daughter 

cells (Boveri 1909). In an unrelated study in 1979 where Zorn et al exposed small parts of 

the nucleus to UV microirradiation to study unscheduled DNA synthesis, they observed 

that the [3H] thymidine incorporation into DNA could be often visualised on to individual 

chromosomes in the metaphase spread (Zorn et al. 1979). This further supported Boveri’s 

theory about discrete CTs, though only providing indirect evidence. Irrefutable evidence 

proving the existence of these exclusive subdomains came to light in the 1980s when 

Fluorescence in-situ hybridization (FISH) was used to directly label CTs in human cells 
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with chromosome specific DNA probes (Manuelidis and Borden 1988) and eventually in 

plant cells with bacterial artificial chromosome FISH probes (Lysak et al. 2002). However, 

FISH only demonstrated the presence of CTs, yielding no insight into their arrangement.  

The methods to analyse gene and chromosome positions have evolved over the years. To 

determine whether the distribution of CTs was random or non-random, it became important 

to define one or more reference points in the 3D nuclear space to score the position of each 

CT with respect to those reference points. These reference points were defined to consider 

two cases of non-random arrangement – radial arrangement and neighbourhood proximity 

arrangement. Radial arrangement was defined by dividing the nuclear space into a number 

of concentric shells (voxels) with equal volumes and scoring the likelihood of a CT being 

present in a particular voxel. Alternatively, measuring the distance of a CT to either the 

nuclear centre or the nearest point on the nuclear periphery or lamina could also be used to 

score the likelihood of a CT occupying a certain space in the 3D nuclear space. If a 

chromatin target was found with equal frequency in all voxels or at varying distances from 

the nuclear lamina, it would strongly argue for a random radial arrangement of the target. 

Neighbourhood proximity arrangement could be studied by scoring the distance between 

two chromatin targets of interest. If two chromatin targets always occupied neighbouring 

territories, then the distance between the two would remain fairly constant. However, 

defining chromatin targets themselves as reference points had a caveat in that it did not 

account for functional interactions of genomic loci and assumed that the territories were 

fixed in space, which of course is not true. Therefore, studying radial arrangement of CTs 

by measuring the probability of their occurrence in a certain voxel or by scoring their 

distance from the closest point on the nuclear periphery or lamina became the preferred 

method to study whether their arrangement was random.  

Preferred nuclear locations for chromosomes were first suggested when it was observed 

that certain autosomes containing rDNA sequences (in humans these are chromosomes 

13,14,15,21 and 22) participate in the formation of nucleoli and therefore remain associated 

with one another and are held in the same lateral orientation for several mitotic cycles 

(Bobrow and Heritage 1980). Eventually, 3D FISH experiments on human lymphocytes 

for chromosomes 18 and 19 confirmed non-random radial distribution of CTs. 

Chromosome 19 CT was consistently found in the nuclear interior while chromosome 18 

preferentially occupied a territory close to the nuclear periphery. Interestingly this generally 
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correlates with the gene density of the chromosomes, with the gene rich chromosome 19 

being in the nuclear interior and the gene poor chromosome 18 at the periphery (T. Cremer 

and Cremer 2001; M. Cremer et al. 2003; Croft et al. 1999). This gene density correlated 

radial distribution was documented for all chromosomes eventually (Boyle 2001). While 

such gene density correlated radial positions of chromosomes has been observed in other 

primates (Tanabe et al. 2002), radial organisation of territories is documented even in 

Hydra, suggesting that the radial positioning mechanism evolved at least 600 million years 

ago and has been evolutionarily conserved (Alexandrova et al. 2003).  

Broadly speaking the CTs are maintained in a wide range of cell types. For instance, CTs 

for human chromosomes 18 and 19 are conserved in fibroblasts, keratinocytes, 

lymphocytes and epithelial cells from multiple tissues (M. Cremer et al. 2003; Murata et 

al. 2007; Boyle 2001). In mice, chromosome 14 is similarly positioned in lung and kidney 

cells (Parada, McQueen, and Misteli 2004). Similarly, porcine chromosomes 17, 13, 5 and 

X are similarly positioned in brain, lung and kidney tissues (Foster, Griffin, and Bridger 

2012). However, certain CTs show a tissue specific arrangement. In freshly isolated mouse 

tissues,  chromosome 5 CTs were preferentially found in the nuclear interior in hepatocytes, 

towards the periphery in small and large lung cells and in an intermediate position in 

lymphocytes, illustrating a tissue-specific spatial organisation of the genome (Parada, 

McQueen, and Misteli 2004).  

Furthermore, a striking example of chromatin reorganisation during terminal differentiation 

was shown in mammalian retina adapted to nocturnal life. In the nuclei of rod cells of such 

mammals, all the heterochromatin is concentrated in the interior with euchromatin at the 

periphery (Solovei et al. 2009). It has been suggested that this might allow the nuclei to act 

as collecting lenses to channel minimal light for nocturnal mammals based on theoretical 

modelling simulations (Błaszczak, Kreysing, and Guck 2014). Such global nuclear 

reorganisation necessitates a profound reorganisation of radial chromatin arrangements 

rather than a change in just the CT proximity patterns. 

The observation that genome organisation could be tissue specific led to increased curiosity 

as to why there might be a need for this and whether gene or chromosome positions could 

affect gene expression. 
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1.2 Genome organisation regulates gene expression 
 

A gene density correlated CT position pattern hinted at the possibility that gene expression 

might be affected by gene or chromosome position itself. It is tempting to argue that parts 

of the genome that are tucked away at the nuclear periphery had sterically compromised 

accessibility and therefore would have reduced or even silenced gene expression. On the 

contrary, genes in the nuclear interior are accessible to the transcriptional machinery and 

therefore would be actively transcribed. 

This argument was supported by the finding that peripheral heterochromatin is enriched in 

histone modifications that are associated with transcriptional repression, namely histone 

H4 lysine 20 di methylation (H4K20me2), histone H3 lysine 9 di methylation (H3K9me2) 

and histone H3 lysine 9 trimethylation (H3K9me3). This same peripheral heterochromatin 

is also depleted in modifications that are seen in actively transcribing genes or those poised 

for transcription, namely histone H3 lysine 4 di methylation and trimethylation (H3K4me2 

and H3K4me3), histone H3 lysine 9 acetylation (H3K9Ac) and histone H3 lysine 36 

trimethylation (H3K36me3) (Kind et al. 2013; J. Yao et al. 2011; Hirano et al. 2012). 

Considering the nuclear periphery is a largely repressive environment, gene positions play 

a crucial role in determining transcriptional output, along with epigenetic changes and the 

expression of tissue-specific transcription factors. In context of gene positions, movements 

of gene loci to and from the nuclear periphery correlate with their cell type specific 

transcriptional activity. Several groups have worked on forced tethers of specific genomic 

loci to the nuclear periphery to ask if this tethering would lead to a transcriptional repression 

of the locus. Surprisingly, upon tethering, some genes showed transcriptional repression 

while others did not, suggesting that the nuclear periphery is not entirely incompatible with 

active transcription (Reddy et al. 2008; Kumaran and Spector 2008; Finlan et al. 2008). In 

addition, peripheral heterochromatin is enriched in histone marks associated with 

facultative heterochromatin such as H3K9me2, rather than those associated with 

constitutive heterochromatin like H3K9me3 (Kind et al. 2013). There are also examples 

where peripheral genes are expressed, rather than repressed, as a mechanism to hasten the 

export of transcribed mRNAs to the cytoplasm. For example, in budding yeast, many genes 

are seen to be recruited to the nuclear pore complexes when they are induced (Short 2016).  
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Together these pieces of information suggest that although the nuclear periphery is not 

incompatible with transcriptional activity, it does act largely as a repressive environment, 

sometimes facilitating the formation of facultative heterochromatin so that genes that need 

to show cell type-specific or physiological state-dependent activation may move away from 

the periphery for increased expression. Building on the same idea, one might speculate that 

higher organisms have evolved to establish tissue specific genome organisation patterns as 

a higher order regulatory mechanism to control tissue-specific gene expression. While 

combined data from FISH, gene expression analysis and epigenetic profiling of chromatin 

clearly demonstrates a relationship between gene position and gene expression, these 

studies are limited to observing a small set of genes at a time. To understand if these 

implications hold true on a global level, it became important to develop methods that gave 

high throughput readouts and helped in the determination of global genome organisation 

patterns. These in combination with global gene expression analyses yielded a more 

comprehensive understanding of gene position-gene expression relationships in responses 

to changes in physiological and developmental transitions. The following section will 

summarise our present day understanding of the hierarchical principles of genome 

organisation, as understood from studies focusing on global genome organisation patterns,  

starting with the most basic level of chromatin compaction to form nucleosomes to the 

higher order structures formed by further compaction of these nucleosomes into functional 

domains that facilitate long range interactions. 

 

1.3 Hierarchical Principles of Genome Organisation 
 

At its smallest scale, DNA is compacted into 10- and 30 nm fibres seen in electron 

micrographs, by the wrapping of 146 base-pairs of DNA around an octamer of histone 

proteins to form nucleosomes. These nucleosomes function to structurally compact the 

DNA but also control gene expression by controlling accessibility to DNA binding proteins 

and transcription factors. At the intermediate scale of several tens of kilobases to a few 

megabases, chromosome capture techniques (3C) have identified several cis and trans 

interactions (Dekker 2002; Lieberman-Aiden et al. 2009) thus illuminating local 3D folding 

of DNA into spatial domains. In 2012, three seminal studies using high-throughput 3C 

methods revealed that human, mice and Drosophila chromosomes are composed of one 
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megabase large, self-interacting regions (Dixon et al. 2012; Nora et al. 2012; Sexton et al. 

2012). On an average, genomic loci within the same self-interacting domain contact each 

other 2-3times more frequently than those located in two different domains. These self-

interacting domains came to be defined as Topologically Associated Domains (TADs). 

 

 

 

 

 

 

 

 

 

 

Figure 1: Hierarchical principles of genome organisation. A. The genome is non-randomly 

organised. Broadly, chromosomes occupy discrete territories (CTs) within the nucleus. At the 

periphery, the nuclear envelope anchors chromatin domains called Lamina Associated Domains 

(LADs). There are tissue-invariant LADs called constitutive LADs and other cell type specific LADs 

called facultative LADs. These LADs are typically repressed upon tethering. Chromosome domains 

are further organised into A and B compartments, which are enriched in transcriptionally active and 

inactive chromatin respectively. Local chromatin loops are stabilised by architectural proteins like 

CTCF and cohesin (Adapted from Sivakumar et al., 2019). B. HiC heatmaps for different scales of 

genome organisation from local loops that are a few kilobases to megabase domains which are 

further organised into compartments that make up whole chromosomes (reproduced from Szalaj 

and Plewczynski., 2018). C. Illustration showing the components of the vertebrate cohensin 

complex which acts in conjunction with CTCF, found at TAD boundaries (adapted from Sivakumar 

et al., 2019).  
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Unlike epigenomic compartments, TADs are not defined by chromatin states but by an 

elevated frequency of contacts within them. Functionally, TADs represent a particularly 

tissue-invariant scale of chromatin domains and are mostly conserved between different 

species (Dixon et al. 2012; Vietri Rudan et al. 2015). TADs themselves often have a nested 

and hierarchical configuration where smaller TADs can make up larger TADs and could 

be anywhere between ~40kb to ~3Mb with a median size of ~185kb. These smaller “loop 

domains” are special in that they can directly interact at their boundaries, thus forming a 

chromatin loop. In human cells, most loops were found to be stabilised by CTCF, an 

architectural protein binding to the CCCTC motif, which is also found at TAD boundaries 

(Rao et al. 2014). At the chromosomal scale, these TADs can be a part of multi-megabase 

interactions resulting in the formation of two spatial chromatin compartments, A and B, 

where greater interaction occurs within each compartment rather than across 

compartments. Interestingly, based on epigenetic modification, the spatial compartments 

also show a distinction in the type of chromatin occupying them such that the A 

compartment is predominantly comprised of actively transcribed chromatin while the B 

compartment is enriched in inactive chromatin (Figure 1A and B) (Lieberman-Aiden et al. 

2009). 

Classically described as an ‘insulator’, CTCF is a DNA binding protein with a central zinc 

finger domain flanked by largely unstructured C- and N-terminal domains whose function 

is poorly understood (Ohlsson, Renkawitz, and Lobanenkov 2001; Martinez and Miranda 

2010). Currently the most supported biophysical model for loop extrusion suggests that at 

TAD and loop boundaries, CTCF functions with two subunits of a possible motor in a 

complex. In this model, the motor protein spontaneously engages chromatin and slides 

along the chromatin in opposite directions, either actively (Sanborn et al. 2015) or through 

diffusion (C. A. Brackley et al. 2018) to begin extruding a DNA loop. Loop extrusion then 

continues until the motor protein either spontaneously falls off or encounters an occupied 

CTCF binding site in the convergent orientation. Since the ring-shaped cohesin complex 

can remain topologically engaged and slide on both naked DNA and chromatin, this favours 

a linear tracking mechanism where cohesin is the motor protein. Vertebrate cohesin 

complex is a multi-subunit protein complex made up of a dimer of SMC proteins (SMC3-

SMC1α/β) which is the core structural component. This forms a closed ring along with 

kleisin (RAD21/RAD21L/REC8) and STAG1/STAG2/STAG3 (Figure 1C). Disruption of 
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RAD21, a component of the cohesin complex resulted in a loss of loop domains without 

affecting the histone modification patterns, thus confirming that cohesin indeed is at least 

one of the motor proteins involved in loop formation. However, in the same study, a 

population of cohesin-independent loops was also observed to be frequently anchored 

around enhancer enriched genomic regions (Rao et al. 2017), suggesting that there might 

be other motor proteins or independent mechanisms at play. Similarly, targeted degradation 

of CTCF also results in a loss of TADs without affecting the segregation of the genome 

into A and B compartments, revealing that the compartmentalisation of mammalian 

chromosomes emerges independently of proper insulation of TADs (Nora et al. 2017). In 

conclusion, the roles of CTCF and cohesin in establishing genome organisation are starkly 

different. While cohesin seems to be the motor protein actively extruding loops, CTCF is a 

silent partner that is bound to its cognate sites marking the boundaries and waits for the 

loops to be extruded. In other words, while cohesin actively forms TADs, CTCF establishes 

TAD boundaries. Interestingly, by comparing evidences from single-molecule imaging, 

polymer simulation and Hi-C approaches, it has recently been suggested that TADs and 

loops are very likely dynamic structures that constantly form and break at a time scale of 

several minutes to tens of minutes in typical mammalian cells (Hansen et al. 2018). These 

dynamics might explain how the genome is reorganised during development and 

differentiation. 

Although the loop extrusion model remains a hypothesis, it has proven to be remarkably 

resilient to both experimental testing and in silico simulations. Polymer simulations have 

shown the emergence of TADs and finer scale features of Hi-C data. In fact, the models 

have been able to explain a far wider array of observations such as why loops tend to not 

overlap and why the CTCF binding motifs at pairs of loop anchors lie in convergent 

orientations (Sanborn et al. 2015; Fudenberg et al. 2016). In silico modelling has also been 

used to test an alternate model for the establishment of spatial genome organisation that is 

CTCF and cohesin independent. Simulations studying DNA-DNA interactions, 

considering just two kinds of polymers – rigid ones representing heterochromatin and 

flexible ones representing euchromatin – showed a spontaneous segregation of 

heterochromatin to the nuclear periphery with euchromatin occupying the nuclear interior. 

This separation would also resemble the A and B compartments that the genome is split 

into (Cook and Marenduzzo 2009). With the addition of DNA binding proteins in the 
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simulation, a spontaneous aggregation of binding sites was observed that increased the local 

chromatin concentration. It is merely an extrapolation then that if there were proteins with 

bi- or multi-valency then they could effectively bridge out forming chromatin loops that 

will remain stable for as long as the factors are bound (Marenduzzo, Finan, and Cook 2006; 

Chris A. Brackley et al. 2016). In cells, transcription factors bind to DNA in a sequence 

specific manner and epigenetic marks may confer further specificity to such interactions. 

Such specific DNA-protein interactions might form specialised clusters effectively 

separated in 3D space. Thus, a new “transcription factor model” for the establishment of 

genome organisation has been proposed (Hnisz et al. 2017; Cook and Marenduzzo 2018). 

Since transcription is a common denominator in all kinds of organisms containing DNA as 

their genetic material, it seems that the transcription factor model might explain a first-

degree organisation of the genome. However, architectural proteins like CTCF and cohesin 

confer stability to this order and might facilitate the dynamic reorganisation of the genome 

that is seen during development. Interestingly, SMC-condensin complexes, which are 

closely related to cohesin were recently found to extrude loops in both B. subtilis and 

Caulobacter, suggesting that this mechanism might be well conserved (X. Wang et al. 

2017; Tran, Laub, and Le 2017). Furthermore, many components of the cohesin complex 

are evolutionarily conserved among eukaryotes with varying degrees of similarity, 

suggesting that the loop extrusion mechanism for establishing genome organisation might 

go back a long way (Sivakumar, de las Heras, and Schirmer 2019). It is thus likely that both 

proposed models work together in establishing genome organisation, with the transcription 

factor model explaining the establishment of specialised clusters and the loop extrusion 

model explaining the stability and dynamics of these clusters to facilitate differential 

interactions that are required to be established in response to various physiological stimuli. 

A large body of evidence suggests that TADs correspond to functional regulatory domains 

by primarily restricting promoter-enhancer contacts. The juxtaposition of promoters and 

enhancers by chromatin looping seems to be sufficient for gene activation (W. Deng et al. 

2012). Specifically, enhancer-promoter pairing may determine the frequency at which 

transcriptional burst is initiated from a promoter (Bartman et al. 2016; Larsson et al. 2019). 

Thus, the main regulatory property of TADs is to delimit the genomic regions sampled by 

each locus to prevent the spurious activity of non-cognate enhancers in other TADs. 

Accordingly, deletion of a boundary between two TADs causes ectopic contacts and can 
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cause aberrant gene expression through improper enhancer-promoter contact (Flavahan et 

al. 2016). Loss of a TAD boundary between limb enhancers and the wnt6 gene is sufficient 

to upregulate wnt6 expression and cause developmental defects in both mice and humans 

(Lupiáñez et al. 2015). This also suggests that since enhancers have limited intrinsic 

specificity for their target promoters, regulating contact probability with well-defined TAD 

boundaries appears to be crucial in regulation of gene expression. Interestingly, for the 

Pitx1 gene that is important for hindlimb identity during mouse embryonic development, it 

was observed that the disruption of 3D organisation achieved by inversion of its enhancer 

element Pen leads to an ectopic Pen-Pitx1 interaction in the forelimb and an ectopic patella 

formation in the arm (Kragesteen et al. 2018). Taken together, these studies illustrate how 

chromatin folding into TADs defines operational limits of regulatory landscapes and the 

importance of maintaining these boundaries and in turn the larger 3D genome organisation 

for normal physiological development (Robson, Ringel, and Mundlos 2019). 

While TAD structures determine genome organisation within the nucleus, the nuclear 

envelope remains a major structural node that anchors a large amount of heterochromatin. 

In fact, it was in context of this structural scaffold that non-random gene positioning was 

first established. In addition to tethering away heterochromatin, the nuclear envelope also 

controls the release of specific genomic loci into the nuclear space to allow for its 

interactions with DNA and DNA-binding proteins. The next section discusses the nuclear 

envelope and its components in detail, highlighting the contribution of the Schirmer lab in 

understanding how tissue specific genome organisation may be brought about. 

 

1.4 The Nuclear Envelope facilitates Tissue-Specific genome 

organisation 
 

The Nuclear Envelope (NE) is a double membraned structure that encloses the eukaryotic 

nucleus which houses the genome. The outer and inner nuclear membranes (ONM and INM 

respectively) are interspersed by nuclear pore complexes which regulate transport between 

the nucleus and the cytoplasm. The ONM is contiguous with the endoplasmic reticulum 

and is connected to the cytoskeletal proteins. Communication between the cytoplasm and 

the nucleoplasm is established through protein complexes that span the luminal space 

between the two membranes, thus functionally connecting the ONM and the INM. 

Although the INM, ONM, nuclear pore complexes and the endoplasmic reticulum originate 
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from a continuous structure, they maintain their identities to a large extent through unique 

profiles of integral membrane associated proteins, together with specific lipid compositions 

and cholesterol (Ledeen and Wu 2004; Schirmer and Gerace 2005). In metazoans, the 

primary scaffold of the NE is provided by a fibrous protein meshwork called the lamina, 

composed of A type lamins (lamins A and C) and B type lamins (lamins B1 and B2). The 

B type lamins are expressed early in embryonic development and though their levels vary 

in different cell types, generally they persist ubiquitously throughout adult life. The A type 

lamins are thought to be expressed in a developmentally regulated manner. Thus, different 

cell types have different ratios of A and B type lamins and their isoforms (Broers et al. 

1997). 

The lamins are connected to the INM via many nuclear envelope transmembrane proteins 

(NETs). Although only a small number of NETs have been tested for their direct binding 

to the lamins, the Schirmer lab has identified that the NE of any given mammalian cell 

contains likely more than 100 different NETs. Most of these resist a detergent pre-fixation 

extraction that is characteristic of lamin-binding proteins (Korfali et al. 2010; Malik et al. 

2010a; Wilkie et al. 2011). Comparing the nuclear envelope proteome between three 

different tissue types, namely liver, muscle and blood, revealed that under 20% of the total 

NETs are shared between the tissue types, highlighting that a vast majority of NETs are 

tissue restricted in expression (Korfali et al. 2012). Following on from this observation, 

several tissue specific NETs have been studied in greater detail in the Schirmer lab since. 

Muscle specific NETs NET39, TMEM214 and WFS1 (Robson et al. 2016), fat specific 

NETs TMEM120A and B (Batrakou et al. 2015; Czapiewski et al, unpublished data) and 

liver specific NET47 (Gatticchi et al. 2020) are just some examples of NETs that have been 

studied for their ability to regulate genome organisation in the respective tissue types. Such 

diversity in the NE proteome may potentially explain many previously unexplainable 

observations. For instance, complex disease pathologies like Emery-Driefuss muscular 

dystrophy have been traced to mutations in ubiquitous NETs like Emerin. However, the 

pathology manifests in select muscle types in the affected individuals and it hasn’t been yet 

understood how a mutation in a ubiquitous NET might only affect the physiology of select 

tissues. Establishing that most NETs are tissue specific has opened up doors to investigating 

whether ubiquitous NETs like Emerin might act through tissue specific binding partners to 

carry out tissue specific functions. 
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Apart from being a barrier between the genome and the cytoplasm, the NE is also an 

important structural scaffold for tethering away a large amount of heterochromatin, thus 

laying the foundations for interphase chromosome topology. The development of 

LaminB1-DamID to construct maps illustrating global genome-NE interactions has been a 

milestone in establishing the importance of the NE in establishing genome organisation 

(Steensel and Henikoff 2000). DamID over many different cell types has revealed that 

certain lamina associated domains (LADs) are cell invariant (constitutive) while others are 

cell type specific (facultative), with their release from the NE often correlating with gene 

activation (Meuleman et al. 2013; van Steensel and Belmont 2017). The ability of LADs to 

allow or restrict certain TAD associations by constraining the extent to which genetic loci 

might diffuse into the nuclear space may be an important regulatory function of LADs 

beyond sequestration of repressed genes at the NE (Robson et al. 2017a). Although only a 

handful of NETs have been studied for their roles in maintaining genome organisation, the 

Schirmer lab has demonstrated several tissue specific NETs including muscle specific 

NETs like NET39 and TMEM38A, fat specific NET TMEM120A, blood specific NETs 

like TAPBPL and STT3A and the liver specific NET47, to have the ability to tether specific 

loci and even whole chromosomes to the nuclear periphery (Zuleger et al. 2013). 

Interestingly, tissue specific NETs were able to alter genome organisation even in a 

heterologous system (de las Heras et al. 2017). In fact, tethers established by NET47 are 

strong enough to reposition entire chromosomes to the periphery upon ectopic expression 

(Zuleger et al. 2013; Gatticchi et al. 2020). Thus, it seems that tissue restricted expression 

of NETs during development and differentiation plays a role in establishing tissue specific 

genome-NE tethers.  

Muscle specific NETs like NET39, TMEM38A and WFS1 are expressed during the in vitro 

differentiation of myoblasts to myotubes. These NETs also direct specific myogenic genes 

like Nid1 and Cxcl1 to the nuclear periphery during myogenesis. Crucially, the NETs 

themselves seem to show specificity in which genetic loci they regulate, such that while 

Nid1 repositioned in a NET39 dependent manner, Cxcl1 was specifically regulated by 

WFS1. Finally, these muscle specific NETs were shown to be important for myogenesis 

itself, so that a knockdown of these NETs led to impaired myotube formation (Figure 2A; 

Robson et al. 2016). Similarly fat-specific NETs TMEM120 A and B were also shown to 

be important for adipogenesis (Figure 2B; Batrakou et al. 2015). Taken together these 
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studies suggest that the expression of tissue specific NETs during physiological 

development alters the genome organisation landscape significantly and thus tissue specific 

genome organisation patterns are maintained. 

 

 

 

 

 

 

Although we now seem to have some understanding of how tissue specific genome 

organisation might be maintained in lineage committed cells expressing tissue specific 

NETs, we do not yet know the answers to the following questions – 

• How is genome organisation maintained before lineage commitment? 

• At what stage of development is tissue-specific genome organisation established? 

• What kind of physiological cues set in motion the changes in expression of the 

various NETs thereby affecting large scale genome organisation changes? 

Pluripotent embryonic stem cells from both mouse and humans have been used extensively 

in various studies to understand how genome organisation is different prior to lineage 

commitment. The following section discusses the idea of pluripotency, the culture 

Figure 2: Tissue specific NETs are important for normal differentiation. A. Knockdown of muscle 

specific NETs TMEM38A, NET39 and WFS1 in C2C12 cells leads to significant impairment in 

myogenesis (Robson et al., 2016) B. Knockdown of fat-specific NETs TMEM120 A and B in 3T3L1 

pre-adipocytes leads to reduced adipogenic potential (Batrakou et al., 2015). Figures are 

reproduced from the indicated publications.  
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conditions for maintaining these embryonic stem cells and highlights the morphological 

and transcriptional changes as these cells exit pluripotency.  

1.5 Maintenance of and Exit from Pluripotency 
 

Soon after fertilization gives rise to a zygote, the first cleavage event occurs, giving rise to 

identical daughter cells and this marks the beginning of a series of events including cell 

differentiation, which eventually culminates in the formation of a fully developed 

organism. During mouse embryo development, the first cleavage events result in a loosely 

attached cluster of 8-16 cells called morula (from the Latin for mulberry, Morus). This 

cluster of cells is totipotent, with the cells being able to give rise to any cell type. Within 

hours, the morula undergoes compaction and cell polarisation accompanied by an 

intracellular rearrangement of microfilaments and basal localisation of mitochondria (Levy 

et al. 1986; Ducibella et al. 1977). The first differentiation event occurs in the blastula, 

when the outer layer of epithelial cells forms the trophoblast, that will eventually give rise 

to the placenta, and an inner cell mass (ICM) is yet unspecialised but constitutes the founder 

population of the pluripotent naïve epiblast cells which will give rise to the embryo proper 

(Figure 3). The second differentiation event separates the ICM into the hypoblast (primitive 

endoderm) and epiblast (ectoderm). Cells of the epiblast express three transcription factors 

– Oct4, Sox2 and Nanog – which form the core network of proteins that maintain their 

pluripotency (Yuan et al. 1995; Chambers et al. 2003). Soon after formation of epiblast and 

hypoblast the mouse (and human) embryo undergoes implantation into the uterus (Johnson 

and Ziomek 1983; J. Nichols and Gardner 1984; Rossant 1975). The cells of the epiblast 

proliferate at an extraordinarily rapid rate of 9 hours per cell cycle through adoption of a 

peculiar cycle with most cells cycling between the S phase and a short G1 phase (Solter, 

Škreb, and Damjanov 1971). During embryogenesis in mouse, at about 6.5 days post 

coitum, in a process called gastrulation characterised by the formation of the primitive 

streak, the cells progressively start differentiating to form one of the three embryonic 

lineages, ectoderm, mesoderm and definitive endoderm (M. Williams et al. 2012). 



16 

 

 

 

 

 

 

 

Pluripotency is the ability of a cell to act as the founder or stem cell for all embryonic and 

adult tissues along with the ability to self-renew. The epiblast cells of the pre-implantation 

embryo are the source of mouse embryonic stem (ES) cells (Martin 1981; Evans and 

Kaufman 1981).  Like naïve epiblast cells, these ES cells, when put back into the blastocyst 

can undergo normal development and give rise to chimeric mice (A. Bradley et al. 1984). 

The post-implantation mouse embryos are a source of an alternative type of pluripotent 

cells, called epiblast-derived stem cells (EpiSC), which can be established under different 

growth conditions (Brons et al. 2007; Tesar et al. 2007). While these cells are unable to 

generate chimeric mice by blastocyst injection, they can show signs of early germ layer 

differentiation when grafted into post-implantation epiblasts (Huang et al. 2012). And 

likewise, Huang et al demonstrate that ES cells are incapable of contributing to chimeras 

when introduced into post-implantation embryos. Thus, the two pluripotent cell types can 

only integrate into the stage-appropriate embryonic environments. The different pluripotent 

characteristics exhibited by ES and EpiSC cells are called naïve and primed pluripotency. 

When mouse ES cells were first established, the culture conditions were empirical and they 

were maintained by co-culture with growth arrested mouse embryonic fibroblasts (MEFs) 

(Robertson 1997). The discovery of LIF as a cytokine that was able to sustain the 

pluripotency of these cells in the absence of the feeder layer was the first step towards 

establishing a defined culture condition to maintain these cells in vitro (Smith and Hooper 

1987; Smith et al. 1988; Williams et al. 1988). During embryonic development, Leukemia 

Figure 3: Illustration showing early stages of embryogenesis. The fertilised zygote goes through the 

initial cleavage to give rise to a cluster of cells called morula (A, B). Cells of the morula undergo 

further mitotic divisions to give rise to a Blastula (C). Cells of the blastula form two distinct 

populations. The outer layer of trophectoderm cells and the cells of the inner cell mass (ICM) which 

are the source of pluripotent embryonic stem cell cultures (D). 
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Inhibitory Factor (LIF) and the LIF receptor are expressed by the trophectoderm and ICM 

of the blastocyst in a complementary manner (Jennifer Nichols et al. 1996). The ability of 

LIF to sustain pluripotency depends on the addition of serum to the medium. LIF is an 

interleukin 6 (IL-6) class cytokine that activates Signal Transducer and Activator of 

Transcription 3 (Stat3), a transcription factor that inhibits the differentiation of ES cells (H. 

Niwa et al. 1998; Matsuda 1999). Serum and LIF withdrawal leads to spontaneous 

differentiation of pluripotent cells into neurons (Ying, Stavridis, et al. 2003).  

Phenotypically, ES cells in culture share many qualities with the epiblast cells, including a 

rapid cell cycle (Stead et al. 2002) and the expression of core pluripotency factors Oct4, 

Sox2 and Nanog. Gain of function experiments emphasise the importance of these core 

transcription factors in pluripotency. Nanog overexpression supports self-renewal even in 

the absence of LIF (Chambers et al. 2003), while ectopic expression of Oct3/4 and Sox2 

with additional transcription factors Klf4 and cMyc is sufficient to reprogram embryonic 

and adult fibroblasts into pluripotent cells (Takahashi and Yamanaka 2006). Knock-down 

or knock-out of Oct4 and Sox2 in ES cells leads to a loss of pluripotency and differentiation. 

The loss of Nanog leads to reduced self-renewal ability but compromises cell viability 

(Ivanova et al. 2006; Mitsui et al. 2003; Chambers et al. 2003; 2007). Pluripotent ES cells 

do not grow as a homogenous population in serum/LIF culture conditions. Heterogeneity 

is observed in terms of expression of Rex1, Stella, Nanog, Esrrb and Klf4 (Chambers et al. 

2007; Hayashi et al. 2008; Toyooka et al. 2008; van den Berg et al. 2008; Hitoshi Niwa et 

al. 2009). Such heterogeneity could be attributed to batch variations in serum, and therefore 

efforts were made towards developing serum-free culture conditions. 

Since simultaneous withdrawal of serum and LIF led to spontaneous neuronal 

differentiation, it was thought that inhibition of this process while withdrawing serum from 

the medium might help in establishing serum free conditions. To that effect, BMP4, a 

growth factor previously found to inhibit neuralisation of Xenopus embryo (Dale et al. 

1992), was added to the medium in combination with LIF and was found to facilitate serum-

free propagation of ES cells (Ying, Nichols, et al. 2003). Further studies revealed that the 

direct inhibition of FGF/ERK pathway, which triggers differentiation of ES cells, combined 

with a partial blockade of glycogen synthase kinase 3 (Gsk3) enabled ES cell propagation 

without BMP or LIF (Burdon et al. 1999; Ying, Stavridis, et al. 2003; Ying et al. 2008). 

Today, a widely adopted culture system for ES cells is the 2i/LIF condition, comprising the 
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addition of LIF along with two small molecule inhibitors that target MEK (PD0325921) 

and Gsk3 (CHIR99021), that ensures a largely homogeneous population of cells in terms 

of gene expression and morphology (Wray et al. 2011). This uniform condition of self-

renewal is termed the ‘ground state’ (Ying et al. 2008). Transcriptome analysis comparing 

ES cells cultured in serum/LIF and 2i/LIF reveals that about 25% of the active genes show 

2-fold or greater differences between the two conditions. Several ectodermal and 

mesodermal specification genes that are expressed in serum are repressed in 2i. 

Interestingly, ES cells transferred between the two culture conditions switch their 

transcriptional profile. It was also found that although serum induces a metastable state of 

cells within a heterogeneous population with regards to Rex1 expression, the Rex1 positive 

population of the cells retain naïve pluripotency and developmental potential (A. Smith 

2010; Marks et al. 2012).  

The analogy between ES cells and the epiblast has led to these cells being using widely as 

a surrogate for early epiblast to study and characterise the properties of stem cells and the 

various differentiation pathways. However, ES cells (extracted from e 3.5-4.5 mouse 

embryos) are different from the EpiSC (extracted from e6.0-e6.5 mouse embryos) in 

growth factor requirements, gene expression profiles, morphology, metabolism, DNA 

methylation patterns and X chromosome activation status (Jennifer Nichols and Smith 

2009). Between these naïve and primed states of pluripotency, is a characteristically distinct 

phase where cells lose the expression of naïve state factors like Esrrb, Rex1, Klf4 and Klf2 

and gain expression of transcription factors such as Otx2, Oct6 and Sox3, as well as 

maintaining core pluripotency factors like Oct3/4 and Sox2 (Hoffman, Wu, and Merrill 

2013). During this period, global gene expression reveals that the transcriptome is 

significantly divergent from both naïve and primed pluripotency (Mohammed et al. 2017). 

Events in the window that captures the transition between naïve and primed pluripotency 

are poorly understood. 

During in vitro differentiation, upon withdrawal of LIF or 2i, naïve ES cells embark on a 

path to lineage commitment. However, this is not a one-step process. Naïve ES cells do not 

respond to differentiation signals directly following 2i withdrawal (Mulas, Kalkan, and 

Smith 2017). Typically, for directed differentiation, pluripotent cells need to go through 

the development of embryoid bodies (EBs) by aggregation, which is a stage that expresses 

genes indicative of lineages from all three germ layers (Itskovitz-Eldor et al. 2000). Once 
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EBs are formed, they can then, in theory, be differentiated to any lineage of choice. The 

exit of naïve cells from their pluripotent state to form EBs and the associated change in 

gene regulatory networks is analogous to the formative phase observed during embryo 

development. 

Spontaneous differentiation by LIF withdrawal leads to an exit from pluripotency in 

monolayer cultures where cells show a characteristic morphological flattening. 

Furthermore, gene expression profiles start to show divergence within the first week of LIF 

withdrawal with mesoderm and endoderm genes being upregulated at 7- or 14-days post 

LIF withdrawal and a concurrent downregulation in genes like Stat3 and Tbx3 which are 

known to be important in the maintenance of pluripotency (Heo et al. 2005). This suggests 

that most biological processes directing cell differentiation might be determined within the 

first two weeks during spontaneous differentiation.  When ES cells were induced to form 

primitive ectoderm like (EPL) cells in culture by LIF withdrawal, it was seen that as cells 

exit from pluripotency over the first 6 days, they exit heterogeneously and show differential 

gene expression. While Oct4 mRNA is sustained up to 6 days post LIF withdrawal, Rex1 

is downregulated 4 days post withdrawal and concurrently, Fgf5 expression gradually 

upregulated, starting at 2 days post LIF withdrawal. In situ hybridisations in whole mouse 

embryos also shows a differential expression of genes like Crtr1, Rex1, Psc1 and Oct4, 

which are all expressed in pluripotent ICM cells, as cells start committing to various 

lineages. For instance, Crtr1 and Rex1 were downregulated at ~4.75 days post coitum 

marking the stage of transition of pluripotent cells in vivo but this transition is accompanied 

by the maintenance of Oct4 and Psc1 expression and the upregulation of Fgf5 (Pelton et al. 

2002). During in vitro differentiation, at the protein level, REX1 is downregulated within 

4 days post LIF withdrawal (S. Zhang et al. 2019). This suggested that Rex1 is a naïve 

pluripotency marker. 
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By knocking in a destabilised GFP to one of the Rex1 alleles, the Smith lab generated a 

new resource (Rex1::GFPd2 cells) for tracking the identities of naïve cells exiting 

pluripotency. Early stages of exit from pluripotency were monitored after withdrawal of 2i 

in serum free medium. Oct4 protein expression persisted up to 48 hours post 2i withdrawal, 

Figure 4: Exit from pluripotency is a multistep process. A. Cells exit pluripotency asynchronously. 

Rex1::GFPd2 cells subjected to 2i withdrawal for 25h show a heterogeneous population with cells 

expressing varying levels of GFP from low to high. When replated into serum/LIF or 2i/LIF culture 

conditions, cells expressing medium to high levels of GFP are able to form undifferentiated colonies 

(Kalkan et al., 2017). B. 2i withdrawal leads to an exit from naïve pluripotency characterised by high 

expression of Rex1, Oct4 and Sox2. There is a window of ~25h following 2i withdrawal where Rex1 

expression is still high and the exit is reversible. Rex1 downregulation marks an irreversible exit 

from naïve pluripotency (Kalkan et al., 2017). C. Stages of exit resemble in vivo lineage commitment. 

ES cells cultured in 2i/LIF resemble e4.5 epiblast cells. These cells are unresponsive to 

differentiation cues. Upon 2i withdrawal, these cells exit pluripotency and go through a formative 

stage characterised by low Rex1 expression. This stage resembles the e5.5 epiblast cells. The 

introduction of differentiation cues at this stage leads to a primed state that resemble e6.5-7.5 

epiblast cells that can then undergo lineage commitment (Kinoshita and Smith., 2018). 
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while rare cells expressing Sox1 were first detected at 48h and eventually form large 

clusters by 72h. RT-qPCR for pluripotency genes at various time points during the first 48h 

post 2i withdrawal confirmed the persistence of Oct2. Other factors like Nanog and Esrrb 

show a downregulation within 9h post release and Rex1 and Klf2 by 16h post 2i release, 

suggesting that pluripotency factors display individual downregulation kinetics upon 2i 

withdrawal or that some are upstream of others and affect their transcriptional output. In 

the same study, flow cytometry also revealed that by 25h post release, Rex1 promoter 

activity is heterogeneously downregulated yielding a population ranging in GFP expression 

from low to high, indicating strongly at a heterogeneous exit of a stem cell population from 

pluripotency. Finally, by 48h, all cells lose GFP expression. Strikingly, when ES cells 

subjected to 2i withdrawal were sorted on the basis of GFP expression and re-plated in 

either serum/LIF or 2i/LIF culture conditions, they were able to reverse their state of exit 

and form undifferentiated colonies of cells. However, the degree of differentiation observed 

was proportional to the time the cells had spent in 2i release, suggesting that ES cells 

become increasingly committed as the 2i withdrawal is prolonged but for the first 16h of 

release, the exit is largely reversible. By 25h post 2i withdrawal, in the Rex1 heterogeneous 

population of cells, only those that retain GFP expression (i.e. Rex1 promoter activity) 

show self-renewal ability (Figure 4A; Kalkan et al. 2017). In a nutshell, exit from 

pluripotency due to 2i withdrawal is not a one-step process. Downregulation of naïve 

transcription factors alone is not sufficient to push these cells over the edge into lineage 

commitment. There is a window of ~25h hours when Rex1 promoter activity is retained 

(measured by GFP expression in these cells) and as long as this is so, they could always 

revert back to their undifferentiated state (Figure 4B). The cells that lose Rex1 expression 

are competent for multi-lineage specification and respond more rapidly to induction than 

either ground state ES cells or those that have high Rex1 expression post 2i withdrawal 

(Mulas, Kalkan, and Smith 2017). This seems to suggest that cells that have lost Rex1 

expression are perhaps in the formative state of pluripotency and have undergone 

capacitation (Figure 4C). One could also argue that Rex1 downregulation led to the 

capacitation. Similar to mouse ES cells, human naïve pluripotent cells (hPSCs) also do not 

respond to differentiation cues. When they are capacitated by withdrawal of growth factors, 

they attain epithelioid morphology and undergo spontaneous differentiation in an 

asynchronous manner by day12 after withdrawal. The cells express the neuroectodermal 
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marker SOX1 and endodermal markers CXCR4 and SOX17 by 7 days post growth factor 

withdrawal suggesting that they attain capacitation and somatic lineage competence in this 

duration. However, the role of Rex1 in enabling this capacitation has not been studied yet 

(Rostovskaya, Stirparo, and Smith 2019).  

Another intermediate state of cells reported within a heterogeneous ES cell culture is that 

of a 2-cell like embryonic stage. These are cells constituting less than 1% of an ES cell 

culture that resemble a 2-cell stage embryo in their transcriptional profile. Two-cell like 

cells seem to have greater developmental plasticity and greater nuclear reprogrammability 

than ES cells, they maintain Oct4 mRNA levels and have very high levels of Zscan4 

transcripts. However, this state is not similar to the cells exiting pluripotency by Rex1 

downregulation that enter the formative state of pluripotency (Rodriguez-Terrones et al. 

2018). On the other hand, culturing mouse ES cells in specific conditioning medium leads 

to them attaining a reversible conversion to an alternative pluripotent phenotype of EPL 

cells. These cells require LIF but marker expression indicates that they are distinct from 

both naïve ES cells and primed EpiSC. Interestingly, EPL cells may be induced by L-

proline, which activates the mammalian target of rapamycin (mTOR) pathway 

(Washington et al. 2010), which has been previously implicated to play a role in naïve stem 

cell exit (Betschinger et al. 2013) with a knockdown leading to embryonic lethality 

(Murakami et al. 2004). Together, this suggests that the mTOR pathway might be important 

in the transition from naïve to formative phase of pluripotency. Interestingly, ES cell 

progression to lineage competence depends on two transcriptional repressors, TCF3 and 

RBPJ, and one activator, ETV5. Co-deletion of Etv5 and Tcf3 or deletion of Rbpj delays 

naïve state exit after 2i withdrawal as measured by Rex1 expression. Elimination of all three 

factors traps ES cells in their undifferentiated state from which they can rarely exit, even 

in presence of strong differentiation stimuli. The triple knockout cells retain expression of 

naïve pluripotency factors such as Nanog, Klf4 and Oct4 and lack neuronal differentiation 

marks like Sox1 and Tuj1, in spite of being cultured in neuronal differentiation medium for 

8 days (Kalkan et al. 2019). Finally, two of the three core pluripotency factors, namely Oct4 

and Sox2, seem to undergo subnuclear retargeting during the transition from naïve to 

formative pluripotency. Within the first 48h following 2i/LIF withdrawal, these two factors 

form nuclear foci that colocalise with heterochromatic regions formed by large scale 

chromatin reorganisation to mediate differentiation associated gene silencing. This nuclear 
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compartmentalisation may change the localised concentration of the transcription factors 

in the nucleoplasm and might modulate the transcriptional output (Verneri et al. 2020).  

In summary, pluripotency is classically considered to be the capacity of cells to differentiate 

into any lineage with no predetermination. However, we now know that this is not a one 

step process as naïve pluripotent cells do not respond to differentiation stimuli. It seems 

that the capacitation of pluripotent cells is a pre-requisite for multi-lineage differentiation. 

As cells are induced to differentiate in vitro, they first need to undergo an exit from 

pluripotency facilitated by LIF or 2i withdrawal. As the exit stimulated by withdrawal of 

LIF and 2i/LIF are not identical, it is important to study both systems. Exit from 

pluripotency comprises of a global reorganisation of transcription factor localisation and 

the gene regulatory network to attain a state that is neither similar to naïve pluripotency nor 

primed pluripotency. This formative phase is reversible for the first ~16 hours of exit and 

is characterised by the downregulation of Rex1 (A. Smith 2017). In light of these findings, 

the next section reviews REX1 as a marker for naïve pluripotency, its contribution to 

maintaining pluripotency in both human and mouse ES cells and the genomic environment 

of Rex1/Zfp42.  

 

1.6 REX1 – a marker of naïve pluripotency 
 

One of the proteins highlighted above as being important for pluripotency is REX1 or 

reduced expression 1, which is a 37kDa zinc finger protein encoded by the Zfp42/Rex1 gene 

(Gene IDs: mouse, 22702; human, 132625). The gene was first isolated and identified in 

F9 murine teratocarcinoma stem cells, where upon retinoic acid induced differentiation, the 

steady-state mRNA level of REX1 was rapidly reduced (Hosler et al. 1989). Using in situ 

hybridization to cellular RNA, REX1 was detected clearly in cells of the inner cell mass in 

a day 4.5 mouse blasctocyst (Figure 5A). In the same study, REX1 was also detected in 

undifferentiated ESCs and meiotic germ cells of the adult mouse testis (Rogers, Hosler, and 

Gudas 1991). During mouse embryo development, Rex1 is expressed in the pluripotent 

cells of the ICM until 4.75 when the cells start transitioning towards lineage commitment 

and thereafter Rex1 is detected at very low levels in the extra embryonic ectoderm in a day 

5.25 embryo following which it is entirely lost (Figure 5B; Pelton et al. 2002). Subsequently 

REX1 was detected in several mouse and human ESCs (Richards 2004; Carpenter et al. 
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2004; Sato et al. 2003), CD34 positive hematopoietic stem cells (Goolsby et al. 2003), 

human multipotent stem cells isolated from the bone marrow (D’Ippolito 2004) and CD133 

positive umbilical cord blood cells (Baal et al. 2004), certain cultured human cancer cells 

and even human teratocarcinoma cells (Mongan, Martin, and Gudas 2006). In fact, in mice, 

REX1 expression is several folds higher than median value in the ES cells while it is 

negligible in the ~60 other tissues including adult stem cell progenitors (Figure 6). Together 

this suggested that REX1 was a marker for multipotency and pluripotency and REX1 has 

been mostly studied as such. 

 

 

 

 

 

 

 

Although REX1 was identified independently due to its stark expression profile showing a 

downregulation upon differentiation of F9 cells, sequence comparison showed that it is 

related to YY1 (Yin Yang 1), a well characterised and evolutionarily conserved 

transcription factor (J. L. Brown et al. 1998; Y. Shi, Lee, and Galvin 1997; Sui et al. 2004). 

The amino acid sequence similarity between REX1 and YY1 transcription factors is limited 

mostly to the zinc finger domains, where the identity is about 75%. Considering that all 

four zinc finger domains of YY1 bind the DNA major groove (Houbaviy et al. 1996), it 

was proposed that REX1 is also likely to bind to the major groove (Mongan, Martin, and 

Gudas 2006). Another mammalian gene that is related to YY1 is YY2, which seems to be 

a retroposed copy duplicated from YY1, based on its intron-less structure and location 

within the intron of Mbtps2, an X chromosomal gene (Nguyen et al. 2004; Luo et al. 2006). 

A comprehensive analysis of all YY1 related sequences identified from the genome 

Figure 5: ICM cells show high Rex1 expression. A. Light field micrograph of an e4.5 mouse embryo 

stained with hematoxylin-eosin (left) and a dark-field illumination of the same section hybridised to 

the Rex1 probe (right). The silver grains (white dots) show Rex1 expression in cells of the inner cell 

mass (ICM) that are the source of pluripotent ES cells in culture (Rogers, Hosler and Gudas., 1991). 

B. ICM cells show high Rex1 expression in e3.5, 4.5 and 4.75 embryos. As these cells under lineage 

commitment Rex1 expression is downregulated (Pelton et al., 2002).  
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sequences of both vertebrates and invertebrates shows that REX1 and YY2 evolved rather 

recently and are found only in placental mammals. The zinc finger domains of YY2 and 

REX1 have been under different selection pressures than YY1, leading to a divergence in 

the sequences thereby weakening their DNA binding affinity and even changing the DNA 

binding motifs for REX1 (J. D. Kim, Faulk, and Kim 2007). The structural differences 

along with the germ cell specific expression of REX1 suggests a potential placental-

mammal specific functional role for the protein. 

The promoter element of Rex1 contains an octamer motif – ATTTGCAT – which acts as a 

binding site for core pluripotency-related octamer transcription factor members of the POU 

domain family of DNA-binding proteins. This element isolated from the endogenous gene 

was able to promote the expression of bacterial lacZ gene in mouse embryos in morula, 

showing the first sign of in vivo evidence for its activity (Hosler et al. 1993). ES cells 

express three members of the POU family of transcription factors: Oct3/4, its alternative 

spliced form Oct5, and Oct6, in addition to the ubiquitously expressed Oct1 (Schöler et al. 

1989; Okamoto et al. 1990; Schöler, Ruppert, et al. 1990; Rosner et al. 1990; Schöler, 

Dressler, et al. 1990). Not just the core pluripotency factor Oct3/4 and Oct6, but also 

Nanog, Dax1, Nac1 and Klf4 were seen to occupy the Rex1 promoter (Ben-Shushan et al. 

1998; J. Kim et al. 2008). Interestingly, a knockdown of Nanog in ES cells results in a 

downregulation of Rex1 mRNA. Furthermore, in P19 cells, where neither Nanog nor Rex1 

are normally expressed at any detectable levels, transfection with Nanog-GFP leads to an 

induction of Rex1 as detected by RT-PCR analysis. Together, these pieces of data suggest 

that Nanog positively regulates the expression of Rex1. Similarly, it was also demonstrated 

that Sox2 and Oct3/4 are able to positively regulate Rex1 expression (W. Shi et al. 2006). 

A comparison of promoter occupancy of 9 known pluripotency factors revealed that while 

numerous targets are shared by an extended set of pluripotency factors namely Oct4, Sox2, 

Nanog, Klf4, Dax1, Zfp281 and Nac1, the targets of c-Myc and Rex1 largely fell into a 

separate cluster and, interestingly, most genes in this cluster are implicated in protein 

metabolism rather than developmental processes (J. Kim et al. 2008). A proteome-based 

approach to determine changes in expression of multiple proteins due to REX1 depletion 

in human ES cells showed that it could affect several processes including translation, RNA 

metabolism, cardiac differentiation and even mitochondrial organisation (Son et al. 2015). 
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 Figure 6: Rex1 expression is a marker of pluripotency. Microarray data for Rex1 expression in over 

60 mouse tissues was downloaded from BioGPS (Wu et al., 2009). The purple line marks 4X median 

value. Rex1 expression is several folds higher than the median expression value in two different 

pluripotent ES cell lines, V26.2 and Bruce4. All other lineage committed cell types including 

hematopoietic stem cells, erythroid and myeloid progenitors show low to no Rex1 expression.  
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There seems to be a difference in the role of REX1 in human and mouse pluripotent cells. 

In human ES cells, depletion of REX1 using multiple REX1-specific shRNAs disrupts self-

renewal properties and promotes spontaneous differentiation, in addition to inducing 

apoptosis and reducing proliferation. REX1 depleted human ES cells also form immature 

teratomas in vivo, with no mature mesoderm tissues. In the same cells, co-transfection of 

an exogenous REX1 expression vector also significantly increased cyclin B1 and B2 

promoter activity, suggesting that Rex1 may have a role in maintaining normal cell cycle 

progression in the highly proliferating ES cells. Furthermore, depletion of endogenous 

REX1 with shRNAs prevents the reprogramming of fibroblasts with canonical 

reprogramming factors, while addition of ectopic REX1 enhances reprogramming 

efficiency (Son et al. 2013). Together these pieces of data suggest that in human ES cells, 

REX1 is important for maintaining their undifferentiated state and that it is indispensable 

for reprogramming. 

Curiously, Rex1 expression in certain human cancer cell types has fuelled the idea that it 

might be a marker of cancer stem cells. The knockdown of Rex1 using siRNAs was shown 

to improve the chemotherapeutic effects in gliomas (B.-S. Kim et al. 2011). REX1 was also 

found to be expressed in several cervical cancer cell lines and it was shown to facilitate the 

migration and invasion of cervical cancer cells in vitro and distant tumour metastasis in 

vivo during the progression of a cervical carcinoma (Zeng et al. 2019). REX1 deficiency in 

hepatocarcinoma cells has also been reported to induce p38 MAPK signalling and an 

activation of oxidative stress responses, collectively contributing to enhanced stemness and 

metastatic capabilities of these cells (Luk et al. 2019). 

In mouse ES cells, however, the contribution of functional REX1 during pluripotency is 

controversial. A targeted deletion of Rex1 in F9 embryonic carcinoma cells results in 

impaired differentiation into the visceral endoderm when induced by retinoic acid 

(Thompson and Gudas 2002). In MESPU13 (M13) line of ES cells, persistent knockdown 

of Rex1 over 7 days using RNA interference led to spontaneous differentiation of the cells 

into endoderm and mesoderm lineages. Conversely, an overexpression of Rex1 also caused 

these cells to lose their self-renewal characteristics, suggesting that a normal expression 

level of Rex1 is important for ES cell self-renewal and that REX1 might act as a dose-

dependent regulator (J.-Z. Zhang et al. 2006). In great contrast, in E14tg2A cells, over 

expression of Rex1 neither induced differentiation in the presence of LIF nor maintained 



28 

 

self-renewal in the absence of LIF. From the same parent line, Rex1-/- pluripotent ES cells 

could be established and showed no difference in the kinetics of differentiation induced by 

LIF withdrawal for 4 days or during the formation of embryoid bodies. These cells 

contributed to the formation of whole embryos after blastocyst injection, indicating they 

possess all functional aspects of pluripotency. Finally, both male and female Rex1-/-  

homozygotic mice were normal and fertile (Masui et al. 2008). Collectively, the data from 

this study strongly suggests that Rex1 is dispensable for maintenance of pluripotency in 

mouse embryonic stem cells. The differences in observation could be potentially due to the 

use of different mouse stem cell lines in the two studies. It could also be that Yy1, which 

is expressed widely in various tissue types and has pleiotropic functions including direct 

and indirect transcriptional activation and repression (Gordon et al. 2006), functionally 

compensates for Rex1 and masks any phenotype in Rex1-/- ES cells. Interestingly, as 

discussed in the earlier sections, undifferentiated mouse ES cells can shift their identities 

to generate different cell populations such as inner cell mass like Rex1+/Oct3/4+ cells and 

primitive ectoderm like Rex1-/Oct3/4+ cells under serum/LIF culture conditions (Toyooka 

et al. 2008). This kind of heterogeneity could also contribute to the differences observed in 

the Rex1 overexpression phenotypes in the different studies. 

In mice, Rex1 is thought to be an epigenetic regulator for genomic imprinting during early 

mouse development, an epigenetic mechanism that silences one parental allele of a small 

subset of genes. During mouse embryo development, the paternal X chromosome is 

inactivated in the pre-implantation stage embryo and extra-embryonic tissues by 

imprinting. This is later activated upon the formation of an epiblast where the cells then 

randomly inactivate either the maternal or paternal X chromosome. Rnf12, a gene located 

in close proximity to Xist is an E3 ubiquitin ligase, and plays a crucial role in the first stage 

of paternal X chromosome inactivation by imprinting. Curiously, it was found that REX1 

degradation by RNF12 was crucial to initiate this inactivation (Gontan et al. 2012; 2018; 

F. Wang and Bach 2019). ChIP experiments in mutant mice with disrupted Rex1 

transcription demonstrated that Peg3 and Nespas, two imprinted genes, are downstream 

targets of Rex1 and that Rex1 is required for maintaining the allele-specific DNA 

methylation of the Peg3 (Jeong Do Kim et al. 2011). Peg3 is highly expressed in the 

placenta and is well known for its involvement in controlling foetal growth rates (Curley et 

al. 2004). In the placenta, Rex1 is also detected on the surface of the parietal yolk sac 
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adjacent to where the embryo lies (Jeong Do Kim et al. 2011). The parietal yolk sac, along 

with the visceral yolk sac is known to be very critical for early foetal-maternal interaction 

(Miri and Varmuza 2009). Therefore, it might be possible that Rex1 may control a set of 

genes involved in early foetal-maternal interactions.  

 

 

 

 

 

 

 

 

 

 

In a study that looked at global genome organisation at various points during the 

differentiation of ES cells along the neural lineages, namely pluripotent ES cells, 

Figure 7: Rex1 genomic locus repositions during in vitro differentiation. A. A functional basis for 

relocation of genes was studied in three different stages of in vitro differentiation – Pluripotent ES 

cells (ESCs), neural progenitor cells (NPCs) and terminally differentiated Astrocytes (ACs). B. 

DamID traces showing the Rex1 genomic locus containing genes Triml1, Triml2 and Zfp42, 

encoding Rex1, in the three stages of differentiation. Signal above the line represents regions in 

contact with the nuclear periphery (black) and signal below the line represents a region found in the 

nuclear interior (red) (Peric-Hupkes et al., 2010) C. Illustration depicting the DamID data. In ESCs, 

the locus containing the genes and their intergenic regions is found in the nuclear interior and it 

repositions to the periphery as the cells commit to neural lineages. On either ends the locus is 

flanked by constitutive LADs (cLADs).  
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multipotent neural progenitor cells and terminally differentiated astrocytes, it was found 

that the Rex1 genomic locus repositions from the nuclear interior to the nuclear periphery 

during differentiation (Figure 7A and B; Peric-Hupkes et al. 2010). Zfp42, encoding Rex1, 

has two additional genes Triml1 and Triml2 in close proximity and this whole region is 

flanked by constitutive LADs on either end. However, in pluripotent ES cells where the 

genes are transcribed, the locus containing the three genes and their intergenic regions loops 

into the nuclear interior and upon differentiation, this loop is neatly tethered to the periphery 

(Figure 7C), suggesting that the nuclear envelope tether regulates and/or facilitates its 

transcriptional activity. It was recently shown that the high mobility group N (HMGN) 

proteins HMGN1 and HMGN2, members of the HMGN family of proteins that are 

ubiquitously expressed and bind to nucleosomes to weaken the binding of linker histone 

H1 and promote chromatin decompaction (Catez et al. 2002; Murphy et al. 2017), regulate 

Rex1 expression in mouse ES cells. ChIP-seq experiments with antibodies specifically 

recognising OCT4, NANOG and SOX2, which are known to regulate Rex1 expression, 

revealed a high specific occupancy of all three transcription factors to a region located at 

the 5’ end of the Rex1 gene (Figure 8), suggesting that this region is potentially a 

superenhancer. 

ES cell lines were derived from Hmgn1+/+ Hmgn2+/+ (WT) and Hmgn1-/- Hmgn2-/- (double 

knockout) mouse embryos. No specific differentiation phenotype was reported for the 

double knockout line in the study. The loss of HMGN1 and HMGN2 reduces the binding 

of the transcription factors to the superenhancer and a correlated reduction of histone marks 

characterising active chromatin was also observed at the superenhancer. Using chromatin 

conformation capture (3C), this presumed superenhancer was shown to interact with the 

promoter of Rex1 itself, thereby suggesting that the HMGN proteins regulated Rex1 

expression by regulating the epigenetic landscape of the superenhancer (Zhang et al. 2019). 

The neat genomic loop formed in the nuclear interior by the Rex1 locus in ES cells where 

it is transcribed and the presence of the presumed superenhancer on its 5’ end makes this 

an interesting locus to study. 

Development involves very tight spatio-temporal regulation of gene expression. Dynamic 

physiological state dependent changes in chromatin folding allow for the stringent 

regulation of gene expression. The following section discusses the plasticity of genome 

organisation and touches upon the epigenome during differentiation and development. 
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1.7 Genome Organisation in pluripotency and differentiation 
 

Zygotic genome activation (ZGA), an event that marks the transition from maternal 

dependence to activation of zygotic transcription so that it is self-reliant, is also the mark 

of establishment of 3D genome organisation in the zygote. Recently, single nucleus Hi-C 

was used to study chromatin states during oocyte to zygotic transition in isolated maternal 

and paternal nuclei of G1 phase mouse zygotes. It was found that the chromatin is organised 

into weak TADs and loops and strikingly, while paternal chromatin segregates into A and 

B compartments, maternal chromatin showed no such segregation (Flyamer et al. 2017). 

Furthermore, maternal and paternal genomes are spatially segregated even after the fusion 

of the pronuclei (Du et al. 2017). Contrary to only weak TAD domains, characteristic LADs 

are established right after fertilisation at the two-cell stage and the formation of these LADs 

facilitates major reorganisation in genome organisation (Borsos et al. 2019). In bovine pre-

implantation embryos, microscopic evidence has shown the emergence of radial genome 

organisation concurrent with ZGA (Koehler et al. 2009). In mouse embryos, by the 2- to 4- 

cell stages, TADs and compartments can be detected, which supports that idea that genome 

Figure 8: The 5’region of Rex1 gene has a putative superenhancer that is occupied by naïve 

transcription factors Oct4, Nanog and Sox2. Cells with a double knockout (DKO) for chromatin 

modifiers HMGN1 and HMGN2 leads to a loss of transcription factor occupancy at the 

superenhancer (Zhang et al., 2019).  
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organisation is established concurrently with ZGA (Gassler et al. 2017; Ke et al. 2017). 

However, how ZGA and 3D chromatin organisation are coordinated remains to be studied. 

Except human embryos, transcription is not required for loop and TAD formations in 

embryos (X. Chen et al. 2019; Hug et al. 2017; Ke et al. 2017). Also, while CTCF is 

detected in both mouse oocytes and early embryos, CTCF is undetectable in human 

embryos, suggesting that in humans, ZGA and embryonic CTCF expression is perhaps 

necessary for TAD border insulation (reviewed by Vallot and Tachibana 2020). ZGA is 

triggered by transcription factors such as Zelda in Drosophila (Liang et al. 2008), Nanog, 

Pou5f1 and SoxB1 in zebrafish (M. T. Lee et al. 2013) and Oct4 (homolog of Pou5f1) in 

humans (L. Gao et al. 2018). These factors compete with histones to bind to open chromatin 

and establish the chromatin state of pluripotent cells (Veil et al. 2019). 

On the basis of predominantly histological evidence many stem cell progenitors from 

neoblasts in planaria to hematopoietic progenitors in mouse were classically described to 

have ‘open chromatin’, mostly due to the lack of densely stained heterochromatin 

(reviewed by Mattout and Meshorer 2010). Using electron microscopy, it was shown rather 

strikingly that peripheral heterochromatin was mostly absent in pluripotent human 

embryonic stem cells compared to those that had undergone retinoic acid induced 

differentiation (Park et al. 2004). A similar pattern of largely homogeneous chromatin was 

also found in the cells of the ICM in mouse blastocyst, confirming that the ‘open chromatin’ 

state is physiologically relevant (Ahmed et al. 2010). Curiously, stochastic optical 

reconstruction microscopy (STORM) revealed the presence of discrete nanodomain 

“clutches” of nucleosomes in the interphase nuclei of both serum-grown and 2i-grown ES 

cells with 2i-grown cells having lower number of nucleosomes per clutch. The presence of 

these clutches suggested an established global chromatin structure in pluripotent cells. 

Interestingly, in neuronal progenitor cells derived from ES cells, the number of 

nucleosomes per clutch was the highest, showing further evidence in support of the open 

chromatin state of ES cells (Ricci et al. 2015). These studies combined with the higher 

accessibility of chromatin in pluripotent cells to MNase digestion (Morozumi et al. 2016) 

and a reduction of DNase-I hypersensitive sites during the differentiation of ES cells to 

neural progenitor cells (T. Deng et al. 2013) confirmed without doubt that the chromatin in 

the pluripotent state of cells is far more accessible and “open” and that as differentiation 

progresses, the chromatin is subjected to further condensation. As for the establishment of 
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genome organisation itself, 3D-FISH in mouse ES cells using whole chromosome paints 

revealed, similar to differentiated cells, the presence of chromosome territories (Mayer et 

al. 2005). There is also widespread transcription of repetitive elements and coding regions, 

confirming the hyperdynamic state of chromatin (Efroni et al. 2008). An established higher 

order chromatin architecture in mouse ES cells also demonstrated by mapping topological-

associated domains (TADs) using Hi-C approaches (Dixon et al. 2012). Higher order 

chromatin architecture is also achieved by the spatial clustering of genomic sites that act as 

binding sites for transcription factors such as Nanog and Oct4. Such clustering allows for 

an increase in the local density of binding sites and leads to higher transcription rates (de 

Wit et al. 2013). As is seen in other cell types, this higher order chromatin architecture is 

maintained by architectural proteins like cohesin subunit Smc1 and Mediator (Phillips-

Cremins et al. 2013). 

As discussed before, since serum/LIF and 2i/LIF culture conditions were shown to both 

maintain pluripotent cultures with the population being more heterogeneous in serum/LIF 

culture conditions, it is of interest to see whether genome organisation is different between 

these states. To address this, the 3D genome organisation was studied in these two closely 

related states of pluripotency by subjecting the cells to serum to 2i interconversion, where 

the culture conditions were switched from one to the other. It was observed that while most 

promoter-promoter, promoter-enhancer and enhancer-enhancer interactions were 

conserved between the two states, certain extremely long-range intra- and inter-

chromosomal interactions are only detected in serum/LIF ES cells and some of these 

interactions involve the Hox genes. The genomic loci involved in these long-range 

interactions were prominently characterised by H3K27me3 and H3K4me3 bivalence and 

several of these overlapped with promoters of transcription factors involved in cell-fate 

determination. Interestingly, these interactions are lost in a time dependent fashion during 

serum/LIF to 2i transition (Joshi et al. 2015). It was proposed that these interactions are 

observed due to the primed state of cells in the serum/LIF conditions. Furthermore, these 

long-range promoter-promoter interactions at the Hox gene clusters in primed pluripotent 

cells depend on PRC1 and PRC2, components of the polycomb repressor complex, which 

are thought to introduce H3K27me3 modifications and further recruit PRC1 to sustain the 

3D chromatin structure at the Hox gene promoters. In the same study it was also found that 

several enhancers transition to an active chromatin state in the PRC knockout cells, which 
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also correlates with an upregulation of genes they contact (Schoenfelder et al. 2015). 

Together, these studies might suggest that although these long-range interactions are 

dispensable for pluripotency itself, in the naïve pluripotent cells, the polycomb repression 

machinery physically constrains developmental transcription factor genes and their 

enhancers in a silenced but poised spatial network. By carefully modulating the 3D 

architecture of these specific genes, the cells may be able to fine-tune their transcriptional 

state during the transition from naïve to primed pluripotency and commit to further lineage 

specification. The epigenome of 2i-grown ES cells also seems unique when compared to 

that of serum-grown ES cells and EpiSCs. Specifically, 2i-grown ES cells exhibit global 

DNA hypomethylation and significantly lower H3K27me3 deposition at promoters (Marks 

et al. 2012; Habibi et al. 2013). The pericentromeric heterochromatin (PCH) in naïve ES 

cells is enriched for H3K27me3. Removal of DNA methylation leads to enhanced 

deposition of H3K27me3 at the PCH in these cells with no major effects on satellite 

transcript levels. In EpiSCs however, this leads to abolishment of transcriptional repression. 

Thus it suggests that during the transition from naïve to primed states of pluripotency, the 

epigenetic state of PCH is modified towards a more repressive state (Tosolini et al. 2018).   

The nuclear envelope (NE), through its diversity, contributes to tissue specific genome 

organisation but whether it has a role in maintaining genome organisation in pluripotent 

cells is an interesting concept to explore. As discussed in the earlier sections, nuclear 

envelope transmembrane proteins along with lamins act as a major scaffold upon which 

most of the transcriptionally silent heterochromatin is anchored and thus the NE plays a 

key role in determining and orchestrating genome-NE interactions. Lamin A/C in particular 

has been shown to assist in establishing some genome organisation (Solovei et al. 2013) 

and is expressed later in differentiation so reports of its absence in ES cells (Röber, Weber, 

and Osborn 1989) seemed to support the idea of its subsequent expression assisting in the 

changing genome organisation. Accordingly, Lamin A/C was initially used as a marker for 

in vitro differentiation and its absence in ES cells has been used to explain the genomic 

plasticity in these cells (Constantinescu et al. 2006; Melcer et al. 2012). However, Lamin 

A/C was later shown to be present using western blots in over 9 independent ES cell lines 

and in ICM cells, suggesting that the earlier reports were likely mistaken due to epitope 

masking (Eckersley-Maslin et al. 2013). Moreover, Lamin A/C localisation in ES cells 

depends on Lamin B1 (Guo et al. 2014). These reports confirm that Lamin A/C is present 
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in ES cells and its absence is not an appropriate marker for differentiation. Although it is 

likely that Lamin A/C is massively upregulated during differentiation and therefore much 

more detectable.  

Lamin B1-DamID was used to map the lamina associated domains (LADs) in mouse ES 

cells, demonstrating that LAD organisation was already established in the pluripotent state 

of cells (Peric-Hupkes et al. 2010). When ES cells were depleted of A and B type lamins 

and subjected to Emerin-DamID, the LAD profiles looked strikingly similar to the 

LaminB1-DamID profiles, suggesting that the larger docking of heterochromatin to the NE 

does not depend on lamins (Amendola and Steensel 2015). One caveat of this study is that 

while Lamin B1 and B2 were knocked out, Lamin A/C depletion was achieved through 

RNA interference which does not guarantee a complete abolishment of the protein and it 

was at least partially present during establishment of genome organisation. In another 

study, where a triple knockout cell line was generated so that none of the lamins were 

expressed, a global decondensation of constitutive heterochromatin and detachment of 

facultative heterochromatin was observed. This detachment of peripheral heterochromatin 

was enough to affect inter-TAD interactions without compromising overall TAD structures 

(Zheng et al. 2018). This suggests that global genome organisation in ES cells is established 

to a large degree by the peripheral organisation of heterochromatin, which in turn is lamin-

dependent. 

Differentiation of pluripotent cells and lineage commitment is accompanied by large scale 

genome organisation changes and these dramatic changes are accomplished within a few 

cell divisions. Some of the initial studies to study genome organisation in ES cells 

suggested that at the chromosome territory (CT) level, ES cells have no special organisation 

compared to differentiated cells. However, a recent study quantified the frequency of 

chromosome intermingling in undifferentiated ES cells, cells exiting pluripotency and 

terminally differentiated NIH3T3 fibroblast cells. It was observed that the fraction of the 

individual CTs which interacted with other heterologous chromosomes, characteristic of 

long-range interactions between genes and their regulatory elements, was higher at the 

onset of differentiation and in differentiated cells. Furthermore, the intermingling regions 

showed an accumulation of RNAPII suggesting that these were active transcriptional sites 

(Maharana et al. 2016). From these results it seems that ES cells have well organised CTs 

but interactions between CTs are defined better as lineage commitment takes place. Upon 
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closer look at genomic loci by 3D-FISH, the NANOG gene locus was shown to have a 

more interior position in human ES cells compared to differentiated lymphoblastoid cells. 

Similarly, OCT4 shifted from an interior position in the CT in the human ES cells to the 

surface of the territory in lymphoblasts (Wiblin 2005). In another study, during the retinoic 

acid induced differentiation of mouse ES cells, the HoxB locus, containing genes that 

control the body plan of a developing embryo, is seen to decondense. Concurrently, 

HOXB1 and HOXB9 genes move from within the chromosome territory to its periphery 

and are expressed (Chambeyron 2004).  Similarly, in a study comparing three 

chromosomes of differing sizes and gene densities but also containing loci that encode 

pluripotency and lineage regulators like NANOG, OCT4 and CDX2, it was found that the 

radial position of whole chromosomes remains largely unchanged during bovine 

development from a zygote into a blastocyst. However, when investigating individual loci, 

it was observed that the loci for both NANOG and CDX2 were shown to relocate to the 

surface outside the CT in correlation with their stage specific expression. This change in 

gene positions resulted in a corresponding change in the shape of the CT from a regular to 

an irregular shape (Orsztynowicz et al. 2017). Taken together these studies suggest that 

while at the CT level, genome organisation is no different in pluripotent cells, organisation 

is dynamic at the single gene level with developmental genes repositioning to facilitate 

their expression or repression during differentiation. 

Global NE-genome interactions during the in vitro differentiation of mouse ES cells into 

neural progenitor cells and terminally differentiated astrocytes were mapped using Lamin 

B1-DamID to identify which regions reposition to and from the nuclear periphery during 

lineage commitment. The study showed that several developmentally important genes were 

under regulation by the NE, where they were released in a stage-specific manner from the 

NE for expression and other loci containing pluripotency genes were tethered to the 

periphery for repression as the cells exit pluripotency. For instance, neuron specific Pdch9 

is released from the NE concomitant with its transcriptional activation in the neural 

lineages, while the locus containing Zfp42/Rex1, a prominent marker of naïve pluripotency, 

is tethered to the NE to facilitate its repression as lineage specification progresses (Peric-

Hupkes et al. 2010). This study illustrated the role of NE in regulating the expression of 

key developmental genes during differentiation. Various studies have documented a 

functional basis for the repositioning of developmental genes. During muscle 
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differentiation, the locus encoding Titin, a protein that plays an important role in muscle 

contraction, is released from the NE in myoblasts to the nuclear interior in myotubes where 

it is expressed (Robson et al. 2016). As discussed in the earlier sections, the main structural 

components of the NE seem to be fairly constant across cell types but its composition is 

dynamically remodelled during various physiological processes. The inner nuclear 

membrane (INM) in particular, shows enormous tissue diversity in its composition with 

hundreds of nuclear envelope transmembrane proteins (NETs). This tissue diversity of the 

INM facilitates a tissue specific genome architecture during differentiation and 

development. For instance, the repositioning of several muscle specific genes like Nid1, 

Ptn and Cxcl1 is directly affected by muscle NETs TMEM38A, WFS1 and NET39 (Robson 

et al. 2016). Analogously, during adipocyte differentiation, several genes reposition to and 

from the periphery concomitant with their transcriptional status in a manner dependent on 

TMEM120A, a fat specific NET (Czapiewski et al, unpublished date). Interestingly, recent 

efforts to look at whether NETs merely regulate genes or also other regulatory elements 

revealed that several enhancers are under TMEM120A regulation during adipocyte 

differentiation and several myogenic enhancers are under NET39 regulation during muscle 

differentiation. For instance, the predicted enhancer for Klf9, a regulator of PPARG that is 

well studied for its roles in adipogenesis, is released from the nuclear periphery during 

3T3L1 differentiation into adipocytes in vitro. Similarly, Col1a2, a gene upregulated in 

obesity, is seen to interact with its predicted enhancer in differentiated adipocytes (Schirmer 

lab unpublished data). Together these studies highlight the importance of the nuclear 

envelope in orchestrating genome organisation during differentiation and suggest that 

through controlled release of genomic loci into the nuclear interior or recruitment of loci to 

the NE, the NE plays a role in fine tuning various developmental programs. 

A comparison of the Hi-C data from human ES cells with four other human-ES-derived 

lineages shows that ~36% of the genome switches between A and B compartments upon 

differentiation. Consistent with experimental evidence seen thus far, the B compartment 

that typically contains transcriptionally inactive heterochromatin sees an expansion upon 

differentiation and regions that switched from A to B compartments were repressed. 

Interestingly, TADs were seen to switch compartments as whole units, rather than 

fragments of TADs repositioning separately, suggesting that the higher order domain 

organisation was not broken but instead these domains simply function as a single unit 
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through the course of differentiation (Dixon et al. 2012). Similar switching of marker genes 

between A and B compartments to maintain their stage-specific transcriptional activity was 

also observed in adipogenesis and myogenesis models recently (He et al. 2018). 

Furthermore, during neuronal differentiation, long-range interactions between active A 

compartment TADs become less pronounced while inactive B compartment TADs show 

stronger interactions reflecting the formation of heterochromatin. In ES cells, the long-

range interactions involve Polycomb-bound genes and some others bound by pluripotency 

transcription factors. Upon neuronal differentiations, these networks are reorganised to be 

replaced by cell-type specific transcription factors bound and enhancer-promoter 

interactions (Bonev et al. 2017). A look at sub-TAD structures at higher resolution revealed 

that when as ES cells exit pluripotency and commit to neuronal lineages, as many as 83 

ES-cell-specific interactions are lost and an additional 165 neural progenitor cell specific 

interactions are gained, suggesting that within the nucleus, higher order chromatin 

organisation in the form of TADs and chromatin loops are dynamic too. In the same study, 

it was observed that >80% of the significant interactions in ES cells were anchored by some 

combination of architectural proteins like CTCF, Med12 or Smc1, with different 

combinations working at different length scales to fulfil distinct roles in genome 

organisation. CTCF and Cohesin were seen to anchor various constitutive interactions that 

were detected during the different stages of lineage commitment (Phillips-Cremins et al. 

2013). Taken together, these studies highlight how constitutive interactions are maintained 

by key architectural proteins like CTCF and Cohesin but facultative interactions that 

change during differentiation might be controlled and anchored by other such proteins, 

many of which have yet to be described.   

While we now understand that genome organisation changes dramatically during 

differentiation, there is surprisingly little work done to understand the temporal dynamics 

of these reorganisations. In the next section, I will elaborate on some seminal studies that 

provided insight into the temporal dynamics of genome reorganisation and tried to answer 

the following question: 

 

How quickly can the genome reorganise itself in response to a stimulus? 
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1.8 Temporal dynamics of genome organisation 
 

Although dramatic changes in genome organisation have been recorded at various stages 

of differentiation and development, these changes have often been studied over several 

days. During embryonic development, changes in organisation are studied over the course 

of a few cell divisions during which various groups of cells commit to the different lineages. 

However, considering that the 3D genome structure is quite static at a global level while 

many physiological responses are rapid, whether the genome can be reorganised rapidly 

and without cell division to facilitate such responses has been of interest for a while.  

In Arabidopsis, a rapid repositioning of the light-inducible loci like GUN5, RBCS and 

chrolophyll a/b binding proteins (CAB) locus is seen from the nuclear interior to the nuclear 

periphery upon light activation within 3 hours and this relocation of the locus correlates 

with its transcriptional activation (Feng et al. 2014). In Drosophila Kc167 cells, a rapid 

reorganisation of TAD structures was observed upon a 20-minute heat-shock treatment, 

where new inter-TAD interactions were established and architectural proteins were seen to 

be redistributed from TAD boundaries to intra-TAD regions (L. Li et al. 2015). In 

mammalian systems, early studies addressed these questions directly by subjecting cells to 

serum starvation to induce quiescence and a reversible growth arrest. Surprisingly it was 

found that a number of chromosomes including chromosome 10, 13, and 18 show altered 

nuclear positions upon serum starvation of human dermal fibroblasts within 15 minutes 

post starvation, suggesting that changes in genome organisation can be rapid. Considering 

that the movements are rapid, it was expected that these movements could not be due to 

random diffusion and must be an active process requiring ATP and are perhaps dependent 

on the actin-myosin motors and indeed this was found to be true (Mehta et al. 2010). This 

further supports the idea that rapid physiological responses could, in theory, be regulated 

by rapid gene repositioning to and from the nuclear periphery to control its expression. 

Rapid and reversible chromatin condensation is also seen in chondrocytes subjected to 

osmotic challenge for 15 minutes and changes in osmolality have been shown to alter gene 

expression and metabolic activity in a wide range of tissues including those of renal, 

respiratory and cardiovascular systems (Irianto et al. 2013). Recently hyperosmotic stress 

was shown to cause a reversible change in local chromatin organisation with weakened 

TAD boundaries and a perturbation in A/B compartment organisation so that there was an 
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increase in B-like compartments and increased interactions between them (Amat et al. 

2019). In response to heat shocking CHO cells for 30 minutes, the Hsp70 gene locus moves 

towards the nuclear interior and shows increased association with nuclear speckles in a 

promoter dependent fashion (Hu, Plutz, and Belmont 2010). Recently, it was elaborated 

that this movement is Lamin A/C dependent in DLD1 cells and that it is potentially 

mediated by the motor protein Nuclear Myosin 1 (NM1) via its interaction with Lamin A 

– Emerin at the nuclear envelope (Pradhan, Nallappa, and Sengupta 2020). Together these 

observations suggest that chromatin is rapidly reorganised in response to various stimuli 

and considering the time scales at which these studies have been carried out, it seems that 

such rapid reorganisations can happen without the cells having to go through cell division. 

One mechanism by which such rapid changes could be orchestrated by the NE was 

proposed by the Schirmer lab and the idea of “constrained diffusion” of genomic loci, 

where the regions that need to be tightly regulated are bound by the NE so that the loops 

formed by these loci do not extend too far into the nucleus to facilitate transcription of the 

genes or other long-range interactions. Upon the need for a transcriptional shut down or 

abolishment of the long-range interactions to facilitate rapid responses to physiological 

stimuli, these loci can then be quickly tethered back to the periphery (Robson et al. 2017a).  

The development of live cell imaging methods to track genomic loci using fluorescently 

tagged dCas9 or single particle tracking of chromatin has now enabled us to better 

understand rapid changes in genome organisation, thus going beyond just capturing 

snapshots of the cells at various early stages during response to various physiological 

stimuli (Shaban and Seeber 2020). 

Motor proteins like actin and myosin have been associated with the cytoskeleton for many 

decades but recently evidence has been mounting to suggest that there is a nuclear pool of 

actin and myosin and that these proteins serve important functions in the nucleus (Percipalle 

and Vartiainen 2019). In mouse embryonic fibroblasts, propulsive forces for cell migration 

are provided by actin isoforms with β-actin retaining a unique nuclear function that prevents 

myogenic differentiation by regulating global transcription (Tondeleir et al. 2012). It is 

quite likely then, that in these cells the nuclear β-actin pools play a major role in the 

organisation of the genome. The Grosse lab demonstrated that nuclear actin polymerisation 

was required for nuclear expansion and consequently for chromatin decondensation after 

mitosis (Baarlink et al. 2017) while the Fisher lab suggested a role for nuclear actin 
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dynamics in DNA replication (Parisis et al. 2017). In Drosophila cells, double stranded 

breaks in heterochromatin have been shown to relocalise to the nuclear periphery for repair 

by a directed motion along nuclear actin filaments assembled by the Arp2/3 complex at the 

repair sites (Caridi et al. 2018). These studies, consistent with well-established 

actin/myosin functions in the cytoplasm, strongly argue their supporting the movement of 

genomic loci and even whole chromosomes for rapid changes in genome organisation to 

stimuli. 

1.9 Outstanding questions 
 

The use of pluripotent embryonic stem cells to establish global genome organisation 

patterns prior to lineage commitment has been instrumental in the understanding that 

genome organisation is, in fact, dramatically different between pluripotency and lineage 

commitment. Studies looking at the reorganisation of LADs and TADs during stem cell 

exit from pluripotency have highlighted the dynamic state of the genome as cells start 

committing to a particular lineage. Previous data from the Schirmer lab have illustrated that 

the nuclear envelope composition itself is tissue-specific and this has helped explain how 

tissue-specific genome organisation is achieved during and maintained upon terminal 

differentiation. However, there are several distinct stages between pluripotency and 

terminal differentiation and we do not have a comprehensive understanding of the global 

changes in genome organisation that take place as cells progress through these early stages. 

It is now known that there are large scale transcriptional changes as cells exit their 

pluripotent state and this exit, though it lasts several hours as a reversible state during in 

vitro differentiation, is a unique state that allows us to probe some of the earliest changes 

in genome organisation, transcriptome and metabolome of the cells. And these early 

changes lay the foundations upon which gene networks are reoriented towards successful 

lineage commitment. It is therefore of interest to the field of stem cell biology to understand 

the temporal dynamics of changes in genome organisation as cells exit pluripotency and 

commit to lineages. But how quickly does the genome reorganise during exit from 

pluripotency? Changes in genome organisation do not always imply dramatic movements 

of genomic loci to and from the NE. The tethering of certain genomic loci at the periphery 

could also affect distal regions present on the same chromosome by propagation effects 

along the polymer. How far away from a tether point do genes cease to be affected by the 
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positioning? Can minor changes in gene positions caused by such distal tethers affect 

TAD formation enough to prevent or facilitate long range interactions that might affect 

gene expression?  

Although a functional basis for relocation of genes during lineage specification has been 

reported, the components of the nuclear envelope that might have a role in orchestrating 

these changes during early stages of exit from pluripotency remain unknown. What does 

the NE proteome of pluripotent cells look like and how different is it from lineage 

committed cells? How does the NE proteome change during exit from pluripotency? 

Drawing from the diversity of NETs observed in different tissue types, it would appear that 

as cells progress from their pluripotent state through differentiation into defined lineages, 

they acquire different NET signatures which might bring about the coordinated changes in 

genome organisation that support lineage commitment. Such changes in peripheral genome 

organisation aided by NETs most definitely affect TAD formations within the nuclear space 

and thereby also affect long range gene-enhancer interactions. Thus, NET mediated 

establishment of peripheral genome organisation could affect complete interphase 

chromatin topology. 

Finally, changes in genome organisation are often studied in a gene centric manner but 

unpublished data from the Schirmer lab has shown that several regulatory elements 

including enhancers and miRNAs are under NET regulation in both adipogenesis and 

myogenesis. Thus, it would seem that the role of NETs in maintaining genome organisation 

goes far beyond establishing chromosome topology and the diversity of the NET proteome 

between various tissue types might be the key to understanding tissue specific gene 

expression profiles and that mutations in these specific NETs might also explain tissue 

specific disease pathologies.  
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Chapter 2 

Materials and Methods 

2.1 Materials 

2.1.1 Bacterial strains and genotypes 

DH5alpha  F- endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG Φ80dlacZΔM15 

Δ(lacZYA-argF) U169 hsdR17(rK- mK+) λ– 

 

2.1.2 Buffers and solutions 
 

Table 1: Composition of buffers used 

Name Composition 

Denaturation buffer 70% formamide, 2× SSC 

Hybridisation buffer For DNA FISH: 50% formamide, 2× SSC, 

1% Tween20, 10% Dextran Sulphate 

For RNA FISH: 10% formamide, 2X SSC, 

1% Tween20, 10% Dextran sulphate 

SSC, 20x 3M NaCl, 300mM Sodium Citrate pH 7.2 

Immuno-FISH blocking buffer 4% BSA, 4X SSC, 0.1% Tween20 

FISH wash buffers Buffer1: 2X SSC 

Buffer 2: 0.1X SSC 

Buffer 3: 4X SSC, 0.1% Tween20 

LB 1% tryptone, 0.5% yeast extract, 10mM 

NaCl, pH 7.4 

PBS (pH 7.4) 65mM Na2PO4, 8.8mM KH2PO4, 137mM 

NaCl, 2.7mM KCl 

TE 10mM Tris-Cl, pH 8.0, 1mM EDTA 

TAE 40mM Tris-acetate, 1mM EDTA 

GMEM Glasgow’s Modified Essential Medium 

(ThermoFisher #11710035) 

Opti-MEM Opti-MEM® I Reduced Serum 
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Medium (Gibco, 31985062) 

ESGRO-2i Medium 2i medium for ES cell culture (Sigma-

Aldrich #SF016-100) 

SDS-PAGE buffer 25 mM Tris pH 8.3, 192 mM glycine, 0.1% 

SDS 

2X Iso buffer  10% PEG 8000 (NEB #B1004A), 200mM 

Tris, pH 7.5, 20mM MgCl2, 20mM DTT 

(Invitrogen #Y00147), 0.4mM dNTP mix, 

2mM NAD (NEB #B9007S) 

10X Nick Translation Salts (NTS) 0.5 M Tris pH7.8, 0.05M MgCl2, 0.01M 

BME, 500ug/ml BSA 

2X Laemmli buffer 4% SDS, 20% glycerol, 10% 2-

mercaptoethanol, 0.004% bromophenol 

blue, 0.125M Tris HCl, pH 6.8 

NE1 hypotonic lysis buffer 20mM HEPES-KOH pH 7.9, 10mM KCl, 

1mM MgCl2, 0.1% Triton X100, 20% 

glycerol 

 

2.1.3 Primary Antibodies 
 

Table 2: List of primary antibodies and dilutions used 

Antigen Host IF dilution WB 

dilution 

Band size 

(kDa) 

Source 

Nanog Rabbit 1:400 1:1000 ~40 Abcam 

Oct4 Rabbit - 1:1000 ~45 Abcam 

H3 Mouse - 1:2000 17 Abcam 

(10799) 

LaminA/C 

(3262) 

Rabbit - 1:1000 70 (Schirmer et 

al, 2001) 

GAPDH Rabbit - 1:5000 ~37  

Nup153 Mouse - 1:1000 153, 214 Abcam QE5 

LBR 

(11745) 

Rabbit   1:1000 ~70  
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2.1.4 Secondary Antibodies 
 

Table 3: List of secondary antibodies used at the indicated dilutions 

Antibody Host Dye Dilution Source 

Anti-mouse Donkey Alexa 488 1:2000 Invitrogen 

#A21202 

Anti-mouse Donkey Alexa 568 1:2000 Invitrogen 

#A10037 

Anti-rabbit Donkey Alexa 488 1:2000 Invitrogen 

#A21206 

Anti-rabbit Donkey Alexa 568 1:2000 Invitrogen 

#A10042 

Streptavidin Recomb Alexa 488 1:100 Invitrogen #S-

11223 

Streptavidin Recomb Alexa 548 1:100 Invitrogen #S-

11226 

Anti-

digoxigenin 

Mouse Alexa 488 1:100 Jackson labs 

#200-542-156 

Anti-

digoxigenin 

Mouse Alexa 594 1:100 Jackson labs 

#200-582-156 

Anti-rabbit Donkey IRDye® 

800CW 

1:1000 Licor #926-

32213 

Anti-rabbit Donkey IRDye® 

680RD 

1:1000 Licor #926-

68073 

Anti-mouse Donkey IRDye® 

800CW 

1:1000 Licor #926-

32212 

Anti-mouse Donkey IRDye® 

680RD 

1:1000 Licor #926-

68070 
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2.1.5 Probes used for FISH 

DNA-FISH 

All the BACs and Fosmids of the RP23, RP24 and WI1 libraries used for DNA-FISH were 

sourced from BACPAC Genomics (Oakland, California) and the BMQ library BAC from 

Source Biosciences. Abbreviated names for libraries merely refer to the published names 

they were given by their creators.  

 

Table 4: List of probes used for DNA-FISH  

Probe name Chr Species BAC/FOSMID Gene(s)/region 

RP23-449D9 8 Mm BAC Triml1, Triml2, 

Zfp42 

RP24-141P13 6 Mm BAC Nanog 

BMQ-358G08 6 Mm BAC Ptn 

WI1-2049I09 6 Mm FOSMID Nanog L1 (first 

fLAD upstream 

of the Nanog 

promoter) 

WI1-1027O11 

 

6 Mm FOSMID Nanog R 

(cLAD 

downstream of 

Nanog) 

RP24-165N12 

 

6 Mm BAC Nanog L2 

(second bigger 

LAD upstream 

of the Nanog 

promoter) 

 

Further smaller probes used for testing the interaction between Rex1, Triml1 and Triml2 

genes were generated using PCR. The primers used for each of the genes are listed below 

(Tables 5, 6 and 7). 

 



48 

 

 

 

Table 5: List of primers used to design Triml1 probes 

Primer name Sequence 

Triml1-fos-F1 AATGGACAGTGACAACGC   

Triml1-fos-R1 AGCCTTCTCTCTAGCACTTG 

Triml1-fos-F2 GTCAGAGGTATCAAACTC   

Triml1-fos-R2 GCTGTGACTGAAGAGGACTT 

Triml1-fos-F3 ATCAGGTGCTGTGTTG     

Triml1-fos-R3 TGTGTTACAGCTCCTTAG   

 

Table 6: List of primers used to design Triml2 probes 

Primer Name Sequence 

Triml2-fos-F1 AAGAAGTCCACATCG      

Triml2-fos-R1 TACCTGTTCCTACTACTG   

Triml2-fos-F2 GCCAAGCATAGAAAG      

Triml2-fos-R2 AGAGAGCCACATTAAGTC   

Triml2-fos-F3 ATGTGTTCAGTAGAAGG    

Triml2-fos-R3 CAAAATTGTAGGTGGAC    

Triml2-fos-F4 TTGGAGGTCAGAATC      

Triml2-fos-R4 AGAAGGTAGACAAACAGTG  

 

Table 7: List of primers used to design Zfp42/Rex1 probes 

Primer name Sequence 

Zfp42-fos-F4  TCAGATGTGTTGCCAAG    

Zfp42-fos-R4  TCTTTGCCATTCCTCC     

Zfp42-fos-F3  TGAAGGCTACCTAATACC   

Zfp42-fos-R3  AGTTCAATTTCTGGGGA    

Zfp42-fos-F1  GTTGACTACTGCCAAAG    

Zfp42-fos-R1  TCACACATCAAGGCTG     

Zfp42-fos-F2  AGCCTGCTCTTTTCTGAAG  

Zfp42-fos-R2  GAGTGGCAGTTTCTTCTT   
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RNA-FISH 

RNA-FISH probes for the mouse Zfp42 gene encoding REX1 were designed using the 

Stellaris Designer for custom probes. The Zfp42 transcript was used as input sequence to 

generate 25 oligos which were then tested using BLAST for specific binding to the target 

sequence. These oligos, listed in Table 8 below, were then ordered from Integrated DNA 

Technologies IDT).  

 

Table 8: Oligos designed to probe Zfp42/Rex1 transcripts in RNA-FISH 

Oligo Name Sequence 

Seq 1 TCCCTTTTTAGATGGACGAA 

Seq 2 AGCCACAGTGGAAATCTAGG 

Seq 3 ATCCCAAGAAGAAACTGCCA 

Seq 4 TAGTCCATTTCTCTAATGCC 

Seq 5 AAACACCTGCTTTTTGGTCA 

Seq 6 CCTTCTTGAACAATGCCTAT 

Seq 7 ATGATGCACTCTAGGTATCC 

Seq 8 GGGTTCGGAAAACTCACCTC 

Seq 9 AAAGGAAATCCTCTTCCAGA 

Seq 10 GAACCTGGCGAGAAAGGTTT 

Seq 11 TCGAGAAGGGAACTCGCTTC 

Seq 12 CCTTTGTCATGTACTCCAAA 

Seq 13 CTGCAAGTAATGAGCTCGCC 

Seq 14 CTTGAGGACACTCCAGCATC 

Seq 15 TTTTATCCCTCAGCTTCTTC 

Seq 16 CGTGGACAAGCATGTGCTTC 

Seq 17 TGAGGACAATCTGTCTCCAC 

Seq 18 TCTGTCATTAAGACTACCCA 

Seq 19 GTACATAATGCGTGTATCCC 

Seq 20 GGAATACCAAAAGAGGCCTT 

Seq 21 TTTCCTGTTGGAACTATACC 

Seq 22 CTTTTGAAACTGCTTTCACC 

Seq 23 CCCCTTCAATAGCACATATA 
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Seq 24 ACTGATTTTCCGACGTATGC 

Seq 25 GGCCATTCTTTAGGATTATC 

 

 

2.1.6 Mammalian Cells 
 

Mouse embryonic stem cells of the E14TG2a line, used for most experiments in this study 

were a gift from the Voigt lab (Wellcome Centre for Cell Biology, University of 

Edinburgh). The CGR8 line of mouse ES cells were a gift from Guillaume Blin at the 

Scottish Centre for Regenerative Medicine in Edinburgh. The Rex1::GFP line of cells with 

a destabilised GFP under the regulation of the Rex1 promoter were obtained from Prof. 

Austin Smith (Living Systems Institute, University of Exeter).  

2.2 Mammalian Cell Culture 
 

2.2.1 Cell maintenance 

Serum/LIF culture conditions: E14 and CGR8 cells were cultured in GMEM 

supplemented with 20% FBS (ThermoFisher #A3160402), 1X non-essential amino acids 

(ThermoFisher #11140050), 1X sodium pyruvate (ThermoFisher #11360070), 50µM 2-

Mercaptoethanol (ThermoFisher #31350010) and 2ml recombinant LIF made by 

expressing a plasmid expressing human LIF as published in Smith et al. 1988. LIF activity 

was assayed using Western blots to look for Nanog and Oct4 expression and to omit batch 

variation, all experiments in this study were performed using the same batch of recombinant 

LIF. Cells were passaged every second day in a 1:12 dilution by trypsinisation and grown 

on plates coated with 0.1% gelatin (SIGMA) in PBS. 

2i/LIF culture conditions: E14 and Rex1::GFP cells were cultured in the LIF containing 

ESGRO-2i medium which was supplemented with the provided GSK3β and Mek inhibitors 

to keep the cells pluripotent. Cells were passaged every second day using Accutase 

(ThermoFisher #00-45555-56) and grown on gelatin coated plates. 

Stable cell lines: The tet-ON stable cell lines generated using Gibson assembly and 

Gateway cloning (described in detail below) for E14 cells expressing NET50, TAPBPL 

and NET39 were maintained in the standard serum/LIF conditions. For selection the clones 

were subjected to Puromycin at 1µg/ml and the induction of NETs was brought about by 
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1µg/ml doxycycline treatment for 48h. Cells were passaged every second day by 

trypsinisation as standard serum/LIF cultures. 

LIF/2i withdrawal to stimulate in vitro differentiation: For LIF withdrawal, cells were 

cultured in serum/LIF culture conditions as mentioned above. To stimulate in vitro 

differentiation, cells were trypsinised and replated in medium containing all the 

components of a complete medium except recombinant LIF. Similarly, for 2i withdrawal 

experiments, cells grown in LIF containing ESGRO medium mentioned above were 

replated in medium lacking only the GSK3β and Mek inhibitors.  

All cells were cultured at 37oC in humid atmosphere with 5% CO2. In all cases, in vitro 

differentiation was stimulated by LIF withdrawal, except where clearly mentioned as 2i 

withdrawal.   

2.2.2 Transfection 

Lipofectamine 2000: For ectopic expression of NETs in ES cells, E14 cells were 

transfected using Lipofectamine 2000. 2µg DNA and 9ul Lipofectamine 2000 were 

separately added to two 50ul aliquots of Opti-MEM and incubated for 5 minutes at room 

temperature. Following a quick vortexing, the aliquots were combined and incubated for a 

further 20 minutes at room temperature. Meanwhile cells were trypsinised, neutralised and 

seeded onto gelatin coated plates at a density of 0.5million cells per well of a 6 well plate. 

Following the 20-minute incubation the DNA-lipovesicle mixture was added to the cells 

while they were still in suspension to maximise the chances of the vesicle uptake. 

Nucleofection: For the expression of LAP2α and LBR WT and mutants in ES cells, E14 

cells were nucleofected with the Lonza Mouse Embryonic Stem Cell Nucleofector Kit 

(#VPH-1001) on the Amaxa Nucleofector 2b Device (second generation) using the 

programme A-023. Nucleofection was seen to be much more efficient than standard vesicle 

mediated transfection with over 95% cells expressing the plasmid after 24h.  

2.3 Nucleic Acid Methods 

2.3.1 Sequencing plasmid DNA 

The entire sequence of cDNAs cloned into expression vectors or mutated using site-

directed mutagenesis was verified by sequencing. Standard BigDye Terminator Cycle 

Sequencing (ThermoFisher #4337455) reactions were sent out for sequencing either to the 

Edinburgh Genomics (Kings Buildings, University of Edinburgh) or the sequencing facility 

at MRC Institute of Genetics and Molecular Medicine, University of Edinburgh. 
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2.3.2 RNA extraction 

ES cells were collected by trypsinisation and then centrifugation at 400g for 3 minutes. The 

pellets were resuspended directly in Trizol and incubated for a minimum of 5 minutes at 

room temperature. 200µl chloroform was then added to the mixture and it was vortexed for 

20s. Following another 5-minute incubation at room temperature, the mixture was spun 

down at 12,000g for 20 minutes at 4oC. The aqueous phase was carefully extracted and 

mixed with 500ul isopropanol, mixed and incubated at room temperature for 5 minutes. A 

subsequent spin for 10 minutes at 13,600g at 4oC left a pellet containing the RNA, which 

was washed with 70% ethanol. Finally, the pellet was resuspended in an appropriate amount 

of RNase-free water and left to solubilise at room temperature for 5 minutes. To eliminate 

the trace Trizol contaminants, the RNA was re-precipitated by adding 2.5 volumes of 

ethanol and 0.1 volume of 3M sodium acetate, pH 6.5. Following an incubation of 5 

minutes at room temperature, it was centrifuged again at 13,000g, 15 minutes. The pellet 

obtained after this was washed again with 70% ethanol as described above and the RNA 

obtained was re-solubilised in an appropriate amount of RNAse free water for 5 minutes. 

The quality and concentration were assessed using a NanoDrop 2000c spectrophotometer 

and by running the product on the gel.  

2.3.3 Quantitative real time PCR (qPCR) 

cDNAs were generated using the Thermoscript II RNase H- reverse transcriptase as per 

manufacturer’s instructions. Briefly, following annealing to a polyA primer at 65°C, 5 μg 

of total RNA was incubated with 1X Thermoscript RNAse H- reaction buffer, 10 U 

RNAsin, 10mM DTT, 1μM dNTPs mix and 200 U Thermoscript II RNAse H– Reverse 

Transcriptase. Tubes were vortexed, centrifuged briefly, and incubated at 42°C in a 

thermocycler with the heated lid at 80°C for 2 h. After heat inactivation of the reverse 

transcriptase by a 15 min incubation at 70°C, RNA was removed by incubating samples 

with 1 μL of 7 mg/ml RNAse A for 45 min at 37°C. cDNA was diluted with 90 μl of water 

and the reactions stored at -20°C. 

 For qPCR, 20 μl reactions containing 8.4 μl of appropriately diluted cDNA (normally serial 

dilutions of 5-fold), 800nM forward and reverse primers and 1x LightCyclerR 480 SYBR 

Green I Master were carried out in a 96-well LightCycler 480 Multiwell Plate. The plates 

were briefly vortexed and centrifuged. Polymerase chain reactions were carried out in a 

LightCycler 480 using the program detailed in Table 9. Primers used are listed in Table 10. 
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Expression data was analysed using LightCycler 480 Software v1.5.0.39. Primers for real-

time PCR were designed using RealTime PCR web tool 

(http://eu.idtdna.com/Scitools/Applications/RealTimePCR) with default parameters except 

for amplicon size, which was set to 100 bp minimum, 150 bp optimum and 200 bp 

maximum. The specificity of the primer pair to the target sequence was checked using 

Primer BLAST. 

 

Table 9: Thermocycling conditions for qRT-PCR  

Segment No. of cycles Temperature (oC) Duration 

1 (Initial 

Denaturation) 

1 95 5 minutes 

2 (Amplification) 45 cycles  95 10 seconds 

  55 15 seconds 

  72 20 seconds 

 

 

Table 10: qPCR primer sequences  

Gene Specie

s 

Forward Reverse 

Triml

1 

Mm TGCTTACCTGCTTTTGTCCG CTCCGTCTTCTTTCCCACTT 

Triml

2 

Mm AAAGAGATGATCGAGGCTG

AG 

TTTCTTGGGACTTCTGCAT

G 

Zfp42 Mm CACGGAGAGCTCGAAACTA

A 

CAGCCATCAAAAGGACAC

AC 

 

2.3.4 Site Directed Mutagenesis 

Human wild-type LBR-GFP and LAP2α-GFP (sourced from Roland Foisner at the Vienna 

BioCentre) were found to lose phosphorylation during exit from pluripotency. To study the 

importance of these phospho-sites in the tethering of the Rex1 locus to the periphery, 

phospho-null mutants were generated using site directed mutagenesis. LBR had two 

phospho-sites, ser-71 and ser-86, that were mutated to alanine sequentially with S71A 
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being generated first. Similarly, LAP2α has three phospho-sites, ser-66, ser-67 and ser-422. 

Serines 66 and 67 were mutated to alanine using the same primers and this was followed 

by the introduction of an alanine instead of ser-422. The primers used for mutagenesis are 

listed in Table 11 and the PCR reaction mixture in Table 12. The reaction was set up on ice 

with the components added in the same order as listed in Table 12. The thermo cycling 

conditions are listed in Table 13. 

 

Table 11: Primer sequences for site directed mutagenesis 

Protein Mouse 

phosphorylatio

n site 

Mutation Primer Sequence 

LAP2α S66, S67 S66,67A F:CGCGCTCTTCGTCAGCGGCGAAGTC

CGGGGGCC 

R:GGCCCCCGGACTTCGCCGCTGACGA

AGAGCGCG 

 S422 S422A F:GGACTTTTCTTGGAGGAGCCAGGAA

TTCAGTTTCTTG 

R:CAAGAAACTGAATTCCTGGCTCCTC

CAAGAAAAGTCC 

LBR S71 S71A F:CTGGAAGGGGCACTGGAAGTTGAGC

CACCT 

R:AGGTGGCTCAACTTCCAGTGCCCCT

TCCAG 

 S86 S86A F:CGACCAGGGGCTCGGGAGCGTGACC 

R:GGTCACGCTCCCGAGCCCCTGGTCG 

 

 

Table 12: PCR reaction mixture for site directed mutagenesis 

Component Amount per reaction (μl) 

Distilled water (dH2O) 40.5  

10× PfuUltra II reaction buffer 5.0 

dNTP mix (25 mM each dNTP) 0.5 

DNA template (25 ng/μl) 1.0 
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Primer #1 (10 μM) 1.0 

Primer #2 (10 μM) 1.0 

PfuUltra II fusion HS DNA polymerase 1.0 

Total reaction volume 50.0 

 

 

 

 

Table 13: Thermocycling conditions for mutagenesis 

Segment No. of cycles Temperature (oC) Duration 

1 (Initial 

Denaturation) 

1 95 2 minutes 

2 (Extension) 30 cycles  95 20 seconds 

  60 20 seconds 

  72 2 minutes 

3 (Final elongation) 1 72 3minutes 

 

2.3.5 Gibson assembly and Gateway cloning 

Gibson assembly, a robust exonuclease-based method to assemble DNA seamlessly in the 

intended orientation, was used to clone the NETs into a tet-ON expression construct. The 

reaction contains a 5’exonuclease to generate overhangs, a polymerase to fill in the gaps of 

the annealed single strands and a DNA ligase to seal the nicks (Gibson et al. 2009). The 

NETs – NET50, TAPBPL and NET39 – tagged with either GFP or RFP were amplified 

from Image Clones and assembled into the LR Entry vector pENTR2B2 using primers 

listed in Table 14. Primers were designed using the in-built Gibson assembly tool in 

SnapGene. 

Table 14: Primers for Gibson Assembly to insert indicated NETs into LR entry vector 

Insert Primer sequence 

NET39 EGFP F: CGGAACCAATTCAGTCGACTGATGCCAGCTTCCCAGAGC 

 R:ACAAGAAAGCTGGGTCTAGATATCTTACTTGTACAGCTCGT

CCATGCC 

NET50 mRFP F: 

CCGGAACCAATTCAGTCGACTGATGAACTGGGAGCTGCTGC 
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 R: ACAAGAAAGCTGGGTCTAGATATCAGGCGCCGGTGGAG 

TAPBPL 

mRFP 

F: GCCGGAACCAATTCAGTCGACTGATGGGCACACAGGAGGG 

 R:ACAAGAAAGCTGGGTCTAGATATCAGGCGCCGGTGGAG  

Figure 9: Cloning strategy to generate inducible stable cell lines expressing tissue-specific NETs. 

GFP/RFP tagged NET was amplified from the Image Clone and Gibson Assembly was used to ligate 

the fragment into an LR entry vector pENTR 2B2. Gateway LR cloning was then used to move the insert 

into the expression vector PB Tap-Insx2 yielding the final tet-ON expression vector for the tagged NET. 

Image generated using Snapgene.  
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For Gibson assembly, the vector backbone (pENTR 2B2) was opened up with restriction 

enzymes BamH1 and Xho1 and the digested fragment was extracted from the gel. 

Assembly reaction was set up with 75ng vector and a 3-fold excess of the insert using the 

reaction mixture stated in Table 15. Post assembly, the ligated product was transformed 

into DH5α for selection. Colony PCR and sequencing of the insert was used to screen the 

clones obtained. DNA amplified from the selected clone was then extracted and used for 

Gateway reaction.  

Table 15: Reaction mixture for Gibson Assembly 

Component Amount per reaction (µl) 

NFW 7.95 

Iso buffer 4 

Taq. Ligase (NEB #M02208S) 2 

Phusion (NEB #M0530L) 0.25 

T5 exonuclease (NEB #M0363S) 0.8 

Total volume 15 

 

Using the manufacturer’s protocol (ThermoFisher LR cloning kit), the LR reaction was 

carried out to swap the insert in to the destination/expression vector PB-Tap Insx2. A flow 

chart depicting the cloning strategy for generating the tet-ON NET39 expression construct 

is shown in Figure 9. Plasmids for gateway LR cloning to insert gene of interest were a gift 

from Keisuke Kaji at the Scottish Centre for Regenerative Medicine, University of 

Edinburgh.  

2.3.6 Probe labelling for FISH 

Nick Translation: BACs and Fosmids are large molecules of DNA containing ~200kb and 

~70kb inserts respectively. Such large molecules of DNA were labelled with Biotin or 

Digoxigenin using Nick Translation reaction, the components of which are described in 

Table 16. The reaction was incubated at 16oC for 90 minutes followed by a heat inactivation 

at 75oC for 10 minutes. 3µl of the reaction was run on an agarose gel to check that the smear 

was centred around 200-500bp. The rest was made up to 100µl with nuclease free water 

and purified through the Quick Spin column for radiolabelled DNA Sephadex G-50 (Roche 
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#11273973001) columns using the manufacturer instructions. Typically, 5µl of this 

labelled probe was used per slide for FISH. 

Table 16: Reaction mixture for Nick Translation 

Component Amount per reaction 

10X NTS 4µl 

0.5mM dATP (Promega) 5µl 

0.5mM dCTP (Promega) 5µl 

0.5mM dGTP (Promega) 5µl 

Bio-16-dUTP 

(if using digoxigenin then dig-11-dUTP 

1.5ul + 0.5mM dTTP 2ul) 

Roche #11093070910 (Biotin) 

Roche #11093088910 (Dig) 

5µl 

Template DNA (BAC/Fosmid) 10µl (3-4µg DNA)  

DNase 1 (dilute 1:30 in ice cold NFW and 

use this) (Roche #04716728001) 

1µl of the diluted enzyme 

DNA polymerase 1 (Invitrogen #18010-

017) 

1µl 

NFW 4µl 

 

End labelling: Probes generated for RNA-FISH were 20-mers and are too small to be 

labelled by nick translation. Therefore, they were end labelled using terminal 

deoxynucleotidyl transferase (TdT) which catalyses the addition of deoxynucleotides to the 

3’hydroxul terminus of DNA molecules. The reaction was set up using the mixture stated 

in Table 17 and incubated at 37oC for 60 minutes. Addition of 2.5µl of 0.2M EDTA was 

used to stop the reaction. All the 25 oligos for RNA-FISH were individually labelled and 

the reactions were pooled in the end. The labelled probes were purified by addition of equal 

volume of phenol: chloroform: isoamyl alcohol, vigorous mixing and centrifugation at 

13,600 rpm for 5 minutes. The aqueous layer was extracted and used directly for 

hybridisation. 100µl of the labelled probe mix was used per slide.  
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Table 17: Reaction mixture for End Labelling. 

Component Volume (µl) 

NFW 25 

5X TdT reaction buffer 10 

Oligo (1uM) 2 

Biotin 11-UTP (Thermo #R0081, diluted 

to 5uM) 

5 

Diluted TdT (Thermo #EP0161, diluted to 

1.5U/ul) 

5 

Total volume 50 

 

2.4 Microscopy Methods 

2.4.1 Immunofluorescence 

Adherent cells were grown on fibronectin-coated coverslips and washed in PBS to remove 

cellular debris and remaining serum prior to fixation with 4% para-formaldehyde (PFA), 

1X PBS for 10 minutes at room temperature. Following fixation cells were washed twice 

in PBS. Cells were then permeabilised for 10 min with 0.2% Triton-X-100 in PBS and then 

washed 3 times in PBS. Coverslips were blocked in 4% bovine serum albumin (BSA), 1X 

PBS for 20 min at RT and subsequently incubated with the appropriate primary antibody 

(dilutions listed in Table 2). Following 3 washes in PBS, coverslips were incubated with 

goat secondary antibodies conjugated with either Alexa Fluor® dyes (summarised in Table 

3) and 4,6- iamidino-2 phenylindole, dihydrochloride (DAPI) at a final concentration of 2 

μg/ml (1:2,000). Coverslips were then extensively washed in PBS multiple times over the 

course of 15 minutes and then mounted on slides with Fluoromount G (EM Sciences). 

 

2.4.2 Fluorescence in situ Hybridisation (FISH) 

Sample Prep: For 3D FISH, cells were grown on fibronectin coated slides, fixed with 4% 

PFA for 10 minutes, permeabilised with 0.5% Triton-X-100 for 20 minutes. For 2D FISH 

and RNA-FISH, cells were trypsinised, neutralised and collected by centrifugation at 400g, 

3 minutes. They were then treated with 70mM KCl for 7 minutes at 37oC and fixed with 

3:1 methanol: acetic acid. The cells were then dropped on slides from approximately 30-

40cm above.  
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Probe preparation: For DNA-FISH, appropriate amount of labelled BAC/Fosmid was 

dispensed along with 5µl Cot1 DNA per slide and 1µl salmon sperm DNA per slide. 3 

volumes of Ethanol and 0.1 volume of sodium acetate pH 5.2 were added to the tube to 

precipitate the DNA overnight at 4oC. The next morning, the probe was centrifuges at 

13,600rpm for 30 minutes to precipitate the probe. The pellet was resuspended in 50µl 

hybridisation buffer per slide at 37oC.  

For RNA-FISH, end labelled oligos were precipitated by the addition of 0.1 volume of 

sodium acetate pH 5.3, 3 volumes of ethanol and 1µg glycogen (GlycoBlue Invitrogen 

#AM9515) at 4oC overnight. The next morning, the probes were precipitated by 

centrifugation at 13,600 rpm for 30 minutes and the pellet was resuspended in the 

hybridisation buffer for RNA-FISH as mentioned in Table 1.  

DNA-FISH: Cells were pre-equilibrated in 2X SCC and treated with RNase A (100μg/ml) 

in 2X SSC at 37oC for 1 hour. Following washing in 2X SCC, cells were dehydrated with 

a 70%, 90% and 100% ethanol series. Slides were then air dried. For denaturation the slides 

were submerged into a Coplin jar containing preheated Denaturation buffer (70% 

formamide, 2X SSC, pH 7.0) for 20 minutes in a water bath. Simultaneously, the probes 

were denatured in the same conditions. After the incubation, the probes were transferred to 

37oC for pre-annealing. The slides were removed from the denaturation buffer and a second 

ethanol dehydration series was immediately performed using ice cold 70% ethanol for the 

first step followed by room temperature 90% and 100% ethanol. The slides were air dried 

again. 50µl probe in hybridisation buffer was dispensed on each slide and pre-cut clean 

strips of autoclave bags were used to cover the slides ensuring no air bubbles remained. 

Hybridisation reactions were then left to anneal at 37°C overnight in a humidified chamber. 

After incubation, the slides were washed thrice for 5 minutes each in Buffer1 at 45oC, 

followed by 3 similar washes in Buffer 2 and one final wash in Buffer 3. Samples were 

then blocked with 4% BSA, 2X SSC for 30 minutes at room temperature. Fluorophore 

conjugated Streptavidin or anti-Dig antibodies in the same blocking solution were then 

added (dilutions mentioned in Table 3) to the samples and incubated for 45 minutes at room 

temperature. Following 3 washes of five minutes each in Buffer 3, the slides were mounted 

with coverslips in Vectashield containing DAPI.  
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RNA-FISH: The slides were rinsed in 2X SSC at room temperature and washed twice in 

50% formamide, 2X SSC at 37oC. They were washed twice more in 10% formamide, 2X 

SSC at room temperature. The probes were denatured at 80oC for 20 minutes and placed 

immediately on ice. 50µl probe was dispensed per slide and these were covered with 

coverslips previously wiped and cleaned with RNase ZAP. After ensuring that the air 

bubbles had been expelled, hybridisation reactions were incubated overnight in a 

humidified chamber. The following day, slides were washed in twice for 3 minutes each in 

2X SSC at room temperature and rinsed once in 4X SSC, 0.1% Tween20. Fluorophore 

conjugated streptavidin was used for detection and here onwards the protocol follows 

exactly from the DNA-FISH protocol described above.  

2.4.3 Incucyte imaging 

Transfected cells expressing NETs were sorted using FACS (explained below) and 20,000 

cells were seeded in each well of a 12 well plate to be imaged using the Incucyte S3 Live-

cell analysis system at the Callagher lab in the MRC Institute for Genetics and Molecular 

Medicine. Phase contrast images of the cells were taken at a magnification of 20X every 3 

hours for 72 hours. The images were analysed using the Incucyte software using masks that 

detect cells and the output was generated as percentage confluence for each well for every 

time point. 

2.4.4 Alkaline Phosphatase Assay 

The tet-ON ES cell lines expressing NET50, TAPBPL and NET39 were seeded at 20000 

cells per well of a 12 well plate. Doxycycline was used at 1µg/ml to induce NET expression 

in these cells. As a control for the assay, standard E14 cells were seeded in duplicates and 

one of the two wells was subjected to LIF withdrawal for 6 days, the same duration for 

which NET expression was induced. At 6 days post induction, the alkaline phosphatase 

assay was performed using Millipore’s Alkaline Phosphatase Detection Kit (Sigma Aldrich 

#SCR004) following the instructions provided by the manufacturer.  

2.4.5 Microscopy and analysis 

Images were acquired on a Nikon TE-200 microscope using a 1.45 NA 100x objective, 

Sedat quad filter set, PIFOC Z-axis focus drive (Physik Instruments) and a Prime 95B 

camera (Photometrics) run by Metamorph image acquisition software. For 2D FISH, image 

analysis was done on the plane of focus for the alleles, which often is one plane due to how 

the sample is prepared. For deconvolution analysis for 3D FISH, Z-stacks were acquired at 
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intervals of 0.2 μm from the 1 μm above to 1 μm below the imaged nucleus. Image stacks 

were deconvolved using AutoQuant X3 (Media Cybernetics, RRID:SCR_002465) 

software. Distance from the nuclear periphery for the FISH images was measured using 

ImageJ. A minimum of 50 loci were analysed per sample. Since the data is non-parametric, 

statistical analysis was performed using Mann-Whitney test (for 2 groups) or Kruskal-

Wallis ANOVA (for comparing >2 groups). Data are presented as scatters overlaid with 

the median and interquartile range and taken as statistically significant at p<0.05. 

2.5 Fluorescence Activated Cell Sorting Methods 

2.5.1 Cell cycle analysis 

Rex1::GFP cells were subjected to 2i withdrawal for various durations over the course of 

72 hours. At the appropriate time points, cells were collected by trypsinisation and 

centrifugation at 800g, 3 minutes. They were washed with PBS once and then fixed with 

2% PFA, 5 minutes at room temperature. The cells were then stained with the cell 

permeable DNA binding dye Hoechst (diluted 1:10000) for 20 minutes at room 

temperature. The cells were then spun down at 800g, 3 minutes followed by two washes in 

PBS. Finally, the cells were resuspended in PBS and run on the FACS Aria IIu flow 

cytometer to analyse the cell cycle.  

2.5.2 Sorting and Analysis 

Sorting was used to enrich the population of transfected cells expressing tissue-specific 

Nets and for enriching the GFP+ cells in the Rex1::GFP population of cells subjected to 2i 

withdrawal. In both cases, the cells were collected by trypsinisation and following a wash 

with PBS to remove cellular debris were resuspended in complete medium with reduced 

serum (2% FBS instead of the regular 20%) since FBS interferes with sorting. The cells 

were then sorted using a four-laser FACS Aria IIu flow cytometer (Becton Dickson). The 

gating strategy is explained in Figure 29. The sorted population was collected in 100% FBS 

and either plated in gelatin coated plates containing complete medium or used for further 

experiments.  

2.6 Protein Extraction and Western Blotting 

Protein samples for western blotting were prepared from lysing equal number of cells for 

each sample directly in the standard Laemmli buffer. This was followed by sonication 

(Ultrasonic Atomizer VCX 130 ATFT for 30s at 20% amplitude with a 1s on, 1s off pulses 
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to shear the DNA. Lysates were then boiled for 10 minutes at 95oC to further denature the 

samples. Cell lysates were separated on 8-12% Tris-glycine-SDS or Bis-Tris gels. 

Subsequently the gels were transferred onto nitrocellulose membranes (Odyssey 926-

31092) by means of semidry transfer (Pierce G2 Fast Blotter ThermoFisher Scientific). 

After transfer the membrane was blocked in western blot blocking buffer (5% milk powder 

in PBS with 0.05% Tween-20) for 30 min. Subsequently, the membrane was incubated 

with the primary antibody diluted in western blot blocking buffer at the dilutions indicated 

in Table 1 for 60 min at room temperature or overnight at 4oC. Three washes in PBS, 0.05% 

Tween-20 were then followed by incubation with the secondary antibody conjugated to an 

IRDye® for 60 min at room temperature. Following 3 washes additional washes in PBS, 

0.05% Tween-20, the membranes were detected on a Li-COR Odyssey Quantitative 

Fluorescence Imager. 

2.7 Mass Spectrometry Methods 

2.7.1 Sample Preparation 

Since this study uses cell lines instead of primary cells or tissues, variability arising from 

biological replicates are less likely. Therefore, cells were collected over three different 

passages but pooled together before the samples were sent for mass spectrometry. A crude 

isolation of intact nuclei was performed using a hypotonic lysis buffer NE1 (Skene and 

Henikoff 2017), the composition for which is mentioned in Table 1. Cells from three 

different passages were collected by trypsinisation and washed with ice cold PBS. They 

were then collected by centrifugation at 600g, 3 minutes. Ten million cells were 

resuspended per ml of cold hypotonic lysis buffer supplemented with 10mM sodium 

fluoride and 10mM sodium orthovanadate (phosphatase inhibitors) and incubated on ice 

for strictly 5 minutes only. Samples were checked under the microscope to confirm that the 

isolation leaves intact nuclei and centrifuged at 600g, 3 minutes to collect the nuclear pellet. 

The pellet was very gently washed with ice cold PBS. 5% of this pellet was used for a quick 

test for checking the retention of phosphoproteins and the rest (50 million intact nuclei per 

sample) was sent for mass spectrometry to the proteomics facility at the Stowers Institute 

for Medical Research, Texas.  

2.7.2 Detection of Phosphoproteins using ProQ Diamond 

One million whole cells and the intact nuclei obtained from the same number of cells were 

lysed in equal volumes of Laemmli buffer. The denatured lysates were separated on two 
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10% Bis-tris gels. One gel was stained with Coomassie Blue to detect the total proteins and 

the other was stained with Pro-Q Diamond Phosphoprotein Gel Stain (ThermoFisher 

Scientific) using the manufacturer protocol. ProQ Diamond stain selectively stains 

phosphoproteins in acrylamide gels, without the need for blotting and is compatible with 

mass spectrometry, allowing analysis of phosphorylation state of entire proteomes.  

2.7.3 Detection of phosphoproteins by mass spectrometry 

Samples were digested using 0.1µg/µl Trypsin (Promega #V5111) and processed for 

phosphopeptide enrichment using the Sequential enrichment from Metal Oxide Affinity 

Chromatography (SMOAC) approach (ThermoScientific). Both Fe-NTA with iron-chelate 

resin spin columns (Thermo Scitentific#A32992) and TiO spin tips (ThermoScientific 

#A32993) were used to enrich complementary fractions of phosphopeptides from the 

trypsin digested samples. The samples were split into 5 technical replicates and run on 

MudPIT DDA| Fe-NTA – Velos Orbitrap. The MS/MS datasets were searched against M. 

musculus protein sequences downloaded from NCBI (released on 2018.06.27). Peptide 

level information was assembled into protein level information using DTASelect v1.9 

(Tabb, McDonald, and Yates 2002). Peptides and proteins detected were compared using 

CONTRAST. Combining all runs, proteins had to be detected by at least 2 peptides. 

Proteins that were subsets of others were removed using the parsimony option in 

DTASelect on the proteins detected after merging all runs. Proteins that were identified by 

the same set of peptides (including at least one peptide unique to such protein group to 

distinguish between isoforms) were grouped together, and one accession number was 

arbitrarily considered as representative of each protein group. The Stowers Institute in-

house quantitative software, NSAF7(v 0.0.1), was used to create the quantitative contrast 

report on all detected peptides and non-redundant proteins identified across the different 

runs. This contrast report was compared against a reference list of NETs discovered in the 

Schirmer lab to identify the NETs that are expressed in the E14 line ES cells with and 

without LIF withdrawal. Of the ones that were expressed in both samples, those gaining or 

losing phosphorylation were of specific interest for this study. 
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Chapter 3 

Genome Organisation changes during exit from 

pluripotency 
 

Changes in genome organisation during differentiation and lineage commitment has been 

of interest to the scientific community for many years. That the organisation changes during 

differentiation has been known for over a decade and the global changes in LAD (Peric-

Hupkes et al. 2010) and TAD (Dixon et al. 2015) organisation have been mapped during 

differentiation of embryonic stem cells into various lineages. It is now known that there is 

a functional basis for the reorganisation of the genome during linage commitment such that 

genes like Pcdh9 which are only expressed in the brain, are released from the nuclear 

periphery as neuronal differentiation progresses, while other genomic loci like those 

encoding pluripotency factor Rex1 are tethered to the periphery (Figure 7). However, the 

temporal dynamics of these changes remain unknown. 

In this chapter I will address the dynamics of this reorganisation as mouse embryonic stem 

cells (ES) exit pluripotency. I will first show results to demonstrate that LIF withdrawal 

leads to exit from pluripotency and spontaneous differentiation of ES cells. I will then 

discuss how various pluripotency loci behave during differentiation and how relocation to 

and from the nuclear periphery is not the only mechanism that might control gene 

expression. The major focus of this chapter will be the study of temporal dynamics of 

genome organisation changes during exit from pluripotency. I will present evidence to 

show that the tethering of the Rex1 locus to the periphery is a common mechanism during 

ES cell exit from pluripotency but the dynamics may be cell line dependent. Finally, I will 

discuss the effects of gene position on gene expression and present a hypothesis to explain 

why the rapid relocation of the locus to the periphery might be important.  
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3.1 Rapid and reversible tethering of Rex1 to the nuclear periphery marks 

exit from pluripotency  

3.1.1 LIF withdrawal leads to exit from pluripotency 

Mouse ES cells are a good model to study early changes post exit from pluripotency. As 

explained in chapter 1, the continued propagation of ES cells in culture requires the addition 

of either 2i (a GSK3β and MEK inhibitor cocktail) and/or LIF (leukemia inhibitory factor) 

in presence of serum to activate STAT3. CHIP-seq data shows that STAT3 occupies several 

target sites across the genome, including the sites at Oct3/4, Sox2 and Nanog loci (Ho et al. 

2011), suggesting a key role for this transcription factor in maintaining the pluripotency 

network. Constitutive activation of STAT3 is also able to confer a LIF-independent self-

renewal programme (Matsuda 1999). Curiously, knockout of LIF is not detrimental to 

development, but results in sterility of female mice, due to the requirement of LIF for 

blastocyst implantation (Stewart et al. 1992). However, knockouts of the downstream 

effectors of LIF all result in either embryonic or perinatal death (reviewed by Onishi and 

Zandstra 2015). Together this seems to suggest that the in vivo roles of LIF are diverse and 

potentially can be carried out by other factors as well. Withdrawal of LIF results in 

spontaneous differentiation of ES cells into all three lineages (K. Yao et al. 2014).  

Thus, to study the changes in genome organisation during early stages of exit from 

pluripotency, standard E14Tg2A mouse ES cells were cultured in presence of recombinant 

LIF in a feeder-free manner. These cells, when subjected to LIF withdrawal, exit 

pluripotency and eventually form Embryoid Bodies (EBs), which can then in theory be 

differentiated into any lineage of choice with the appropriate stimuli (Figure 10A). For the 

first 24h post LIF withdrawal, the expression of core pluripotency factors like OCT4 and 

NANOG persists in the population as shown by western blotting. Subsequently, complete 

exit from pluripotency leading to EB formation results in a massive downregulation of these 

transcription factors so that the cells may eventually commit to defined lineages (Figure 

10B).  

Nanog is a naïve marker of pluripotency and is among the first such markers to be steadily 

downregulated during 2i withdrawal, along with Esrrb, Klf2 and Tfcp211 (Leeb et al. 
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2014). Upon 24h of LIF withdrawal, Nanog expression is asynchronously downregulated 

such that some cells retain the protein while others do not and by 48h, most cells show no 

Nanog expression (Figure 10C). This is considered to indicate that this is a driving factor 

because it parallels the well-known observation that the initial transition of cells from 

pluripotency is asynchronous (Kalkan et al. 2017). It must be noted however that the loss 

of key transcription factors such as Nanog and Klf2 is not sufficient for exit of ES cells 

from the naïve state. Although the loss of Nanog and Klf2 preceded Rex1 downregulation, 

self-renewal capacity is fully retained as long as Rex1 promoter activity is maintained 

(Kalkan and Smith 2014).  

Morphologically, the cells continue to grow in well-defined colonies, with the number of 

spontaneously differentiated flatter cells becoming more prominent in culture as cells spend 

longer in exit conditions (Figure 10D).  

 

 

 

 

 

 

 

 

Figure 10: LIF withdrawal causes exit from pluripotency. A. Schematic describing the design for 

stimulating exit from pluripotency by LIF withdrawal. Cells were grown in serum/LIF conditions for 

at least 5 passages before all experiments. For stimulating in vitro differentiation, cells were 

replated in medium lacking LIF. Replating mESCs on non-adherent dishes in medium lacking LIF 

leads to the formation of embryoid bodies over roughly 48 hours. B. Naïve transcription factors 

Oct4 and Nanog are expressed over the first 24h post LIF withdrawal but their expression is lost in 

embryoid bodies. C. As cells exit pluripotency they do so asynchronously. At 0h post LIF 

withdrawal, Nanog expression is homogeneous across the population. 24h post LIF withdrawal, 

most cells express Nanog but some cells start to lose Nanog expression and the heterogeneity in 

the population is clearer at 48h. Scale bar represents 10µm. D. Phase contrast images of cells 

subjected to LIF withdrawal for 0, 8,24, 48 and 72h. In pluripotent culture conditions, cells grow in 

well-defined colonies but exit from pluripotency is accompanied by characteristic morphological 

flattening of cells.  

 



69 

 

3.1.2 Changing gene groups identified by DamID suggest a functional consequence for 

relocation of genes 
 

One of the first genome-wide studies highlighting the changes in genome organisation 

during differentiation of ES cells came from the van Steensel lab where they performed a 

Lamin B1-DamID on ES cells (ESCs), neuronal progenitor cells (NPCs) and terminally 

differentiated astrocytes (ACs) to study which genomic regions are associated with the 

nuclear periphery in the form of LADs and how they change as lineage commitment 

progresses. They found that about 40% of the genome was composed of LADs ranging 

from about 40kb to 15Mb in size. While the genome-lamina interactions were mostly 

similar across the cell types, they found that certain genomic regions reposition to and from 

the lamina as lineage commitment progresses and this is a highly orchestrated stepwise 

reorganisation (Peric-Hupkes et al. 2010). For instance, the genomic locus encoding the 

pluripotency factor Rex1 (gene name Zfp42), containing two other neighbouring genes 

Triml1 and Triml2, repositions from the nuclear interior in ES cells to the periphery in 

differentiated cells. Analogously, the Ptn gene encoding neurite growth-promoting factor 

1 (NEGF-1) is found at the nuclear periphery in ES cells, and is released upon 

differentiation into neuronal lineages where the gene is expressed (Figure 11A and B). 

Thus, a functional basis for the relocation of genes in response to physiological stimuli and 

development was proposed to be one mechanism by which orchestration of genome 

organisation controls gene expression.  

On the other hand, not all pluripotency loci move dramatically to and from the nuclear 

periphery to regulate their transcriptional state. One example of this is the Oct4 gene, which 

is never found at the periphery even in differentiated cells (Figure 11C). While this agrees 

with previous studies reporting the absence of a role for the nuclear envelope in 

transcriptional regulation of Nanog and Oct4 by tethering mechanisms in human ES cells 

(Wiblin 2005), it is entirely possible that the regulation in human and mouse ES cells is not 

directly comparable. However, the neat repositioning of the Rex1 locus (for simplicity the 

entire locus containing genes Triml1, Triml2 and Zfp42 will be called the Rex1 locus in this 

study) provides an exemplary genomic locus to use for tracing the temporal dynamics of 

nuclear envelope mediated changes in genome organisation during lineage commitment. 
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3.1.3 Rex1 locus repositions to the nuclear periphery within an hour of LIF withdrawal 
 

To understand the temporal dynamics of Rex1 repositioning during exit, ES cells cultured 

in serum/LIF conditions were subjected to LIF withdrawal and the genomic loci encoding 

Rex1 and Ptn were labelled with BACs in a 2D DNA-FISH experiment done at various 

time points following exit. At T0, the Rex1 locus is found in the nuclear interior at a median 

distance of 3µm from the edge. Surprisingly, during the first hour of differentiation, the 

Rex1 locus repositions to the nuclear periphery.  Within 30 min the number of loci seen at 

the periphery (≤150nm from the DAPI edge) increases from 1% at T0 to 23% at T30 (Figure 

12A top, and 12B left). The Ptn locus is found at the periphery with the first quartile at 

0.3µm from the DAPI edge in cells at T0. Over the first hour of exit due to LIF withdrawal, 

the locus continues to remain at the periphery with insignificant shifts in the median values 

(Figure 12A bottom, and 12B right).  

Figure 11: DamID traces for the genomic loci studied here. LaminB1 DamID data shown over three 

stages of lineage commitment – pluripotent mouse ES cells (ESCs), neural progenitor cells (NPCs) 

and terminally differentiated astrocytes (ACs). A. The Rex1 genomic locus containing genes Triml1, 

Triml2 and Zfp42 repositions from the nuclear interior to the periphery in differentiated cells. B. The 

Ptn gene is found at the nuclear periphery in ESCs and moves to the nuclear interior as cells 

differentiate. C. The Pou5f1 gene that encodes Oct4 remains in the nuclear interior in all three cell 

types. DamID data generated by Peric-Hupkes et al., 2010 is displayed using IGV. 
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As it has been argued that the results obtained from 2D FISH are as reliable as those from 

3D FISH, we elected to see if our results could be replicated by 3D FISH. As background, 

Figure 12: The Rex1 locus rapid repositions during exit. A. Representative 2D FISH images 

showing the Rex1 and Ptn locus positions in nuclei subjected to LIF withdrawal for 0, 10, 20, 30, 

40, 50 and 60 minutes. The white arrows indicate the loci. Scale bars represent 10µm. B. 

Quantitation of distance from nuclear periphery for FISH images shown in A. The Rex1 locus 

repositions from the nuclear interior to the periphery within an hour after LIF withdrawal while the 

Ptn locus is retained at the periphery in this time frame. **p<0.01, ****p<0.0001, ns p>0.05. C. 

Representative image planes with the alleles in a 3D FISH for Rex1 in cells subjected to LIF 

withdrawal for 2h (left) and quantitation for distance from periphery showing scatters overlaid with 

median and interquartile range (right). Scale bar represents 10µm and **** p<0.0001.  D. 

Representative 2D Rex1 FISH images for cells subjected to trypsinisation and re-plated in 

serum/LIF culture conditions for 8h (left) and quantitation for distance from periphery (right). Ns 

p>0.05, scale bar represents 10µm 
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for 2D distance measurements, analysis is done either on single images selected by a 

representative slice or generated by maximal intensity projections. While the vertical 

distance information is lost in this process, this greatly simplifies image processing steps 

and reduces the computational resources needed for the analysis. 3D measurements provide 

the vertical distance information but this is also subject to lower resolution in the z-axis and 

optical aberrations. In a recent study from the Misteli lab, they compared the suitability of 

2D versus 3D distance measurements in the analysis of various features of spatial genome 

organisation. They found a high degree of agreement between 2D and 3D analysis, with 

higher convergence of measurements as the interrogated distance increases (Finn et al. 

2017). In other words, for studies such as this one, where the locus travels a median distance 

of almost ~2µm, 2D and 3D measurements would expectedly reveal similar results. 

However, for studies looking at loci separated by very small distances say gene-enhancer 

interactions, 3D measurements would more accurately reflect the changes. 

While 3D distance measurements are more accurate than 2D measurements these are 

subject to noise in the z-axis due to the aberrations mentioned above, which can be 

ameliorated only by sampling at much higher frequency in z, which in turn requires greater 

computational power for both imaging and analysis. Thus, they concluded that for 

comparing distances between cells to obtain trends, especially when the repositioning is as 

dramatic as a movement to and from the periphery, 2D distance measurements are as 

suitable as 3D measurements. As a confirmation of this, Rex1 repositioning was also 

confirmed in a 3D FISH experiment. As anticipated, the locus repositions to the nuclear 

periphery 2h post LIF withdrawal. At T0, the locus is found at a median distance of 2.3µm 

and the first quartile is at 1.6µm from the nuclear periphery i.e. 25% of the loci closest to 

the periphery are ≤1.6µm from the DAPI edge. At T2, most data points cluster neatly 

around the median value of 0.7µm from the periphery. The first quartile is at 0.5µm i.e. 

25% of the datapoints are found ≤500nm from the DAPI edge and 10% of the loci are 

within 200nm from the nuclear periphery (Figure 12C). Since the results of 2D and 3D 

FISH agree well with each other, for simplicity, most of the FISH done in this study was 

analysed in 2D. 

Since LIF withdrawal for the formation of EBs during in vitro differentiation requires the 

cells cultured in serum/LIF culture conditions, to be trypsinised and replated into medium 

without LIF and left for aggregation, it needed to be confirmed that the repositioning of the 
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locus was due to LIF withdrawal and not due to the replating process. Trypsinisation rounds 

up cells and nuclei which could potentially alter genome organisation, though this is never 

been experimentally tested or demonstrated. Therefore, the cells were trypsinised and 

replated in complete medium containing LIF and DNA-FISH was used to trace the Rex1 

locus. It was found that the locus remains at the nuclear interior even after 8h of replating 

(Figure 12D) suggesting that the repositioning of the Rex1 locus is a characteristic event of 

exit from pluripotency. 

 

3.1.4 Rex1 repositioning is reversible during the early stages of exit 

 

The asynchronous loss of REX1 expression marks a progression in pluripotent status that 

precedes a decline in classical markers like OCT4. However, for as long as cells continue 

to express REX1, the cells retain the ability to regain ground state pluripotency (Kalkan 

and Smith 2014; Kalkan et al. 2017). Thus, during the ES cell entry into differentiation, 

there is a substantial interval of about 24h or longer between the loss of naïve pluripotency 

and the manifestation of differentiation. During this interval many changes are seemingly 

reversible (A. Smith 2017). To test if Rex1 repositioning was also similarly reversible, 

when cells were subject to LIF withdrawal for 2h and the medium was re-supplemented 

with LIF for an additional 2h. The initial recruitment of the locus to the periphery upon LIF 

withdrawal was abolished when LIF was re-supplemented, confirming both, that the 

repositioning observed is indeed LIF dependent and also that this tethering is reversible 

during the first 2h of exit (Figure 13). Such rapid reversible changes in genome organisation 

have not been described previously during exit. It suggests that the tethering of this locus 

to the periphery is of importance and perhaps one of the earliest events that sets the stage 

for departure from ground state pluripotency.  

When cells are maintained in serum/LIF conditions, the Rex1 locus is found anywhere 

between 0.5 to 6µm from the nuclear edge with a median value of about 3µm in a 

population of cells (Figure 12B, T0). As cells exit pluripotency due to LIF withdrawal for 

an hour, the scatter of the data is between 0.5µm to 4µm, with most datapoints clustering 

towards the X-axis indicating a recruitment to the periphery with a median value of ~1.8µm 

distance from the nuclear edge (Figure 12A and B). This represents an asynchronous 

recruitment of the Rex1 locus in different cells and could also be attributed to the 
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heterogeneity in the population. To eliminate the possibility that the heterogeneity of the 

population contributes to the scatter in the datapoints, the recruitment of the locus was 

tested during exit set up by 2i withdrawal, where the heterogeneity is considered minimal. 

 

 

 

 

 

 

 
 

 

3.1.5 2i withdrawal stimulates Rex1 repositioning 
 

ES cells grown under serum/LIF conditions are morphologically different from when they 

are grown in 2i/LIF conditions. In serum/LIF, ES cells grow in colonies with well-defined 

boundaries with rare cases of flatter cells seen at the edges. In 2i/LIF conditions, the cells 

grow as uniform near-spherical adherent clusters and are less spread out (Figure 14A). 

During exit, the Rex1 locus moved from a median value of about 2µm to 0.5µm with 20% 

of the loci found ≤300nm from the nuclear edge and three quartiles of the data points under 

1.4µm from the edge. However even at T0, the scatter of the datapoints reveals that the 

locus resides in a range of 0.25µm to 6µm from the periphery in the various different nuclei 

Figure 13: Rex1 tethering is LIF dependent and reversible. Quantitation of distance of the Rex1 

locus from the periphery in cells subjected to exit by LIF withdrawal (LIF release) for 2h and then 

re-supplemented with LIF (LIF addition) for 2h (top). ***p<0.001, ns p>0.05. Re-introducing LIF in 

the medium leads to the locus being released from the periphery.  Representative FISH images 

(bottom), scale bar is 10µm.  
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scored, which is similar to when cells are cultured in serum/LIF (Figure 12A, T0). Upon 

exit (Figure 14B, T2), the broader range is similar with the most interior locus scored at 

~6µm from the edge but the one closest to the periphery is 0.1µm away. However, the case 

of 2i withdrawal, most data points cluster towards the X-axis showing a strong 

repositioning phenotype (Figure 14B, T2).  

 

 

 

 

 

 

 

 

 

3.1.6 Rapid repositioning of the Rex1 locus may depend on actin-myosin motor 

proteins 
 

Nuclear actin was long described to be the result of thermodynamic wandering. However, 

it is now known that nuclear actin does not simply result from diffusion but has key roles 

in regulating many nuclear functions. And the same holds true for nuclear myosin, 

Figure 14: Rex1 repositioning is seen in 2i withdrawal induced exit. A. Phase contrast images of 

cells grown in serum/LIF and 2i/LIF culture conditions. In both conditions pluripotent cells grow in 

well-defined colonies but the population is more homogeneous in 2i/LIF conditions with fewer 

spontaneously differentiated cells seen at the colony edges. Scale bar is 100µm. B. Representative 

FISH images for Rex1 in cells subjected to 2i withdrawal for 2h (left) and quantitation of distance 

from periphery (right). The locus repositions from nuclear interior to the periphery in this time frame. 

****p<0.0001. 
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specifically myosin I (NM1) (Pederson and Aebi 2002). The recruitment of target loci 

towards relatively stably positioned Cajal bodies is inhibited in presence of a dominant-

negative mutant of beta-actin, showing a key role for nuclear actin in facilitating long range 

chromatin movements (Dundr et al. 2007). Using drugs that inhibit actin polymerization or 

myosin function, it was shown that both actin and NM1 act in concert to promote RNA 

polymerase I transcription (J. Ye et al. 2008). A similar approach using drugs to prevent 

actin polymerisation and inhibit NM1 function has been used previously to show the 

dependence of rapid single gene and whole chromosome movements on actin 

polymerisation and NM1 activity (Mehta et al. 2010; Pradhan, Nallappa, and Sengupta 

2020). 

To test if the rapid recruitment of Rex1 to the nuclear periphery depends on actin 

polymerisation, ES cells were treated with Latrunculin, which sequesters free actin 

monomers or Jasplakinolide, which stabilises F-actin and prevents its depolymerisation, 

before subjecting them to LIF withdrawal for 2h. In both cases, Rex1 repositioning fails to 

occur (Figure 15A). Similarly, when cells were treated with butanedione monoxime 

(BDM), which is a non-selective myosin ATPase inhibitor, Rex1 failed to relocate to the 

nuclear periphery upon LIF withdrawal (Figure 15B). Together this suggests that actin 

polymerisation and myosin functions are important for the relocation of the locus to the 

nuclear periphery during exit.  

It must be noted, however, that treating whole cells with inhibitors for actin polymerisation 

or myosin function can have a wide spectrum of effects. Thus, while these experiments are 

consistent with the dependence of the rapid relocation of this locus on motor proteins, it 

remains possible that this is an effect of the drugs treatment causing a complete freeze-

down of transport machinery. However, while the effects of one drug alone may be due to 

off target or secondary effects, that both Jasplakinolide and Latrunculin treatment should 

show the same effects strengthens the possibility that actin polymerisation indeed has a role 

in Rex1 repositioning. Classical ways to address this question would either involve 

depletion of the protein using a knockdown or knockout approach, microscopy or in vitro 

methods, which come with their own caveats. While the knockout of β-actin in mice results 

in embryonic lethality (Tondeleir et al. 2012), conventional in vitro depletion experiments 

for proteins with such widespread functions could also be ineffective as that would most 

likely lead to cell death and/or additional phenotypes such as inhibition of differentiation. 
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Therefore, using chemical ways to inhibit motor protein function, especially when 

confirmed using more than one drugs, yielded strong data to support our hypothesis that 

rapid relocations of genomic loci may be more targeted and depend on the nucleoskeleton. 

 

 

 

 

 

 

 

 

 

3.1.7 Temporal dynamics for Rex1 repositioning are cell line dependent 
 

E14Tg2a cells have been widely used for a number of studies on pluripotency, exit and in 

vitro differentiation. This male mouse ES cell line was derived from mouse strain 129/Ola 

inner cell mass, isolated by blastocyst trypsinisation. The rapid repositioning of Rex1 is an 

interesting observation and to establish whether this is unique to exit of E14Tg2a cells or 

whether it is a general mechanism that takes place during the exit of other stem cell lines 

as well, the experiments were also carried out in CGR8 ES cells, which is a germ-line 

competent cell line, also established from the inner cell mass of a 3.5 day male pre-

Figure 15: Rex1 repositioning depends on motor proteins. A. Quantitation for distance of Rex1 from 

the periphery (top) in cells subjected to LIF withdrawal after 1µm Latrunculin A or 1µm Jasplakinolide 

treatment, inhibitors of actin polymerisation. Inhibiting actin polymerisation prevents locus 

repositioning to the periphery. ***p<0.001, ns p>0.05. Representative FISH images (bottom), scale 

bar is 10µm. B. Quantitation for distance of Rex1 from periphery (top) in cells treated with 1mM 

BDM, a non-selective myosin ATPase inhibitor, before they are subjected to LIF withdrawal for 2h. 

BDM treatment affects locus repositioning. **p<0.01, ns p>0.05. Representative FISH images 

(bottom), scale bar is 10µm. 
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implantation mouse embryo of the 129 strain. These cells were maintained in the same 

culture conditions as E14Tg2a cells in medium containing serum/LIF and exit was induced 

by LIF withdrawal.  

 

 

 

 

 

 

 

 

 

As seen for E14Tg2a cells, CGR8 cells also undergo exit from pluripotency due to LIF 

withdrawal and the onset of differentiation is reflected by changes in colony morphology 

over 72h (Figure 16A). Just as in E14Tg2a cells, steady Oct4 expression is retained for the 

first 24h post LIF withdrawal (Figure 16B). However, when subjected to LIF withdrawal, 

while E14tg2a cells show Rex1 recruitment to the periphery within the first hour, in CGR8 

cells the relocation is observed at 6h post exit. In CGR8 cells, at T0, three quartiles of the 

Figure 16: Temporal dynamics of Rex1 repositioning are cell line dependent. A. Phase contrast 

images of CGR8 line of mouse ES cells subjected to LIF withdrawal for 0, 8, 24, 48 and 72h. 

Characteristic morphological flattening of cells observed during exit is observed upon LIF 

withdrawal. B. Naïve transcription factor Oct4 is expressed over the first 24h post LIF withdrawal. C. 

Quantitation of Rex1 distance from periphery in cells subjected to LIF withdrawal (top). The locus 

repositions 6h after LIF withdrawal. ****p<0.0001. Representative FISH images (bottom), scale bar 

is 10µm. D. Rex1 repositioning is LIF dependent and reversible in CGR8 cells. Distance from 

periphery measurements for Rex1 (top) in cells subjected to LIF withdrawal for 6h (LIF release) and 

re-supplemented with LIF for 2h (LIF addition). ****p<0.0001, ns p>0.05. Representative FISH 

images (bottom), scale bar is 10µm. 
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datapoints lie over 1.4µm from the periphery. At T2, the distribution of datapoints is similar 

to the T0 sample with only a slight shift in the median. It is only at T6 that 25% of the 

datapoints cluster below 500nm from the periphery (Figure 16C). In contrast, in E14Tg2a 

cells, within the first hour of exit, over 20% of the loci were recruited to the periphery 

(Figure 12A and B). Although the temporal dynamics of repositioning are different in the 

two cell types, the reversibility in Rex1 recruitment is consistent during the first few hours 

post exit (Figure 16D). 

 

3.1.8 Investigating effects of gene position on gene expression 
 

As discussed in Chapter 1, gene position tends to affect gene expression. Although the 

nuclear periphery is not incompatible with transcription, it largely functions as a repressive 

environment so that genes that move towards the periphery in response to a physiological 

stimulus often become repressed. That Rex1 is tethered to the nuclear periphery during in 

vitro neurogenesis has been previously shown using both DamID and FISH approaches. In 

the same study it was also shown that when pluripotent ES cells form neural progenitor 

cells, there is a downregulation in Rex1 expression (Peric-Hupkes et al. 2010). However in 

this study, neural progenitor cells were derived using a well-established protocol for ES 

cell differentiation in N2B27 medium which promotes neural fate commitment, typically 

over a 4-5 day period (Ying and Smith 2003). Similarly, REX1 downregulation during exit 

from pluripotency and subsequent lineage commitment, both in vivo and in vitro, has been 

reported in various other studies, making REX1 a marker for naïve pluripotency (Pelton et 

al. 2002; Mulas, Kalkan, and Smith 2017; Kalkan et al. 2017). However, in all these cases 

differentiation has been studied over a period of several hours to a few days. 

Since the Rex1 locus is tethered to the periphery within 2h post LIF withdrawal, I was 

interested in whether this relocation leads to repression of any of the three genes within this 

locus namely Triml1, Triml2 and Rex1. Therefore, in an attempt to answer this a qPCR 

experiment was designed to quantify Rex1 mRNA over the first few hours of exit. It is 

important to note, however, that RNA degradation itself is a mechanism to regulate gene 

expression. In bacteria, mRNA turnover is rapid with most mRNA half-lives typically 

being only 2-3 minutes, allowing the cell to respond quickly to alterations in its 

environment. In eukaryotes, however, different mRNAs are degraded at different rates such 
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that the half-lives of mRNAs in mammalian cells vary from less than 30 minutes to 

approximately 20 hours (Cooper 2000).  

 

 

 

 

 

 

 

 

A conventional qPCR experiment performed using RNA extracted from whole cell lysis 

showed no difference in gene expression for any of the three genes over the first 6h of exit 

(Figure 17A). This agrees with previous studies where Rex1 downregulation was reported 

to occur about 16h post exit induced by 2i withdrawal. In the same study, at a later stage of 

25h post 2i withdrawal, Rex1 was seen to be asynchronously downregulated (Kalkan et al. 

2017). Using whole cell lysis to extract RNA takes into account both freshly transcribed 

nuclear and longer lasting ribosomal-associated translating cytoplasmic RNA. In an 

Figure 17: Rex1 promoter activity persists for several hours after the locus repositions to the 

nuclear periphery. A. qPCR for the Triml1, Triml2 and Zfp42 (encodes Rex1) in cells subjected to 

LIF withdrawal for 0, 0.5, 1, 2, 4 and 6h. Expression was normalised over GAPDH and normalised 

values for fold change over WT is shown here. B. RNA-FISH images for Rex1 in isolated nuclei of 

negative control (NC) and cells subjected to LIF withdrawal for 0, 1, 4, 6, 8, 10 and 24h. Green dots 

represent Rex1 mRNA, blue = DAPI. At 0h post LIF withdrawal, there are several Rex1 transcripts 

and the signal goes down by 24h into exit. Scale bar = 10µm. 
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attempt to quantify only the nuclear Rex1 transcripts, RNA-FISH was performed on 

isolated nuclei. The negative control (NC) showing an example of a nucleus stained without 

hybridisation (with the RNA-FISH probes) confirms that the signal observed in the other 

samples is not due to background fluorescence. The pan-nuclear transcripts detected in ES 

cell nuclei at T0 reflect the high transcriptional activity of the locus. By 8-10h post LIF 

withdrawal, there is a marginal decrease in transcripts but by 24h, the decrease in signal is 

massive (Figure 17B), confirming a transcriptional repression of the locus albeit much 

longer after tethering. 

 

3.1.9 Monitoring Rex1 promoter activity during exit 

It is not entirely surprising that a genomic locus that is being tethered to the periphery would 

not immediately change its transcriptional activity as other studies have shown that gene 

repositioning acts in concert with other factors (Robson et al. 2016). The results from qPCR 

and RNA-FISH use transcripts as a read-out. As mentioned above, mechanisms like RNA 

turnover affect such read-outs. In other words, the results from these experiments confirm 

that the transcripts are retained up to ~24h post LIF withdrawal, but without knowing the 

turnover rates in these particular cells under these particular conditions, it is not possible to 

determine from these results whether the promoter is indeed active during this entire period.  

To study the loss of naïve identity and track individual cells in their transition to formative 

pluripotency, a knock-in of destabilised GFP to the Rex1 locus was generated by the Smith 

lab (Kalkan et al. 2017). This Rex1::GFPd2 cell line is an ideal system to monitor the 

promoter activity as the cells exit pluripotency, as the half-life of this destabilised GFP is 

~2h. These cells have been used in detailed studies tracking the transition from ground state 

pluripotency by the Smith lab. It is now known that up to 16h after 2i withdrawal, the cells 

remain uniformly GFP-positive and can revert to self-renewal efficiently. It is also known 

that by 25h GFP expression profile is heterogeneous and that the newly formed GFP-low 

cells can respond to stimuli inducing the formation of the three embryonic germ layers 

(Kalkan et al. 2017; Mulas, Kalkan, and Smith 2017). These results suggest that the Rex1 

promoter does indeed remain active for several hours post 2i withdrawal.  

Rex1::GFPd2 cells were cultured in 2i/LIF conditions and subjected to 2i withdrawal for 

72h. In agreement with the results from the Smith lab, the population is homogenously 

GFP-positive up to 22h post 2i withdrawal. At 48h, newly formed GFP-negative cells are 
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detected and finally by 72h post 2i withdrawal, the population mostly consists of GFP-

negative cells (Figure 18A). The exit from pluripotency is also reflected in cell cycle 

dynamics. Rex1::GFPd2 cells cultured in 2i/LIF show a large number of cells in S and 

G2/M stages of the cell cycle. This shifts slightly by 22h post 2i withdrawal where the 

histogram shows a marginal decrease in the G2/M population. By 72h, most cells are found 

in the G1 (Figure 18B).  

 

 

 

 

 

 

 

 

 

Cell cycle and the mechanisms required for executing cell fate decisions are intricately 

linked. Pluripotent mouse ESCs have very short G1 phase, which nearly doubles during 

neural stem cell differentiation (Roccio et al. 2013). In both human and mouse ES cells, 

longer G1 phases typically correlate with pluripotency exit and initiation of differentiation 

(Calder et al. 2013; Coronado et al. 2013; Soufi and Dalton 2016). In fact, in human ES 

cells, G1 phase cells have an increased susceptibility to differentiate compared to the 

equivalent S or G2 phase cells (Sela et al. 2012). The precise mechanism behind the 

importance of G1 phase in controlling cell fate decisions has yet to be determined but 

Figure 18: Rex1 promoter activity measured in Rex1::GFPd2 cells.  A. Rex1::GFPd2 cells 

generated by the Smith lab (Kalkan et al., 2017) were subjected to 2i withdrawal for 0, 2, 16, 22, 48 

and 72h. GFP expression is indicative of an active promoter. Histogram overlays for GFP signal in 

the samples is shown here. The cells homogeneously express GFP up to 22h post LIF withdrawal. 

At 48h the population is heterogeneous for GFP expression, which is almost entirely lost by 72h 

post 2i withdrawal. This experiment reproduces the results of Kalkan et al., 2017. B. Rex1::GFPd2 

cells subjected to 2i withdrawal for 0, 22 and 72h were stained with Hoechst and analysed for cell 

cycle based on DNA content. At 0h and 22h post 2i withdrawal, most cells are actively cycling and 

a high percentage of these are found in S and G2/M. 72h into exit, there is a very high percentage 

of cells in G0/G1 stage of the cell cycle indicating spontaneous differentiation. 
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several hypotheses have been put forth. The complement of transcription factors present in 

the G1 phase may yield in higher responsiveness to differentiation cues. The G1 phase may 

also have a more permissive chromatin state, both in terms of higher order genome 

organisation and epigenetic modifications to allow a cell to respond specifically to certain 

stimuli (reviewed by Hardwick and Philpott 2014). 

Since the Rex1::GFPd2 cells come from a specific subclone of E14tg2a and, to my 

knowledge, have not been used for genome organisation studies, it was of interest to me to 

establish whether these cells also show a rapid relocation of the Rex1 locus as seen in E14 

and CGR8 cells. FISH for the Rex1 locus reveals a repositioning from the interior to the 

periphery by 2h, with 50% of the loci found ≤500nm from the DAPI edge. Thus, these cells 

resemble the E14 parent line in the repositioning phenotype for Rex1 (Figure 19). Since the 

half-life of this destabilised GFP is ~2h, the continued maintenance of promoter activity 

reflected by GFP expression in these cells (Figure 18A) is a better measure of 

transcriptional output compared to the qRT-PCR and RNA FISH experiments described in 

the previous section. 

 

 

 

 

 

 

 

Figure 19: Rex1 locus rapidly repositions to the periphery in Rex1::GFPd2 cells during exit. 

Distance from periphery measurements for Rex1 in the Rex1::GFPd2 cells subjected to 2i 

withdrawal for 2h (top). ****p<0.0001. FISH was done in 3D and representative image planes with 

the Rex1 allele (green) are shown in the bottom panel. Scale bar is 10µm. 
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Taken together, these results suggest that the rapid movement of the Rex1 locus to the 

nuclear periphery does not lead to an immediate transcriptional shut down. If there are 

minor differences in transcriptional activity due to steric effects, the changes are minimal 

and below the detection threshold of the experiments presented here.  

Considering how quickly the gene relocates to the periphery, it is also evident that it is one 

of the first events determining the transition from naïve to a formative state of pluripotency. 

It is also known that while Rex1 expression is asynchronously downregulated in a 

population of ES cells exiting pluripotency, cells that retain Rex1 expression are the ones 

with the ability to self-renew when 2i/LIF is re-supplemented into the medium and the cells 

that lose Rex1 expression are perhaps those that have undergone capacitation (Kalkan et al. 

2017). It is therefore an interesting question to ask why the locus repositions so long before 

its transcriptional repression and the next section discusses a plausible hypothesis that 

might answer this question.  

 

3.1.9 The Rex1 locus may act as an enhancer 
 

While REX1 has been shown to be important in maintaining the undifferentiated state of 

human ES cells, it seems to be dispensable for mouse ES cell pluripotency based on the 

fact that Rex1-/- mice are viable and fertile.  Furthermore, Rex1 over expression fails to 

maintain pluripotency in the absence of LIF in mouse ES cells (Masui et al. 2008). Similarly 

in rats, REX1-deficient rESCs and rats were viable and apparently normal (Meek et al. 

2020).   

The results presented in the previous sections show that that the locus is tethered to the 

nuclear periphery within an hour of subjecting cells to LIF withdrawal to stimulate in vitro 

differentiation, but the promoter activity is maintained uniformly in cell populations for 

much longer leading to its asynchronous downregulation. We also know that during the 

first 24h, exit is reversible and that loss of Rex1 that marks an irreversible transition from 

naïve to formative state of pluripotency (Kalkan et al. 2017). In agreement with this, when 

LIF is re-supplemented back into the medium, the tethering phenotype of the Rex1 locus is 

quickly reversed. Though it seems that the tethering of the locus itself marks the beginning 

of the events leading to exit, the rapidity and reversibility of this event is intriguing. 

Considering these pieces of information together, it leads to the following question: 

Why is the Rex1 locus subjected to positional regulation at all? 
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One possible explanation for is that the locus potentially contains regulatory elements and 

it is the precise regulation of these that requires rapid changes in locus position. I chose to 

look at whether this locus might contain enhancers, which are canonically defined as short 

(100-1000bp) noncoding DNA sequences that drive transcription independent of their 

relative distance, location or orientation to their cognate promoters (Schaffner 2015). 

Enhancers tend to loop to and associate with adjacent genes in order to activate their 

transcription. While most of these interactions occur within a distance of ~50kb of the 

enhancer, many interactions can potentially occur at greater distances up to several 

megabases (Ong and Corces 2011; Sanyal et al. 2012). Even with the contraction in space 

provided by topologically associated domains, the distances between genes and their 

enhancers can be quite large. Several models have been proposed to facilitate such long 

range interactions including the idea that Pol II bound to upstream regulatory elements 

might move along the DNA pulling the enhancer with it to come into contact with the 

promoter or that protein chain linkers might oligomerize and facilitate loop formation 

(Furlong and Levine 2018). Interestingly, enhancers can also co-activate two different 

target genes (Fukaya, Lim, and Levine 2016).  

The 5’ end of the Rex1 gene is occupied by naïve transcription factors OCT4, NANOG and 

SOX2, thus making it a potential superenhancer, defined as a genomic locus typically 

containing a cluster of enhancers capable of acting on several different gene targets. Using 

3C, the authors also show that the superenhancer interacts with the promoter of Rex1 itself, 

thereby regulating its expression (S. Zhang et al. 2019). However, the authors do not 

discuss the other genomic loci that are potentially targeted by the superenhancer. 

The accurate and precise regulation of gene expression is key to developmental 

programming. Enhancers play a central role in orchestrating spatiotemporal precision in 

gene regulation during development. For instance, failure of enhancer activation by 

chromatin remodelling factor Brg1 leads to a failure in mesoderm induction (Alexander et 

al. 2015). During development, superenhancers which consist of clusters of enhancers that 

are densely occupied by transcription factors are often found next to genes that define cell 

identity (Whyte et al. 2013). The presence of a superenhancer in the Rex1 locus occupied 

by master transcription factors like OCT4, NANOG and SOX2, suggests the potential 

importance of this enhancer in maintaining ES cell state. Thus, it is possible that the tight 
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regulation of the superenhancer function is necessary for defining the transcriptional 

landscape for pluripotency and rapid tethering to the nuclear periphery is the regulatory 

mechanism for controlling its function. 

EnhancerAtlas is a database for identifying predicted enhancers annotated using 

information collected from eight types of experimental approaches including P300 binding 

sites, POL2 binding sites, histone modifications, transcription factor binding sites, CHIA-

PET, etc (T. Gao et al. 2016). Using this database, I identified an additional pluripotent 

state-specific predicted enhancer within the intronic element of the Rex1 gene in E14 mouse 

ES cells and in mouse induced pluripotent cells (Figure 20A). Further, Bonev et al 

identified in their HiC datasets, an ES specific interaction with an adjacent region 

(containing genes Triml1 and Triml2) which was also tested using FISH (Bonev et al. 

2017). A visualisation of the region generated using 3D genome browser (Y. Wang et al. 

2018) is shown here (Figure 20B).  

 

 

  

 

 

 

 

 

 

 

 

Figure 20: Rex1 locus might contain an enhancer. A. IGV screenshot showing the presence of a 

putative enhancer within the intronic region of the Zfp42 gene that encodes Rex1. The sequence is 

a predicted enhancer in E14 mouse ES cells (E14 mESCs) and mouse induced pluripotent stem 

cells (miPSCs) but not in embryoid bodies (EBs). The bacterial artificial chromosome (BAC) used 

for hybridisation to the Rex1 genomic locus spans the three genes and their intergenic region and 

contains the putative enhancer. B. HiC heatmap of the TAD containing the three genes Triml1, 

Triml2 and Zfp42, visualised using 3D genome browser. The HiC maps were generated by Bonev 

et al, 2017. The BAC marks the region that was probed in the FISH experiments. 
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This led to the following hypothesis illustrated in Figure 21: 

 

The loop formed by the locus into the nuclear interior allows for the interaction of the 

enhancer with its target genes, among which are Triml1 and Triml2. This interaction is 

abolished upon the tethering of the locus to the periphery. 

 

 

 

 

 

Determining the position of an enhancer is much more difficult than for a gene because 

enhancers tend to be only ~1/1000 the size of genes. This means that labelled probes to 

cover this small area will not allow for many individual probed hybridising and thus a very 

weak signal. Most commercially available probes in the form of fosmids are ~50-70kb in 

length while BACs could range from ~150-250 kb in length, which are too big to probe 

genomic distances of 15-20kb. The entire probe spanning the three genes and the intergenic 

region is a BAC of about ~200kb in length. Thus, using this BAC as a template, I generated 

PCR amplicons spanning the length of about 20kb covering each of these three genes 

individually. Ideally, I would have liked to use a probe for the predicted enhancer element 

alone but since that is under 4kb in length, the probe would not have been detectable in a 

FISH experiment. Using these probes in DNA-FISH, I sought to determine if Rex1, and 

thus potentially the embedded enhancer within it, interacted with either Triml1 or Triml2 

Figure 21: Illustration showing the hypothesis that the putative enhancer embedded (red) within the 

Rex1 gene might interact with the two other genes in the locus in ES cells when the loops extends 

into the nuclear interior (top). As cells exit pluripotency the tethering to the periphery might sterically 

inhibit this interaction (bottom).  
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and crucially, if this interaction is abolished within the first two hours of exit. By measuring 

the distance between the probes in ES cells subjected to LIF withdrawal for 2h, I found that 

while the median distance between the probes does not change for Rex1-Triml1 interaction 

(Figure 22B) the median distance for Rex1-Triml2 interaction changes from about 0.2µm 

to about 0.4µm (Figure 222C) when ES cells are subjected to LIF withdrawal, suggesting 

that the Rex1-Triml2 interaction is abolished when the locus is tethered to the periphery, 

which was measured in the same experiment using the BAC for the entire locus in the same 

experiment (Figure 22A). However, this failed interaction does not result in a 

downregulation of Triml2 transcripts in the first 6h during exit (Figure 17). It would be 

interesting to follow Triml1 and Triml2 expression over a longer time course to establish 

whether the loss of gene-putative enhancer interaction leads to transcriptional 

downregulation.  

 

 

 

 

 

 

 

Similar nuclear envelope mediated regulation of enhancers has also been observed in other 

systems in the Schirmer lab such as adipogenesis and T-cell activation, where enhancer 

position within the nucleus is determined by the presence of absence of tissue specific 

nuclear envelope proteins (data not shown). Together, these results insinuate a crucial role 

for the temporal regulation of Rex1 locus position during exit from pluripotency.    

  

Figure 22: Rex1 interaction with Triml2 is abolished when the locus is tethered to the periphery. A. 

Distance from periphery measurements for the entire Rex1 locus probed with the BAC indicated in 

Figure 20A in cells subjected to LIF withdrawal for 2h. **** p<0.0001. B. Distance between probe 

pairs for Rex1 and Triml1 genes in cells subjected to LIF withdrawal for 2h. Higher distance indicates 

a lack of interaction between the genes. C. Distance between probe pairs for Rex1 and Triml2 genes 

in cells at 0 and 2h post LIF withdrawal. Higher distance between the probes at 2h post LIF 

withdrawal represents a loss of interaction between the two genes when the locus is tethered to the 

nuclear periphery. ****p<0.0001.  
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3.2 Distal tethers affect the position of Nanog locus 
One of the core pluripotency factors, Nanog was first described as a pluripotency sustaining 

factor for its ability to bypass the requirements of LIF. The ectopic overexpression of 

Nanog was sufficient to maintain self-renewal of ES cells in the absence of LIF (Chambers 

et al. 2003). Eventually it was also described as the upstream regulator of Rex1 expression 

(W. Shi et al. 2006). As a core transcription factor for pluripotency, Nanog functions to 

integrate various signalling cues to affect the transcriptional landscape of ES cells for 

appropriate response to the stimuli. Towards this end it was shown that Nanog achieves 

LIF independent self-renewal by activating the LIF responsive genes, specifically Esrrb, 

thus suggesting that the intersection of Nanog-Esrrb signalling with LIF signalling 

represents a major node for the maintenance of pluripotency (Festuccia et al. 2012). 

Recently, the molecular mechanism by which Nanog might control the transcriptional 

network was elaborated on. It was shown that Nanog drives the recruitment of other core 

transcription factors like Oct4, Sox2 and Esrrb to thousands of regulatory sites where it 

promotes chromatin accessibility by Brg1 recruitment, thus controlling the transcriptional 

network (Heurtier et al. 2019).  

 

 

 

 

 

 

During exit from pluripotency induced by 2i withdrawal, Nanog is downregulated by 9h 

into exit, earlier than Rex1 downregulation is observed (Kalkan et al. 2017). While Rex1 

expression seems to be controlled by dramatic gene position changes to and from the 

nuclear periphery, it seems to not be the case with the Nanog locus. From DamID traces 

obtained during the differentiation of ES cells along neuronal lineages, it is clear that the 

Figure 23: LaminB1 DamID traces for the Nanog locus in pluripotent ES cells (ESCs), neural 

progenitor cells (NPCs) and terminally differentiated astrocytes (ACs). The Nanog gene is found in 

the nuclear interior in pluripotent and differentiated cells. On one end it is flanked by a constitutive 

LAD (R) and on the other end, it is flanked by two facultative LADs (L1, that contains the Dppa3 

gene, and L2, which is in an intergenic region) and a constitutive LAD (L3). Data generated by Peric-

Hupkes et al., 2010 and displayed using IGV. 
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Nanog gene itself is not recruited to the nuclear periphery upon lineage commitment 

(Figure 23). In a different study comparing the position of Nanog in human ES cells and 

differentiated lymphoblasts, Nanog was never seen to be at the nuclear periphery. However, 

both its chromosome territory and the locus itself were found to be significantly closer to 

the nuclear periphery in differentiated cells (Wiblin 2005). The results presented here from 

experiments on E14tg2a mouse ES cells show a similar situation where the locus does not 

relocate entirely to the periphery but the median distance of the locus to the periphery 

decreases within the first hour of in vitro differentiation, a time window where the 

positional regulation of Nanog has not been studied before. When ES cells were subjected 

to exit from pluripotency by LIF withdrawal, within the first hour, the Nanog locus moved 

from a median distance of 3.4µm to 2.5µm from the periphery. Less than 2% loci are found 

≤500nm from the periphery (Figure 24A and B). The movement towards the nuclear 

periphery is small but significant. 

Upon closer inspection of the genomic locus, I found that while Nanog itself is never found 

at the periphery, it is flanked on one end by a constitutive LAD (R) and on the other by two 

facultative LADs which are seen in both, neural progenitor cells (NPCs) and astrocytes 

(ACs). The facultative LAD closest to Nanog (L1) contains the Dppa3 gene, a primordial 

germ cell specific gene important for the maintenance of pluripotency and embryogenesis 

(S. Zhao et al. 2019). The second facultative LAD (L2) is found in an intergenic region 

about 250kb from the Nanog locus (Figure 23). I hypothesised that the movement of the 

Nanog locus towards the periphery could be due to distal tethers formed by the recruitment 

of either of these facultative LADs to the periphery during exit from pluripotency. 

To test this hypothesis, I subjected ES cells to LIF withdrawal for 2h and used DNA-FISH 

to look at the early recruitment of facultative LADs to the periphery. At 2h post LIF 

withdrawal, the constitutive LAD (R, for simplicity) remains at a median distance of 1µm 

from the periphery (Figure 25C) and the facultative LAD containing the Dppa3 locus (L1, 

for simplicity) remains at a median distance of 2µm from the periphery (Figure 25B). 

However, the other facultative LAD, L2, moves from a median distance of 2.5µm to 1µm 

from the periphery during this period, with 25% of the loci ≤400nm from the DAPI edge 

(Figure 25A). Thus, it is possible that this recruitment results in the Nanog gene edging 

towards the nuclear periphery.  
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Figure 24: Nanog gene moves closer to the nuclear periphery during exit. A. Representative FISH 

images for cells subjected to LIF withdrawal for 0, 10, 20, 30, 40, 50 and 60min. White arrows 

indicate the Nanog locus in Green. Blue = DAPI. Scale bar represents 10µm. B. Distance from 

periphery measurements for images shown in A. The locus shows significant movement towards 

the nuclear periphery. **p<0.01, ***p<0.001.  

 

Figure 25: Identification of the potential distal tether that might cause Nanog to move towards the 

periphery. The LADs on either ends of the Nanog gene were tested for their position in the nuclear 

interior in cells subjected to LIF withdrawal for 0 and 2h. The facultative LAD L2 repositions to the 

nuclear periphery within 2h of exit while (A: top panel shows distance measurements and bottom 

panel shows representative FISH images) while the LAD that contains Dppa3 (L1) and the 

constitutive LAD (R) do not reposition to the periphery in this time frame (B and C: distance 

measurements shown in the top panel and representative images in the bottom panel).  
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Whether this slight shift in the position of Nanog affects its microenvironment such that its 

transcriptional status is in turn affected remains to be studied. It is possible that the slight 

shift towards the periphery is enough to inhibit gene-enhancer interactions such that 

transcriptional output might be regulated. The rapid recruitment of L2 to the periphery 

within 2h post LIF withdrawal, considering it is an intergenic region, is also intriguing. It 

will be of interest to see if the region might be home to regulatory elements that might have 

a role to play in maintaining the pluripotent status of ES cells. It could also be that the 

tethering of L2 functions to change the microenvironment or the TAD structure of the 

Nanog locus itself. Towards this end, a CRISPR mediated deletion of L2 in ES cells would 

allow the study of whether the region itself has a role in the maintenance of pluripotency 

and whether its deletion leads to a change in higher order chromatin organisation around 

the Nanog locus. Genome organisation is conventionally studied in a gene-centric manner. 

However, less than one percent of the genome is made up of protein coding regions. 

Intergenic regions house several important regulatory elements and their importance in 

maintaining the physiological state of cells is now gaining prominence (Lupiáñez et al. 

2015). The nuclear envelope is a major tethering node and with its diversity and tissue 

specificity, has the unique ability to preferentially tether different parts of the genome in a 

cell state specific fashion. A previous study from the Schirmer lab revealed how the 

constrained release of enhancers and genes from the nuclear lamina facilitated their 

interaction and thus allowed gene expression during T cell activation, thus illustrating a 

case where the nuclear envelope played a regulatory role in controlling the enhancer 

activity (Robson et al. 2017b). Thus, investigating the differences in nuclear envelope 

composition will potentially reveal specific tethering mechanisms for not just target genes, 

but also other regulatory elements like microRNAs, enhancers and insulators. 

3.3 Discussion 
 

In this chapter, I have demonstrated the temporal dynamics of changes in genome 

organisation during exit from pluripotency. I have described a simple model to study exit 

from pluripotency using LIF withdrawal. Using this model, I have demonstrated the 

relocation of the Rex1 locus, containing genes Zfp42/Rex1, Trim1 and Triml2, to the nuclear 

periphery within an hour of LIF withdrawal. This method of studying in vitro 

differentiation is different from how exit is studied in the Smith lab in that I use LIF 

withdrawal to stimulate in vitro differentiation whereas they use 2i withdrawal. The two 
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culture conditions are different and one downside of using serum/LIF cultures is that the 

starting population is heterogeneous. However, I replicated the results in cells cultured in 

2i/LIF medium and have shown that the rapid repositioning of the locus is conserved in 

both types of exit i.e. one stimulated by withdrawing LIF in serum/LIF cultures and one 

stimulated by withdrawing 2i in the 2i/LIF cultures. Further, using Rex1::GFPd2 cells, the 

Smith lab demonstrated the reversible state in exit during the first 16-25h following 2i 

withdrawal. Similarly, in my experiments, I find that Rex1 repositioning is LIF dependent 

and is reversible at least in the first 2h following LIF withdrawal. It would be interesting to 

trace the time beyond which this reversibility is lost.  

Intriguingly, while the repositioning itself is observed in CGR8 ES cells as in E14tg2a ES 

cells, the temporal dynamics of repositioning are different with the locus showing a delayed 

recruitment to the nuclear periphery in CGR8 cells. There are no morphological differences 

observed or reported between E14 and CGR8 cells. Individual studies on pluripotency and 

differentiation done on either E14 or CGR8 cells, show that both cell types are pluripotent 

and express similar loss or gain of markers during differentiation. However, the various 

cellular processes occurring during exit from pluripotency have not been directly compared 

between the two cell lines. Some studies show minor differences between the two cell lines. 

For instance, in a study comparing the regulation of serine/threonine kinases Pim1 and 

Pim3 by LIF, it was observed that the relative expression of Pim1 and Pim3 measured by 

RT-PCR was much higher when E14 cells were subjected to LIF release for 24h followed 

by LIF addition for 1h, as compared to CGR8 cells subjected to the same conditions (Aksoy 

et al. 2007). In another instance, both E14 and CGR8 cells were reported to express toll 

like receptor (TLR) 2 and not TLR4 but the FACS profiles show much higher signal 

intensity in CGR8 cells. In the same study, the effects of LPS treatment are much more 

detrimental in CGR8 cells compared to E14 cells, and the rescue following antibody 

treatment is also more significant in CGR8 cells (Taylor et al. 2010). These two examples 

provide some evidence suggesting that while the mechanisms and cellular responses to 

various treatments are largely similar between the different ES cell lines, there could be 

minor differences in expression levels of various individual components, including 

transcripts and proteins between the cell lines in spite of them being generated from the 

same parent mouse strain.  
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Unravelling the tethering mechanism would ideally require capturing actin polymerisation 

around the locus during Rex1 relocation. But capturing this polymerisation with a classical 

antibody approach or a tagged protein approach for live cell imaging may prove difficult 

considering signal intensity from cytoplasmic actin would be way stronger than that from 

nuclear actin, thereby making it difficult to study the nuclear polymerisation process 

closely. Pull-down approaches might be one way to study the direct association of the locus 

with nuclear actin or myosin but given the rapidity of relocation, it might be tricky to find 

an intermediate time during this relocation when the locus might be physically associated 

with the motor proteins. Also, considering the asynchronous recruitment of the locus in the 

population, pull-down experiments done over whole populations of cells might not provide 

indisputable evidence. Finally, in vitro approaches to study actin polymerisation or NM1 

activity will prevent the simultaneous study of Rex1 recruitment to the nuclear periphery. 

Thus, whether actin polymerisation or NM1 function drive the recruitment is a difficult 

question to study using any of the classical approaches used in biology. However, using 

inhibitors to prevent motor protein functions points to yet another scenario where nuclear 

actin and myosin have crucial functions. 

The inner ‘nucleoskeleton’ is now generating interest for its proposed roles in genome 

organisation and gene regulation in cell differentiation and development (Xie and 

Percipalle 2018). Accumulating evidence demonstrates the importance of nuclear actin in 

differentiation. For instance, cytochalasin D treatment leads to rapid accumulation of 

nuclear actin and promotes the differentiation of mesenchymal stem cells into osteogenic 

lineages (Sen et al. 2015). During the differentiation of HL-60 cells into macrophages, actin 

translocation to the nucleus leads to the transcription of macrophage related genes (Xu et 

al. 2010). The nuclear β-actin pool significantly contributes to neuronal development by 

regulating genome organisation and activation of neuronal programs during neurogenesis 

(Xie et al. 2018). Interestingly, nuclear actin levels also affect gene expression. 

Manipulating the nuclear pool of actin by introducing a construct containing actin-NLS 

leads to gene activation in HeLa cells (Yamazaki, Yamamoto, and Harata 2015) while such 

overexpression in HaCaT keratinocytes leads to the repression of adhesive and cytoskeletal 

genes (Sharili et al. 2016). Nuclear actin has been shown to be closely associated with 

several chromatin remodelling complexes (Xie et al. 2020) and therefore, it is not surprising 

that it plays such key roles in orchestrating genome organisation. While several studies 
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indicate the role of motor proteins in orchestrating local genome organisation changes, it is 

yet to be elucidated if these proteins might have a role to play in establishing higher order 

chromatin organisation during development and differentiation. 

Considering the recruitment of Rex1 happens within the first two hours of LIF withdrawal 

and both its mRNA and protein continue to be detected until much later, the alternative 

hypothesis for a role of the locus as an enhancer was investigated. I found that the intronic 

sequence of Rex1 has a predicted enhancer and it and interacts with Triml2 in ES cells. 

Upon tethering to the periphery this interaction is abolished. Thus, I postulate that the 

enhancer could have several other target genes in ES cells and it is this activity that must 

be tightly regulated to facilitate exit from pluripotency, however, this has yet to be tested 

as does the functionality of the predicted enhancer. 

Finally, I have investigated the temporal dynamics of the repositioning of Nanog locus 

towards the nuclear periphery and shown that this repositioning, while subtle, is also rapid 

and occurs within the first two hours post exit. While Nanog is never found at the nuclear 

periphery, I have demonstrated that its relocation towards the periphery depends on a distal 

tether in a non-coding region. Following on from that, I have discussed the importance of 

the nuclear envelope mediated tethers in modulating the activity of regulatory elements. 

The changes in the composition of nuclear envelope upon exit induced by LIF withdrawal 

are described in the following chapter. 
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Chapter 4 

Study of the Nuclear Envelope Proteome in ES cells 
 

Over a decade of work from the Schirmer lab has been dedicated to identifying the 

components of the nuclear envelope in different tissue types and understanding the role of 

these diverse proteins in genome organisation. Surprisingly little is known about NETs 

expressed in pluripotent cells. Some ubiquitous NE components have been looked at in 

association with differentiation. For instance, the composition of NE itself is shown to 

change with differentiation, with an increase in LaminA/C expression in association with 

cellular differentiation (Lebel et al. 1987). However, using Xenopus embryos and 

mammalian cell cultures as models, it was shown that total lamin concentration, rather than 

lamin type governs nuclear size, highlighting the importance of lamins in determining 

nuclear shape and size for normal development (Jevtić et al. 2015). In mice, while 

embryonic development was shown to be complete even in the absence of lamins and 

emerin, the gene expression fidelity during primitive endoderm commitment depended on 

these proteins (E. R. Smith et al. 2017). In vitro, a triple-knockout of Lamin B1, B2 and A 

in mouse ES cell cultures had no effect on their differentiation into all the germ layers (Y. 

Kim, Zheng, and Zheng 2013). Curiously, in mouse ES cells, peripheral genome 

organisation i.e. lamina-associated domain (LAD) organisation is independent of all types 

of lamins (Amendola and Steensel 2015). The one lamin in C. elegans is important during 

germline development for maintaining nuclear morphology and chromatin compaction, in 

addition to being responsible for the appropriate localisation of inner nuclear membrane 

proteins emerin and MAN1, which in turn also have roles in orchestrating genome 

organisation and gene expression (Margalit et al. 2005). Furthermore, zygotic knockouts 

of several nucleoporins have been generated in mice leading to embryonic lethality. 

Deletion of NPC subunits like Nup62/98/133/155 results in lethality at later developmental 

stages, Nup50 mutants die at gestation, and Nup214 mutants die before implantation 

(Borsos and Torres-Padilla 2016). Thus, various studies have looked at NE components to 

understand their roles and functions in pluripotency and early development. However, there 

has yet to be a comprehensive effort towards exploring the diversity of NETs in pluripotent 

cells.  
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That genome organisation changes during lineage progression is now well known. My own 

results from Chapter 3 demonstrate the rapid relocation of the Rex1 locus from the nuclear 

interior to the periphery during the early stages of exit from pluripotency, way before 

lineage commitment is observed in vitro. Identifying the components of NE that tether the 

locus to the periphery in ES cells is therefore of interest to the fields of both, stem cells and 

nuclear organisation as it will add to and further explain roles of the specific proteins that 

are able to orchestrate these early changes that mark exit from pluripotency, a cell 

biological event key to setting the stage for eventual lineage commitment. This chapter 

explains the rationale, sample preparation and results for mass spectroscopy to identify the 

NETs in ES cells. Furthermore, the results presented here include NETs that gain or lose 

phosphorylation, a post-translational modification previously shown to be able to make and 

break connections between the NE and chromatin, during early stages of exit from 

pluripotency. Finally, using mutagenesis, the NETs responsible for mediating the Rex1 

locus tether at the nuclear periphery will be revealed.  

 

4.1 Sample Preparation and Experimental Design for Mass Spectrometry 
 

Understanding the nuclear envelope composition of ES cells is key to explaining 

mechanisms governing the genome organisation changes that take place during exit from 

pluripotency, lineage commitment and eventual tissue specification. As shown by previous 

studies in the Schirmer lab, most NETs are tissue restricted. The results presented here and 

other studies from the lab performed on adult tissues indicate that the diversity in NE 

composition is crucial in establishing tissue specific genome organisation. However, no 

study has yet looked comprehensively at the nuclear envelope of cells in their pluripotent 

state or in early stages of lineage commitment. 

Tethering of the Rex1 locus to the periphery within 2h of LIF withdrawal seems to suggest 

that this tethering activity is important for setting the stage to eventual exit from 

pluripotency, which in vitro can take a little more than 24h. As a first step to identifying 

the mechanism by which this tether is made, it was important to look at the proteins at the 

nuclear envelope of ES cells and how this composition changes during early stages of exit 

from pluripotency. Since we know that the locus is tethered within the first 2h following 

LIF withdrawal, this time point was picked to assess the changes in NE composition 

compared to cells that have been maintained in pluripotent culture conditions. When 
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considering the mechanism by which the locus is tethered and assuming it is a direct tether, 

one of the following scenarios is likely. 

a. The physical repositioning of the locus to the periphery is mediated by actin/myosin 

motor proteins and the tether to an existing NET should depend on the proximity of 

the locus to the periphery, or 

b. Once the locus physically repositions to the periphery, specific affinity between the 

NET for either a sequence motif or for a protein sitting on the Rex1 locus likely 

drives the repositioning. If the tether is an existing NET, then this NET must 

undergo post translational modifications during exit from pluripotency which then 

enables its binding to the locus, or 

c. If the tether is a previously absent NET, then LIF withdrawal leads to a change in 

NE composition so that one or more of the new NETs play a role in tethering the 

locus to the periphery, or 

d. Changes in epigenetic marks at various loci depending on LIF withdrawal leads to 

large-scale repositioning of chromatin to the NE based on an affinity mechanism 

between NETs and heterochromatin. 

Distinguishing between likely scenarios, particularly b and c, requires mass spectrometry 

of the nuclear envelope of ES cells before and after LIF withdrawal. Also, since 

supplementing the media with LIF seems to reverse the tether (Figure 13), it suggests that 

the tethering mechanism is controlled and reversible and this would most likely involve 

post-translational modifications on existing NETs.  Thus, scenario c seems less likely than 

b. Several nuclear lamina-chromatin interactions have been previously described to occur 

through phosphorylation of NETs such as LBR and Lap2β, and lamins themselves 

(Mattout-Drubezki and Gruenbaum 2003).  

The procedure for isolation of nuclear envelopes takes ~10 hours and we were concerned 

about the possible loss of relevant phosphorylation. The short half-lives of phosphatase 

inhibitors in aqueous solution offers little insurance against loss of phosphoproteins. To 

circumvent this, crude isolation of whole nuclei was performed using a hypotonic solution 

supplemented with phosphatase inhibitors in under 10 minutes. The samples were checked 

under a microscope to ensure that the lysis was complete with a retention of whole nuclei. 

Whole cell (WC) and nuclear fraction (N) lysates were separated on an SDS-PAGE gel and 

stained with Coomassie Blue (Figure 26A). Identical amounts of lysates separated by gel 



100 

 

electrophoresis were stained with ProQ diamond phosphoprotein gel stain (Figure 26B), 

which selectively stains phosphoproteins on acrylamide gels and allows for in-gel detection 

of phosphate groups attached to tyrosine, serine or threonine residues. Phosphoprotein 

staining shows a minimal loss of phosphorylation in the nuclear fraction. The lysates from 

were also subjected to western blotting which revealed intact pools of nuclear proteins like 

histone H3, Oct4, Lamin A/C and nucleoporin Nup153 with a loss of the cytoplasmic 

protein GAPDH (Figure 26C), suggesting that the isolation of nuclei, however crude, did 

enrich for nuclear targets. Similar isolation of whole nuclei was performed on ES cells at 

zero and two hours post LIF withdrawal and sent to the mass spectrometry facility at the 

Stowers Institute for Medical Research to be analysed both for proteins unique to each 

sample and for phosphoproteins. 

 

 

 

 

 

 

4.2 Mass Spectrometry Analysis: a summary 
 

Organellar proteomes have been of interest for nearly two decades now. The tricky aspect 

of studying organelle proteomes is the fact that most protein constituents are in constant 

exchange with the rest of the cell. Proteins in the nuclear subdomains contain both resident 

and transient proteins. Perturbations of the cell might change the organelle proteome 

considerably. In several proteomic analyses of nuclear structures, unexpected proteins are 

Figure 26: Sample preparation for mass spectroscopy. Whole cell (WC) and isolated nuclear (N) 

fractions of ES cells prepared in presence of phosphatase inhibitors were separated by gel 

electrophoresis and stained with Coomassie Blue for total proteins (A). B. Identical amounts of 

lysates as in A stained with ProQ Diamond phosphoprotein stain that identifies phospho groups 

attached to serine, threonine and tyrosine residues.  C. Western Blots showing the presence of 

nucleoporin Nup153, Lamin A/C, LBR, Oct4, GAPDH and histone H3 in both the whole cell and 

nuclear fractions.  
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commonly observed (Andersen et al. 2005; Jurica and Moore 2003; Saitoh et al. 2004; 

Andersen and Mann 2006). To be more comprehensive in identifying NETs, the Schirmer 

lab used a method originally developed in the Blobel and Gerace labs to isolate the nuclear 

envelope by first isolating whole nuclei by Dounce homogenisation and subjecting them to 

two rounds of DNase and RNase digestion with several rounds of density gradient 

centrifugation to float first contaminating membranes and second released chromatin. To 

ensure a clean NE prep, Digestions were followed by rapid staining of nuclei with DAPI 

and extended if most of the DAPI signal had not been washed out. NETs were identified 

using subtractive proteomics using microsomal fractions to subtract out the potential 

contaminants followed by bioinformatic analysis by membrane topology prediction 

(Korfali et al. 2009). Thus, ~2000 proteins were found per run in leukocyte NEs (Korfali 

et al. 2010) and ~700 proteins in skeletal muscle NE fractions (Wilkie et al. 2011). Several 

of these were then confirmed to be NE resident by immunofluorescence (Korfali et al. 2010; 

Malik et al. 2010b; Wilkie et al. 2011) and a subset of 954 NETs were compared for their 

tissue specificity (Korfali et al. 2012).   

Correspondingly, the proteomic dataset obtained from crudely isolated whole nuclei of 

pluripotent ES cells in theory might be expected to have more proteins than isolated NEs 

and indeed, a total of 3780 proteins were identified. The relative abundance of these 

proteins was estimated by distributed normalised spectral abundance factor values (Y. 

Zhang et al. 2010). This approach measures relative abundance of a protein as a function 

of the spectral counts and length of each protein. For peptides that are shared among 

different protein isoforms, this approach involves distributing the spectral counts among 

protein isoforms to provide an accurate and reproducible quantitation. Consistent with 

expectations based on precious work on nuclear composition, when the proteins in the ES 

whole nuclear sample were ordered according to their distributed normalised spectral 

abundance values, the most abundant proteins were the nucleolar protein nucleophosmin 

followed by the different histone variants and undifferentiated embryonic cell transcription 

factor 1, Utf1. However, GAPDH and β-actin were also among the top 5% of the proteins 

detected in this sample due to their sheer abundance in the cells, suggesting the presence 

of cytoplasmic contaminants. In mass spectrometry there is the additional problem in that 

as the number of proteins in a sample increases, the more abundant proteins begin to swamp 

the spectra for lower abundant proteins. Smaller proteins also yield fewer peptides so that 
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even if they are much less abundant than a much larger protein the larger protein could 

have a larger total number of spectral counts. Since NETs are far less abundant than any 

such proteins mentioned above, their identification can prove more challenging and it 

should be noted as a caution of this data that less abundant NETs could have been missed. 

We employed two methods for analysis. Since NETs all contain at least one transmembrane 

domain, their identification among the pool of nuclear proteins can potentially be 

performed using membrane topology prediction. Therefore, we first, we applied a 

Transmembrane Hidden Markov Model protein topology prediction algorithm to identify 

all proteins with at least one predicted transmembrane domain in the sample. This yielded 

a total of 189 transmembrane proteins from both samples - cells maintained in presence 

(T0) and absence of LIF (T2). Of these, 107 of these proteins were previously known NETs.  

While the results contained many of the classical NETs like Sun2 and LAP2β, it also 

included several ER and mitochondrial proteins that are likely contaminants like lectin and 

mannose binding protein 1 (Lman1), cytochrome b5a and b (Cyb5a, Cyb5b) and the 

NADPH-cytochrome P450 reductase (Por). We checked cellular compartment distribution 

using GO and found 55 proteins to be potential contaminants lacking nuclear localisation 

i.e. they came from plasma membrane, mitochondrial membrane and other cytosolic 

organelles. Of these 55 proteins, 15 were ER proteins that could potentially transiently 

reside in the NE making them potential NETs. Thus, using this method, over 20% of the 

total proteins recovered were definitely not NETs.  

Our second analysis method expected to more reliably determine NETs within this pool, 

was to take the list of putative NETs that were identified from the clean NE preps in the 

three tissue samples previously studied in the Schirmer lab as a reference list. Since the 

NETs are far less abundant in the ES nuclear fractions, we relaxed all the criteria based on 

spectral counts and peptides identified. Instead, we decided to consider all the NETs 

identified in the samples as long as they were detected in at least 3 of the 5 technical 

replicates run, irrespective of the low spectral counts. Since this analysis involves a 

reference list of bona fide NETs, we decided to use results from this method alone, which 

are described below. 

Of the 954 putative NETs identified in previous studies from the Schirmer lab (Figure 27A; 

Korfali et al. 2012), only 122 NETs are identified in both samples together. Of these, merely 

55 were found in ES cells before LIF withdrawal (T0). This observation might be consistent 
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with the idea that majority of the NETs known so far are indeed tissue restricted and are 

expressed at later stages of differentiation. However, it is entirely possible that other NETs 

that are less abundant might be missed in the whole nuclear analysis. A look at the 

distribution of these 55 NETs with regards to which parent tissue each of these was 

originally identified in reveals that 24 of these were originally identified as ubiquitous 

NETs, 4 exclusively in liver, 2 in muscle and 10 in blood. The rest were expressed in at 

least two of the three parent tissues (Figure 27B top panel). Again, a high percentage of the 

NETs found in ES cells being previously described as ubiquitous NETs is, both expected 

and reassuring of the hypothesis that the NE proteome complexity increases dramatically 

with the addition of tissue specific NETs in differentiated cell types and this might enable 

lineage transitions by orchestrating genome organisation, mechanotransduction and other 

related functions.  

 

 

 

 

 

 

 

 

Interestingly, a total of 107 NETs are discovered in ES cells that have been subjected to 

LIF withdrawal for 2h (T2). Between the two samples, 40 NETs are shared in expression, 

Figure 27: Summary of mass spectrometry data. A. Venn diagram showing the overlap in NETs 

discovered in nuclear envelope preps from Liver, Muscle and Leukocyte fractions. Less than 20% 

NETs are expressed ubiquitously in these three tissue types. Data reproduced from Korfali et al., 

2012. B. Summary of NETs discovered in ES cells subjected to 0 (T0; top) and 2h (T2; bottom) of 

LIF withdrawal. The colours in the Venn diagram depict the distribution of NETs between the three 

parent tissues they were originally identified from. Over 40% of the NETs identified in each sample 

were previously identified as ubiquitous NETs. C. Venn diagram showing the numbers of NETs 

overlapping between cells subjected to 0 (T0) and 2h (T2) of LIF withdrawal.  
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leaving 15 NETs being specific to the pluripotent state of cells and 67 others that are 

induced in cells at the early stages of exit form pluripotency (Figure 27C). The list of NETs 

specific to T0, T2 and those that are shared between the two is provided in the Appendix.  

 

4.3 Phospho- changes during early differentiation 
 

In the context of the study presented in this thesis, identifying the NETs present in ES cells 

subjected to 0 and 2h of LIF withdrawal is primarily to identify candidate NETs that might 

facilitate the rapid relocation of the Rex1 locus to the periphery. In theory, any of the 67 

NETs uniquely identified in T2 (Figure 27C; complete list provided as an appendix) or 

those that change phosphorylation will make for good candidates to test in further 

experiments for their role in tethering the Rex1 locus to the nuclear periphery. However, as 

mentioned before, since the tethering at the periphery is both rapid and reversible, it is 

likely that the mechanism involves post translational modifications. Therefore, efforts were 

focused on testing some of the candidate proteins that show changes in phosphorylation. 

 

Table 18: NETs that show phosphorylation changes in the first two hours of exit 

 

 

 

Of the 40 NETs that are detected in both samples, only 9 showed changes in their 

phosphorylation status. Of these, 3 proteins were previously annotated as NETs on the basis 

of predicted transmembrane domains in them but with advances in membrane topology 

predictions no longer qualify as NETs. Thus, we ended up with only 6 NETs that change 

phosphorylation status (Table 18) narrowing down the possible candidates to be tested by 

a huge margin. Since the analysis was done in a gene centric manner, thymopoietin (gene 

name TMPO) shows up in the list of NETs but a look at the phosphopeptides detected 

reveals that it is the nucleoplasmic isoform LAP2α and not the classical NET LAP2β that 

loses phosphorylation during exit. Interestingly, LAP2α also lost phosphorylation. Both the 
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LAP2α and LAP2β bind lamins and chromatin. NETs like TMEM201, MTDH, and LBR 

seem to lose phosphorylation while others like POM121 are phosphorylated upon exit from 

pluripotency. Since LBR and LAP2α are both described extensively in literature for their 

chromatin binding abilities, these candidates were prioritised in this study. 

4.4 LAP2α phosphorylation status affects Rex1 tethering to the periphery 
 

LAP2α is an alternatively spliced isoform of the TMPO gene that has at least six identified 

isoforms in mammals (Foisner and Gerace 1993; Harris et al. 1994; 1995; Berger et al. 

1996). All the LAP2 isoforms, except LAP2α and LAP2ζ, contain a C-terminal 

transmembrane domain which allows for their integration into the inner nuclear membrane 

with preferential binding interactions with the B type lamins. LAP2α has a unique 500 

amino acid long C-terminal region with no transmembrane domain and is located 

predominantly in the nucleoplasm and its interactions with lamins A and C have been 

demonstrated in vitro (Markiewicz et al. 2002). Notably, studies have focused on 

investigating particular interactions between lamin and LAP2 subtypes. Thus, it remains 

unclear whether LAP2α can bind B-type lamins or that LAP2β can bind A-type lamins. In 

the nucleoplasm, LAP2α and Lamin A/C exist in a stable complex such that their 

distribution depends on each other (K. Furukawa et al. 1995; Dechat 1998; Dechat et al. 

2000). In the absence of LAP2α, lamin A/C is absent from euchromatic regions and this is 

associated with changes in epigenetic histone marks in euchromatin. While the epigenetic 

changes in euchromatin did not significantly affect gene expression, the loss of lamin A/C 

in heterochromatic regions correlated with increased gene expression (Gesson et al. 2016). 

This complex, through its interactions with DNA, has been proposed to control higher order 

chromatin organisation and epigenetics and therefore gene expression.  

The localisation of LAP2α in the nucleoplasm depends on domains located in both the N- 

and C-terminal α-specific regions. A nuclear targeting domain in LAP2α (amino acids 270-

615) is responsible for linking this protein to nuclear structures and thereby stabilising its 

localisation in the nucleoplasm. The domain structure of LAP2α is shown in Figure 28A. 

Studies from the Foisner and Gerace groups have together shown that LAP2α contains at 

least two different chromatin binding sites – one located within the LAP2α-specific nuclear 

targeting domain (amino acids 270-615) and another in the N-terminal LAP2 common 

region (amino acids 1-85) (Kazuhiro Furukawa, Fritze, and Gerace 1998; Vlcek et al. 

1999). Furthermore, this 1-85 common region also contains the 40 residue long structural 
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motif common to all LAP2 isoforms called the LEM domain, which interacts with a small 

10kDa DNA cross-linking protein called barrier-to-autointegration factor (BAF) that can 

mediate its interaction with chromatin (Segura-Totten and Wilson 2004). In addition to its 

DNA bridging activity, BAF can also compact chromatin, which might contribute to the 

formation of heterochromatin and thus affect gene expression (C. M. Bradley et al. 2005). 

 

 

 

 

 

 

 

 

 

 

Mass spectrometry revealed a loss of phosphorylation at serines 66, 67 and 422 on LAP2α 

in the first 2h of differentiation induction (Table 18). While S66 and S67 are part of the N-

Figure 28: LAP2α phosphorylation status affects Rex1 repositioning. A. Illustration showing the 

domain structure of LAP2α. The three serines mutated to alanine – 66, 67 and 422 – are within 

domains previously shown to be important for chromatin binding. B. Representative FISH images 

for Rex1 (green) in cells transfected with LAP2α WT construct, subjected to 0 and 2h of LIF 

withdrawal. C. Distance from periphery quantitation for images in B. ***p<0.001. D.  Representative 

FISH images for Rex1 (green) in cells transfected with LAP2α S66, 67 A mutant construct, subjected 

to 0 and 2h of LIF withdrawal. E. Distance from periphery quantitation for images in D. ns p>0.05. 

F. Representative FISH images for Rex1 (green) in cells transfected with LAP2α S66, 67, 422A 

mutant construct, subjected to 0 and 2h of LIF withdrawal. G. Distance from periphery quantitation 

for images in F. ns p>0.05. Scale bars represent 10µm.  
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terminal chromatin binding region of the protein, S422 is within the nuclear targeting 

domain. To test the importance of these residues on the relocation phenotype observed for 

the Rex1 genomic locus during exit, they were mutated to alanines and the resulting 

phospho-null mutants were overexpressed in ES cells. All the LAP2α WT and mutant 

constructs were GFP fusion proteins and nucleofection increased the transfection efficiency 

so that over 95% cells were fluorescent after 24h. These cells were all subjected to LIF 

withdrawal for 2h and then collected and processed for FISH analysis. Cells expressing 

WT LAP2α show a movement of the Rex1 locus from the nuclear interior to the periphery 

as expected, suggesting that transfection alone does not cause any abnormalities in the 

phenotype (Figure 28B and C). However, when the S66A/S67A (Figure 28D and E) and 

the S66A/S67A/S422A (Figure 28F and G) mutants are over expressed, the locus fails to 

reposition to the nuclear periphery suggesting that the phosphorylation is not required to 

maintain an internal location and rather suggests that phosphorylation switch is involved in 

its movement to the periphery. 

Mechanistically, this opens many questions about the role of LAP2α in mediating the Rex1 

tether to the periphery. One possible explanation might be that the phosphorylation of these 

residues keeps the protein from binding to DNA under pluripotent conditions. During early 

stages of in vitro differentiation, the loss of phosphorylation may enable the DNA-protein 

interaction thereby stably anchoring the locus to the protein. The LAP2α-Lamin A nexus 

could then potentially act to stabilise the locus in the interior or chaperone it to the 

periphery.  

 

4.5 Characterising the role of Lamin Binding Receptor phosphorylation in 

Rex1 relocation 
 

While hundreds of transmembrane proteins are embedded in the nuclear envelope, only a 

handful have been characterised thus far. Of these, the lamin binding receptor (LBR) 

features prominently in the studies looking at genome organisation. The accumulation of 

LBR to the inner nuclear membrane occurs through a diffusion-retention based mechanism 

where the protein is synthesised on the surface of the ER membrane, moves laterally to the 

outer nuclear membrane by diffusion and then through the nuclear pores to the inner nuclear 

membrane where it is retained due to interactions with other components like lamins and 

chromatin (Soullam and Worman 1995; Boni et al. 2015; Ungricht et al. 2015). LBR has 
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been implicated for its ability to mediate peripheral tethering of heterochromatin at early 

developmental stages, a function that is later taken over by Lamin A/C (Solovei et al. 2009). 

Interestingly, presence of LBR is also important for heterochromatin tethering in cycling 

cancer cells and a loss of this protein induces cellular senescence of these cells, 

characterised by heterochromatic foci seen in the nuclear interior (Lukášová et al. 2017). 

Both these observations are supported by the fact that chromatin pulled down with LBR is 

enriched in heterochromatic marks such as H3K9me3 and H3K29me3 and is devoid of 

euchromatic epigenetic marks (Makatsori et al. 2004). Moreover, LBR specifically 

associates with Xist long noncoding RNA to tether the X chromosome to the inner nuclear 

membrane and inactivate it during development in mammalian females (C.-K. Chen et al. 

2016). 

LBR has 8 transmembrane domains that enable its retention in the membrane with an N-

terminal nucleoplasmic fragment that is about ~200 aa long and binds chromatin to support 

retention in the inner nuclear membrane. Two adjacent domains in the nucleoplasmic 

region, namely globular/TUDOR domain (amino acids 1-60) and RS domain (amino acids 

61-89) mediate chromatin binding. Deletion of either domains leads to reduced binding to 

chromatin (Q. Ye and Worman 1994; Hirano et al. 2012). The phosphorylation of LBR is 

essential to its chromatin binding activity. At the beginning of NE breakdown during 

mitosis, CDK1 mediated hyperphosphorylation of LBR makes it highly mobile and leads 

to its dissociation from chromatin and dispersal in the ER. In the late anaphase, LBR is 

dephosphorylated by PP1/2A allowing the oligomerization of its RS domains and 

subsequent chromatin association once the NE is reassembled. The major target of CDK1 

phosphorylation is Ser-71 followed by Ser-86 and the mitotic phosphorylation of both these 

residues inhibits its chromatin-binding activity (Takano et al. 2004; Tseng and Chen 2011). 

Using a GAL-4 fused LBR, Hirano et al demonstrated the peripheral association of the 

reporter plasmid led to transcriptional repression (Hirano et al. 2012), which is in line with 

the widely acknowledged rule of thumb for genome organisation suggesting that the 

nuclear periphery tends to be a repressive environment. Such repression is a consequence 

of chromatin compaction but also requires recruitment of transcriptional modulators like 

HP1, which binds to the second globular domain (amino acids 90-211 in human LBR) (Q. 

Ye and Worman 1994; Lechner et al. 2005), and MeCP2 that binds to both the TUDOR 

and RS domains (Guarda et al. 2009; Liokatis et al. 2012).  
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The domain structure of LBR is shown in Figure 29A. The nucleoplasmic domain of LBR 

plays a crucial role in genome organisation by directly binding to chromatin and is 

responsible for its silencing by recruiting transcriptional modulators. The RS domain, 

which is only about 30aa in length, is particularly interesting as it interacts with both 

Figure 29: LBR phosphorylation status affects Rex1 repositioning. A. Illustration showing the 

domain structure of LBR. The NET has 8 transmembrane domains and the nucleoplasmic domain 

contains the TUDOR, RS and Globular II domains. Both the TUDOR and RS domains can bind to 

DNA. The two serines mutated to alanine – 71 and 86 – are within the RS domain. B. Representative 

FISH images for Rex1 (green) in cells transfected with LBR WT construct, subjected to 0 and 2h of 

LIF withdrawal. C. Distance from periphery quantitation for images in B. **p<0.01. D.  

Representative FISH images for Rex1 (green) in cells transfected with LBR S71A mutant construct, 

subjected to 0 and 2h of LIF withdrawal. E. Distance from periphery quantitation for images in D. ns 

p>0.05. F. Representative FISH images for Rex1 (green) in cells transfected with LBR S71,86A 

mutant construct, subjected to 0 and 2h of LIF withdrawal. G. Distance from periphery quantitation 

for images in F. ns p>p0.05. Scale bars represent 10µm. 
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chromatin and transcriptional modulators and its phosphorylation status seems to be critical 

in determining LBR-chromatin interaction. Therefore, to determine if phosphorylation of 

Ser-71 and Ser-86 within the RS domain could also have a role in tethering chromatin, 

particularly the Rex1 locus, in interphase cells, I generated phospho-null mutants for both 

these residues, which were then overexpressed in ES cells. These cells were then subjected 

to LIF withdrawal followed by FISH where the Rex1 locus was labelled. Cells expressing 

LBR WT show a relocation of the Rex1 locus to the periphery upon LIF withdrawal, 

confirming that nucleofection or the over expression of LBR WT do not alter the phenotype 

(Figure 29 B and C). LBR S71A (Figure 29D and E) and S71,86A (Figure 29F and G) 

mutants fail to tether the locus to the nuclear periphery. The failure in tethering is more 

prominent in the double mutant where the locus is found at a median value of over 2µm 

from the nuclear periphery, similar to the control cells that have not been subjected to LIF 

withdrawal.  

 

4.6 Discussion 
 

The previous chapter characterised the rapid repositioning of a specific genomic locus, 

Rex1, during exit from pluripotency. Since this locus repositions from the nuclear interior 

to the periphery within merely two hours post LIF withdrawal in a reversible manner, the 

mechanistic details of such tethering make for an interesting study. However, the nuclear 

envelope of ES cells has never been assessed for its composition in detail. With a particular 

interest in identifying the components of the nuclear envelope that might have a role in 

tethering the Rex1 locus to the periphery, I explained in this chapter the experimental design 

and samples used for a mass spectrometric analysis. The experiment is designed to look at 

which of the known NETs are expressed in ES cells and which of those then show changes 

in phosphorylation.  

It is important to remember, however, that the size and abundance of some of these NETs 

and the potential domination of post-translational modifications in one state or the other 

might make the protein effectively invisible based on the initial mass spectrometry analysis 

for non-modified peptides. The distribution of the 67 unique NETs appearing during exit 

shows an increase in the ones that were exclusively found in blood in the earlier studies 

from the Schirmer lab (Figure 27B bottom panel). At such early stages of exit from 
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pluripotency stimulated merely by LIF withdrawal and no other defining exogenous factors 

directing lineage commitment, the cells might merely move to a poised state that starts to 

set the stage for impending cues that might direct their fate. Spontaneous differentiation 

due to LIF withdrawal has been shown previously to favour gene expression reflecting the 

endoderm and mesoderm states (Heo et al. 2005). During embryogenesis however, the first 

wave of erythropoiesis begins as early as the seventh day of embryonic life with the 

production of the primitive erythroid cells followed by an expanding population of 

definitive erythroid cells that predominate subsequently (Baron, Isern, and Fraser 2012). 

Blood is among the first tissues to be formed along with the development of a functional 

heart to sustain life as the embryo grows in size (Gritz and Hirschi 2016). Thus, the changes 

in NET composition could reflect the priming needed at the NE to prepare for the 

impending events leading to lineage commitment. 

When comparing the phosphorylation status of these NETs, I found 6 NETs that show gain 

or loss of phosphorylation within the first two hours of exit form pluripotency. Of these, 

LBR and the LAP2 isoform LAP2α are of specific interest as they have been widely studied 

before and have been known to interact with chromatin. Phospho-null mutants were 

generated for both LBR and LAP2α using site directed mutagenesis, which were 

overexpressed in ES cells. From the results summarised above, it seems that mutating the 

phosphorylation sites on the LAP2α chromatin binding domain or the LBR RS domain 

have a similar effect in that the tethering of the Rex1 locus to the periphery upon LIF 

withdrawal is prevented. This leads to further interesting questions about the mechanistic 

details of the tethering.  

While LBR is an inner nuclear membrane protein, LAP2α lacks a transmembrane domain 

and is therefore nucleoplasmic. It is easier to interpret the effects of the LBR mutants, as it 

could be that LBR is a direct tether point for the Rex1 locus and a loss of phosphorylation 

at Ser-71 and maybe Ser-86 enables DNA-protein interaction. It could also be that the 

interaction of the locus to LBR is indirectly mediated by LBR-HP1 binding or other 

epigenetic silencing marks on histones. However, this needs to be investigated further. 

While the mitotic kinase CDK1 phosphorylates serines 71 and 86 to initiate the detachment 

of LBR from chromatin and NE breakdown, The RS domain residues of LBR are also 

targets of SRPK1 (Papoutsopoulou, Nikolakaki, and Giannakouros 1999; Takano et al. 

2004) and potential targets of CLK kinases (Giannakouros et al. 2011; Zhou and Fu 2013). 
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Interestingly, our mass spec data shows that 2h post LIF withdrawal there is a loss of 

phosphorylation on SRPK1 and a gain of phosphorylation on CDK1. Any of these kinases 

could mediate the phosphorylation of these residues during interphase. A loss of 

phosphorylation seen during exit stimulated by LIF withdrawal could consequently lead to 

LBR binding to the locus and tethering it at the nuclear periphery. A ChIP-seq experiment 

with LBR could reveal conclusive evidence of the binding between LBR and Rex1.  

Why LAP2α mutants would prevent the tethering of the locus to the periphery is a trickier 

question to answer. It could be that LAP2α binds to the locus to anchor it and mediates its 

tethering at the NE due to its ability to bind to Lamin A. It is important to bear in mind 

while considering LAP2α functions in ES cells the controversy over whether or not Lamin 

A is actually present in ES cells. As mentioned in the introduction, Lamin A/C has often 

been used as a marker for differentiation due to its presumed absence in ES cells based on 

immunofluorescence assays. However, this absence could be a likely result of epitope 

masking. Western blotting revealed the presence of Lamin A/C in 9 independent ES cell 

lines and in ICM cells (Eckersley-Maslin et al. 2013). The detection of Lamin A, albeit 

low, with 15 peptides and 57 spectral counts in my proteomic dataset from intact nuclei in 

ES cells further corroborates this result. Furthermore, the localisation of Lamin A/C in ES 

cells depends on Lamin B1 (Guo et al. 2014). These results suggest that Lamin A/C is 

present in ES cells but its massive upregulation during differentiation makes it much more 

detectable in IF studies on differentiated cells. It is thus possible that LAP2α-Lamin A/C 

nexus is as important in maintaining chromatin states in the pluripotent cells as it is in 

differentiated cell types. Alternatively, could also be that LAP2α acts as an adaptor for the 

locus and mediates its translocation to the nuclear periphery where LBR then binds to it. 

However, either of these hypotheses will need further testing.  
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Chapter 5 

Ectopic Expression of tissue specific NETs in ES 

cells leads to exit from pluripotency 
 

Division of labour between the various component organ systems results in the functionally 

coherent system that is multicellular life. The various tissue types that form organs are 

themselves formed as a result of cellular differentiation and lineage commitment of either 

pluripotent or multipotent cells during the course of development. At the core of cellular 

differentiation are two things – the stimuli which initiate the process and the reorganisation 

of gene expression networks which facilitate it. The precise actions of genes are dependent 

on their tissue context and over time, several diseases have been identified to be the result 

of a disordered interplay of tissue and cell-lineage specific gene expression. Thus, the 

establishment and maintenance of tissue identity has been of interest for several decades. 

And at the core of it all lies the following broad question -  

How is tissue specific gene expression achieved? 

While this was first thought to be exclusively due to differential expression of distinct 

combinations of transcription factors, it has become clear over the years that there are a 

multitude of factors that contribute. From transcription and RNA processing to protein 

translation and post translational modifications, epigenetics and spatial genome 

organisation, any and all of these factors might work to control gene expression for a 

physiological state. 

One approach to identifying factors involved in establishing the differentiated state of cells 

is human genetics as its disruption leads to human disease. A curious question in human 

genetics is what underlies tissue specific manifestations of hereditary diseases, considering 

these are caused by germline mutations that are present across the human body. Germline 

aberrations for over 1500 hereditary diseases can be retrieved from the OMIM database 

(Amberger et al. 2009) and yet the molecular mechanisms explaining their manifestations 

in specific tissues are largely unknown. A likely explanation for such selective vulnerability 

is a tissue specific gene expression profile so that the functionality of a mutated protein is 

compromised within the tissues in which it is expressed. Tissue specificity may arise not 

just from tissue specific expression of a certain protein but also through tissue specific 

protein-protein interactions. It is not entirely impossible that a widely expressed protein 
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could have tissue specific interactions with other proteins, either enabled by 

compartmentalisation or the specific expression profiles of the interacting partners or 

inhibitors of these interactions. Thus, the study of tissue specific interaction networks 

becomes necessary to better represent disease pathologies. Towards this end, in one of the 

first large-scale studies of protein networks revealed that over ~70% of the disease causing 

genes were significantly expressed in the tissues where the disease manifested (Magger et 

al. 2012). In another quantitative approach combining microarray and RNA-seq approaches 

to look at gene expression across various tissue types, a bi-modal distribution of expressed 

genes across tissues was revealed, with most genes showing either ubiquitous or tissue 

specific expression across tissues. Of these, it was shown that the disease-causing genes 

tend to have elevated transcript levels and increased number of tissue-specific protein-

protein interactions in their disease tissues compared to unaffected tissues. For instance, a 

muscle specific protein-protein interaction between the widely expressed cell adhesion 

receptor dystroglycan 1 (DAG1) to its muscle specific ligand dystrophin (DMD) and to 

caveolin 3 (CAV3), which regulates DMD by preventing the DAG1-DMD interaction, 

could explain why mutations in these three genes give rise to various forms of muscular 

dystrophies (Barshir et al. 2014). However, this is not strictly true. Tissue specific mis-

splicing and low-level expression can also cause diseases as in the case of familial 

dysautonomia (G. Lee et al. 2009). Following such findings, the need for studying the 

mechanisms underlying the tissue specific regulation of gene expression was highlighted. 

Interestingly, the interconnected approach also can lead back to the nuclear envelope, the 

focus of this thesis. For example, in a recent study identifying additional alleles of Emery-

Dreifuss muscular dystrophy, the authors argue that the EDMD pathomechanism is a result 

of altered gene regulation and mechanotransduction due to connectivity of proteins from 

the nuclear envelope to the plasma membrane (Meinke et al. 2020).   

3D genome organisation regulates gene expression by controlling the physical position of 

a certain genomic locus in the three-dimensional space of the nucleus, thus potentially 

restricting its access to transcriptional factors by tethering it to the nuclear envelope or 

making it more accessible by the formation of a loop in the nuclear interior such that the 

transcriptional factors might easily bind to it. This, in addition to epigenetic marks which 

affect DNA compaction and transcription factor binding itself, plays a huge role in the 

modulation of gene expression. The role of the nuclear envelope (NE) in orchestrating 
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genome organisation during development and differentiation has been widely studied and 

has been discussed in detail in Chapter 1. Interest in tissue-specific components of the NE 

arose from the discovery of tissue specific human diseases known as laminopathies which 

posed an interesting paradox – this class of diseases was linked to mutations in LMNA, the 

gene encoding the widely expressed A type lamins, when the pathology was seen to 

selectively manifest in striated muscle or cause restrictive dermopathy where the worst 

pathology occurs in skin, or  peripheral neuropathy affecting nerves, or lipodystrophy 

affecting fat (Bonne and Quijano-Roy 2013; Howard J. Worman and Dauer 2014). These 

distinct pathologies might be explained by a disruption in tissue specific interactions 

between A type lamins and putative tissue specific binding partners. The Schirmer lab has 

made seminal contributions to the field of nuclear biology by discovering several tissue 

specific Nuclear Envelope Transmembrane Proteins (NETs) and demonstrating several of 

these to have the ability to affect genome organisation as well as linking them to disease. 

These proteins and their potential roles in establishing genome organisation will be 

discussed in some detail in the following sections of this chapter. 

While tissue specific NETs might be a likely answer to how genome organisation is 

maintained in differentiated tissues, the absence of these proteins in embryonic stages 

leaves a gap in the understanding of how tissue specific genome organisation is defined in 

the first place. This chapter will look at the distribution of some of these NETs in early 

stages of mouse embryonic development, the effects of ectopic expression of these tissue 

specific NETs on ES cell pluripotency and explore the ability of such ectopic expression in 

altering genome organisation before ES cells go through the process of lineage 

commitment.  

5.1 Expression of tissue specific NETs during early development and its 

significance 
 

The NE is an impenetrable double-membrane barrier between the nucleus and the 

cytoplasm that is perforated by nuclear pore complexes that regulate directed 

nucleocytoplasmic transport. Both the outer and the inner nuclear membranes have unique 

sets NETs and the tissue specificity of these NE proteins is of primary interest in the 

Schirmer lab. As a first step to attempt to identify candidate proteins that mediate tissue-

restricted disease pathologies, novel proteomic approaches were undertaken to isolate the 

nuclear envelopes and identify the NET proteomes in three different tissue types, namely 
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liver, muscle and blood. In the first study, the nuclear envelopes were isolated from resting 

and activated lymphocyte enriched peripheral blood leukocyte fractions. About 14% of the 

NETs were found to be uniquely expressed either in the resting or the activated state of the 

lymphocytes (Korfali et al. 2010). In another study, a similar comparison between the NET 

proteome identified in the three tissue types revealed that less than 20% of the NETs are 

shared between the three tissue types, suggesting that most NETs are tissue restricted in 

expression (Korfali et al. 2012). A total of 954 NETs were identified collectively from the 

three tissue types studied. Several of these were also shown by immunofluorescence to 

target to the nuclear envelope (Korfali et al. 2010; Malik et al. 2010b; Wilkie et al. 2011). 

Given the subcellular localisation of these proteins, many of these NETs were tested for 

their ability to affect genome organisation and indeed were found to do that (explained in 

more detail in the following sections). However, these NETs were all isolated from adult 

tissues and thus, their expression during early embryonic stages was not known. 

I hypothesised that if a NET is functionally important in a certain stage of development, it 

would show higher expression level at that stage. Thus, NETs important for the 

maintenance of genome organisation in ES cells would preferentially be expressed in ES 

cells followed by their downregulation in later stages of development during which lineage 

commitment is already underway. While the mass spectrometry experiments described in 

the previous chapter reveal the composition of the NE in ES cells, the study was directed 

at looking at the changes in the NE composition during the first two hours of exit from 

pluripotency and not the later stages. Furthermore, we must bear in mind that the mass 

spectrometry was performed in a particular line of ES cells. To test the hypothesis of stage-

specific expression of NETs yielding unique NET protein signatures during lineage 

commitment, expression data was downloaded from the BioGPS transcriptome database 

that compares the expression of the vast majority of protein-encoding human and mouse 

genes from a panel of 79 human and 61 mouse tissues on microarrays (Su et al. 2004; Wu 

et al. 2009). Importantly, the tissues tested include mouse embryos at early stages of 

development. In this chapter, I will be specifically focusing on the expression patterns of 

previously described tissue-specific NETs over early developmental stages. The median 

expression values for these NETs were obtained over the complete set of tissues and the 

normalised data over this median is shown for a subset of tissues, namely mouse ES cells 
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and early developmental stages from e6.5 to e10.5 stages of mouse development (Figure 

30).  

 

 

 

 

 

 

The well-studied NET lamin binding receptor (LBR) serves as a good case in point for the 

above-mentioned hypothesis. LBR is an evolutionarily conserved and developmentally 

essential inner nuclear membrane protein, ubiquitous in vertebrates, Drosophila and yeast 

(H. J. Worman et al. 1988; Wagner 2004). As seen in Figure 30, it is highly expressed in 

ES cells followed by at least a two-fold reduction in expression levels in e6.5 to 10.5 stages 

of development. This, along with the change in its phosphorylation status during exit from 

pluripotency as described in Chapter 4, highlights its importance in the maintenance of 

genome organisation in pluripotent ES cells. Of medical significance, mutation of the LBR 

gene causes developmental abnormalities, reduced survival of homozygous embryos and 

hereditary diseases (Waterham et al. 2003; Shultz 2003). It has been previously argued that 

the downregulation of LBR at later developmental stages is functionally complemented by 

the upregulation in LaminA/C and that these two proteins control peripheral 

heterochromatin accumulation in a stage specific manner (Solovei et al. 2013). 

Figure 30: Microarray expression data for NETs in pluripotent ES cells (ESCs) and 5 early stages 

of embryogenesis (e 6.5 to e10.5). Data is shown as fold change over median values across the 61 

mouse tissues used in the study (Wu et al., 2009). LBR expression drops more than 2-fold between 

ESCs and e6.5 but is still maintained at >3-fold over median value across the samples. Tissue-

specific NETs like TAPBPL, STT3A, NET39 and NET50 are expressed consistently at median value 

in all the 6 stages of early development shown here.  
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Of specific interest is that fact that NETs like NET39, TAPBPL, NET50 and even 

TMEM120A are consistently expressed only around median value through all the early 

developmental stages shown here. Whereas in the specific tissues that they were originally 

identified from in the mass spectrometry studies in the Schirmer lab, their expression was 

over 8-fold over median value (data not shown), clearly highlighting their subsequent tissue 

restricted expression patterns. The low abundance or absence of tissue specific NETs in 

pluripotent cells and early stages of development might suggest no functional role for these 

proteins in the maintenance of pluripotency. 

 

5.2 Transient Transfection of tissue specific NETs in ES cells leads to 

morphological changes similar to differentiation in presence of LIF 
 

Several tissue specific NETs have been studied for their roles in genome organisation, cell 

cycle progression and cytoskeletal associations, with genome organisation being the 

primary interest in the Schirmer lab. The ability of these NETs to affect genome 

organisation was tested by inserting a lacO array into chromosomes 5 (typically found in 

the nuclear interior) and 13 (typically peripheral) in HT1080 cells and then transiently 

transfecting these cells with individual NETs. The position of the array with respect to the 

nuclear periphery was assayed using erosion analysis that divides the nuclear volume into 

five concentric voxels of equal volume, with 1 being the most peripheral and 5 being the 

most central rings. Upon transfection, if the lacO array shows greater probability of being 

in the first two rings, which are most peripheral, it confirms the ability of these NETs to 

tether that chromosome to the periphery. Using such screens, TAPBPL and STT3A, 

previously identified to be blood-specific NETs, and were shown to recruit Chr5 to the 

periphery (Korfali et al. 2010). Similarly, muscle specific NETs NET39 and TMEM38A 

and fat specific NET29/TMEM120A were also shown to reposition certain chromosomes 

using the array as a positioning marker (Zuleger et al. 2013). NET39, TMEM38A and 

TMEM120A were further studied for their specific roles in myogenesis and adipogenesis 

in the Schirmer lab. Using C2C12 differentiation system as a model, it was shown that 

NET39 and TMEM38A are expressed upon differentiation of myoblasts into myotubes. 

During this transition, chr8 is seen to relocate to the nuclear periphery and this relocation 

is facilitated by NET39, but this study also investigated specific genes under NET39 

positional regulation and found roughly 70 myogenic genes such as Nid1, that reposition 
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to the periphery in a NET39 specific manner. Critically, the lack of muscle specific NETs 

NET39, TMEM38A and WFS1 resulted in impaired myotube formation, highlighting their 

role in myogenesis (Robson et al. 2016). Similarly, the role of fat specific NETs 

TMEM120A and B were characterised in adipogenesis using the in vitro differentiation 

model of 3T3L1 cells. These NETs were shown to be induced during adipocyte 

differentiation and necessary for adipogenesis (Batrakou et al. 2015). While it is clear that 

this screening approach identified tissue specific NETs that contribute to genome 

organisation in their relative tissues, it is important to bear in mind that the output of the 

screens was only certain chromosomes and only ~50 NETs have been tested in total for this 

function. Therefore, it is possible that other untested NETs could affect genome 

organisation and that the ones tested thus far could affect other genes and chromosome 

positions too.  

Although the role of some of these NETs has been characterised during adipogenesis and 

myogenesis to some degree, both the in vitro differentiation systems namely 3T3L1 and 

C2C12 cells represent the differentiation of progenitor cells into their terminally 

differentiated lineages. The expression data obtained from BioGPS suggests that these 

NETs are expressed at low levels during pluripotency. Thus, it is of interest to ask the 

following two questions –  

Can ectopic expression of tissue specific NETs affect the differentiation status of 

pluripotent cells? 

If yes, is this because of their ability to alter genome organisation? 

Answering these questions might reveal the importance of stage specific expression of 

NETs and will further indicate the importance of their absence in pluripotent cells.  

To answer these questions, mouse ES cells grown in serum/LIF conditions were transfected 

with the following NETs fused with either GFP or RFP – NET39, TMEM38A, 

TMEM120A and TAPBPL to assess the effects of this ectopic expression on pluripotency. 

H2B-mRFP, being a pan nuclear protein was used as a control. NET50, being a NET with 

no known effects on genome organisation was also used as a control. It has been previously 

shown that the localisation of a NET at the NE is often cell-type specific (Malik et al. 

2010b). Therefore, it is imperative to confirm the subcellular localisation of these NETs 

upon transfection in ES cells. All the NETs localise at the nuclear envelope showing a nice 

rim staining as expected (Figure 31A). However, transfection in mouse ES cells proved 
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especially challenging as these cells grow in tight clusters. Therefore, to study the effects 

of transfection of NETs on pluripotency, the cells were subjected to transfection, followed 

by FACS sorting to yield a population of transfected cells (Figure 31B). Using 

untransfected cells as controls, forward scatter plots were used to determine gates for the 

Alexa-fluor 488A (GFP) and PE-Texas Red-A channels (RFP) (Figure 31C). Using these 

gates, fluorescent transfected cells as seen in Figure 31D were sorted that could then be 

studied in culture for morphological changes. The sorted cells were then replated on gelatin 

coated plates (10k cells/well of a 24 well plate) in complete medium containing LIF 

overnight. 

 

 

 

 

 

Figure 31: Tissue specific NETs localise at the NE in ES cells. A. Representative 

immunofluorescence images of ES cells transfected with histone H2B and other NETs as shown. 

All the NETs localise at the NE. B. Schematic showing the experimental design for enriching 

transfected ESCs expressing tissue specific NETs for experiments characterising their pluripotent 

state. C. Design and gating strategy for flow cytometry to sort the cells expressing GFP/RFP tagged 

NETs. Unstained cells were used to identify the population of single cells (a and b) which were 

subjected to gates in the Alexa-fluor 488-A and PE Texas Red-A channels. D. Representative FACS 

images showing the transfected cells expressing GFP or RFP tagged NETs in the corresponding 

channels that were sorted for further experiments.  
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The process of transfection followed by sorting itself causes about 7% of the untransfected 

cells to show fibroblast like morphologies highlighting the delicate nature of stem cells in 

culture and how easily prone these cells are to differentiation. Curiously, in spite of the 

presence of LIF in the culture medium, cells transfected with genome organising NETs like 

NET39, TAPBPL, TMEM120A, and TMEM38A showed a significantly higher percentage 

of fibroblast like flattened cells compared to those that were transfected with H2B or 

NET50 (Figure 32). For several days post sorting, these cells were maintained in culture in 

presence of LIF. The controls took well to the culture conditions forming well defined 

colonies of pluripotent cells while the cells transfected with the genome-organising NETs 

formed colonies but also had several spontaneously differentiated cells with the 

characteristic flattened morphology and extended processes (data not shown). Although 

these cells were sorted on the basis of them expressing the NETs, the expression of proteins 

following transient transfection often lasts only for ~48-72h post transfection. Whether the 

effects of transient expression of NETs are reversible upon loss of expression is a curious 

question and remains to be studied. 

 

 

 

 

 

Figure 32: Cells expressing genome organising NETs show fibroblast like flattened morphologies. 

10k transfected cells sorted using FACS were re-plated per well of a 24 well gelatin-coated plate in 

serum/LIF culture conditions overnight. Post adhesion of cells to the plate i.e. 24h post replating, 

the percentage of cells with fibroblast-like morphologies was scored in each sample. Cells 

expressing genome organised NETs show a higher percentage of fibroblast-like cells characteristic 

of spontaneous differentiation. Statistics were performed using Students t-test. **p<0.01, 

****p<0.0001. 
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Morphological changes are characteristic of differentiation and lineage commitment and is 

a result of cytoskeletal reorganisation and differential expression of adhesion proteins on 

the cellular surface. In fact, this property has been exploited in a study where different 

scaffold architectures were used to enhance osteogenic differentiation to aid in the 

development of novel scaffolds for bone regeneration (Guvendiren et al. 2017). Taken 

together, these results suggest that NETs with the ability to reorganise the genome have a 

greater effect on compromising stem cell pluripotency. 

 

5.3 Cells co-transfected with tissue specific NETs show flatter colony 

morphology but no changes in surface markers  
 

While the expression of single NETs alone showed morphological changes, it is of interest 

to see if the effects might be compounded when more than one NET is co-transfected. 

Additionally, in the previous set of experiments, morphological changes were observed 

several days post transfection and sorting since cells were sorted 48h post transfection and 

scored for morphology 24h post sorting. Additionally, the percentage of fibroblast like cells 

were counted manually under the microscope. To have a better understanding of the 

characteristic morphological changes in response to ectopic expression of the genome-

organising NETs, it was imperative to image them over time. To this effect, ES cells were 

both single- and co-transfected with two of the genome-organising NETs that showed 

promising effects in the previous set of experiments – TAPBPL and NET39 – and NET50 

and H2B transfections were again used as controls. The transfected cells were subjected to 

FACS sorting 48h post transfection and replated on gelatin coated plates in complete 

culture medium with LIF. However, in this instance, phase contrast images were taken of 

these cells every three hours over three days using Incucyte, which is a powerful live-cell 

analysis tool with an automated microscope set up inside the tissue culture chamber. As 

anticipated, untransfected cells and those transfected with H2B or NET50 continue to grow 

in well-defined colonies. However, when the cells are co-transfected with TAPBPL and 

NET39, the effects are compounded with a much higher proportion of the cells expressing 

flatter morphology, loss of well-defined colonies and various cells developing extended 

processes (Figure 33). 

Mouse ES cells characteristically proliferate at an unusually rapid rate, with a doubling 

time of roughly 8-10h. These cells have a short G1 phase with a high proportion (~65%) of 
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cells in S phase. With the formation of the germ layers, cell cycle typically restructures so 

that the length of G1 phase is now longer, resulting in increased division times (Lawson, 

Meneses, and Pedersen 1991). There are several explanations as to why an extended G1 

phase might facilitate differentiation. The transition from pluripotency to fate 

determination requires an extensive re-wiring of the transcriptional network that then 

results in a wide range of biological changes including changes in cell size and shape, 

acquisition of contact inhibition, expression of cell surface markers, etc and a longer G1 

phase may allow for this re-wiring of the network. The G1 phase also provides a more 

permissive chromatin state to respond to extrinsic fate determinant signals so that the 

corresponding epigenetic changes, genome organisation changes and changes in 

transcriptional activity might occur. Several reports place Myc and the Rb-E2F pathway at 

the centre of the regulatory network that links the cell-cycle machinery with self-renewal 

of pluripotent cells (Singh and Dalton 2009). Interestingly, it was observed that cell cycle 

perturbations also change the timing and the course of differentiation in a model for muscle 

differentiation (V. C. Li and Kirschner 2014). Thus, the balance between proliferation and 

differentiation is achieved primarily through changes in cell cycle durations such that as 

cells begin to commit to a lineage, there is a marked decrease in the proliferation time due 

to an increase in G1 phase. 

As the cells transfected with tissue-specific NETs showed morphological changes 

characteristic of differentiation, it was also of interest to study if these cells had a slower 

growth rate. The Incucyte system enables real-time automated cell proliferation assays in 

three ways – a label-free method depending on confluence, a label-free method depending 

on direct cell count and direct cell count based on fluorescent labelling. Although the cells 

were transfected with GFP/RFP tagged NETs, the basis on which they were sorted, the 

sorting itself was done 48h post transfection after which the cells were imaged for 3 days. 

Thus, fluorescence was not a reliable means to study the cell cycle as there would be a loss 

in fluorescence over time as it happens in transient transfections. Since these cells tend to 

grow in colonies often on top of each other and have no contact inhibition, it is difficult to 

mark cell boundaries accurately on the Incucyte. Therefore, growth rate using direct cell 

counts on the Incucyte could also provide false values. Thus, confluence was used to study 

growth rates. As anticipated, all the controls have similar growth curves. Cell transfected 

with single NETs show no significant deviation in growth curves either. It was expected 
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that at least the cells co-transfected with TAPBPL and NET39 would have slower 

proliferation rates and in agreement with that the growth curve itself shows a marked 

deviance from the curves for the controls (Figure 34). However, if cell sizes and shapes 

were similar, such marked deviance would reflect an increase in proliferation. In this case 

as the cells have a flatter morphology occupying larger areas on the plate, the confluence 

of the plate is higher. And as a direct count of cells is not easy to obtain for these cells, 

growth curves studied by confluence are not really reflective of proliferation rates of these 

cells.  

 

 

 

 

 

 

 

 

Figure 33: Representative phase contrast images of untransfected cells (UT) and cells transfected 

with histone H2B, NET50 and co-transfected with TAPBPL and NET39 taken on the Incucyte. Cells 

were sorted 48h post transfection, re-plated on gelatin coated plates overnight and imaged for three 

days following that.  
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Finally, in an attempt to study if the potential differentiation of these cells due to the 

expression of tissue-specific NETs might lead to a difference in cell surface markers, I used 

FACS to study the expression of SSEA-1 expression on these transfected cells. SSEA-1 is 

regarded as an excellent cell surface marker to monitor early stages of ES cell 

differentiation (Fox et al. 1981). An SSEA-1 antibody conjugated to Alexa647 was used 

for the FACS study and gated as shown in Figure 35A. Cells transfected with NETs 

TAPBPL, TMEM38A, NET39 and TMEM120A were analysed for SSEA-1 expression 

along with some cells co-transfected with NET39 and TAPBPL, which shows promising 

differences in colony morphologies. Additional co-transfections of TAPBPL with 

TMEM38A and TMEM120A were also analysed in this experiment. However, an overlay 

of the SSEA-1 expression histograms clarifies that none of the cells ectopically expressing 

NETs showed any difference in the expression of SSEA-1 72h post transfection (Figure 

35B).  

 

 

Figure 34: Growth curve plotted as percentage confluence. Untransfected cells (UT) and cells 

transfected with NETs were sorted and re-plated on gelatin-coated plates and imaged over 3 days. 

Cells transfected with NETs TAPBPL and NET39 individually show similar growth rates to 

untransfected cells and controls expressing H2B and NET50. But co-transfected cells show higher 

percentage confluence owing to the flattened morphologies. 
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5.4 Continued induction of tissue specific NETs in ES cells leads to exit 

from pluripotency in presence of LIF 
 

In addition to the low efficiency of transient transfection in ES cells, this method is not 

ideal for studying such problems as differentiation as it poses the following challenges. 

1. As the transfected genetic material is not integrated in the host genome, the effects 

of transient transfection are time limited and are lost during ongoing cell division. 

Thus, one cannot study the long-term effects of protein expression using this 

method. 

2. Some of these experiments, such as those on the Incucyte, have been done over the 

course of 5 days post transfection. Over this time, certain cells would lose 

expression while others might still retain it. Such heterogeneous loss of expression 

might present difficulties in assaying the phenotypes. It would also remain unclear 

if the effects of NET expression in these cells are reversible. If the effects are 

irreversible, the loss of protein expression over time may not affect the phenotypes 

observed but if the effects were reversible, one would not be able to account for the 

variability this might introduce in the results. 

3. Although the transfected cells have been sorted for, these cells show a range of 

expression levels for the proteins they express. Thus, it is impossible to assay 

whether protein levels itself might affect the phenotype. It is entirely possible that 

low level expression of a NET in a particular cell might cause no phenotype but a 

higher expression level will s that the population levels measured for expression are 

Figure 35: SSEA-1 expression in cells transfected with tissue specific NETs. A. Cells were stained 

with SSEA-1 conjugated to Alexa Fluor 647 and gate used to identify SSEA-1 positive population is 

shown. B. Overlay of SSEA-1 profiles for the indicated samples.  
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misleading. It is also possible that moderate expression level over time is important 

for these cells to undergo differentiation. Such intricate details cannot be studied 

using transient transfections. 

In light of these challenges, there was a need to generate clonal cell lines stably expressing 

NETs so that the effects of ectopic expression of these NETs on pluripotency could be 

studied over longer durations. However, continuous expression of NETs with known roles 

in reorganising the genome might itself cause an irreversible exit from pluripotency. 

Therefore, Doxycycline-inducible stable cell lines were generated to express NET50, 

NET39 and TAPBPL (Figure 36A). The clones were carefully picked such that they neither 

express very low nor very high amounts of the protein upon induction (checked 

microscopically, data not shown) and the NETs all show predominant localisation at the 

NE as expected. These inducible stable cell lines were the ideal system to study the effects 

of prolonged expression of NETs on the pluripotent status of ES cells.  

A classical marker of pluripotent cells is the expression of alkaline phosphatase (AP), 

which is lost upon their differentiation. It has been previously shown that spontaneous 

differentiation due to LIF withdrawal leads to morphological differences in cells indicating 

an exit from pluripotency followed by a loss of AP expression over several days (Trouillas 

et al. 2009). In an attempt to study if the prolonged induction of NETs might force a similar 

exit from pluripotency and a loss of AP expression, the tet-on stable cells lines were 

subjected to NET induction in presence of LIF for 6 days and stained for AP expression. 

AP positive colonies are seen as red colonies in this assay. As expected, LIF withdrawal 

leads to both, characteristic flattening of cells indicative of the onset of differentiation and 

a loss of AP expression. Similarly, the prolonged induction of TAPBPL and NET39 also 

leads to near complete loss of AP expression and distinct changes in colony morphology 

as observed in the experiments with transient transfections (Figure 36B). For the purpose 

of quantitation, only completely red colonies were counted as AP positive. By this estimate, 

only about 25% of the colonies were AP positive upon the prolonged expression of 

TAPBPL and NET39 (Figure 36C). 
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5.5 Tissue specific NETs show specificity in the pluripotency loci they 

tether to the periphery 
 

The loss of ES cell pluripotency upon over expression of tissue specific NETs like TAPBPL 

and NET39 emphasises the importance of regulating the expression of such proteins during 

Figure 36: Prolonged expression of genome organising NETs leads to exit from pluripotency. A. 

Representative immunofluorescence images showing the expression of NET50, NET39 and 

TAPBPL when cells are induced with doxycycline. B. Alkaline phosphatase expression (red) in cell 

lines induced with doxycycline. Ctrl represents standard E14tg2a cells grown with and without LIF. 

The stable cell lines for TAPBPL, NET39 and NET50 are grown in presence of LIF. Both uninduced 

(UI) and induced (I) samples are cultured in presence of LIF. TAPBPL and NET39 expression leads 

to a loss of alkaline phosphatase expression even in pluripotent culture conditions. This is similar 

to the effects of LIF withdrawal for several days. C. Quantitation of alkaline phosphatase positive 

colonies for the samples shown in B. Uniformly red colonies were scored as AP positive in each 

condition.  
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development. It is intriguing that while the prolonged expression of these proteins leads to 

an unequivocal loss of pluripotency, the effects of NET50 overexpression are milder. Since 

all the three NETs are tissue-specific, and the known difference between them is their 

ability to affect genome organisation, it is of interest to study whether their ability to affect 

genome organisation aids in the exit from pluripotency.  

That tissue specific NETs alter genome organisation even in heterologous systems has been 

previously shown (de las Heras et al. 2017). Interestingly however, while NET39 

expression regulates the radial position of about 20% of the myogenic genes during in vitro 

differentiation of myoblasts, only 3% of these seem to be affected in a heterologous system, 

suggesting that when a tissue specific NET is appropriately expressed in the context of 

other factors such as transcriptional regulators expressed during differentiation, its role in 

orchestrating genome organisation is much more significant. Furthermore, the correlation 

between repositioning genes and their expression status is weaker in a heterologous system 

(de las Heras et al. 2017). Thus, it would seem that the expression of a NET alone is not 

enough to affect gene expression networks and other factors such as the presence of 

transcriptional activators/repressors and chromatin remodelling proteins might also 

contribute to the differentiation association changes during physiological development. In 

the present context, I was interested in studying if the ectopic expression of tissue specific 

NETs could affect the radial position of certain pluripotency genes.  

Chapter 3 elaborately describes the rapid repositioning of the Rex1 locus within an hour of 

LIF withdrawal which leads to an exit from pluripotency. Considering how quickly this 

locus repositions from the nuclear interior to the nuclear periphery, it is perhaps one of the 

first changes to take place during exit. I have also shown that this repositioning is tightly 

related to exit and that resubstituting the medium with LIF quickly results in the locus 

returning to its position in the nuclear interior. Thus, Rex1 repositioning is a reliable marker 

to confirm the exit of ES cells from naïve pluripotency. In the same chapter, I have also 

described the slight relocation of the Nanog locus towards the nuclear periphery during 

early stages of exit and that this is due to a distal tether established by a LAD near the 

Nanog locus which only appears following exit. Finally, I have also shown that the Ptn 

locus does not reposition during early stages of exit and is found at the nuclear periphery 

in ES cells. However, DamID data from previous studies (Peric-Hupkes et al. 2010) 

suggests that as ES cells commit to defined neural lineages, the Ptn locus is released from 
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the periphery. Thus, using these three loci, I studied the effects of overexpression of tissue 

specific NETs in ES cell genome organisation.  

Tet-On stable cell lines for NET39, TAPBPL and NET50 overexpression were maintained 

in serum/LIF culture conditions. Doxycycline treatment was used to induce the expression 

of NETs in pluripotent culture conditions. Cells were harvested at 48h post induction for 

FISH on the three loci mentioned above. Of the three NETs, only NET39 expression caused 

Rex1 repositioning from the nuclear interior to the nuclear periphery, as is seen during exit 

due to LIF withdrawal (Figure 37A). This is interesting because both NET39 and TAPBPL 

overexpression led to an exit from pluripotency, as detected by the loss of alkaline 

phosphatase expression (Figure 36 B and C). Yet, TAPBPL expression seems to not affect 

Rex1 repositioning, which is one of the earliest changes seen during exit. Alkaline 

phosphatase expression was studied at 6 days post induction and so it is entirely possible 

that Rex1 might reposition later during TAPBPL mediated differentiation of these cells. 

However, if this were the case, it would mean that the expression of TAPBPL by itself does 

not directly tether the Rex1 locus to the periphery and that TAPBPL expression might bring 

about other changes, either by affecting the position and expression of other genes or 

through some other means, leading to exit and Rex1 repositioning merely happens as a 

result of exit. On the other hand, while NET50 and NET39 do not affect Nanog gene 

position, TAPBPL seems to recruit it to the periphery more strongly than it is seen to be 

recruited during exit caused by LIF withdrawal. Similarly, TAPBPL expression also seems 

to mildly affect Ptn gene position and although statistically insignificant, the spread of data 

points suggests that the locus is released from the periphery (Figure 37B and C). Thus, 

while it is still not possible to absolutely determine a direct tethering function from these 

experiments, the specificity of effects on the three genes studies here due to NET 

overexpression strongly suggests a direct role for NET39 in the Rex1 repositioning and for 

TAPBPL in Nanog repositioning. 
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5.6 Discussion 
 

In this chapter, I have studied the expression of various NETs during early embryonic 

stages of mouse development. I have shown that tissue specific NETs are expressed at very 

low levels during the earliest stages of development. Some NETs show a fluctuation in 

their expression. For instance, blood NET MYADM is expressed in e6.5 and e7.5 stages of 

embryonic development, during which the first erythroid precursors are observed. It is 

possible that the stage-specific expression of NETs is a mechanism by which their 

developmental roles are controlled.  In keeping with this idea, other NETs such as NET39, 

TAPBPL, TMEM120A, etc, which have been previously studied in the Schirmer lab for 

their roles in differentiation and genome organisation, are expressed at low levels during 

Figure 37: NETs tether pluripotency loci. Distance from periphery measurements for Rex1 (A), Ptn 

(B) and Nanog (C) in uninduced cells (UI) and upon NET50, TAPBPL and NET39 expression 

induced by addition of doxycycline (I). NET39 tethers Rex1 to the periphery while TAPBPL 

expression leads to recruitment of Nanog at the periphery.  **p<0.01, ***p<0.001, ns p>0.05.  
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early embryogenesis suggesting that potentially, these NETs potentially have roles in 

lineage committed tissues.  

Mouse development is the most tractable in mammalian species and thus, this has been 

studied with great interest over several decades. Stage e6.5 marks cell movements that 

characterise gastrulation which is followed by the increasing definition of the neural plate 

and the development of extra embryonic tissues at e7.5. Between e6.5 and e10.5, the 

development of the cardiovascular system, thymus, neural and muscular structures are seen 

(Kaufman and Bard 1999). The first two developmental needs of a growing embryo are 

blood, so that it may be able to obtain nutrition and oxygen through placental exchange, 

and a functional heart and cardiovascular system so that this blood may be pumped to the 

various parts of a growing foetus to support its increasing size and further development. 

Embryonic haematopoiesis in mice starts right after gastrulation when a subset of the 

specialised mesodermal precursor cells commits to becoming blood cells. Haematopoietic 

cells are observed as aggregates, termed blood islands, until yolk sac vasculatures are firmly 

formed and these aggregates are observed as early as embryonic day 7.5. Such yolk-sac 

derived blood cells constitute a transient wave of embryonic and foetal haematopoiesis 

(Mikkola and Orkin 2006; Yamane 2018). At the same stage of e7.5, the first cardiac 

precursors in the splanchnic mesoderm differentiate into cardiomyocytes and form a 

bilateral structure known as the cardiac crescent in the mouse. By complex morphogenetic 

processes, this cardiac crescent subsequently transforms into an early heart tube. 

Eventually, through a coordinated flow of calcium ions between different cardiomyocytes, 

the heart starts beating (Tyser et al. 2016; Ivanovitch, Temiño, and Torres 2017). Thus, 

broadly speaking, the first two tissue types to be defined during mouse development are 

blood and muscle (heart) as early as e7.5, followed by the development of other tissue types 

and organs.  In line with this, MYADM, previously described to be blood-specific, shows 

a spike in expression at e6.5 followed by a stark downregulation. On the other hand, blood 

specific TAPBPL and STT3A show fairly consistent expression levels during the early 

stages of development with perhaps a marginal increase at e6.5 over ES cells. Analogously, 

while muscle specific NET WFS1 persists in expression until e6.5 followed by its 

downregulation, NET39 shows a fairly constant expression over these stages. If the above-

mentioned hypothesis were true, such expression patterns might suggest a functional 

importance for MYADM during hematopoietic origins and for WFS1 in heart development, 
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as these are the earliest tissue types to form during mouse development. While the 

formation of the adipose niche is poorly understood during embryogenesis, perilipin+ or 

adiponectin+ proliferating preadipocytes are seen only at e16.5 (Hong et al. 2015). The 

fluctuations in levels of fat-specific TMEM120A during the early stages discussed here are 

curious and might draw relevance from other functions of the protein, for example, as an 

ion channel (Beaulieu-Laroche et al. 2020), but it could also reflect an early transient 

function in genome organisation.  

Furthermore, I studied the effects of ectopic expression of tissue specific NETs such as 

NET39, TMEM120A, TAPBPL and NET50 in ES cells with the aim of understanding if 

such ectopic expression might lead to a forced exit from pluripotency in spite of 

maintaining these cells in culture conditions. I have shown that when these NETs are 

transiently expressed in ES cells, it is accompanied by morphological changes that signify 

the onset of differentiation. However, I did not detect any changes in SSEA1 levels. This 

could be due to various reasons. While morphological changes in these cells have been 

detected 48-72 post transfection, it is possible that SSEA-1 downregulation might only 

occur later. It is known that changes in morphology by visual observation are a faster 

indication of the onset of differentiation than the downregulation of markers such as Oct4, 

SSEA-1, or alkaline phosphatase (Berrill et al. 2004). It is also known that SSEA-1 

expression is heterogeneous in an undifferentiated ES cell population while CD9 

expression is more ubiquitous (Cui et al. 2004). Thus, assaying CD9 expression could have 

been a better indicator of the pluripotent status of these cells. In conclusion, studying 

SSEA-1 levels alone is by no means sufficient to comment on the differentiation status of 

these cells as that would require a more comprehensive study of the expression of a few 

different markers of pluripotency and differentiation. 

Transient transfection poses several technical challenges in a study like this and to 

circumvent these, inducible stable cell lines for NET50, NET39 and TAPBPL expression 

were generated. Using these lines, I show that the prolonged expression of tissue specific 

NETs leads to a loss of alkaline phosphatase expression which is a classical marker of 

pluripotency. The effects of TAPBPL and NET39 expression are stronger than those 

mediated by NET50 in terms of loss of AP activity. However, prolonged expression of 

NET50 seems to also lead to loss of AP activity, suggesting that a certain population of 

cells exit pluripotency upon longer expressions of this NET. While NET50 was picked as 
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a control for a nuclear envelope protein with no known ability to alter genome organisation, 

it needs to be reiterated that these NETs were screened for their genome organisation effects 

with FISH for whole chromosomes and with LacO arrays inserted into chr5 and chr13 in a 

non-pluripotent cell line. Thus, the inability to reposition any of these arrays or 

chromosomes is merely indicative of its lack of genome organising abilities but not 

confirmative of it. It is possible that NET50 affects the position of other untested genomic 

regions. Furthermore, NET50, though unknown for its genome organising effects remains 

a tissue-specific NET and has been studied for its effects on nuclear size and a potential 

role in prostate cancer progression (Rizzotto et al. 2020). Thus, its prolonged expression 

could have other unknown effects in ES cells, one of which seems to be to promote an exit 

from pluripotency over time although the effects are not as strong as those mediated by 

TAPBPL or NET39 expression. 

Taken together, the observations thus far suggest that the ectopic expression of tissue 

specific NETs in ES cells, either by transient transfection or a prolonged expression by 

doxycycline induction, leads to their exit from pluripotency in spite of the presence of LIF 

in the medium. As a proof of concept, this was shown in another study with the 

overexpression of NET5/SAMP1, an inner nuclear membrane protein typically expressed 

in muscles, in human iPS cells. Even under pluripotent culture conditions, the ectopic 

expression induced a rapid differentiation of iPS cells as measured by changes in colony 

morphology, increase in Lamin A/C expression and the gain of the neuronal marker βIII 

tubulin after about 6 days of  SAMP1 expression (Bergqvist et al. 2017).  However, the 

study only used transient transfections and did not look at the loss of any pluripotent 

markers to characterise the exit. Furthermore, they did not explore genome reorganisation 

as a potential cause of differentiation due to SAMP1 expression.  

Curiously, in my experiments, while NET39 alone had the ability to reposition Rex1, 

TAPBPL affected Nanog and Ptn gene positions. These results reiterate what we know 

about NETs from other studies in the Schirmer lab, which is that they are very specific in 

the genes they target. The gene position changes seen for both Nanog and Ptn loci are 

stronger than those observed during exit and it suggests that TAPBPL overexpression 

reorganises the genome in ES cells but not in a manner similar to that during exit. This 

observation in particular highlights the importance of controlled and stage-specific 

expression of these NETs in their target tissues as their misexpression can cause a mis-
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regulation of genome organisation which could lead to developmental defects. It would be 

interesting to study if the prolonged expression of these tissue specific NETs in 

combination with LIF withdrawal might in fact lead not just to exit from pluripotency but 

also affect cell fate determination.   
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Chapter 6 

Discussion 

The work discussed in this thesis is at the cusp of the broad fields of stem cell biology and 

genome organisation. Using a combination of fluorescence in situ hybridisation (FISH), 

mass spectrometry and other cell-based assays to study pluripotency, this study 

characterises changes in genome organisation taking place during the early hours of exit 

from pluripotency. It furthers our understanding of the composition of nuclear envelope in 

pluripotent cells and identifies the differences in the composition over the first couple of 

hours of in vitro differentiation when cells exit their pluripotent state. The study identifies 

two key proteins that play a role in the regulation of the tethering of the Rex1 genomic locus 

either directly or indirectly. Finally, through a series of experiments involving ectopic 

expression of tissue-specific NETs in ES cells, the study highlights the importance of stage-

specific expression of NETs during development. 

6.1 Regulating the transition from naïve pluripotency 

The developmental potential of cells, termed pluripotency, is an interesting state of cell 

identity. This state is maintained through a complex yet poorly understood interplay 

between 3D genome organisation, the epigenome and transcription factors. Through 

several studies conducted over the past decade, scientific jargon has now been reformed to 

define exit from pluripotency and differentiation as being related but non-identical.  

The departure from naïve pluripotency is a multi-step process which progresses through a 

continuum of naive, formative and primed states. Each of these states has a distinct 

transcriptome. The departure from naïve pluripotency is enabled by the remodelling of 

transcriptional, epigenetic, signalling and metabolic networks through which cells enter an 

executive state where they gain responsiveness to specification cues. Transcription factors 

like Oct4, Sox2 and Nanog play a key role in the maintenance of pluripotency. In addition 

to the core factors, other transcription factors like TCF3, ETV5 and RBPJ have been 

characterised as ESC regulators. A triple knockout of these three factors liberates ES cells 

from their dependence on 2i or LIF for maintaining pluripotency (Kalkan et al. 2019). In 

other words, the absence of these three factors permanently locks the cells in their 

pluripotent states and prevents their exit even in the absence of 2i/LIF. Genes like p53, 



139 

 

Jarid2, TCF7l1 and Fbxw7 have also been identified in genome-wide CRISPR-KO studies 

as being important for promoting exit (T. Zhao and Xu 2010; Landeira et al. 2015; Yang et 

al. 2020). In fact, the transcriptional networks governing naïve and formative states have 

distinct target genes. During the early time points after induction of differentiation, 

transcriptional regulation mediated by naïve transcription factors dominates the 

transcriptional networks. The pivotal transformation where the formative transcriptional 

networks override the naïve networks occurs between 12-24h of in vitro differentiation (H. 

J. Kim et al. 2020).  While the transcription factor network maintaining pluripotency has 

drawn considerable attention over the years, little is known about the changes in genome 

organisation during exit. Whether genome organisation changes would even occur in the 

small window lasting about a day when cells exit pluripotency was previously unknown. 

Most studies thus far addressing genome organisation changes focus on large scale changes 

in LAD and TAD organisation over later time points during the course of lineage 

commitment which takes several days in vitro. The first 24 hours of exit are interesting as 

the events in these hours set the stage for eventual lineage commitment and genome 

organisation changes have not been studied within this short window. The fundamental 

understanding of the events in this reversible state leading up to the formative state are key 

to understanding how these cells gain competence.  

Studies from the Smith lab have been instrumental in identifying the malleability in the 

transition from naïve pluripotency. By tracking the transition using Rex1 promoter activity 

as a marker, they have described the initial stages of the transition as reversible and the loss 

of Rex1 promoter activity clearly delineates the boundary between naïve and formative 

stages (Kalkan et al. 2017; Mulas, Kalkan, and Smith 2017; A. Smith 2017). This same 

genomic locus was identified in a DamID experiment, performed a decade ago, to 

reposition from the nuclear interior in ES cells to the periphery in neuronal lineages (Peric-

Hupkes et al. 2010). Together, these two pieces of information suggest that the 

transcriptional status of this locus somehow dictates the state of cells. Thus, I decided to 

look at the temporal dynamics of its repositioning and found that it moves from the nuclear 

interior to the periphery within the first hour of exit stimulated by LIF withdrawal. In 

addition to being rapid, this repositioning is also reversible during exit. While REX1 is 

dispensable to pluripotency in mouse ES cells (Masui et al. 2008), it is essential for 

maintaining their undifferentiated state in human ES cells (Son et al. 2013). Therefore, it 
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would be important to test if the genomic locus repositions in human ES cells at all during 

exit and if it does, it would be crucial in establishing the time course for its repositioning.  

The drawback of experiments presented in this thesis is that it uses a DNA-FISH, which is 

a very low throughput technique. However, this study is the first of its kind to characterise 

genome organisation changes at such early stages of exit. Thus, it sets the stage and defines 

the need for further experimentation using high-throughput techniques like DamID and 

HiC to study LAD and TAD reorganisation during exit. The results from DamID would 

demonstrate if large scale repositioning events occur to and from the NE during exit. If they 

do, it would establish the NE as being extremely important in regulating genome 

organisation changes leading up to pluripotency exit. Looking at genomic regions 

repositioning at early hours of exit would additionally identify gene targets that are 

potentially positionally regulated for their expression. These gene targets would make for 

interesting candidates to study also for their role in establishing competence, which makes 

pluripotent cells responsive to differentiation cues. HiC at early stages of pluripotency exit 

establish changes in TAD organisation that might illustrate changes in the distal 

interactions between genes and regulatory elements. Perhaps the slight movement of the 

Nanog locus towards the periphery leads to a change in its interactions with regulatory 

elements. Such changes would be better understood by interpreting HiC data to see if the 

TAD organisation around this locus changes.  

The lack of an immediate transcriptional shut down post repositioning suggested that the 

locus might contain regulatory elements which are perhaps positionally regulated. The 

recent discovery of a putative superenhancer (S. Zhang et al. 2019) bound by naïve 

transcription factors Oct4, Nanog and Sox2 upstream of the Rex1 promoter element along 

with the putative superenhancer that I discovered in my analysis make for at least two 

known enhancers within this genomic locus. The superenhancer discovered by Zhang et al 

interacts with the Rex1 promoter (S. Zhang et al. 2019). The superenhancer I discovered 

interacts with Triml2, a gene within the same locus. However, neither of these enhancers 

have been characterised yet for their interactions with any other gene targets. Additionally, 

positional regulation of the enhancer activity is yet to be confirmed with experiments. 

Towards that end, it would be interesting to do a 4C experiment in ES cells with the 

enhancers as the viewpoint to look at other genes that the enhancer interacts with. 
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Comparing 4C information from cells with and without LIF withdrawal, would add 

strength to the hypothesis that this enhancer is positionally regulated. 

Superenhancers control gene expression programs by associating with promoters and 

modulating their transcriptional output. Promoter capture HiC has revealed that ES specific 

promoter-superenhancer interactions often span large distances over 800kb. These long-

range interactions are rewired and replaced by associations over shorter distances in 

epiblast stem cells which are developmentally more advanced. This suggests that long-

range superenhancer interactions are a hallmark of pluripotency (Novo et al. 2018). Studies 

from the Smith lab present evidence showcasing the importance of the Rex1 promoter 

activity in marking the transition from naïve pluripotency. REX1 protein itself is 

dispensable to pluripotency (Masui et al. 2008). Crucially, the mouse knockout allele for 

Rex1 was generated by replacing the first 100bp of the open reading frame in exon4 with 

an EGFP gene cassette containing puromycin resistance gene. This would render the 

protein functionally null. However, 5’superenhancer identified by Zhang et al and the 

predicted enhancer in the intronic region identified in this study would both have been left 

undisturbed by this manipulation. Therefore, the results presented here would argue 

strongly for further studies exploring the role of this superenhancer in the maintenance of 

naïve pluripotency. 

6.2 Genome organisation in ES cells 

The NE anchors a large part of the genome thereby freeing up the nucleoplasmic space for 

DNA-DNA and DNA-protein interactions. The anchoring tether involves the 

DNA/chromatin and the NE proteins. Genomic regions often reposition to and from the 

periphery in a regulatory manner that influences their function, whether they are regulatory 

elements or protein coding genes. Chromatin tethers at the NE are likely established by 

multi-protein complexes involving NETs, lamins and chromatin remodellers. For instance, 

NETs like MAN1 and LAP2β can bind to DNA directly (Cai 2001; Caputo et al. 2006). In 

fibroblasts, the tethering of IgH and Cyp3a loci at the NE requires LAP2β together with its 

silencing partner HDAC3 and the transcriptional regulator cKrox (Zullo et al. 2012). One 

proposed hypothesis for how these tethers are stabilised at the NE is the nut-and-bolt model 

where the components of the multi-protein complex fan out under the membrane to better 

distribute the forces to withstand the pulling forces exerted by large chromosomal tethers 

(Czapiewski, Robson, and Schirmer 2016). Several studies in the Schirmer lab have 
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focused on addressing the roles of tissue specific NETs in genome organisation. However, 

we know little about the NETs or their complexes in ES cells that might play a role in 

orchestrating genome organisation. 

Experiments from this thesis indicate a role for LBR and LAP2α in the repositioning of 

Rex1 from the nuclear interior to the periphery upon differentiation. While these 

mutagenesis experiments indicate that their phosphorylation status affect the repositioning 

phenotype for the Rex1 locus, they are not sufficiently informative about whether the 

phenotype is an effect of direct binding. Towards that end, it would be interesting to add a 

nucleolar localisation signal (NOLS) to the two proteins and test whether the locus 

repositions to the nucleolus, rather than to the NE. If it does, this would indicate that the 

binding of the chromatin to either/both of these proteins is direct. Furthermore, chromatin 

immunoprecipitation experiments designed to pull down LBR and LAP2α in cells 

subjected to LIF withdrawal, will yield more compelling results establishing the physical 

association of these proteins with the locus either directly or as part of a larger complex. 

These experiments open up the one important question that needs answering: 

How do LBR and LAP2α control the repositioning dynamics of this locus? 

The role of LBR in tethering the locus to the periphery is easier to imagine as it is a bona 

fide NET that provides essential chromatin docking sites at the NE. It binds to LaminB1 

through the RS and TUDOR domains and selectively interacts with heterochromatin, 

inducing chromatin compaction and repressing transcription (reviewed by Castro-Obregón 

2020). The phosphorylation of Ser-71 and Ser-86 has been previously shown to inhibit the 

chromatin binding activity of LBR (Takano et al. 2004; Tseng and Chen 2011). While the 

NMR structure of TUDOR domain in chicken LBR has been solved (Liokatis et al. 2012), 

we lack the structural knowledge of the RS domain that contains these two mutations and 

the experiments presented here argue for a need to study the RS domain carefully for its 

role in tethering chromatin during pluripotency and early differentiation. 

LAP2α is predominantly nucleoplasmic as it lacks the C-terminal transmembrane domain 

anchoring 4 of the 6 isoforms to the NE (Dechat 1998). LAP2α also binds to Lamin A/C 

through its C-terminal domain (Dechat et al. 2000). While this interaction maintains a 

nucleoplasmic pool of LaminA/C, a subfraction of LAP2α might similarly associate closer 

to the NE. The interaction of LAP2α with chromatin depends on an N-terminal domain 

(Kazuhiro Furukawa, Fritze, and Gerace 1998) and a C-terminal α-specific domain (Vlcek 
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et al. 1999), which house the three phosphorylation sites mutated in this study, namely 

serines 66, 67 and 422.  

LAP2α also binds to chromatin modifier HMGN5 and the proteins reciprocally alter their 

interaction with chromatin (S. Zhang et al. 2013). Besides binding to chromatin, LAP2α 

has been shown to be an important anchorage protein for the retinoblastoma protein, pRb. 

This is shown by two key observations in the study. Firstly, the forced aggregation of 

LAP2α and Lamin A/C by the expression of dominant negative lamin mutants leads to an 

accumulation of Rb within the aggregates. Secondly, cells with low LAP2α expression 

show the absence of hypophosphorylated Rb in the nucleus (Markiewicz et al. 2002). Thus, 

LAP2α stabilises pRb in the nucleoplasm by anchoring it to nucleoplasmic lamins. 

Furthermore, LAP2α also regulates cell cycle progression by binding to the C-terminal 

region of hypophosphorylated Rb and delaying its deactivation and maintaining E2F in a 

repressed state (Dorner et al. 2006). An additional role for LAP2α as a chaperone was 

reported recently. It was found that the acetylation of the transcription factor GLI1 regulates 

its binding to LAP2α and LAP2β. Acetylated GLI1 binds to LAP2β and is sequestered at 

the inner nuclear membrane for subsequent activation. In the nucleoplasm, active 

deacetylated GLI1 is bound by LAP2α that stabilises it on the chromatin (Mirza et al. 2019). 

Thus, the roles of LAP2α in the nucleoplasm are not singularly of the chromatin binding 

nature. It seems to be that the LAP2α-Lamin A/C complex acts as a docking site to stabilise 

other proteins as well. 

The findings presented in this thesis imply that the phosphorylation status of serines 66,67 

and 422 in the chromatin binding domains determine the role of LAP2α in regulating the 

Rex1 repositioning dynamics. The experiments do not illuminate the exact molecular 

mechanisms of how LAP2α might exert its regulatory function on Rex1 repositioning. 

However, some possibilities can be envisaged: first, it could be that when the serines are 

dephosphorylated during exit, it leads to LAP2α binding to and chaperoning the locus to 

the periphery where it is then bound by LBR. Such a role for LAP2α as a physical 

chaperone for chromatin repositioning events has never been studied before. However, 

given its binding to Lamin A/C, which is distributed in the nucleoplasm and also found at 

the nuclear periphery, LAP2α would make for an ideal candidate to mediate chromatin 

repositioning. By binding to the locus, LAP2α might bring it in proximity to BAF, which 

might lead to DNA compaction and heterochromatinization which is essential to the 
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transcriptional shut down of the locus.  It could also be that the subfraction of LAP2α that 

is found closer to the periphery is the one that stabilises the locus at the periphery along 

with LBR. Second, it could be that the phosphorylation of these residues is somehow 

important for LAP2α-Lamin A/C complex formation. The LAP2α-Lamin A/C nexus might 

stabilise the naïve transcription factors that regulate Rex1 transcription in naïve cells. This 

can be tested by transfecting ES cells with the WT and phospho-null mutants of LAP2α 

and staining for nucleoplasmic Lamin A/C would reveal if the co-localisation of LAP2α-

LaminA/C is perturbed by the expression of the mutants. Since ES cells express very low 

levels of LaminA/C it might prove difficult to test for this directly in ES cells using IF and 

might require testing this hypothesis in an alternate cell line.  

Both LBR and LAP2α are developmentally important NETs. LBR predominantly tethers 

peripheral heterochromatin in early stages of development (Solovei et al. 2013). A 

knockdown of LBR facilitates cellular senescence (Arai et al. 2019; Castro-Obregón 2020) 

and the associated inversion in chromatin arrangement. A muscle specific knockout of 

LAP2α leads to an increase in myofiber associated stem cell pool but a delayed loss in 

satellite cell differentiation (Gotic et al. 2010). However, it has not been studied in context 

of maintenance of pluripotency. Investigating the mechanism by which the nucleoplasmic 

LAP2α and the NET LBR regulate the repositioning of the Rex1 locus would reveal a 

functional connection between nucleosome-binding and lamin-binding proteins and 

suggest an additional link between the chromatin fibre and the nuclear lamin network. 

Among the NETs that changed their phosphorylation status during exit, TMEM201 

appeared to lose phosphorylation. This is interesting as TMEM201 is an alias for 

NET5/SAMP1, which is a muscle specific NET that induces exit from pluripotency when 

introduced ectopically in human iPSCs (Bergqvist et al. 2017). We attempted to study the 

importance of this NET in Rex1 repositioning by generating phospho-null mutants but the 

high GC rich content in the sequence encoding the phospho-residues proved site directed 

mutagenesis tricky. However, both the presence and the change in phosphorylation status 

of TMEM201 during exit makes it an interesting NET to explore further for its role in 

genome organisation in ES cells. POM121 is another transmembrane nucleoporin that gains 

phosphorylation during exit. POM121 is an interesting nucleoporin as its soluble variant 

has been previously identified to interact with nucleoplasmic Nup98, a transcriptional 

regulator, at gene promoters to control transcription of its target genes (Franks et al. 2017). 
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Although its role in genome organisation has not been tested before, its potential role as a 

transcriptional regulator could imply its involvement in multi-protein complexes that 

function together in regulating gene position and expression. Thus, exploring the roles of 

these NETs in ES cells could shed further light into how genome organisation is maintained 

in the pluripotent and how these NETs might orchestrate the early changes in genome 

organisation and gene expression during exit. 

6.3 Could the introduction of NETs enhance differentiation protocols? 

Tissue specificity of the NE is key to establishing tissue specific genome organisation. With 

examples of muscle-, fat- and liver-specific NETs, studies from the Schirmer lab have 

shown how the presence of these NETs is crucial to genome organisation in these three 

systems (Korfali et al. 2010; Robson et al. 2016; 2017; Gatticchi et al. 2020). Further, tissue 

specific NETs are important for the terminal differentiation of lineage committed 

progenitor cells (Batrakou et al. 2015; Robson et al. 2016) and their absence in mice leads 

to metabolic imbalances(Gatticchi et al. 2020) and/or presents severe phenotypes 

resembling lipodystrophy (Czapiewski et al, unpublished data). These observations all 

insinuate crucial roles for NETs to ensure normal development. However, we lack studies 

presenting their importance in physiological development. 

The finding that a protein might act as a NET only in certain tissues (Malik et al. 2010a) 

highlights that their expression in a certain tissue alone does not guarantee their role as a 

NET. Their localisation at the NE is equally important. However, when expressed 

exogenously in heterologous systems, several NETs not only localise at the NE but also 

alter genome organisation (Zuleger et al. 2013; de las Heras et al. 2017). This highlights 

the need for tissue restricted expression of these NETs as their mis-expression could lead 

to detrimental developmental phenotypes. But a direct study addressing the effects of their 

mis-expression has not been done before, except the one study from Hallberg group 

showing that the ectopic expression of muscle specific NET5/SAMP1 in human iPSCs 

leads to an exit from pluripotency (Bergqvist et al. 2017). 

Ectopic expression of tissue specific NETs like TMEM120A, NET39 and TAPBPL in 

mouse ES cells leads to an exit from pluripotency characterised by the morphological 

flattening of colonies and a loss in alkaline phosphatase expression. This corroborates the 

proof of concept presented by the Hallberg group with SAMP1 ectopic expression. By 

generating inducible stable cell lines for the expression of NET39, TAPBPL and NET50, 
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we have generated valuable reagents that can be used to further study the effects of 

prolonged expression of these NETs on pluripotency.  

While the loss of alkaline phosphatase is a good marker of exit from pluripotency, this 

study could have benefitted from a better characterisation of this exit. For instance, it would 

be interesting to induce the expression of NETs in ES cells and establish the time course 

for the downregulation of naïve transcription factors like Oct4, Nanog and Sox2 that 

maintain the pluripotent state. In the same conditions, it would be interesting to contrast the 

downregulation of naïve factors with the upregulation of differentiation markers. 

Specifically, using markers like Pax6 and Sox1 for ectoderm (Gajović et al. 1997, 6; Bylund 

et al. 2003, 1), Brachyury and Twist2 for mesoderm (Showell, Binder, and Conlon 2004; 

Barnes and Firulli 2009) and Gata4 and Gata6 for endoderm (Arceci et al. 1993, 4; Morrisey 

et al. 1996, 6) will allow a more careful tracing of lineage specification during 

differentiation.  

Stem cells, especially iPSCs, have been touted as a novel autologous cell source from cell 

replacement therapy for several degenerative diseases. The fact that iPSCs can be generated 

from any individual and in theory, a massive range of clinically relevant phenotypic cells 

make them an interesting medical resource. Also, extracting patient cells for the generation 

of iPSCs involves none of the ethical or immune rejection concerns surrounding human ES 

cells. Thus, these cells are seen as an important resource for the so called “personalised 

medicine” approach in which each individual patient would receive a tailored treatment 

and this is gaining critical importance in medicine, pharmacology and toxicology to 

overcome possible adverse side effects. Of note among recent publications is the fact that 

on the first clinical trial with autologous iPSC-derived retinal epithelial cells, a patient with 

age-related macular degeneration showed long-term survival of transplanted cells for 25 

months without immune suppression (Mandai et al. 2017). It is important to acknowledge 

that the use of iPSCs in regenerative medicine can only be guaranteed if we can successfully 

rule out their ability to cause a teratoma (Okita, Ichisaka, and Yamanaka 2007; Gunaseeli 

et al. 2010; Knoepfler 2012).    

In vitro differentiation for the generation of lineage committed cells to study diseases is 

still limited in that we still do not have protocols to successfully differentiate ES cells into 

every cell type. Conventional differentiation protocols involve the generation of embryoid 

bodies followed by the introduction of culture conditions that stimulate directed 
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differentiation. Efforts over the years has led to the development of several differentiation 

protocols for each lineage commitment. For instance, there are over 6 defined culture 

conditions for the generation of mature astrocytes in vitro (Engel et al. 2016) and a major 

difference between the protocols is the maturation time from neural progenitor cells into 

astrocytes which ranges from 14 to a 100 days (Krencik et al. 2011; Shaltouki et al. 2013), 

depending on which protocol is being followed . Furthermore, most current differentiation 

protocols use growth factors aligned with reported in vivo development and there is limited 

reporting of the functional characteristics which prevents a reliable assessment of the 

maturity of the differentiated cells. Thus, improving current differentiation protocols with 

alternative strategies is crucial to enable the study of development and disease. The 

experiments presented here show withdrawal from pluripotency in spite of maintaining 

serum/LIF in the media, which is an interesting observation in itself. However, it then leads 

to the question of what might happen if the effects of LIF withdrawal were combined with 

NET expression. If the effects of NET expression combined with LIF withdrawal were 

synergistic, it would be interesting to explore if the introduction of tissue specific NETs 

could somehow enhance differentiation of ES cells into certain lineages. Perhaps 

expressing NET39 alone or with other muscle NETs like TMEM38A and WFS1 at specific 

points in a myogenic differentiation protocol could improve the efficiency with which 

differentiation occurs. Repeating some of these experiments in iPSCs and establishing the 

observed phenotypes in that model would be crucial. If iPSCs behave similar to ES cells, 

there would be the additional issue of heterogeneity in IPSC populations from different 

donors. Exploring the potential improvement in differentiation protocols with the 

introduction of NETs would enable us to better establish disease models in the lab.  

  



148 

 

  



149 

 

Final Remarks 
 

The work presented herein and recent advancements in the understanding of genome 

organisation in pluripotency and differentiation now allow me to propose the hypothesis 

that genome organisation changes are mediated at least in part, by stage-specific expression 

of NETs. While the ubiquitous NETs play a key role in maintaining peripheral chromatin 

organisation, it would seem that the tissue-specific NETs act on limited and specific 

genomic loci, thus fine tuning the configuration and promoting optimal gene expression in 

a given physiological state. Furthermore, the expression of these tissue-specific NETs 

themselves needs to be tightly controlled so that they are expressed at desired 

developmental stages and in the designated cells/tissues. A mis-regulation in the expression 

of NETs can lead to adverse effects on gene expression profiles and physiological 

development. 

Changes in genome organisation in response to various stimuli have been studied in the 

past. While some changes occur over several hours or even days, other changes need to be 

more rapid. The rapid repositioning of the Rex1 locus to the nuclear periphery within two 

hours of exit from pluripotency is surprising as the REX1 protein seems dispensable for 

maintaining pluripotency in mouse embryonic stem cells. Yet, somehow the relocation of 

this locus is dramatic and the Smith lab has shown that the loss of its promoter activity 

eventually marks an irreversible exit. This led to the hypothesis that there might be 

regulatory elements within this genomic locus that might be under positional regulation. 

The recent finding of the presence of a superenhancer within this genomic locus along with 

the putative enhancer found in our study present a strong case for further investigations into 

the role and importance of regulating the superenhancer activity in maintenance of 

pluripotency.  

The potential role of ubiquitous proteins LBR and LAP2α in the repositioning of Rex1 

allude to a functional link between nucleoplasmic proteins and nuclear envelope 

transmembrane proteins in maintaining chromatin architecture. Several ubiquitous and 

tissue-specific NETs have been described before for their roles in establishing peripheral 

tethers for genomic loci. However, little is known about how these genomic loci are 

physically propelled to the nuclear periphery or maintained at specific 3D locations in the 

nuclear interior. For directed and rapid gene position changes, it can be envisioned that 
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there must be protein complexes that stabilise the locus in the nuclear interior and also those 

that steer it towards the nuclear periphery in a directed fashion. To date, we haven’t been 

successful in testing this theory or identifying potential components of this machinery.  

More generally, the work described herein adds to our current understanding of how cells 

exit pluripotency and characterises a fundamental and crucial event that occurs upstream 

of several other transcriptomic and proteomic changes that have been previously described 

to accompany lineage commitment. Furthermore, these observations present a strong case 

for the need to widen the study of spatial genome organisation beyond gene-centric 

questions. Regulatory elements are now being given their due for their roles in the 

regulation of gene expression. That their activity itself is a function of their steric 

accessibility is not inconceivable. By forming loops into the nuclear space, regulatory 

elements can become more accessible for their interactions with target genes and tethering 

them away at the NE is an effective way to make them less accessible. Therefore, the study 

of spatial genome organisation and the specific role of tissue-specific NETs in orchestrating 

the accessibility of regulatory elements in 3D space will have broad implications in our 

understanding of development and disease. Finally, establishing a functional link between 

nucleoplasmic and nuclear envelope proteins is crucial to the mechanistic understanding of 

how genome organisation changes are brought about. The lines of scientific enquiry 

presented here may prove to be a fundamental breakthrough in our understanding of 

pluripotency and the role of genome organisation in maintaining this state and in 

orchestrating the departure from this state.  
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Appendix 
 

List of NETs detected in mass spectrometry of whole nuclear samples from E14tg2a cells 

subjected to 0 (T0) and 2h (T2) of LIF withdrawal. BLM.id refers to the parent tissues that 

the NETs were first identified in i.e. Blood (B), Liver (L) and Muscle (M) in previous 

studies in the Schirmer lab (Wilkie et al. 2011; Korfali et al. 2010; 2012).  
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