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Abstract

The field of Computer Aided Drug Design (CADD) has experienced sub-
stantial developments over the last few decades thanks to a rapid growth in
computing power. In particular, Molecular Dynamics (MD) simulations and
associated techniques have earned increased attention within the pharma-
ceutical sector thanks to their rising accuracy and diminishing cost. How-
ever, there are still limitations in the usage of these methods, due to the
difficulty of sampling the rugged energy landscapes of protein-ligand com-
plexes. The main theme of this work is to address the sampling problem of
MD methods for predicting the binding free energies of different biomolec-
ular complexes.

This work starts using MD simulations as a sampling technique for a
relative free energy calculation protocol using the Sire Open Molecular Dy-
namics (SOMD) software. This protocol was then integrated in a ligand
design workflow to optimize the binding selectivity of cyclophilin (Cyps)
inhibitors. Cyps are proteins known to play a vital role in various diseases,
such as cancer, Alzheimer and viral infections. Most Cyp inhibitors to date,
however, are cyclic peptides that have potency in the nanomolar range but
produce severe side effects, are complex to synthesize and display com-
plex pharmacokinetic profiles. Thus, there is a need for new selective small
molecules targeting specific Cyps isoforms, in order to gain new insights
for the inhibition of these therapeutically vital proteins. The computational
workflow was able to suggest auspicious designs that they will be synthe-
sized and characterized using biophysical techniques from Alison Hulme’s
lab.
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Following, MD simulation methods were employed for the more chal-
lenging task of predicting the absolute free energies of binding of protein-
ligand complexes. For this purpose, an Alchemical Free Energy (AFE) pro-
tocol was generated and its efficiency was evaluated in the Statistical As-
sessment of Modelling of Proteins and Ligands (SAMPL6) challenge. SAMPL
challenges involve a series of blinded predictions of standard binding free
energies for toy host-guest molecules. The results obtained from our proto-
col were ranked among the top submissions in terms of accuracy and corre-
lation with experimental data.

Encouraged by these results, we wanted to compare the efficiency of
the AFE protocol versus a Markov State Modelling (MSM) protocol for the
calculation of the standard binding free energy of a ligand to the intrinsi-
cally disordered protein c-Myc. The oncoprotein c-Myc is overexpressed in
over 70% of human cancers and its inhibition has been considered the holy
grail in cancer therapy. Due to its structural elasticity it is difficult to per-
form structure-based drug design methods for the discovery of novel com-
pounds. The results showed that MSM can describe accurately the binding
process of the ligand to the oncoprotein c-Myc, but the binding free energies
were similar with the ones of the AFE protocol.

Finally, an adaptive sampling protocol was established for the computa-
tion of the standard binding free energy and binding selectivity of lead-like
ligands for the flexible protein MDM2. MDM2 is a vital protein that acts
as an inhibitory mechanism of the transcription factor p53. p53 plays an
important role in the regulation of cellular processes and suppression of tu-
mor development. For this reason, it is important to develop methods for
the discovery of novel ligands that could inhibit the MDM2-p53 interaction
through binding to the MDM2 protein. The results of the adaptive sam-
pling study were encouraging as the protocol was able to predict binding
selectivity trends for the MDM2-ligand complexes approximately six times
faster than the original AFE protocol.
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Lay summary

The work in this thesis describes the development and use of computational
methods to simulate protein-ligand complexes. The goal is to validate the
utility of the simulations for drug discovery research.

The purpose of drug design is to identify a compound (ligand) that binds
to a protein or enzyme (biomolecule) involved in a disease to inhibit its bi-
ological function. An important goal in computer-aided drug design is to
predict how efficiently and selectively a ligand binds to a target protein, as
most drugs must be potent and selective binders to effectively inhibit the
function of a protein target, whilst avoiding undesirable side-effects due to
binding to other proteins. Despite decades of efforts, making such predic-
tions routine remains challenging.

One method that has proven popular to improve the drug design is
Molecular Dynamics (MD) simulations. This technique uses Newton’s equa-
tions of motion to simulate the movement of atoms and molecules. There
are many successful examples of usage of this method to design ligands for
proteins. However, the techniques suffers still from limitations. A major
problem is how well this method samples all the different conformations
that a protein-ligand complex can adopt. This work explores this problem
by using MD simulations in different protocols and workflows to compute
the strength of the interactions of drug-like molecules targeting different
proteins of interest for the pharmaceutical industry.
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Chapter 1

Introduction

1.1 The Drug Discovery Process

1.1.1 Historical overview of drug discovery

Since the early days of human civilization, there has been a constant need
for therapeutic intervention for the treatment of diseases. However, until
the 19th century the drug discovery process was mainly based on traditional
medicines and natural remedies that were usually discovered by serendip-
ity.[1] For modern drug discovery to evolve, it was important for key sci-
entific fields such as chemistry and pharmacology to advance and mature
as sciences.[2] During the 19th century, Avogadro’s law, the establishment of
the periodic table and the categorisation of chemical compounds as acid and
bases opened the way for the rapid development of chemistry. These break-
throughs together with Kekule’s benzene theory led to the evolution of dye
chemistry. Dyes were already discovered by accident in 1856 when William
Henry Perkins synthesised the first synthetic dye, tyrian purple, and estab-
lished his own factory the following year. As the industrial revolution was
taking place during this time, other companies were also founded with the
purpose of developing novel synthetic dyes by optimising Perkins’ reac-
tion. The rapid growth of this field after benzene theory, made large dye
companies such as Bayer and Sandoz realise that organic molecules could
be employed as possible drugs and this led to the birth of the pharmaceuti-
cal industry.[3, 4]
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Apart from their important role on the genesis of the pharmaceutical sec-
tor, dyes were also the starting point for modern drug discovery methods.
Paul Elrich, a student in the laboratory of the anatomist Wilhelm Waldeyer
at the University of Strasbourg, studied the differential affinities of dyes for
biological tissues. This lead him to theorize the existence of “chemorecep-
tors” that affect the interaction of cells with small molecules and produce a
biological effect. He further postulated the “magic bullet” theory, where
certain chemoreceptors of cancer cells or infectious organisms would be
different from analogous structures of the host and these differences could
be exploited therapeutically. These findings were fully validated from the
identification of Salvarsan, the first synthetic arsenic compound able to treat
syphilis. This successful paradigm formed the basis of modern chemother-
apy in the 20th century. Furthermore, substantial advances in analytical
chemistry during the 19th century added new tools to medicine in the 20th

century by enabling the purification and characterisation of active ingredi-
ents from plants and other extracts, such as the isolation of morphine from
opium extract by F. W. Serturner.[5]

All these advances in chemistry, biology and pharmacology laid the foun-
dations for the first reliable biological screening and evaluation pipelines.
The most famous example from this procedure was the discovery of peni-
cillin in 1928 by Alexander Fleming.[6] Because of its efficacy and lack of
toxicity, penicillin was made available on large scale and helped Allied sol-
diers in World War II overcome bacterial infections. After the Second World
War researchers concentrated on understanding, through experiments on
animals, the mechanism of action of possible drug candidates. This led to
the development of drugs with similar pharmacokinetic properties to peni-
cillin, such as sulfactams and to the discovery of molecules with different
therapeutic effects such as diuretics.[7] In addition, rapid technological de-
velopment during the 1980s enabled the relatively young field of computa-
tional chemistry to bear on drug discovery processes. This field has opened
the door for understanding in atomic details protein-ligand interactions[8,
9] and permitted simulations of very large biomolecules to accelerate the
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drug discovery process.[10] At the same time, the development of more so-
phisticated in vitro experiments, laid the foundations of more accurate and
rapid screening of the chemical space.

1.1.2 Modern drug discovery

As a result, nowadays, drug discovery has become an intersection of several
scientific disciplines that are constantly evolving such as genomics and pro-
teomics, biology, medicinal and computational chemistry, pharmacology,
clinical medicine and biotechnology. However, the development of a new
drug remains a complex process that can take up to 15 years of work and
Research and Development (R&D) costs in excess of a 1 billion dollars.[11]

The drug discovery process is usually divided into five main steps. The
first one is the identification of a biomolecular target using genomics and
proteomics and wherever possible the isolation of this target through X-ray
crystallography. Once the pharmaceutical target is identified, validated and
isolated, thousands of compounds are screened against it using in vitro ex-
periments. From these molecules, the identification and optimisation of a
handful of lead compounds by medicinal chemists can be assisted using
tools provided by the computational chemistry field. These tools can pro-
vide insight on the strength of the binding between the lead compounds and
the biomolecular target (free energy of binding) and on the physicochemi-
cal properties of the compound of interest (drug-like properties). Then, the
preclinical stage is initiated in order to understand the Absorption Distribu-
tion Metabolism Excretion and Toxicology (ADMETox) profile of the lead
compounds through in vivo assays before authorising them for human clin-
ical trials. The following clinical development consists of three phases with
increased number of volunteers in each phase. At the end of this process,
one compound that passes all the tests is approved by drug administration
agencies such as Food and Drug Administration (FDA). After its approval,
the molecule gains the status of drug and is released in the corresponding
market.[12] An overview of this pipeline is illustrated in the following Fig-
ure.
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FIGURE 1.1: Traditional drug discovery process. The process
starts with the biological research, where a biomolecular tar-
get is identified using proteomics and it is isolated using crys-
tallographic techniques. After the identification of the target
a library of thousands of drug candidates against this target
is screened. Then, the prototype design stage uses tools from
computational chemistry, to predict drug-like properties and
to define lead compounds. In this stage, the compounds un-
dergo a lead optimization process, which should give a few
lead molecules (around five) ready for the preclinical stage.
This stage is required to understand the ADME properties of
the lead compounds through animal testing, before authoriz-
ing these molecules for human trials. The last part of the
drug discovery process is devoted to the clinical development,
which follows three phases where drugs are tested on gradu-
ally larger number of volunteers. The final step is the approval
by a drug administration organization, such as the FDA, and
the launch on the market. The overall process takes approxi-

mately 15 years on average.

1.1.3 Structure Based Drug Design

The present work deals with issues encountered in the prototype design
step of the drug discovery process. As mentioned above computational
methods are frequently used to help medicinal chemists identify a small
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number of lead compounds that will then proceed to preclinical and clinical
evaluation. The Computer Aided Drug Design (CAAD) tools used for this
purpose depend on the information available for the biomolecule target and
the drugs used for its inhibition. If only the ligands that inhibit the target
are known, then a Ligand Based Drug Design (LBDD) approach is applied,
whereas if the structure of the pharmacological target is available then the
drug design process can be Structure Based (SBDD).[13, 14]

The SBDD method is an auspicious approach for drug design, where
promising drug candidates are chosen based on the structural information
derived from the experimental data. It is an iterative process, as it proceeds
through multiple cycles before an optimised lead is designed. The first step
of this approach is to determine experimentally the 3D structure of the ther-
apeutically important protein using NMR, X-ray crystallography, or cryo-
electron microscopy. If the experimental observation of the structure is not
possible, then computational methods can be used to model the protein’s
3D structure. In particular, homology modelling is one of the most reli-
able approaches to predict the 3D structure of a therapeutically important
protein. Homology modelling software, such as SWISS-MODEL, construct
an atomic resolution model of the targeted protein using its amino acid se-
quence and a known homologous protein with >40% similarity.[15, 16]

Once a 3D model of the target is available, attention turns to the loca-
tion of binding pockets that are suitable to modulate the function of the
target. This can be apparent if the model contains a ligand, or if the goal
is to block access to a previously characterised functional site. If potential
binding sites are not immediately apparent there are several methods that
can spot potential binding sites that can interact favorably with important
functional groups on possible drug candidates.

Once the structure and the binding site are identified, the next step is
the hit discovery. A hit compounds is a molecule that demonstrates promis-
ing therapeutic activity at a given protein target. There are two main paths
for the discovery of hit compounds that are classified as computer aided
versus experimental. The latter path is performed through high through-
put screening (HTS) or fragment-based screening techniques, in which a
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plethora of compounds are tested for biochemical effects or binding effects.
On the other hand, the former path uses Virtual Screening (VS) approaches,
where libraries of available small molecules are docked into the binding
site and ranked by binding affinity.[17] The most promising hit compounds
from these methods are then further tested for binding affinity on the target
protein using different biophysical assays such as Surface Plasmon Reso-
nance(SPR) and Isothermal Titration Calorimetry (ITC) or using biochemi-
cal assays.

The molecules with low µM binding activity, as measured from the afore-
mentioned assays, undergo an iterative hit-to-lead process. In each cycle,
the results from the biological assays are analysed to identify promising in-
teractions between the ligand and the protein. These interactions are used
to design and synthesise new compounds. The same cycle is then repeated
multiple times, until the binding affinity and the selectivity of a small num-
ber of compounds (lead compounds) is optimal. In parallel or after the lead
identification pipeline, a similar procedure is taking place. In the lead op-
timisation stage, the lead compounds are extensively and iteratively opti-
mised in order to improve the ADMETox properties while maintaining their
potency.

Over the years computer-aided drug design (CADD) has become es-
tablished as a powerful methodology for the drug-discovery process.[18]
CADD can be used to predict the ADMETox properties of the lead com-
pounds. Another application of CADD is the use of molecular simula-
tions methods to support drug-discovery efforts[19], via, for instance, the
investigation of protein folding mechanisms[20, 21] or ligand modulation
of millisecond time-scale conformational changes in proteins.[22] A major
application of CADD is in potency predictions to decrease time and costs of
the aforementioned hit-to-lead and lead optimization stages.[23] Computa-
tional methods can help with the description, characterization and quantifi-
cation of the energetics that govern protein-ligand complex formation.
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1.2 Models of Molecular Recognition

Molecular recognition is the process of the specific interaction between bi-
ological macromolecules (proteins) and small molecules (ligands) through
noncovalent bonding, for instance electrostatic or van der Waals interac-
tions. This process is defined by specificity, which is the ability of a protein’s
binding site to bind specific molecules and by affinity, which determines
the strength of the binding interaction between the protein and the lig-
and.[24] There are three conceptual models that can describe this procedure
in protein-ligand binding. The first model is the lock-and-key model where
protein and ligand are rigid, and only a correct shaped ligand (key) can
bind to the binding site (key hole) of the protein (lock).[25] However, this
approach can not explain the experimental finding that a protein can bind
its ligand without their initial shapes being complementary. Thus, a second
theory was derived, induced fit model, which postulates that the protein’s
binding site is flexible and can undergo a conformational change when in-
teracting with ligand.[26] This approach is ideal for proteins with minor
conformational changes, as it accounts only the flexibility of the ligand-
binding site. However, the vast majority of proteins are dynamic in nature
and form an ensemble of conformational states. Therefore, a third model is
introduced, namely the conformational selection model, to theorise that the lig-
and will bind selectively to the most suitable conformational state and will
shift the equilibrium towards this state.[27] Finally, there is also a class of
proteins that can have little or no tertiary structure and thus a fourth model
is required to describe their binding mechanism with small molecules. This
model is called folding-upon-binding and describes the folding of these pro-
teins into ordered structures when they interact with small ligands.[28] An
overview of the four underlying mechanisms is depicted in Figure 1.2.
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FIGURE 1.2: The four protein-ligand binding mechanisms (a)
Lock-and-key; (b) Induced fit; (c) Conformational selection;
and (d) Folding-upon-binding. Adopted from paper Du et al

and Castano et al. [24], [29]

Despite the mechanisms that interpret the protein-ligand binding, it is
also important to elucidate the physicochemical mechanisms underlying
the protein–ligand interaction. The reversible binding of a ligand L to a
protein P can be written as in Equation 1.1:
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P + L
kon


ko f f

PL , (1.1)

where PL is the protein-ligand complex, kon and ko f f are the rate con-
stants of binding and unbinding with units s−1 M−1 and s−1 respectively.
The above binding reaction should be balanced by the reverse unbinding
reaction and this is written as:

kon[P][L] = ko f f [PL] , (1.2)

where [P], [L] and [PL] are the equilibrium concentrations of the protein,
ligand and the protein-ligand complex respectively. The binding constant
Kb (units M−1) is linked with the dissociation constant KD (units M) through
the following relationship:

Kb =
kon

ko f f
=

[PL]
[P][L]

=
1

KD
. (1.3)

KD can also be computationally estimated through its Gibbs free energy
of binding.

∆G = kBTln
KD

C0
, (1.4)

where ∆G is the free energy change upon binding, kB is the Boltzmann
constant (1.380648521023 J/K), T is the temperature and C0 is the standard
state concentration (usually 1 M).

Thermodynamic quantities such as ∆G can be interpreted from an atom-
istic point of view using the ensemble idea initially developed by Boltz-
mann and Gibbs.[30],[31] The idea is that every thermodynamic property
of a macroscopic system can be calculated as an average from the mechani-
cal property arising in each ensemble.[32],[33] An ensemble is the collection
of all possible microstates for N particles under specified thermodynamic
conditions. A microstate is a set of configurations (positions and momenta)
that describe the position and velocity of each particle. The entire set of posi-
tions (q) and momenta (p) of all the particles of a given system is called phase
space. The imaginary curve in the phase space formed by an entire collection
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of particles adopting a particular conformation through time is called trajec-
tory. Rather than focusing on the time evolution of the trajectory, an average
ensemble property can be computed by means of a distribution function
P(Γ) that describes the ensemble behavior. P(Γ) is the probability that at
some specific time, under specific thermodynamic conditions, the system is
in a particular microstate or has a particular energy. So, the computation
of the property average can be implemented by calculating the value of the
property periodically at times t. This can be done because, based on the “er-
godic hypothesis”, the ensemble average and the time average should be
the same, over infinite period of time.[34] Therefore, the target of statistical
mechanics is to determine the probability function, P(Γ), in order to retrieve
the macroscopic thermodynamic quantities of a system.

In order to describe and compute the distribution function of an ensem-
ble, it is important to define the type of the ensemble based on the specified
thermodynamic conditions. The canonical ensemble (NVT) is the set of all
possible positions and momenta for all the particles such that the number
of particles (N), the system volume (V) and the temperature (T) are constant
and it specifies variation of energy. It describes the possible states of the
system that is in thermal equilibrium with a heat bath and it is very use-
ful for single-phase properties at fixed density. It is not very applicable at
phase transitions or structural changes that involve a change in volume, for
instance freezing or boiling. In this ensemble the probability function, P(Γ),
is described by the Boltzmann distribution. Thus, the probability of a par-
ticle to be in state i, defined by a specific set of position qN and momentum
pN and the total energy described by the Hamiltonian function Hi(qN, pN)
is:

Pi(Γ) =
e−βHi(qN ,pN)

∑i e−βHi(qN ,pN)
(1.5)

where β = 1
kBT . The denominator of the Boltzmann distribution is called

the partition function and is often indicated as QNVT. It calculates the num-
ber of microstates accessible to the system at a particular temperature through
the following equation.
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QNVT = ∑
i

e−βHi(qN ,pN) . (1.6)

In classical statistical mechanics, the set of microstates is uncountable, so
the partition function is expressed as an integral rather as a sum.

QNVT =
1

h3N
1

N!

∫
e−βH(qN ,pN)dqNdpN , (1.7)

where the 1
h3N term is used to make the quantity dimensionless (h is the

Plank’s constant, 6.6210−34 J) and the 1
N! term takes into account that the N

particles are indistinguishable. If we assume that the kinetic K(pN) and po-
tential energy components U(qN) of the Hamiltonian function are separable
then from Equation 1.7 we have:

QNVT =
1

h3N
1

N!

∫
e−βU(qN)dqN

∫
e−βK(pN)dpN = QidZNVT . (1.8)

Qid is the momentum integral that can be analytically obtained by:

Qid =
VN

Λ3N N!
, (1.9)

where Λ is the thermal de Broglie wavelength and is given by Equation
1.10:

Λ = h2/(2πmkBT)1/2 , (1.10)

where m is the molecular mass. ZNVT is the configuration integral and it
usually cannot be evaluated analytically:

ZNVT =
∫

e−βU(qN)dqN . (1.11)

The partition function QNVT plays a vital role in statistical mechanics, as
it is linked with the Helmholtz free energy, ANVT:

ANVT = −kBTln(QNVT) . (1.12)
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The passage from the Helmholtz free energy to the Gibbs free energy,
GNPT described in Equation 1.4 is done through translating the canonical
ensemble concepts into the isothermal-isobaric ensemble (NPT). In this en-
semble, the number of particles (N), the pressure (P) and the temperature
(T) are fixed. Laboratory experiments are typically executed under these
specific thermodynamic conditions. The partition function, ∆NPT can be
written as:

∆NPT =
∫ ∫ ∫

e−βH(qN ,pN)e−βpVVNdqNdpNdV . (1.13)

From this equation it is possible to prove that ∆NPT is related to GNPT

through:

GNPT = −kBTln(∆NPT) . (1.14)

Using the same approach as in the NVT ensemble, we can derive that
the configurational integral, ZNPT,

ZNPT =
∫ ∫

e−βU(qN)+pVdqNdV . (1.15)

Therefore, GNPT can be calculated from ZNPT that can in turn be com-
puted by determining the potential energy of the system. A good technique
to solve this problem numerically is Molecular Dynamics (MD) simulations,
that allows the sampling of the potential energy surface of the molecular
system.

1.3 Molecular Dynamics

1.3.1 Integrators

The Molecular Dynamics simulation method is based on Newton’s second
law or the equation of motion that dictates how atoms move subject to their
interactions. Newton’s second law is written as:

F = ma = m
dv
dt

=
dp
dt

= m
d2r
dt2 = −dU

dri
, (1.16)
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where F is the force that acts on the particle, m is the mass of the particle,
a is the acceleration, v is the velocity, p is the momentum, r is the position
of each particle and U the potential energy function of the system. A trajec-
tory is produced by integrating these equations of motion and describes the
positions, momenta and accelerations of the particles. Once the positions
and momenta of each particle are known, it is a straightforward process to
calculate where the particles should move at any given time. It is worth
mentioning, that energy and momentum are conserved by the equations of
motion (see Appendix A).

There are many different integrators to solve numerically the equations
of motion, but in the context of this thesis the velocity Verlet algorithm
was used. The basic idea behind this algorithm is to use the information
about the positions and the velocities at time t, to predict where the parti-
cles would be in a small time in the future, t+δt. This may be done using a
Taylor series expansion, as is expressed by the following equation:

r(t + δt) = r(t) + v(t)δt +
1
2

a(t)δt2 +Oδt3 , (1.17)

whereOδt3 denotes all the Taylor series terms with order greater than 2.
Forces depend only on the positions of the particles, so the acceleration, a(t)
can be computed once position and velocities are known. The prediction of
the velocities at time t+δt is implemented by using the acceleration at time
t and correcting the estimation by using the acceleration at one time step at
the future, a(t+δt), through Equation 1.18:

v(t + δt) = v(t) +
1
2
[a(t) + a(t + δt)]δt +Oδt3 . (1.18)

In practice, velocity-Verlet algorithm splits Equations 1.17, 1.18 in three
parts:

v(t +
δt
2
) = v(t) +

1
2

a(t)δt , (1.19)

r(t + δt) = r(t) + r(t +
δt
2
)δt , (1.20)
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v(t + δt) = v(t +
δt
2
)δt +

1
2

a(t + δt)δt , (1.21)

where the first equation computes the velocities at time t + δt
2 , using the

velocities and the accelerations from time t. This allows the calculation of
the positions at time t+δt and finally the update of the velocities at time t+δt.

1.3.2 Force-Fields

In principle, the force on each atom, and thus the interactions that dictate its
movement, could be calculated at each MD time step using the fundamental
equation, Schrödinger equation, of the quantum mechanics. One has to take
the positions of the atoms, solve the Schrödinger equation and calculate
the forces exerting on each atom, advance the position of the atoms by a
small time-step and then recalculate the forces of the atoms. This is currently
computationally very expensive and limits the number of atoms one can
simulate to ca. 100 atoms for a brief (ca. ps) amount of time. Therefore,
a simpler approach is necessary to simulate complex systems over longer
timescales. A useful assumption is the Born-Oppenheimer approximation.
This approximation enables the electronic and nuclear wavefunctions to be
separated, as the electrons move much faster than the nuclei.[35],[36] It also
allows the description of a nucleus, i, as a simple classical mechanics system,
by making use of the Schrodinger equation for the nuclei interactions:

1
2

mi(
∂r2

i
∂t

) + Ui(ri) = Etot(ri) , (1.22)

where r is the position of the nuclei, m is the mass of the nuclei, 1
2 mi(

∂r2
i

∂t )

is the kinetic energy of the nucleus and Ui(ri) is the nucleus-nucleus inter-
action potential energy function.

As a consequence, the interactions and the forces between atoms are de-
scribed as a function of the nucleus positions only. For this purpose, simple
mathematical functions with a set of optimized parameters are used and
they are called force-fields. These functions are rapid to evaluate, and can
be broken down into various components:
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1. Non-bonded interactions (repulsions and Van der Waals attractions):
Is an interaction evaluated between certain pairs of non-bonded atoms.
The potential is positive when the particles are close to each other, be-
cause they repel each other. This is because of Pauli exclusion princi-
ple, which causes the energy of the system to increase rapidly as the
separation decreases. This repulsion is responsible for the hardness
of the materials as it stops atoms from overlapping with each other.
When the particles are separated by longer distances, they attract each
other with dispersion interactions. This is a quite rapidly decaying
attraction as it dies off with the distance raised to its sixth power.

FIGURE 1.3: The Lennard Jones potential curve, where the
atoms repel each other at short distances due to the repulsive
term and attract each other at longer distances due to the at-

tractive term.[37]

The Lennard-Jones potential (Figure 1.3) is a convenient description



Chapter 1. Introduction 16

to represent the combination of attractions and repulsions, is given by
the following Equation:

ULJ(rij) = 4εij[(
σij

rij
)12 − (

σij

rij
)6] , (1.23)

where εij is the Lennard-Jones well depth, which is the minimum en-
ergy that the particles experience. It is an energy parameter and in-
dicates the strength of the interaction. σij is the effective diameter of
the atoms and it is a distance parameter that determines the size of
the atoms. The second term is the attraction term and is derived from
quantum mechanical calculations. The first term is the repulsion term
and based on quantum mechanical calculations, it should have an ex-
ponential dependence on interatomic distance. However, the calcula-
tion of the exponential function is five times more expensive in com-
putational time than the simple mathematical functions for instance
multiplication. Therefore, the computation of r12 is implemented by
the multiplication of r6 by itself, which is a very cheap operation.

These numbers are evaluated for two identical atoms of the same type.
The interaction energy between two dissimilar non-bonded atoms is
provided by a series of equation called combining rules. The most
widely used are the Lorentz-Berthelot mixing rules[38], that are pro-
vided by Equations 1.24, 1.25:

εij =
√

εiiεjj (1.24)

σij =
σii + σjj

2
, (1.25)

where εii and σii is the well depth and the effective diameter between
two similar non-bonded atoms respectively, and εij and σij is the well
depth and the effective diameter between two dissimilar non-bonded
atoms.
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2. Non-bonded interactions (electrostatics): Two non-bonded atoms with
a charge or partial charge can interact electrostatically with each other
via Coulomb’s law as illustrated with Equation 1.26:

UC(rij) =
qiqj

4πε0rij
, (1.26)

where qi, qj are the charges on the atoms, ε0 = 8.854 x 10−12 Fm−1 is
the vacuum dielectric permittivity and rij is the distance between the
atoms. There are three forms that are followed, based on the modelling
purposes:

(a) In the simplest case the atomic charge is a fixed parameter, there-
fore atoms carry their assigned charges in every situation. if the
force-field is designed to study a particular molecule, partial charges
are used to reproduce accurately an experimental or computa-
tional electrostatic observable of the molecule.

(b) Alternatively, the charges are determined from a scheme that de-
pends on the electron negativity of the atoms involved in the
interaction. It is useful in force-fields with reduced number of
atom types as it maintains flexibility in the recognition of dif-
ferent chemical environments. This flexibility is crucial for the
charge, because the electrostatic energy can be very large com-
pared to other components of the force-field.

(c) Finally, account for the induced polarisation when treating elec-
trostatic interactions. The strength of the Coulombic interactions
is dependent on the dielectric constant, εr, of the intervening medium.
The dielectric permittivity affects the decay of the electrostatic
interactions by 1/εr. In addition, it changes the electrostatic re-
sponse of atoms or molecules to the presence of a charge: smaller
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dielectric constants correspond to smaller responses to the pres-
ence of a nearby charge. Polarisation plays a vital role for de-
scribing key biomolecular interactions such as cation–π interac-
tions. It is also important to describe the change of the polarisa-
tion of molecules when they encounter different interacting part-
ners during the course of a simulation. For instance when a so-
lute is moving from a non-polar region of the system to a polar
region, the polarisation is increased. However, the limiting factor
of using such approach is the increased computational cost.[39]

Hydrogen bonding interactions are also described via electrostatics as
this is a polar interaction, which is formed between heteroatoms and
hydrogen atoms that are not formally bonded.

3. Bonded interactions (bond stretching potential): This term is applied
to pair of atoms that share a covalent bond. The energy of a bond is
at its lowest value at a reference length, called the equilibrium length.
If the bond is compressed, with respect to the equilibrium length, the
electron clouds of the two atoms will progressively overlap and the
energy will rapidly increase. Alternatively, if the bond is stretched
beyond equilibrium the energy starts to increase up to a point where
the bond disassociates. The energy, Ustretch, can be expressed by taking
a Taylor expansion about the equilibrium energy distance, r0, as it is
illustrated in Equation 1.27:

U(stretch) = U(r0)+
dU
dr
|r=r0 +

1
2!

d2U
dr2 |r=r0(r− r0)

2 +
1
3!

d3U
dr3 |r=r0(r− r0)

3 + ...
(1.27)

If we assume that the first two terms are zero, the first by arbitrary
choice and the second because r0 is the minimum of the function, we
can obtain Equation 1.28:

U(stretch) =
1
2

kr(r− r0)
2 , (1.28)
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where kr is the force constant and represents the stiffness of the spring.
Chemical bonds are assumed to be classical harmonic springs and are
parameterised with the equilibrium length, that can be obtained from
X-ray structural data and with the force constant, which can be ac-
quired by stretching frequencies in real molecules. The real potential
is asymmetrical, so we approximate the bottom of the potential well
with a harmonic function. For strongly bound pairs of atoms, the har-
monic potential is very good. However, as any truncated Taylor ex-
pansion, this potential works better in regions near its reference point,
r0. Thus, for weekly bound molecules, where the bond is stretched to
longer r values, the energy keeps rising quadratically.

4. Bonded interactions (bond bending potential): Additional functions
are used to enforce reasonable molecular geometries between groups
of three atoms that share two consecutive bonds. For instance if we
have a sp3 carbon, it would be close to the tetrahedral angle (109◦). For
the bond bending potential, a harmonic function is also used through
Equation 1.29:

U(bend) =
1
2

kθ(θ − θ0)
2 , (1.29)

where θ0 is the equilibrium bond angle, that may be obtained from X-
ray structural data and kθ is the force constant that is acquired from
bonding frequencies in real molecules. The energy needed to stretch
an angle away from the equilibrium bond angle is much lower than
the energy needed to distort a bond, so bond bending force constants
tend to be smaller than the bond stretching ones. Finally, the accuracy
can be improved by adding higher order terms.

5. Bonded interactions (proper torsional potential): The torsional po-
tential is a function of a dihedral angle, which is the angle between
four atoms. As this is a periodic function, it is conveniently expressed
by a Fourier series, as shown in Equation 1.30:
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U(torsion) = ∑
n

1
2

Vn[1 + (−1)n+1cos(nφ− γ)] , (1.30)

where n is the set of periodicities, Vn are the torsional rotation force
constants, φ is the current torsional angle, and γ are the phase angles,
which are usually chosen to define where the torsion angle passes its
minimum value. The factor of 1

2 is included so that the term amplitude
of Vn is equal to the maximum the particular term can contribute to U.
The factor of (-1)j+1 so that the term in brackets is zero for all n when
φ is equal to π. The number of terms needed in the Fourier series
depends on the complexity of the torsional potential and the desired
accuracy. For organic compounds, three terms are generally used and
they are depicted in Figure 1.4.

FIGURE 1.4: The proper torsional potential where the bold line
refers to n=1, the dashed line to n=2 and the dotted line to n=3
Fourier components. Adapted from http://cmt.dur.ac.uk/

sjc/thesis_dlc/node74.html [40]

http://cmt.dur.ac.uk/sjc/thesis_dlc/node74.html
http://cmt.dur.ac.uk/sjc/thesis_dlc/node74.html
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The various parameters can be derived from ab-initio quantum calcu-
lations, but this has to be done in conjunction with other non-bonded
and bonded parameters. This is because the total energy of the molecule
does not only depend on the torsional potential, but also on the non-
bonded interactions.

6. Bonded interactions (improper torsional potential): This is a con-
straint potential. If we take four atoms (A, B, C, D) that form three
angles (A-B-C, A-B-D, and C-B-D) then B must be retained in the same
plane formed by A, C, and D. Therefore, a constraint must be issued
through the definition of a potential, which is a function of an angle φ,
between two planes. In this case, the two planes are A-B-C and D-B-C
and the potential is harmonic, as it is shown in Equation 1.31:

U(constraint) =
1
2

kφ(φ− φ0)
2 , (1.31)

where φ0 is the equilibrium value that is determined by quantum me-
chanics. This potential assures that φ angle remains near to its equilib-
rium value, thus that the chemical bonds stay in the right geometry.

1.3.3 Treatment of the Interactions in Molecular Dynamics

One of the limitations of the computer simulations, is the number of atoms
that one can simulate. The computational cost limits the number of atoms
and the number of interactions with other molecules, so MD simulations
normally include 102-106 atoms in a box. The problem that occurs is that
the behaviour of finite size systems is different from that of systems used in
experiments. The main difference is that in a MD simulation, many atoms
are close to the walls of the box, so surface effects may influence the system
properties. On the other hand, in a real macroscopic system, surface effects
do not play a vital role in the simulation.

A method to avoid such artifacts is the so-called Periodic Boundary Con-
ditions (PBC).[41] In this approach, the walls are removed and the bulk ma-
terial is assumed to be made up of periodic arrays of replicas of a central
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box. In this way, when a particle enters or leaves the boundaries of a simu-
lation cell, an image particle simultaneously leaves or enters the simulation
region from the point related to the entrance or exit location by lattice sym-
metry. Therefore, the atoms are allowed to leave the box, are not influenced
from surface effects and are always replaced by replicas. An example of this
method is illustrated in Figure 1.5

FIGURE 1.5: The periodic boundary conditions, where the
central simulation box is coloured with yellow. Filled blue
circles represent particles inside the central simulation box,
while open circles represent their images in other periodic
cells. Dashed and bold lines shows movement of two parti-
cles near the boundaries. As a particle leaves the central simu-
lation box, its periodic image enters the box from the opposite
end. Adapted from Katiyar’s book titled "Molecular simulations

in drug delivery: Opportunities and challenges".[42]
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PBC ensures the conservation of mass, total number of molecules and
total energy in the simulation cell.

As a result of using PBC, each particle can interact not only with the
other atoms in the simulation cell, but also with all the other replicas. For
short range interactions, the problem can be solved by picking a finite range
potential within the criteria of minimum image convention. Therefore, we
take into account only the strongest interaction, which is the one with the
shortest distance between the neighbouring particles. It is not necessary
that the interaction will be between atoms in the same box.

In practice, the mechanism of implementing this is to truncate the po-
tential in a finite range and assume that it is zero beyond some finite length
called cut-off distance, rc. The maximum cut-off distance must be equal or
less than the half of the simulation box. It is also a good idea, to shift the
potential, so that the interaction energy is zero at the cut-off. The point of
that is that the force is the derivative of the energy, so if the potential is not
shifted, the force will be discontinuous near the cut-off, which may cause a
numerical instability in the integration of the equations of motion.

For electrostatic interactions, the minimum image convention is insuf-
ficient. The range of these interactions is much longer than the size of the
simulation box that can be considered in a MD simulation. Thus, it is in-
appropriate to truncate the potential as the Coulomb interactions have very
large effects over a very long distance. This problem is solved with tech-
niques that are more expensive than the simple truncation, but they respect
the long-range character of the forces.

The Ewald method[43] is the most widely used for computing the long-
range contributions to the potential energy (see Appendix A.2). An alter-
native approach to Ewald summation is the reaction field method, which is
faster but less accurate.[44] This technique works in a manner similar to the
simple truncation method. A “cavity” α with a cut-off sphere of rc is defined
and the region outside that cavity is assumed to be a dielectric continuum
with a dielectric constant εRF. The particles in the ensemble polarize the
surrounding dielectric constant and this produces an electric field Eα repre-
sented by Equation 1.32:
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Ea =
2(εRF − 1)
2(εRF + 1)

1
r3

c
∑
b

µb , (1.32)

where the summation is over all molecules in the cavity of molecule α

and

µb = ∑
i∈Molb

qiri , (1.33)

is the dipole moment of a molecule b. In addition, the effective pairwise
potential becomes:

U(Coulomb) = qiqj[
1
rij

+
(εRF − 1)r2

ij

2(εRF + 1)r3
c
] . (1.34)

1.3.4 Implementation of Molecular Dynamics

For the implementation of a MD simulation, a set of initial configurations
are required for the beginning of the process. The final results should not
be affected by the selection of the initial positions and velocities. Initial
velocities are typically drawn randomly from the Maxwell-Boltzmann dis-
tribution:

p(Vi) = (
mi

2πkBT
)

1
2 e−

1
2

miV
2
i

kBT . (1.35)

The above equation calculates the probability that an atom i with mass
mi at temperature T has a velocity vector Vi = (Vix,Viy,Viz). Ultimately, the
system may require minimization, in order to remove any artificial structure
and heating to reach the desired temperature of the simulation.

After the assignment of the initial configurations, a period of equilibra-
tion should be implemented under the desired conditions of pressure, tem-
perature, etc. It is an essential procedure, as it permits the monitoring of
the system and assures that everything works correctly. Once the system is
equilibrated, the observer starts to measure the properties of the system that
they want to evaluate. This is called the production run and it allows one to
produce results after discarding the data from the equilibrium run.[45]
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One important aspect of the MD simulations is the choice of the time-
step.[46] A large enough time-step is needed to simulate a long enough real
time, but also it should be small enough to satisfy the conversation laws
of total energy and momentum in the integration of the equations of mo-
tion. Typically, relative errors in the total energy or momentum up to 1x10−4

kcal/mol are acceptable.
In chemical applications, the time-steps used are always the same and

they are shorter than the fastest motion of the examined system. In molecules,
the vibrational moves between bonds are faster than the rotational or trans-
lational moves. So, the time-step should be shorter compared to the fastest
molecular vibrational period. From IR spectroscopy, the shortest vibrational
frequencies arise from bonds between light atoms (H) and heavy atoms (C
or O) and they range from 2800-4000 cm−1. If this is converted to vibrational
period, it equals to τ = 8.3x10−15 – 1.2x10−14 s. Thus, in MD simulations,
time-steps of 1 femtosecond (10−15 s) are chosen, in order to be 10 times
shorter of the molecular vibrational period. This gives a good balance be-
tween conserving the total energy and momentum and being long enough
for reasonable real time scales up to nanoseconds.

Another essential parameter in MD is to find a way to keep constant the
temperature and the pressure, as in real experiments. The technique used to
conserve temperature in this work is called Andersen thermostat.[47] In this
approach, the system is coupled to a heat bath that establishes the desired
temperature. The coupling is represented by stochastic impulsive forces
that act occasionally on random particles. The coupling strength is regu-
lated by the frequency of stochastic collisions, v. If the successive collisions
are assumed to be uncorrelated, then the distribution of time intervals be-
tween two successive collisions, P(t;v) is of the Poisson form. So, the proba-
bility that the next collision will happen in the interval [t, t+dt] is expressed
in Equation 1.36 as:

P(t; v) = ve−vt . (1.36)

After the collision with the heat bath, the particles are assigned by new
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velocities that are drawn from the appropriate Maxwell-Boltzmann distri-
bution for the desired temperature. Andersen thermostat generates good
results for time-independent properties such as the equation of state of a
system or the potential energy. However, it is not an appropriate method for
time-dependent properties as the diffusion coefficient, as the dynamics pro-
duced by this approach are nonphysical. The stochastic collisions change
the dynamics in a way that is not real as they lead to sudden random decor-
relation of particle velocities.

Regarding the pressure, there are also many barostats that keeps it con-
stant, but in this report the Monte Carlo barostat is used.[48] In this ap-
proach, after using the velocity Verlet algorithm for a time-step δt, a Monte
Carlo move is made by adding or subtracting a random increase to the vol-
ume of the system. For cubic boxes, the new volume is determined by Equa-
tion 1.37:

V′ = V + R[S(δV)] , (1.37)

where R is a random number between -0.5 to 0.5, δV reduces the max-
imum size of the volume increment and S is an adjustable scaling factor.
The change in volume is transferred to the particles positions by scaling the
coordinates in Equation 1.38:

r′(t + δt) = r(t + δt)[
v′

1
3

v
1
3
] . (1.38)

The box move is then accepted or rejected using the Metropolis algo-
rithm with the sampling Equation 1.39:

∆W = (E′ − E) + P0(V′ −V)− NkBT0ln
V′

V
, (1.39)

where E’ is the new energy, P0 and T0 are the external pressure and tem-
perature and N is the number of particles of the system. The probability
which the box moves are accepted is expressed in Equation 1.40 as:
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P(∆V) =

e−
∆W

kBT0 , ∆W > 0 .

1, ∆W ≤ 0 .
(1.40)

A successful move is completed by updating the forces on the particles
to generate a set of positions and accelerations for the new configuration.
Alternatively, if the move is rejected, the original configuration is restored.

1.4 Free Energy Calculations

1.4.1 Alchemical Free Energy Methods

According to Equation 1.13, the Gibbs Free Energy, GNPT, can be computed
using the configuration integral, ZNPT. The direct calculation of ZNPT is
numerically impossible, due to the high dimensionality of protein-ligand
complexes. Instead, it is more tractable to compute ratios of the configu-
ration integrals between two related thermodynamic states, A and B. This
observation forms the basis of free energy calculation techniques.

Two major methods can be used to calculate the free energy differences
between thermodynamic states. The first approach is called Free Energy
Pertubation (FEP), introduced by Zwanzig in 1955.[49] As mentioned pre-
viously, MD simulations offer a good approach to evaluate ZNPT. If one
implements MD simulations using the potential energy function of thermo-
dynamic state A, then Equation 1.41 may be used to compute the free energy
change of replacing A with B:

∆GEXP(A→ B) = −kBTln < e−β[UB(q)−UA(q)] >A , (1.41)

where the angular brackets <> indicate that the quantity inside is av-
eraged over all the configurations of A and weighted by their Boltzmann
probabilities. The procedure involves periodically computing the poten-
tial energy that B will have for a given qi value and subtracting this from
the potential energy of A at the same qi. Ultimately, the free energy differ-
ence is calculated by using the evaluated potential energies. Therefore, the
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free energy between two thermodynamic states A and B is the Boltzmann
weighted probability of the difference of the potential energies between A
and B. It is also possible to perform the reverse process as illustrated in
Equation 1.42:

∆GEXP(B→ A) = −kBTln < e−β[UA(q)−UB(q)] >B . (1.42)

If it is assumed that the number of samples is infinite, the free energy
changes between the two processes must be equal. However, this is not the
case in practice because datasets are necessarily finite. In order to calculate
the deviations from the expected results the quantity h is used, which is
called the hysteresis of the results. It may be defined as the absolute value
of the sum of the two free energy changes and it is expressed in Equation
1.43:

h = |∆GEXP(B→ A) + ∆GEXP(A→ B)| , (1.43)

where h should have a value as low as possible, as it is an indicator of the
consistency of the results. A now deprecated approach consisted in calcu-
lating the hysteresis in both directions. The problem with this strategy is the
asymmetry in the rate of convergence of the free energy estimate to the true
free energy change. This asymmetry can be understood in terms of state
space overlap between the low energy configurations of A and B. Ideally
the reference state should be the state of higher entropy, as the low energy
configurations of the perturbed state is more likely to be a subset of the low
energy configurations of this state. Unfortunately, it is difficult to know a
priori, which protein-ligand complex has the higher entropy, therefore it is
not easy to determine beforehand in which direction the FEP equation con-
verge more rapidly.

A usual way to deal with this problem is by multi-staging the transfor-
mation of A to B. A coupling parameter λ is defined to control this conver-
sion, thus the direct transformation of A to B is separated in k intermediate
steps such that λ0 = A = 0.0 and λ1 = B = 1.0 as illustrated in Equation 1.44:
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∆GEXP(A→ B) =
k=n−1

∑
k=0

∆GEXP(λk → λk+1) . (1.44)

The result is that the exponential averaging is only implemented be-
tween states that have high degree of phase space overlap. Although the
number of simulations is increased by a factor k, each of these simulations
converge faster and the overall process is more accurate. However, due to
the fact that the intermediate states are unphysical and not of any interest,
it would be useful to minimize their number in order to minimize the com-
putational cost.

There are number of ways to implement the aforementioned strategy.
The most efficient and widely used technique is the Bennet Acceptance Ra-
tio (BAR) method:

∆GBAR(A→ B) = −β−1ln
< f (β[UA(q) −UB(q) − C] >B

< f (β[UB(q) −UA(q) − C] >A
+ C , (1.45)

where the numerator of the ratios is the ensemble average of the func-
tion f. It takes as input β times the difference between UA and UB for a
given microstate q minus a constant C. This constant is obtained from data
sampled from equilibrium distribution f(B). The denominator is the ensem-
ble average of the same function but with opposite sign. For this equation
is necessary to assume that the same number of samples is used for both
datasets. For a finite number of samples, the statistical optimal choice that
minimizes the standard error is provided by the Fermi function as shown in
Equation 1.46:

f (x) =
1

1 + ex and C = ∆G . (1.46)

Since ∆G is usually not known in advance the equation must be solved
self-consistently. Firstly, a guess is made for C and then the ratios from
Equation 1.42 are solved to obtain ∆G and then one sets C = ∆G. The pro-
cess is iterated until ∆G is not changing anymore. It can be proved that
this procedure always converges to the most accurate ∆G given available
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data. It is also possible to generalize BAR to handle multiple thermody-
namic states at the same time and this can slightly improve the precision
of the free energy estimate. This method is called multistate Bennet accep-
tance ratio (MBAR).[50] In addition, this approach can be used to evaluate
energies of different perturbed states from a reference state. The vital part
in this calculation is to find the reference state such that all the binding free
energies converge well. Occasionally, it is useful to construct a non-physical
state in order to maximize the overlap with the set of the perturbed states.

An alternative approach to compute the free energy change between the
two states A and B is thermodynamic integration (TI).[51] It is a straight-
forward application of the fundamental rules of calculus as it expressed in
Equation 1.47:

∆GTI(A→ B) =
∫ λ=1

λ=0
(

∂G
∂λ

)dλ , (1.47)

where A is defined at λ=0 and B is defined at λ=1. This relationship is
related to the ensemble average through Equation 1.48:

∫ λ=1

λ=0
(

∂G
∂λ

)dλ =
∫ λ=1

λ=0
<

∂U
∂λ

> dλ , (1.48)

where one can implement TI by deriving an analytical expression for the
first derivative of U with respect to λ and evaluate it through MD simula-
tions. Alternatively, a double wide sampling strategy called finite difference
thermodynamic integration (FDTI) can be applied to estimate the free en-
ergy gradients. So, the free energy change between λ and λ+∆λ is provided
by Equation 1.49:

∂G
∂λ
≈ ∆G

∆λ
=

G(λ + ∆λ)− G(λ)

∆λ
=

∆G(λ→ λ + ∆λ)

∆λ
(1.49)

It is essential that ∆λ is sufficiently small, for this equation to be valid.
On the other hand, it should not be too small, because the numerical preci-
sion can be affected from the floating-point rounding error. Therefore, the
free energy difference is evaluated using a perturbation technique and equa-
tion 1.46 is computed using numerical integration. FDTI has the advantage
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of not suffering from the asymmetry in convergence of forwards and back-
wards calculations. Different calculus techniques are used to estimate the
integral over the λ interval. For instance, trapezoidal or Simpson’s rule are
applied if the data points present small curvature. These methods are sim-
ple to perform, but they have underestimation and overestimation errors.

In general, BAR generates more accurate results than the exponential
averaging for the same amount of resources but requires post-processing
analysis of the results. In addition, TI is also more robust than exponential
averaging as it lacks hysteresis issues. However, it suffers from overestima-
tion and underestimation errors when one has finite number of data points.

A further development of the multistage approach is the use of thermo-
dynamic cycle. It relies on the fact that the free energy of a system is a state
function, therefore the free energy change for a closed thermodynamic cy-
cle is zero. The use of thermodynamic cycles permits the comparison of the
predicted free energy values with experimental values. An example of the
thermodynamic cycle used in these calculations is depicted in the following
figure:
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FIGURE 1.6: An example of the thermodynamic cycle used
in Alchemical Free Energy (AFE) calculations. The relative
binding free energy is depicted from the two horizontal pro-
cedures, and is equal to the transmutation of the one ligand
to the other, shown by the two vertical processes. Ligand L1
transforms in ligand L2 in both solvent and complex phase

using an one-step process.

Much of the research done in this thesis is concerned with the compu-
tation of the standard binding free energy of two different ligands L1 and
L2 to protein P. The difference in energy of the two horizontal processes,
the relative binding free energy, is equal to the difference of the two vertical
processes. These processes correspond to the transformation of L1 (thermo-
dynamic state A) to L2 (thermodynamic state B). This process does not need
to follow physical principles. The only requirement is that the molecule in
the beginning of the procedure is L1 and the molecule at the end of the pro-
cess is L2. So, the reversible binding of two ligands L1 and L2 to a protein P
can be expressed with Equations 1.50 and 1.51:
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P + L1
∆G◦bind(L1)


 PL1 , (1.50)

P + L2
∆G◦bind(L2)


 PL2 , (1.51)

where ∆ G◦bind(L1) and ∆ G◦bind(L2) are the standard binding free energies
of L1 and L2 respectively. Subtraction of Equation 1.50 from Equation 1.51
and rearrangement leads to Equation 1.52:

L1 + PL2
∆∆G◦bind

 PL1 + L2 . (1.52)

The free energy change of this reaction can be measured from Equation
1.53:

∆∆Gbind = −kBTlnKeq = −kBTln
[PL1][L2]
[L1][PL2]

= −kBTln
ZPL1,solvZL2,solv

ZL1,solvZPL2,solv
,

(1.53)
where [PL1] and [L1] represent the concentrations for the complex and

ligand 1 respectively and [PL2] and [L2] represent the concentrations for the
complex and ligand 2 respectively, Keq is the equilibrium constant, ZPL1,solv,
ZPL2,solv, ZL1,solv and ZL2,solv are the configuration integrals for host-guest
systems for ligand 1 and 2 and the solvent molecules 1 and 2 respectively.

Once a strategy to compute the binding free energy has been decided,
it is essential to create a mathematical relationship that allows the smooth
convention of the potential energy function of PL1 into one describing the
PL2. The method used in this report is called single topology. In its most
simple form, it uses the interpolation of the force field parameters of PL1
and PL2. If the only difference between PL1 and PL2 is the ligand, then only
the ligand parameters are coupled with λ. The coupling can be linear or
non-linear, for instance the atomic partial charges are expressed in Equation
1.54:

qi,λ = λnqPL1 + (1− λ)nqPL2 . (1.54)
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Similarly, other force-field parameters such as bond lengths can be cou-
pled with λ. This strategy requires mapping between the initial and end
states. A complication arises when the number of atoms in L1 and L2 dif-
fer, because it requires the potential energies of a number of ligand atoms
to be turned off/on during the perturbation. For the creation and deletion
of atoms, dummy atoms are usually introduced. These are atoms that do
not have charge of Lennard-Jones parameters, thus their non-bonded inter-
action energy is null. However they remain bonded throughout the pertur-
bation.

A common problem that occurs in this approach is called “end-point
catastrophe”. This numerical instability usually appears near the final points
of the perturbation. It is due to the fact that as the ligand atoms disappear,
atomic overlaps between non-bonded atoms are allowed and solvent and
protein atoms can occupy the available space from these atoms. To prevent
this situation, a soft core potential energy function is introduced as shown
in Equation 1.55:

Unonbonded,λ = (1− λ)4eij[(
σ12

ij

(λδσij)6 )− (
σ6

ij

(λδσij + r2
ij)

6
)] +

(1− λ)nqiqj

4πε0

√
(λ + r2

ij)
,

(1.55)
where δ and n are soft core parameters for Lennard-Jones and Coulombic

interactions. In this way the overlap between real atoms and dummy atoms
does not lead to very large energies, and intramolecular interactions can be
controlled.[52]

A special case transformation is when a ligand L is converted into a
molecule that is not interacting with the solvent or the protein, as if it were
in an ideal thermodynamic state. This process is called double annihila-
tion scheme and it is used for the calculation of absolute binding free ener-
gies.[53],[54] An example of the thermodynamic cycle used in these calcu-
lations is illustrated in Figure 1.7:
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FIGURE 1.7: An example of the thermodynamic cycle used
in absolute free energy calculations with the double annihi-
lation method. Ligand L is transformed into an ideal ther-
modynamic state in both solvated and complex phase using a
two-step process. In the discharging step, partial charges of the
ligand are switched off, retrieving free energy changes ∆Gq=0

solv

and ∆Gq=0
host . Subsequently, a vanishing step is carried on by

turning off the vdW terms of the ligand, providing free en-
ergy changes ∆GvdW=0

solv and ∆GvdW=0
host . Thus, the absolute free

energy ∆G, depicted from the two horizontal processes, can
be computed from the difference of the vertical procedures.
However, a standard state correction ∆Grest is needed in order

to obtain a standard binding free energy ∆G◦.
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In this method, ligand L is mutated into a "non-interacting" molecule
both in the solvated and the bound phase using a two-step process. In the
first step, also called discharging step, the partial charges of the ligand are
turned off giving the free energy changes ∆Gq=0

solv and ∆Gq=0
host . Following, the

van der Waals(vdW) terms of the ligand are switched off in the second step
(vanishing step) providing the free energy changes ∆GvdW=0

solv and ∆GvdW=0
host .

The final binding free energy ∆G is computed from the two legs of the cycle
and can be decomposed into configuration integrals giving:

∆G = (∆Gq=0
host + ∆GvdW=0

host )− (∆Gq=0
solv + ∆GvdW=0

solv ) , (1.56)

∆G = −kBTln(
Zq=0

L ZvdW=0
L ZPLZq=0

PL

ZLZq=0
L Zq=0

PL ZvdW=0
PL ZP

) , (1.57)

∆G = −kBTln
ZPL

ZLZP
, (1.58)

where Zq=0
L and ZvdW=0

L are the configuration integrals of the ligand in
the free phase for the discharging and vanishing step respectively, while Zq=0

PL
and ZvdW=0

PL are the configuration integrals of the ligand in the bound phase
for the discharging and vanishing step respectively. However, in order to ob-
tain the standard binding free energy ∆G◦ it is important to apply a standard
state correction term(∆Grest). In the vanishing step, the ligand is restrained
to the binding site of the protein. This action is performed in order to pre-
vent the non-interacting molecule from drifting away of the protein’s cav-
ity. Depending on the type of the restraint, it can be shown that ∆Grest is
proportional to the ratio between the volume explored by the ligand inside
the binding site, V, that can be computed numerically, versus the reference
standard volume, V◦, which is typically 1 M (1661 Å−3 mol−1). Thus, the
standard binding free energy can be eventually computed as:

∆G◦ = (∆Gq=0
host + ∆GvdW=0

host )− (∆Gq=0
solv + ∆GvdW=0

solv ) + ∆Grest , (1.59)
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∆G◦ = −kBTln
ZPL

ZLZP

V
V◦

. (1.60)

1.4.2 Markov State Models

1.4.2.1 Introduction

As discussed in the Molecular Dynamics Section 1.3, a major challenge of
these simulations is to reach biological relevant timescales. This is due to the
extremely small timestep (fs) compared to the timescales where many of the
molecular processes of interest typically occur (µs to s). Many techniques
have been proposed to solve the timescale problem. One approach that has
received interest in recent years is Markov State Models (MSM). MSMs pro-
vide a way to describe long-time statistical dynamics as a Markovian jump
process on a discrete partition of the configurational space. Because of the
Markovianity, the probability of jumping from one state to another depends
only on the current state (memoryless property). Thus the creation of an
MSM model involves the discretisation of the configurational space into a
set of n disjoint, discrete states S1,...,Sn and a nxn transition probability ma-
trix Pτ = [pij(τ)] expressing the conditional probability of finding the system
in state j at time t+τ given that it was in state i at time t. The transition prob-
ability matrix is estimated from the MD simulation trajectories xt as it is
illustrated in the following equation:

pij(τ) = P(xt+τ ∈ Sj|xt ∈ Si) , (1.61)

where τ is the lag time for which the transition matrix is constructed.
Therefore, the transition probability matrix is characterised by the n states
and by the chosen lag time.

The key steps to build an MSM are summarised in the following steps:

1. Choose an appropriate distance metric for discretization and cluster
the MD trajectories into microstates.

2. Select an appropriate lag time.

3. Estimate the transition probability matrix.
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4. Validate the model.

5. Coarse-grain the model to gain human intuition.

1.4.2.2 State decomposition

The first step to build an MSM is the generation of discrete states (microstates)
from MD simulations. Each microstate consists of a group of structures
that should inter-convert rapidly with each other with respect to other mi-
crostates. For this purpose, it is important to choose a distance metric that
could best capture the relevant dynamics of the system under scrutiny. The
process of transforming the Cartesian coordinates of each frame of the MD
trajectories in a kinetically meaningful manner for instance root-mean-square
deviation (RMSD) between atoms is called featurisation. Optionally, a di-
mensionality reduction of the feature space can be performed using Time-
lagged independent component analysis (TICA).[55] This method performs
linear transformation of the input coordinates described by the distance
metric into a set of coordinates sorted by "slowness". Therefore, it pro-
vides an efficient way to obtain a lower dimensional space that maintains
the long-timescale dynamics and can be discretised with higher resolution
and higher statistically accuracy.

Once features that can best describe the underlying dynamics of the sys-
tem have been chosen a variety of algorithms may be used to cluster the
conformations (such as k-centers, k-medoids and k-means).[56] In this re-
search the k-means algorithm was generally used. It can be described by
the following protocol[57],[58]:

1. Randomly choose k-conformations k1,k2,...,kK as the initial centers of K
microstates S1,...,SK.

2. Calculate the Euclidean distance between every conformation (Xi) of
the dataset to each of the microstate centers

3. Assign each conformation to the microstate with the minimum dis-
tance.
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4. Update the new centers of the microstates using the mean vectors.
Each mean vector is calculated from the average of the distances be-
tween all conformations of each cluster.

5. Repeat steps 2,3 and 4 until the following equation for each cluster is
minimised:

E =
K

∑
k=1

∑
Xi∈CK

|Xi − SK|2 (1.62)

where E is the sum of the squared distance errors of all microstates.

1.4.2.3 Estimation of the transition probability matrix

Once data has been assigned to clusters, we can count the number of tran-
sitions between each pair of states at an appropriate lag time τ and store
them as a transition count matrix C, where Cij is the number of observed
transitions from state i to state j. With infinite data, a reasonable estimate
(maximum likelihood estimate) to convert C into a transition probability
matrix, pij(τ) is:

pij(τ) =
Cij

∑j Cij
. (1.63)

However, in practice, a number of issues arise with this approach. The
first one is the generation of the transition count matrix C. The first step to
count the transitions, is to select an appropriate lag time τ. For this purpose,
we have to estimate transition probability matrices in different lag times and
for this reason we cover the process of estimating these matrices first. In
order to count the transitions we use the sliding window approach. In this
method, we generate the transition count matrix C using all the available
data. We assume that the conformations were sampled at a regular time
interval ∆t, where ∆t < τ. Then the transitions between states are counted
as σ(0) → σ(τ), σ(∆t) → σ(∆t + τ), σ(2∆t) → σ(2∆t + τ)..., where σ(t) is
the state index of the simulation at time t.[59] This approach will give a
more accurate estimate of maximum likelihood transition matrices, but will
underestimate the uncertainty of the model.
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A second possible problem with the standard estimate of pij is satisfying
the detailed balance as expressed in Equation 1.64:

πi pij = πj pji , (1.64)

where πi is the stationary probability of state i. This relationship states
that for every transition from state i to j, there should also be a reverse tran-
sition from j to i. One way to enforce this property is using a maximum
likelihood method for the estimation of the best reversible transition matrix
for the observed data. In this work, a Bayesian reversible MSM estimation
was used as it was described in Trendelkamp-Schroer et al.[60]

Finally, the states used for the estimation of the matrix should be fully
connected. This means starting from any state, every other state can be
reached given enough time. A non-ergodic model can arise from MD sim-
ulations with different initial configurations that do not overlap due to in-
sufficient sampling. This problem can be solved with longer time scale MD
simulations.

The resulting transition matrix can provide relevant and interesting in-
formation about the system through its eigendecomposition. This process
results in a set of eigenvectors, ψi and their corresponding eigenvalues, λi:

Pτ ◦ ψi = λi(τ)ψi . (1.65)

As Pτ is a reversible matrix all the eigenvalues are real with values rang-
ing from -1 to 1, -1 < λi ≤ 1. The highest eigenvalue, λi, is equal to 1 and
its corresponding eigenfunction, ψ1, is the stationary distribution, π, which
consists of the equilibrium probabilities of the microstates:

π>Pτ = π> . (1.66)

All the other eigenvalues are related to the relaxation timescales within
the system, indicating how quickly the process decays towards equilibrium
(positive eigenvalues) or oscillates (negative eigenvalues). The positive eigen-
values can be converted to characteristic or implied timescales of the dy-
namical processes within the system using the lag time τ as shown by the
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following equation:

ti =
τ

ln|λi|
, (1.67)

where ti is the relaxation time of the ith process determined by the ith

largest eigenvalue λi. The corresponding eigenvectors are related to the dy-
namical processes themselves and their coefficients indicate the structural
changes that occur in the system during the process.

1.4.2.4 Validation of the Markov Model and lag time selection

It is important to select a proper lag time τ to estimate the transition prob-
ability matrix. This should be long enough to ensure Markovianity in state
space but also short enough to resolve the system dynamics. Plotting the
implied timescales as a function of the lag time (Equation 1.66) can be used
as a diagnostic tool to select an appropriate MSM lag time. This plot should
give an indication of the smallest lag time needed to satisfy the Markov as-
sumption. Beyond this time, the implied timescales should be converged as
a function of τ and thus independent of lag time τ.[61],[62]

Once the transition probability matrix for a chosen lag time has been
computed its Markovianity can be tested using the Chapman-Kolmogorov
(CK) equation[59],[63]:

P(nτ) = P(τ)n . (1.68)

This relationship shows that a transition probability matrix estimated at
lag time nτ, where n is an integer greater than 1, should be equivalent to the
transition probability matrix, Pτ, to the nth power.

1.4.2.5 Coarse-graining for the generation of macrostates

The MSM, created from the estimation of the transition probability ma-
trix and validated by the CK test, contains hundreds or thousands of mi-
crostates that can approximate the statistical dynamics of a biomolecular
system. However, in order to obtain an interpretative model it is useful to
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construct metastable macrostates from a kinetic lumping of the microstates.
Metastable states contain a collection of microstates that are kinetically re-
lated to each other. They can be identified from a relative large gap in the im-
plied timescales plot. There are several ways to perform the coarse-graining
of the states, but in this work a more robust version of Perron Cluster Cluster
Analysis (PCCA+) algorithm compared to simple PCCA was chosen.[64–66]
In PCCA, we start off with all microstates combined into a single macrostate
and then sequentially break this macrostate into two smaller macrostates
based on the next slowest right eigenvector.[67] If there is a clear gap in
the separation of the timescales for the different metastable states, then the
model will be very useful for human intuition. However, in many cases
there is a continuum of eigenvalues that can lead to a propagation of er-
ror. This error arises from the fact that not all eigenvalues may participate
strongly in each eigenmode, therefore many microstates will be assigned to
macrostates arbitrarily. PCCA+ tries to tackle this error by simultaneously
considering the relevant slowest dynamical eigenvectors.

After coarse-graining microstates to macrostates, it is a good practice to
test the quality of the macrostate model by comparing the relaxation times
of the model with those of the microstate model and examining how close
they are. For every macrostate we can approximate the stationary probabil-
ities from its transition probability matrix. In addition, the Mean First Pas-
sage Time (MFTP), which is the average time taken to get from a macrostate
i to the macrostate j, can be defined as[68–70]:

MFTPij =
N

∑
j=1

Pij(τ)(τ + MFTPji) , (1.69)

where N is the number of discrete states. The boundary condition for
this calculation is that:

MFTPjj = 0 . (1.70)

Thus, the set of linear equations from 1.69 and 1.70 can be solved to
obtain MFTPij.
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1.5 Experimental techniques used to investigate

protein-ligand binding affinity

1.5.1 General Overview

The binding of small molecules to proteins can be investigated through
many experimental techniques. For instance, X-ray crystallography and
cryo-electron microscopy can provide atomic resolution or near atomic res-
olution structures of protein-ligand complexes.[71] In addition, NMR spec-
troscopy can be used to characterise the dynamics of the binding process
over a wide range of timescales from picoseconds to seconds.[72] Finally,
the thermodynamic parameters of binding events, i.e. the heat change that
occurs when biomolecules interact, can be measured either directly using
Isothermal Titration Calorimetry (ITC) or indirectly by using techniques
that can calculate the binding affinity as a function of temperature such
as Surface Plasma Resonance (SPR) and Fluorescence Polarization (FP).[73]
These three techniques will be introduced and discussed in detail in the fol-
lowing subsections.

1.5.2 Isothermal Titration Calorimetry (ITC)

ITC is a quantitative technique that measures the heat change during molec-
ular association at a constant temperature. ITC monitor these heat changes
by measuring the power needed to maintain the same temperature between
two identical cells, made of a highly efficient thermally conducting material,
as protein and ligand are mixed. Usually, the sample cell contains the pro-
tein of interest and the reference cell is filled with water or buffer. ITC is con-
sidered as the gold standard in characterizing interactions of biomolecules
in a broad range of binding affinities, because it provides a full thermody-
namic description of the system of interest in a single experiment.[71]

During an ITC experiment, the ligand is titrated into the sample cell in
precisely known aliquots. This results to heat release since binding is an
exothermic reaction. This causes a temperature imbalance between the ref-
erence and the sample cell that is compensated by changing the feedback
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power provided to the cell heater. The power applied to the sample cell in
order to maintain equal temperatures between the two cells at each titration
is plotted against time (primary ITC data). These data are then normalised
for concentration to produce a titration curve of kcal/mol versus molar ra-
tio of the total ligand concentration to the protein concentration. Finally, this
titration curve is fitted to a binding model in order to obtain the binding con-
stant, Gibbs free energy of binding, binding enthalpy and the stoichiometry
(n) of the binding event.[74],[24] An example of the ITC data is provided in
Figure 1.8.
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FIGURE 1.8: A representative example for ITC data. Primary
ITC data, showing observed changes in heat resulting from
interactions between the biomolecules are depicted in the up-
per panel. The resulting binding curve from the fitted binding

model is illustrated in the lower panel.
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1.5.3 Surface Plasma Resonance (SPR)

SPR is a biophysical approach for the study of protein–ligand binding ki-
netics and affinities.[75] It requires protein molecules (receptor) to be im-
mobilised on a sensor surface, which is usually a thin film of gold on a glass
support that forms the floor of a small-volume flow cell through which an
aqueous solution flows continuously. The examined ligand (analyte) is in-
jected in the aqueous solution through the flow cell in order to measure the
binding reaction. If the analyte binds to the receptor there is an association
phase during which the binding sites are occupied and an increase in the re-
fractive index at the surface (expressed in response units, RU) is observed.
This increase is measured as a function of time resulting a time-dependent
RU curve that can be used to calculate the kinetic association rate constant,
kon. After a desired period of time, a buffer solution containing no analyte is
injected through the flow cell causing the dissociation of the protein–ligand
complex and to a decrease in the refractive index. Similarly, a second time-
dependent RU curve is produced and can be used to measure the rate of
dissociation ko f f . Finally, the binding constant Kb can be obtained accord-
ing to Equation 1.3.[76],[24]

1.5.4 Fluorescence Polarization (FP)

FP is a fluorescence-based method used to measure the kinetics and the ther-
modynamics of protein-ligand binding. The principle of FP derives from the
fact that the degree of polarisation of a small molecule is related to its molec-
ular rotation. In addition, the polarization lifetime depends on the rotational
relaxation time, i.e, the time that a molecule needs to rotate through an ca.
68.5 angle after excitation. The latter is proportional to the molecular vol-
ume of the examined molecule and thus the ligand in solution unpolarizes
faster compared to when its bound to a protein. This allows FP to be used to
measure the association of a fluorescent ligand with a larger molecule. FP is
assumed to be linear proportional to the percentage of bound/free species
and this can be used to quantitatively determined the IC50 value of protein-
ligand binding.[77],[78] Finally, the corresponding Ki/Kd ratio, where Ki is
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the inhibition constant of the unlabelled small molecule, can be calculated
using the appropriate versions of the Cheng-Prusoff equation.[79],[80]

1.6 Statement of aims

Molecular Dynamics (MD) simulations have become popular in the context
of free energy calculations of protein-ligand complexes to assist drug dis-
covery. However, MD methods struggle to explore potential energy land-
scapes efficiently, as they can sample only the low energy conformations of
the system of interest. The main goal of this thesis is to examine in depth
the sampling problem of MD methods in the calculation of standard free
energies of binding of different biomolecular complexes.

Chapter 2 will discuss the use of MD simulations as a sampling tech-
nique for the implementation of a Relative Free Energy (RelativeFEP) pro-
tocol using the Sire/OpenMM Molecular Dynamics (SOMD) software. Rel-
ativeFEP can accurately predict the binding selectivity of a congeneric series
of ligands to a protein-target. This is due to the reduced sampling needed
for these type of calculations, as they consider only the relative free energy
differences of two structural similar molecules that adopt the same binding
modes. The efficiency of this method was examined as a part of a novel
ligand design workflow to optimize the binding selectivity of cyclophilin
(Cyp) inhibitors.

Chapter 3 will deal with the validation of an Alchemical Free Energy
(AFE) protocol for host-guest binding affinities predictions using the SOMD
software. MD simulations are employed again as a sampling technique for
the calculation of absolute (standard) free energies of binding. Absolute
free energy calculations are a computationally efficient rigorous method to
compute binding free energies for a diverse set of compounds.[81] However,
they are computationally expensive as they require thorough sampling of
the system’s degrees of freedom. For this reason, the protocol was initially
evaluated in the SAMPL6 challenge in terms of accuracy and correlation
with experimental data for a dataset of 27 host-guest systems.
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Chapter 4 applies AFE to the challenging case of a ligand binding to the
intrinsically disordered protein c-Myc. The AFE results are compared to
those obtained with a Markov State Modelling (MSM) protocol.

Finally, Chapter 5 will introduce an adaptive sampling version of the
AFE protocol to calculate absolute binding free energies of a diverse set of
inhibitors of the flexible protein Murine Double Minute-2 (MDM2) at a re-
duced computing cost. The protocol will be tested in terms of its ability to
reproduce the binding selectivity of these compounds between a full length
and lid-truncated variant of MDM2.

Ultimately, Chapter 6 will draw a summary and conclusions from all the
results of this thesis.
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Chapter 2

Computationally Driven
Discovery of Novel Cyclophilin A
and D Inhibitors

2.1 Introduction

2.1.1 General information on Cyclophilins

Cyclophilins (Cyps) are a family of proteins that catalyze the inter-conversion
of cis and trans isomers of proline residues. Cyps were initially identified
in 1984 when Fischer et al found a protein, which they called peptidyl-
prolyl cis-trans isomerase (PPIase), that increased the rate of the 180◦ ro-
tation about the (C-N) linkage of the peptide bond of proline.[82] Later, in
1989 it was shown that this protein was the same as the already identified
protein CypA. Together with the FK509 binding proteins, they were initially
described as the biological receptors for the drugs Cyclosporin A (CsA),
FK506/tacrolimus and rapamycin/sirolimus (Figure 2.1).[83]
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FIGURE 2.1: Chemical structures of CsA, Tacrolimus and
Sirolimus.

The peptidyl-propyl isomerisation is essential for many processes such
as protein folding and assembly of multidomains. The peptide-bond has a
partial double bond character and can exist in two different forms: cis and
trans. For non-prolyl bonds, the trans conformation, where the side chains
are 180◦ opposite to each other, is sterically favored and the equilibrium con-
stant [trans]/[cis] (Kc) is usually higher than 100 (Kc > 100).[84],[85] How-
ever, due to proline’s unusual cyclic structure, both the cis/trans conforma-
tions of the peptidyl-propyl bond are accessible and the trans isomer is only
slightly favored. It has been demonstrated in refolding experiments, that
the peptidyl-propyl bond will not adopt the intended conformation sponta-
neously due to the relatively high activation energy required to catalyse the
cis/trans isomerisation (ca. 20 kcal mol−1). Thus, the trans to cis isomerisa-
tion is a slow process and can be the time-limiting step of folding especially
in low temperatures.[86] Cyps are enzymes that stabilize the cis/trans tran-
sition state and accelerate the isomerisation (Fig 2.2).[87]
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FIGURE 2.2: Schematic representation of the trans and cis iso-
mers of the peptide bond between proline (illustrated on the
left of each structure) and another amino acid (shown as P1,
on the right). P2 is a third amino acid bound on the other side
of the proline. The carbon atoms of the proline are labelled
using Greek letters. The peptide bond is planar and has a par-
tial double bond character. The catalysis of the time-limiting
trans to cis isomerisation of the peptide bond is accelerated by
cyclophilins and other PPIases. Adapted from Wang et al.[87]

The human Cyp family consists of 17 members with CypA being the
most abundantly expressed. They can also be found in mammals, plants
and parasites. The majority of these proteins have unknown function and
only 7 of them to date have been demonstrated to bind to CsA and/or
to posess an isomerase activity, namely CypA, CypB, CypC, CypD, CypE,
Cyp40 and CypNK. The aforementioned Cyps differ in their structural char-
acteristics and their localization in the human body. However, they share a
common PPIase domain of approximately 109 amino acids, which is sur-
rounded by unique domains for each member of the family that are vital
for their sub-cellular compartmentalization and functional specialization.
All Cyps have the same secondary and tertiary structures [88] consisting of
eight antiparallel β-sheets with two α-helices that pack the β-strands. The
active binding site of Cyps is formed by the catalytic amino acid Arg55 and
a mixture of hydrophobic, aromatic and polar residues including Phe60,
Met61, Gln63, Ala101, Phe113, Trp121, Leu122 and His126. The chemical
structure of CsA and a 3D representation of CypA illustrating the key amino
acids of the binding site determined by CsA is shown in Figure 2.3:
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FIGURE 2.3: 3D representation and amino acid sequence of
CypA. The key residues forming the active binding site of
CypA are colored red. Alignment of sequence and secondary

structure was obtained from http://www.rcsb.org/.
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Many residues are highly conserved amongst the Cyp family as is illus-
trated in Table 2.1. [87]

Protein name
(other name)

Identity(%)
to PPIA

Binding site residues of Cyp PPIase domain
55 60 61 63 72 81 82 101 102 110 121 122 126

PPIA
(CypA) - Arg Phe Met Gln Gly Glu Lys Ala Asn Ser Trp Leu His

PPIB
(CypB) 64 Arg Phe Met Gln Gly Glu Arg Ala Asn Ser Trp Leu His

PPIC
(CypC) 63 Arg Phe Met Gln Gly Glu Thr Ala Asn Ser Trp Leu His

PPID
(Cyp40) 60 Arg Phe Met Gln Gly Glu Lys Ala Asn Ser His Leu His

PPIE
(CypE) 67 Arg Phe Met Gln Gly Lys Lys Ala Asn Ser Trp Leu His

PPIF
(CypD) 76 Arg Phe Met Gln Gly Ser Arg Ala Asn Ser Trp Leu His

PPIG 52 Arg Phe Met Gln Gly Gly Phe Ala Asn Ser His Leu His

PPIH 53 Arg Phe Met Gln Gly Gly Pro Ala Asn Cys Trp Leu His

PPIL1 54 Arg Phe Met Gln Gly Lys Gln Ala Asn Ser Trp Leu His

PPIL2 49 Arg Phe Val Gln Gly Lys Pro Ala Asn Ser Trp Leu His

PPIL3 50 Arg Phe Met Gln Gly Lys Lys Ala Asn Ser His Leu Tyr

PPIL4 36 Arg Phe Ile Gln Gly Gly Leu Val Asn Ser Tyr Leu His

PPIL6 43 Arg Gly Met Gln Gly Pro Thr Ala Asn Ser Tyr Leu Phe

PPWD1 49 Arg Phe Met Gln Gly Gly Glu Ala Asn Ser Trp Leu His

NKTR 50 Arg Phe Met Gln Gly Gly Tyr Ala Asn Ser Trp Leu His

CWC27 43 Arg Phe Ile Gln Gly Ala Pro Ala Asn Ser Glu Leu His

RANBP2 66 Arg Phe Val Gln Gly Asp Lys Ala Asn Ser Trp Leu His

TABLE 2.1: Percentage sequence identity of all the Cy-
clophilins’ PPIase domain compared to CypA. Comparison
of the conservation of the amino acids that characterise the
binding site that was defined by CsA. The residues of the Cy-
clophilin members that differ from the ones of CypA are illus-
trated in bold. The data are provided from Charis Georgiou.
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2.1.2 Biological role of Cyps

Cyps are the intracellular receptors for CsA, a cyclic 11-amino acid peptide
originally isolated from the fungus Tolypocladium inflatum. CsA is an im-
munosuppressive drug that is used in organ-transplant patients to prevent
immune response and organ rejection. The major in vivo receptor is CypA
and the resulting CsA-CypA complex has the ability to bind and inhibit
calcineurin. As a consequence pNFAT, the calcineurin substrate, is unable
to translocate from the cytosol to the nucleus and activate the T-cells.[89]
Moreover, Cyps are responsible for the misregulation of diverse biological
signaling pathways such as RNA splicing[90] and mitochondrial apoptosis.
They are also involved in the life cycle of different viruses for instance Hu-
man Immunodeficiency Virus (HIV-1) and Hepatitis C Virus (HCV) and in
different types of cancer.[91],[92]

The present work focused on the biological role of two members of the
Cyp family, CypA and CypD. CypA has a molecular mass of 18 kDa and
is one of the most abundant proteins in the cytoplasm and is involved in a
plethora of cellular functions such as protein folding, trafficking and cell sig-
naling.[93] CypA is not necessary for cell growth and survival[94],[92], but
its extracellular fraction acts as pro-inflammatory mediator that triggers in-
flammatory responses and probes chemotactic activity for neutrophils and
monocytes via the CD147 receptor.[95]

CypA is reported to be overexpressed in numerous types of cancer. Pre-
vious studies have emphasized that CypA can be identified as a bio-marker
in lung cancer[96] and that overexpression of CypA in lung cancer cells
increases cancel cell growth, whereas knockdown of CypA slows down
the cell growth.[97] Furthermore, CypA interacts with CD147 and stimu-
lates the human pancreatic cancer cell proliferation.[98] Regarding breast
cancer, CypA regulates the Jak2/Stat5 pathway which is vital for the tu-
morigenesis. In addition, CypA has been spotted as a useful Hepatocel-
lular carcinoma marker[99] and has been overexpressed in primary and
metastatic melanoma[100] and in glioblastoma multiform[101]. Qi et al also
suggests that CypA can have a possible role in malignant transformation of
esophageal squamous cells[102] and Choi et al showed that upregulation of
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CypA in prostate cancer cells provides resistance to cisplatin and hypoxia-
induced cell death.[103] Finally, CypA is associated with tumor progres-
sion and tumor development in colocteral cancer.[104] To summarize, CypA
plays a vital role in tumor development and is overexpressed in numerous
types of cancer.[105]

CypA is also involved in HIV and HCV infections. Regarding the HIV-
1 infection, CypA can interact with HIV capsid proteins on their CA do-
main, especially with a proline containing sequence in the capsid polypro-
tein Gag[106] as well as with HIV accessory proteins such as the viral pro-
tein R (Vpr).[107],[108] Concerning on HCV virus, CypA interacts with non-
structural protein 5A (NS5A) and the binding site has been located to the
proline rich domain II, centered around a "DY" dipeptide motif that controls
CypA dependence and CsA resistance.[109],[110],[111] This protein is im-
portant for HCV replication, because it maintains the proper structure and
function of HCV replicase.[112] The CypA-NS5A interaction is conserved
among all HCV genotypes and all the cyclophilin inhibitors prevent the for-
mation of this complex.[113]

CypA has also been reported to be involved in many other diseases in-
cluding cardiovascular diseases, diabetes, other viral and protozoan infec-
tions, amyotrophic lateral sclerosis (ALS), rheumatoid arthritis (RA), sepsis,
asthma and periodontitis.[93]

CypD (PPIF) is also a member of the Cyps family with important bio-
logical role. CypD is located in the mitochondrial matrix and it regulates
the opening of the mitochondrial permeability transition pore (mPTP) in
response to various stress stimuli.[114] Mitochondria control the Ca2+ con-
centration in different cell sections. mPTP has a vital role for the Ca2+ ef-
flux from mitochondria to the cytosol across the inner membrane.[115] This
pore in the normal state is very important for cell metabolism, but persistent
opening induces necrotic cell death. In 2005, Linkerman et al provided evi-
dence that CypD has a key role for necrotic signalling by deleting Ppif, the
CypD gene. The cells without this gene were resistant to cell death caused
by overload of cytosolic calcium.[116] Figure 2.4 illustrates the mechanism
of action of CypD in the mPTP target.
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FIGURE 2.4: Schematic illustration of the pharmacological role
of CypD in the mPTP opening. CypD translocates from the
mitochondrial matrix to the inner mitochondrial membrane
where it triggers the opening of the mPTP. This causes the en-
trance of water and solute (blue and red circles) within the mi-
tochondrion, which then leads to necrosis. (Provided by Maria

Kouridaki)

CypD has been considered as a potential biological target for diverse dis-
eases where mitochondrial dysfunction plays a vital role to their pathogene-
sis. Mitochondrial dysfunction is associated with a variety of liver diseases,
as mitochondria play a vital role in the integrity and the normal function of
liver cells. Small for size liver syndrome (SFSS) is a clinical syndrome that
follows liver transplantation and hepatectomy.[117] Small for size livers are
associated with liver cell necrosis and an increase in alanine transaminase
and bilirubin levels. A CypD inhibitor (NIM81) decreased graft injury and
increased liver regeneration in an experimental model. In addition, it re-
ducted lung inflammation by reducing the expression of inflammatory cy-
tokines and adhesion molecules (tumor necrosis factor (TNF-a) and inter-
cellular adhesion Molecule-1 (ICAM-1)).[118]
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Moreover, mitochondrial dysfunction is considered as the triggering event
in the development and evolution of nonalcoholic steatohepatitis (NASH)
and Non-alcoholic fatty liver disease (NAFLD).[119],[120] NAFLD is one
of the most common chronic liver diseases in the world and NASH is the
second most common indication for liver transplantation in the USA af-
ter chronic hepatitis C.[121] NASH currently affects 3-4% of the US pop-
ulation and by 2020 will be the leading cause of liver transplantation.[122]
There are currently no drugs for this disease and it is tackled through com-
bination therapies across a broad range of patients.[123] Wang et al pro-
vided evidence that overexpressed CypD leads to hepatic steatosis.[124]
The proposed mechanism is that persistent mPTP opening and Ca2+ bal-
ance disruption results in endoplasmic reticulum (ER) stress through p38
mitogen-activated protein kinase (MAPK) activation. Hence, this causes
an increased sterol regulatory element-binding Protein-1c (SREBP-1C) and
eventually steatosis in the liver.[124] Therefore, pharmacological inhibition
of mPTP has been shown to be beneficial in in vitro and in vivo disease mod-
els of liver fibrosis.[113]

Furthermore, mitochondrial dysfunction is connected also to acute pan-
creatitis (AP). AP is one of the most common pancreatic diseases and it
is caused by gallstones or redundant alcohol intake. Severe AP is charac-
terised by pancreatic necrosis, systematic inflammatory response syndrome,
multiple organ failure and sepsis which results in the death of 25% of pa-
tients.[125],[126] mPTP opening is central to numerous forms of AP and
causes reduced adenosine 5’-triPhosphate (ATP) production, defective au-
tophagy, zymogen activation, cytokine release and necrosis.[127] Studies on
CypD knockout mice showed that inhibition of CypD can reduce or amelio-
rate local and systematic pathological responses of AP.[128],[129]

Ultimately, mitochondrial dysfunction is also linked to Alzheimer’s dis-
ease. Du et al showed that CypD interacts directly with Aβ, which plays a
vital role in Alzheimer’s pathogenesis, in the mitochondria of Alzheimer’s
disease brain and in a mouse model of Alzheimer’s disease. This interac-
tion promotes reactive oxygen species (ROS) generation and recruitment
of CypD in the mitochondrial inner membrane. This results in persistent
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opening of mPTP that regulates the mitochondrial-induced cell death in an
Aβ-rich environment. Inhibition of CypD protected neurons from Aβ- and
oxidative stress-induced cell death, improved learning and memory and
synaptic dysfunction.[130]

2.1.3 Current Cyp inhibitors and the need for the discovery

of new ones

Due to their diverse biological role, as mentioned above, Cyps are consid-
ered as potential therapeutic targets for tackling numerous diseases. The
story of Cyp inhibitors began in 1969 in Norway when CsA and Cyclosporin
C (CsC) were isolated from the fungus Tolypocladium inflatum. In 1983, it
was developed by Novartis as a drug in organ transplantation.[131] How-
ever, the long-term use of CsA in organ-transplant patients caused severe
side effects such as nephrotoxicity and this is the major obstacle for the
broader use of this drug.[132] This study led many researchers to find CsA
analogues that lack calcineurin-binding properties and therefore do not ex-
hibit immunosuppressive properties. Three major semi-synthetic analogues
of CsA were proposed and tested in clinical trials for the treatment of viral
infections namely Alisporivir (DEB025), NIM811 and SCY-635 (Figure 2.5).

Alisporivir is a semi-synthetic analogue of CsA with increased inhibitory
activity over CypA,[133] and the ability to inhibit the calcineurin binding.[134]
It was initially developed as a drug for HIV infection, but it has entered a
phase II trial for patients infected with genotype 2 or genotype 3 HCV as a
monotherapy or in combination with interferon and ribavirin.[92],[135],[136]
NIM811 has higher affinity for CypA than CsA and has been investigated
clinically as a potential treatment for HCV.[137] Combined with NS3-4A
protease or NS5B polymerase inibitors it has additive inhibition to viral
replication and a high genetic barrier to viral resistance development.[138]
In addition, it has anti-HIV activity as it inhibits the binding of CypA to
HIV-p24gag protein.[139] Ultimately, it can be produced on large scale di-
rectly from fermentation through a genetic manipulation of the producing
strain of Tolypocladium inflatum.[136] SCY-635 was discovered at Aventis for



Chapter 2. Computationally Driven Discovery of Novel Cyclophilin A and
D Inhibitors

59

the treatment of HIV, but it has progressed phase II development for HCV
infection.[140] It is slightly more potent than CsA for CypA inhibition and
it suppress the HCV replication in replicon cells in a time dependent man-
ner.[141]

In addition to CsA-derived inhibitors, the sangliferins represent another
class of macrocyclic natural products that inhibit Cyps. Sangliferins are pro-
duced by soil Streptomyces bacteria.[142] They have immunosuppresive ac-
tivity with a mechanism of action that does not involve calcineurin binding,
with details yet to be determined.[143],[144] The most abundant member
of this class of molecules, Sangliferin A, binds to CypA 60-fold more po-
tently than CsA and can suppresses HCV replication.[145],[146] These data
encouraged different groups such as Novartis[142] and Bioteca[147] to de-
velop nonimmunosuppresive sangliferin analogues. Ultimately, Gilead Sci-
ences discovered a family of cyclophilin-binding macrocycles that contain
the functionality characteristics of the piperazic acid of sangliferins (The
piperazic acid occupies the same hydrophobic pocket as 11-Val of CsA).[148]
Chemical structures of CsA-derived inhibitors and sangliferinA are illus-
trated in Figure 2.5.
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FIGURE 2.5: Depiction of the CsA-derived inhibitors from
left to right and top to bottom, Cyclosporin A, NIM811, Al-
isporivir, SCY-635. Sangliferin A is illustrated at the bottom of

the figure. Adapted from Hopkins et al.[149]

The main drawback of the aforementioned inhibitors is that they have
unfavorable drug-like properties. They are complex to synthesize, lack sub-
type selectivity and have high molecular weights, limited solubility and
poor Central Neural System (CNS) activity.[150] Thus, much synthetic ef-
fort has been consumed to develop small molecule inhibitors with improved
pharmacokinetic/pharmacodynamic properties (PK/PD). The current strat-
egy for small molecule inhibitors typically includes urea moiety as the cen-
tral core of the molecule and several urea analogues such as acetyl urea
or thiourea.[129],[151],[152] Moreover, Cho et al reported amide scaffolds as
potentially small molecule inhibitors of Cyps.[153] Finally, Ahmed-Belcasem
et al identified two compounds with significant inhibition of CypA, CypB
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and CypD and with anti-HCV activities through a fragment based drug de-
sign method by using X-ray crystallography and Nuclear Magnetic Reso-
nance (NMR).[154] Chemical structures of the reported small molecule in-
hibitors are shown in Figure 2.6.

FIGURE 2.6: Schematic representation of the small-molecule
Cyp inhibitors reported in the literature.

Despite the large number of inhibitors reported in the literature, many
of them do not bind with 1:1 stoichiometry and do not have high affinity for
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Cyps.[154],[155] However, their main drawback is that they do not offer spe-
cific inhibition of Cyp isoforms. Specificity in this family of proteins is very
important for the avoidance of side effects from the use of non-specific drug
molecules and for the better understanding of the biological role of every
isoform. However, obtaining high binding specificity is the most challeng-
ing issue in the quest for novel Cyp inhibitors, because of the high degree
of similarity of the active site between different Cyp isoforms, as decribed
above. The similarity is illustrated with a small inhibitor, compound 1,[154]
in Figure 2.7.

FIGURE 2.7: A) Chemical structure of compound 1.[154] B)
Three dimensional surface structure of the PPIAse domain of
the human CypA-D isoenzymes which is colored by residue
conservation (blue highly conserved, red poorly conserved).
The location of Abu, Pro and 3 o’clock pocket are circled and
the small inhibitor is depicted in colored sticks. Adapted from

Simone et al.[156]



Chapter 2. Computationally Driven Discovery of Novel Cyclophilin A and
D Inhibitors

63

2.1.4 Previous work in the Michel group

Figure 2.7 also highlights a less conserved 3 o’clock pocket that could be
potentially used to achieve selective inhibition amongst different Cyp iso-
forms. This accessory pocket is located close to the enzyme active site, de-
lineated by the so called Abu and Pro pockets (these pockets were named
after the amino acids Abu and Pro of CsA that bind to the CypA binding
site). Figure 2.8 illustrates the structural difference of the 3 o’clock pocket in
CypA and CypD. In order to target this pocket, De Simone et al. examined
the binding of the small inhibitor illustrated in Figure 2.7A.[156]

FIGURE 2.8: 3D representation of the less conserved 3 o’clock
pocket in CypA (magenta) and CypD (light blue). The name
of the different residues in CypA and CypD is written in red.

The crystal structure of compound 1 in complex with CypA showed that
both urea nitrogen atoms have formed hydrogen bonds with the backbone
oxygen of Asn102.[154] However, extensive MD simulations on cyclophilins
in complex with compound 1 revealed that the nitrogen atom that is further
away from the ester moiety interacts only weakly with Asn102 (Fig B.1).
Thus, an alkylation of this nitrogen can be tolerated in order to introduce
a new vector in the scaffold. In addition, ab-initio calculations on model
ureas suggest only a small preference to the Z,Z urea conformer over an E,Z
conformation. These observations inspired the Michel group to examine if a
suitable chosen R group can provide an alkylated urea that would be stable
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as an E,Z conformer and enable access to the 3 o’clock pocket (type-II binding
mode). (Figure B.2)

The sampling of the desired type-I to type-II binding mode flip is diffi-
cult through MD simulations, because the rotational barrier that separates
the two conformers is approximately 15 kJ/mol. Thus, the selection of po-
tential R groups to alkylate the nitrogen of the urea was implemented by
relative FEP calculations. The protocol used to compute the energetics of
this binding mode flip included a perturbation network where the ligands
were connected in both binding modes through multiple transformations.
The strength of binding to CypA was also examined by Isothermal Titration
Calorimetry (ITC).

Compound 1 was predicted to bind with a type-I preference by 1 kcal
mol−1 based on the FEP calculations reported in De Simone et al.[156] Sub-
stitutions in the urea nitrogen with non-polar alkyl groups were predicted
to favor type-I binding mode and they were less favorable than compound
1. These results were in line with the experimental ones. Moreover, nitro-
gen rich five-membered rings (triazole and tetrazole derivatives) illustrated
a slight preference in binding mode II based on the computational proto-
col and more favorable binding than compound 1 in both FEP and ITC. In
addition, CypA crystals were soaked with the aforementioned compounds
and seven X-ray structures were determined. Based on these results, FEP
calculations were proven valid to capture the binding mode preferences of
these compounds. Furthermore, the type-II binding mode in the triazole
and tetrazole derivatives is suggested to be stabilised by hydrogen bonds
that are formed between the nitrogen atoms in the five-membered rings
and His54. In addition, this binding mode is supported by a shift of the
orientation of the urea carbonyl in order to preserve the placement of the
aniline inside the Abu pocket. Ultimately, the methyl group of the triazole
and tetrazole derivatives appear to project inside the 3 o’clock pocket.

The projection of the methyl groups of the five-membered rings within
the 3 o’clock pocket and the validation of the binding mode flip hypothe-
sis led to the generalisation of the tri-vector design to other ligand families
and Cyp isoforms. For this purpose, a new series of FEP calculations were
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performed and suggested that replacement of the ester moiety with a bro-
moaryl pyrrolidine group increased the binding affinity and maintained the
preference for a type-II binding mode. Thus, a new family of compounds
were generated and assayed by Surface Plasma Resonance (SPR) against
three Cyp isoforms (CypA, CypB and CypD). They showed low micromolar
to mid nanomolar binding constants and a small degree of isoform selectiv-
ity.

Finally, biological assays were performed to confirm the efficacy of the
tri-vector design for the new family of ligands. For that purpose, cellular
assays were carried out with a triple negative MDA-MB-231 breast-cancer
cell line. CypA has been previously reported to be vital for the prolactin-
induced activation of Janus-activated kinase 2 in human breast cancer cells
[157] and CsA inhibits the growth of the aforementioned cell line. The ex-
perimental results illustrated that the new compounds inhibited cell growth
in a dose-dependent manner at low micromolar concentration, resulting in
potency comparable to CsA. Furthermore, little cell death was observed for
these molecules indicating that the inhibition of the human breast cancer
cells is due to reduced proliferation rather than as a consequence of cell
death as observed in the case of CsA. Additionally, they did not provide
evidence of growth inhibition or cell death in the non-tumorigenic fibrob-
last IMR-90 cell line. This is in contrast to compelling growth inhibition and
cell death of CsA in the same cell line. Thus, the new family of compounds
were shown to be cytostatic with similar potency to CsA, which is cytotoxic.
More information for this study and the chemical structures of the previous
ligands can be found in De Simone et al paper.[156]

2.1.5 Michel’s group lead compound and scope for further

improvements

In summary, CypA and CypD have a very important biological role as de-
scribed in Section 2.1.2. In addition, they are associated with different dis-
eases and this is the reason why selectivity is an essential parameter for
small molecule inhibitors. De Simone et al. have discovered a novel family
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of cyclophilin ligands with a unique binding mode that enables targeting of
a 3 o’clock pocket in addition to the usual Abu and Pro pockets.[156] Com-
pound 15, illustrated in Figure 2.9, is particularly interesting as it shows
reasonable selectivity for CypD over CypA (ca. 8 fold according to SPR as-
say), and inhibits the growth of MDA-MB-231 cells with GI50 values that are
two-fold better than CsA. In addition, it offers advantages over the known
Cyp inhibitors in terms of ease of synthesis and reduced toxicity.

FIGURE 2.9: A) Chemical structure of compound 15. SPR and
ITC results for the different Cyp isoforms that suggest a 8-fold
preference for CypD over CypA B) X-ray crystal structure of
CypA in complex with compound 15. The electron density of

the crystal structure is depicted in yellow color.

However, there is scope for further improvements for compound 15. The
aniline ring of compound 15 can lead to the formation of toxic metabolites
and thus cause side effects. In addition, the bromine group reduces a lot the
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solubility of the molecule. Ultimately, there is potential for further derivati-
sation to extend substituents into the 3 o’clock pocket and increase the selec-
tivity for one isoform over another. Therefore, the goal of this project is to
further improve the design of novel tri-vector Cyp inhibitors and tackle the
challenges described above through the following structural modifications
depicted in Figure 2.10.

FIGURE 2.10: Envisioned structural modifications on com-
pound 15.

To achieve this the following targets in the three pockets were identified:

1. Replacement of the aniline ring with another aryl group to block po-
tential oxidation sites that could lead to the formation of toxic imino-
quinones. These modifications are going to further reduce the toxicity
of compound 15.

2. Replacement of the bromine with a suitable R2 group in order to retain
the potency and improve the solubility of our lead compound.

3. Replacement of the –Me group by a larger R1 group should allow ex-
tension deeper into the 3 o’clock pocket for additional gains in potency
and selectivity.

We hope to develop two compound based on compound 15, one with
strong dissociation constant for CypD (Kd <10 nM) and >100 fold selectivity
for CypD over CypA and one with a Kd lower than 10 nM for CypA bearing
at least a 100-fold specificity for CypA over CypD.
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2.2 Computational workflow

2.2.1 Construction of Virtual Libraries of Ligands for CypD

To explore the chemical space for binding to the 3 o’clock pocket, a library
of ca. 10.000 analogues of our current lead molecule was constructed. The
software Spark from the Cresset company was used for this purpose. Spark
uses databases of fragments to suggest replacements in selected regions of
a known active molecule.[158] These suggestions aim to preserve the shape
and electrostatic properties of these regions. For this purpose, Spark uses
the following databases:

1. commercially available compounds from the ZINC library[159],

2. bioactive compounds from literature reports through the ChEMBL data-
base[160] and

3. small molecule X-ray structures from the Cambridge Structural Data-
base (CSD)[161]

For the choice of the appropriate fragments from these libraries a scor-
ing function is needed to evaluate each structure. Spark’s scoring function
is based on Cresset’s field technology [162], that summarises the molecular
fields, computed from the eXtended electron distribution (XED) force-field
reported in Slater et al 2013[163], to the local extrema of the electrostatic,
van der Waals (vdW) and hydrophobic potentials of a molecule called field
points. These points are placed around the known molecule and the resulted
molecular structures. Spark’s scoring function also uses a shape similarity
calculation by Grant et al.[164] This algorithm is based on a Gaussian de-
scription of molecular shape to compare two molecules. The comparison is
performed by using an optimization procedure to maximize the intersection
volumes of the examined molecules. Thus, the scoring function takes into
account the average of shape and field points similarity of each molecular
structure.

A major advantage of Spark is that it scores each potential fragment after
it is merged into the starting molecule. Therefore, the procedure for the se-
lection of the appropriate replacements consists of three steps: the choice of
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fragments with the required number of attachment points and the required
shape, energy minimisation of the resulted molecule using the XED force-
field to remove steric clashes and unfavorable conformations, and finally
application of the scoring function to the whole molecule using an average
of shape and field similarity.

Spark offers different ways to perform this workflow. The so called
fragment-growing protocol was used for this study, that employs multiple
reference compounds: a Starter and a Reference. The Starter molecule is the
one to which a modification will be made. In our case, the starting molecule
was compound 15 and we wanted to replace the –Me group of tetrazole with
larger fragments towards the 3 o’clock pocket. The Reference compounds,
provide information about the volume of space that we want to explore and
the electrostatic and vdW interactions that the resulted molecules will have.
In this study, we wanted to manually construct Reference structures that will
help us to better explore the 3 o’clock pocket. We targeted Thr94 of CypD,
that extents deeply inside the accessory pocket and offers selectivity over
CypA (it contains Cys52 in the same position). For this purpose, two Ref-
erence compounds were used one with linear substituents and one with a
6-membered ring, and they are depicted in Figure 2.11.
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FIGURE 2.11: Chemical structures of the two Reference
molecules, A) with linear substituents and B) with the 6-
membered ring. In addition, the 3D representations of the
toy molecules inside CypD are illustrated with their molec-
ular fields. Red, blue, yellow and orange colours are used to
show the negative, positive, vdW and hydrophobic surfaces

respectively.

2.2.2 Selection of Compounds Based on Different Filters

For the selection of the desirable compounds from the virtual libraries to
implement MD simulations, three filters were used: docking scores, syn-
thetic feasibility and structural diversity. For the docking score calculations,
all the compounds were docked to a CypD X-ray structure in complex with
compound 15 reported by De Simone et al[156] using Cresset’s molecular
modelling package Flare[162]. The docking grid box was defined from com-
pound 15 bound to CypD and the whole protein was used as a receptor.
Lead Finder’s algorithm was used as a scoring function.[165] It combines
the classical genetic algorithm with multilevel optimisation procedures. Fi-
nally, only the lowest energetic pose from the type-II binding mode of each
molecular structure has been chosen.
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Addition filters were applied using two RDKit-based scripts.[166] RD-
Kit is an open source toolkit that contains collection of machine learning
and cheminformatics software written in C++ and Python and is used to
develop custom applications for computer aided drug design. In our case,
it provided the essential Python libraries (rdikit.Chem) for the molecular
fingerprints needed for the application of the two filters. For the synthetic
feasibility script, the SMARTS pattern was used to separate the solutions
with N-C bond between the tetrazole and the fragment and the ones with
N-N bond. We wanted to keep the former ones for the rest of the process.

The second RDKit-based script performed a clustering algorithm to iden-
tify structural diverse compounds. This script was applied to decrease the
number of molecules that proceed to the next stages of the computational
workflow that include computationally expensive MD simulations. The
clustering was performed using the following procedure: the algorithm
takes one compound and iteratively checks for similar compounds based on
Tanimoto similarity and MACCS fingerprints. Once it finishes the search for
the first compound and clusters the results together, it proceeds with the sec-
ond molecule, etc. When this procedure finishes for every molecule of the
dataset, the results are divided into two categories: singleton and clustered.
Singleton contains all the compounds that were not structural similar with
the rest of the dataset based on the applied Tanimoto similarity coefficien-
t/value. Clustered consists off different subcategories of compounds with
structural similarity based on the Tanimoto similarity value and MACCS
fingerprints.

It should be noted that the choice of fingerprints has a major impact on
the Tanimoto similarity value and that is the reason why MACCS finger-
prints were used. MACCS keys consist of 116 bits recording 166 structural
fragments. Each bit is associated with a SMARTS pattern. In addition, the
Tanimoto similarity value was assessed with different tests using different
cutoffs ranging from 0.75 to 0.98 as depicted in Figure 2.12. It was shown
that Tanimoto similarity coefficient of 0.95 was optimal. Cutoffs below that
threshold led to too few compounds retained, and above that threshold did
not decrease significantly the size of the initial library.
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FIGURE 2.12: Assesment of the Tanimoto similarity value
using different cutoffs. The Tanimoto similarity coefficiency
is depicted in the x axis, while the number of clusters and
the number of the unassigned compounds for each cutoff are

shown in the y axis.

2.2.3 Molecular Dynamics Simulations of CypD-ligand com-

plexes

For the Molecular Dynamics simulations, the binding pose from the pre-
viously performed docking calculations was chosen as a starting point for
each structure. All the input files used for these simulations were created us-
ing FESetup1.2.1 software,[167] which is a python software for automated
setup that uses AmberTools[168] for the parameterisation of protein-ligand
complexes. Proteins were parameterised using ff14SB Amber force-field[169],
while GAFF2 parameters[170],[171] that use AM1-BCC charges[172] were
assigned to the ligands. All the protein-ligand complexes were solubilised
in a rectangular box with TIP3P waters[173] with a box length whose edges
extended 12 Å away from the edge of the solute. In addition, counter ions
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were added to neutralise the total net charge.
Next an equilibration protocol was performed, which included an en-

ergy minimisation of the system using 300 steepest descent steps followed
by 700 steps of conjugate gradient steps in order to remove any possible ar-
tifacts from our system. Then, atoms in the solute molecules were position-
restrained with a force constant of 10 kcal mol−1 Å2 while a heating step to
300 K was performed for 200ps using an Andersen thermostat with a cou-
pling constant of 10 ps−1. Systems were then equilibrated for 1000 steps (2
fs timestep) using an NVT ensemble and the same restraints as in the pre-
vious step were used. Finally 5000 steps (2 fs timestep) of NPT ensemble at
1 atm (pressure control was maintained using a Monte Carlo barostat) were
performed to reach a final density of about 1 g cm−3. The final coordinate
files were retrieved using the cpptraj module provided from AmberTools.

50 ns long MD simulations for every protein-ligand complex were run
using the SOMD software (revision 2019.1.0) in the NPT ensemble at 300K
and 1 atm. A 2 fs timestep was used and all the bonds involving hydro-
gens were constrained. Temperature control was maintained by an Ander-
sen thermostat with a coupling constant of 10 ps−1. Pressure control was
achieved using a Monte Carlo barostat. Periodic boundary conditions were
used with a 10 Å atom-based cutoff distance for the non-bonded interac-
tions together with a Barker Watts reaction field with dielectric constant of
78.3 for the electrostatic interactions.

2.2.4 Relative Free Energy Calculations in CypA and CypD

Relative free energies of binding for all the suggested compounds were de-
termined by alchemical free energy calculations.[23] For this purpose, a lig-
and is mutated into another in a water box, and in complex with CypA and
CypD. Perturbation maps for compound series were generated by manual
connection of the ligands via multiple transformations. Examples of per-
turbation maps are provided in the Appendix. The reference compound
for all the perturbation maps was our lead compound 15 in complex with
CypA and CypD. It should be noted that there is an offset of ca. 1 kcal
mol−1 in absolute binding energies to CypD and CypA since compound 15
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binds ca. 10-fold better to the first isoform. All the binding poses for CypD
complexes were selected, parameterised and equilibrated as described in
the Molecular Dynamics section 2.2.3. All the binding poses for CypA com-
plexes were retrieved using docking calculations with Cresset’s molecular
modelling package Flare. The selected ligands from the MD simulations
were docked to a CypA X-ray structure in complex with compound 15 re-
ported by De Simone et al.[156] The aforementioned docking, preparation
and equilibration protocols were used for these calculations.

Unless otherwise mentioned, all the simulations were run for 2 ns with
SOMD in an NPT ensemble and the perturbed energies were saved every
250 fs. The number of equidistant λ windows employed for each pertur-
bation was varied between 9, 17 or 26 (values for each window between
0.00 -1.00), based on the chemical similarity of the starting and the final
compound. Before the production run, all the complexes were energy min-
imised for 1000 steps. A 2 fs timestep was used and a softcore potential
was applied to keep pairwise interaction energies finite for all configura-
tions and provide smooth free energy curves for all the simulations.[19] An
Andersen thermostat and a Monte Carlo barostat were applied for the con-
trol of temperature and pressure respectively. Finally a 10 Å atom-based
cutoff distance for the non-bonded interactions was used and Coulombic
interactions were handled with a Barker Watts reaction field.

Free energy changes were estimated with the multistate Bennet accep-
tance ratio[50] as implemented in the Sire app analysefreenrg provided by
SOMD. Convergence was assessed by checking the cycle closures in the per-
turbation maps (should be approx. 0) and the consistency between the free
energies of binding from forward and backward simulations (the free en-
ergy difference for each forward and backward simulation should be within
1 kcal/mol). Simulations with poor convergence were repeated either with
more lambda windows, if the perturbations had less than 26 lambda win-
dows, or with more sampling time. The free energy analysis of the bind-
ing free energies of all the compounds relative to compound 15 was im-
plemented through the freenrgworkflow python module.[174] Briefly, the free
energies of binding from all the compounds were averaged for the forward
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and backward perturbations and the differences in free energies were then
read into a Networkx (v 1.11) digraph, which is a Python language package
for exploration and analysis of networks and network algorithms.[175] The
estimation of the relative binding free energies of a given ligand to the ref-
erence compound 15 was performed by calculating all the paths connecting
these two ligands. Then, the relative free energy of binding and its error
estimate along each path was retrieved by adding the free energies along
each edge of the path and by propagating the corresponding errors. Thus,
the relative binding free energy between the two ligands can be calculated
from the weighted average of all the unique paths such that more precise
paths have a greater statistical weight.

2.3 Results

2.3.1 Construction of the virtual libraries and filtering of the

compounds

A computational workflow was implemented for the discovery of second
generation CypA and CypD selective inhibitors from our lead compound
15. An overview of this protocol is depicted in the Figure 2.13.
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FIGURE 2.13: An overview of the computational workflow
implemented for the discovery of selective CypA and CypD
inhibitors. The procedure starts with a virtual-library enumer-
ation of 10.000 compounds and continues with docking and
similarity clustering of these compounds to produce a diverse
subset of 1132 ligands in binding mode II. Then MD simula-
tions are employed to retain only 15 stably bound analogues.
Finally, FEP calculations are applied to select compounds with
potency and selectivity improvements. The resulting com-
pounds will be synthesised and characterised by biological as-

says.

For the first step of this protocol, two virtual libraries were constructed
each with 5.000 different analogues of compound 15, in order to explore the
chemical space for binding to the 3 o’clock pocket. All the compounds were
docked using Flare in order to acquire the lowest energetic structure in the
type-II binding mode for each structure. Docking was essential, as Spark
is a ligand-based method for the creation of the virtual libraries. Therefore,
it did not provide evidence about the energetic stability of the conforma-
tions of the product molecules in type-II binding mode. The desired binding
mode for each compound is illustrated in Figure 2.14:
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FIGURE 2.14: Depiction of the desired binding mode in CypD.
Three docked ligands are shown with different colors, red,

blue and yellow in type-II binding mode.

The compounds in binding mode II were then filtered according to their
synthetic feasibility. Solutions that featured a N-N bond between the tetra-
zole and the substituent were excluded. Such bond could be labile as the
bond dissociation energy of two single bonded heteroatoms is typically lower
than for a single bond between one carbon atom and one heteroatom. This
decreased the virtual library size down to 5435 analogues. The distribution
of the docking scores of these molecules is depicted in Figure 2.15.
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FIGURE 2.15: Distribution of docking scores for 5435 com-
pounds with a carbon atom bonded to the tetrazole ring. The
mean value of the docking scores is around -11.00 kcal/mol.
The docking score of compound 15 is equal to -10.30 kcal/-

mol.

The remaining compounds were further refined based on their structural
similarity. The goal was to limit the number of compounds that proceed to
the next step of the protocol that features expensive MD simulations. For
this purpose, the molecules were divided into two categories, singleton and
clustered based on their MACCS fingerprints and a Tanimoto similarity co-
efficiency of 0.95. The most representative structure of each cluster together
with the singleton compounds were chosen for the next stage of our protocol.
This filter limited the number of promising compounds to 1132.

2.3.2 Molecular Dynamics results

Further refinement of compound prioritisation was accomplished by means
of MD simulations. The goal was to retain only compounds that maintain
stable interactions within the 3 o’clock pocket. For this reason, 50 ns long MD
simulations were performed for each of the remaining 1132 compounds in
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complex with CypD. The first criterion to define a stable interaction during
the course of the MD simulation was the calculation of the RMSD of the -R
groups connected to tetrazole inside the 3 o’clock pocket. The overall results
from the RMSD filter are illustrated in Figure 2.16.

FIGURE 2.16: Depiction of the histogram of RMSD values in
the 1132 analogues of compound 15.

It was observed that only 72 compounds exhibit RMSD values below
2 Å. This threshold was chosen as compounds with higher RMSD values
tended to show only weak or transient interactions with residues in the 3
o’clock pocket.

Two additional filters were applied to identify compounds predicted to
bind more favourably to CypD. The preservation of the hydrogen bonds
that are essential for a type-II binding to CypD was the first filter. For this
purpose, a 50-ns MD simulation was performed for the aryl pyrrolidine
compound with Hydrogen instead of tetrazole in a type II binding mode.
The percentage of time hydrogen bonds are formed between this compound
and key residues in Abu and Pro pocket during the simulation (Thr107,
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Asn102, Gln63 and Arg55) were computed using cpptraj. The same anal-
ysis was performed for the 72 CypD-ligand complexes and these numbers
were subtracted from the percentages of the reference compound. These
differences were summed up to provide a final number. In this study, this
number is called final hydrogen bond value: A positive number is associated
with compounds that form longer-lived hydrogen bonds than the reference
compound. The results for the 72 compounds are summarised in Figure
2.17

FIGURE 2.17: Depiction of the histogram of the final hydrogen
bond values in the 72 analogues of compound 15.

The hydrogen bond formation between the R-groups of the 72 analogues
of compound 15 and 3 o’clock pocket residues was also examined with the
same procedure used for Abu and Pro pocket residues. The aim of this filter
was to identify R groups that prefer to stay inside the 3 o’clock pocket and
it resulted to 23 compounds that fulfilled this criterion. The combination of
this filter together with the essential hydrogen bonds for a type-II binding
mode, resulted in 26 compounds that were identified as the most promising
solutions for CypD selectivity. The chemical structure of the 26 compounds
that fulfilled one or both of the aforementioned criteria are depicted in Fig-
ure 2.18.
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FIGURE 2.18: Structures of the 26 analogues of compound 15
that meet one or two of the two following criteria: stable type
II binding mode, stable interactions in the 3 o’clock pocket. The
compounds chosen for FEP calculations after visual inspection

of the MD simulations are shown in blue circles.
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Visual inspection of the trajectories of those compounds using the soft-
ware VMD was performed to examine the behavior of the R groups. The
purpose of this test was to ensure that the R groups were staying inside the
3 o’clock pocket and they were not solvent exposed. This led to selection of
five analogues for further assessment using FEP calculations.

Compound 116 was the best molecule amongst the five most promising
designs, as it maintained the interactions within the Abu and Pro pocket,
formed strong hydrogen bonds inside the 3 o’clock pocket and visually demon-
strated an appealing conformation inside the accessory pocket via its tetrazole-
alkyne motif. The other four compounds, 89, 135, 357 and 519 had all
in common the tetrazole-ketone motif that maintaining stable interactions
with 3 o’clock pocket residues, with the possible exception of compound
89. Compound 89 was chosen for its strong interactions with key Abu/Pro
residues, while compounds 357 and 519 did not form hydrogen bonds with
Abu and Pro pocket residues for a long period of time. Compound 135 was
the only ligand from these series that formed strong hydrogen bonds inside
all three key pockets.

Since a tetrazole-ketone motif emerged as an interesting design choice,
the conformational preferences of ligands featuring this group were exam-
ined with a torsional scan (24 scanning windows). The results depicted in
Figure 2.19 were obtained via Density-functional theory (DFT) calculations
using the software Gaussian.[g16] The examined compound was simulated
in gas state using the B3LYP/6-31G basis set and a 10−6 Hartree conver-
gence criteria. The results provided further evidence that the conformation
observed during the MD simulations is energetically low, and thus favor-
able for binding.
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FIGURE 2.19: Torsional scan of the tetrazole-ketone dihedral
angle that includes the 4 atoms as they are depicted in the 2D
representation of the toy molecule on the right picture. The
degrees of the dihedral angle during the torsional scan are de-
picted on the x-axis and the energy in kcal/mol on the y axis.
The average value of the dihedral angle in the tetrazole-ketone
motif observed during MD simulations of 89 is highlighted

with a red circle.

Finally, analogues of the five chosen compounds were also explored to
identify molecules more likely to bind selectively to CypD over CypA. They
were based on the tetrazole-alkyne motif and the tetrazole-ketone motif de-
scribed above. For the former motif, three analogues of compound 116 were
chosen to replace the second chiral center introduced from the flexible chain
after the alkyne to avoid introduction of another chiral center. The amine
group of the chain was removed from the first molecule, while the more sta-
ble morpholine and piperidine rings where introduced. In addition, bioisos-
teric replacements of the alkyne-flexible chain motif were also suggested by
using the corresponding feature in the Spark software. One compound sug-
gested for FEP calculations, that contained a disulfide bond, showed in the
MD simulations stable interactions with the Abu, Pro and 3 o’clock pockets.
Ultimately, the replacement of the alkyne motif with oxazole provided a
ligand with very stable interactions in the Abu and Pro pockets.

For the tetrazole-ketone motif, different analogues were designed to ex-
plore different 6-membered ring substitution patterns, as well as linear and
5-membered ring alternatives. All the compounds chosen from the MD sim-
ulations for the relative FEP calculations are illustrated in Figure 2.20.
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FIGURE 2.20: The most promising solutions for improved po-
tency and selectivity compared to compound 15 as chosen

from the MD simulations.
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2.3.3 Free Energy Perturbations Results

The most promising solutions were further assessed using Free Energy Per-
turbation to identify designs more likely to bind selectively to CypD over
CypA. For the tetrazole-alkyne motif, all the analogues showed improve-
ment in potency compared to compound 15. In addition, the morpholine
group showed also better selectivity (ca. 1 kcal/mol for CypD over CypA)
and this compound was deemed the most promising in this series of com-
pounds. Moreover, the perturbation network of the disulfide derivatives
was further examined to evaluate the role of -NH2 group in binding potency
and selectivity, as these analogues showed preference for CypA over CypD.
For this purpose, a more extended perturbation network was designed with
ligands that did not contain the tested amine group.

The results from the relative binding free energies did not show energetic
preference for the -NH2 group over the heptane analogues. To further prove
this point, the hydrogen bonds formed by MP006 and MP007 at the end
state of the bound vanish step were analysed through cpptraj and provided
also evidence that NH2 was not the key factor for the strong binding to
Cyps. The overall results from the tetrazole-alkyne perturbation networks
are illustrated in Figure 2.21
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FIGURE 2.21: Computed relative binding energies for
tetrazole-alkyne analogues.

For the tetrazole-ketone motif, all the analogues of compound 15 pre-
dicted to bind more strongly to CypD and CypA compared to the parent
compound, with the possible exception of MP015. The most auspicious lig-
ands from these series were MP012 and MP033 that had in common the
para-benzene group. Both compounds were exhibited a 2 kcal/mol ener-
getic preference for CypA over CypD. Based on these encouraging results,
the tetrazole ring of those two compounds was replaced with an oxadiazole
ring as such analogues were deemed potentially more synthetically feasible.
The new compounds also retained the potency and selectivity of the tetra-
zole derivatives and were identified as the most promising designs of this
series. The overall results from the tetrazole-alkyne perturbation networks
are illustrated in Figure 2.22
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FIGURE 2.22: Computed binding energies for analogues fea-
turing a tetrazole-ketone motif.

Increased emphasis was given to the MP020-MP021 perturbation net-
work due to the results of the MD simulations, which showed that the acid
was contributing to the stability of the fragment inside the 3 o’clock pocket.
FEP calculations suggested that MP021 improves the potency in Cyps by 2
kcal/mol compared to compound 15. Different substituents on the isoxa-
zole ring were used to examine the importance of the acid spanning from
a linear propane to an amide. All of the analogues showed the same en-
ergetic preference for the Cyps as with MP021, suggesting that the isoxa-
zole scaffold is the most important feature of these series of compounds.
Ultimately, the replacement of the tetrazole ring with the oxadiazole ring
was also examined. The relative binding free energies of the oxadiazole lig-
ands maintained the enhancement in binding that is observed for this motif.
Thus, MP021 and MP041 are the most promising solutions from this batch
of promising compounds. The overall results from the MP020-MP021 per-
turbation networks are illustrated in Figure 2.23
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FIGURE 2.23: Computed binding energies for ketone-oxazole
series.

Based on the first promising solutions, a second round of relative FEP
calculations was undertaken to explore new scaffolds for CypD or CypA se-
lectivity. The replacement of the morpholine analogue with a tetrahydropy-
ran ring together with the addition of the cyclopropyl group in the current
motifs were the main targets in this batch of simulations. The latter adjust-
ment did not favor binding in CypA and CypD compared to compound 15.
However, the tetrahydropyran ligand offered a ca. 2 kcal/mol preference in
binding for CypD over CypA, together with a 4 kcal/mol improvement in
binding energy over the parent compound. Taking this into consideration, a
visual inspection at the end state of the bound discharge step of the tetrahy-
dropyran perturbation was performed to provide evidence for this selectiv-
ity. It was observed that in CypA the tetrahydropyran analogue was solvent
exposed after 40 % of the simulation agreeing with the difference in binding
free energy between the 2 proteins. In addition, we expanded the oxadia-
zole ring instead of the tetrazole in more compounds, including compound
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15, to have a more thorough investigation for the preserving of binding to
Cyps. This point was proved also from the second batch of simulations
making these compounds perfect candidates for synthesis and biophysical
characterisation. The overall results from the second batch of simulations
are depicted in Figure 2.24

FIGURE 2.24: Computed binding energies for the second
batch of simulations in CypA and CypD.

Next, given the feasibility of replacing the tetrazole by an oxadiazole
ring, a range of other rings were examined through relative FEP calcula-
tions. Alternatives to a tetrazole ring that reduce the number of hydrogen
bond acceptors could improve Blood Brain Barrier penetration of tri-vector
cyclophilin compounds. For this purpose, a perturbation network was de-
vised between compound 15 and other ring replacements such as furane
and thiophene. The results shown in figure 2.25 provided evidence that
such replacements would generally weaken binding with respect to com-
pound 15, albeit not excessively.
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FIGURE 2.25: Illustration of the free energies of binding of dif-
ferent ring replacements compared to compound 15 in CypD.

2.3.4 Pro pocket results

The main goal of the Pro pocket optimisation was to replace the bromine
atom in the arylpyrrolidine motif with a substituent to improve solubility.
For this purpose, additional FEP calculations were carried out on a set of
compounds with predicted improved solubility based on calculations car-
ried out by Dr. Jordi Juárez Jiménez using the software ChemAxon.[176]
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FIGURE 2.26: Predicted LogP and solubility for analogues of
compound 15.

Based on these calculations, all the substituents were predicted to im-
prove the solubility of the parent compound. However, most of the ligands
of this series of compounds tend to slightly worsen the binding of our lead
molecule. Only piperidine and morpholine derivatives tend to maintain
the potency and are promising designs for targeting the Pro pocket. Curi-
ously removal of ortho-substituents seems to offer 1 kcal/mol selectivity for
CypA over CypD. The overall results of these calculations are summarised
in Figure 2.27.
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FIGURE 2.27: Depiction of the free energies of binding of the
Pro pocket alternatives to compound 15 in CypA and CypD.

2.3.5 Abu pocket results

The last aim of this computational study was to reduce risks of genotoxicity
in the lead molecule through modifications of the aniline ring that targets
the Abu pocket. Modification at sites ortho to the amino group were sought
to block potential oxidation sites that could lead to the formation of toxic
metabolites. For this purpose, two potential candidates were suggested to
retain the potency and reduce the toxicity of compound 15. Relative FEP
calculations were also performed for these molecules in CypA and CypD
compared to the parent compound.
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FIGURE 2.28: Illustration of the free energies of binding of the
Abu pocket substituents compared to compound 15 in CypA

and CypD.

The results from these calculations showed that the compound with the
fluorines in ortho position did not retain binding in CypD but offered se-
lectivity of 2 kcal/mol for CypA over CypD. However, visualisation of the
average structure of this ligand in CypA and CypD adopted during the FEP
simulations showed that the ligand of interest was solvent exposed in the
Abu pocket of CypA. Therefore, this result was at odd with the calculated
energetics. Thus, a follow up 100 ns MD simulations of the compound of
interest was performed in CypA and in CypD. The visualisation of the tra-
jectories in both Cyclophilins justified the energetic preference for this lig-
and in CypA over CypD as it was more stable in binding mode II. This
conclusion was also confirmed after calculating the formation of the hydro-
gen bonds of the compound of interest with both Cyps. The binding of the
2,6-fluorine analogues to CypA and CypD is shown in Figure 2.29.
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FIGURE 2.29: Depiction of 2,6-fluorine analogues bound to
CypA (grey) and CypD (pink).

Two 100 ns MD simulation in CypA and CypD were also performed
for the pyrimidine analogue, as it showed more favorable binding to the
proteins of interest than the lead compound. This molecule had a longer
hydrogen bond formation with the key residue for binding in Abu pocket,
Thr107, as well as a more stable type-II binding mode compared to the 100
ns MD simulations of compound 15 in CypA and CypD. Therefore, it could
be an interesting design for addressing the toxicity issue and also increase
potency.

A third analogue of compound 15 was also examined based recent work
by Grädler et al that synthesized a series of linear (type I binding mode)
CypD inhibitors. In this paper the most potent derivative, compound 2 con-
tains a bicyclic fragment instead of an aniline ring. Therefore, we evaluated
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whether this bicyclic fragment could replace the aniline ring in the context
of a type II binding mode compound (Figure 2.30). For this purpose, 100
ns MD simulations in CypA and CypD were performed to assess the stabil-
ity of the designs. The bicyclic derivative was very stable in both proteins
making it a suitable candidate for the replacement of the aniline ring.[177]

FIGURE 2.30: Illustration of the 3D representation of the bi-
cyclic analogue of compound 15 in CypA using Flare. In ad-
dition, the chemical structure of the bicyclic analogue is also

depicted.
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2.4 Conclusions

A novel computational workflow was implemented for the discovery of se-
lective CypA and CypD inhibitors by modifying compound 15 to protrude
deeper into the 3 o’clock pocket. To explore the chemical space for binding
to this pocket, a library of ca. 10000 analogues of this molecule was con-
structed and docked using the Cresset molecular modelling package. Com-
pounds were filtered according to their predicted synthetic feasibility, clus-
tered into structurally diverse families and ranked using the docking scores.
Further refinement of compound prioritisation was accomplished by means
of MD simulations, aiming to retain only compounds that maintain stable
interactions within the 3 o’clock pocket. The most promising solutions were
further assessed using Free Energy Perturbation calculations to identify de-
signs more likely to bind selectively to one of the two isoforms.

Based on this workflow different scaffolds were discovered that could
lead to promising solutions for improved potency and selectivity to the
proteins of interest. Both the tetrazole-alkyne and tetrazole-ketone motifs
enhanced the binding of our lead compound to CypA and CypD. The par-
ticular highlights of the tetrazole-alkyne series were MP030, that showed
1 kcal/mol energetic preference to CypD over CypA, the tetrahydropyran
analogue that offers substantial binding and selectivity for CypD over CypA,
and the disulfide derivatives that were predicted to bind more strongly to
CypA over CypD. The most encouraging designs from the tetrazole-ketone
motif were the para-benzene and the oxazole analogues that offered signifi-
cant binding to cyclophilins compared to our lead compound ranging from
2-4 kcal/mol energetic preference. Different rings were examined to replace
the tetrazole for the improvement of the physicochemical properties and the
synthetic feasibility of the second generation inhibitors of Cyps. The most
promising result was the oxadiazole derivative that could ease the synthesis
of these designs while maintaining the potency and selectivity trends.

Moreover in this study, MD/FEP methods were able to predict scaffolds
that could improve the physicochemical properties of our lead compound.
The compounds that are promising candidates for biophysical characteri-
sation are only the compounds where bromine was replaced by piperidine
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and morpholine. Ultimately, this study also shed light on compounds with
reduced toxicity compared to our lead compound. A bicyclic derivative
from Grädler et al was predicted to be very stable in both Cyps after 100 ns of
MD simulations and a pyrimidine analogue showed a 3 kcal/mol energetic
preference for the proteins of interest from relative FEP calculations.[177]

The results from this work have informed the synthesis of second gen-
eration tri-vector inhibitors. This will be followed by characterisation of
the most promising compounds using biophysical assays. Therefore, in the
near future, a complete study can be performed in the quest for a novel class
of selective Cyclophilin inhibitors and may thus the whole strategy can be
conducted across the board of structure-based drug design.
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Chapter 3

Blinded Predictions of Standard
Binding Free Energies: Lessons
Learned from the SAMPL6
Challenge

3.1 Introduction

As mentioned in Chapter 1, the accurate prediction of protein-ligand bind-
ing free energies is a principal target of computer-aided drug design (CADD).
The precise description of ligand-protein energetics, is nowadays increas-
ingly sought via use of free energy calculations methods. Among many ex-
isting free energy calculation methodologies, alchemical free energy (AFE)
calculations have attracted much interest in recent years,[174, 178, 179] due
to their strong grounding in statistical physics. AFE calculations capture
non-additivity of structure-activity relationship in congeneric series that are
overlooked by empirical scoring methods[180], and have given useful po-
tency predictions for a plethora of protein-ligand systems.[81, 181, 182]In
addition, AFE methods may be used to predict physical properties, such as
lipophilicity coefficients.[183–185] In spite of encouraging successes, there
are still important technical hurdles to tackle. Usual concerns involve finite-
sampling effects that introduce statistical errors,[186–189] while inaccura-
cies in potential energy functions contribute to systematic errors.[190] Ad-
ditionally, decisions of the appropriate algorithms handling the long range
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electrostatic interactions and finite-size artefacts, affect simulation results
in ways that are still poorly understood, with effects particularly apparent
in the modelling of charged species.[191–193] Thus, it is important to im-
prove the robustness of AFE protocols to enable their reliable application to
structure-based drug design problems.

One of the best ways to help us tackle the aforementioned problems is
the blinded prediction competitions. They offer a helpful resource to cut
down the bias in validation studies and to test practical service of a method-
ology in a way that more closely resembles CADD in practice.[194] The D3R
grand challenges have become one of the most famous blinded competi-
tions. They focus on validating computational methods for modelling of
protein-ligand interactions.[194],[195] The Statistical Assessment of Mod-
elling of Proteins and Ligands (SAMPL) is a well-established blinded com-
petition for free energy science in drug discovery.[196] The SAMPL chal-
lenge was founded in 2007 and usually asks participants to predict physi-
cal chemical properties, such as binding affinities for host-guest systems, or
hydration free energies of small drug-like molecules.[197],[198] Host-guest
systems attract our interest since they provide manageable milestones to-
wards validation of protocols for modelling protein-ligand binding ener-
getics.[199]

A plethora of computational methods have been examined to predict
free energies of binding of the host-guest systems ranging from quantum
mechanical.[200],[201] to molecular mechanical approaches[202] Monte Carlo
(MC) or Molecular Dynamics (MD) simulations are executed to predict the
ensemble averages that yield standard binding free energies. Different ap-
proximations lead to numerous ways to predict the binding free energies
from molecular simulation trajectories e.g finite difference thermodynamic
integration (FDTI)[203], free energy perturbations (FEP)[204], or end-states
only variants such as Molecular Mechanics/Poisson–Boltzmann Surface Area
(MM-PBSA).[205]

The 6th Statistical Assessment of Modelling of Proteins and Ligands
(SAMPL6) competition was launched in September 2017. Our group fo-
cused on the host-guest leg of this contest, which requested predictions of
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standard free energies of binding for 27 guests across 3 different hosts. The
host molecules consisted of two octa-acids, OA and TEMOA molecules,[206–
209] and a cucurbituril ring clip CB8.[210–213] The octa-acid systems (Fig-
ure 3.1) are basket shaped where OA contains four flexible propionate side
chains bearing two rotatable single bonds each, while TEMOA contains four
methyl groups, which alter the shape of the hydrophobic cavity. CB8 is
(Figure 3.1) a more flexible host than OA and TEMOA and is a heteroaro-
matic multicyclic molecule, chemically related to the cucurbiturils, made of
methylene bridges containing eight glycoluril units.[212],[213]

FIGURE 3.1: Depiction of the SAMPL6 host-guest dataset. (A)
OA and TEMOA host-guest systems. (B) CB8 host-guest sys-

tems.

Additionally, SAMPL6 introduced a SAMPLing challenge focused on
evaluating convergence and reproducibility, across codes, of free energy
predictions. For this challenge, input files for parameterised host-guests
OA-G3, OA-G6 and CB8-G3 were provided and participants were requested
to evaluate the convergence of their binding free energy estimates. The three
particular guests were chosen because they resemble typical fragments (OA-
G3 and OA-G6) and druglike molecules (CB8-G3/Quinine is considered as
second-line treatment for malaria).[214] The main goal of this challenge is
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initially to quantitatively compare the convergence rates of state of the art
free energy methods on well-defined host-guest systems and also to eval-
uate the level of agreement that can be reached by different methods and
software starting from identical initial parameters.[215] An overview of the
SAMPLing challenge is depicted in Figure 3.2.
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FIGURE 3.2: Overview of the SAMPLIing challenge. The col-
ors used for the 3D structures of the two hosts are grey for car-
bon atoms, nitrogens in blue, oxygens in red and hydrogens
in white. The 2D structures of the guest molecules and the 3D
structures of the hosts are illustrated in the protonation state
used for the computational predictions. Five different initial
conformations for the three host-guest complexes were gener-
ated through docking followed by a short equilibration with
Langevin dynamics. The 3D structures of these conformations
are shown from left to right in the figure and the guest’s car-
bon atoms are colored by conformation. These input files were
used by each participant to run their methods in five repli-
cates and submit the free energy trajectories as a function of
the computational cost. The resulting submissions were anal-
ysed in terms of uncertainty of the mean binding free energy
∆G and its bias with respect to the asymptotic free energyΔGθ

[215]

This chapter summarizes the performance of our free energy code SOMD
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against the SAMPL6 host-guest dataset, as well as the lessons learned for
continuing efforts to improve the robustness of alchemical free energy meth-
ods in CADD.

3.2 Methods

Free energy changes were evaluated by means of a double annihilation tech-
nique using MD simulations.[53, 54, 182] Figure 3.3 illustrates how this ap-
proach is used to evaluate ΔG◦bind using a thermodynamic cycle. In the
first step (so called ’discharging’ step) the charges of the guest’s atoms are
turned off both in the solvated phase and in the bound phase, providing the
discharging free energy changes ΔGsolv

elec and ΔGhost
elec respectively. In the sec-

ond step (so called ’vanishing’ step) a “non-interacting” guest is obtained by
switching off the van der Waals parameters of the discharged guest both
in solvent and complex phase, giving the vanishing free energy changes,
ΔGsolv

vdW and ΔGhost
vdW , respectively. To prevent the ligand from drifting away

from the host cavity, a series of a flat-bottom distance restraints are defined
between the guest atom j that is closest to the center of mass of the guest
and four host atoms i. The restraint potential is given by Equation 3.1:

Urestr
(dj1, ..., djNhost

) =
Nhost

∑
i=1

{
0 i f

∣∣dji − Rji
∣∣ ≤ Dji

κij
(∣∣dji − Rji

∣∣− Dji
)2 i f

∣∣dji − Rji
∣∣ > Dji

, (3.1)

where Urestr
(dj1, ..., djNhost

) is the potential energy of the restraint term as a

function of the distance between a guest atom j and a set of host atoms i, dji

is the distance between a guest atom j and a host atom i, Rji is the reference
distance between host and guest atom, Dji is the restraint deviation toler-
ance (how much the reference distance can deviate from its original value),
kji is the restraint force constant and Nhost is the number of host atoms that
contribute to the restraint.
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FIGURE 3.3: Thermodynamic cycle for standard binding free
energy calculations. Firstly, the fully interacting guest is sim-
ulated in a free phase (top left) and a bound phase (top right),
then the charges and the van der Waals terms are switched off,
resulting in a non-interacting guest in water (bottom left), and

bound to the host (bottom right).
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From the closure of the thermodynamic cycle (Figure 3.3) the binding
free energy ΔGbind is given by Equation 3.2. The free energies of binding
computed with Equation 3.2 will be referred to as Model A binding energies:

∆GModelA
bind =

(
∆Gsolv

elec + ∆Gsolv
vdW

)
−
(

∆Ghost
elec + ∆Ghost

vdW

)
. (3.2)

Model A does not take into account the contribution of long range disper-
sions interactions due to the use of non-bonded cutoffs. Thus, to improve
over Model A, a long-range dispersion correction term is added to the free
energy of binding from the simulation trajectories[216]:

∆GModelB
bind = ∆GModelA

bind +
(

∆Ghost
LJLRC − ∆Gsolv

LJLRC

)
. (3.3)

The Lennard Jones dispersion correction term (LJLRC) can be calculated
from the Zwanzig relationship[49]:

∆GX
LJLRC = −kBT ln〈exp[−β(ULJ,long(r)−ULJ,sim(r)]〉X + ULJ,ana , (3.4)

where X is the host or solvent, and ULJ,long is the Lennard Jones energy
calculated in a post processing step of the ‘vanishing’ trajectories generated
at λ = 0 and λ = 1, by expanding the range of the typical Lennard Jones cutoff
radius in the simulation from 12Å to cover almost the entire box. To define
this cutoff, the minimum box length in all directions in the input coordinates
is computed and the new cutoff radius is set to rc,long = 0.95min(Lx, Ly, Lz)/2
to allow for some variations in box size. This permits an averaging of the ad-
ditional contribution of the long-range potential over the whole trajectory,
ULJ,long, with respect to ULJ,sim (simulated Lennard Jones term). Addition-
ally an analytical correction over an infinite size box, ULJ,ana is introduced,
which is given by Equation 3.5:

ULJ,ana = 8πρ
Nsolute

∑
i

Nsolv

∑
j

[
εijσ

12
ij

9r9
c
−

εijσ
6
ij

3r3
c

]
, (3.5)

where p is the solvent density in mol Å−3, Nsolute is the total number of
guest atoms, Nsolv the number of solvent molecules, εij is the Lennard Jones
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well depth, expressed in kcal mol−1 and σij is the Lennard Jones distance in
Å computed with the Lorentz-Berthelot combining rule[38].

Additionally, a free energy correction term is introduced to relate the
volume available to the restrained but non-interacting ligand to standard
state conditions. This leads to Equation 3.6 for predictions of binding free
energies via Model B:

∆G◦,ModelB
bind = ∆GModelA

bind +
(

∆Ghost
LJLRC − ∆Gsolv

LJLRC

)
+ ∆G0

restr , (3.6)

whereΔG◦restr is the free energy cost for imposing the host-guest restraint
which is given by Equation 3.7:

∆G◦restr = −kBT ln
(

ZHGideal

ZH,solv ZG,gas

)
, (3.7)

where ZHGideal is the configuration integral for the restrained decoupled
guest bound to the host, ZH,solv is the configuration integral for the solvated
host and ZG,gas is the configuration integral for the guest in an ideal ther-
modynamic state. If it is assumed that the restraint potential is decoupled
from the solvent and host degrees of freedom, then the equation 3.7 can be
simplified to:

∆G◦restr = −kBT ln

(
ZGideal,solv

ZG,gas

)
, (3.8)

where ZGideal,solv is the configuration integral for the decoupled guest.
As the intermolecular interactions are absent from the guest in the thermo-
dynamic states described in Equation 3.7 and the restraint do not prevent
rotational motions, the internal and rotational contributions to the configu-
ration integrals are cancelled out and the only term left is the translational
contribution to the configuration integral. A standard volume of measure-
ment V◦ is used for ZG,gas, where the 1M dilute solute convention correlates
to V◦ = 1660 Å−3 mol−1. Thus Equation 3.8 becomes:

∆G◦restr = −kBT ln
(

Vrestr

V◦

)
, (3.9)
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where Vrestr can be computed by numerically integrating Equation 3.9:

Vrestr =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
dxj dyj dzj exp(−βUrestr(dj1, . . . , djNhost)) . (3.10)

Finally, Model C was constructed by creating an empirical correction term
to account for systematic errors due to finite size artefacts and inaccuracies
in potential energy functions. Linear regression models were obtained by
correlating past SAMPL5 binding free energies computed with SOMD to
experimental data, leading to equation 3.11 that computes Model C binding
free energies:

∆G◦,ModelC
bind =

∆G◦,ModelB
bind − β

α
, (3.11)

where α and β are the slope and intercept of the linear regression model.
SAMPL5 featured the same hosts OA and TEMOA but a different host CB7.
Thus, separate regression models were determined for use with OA, TEMOA
or CB8 hosts. The parameters are given in the Appendix.

3.3 Preparation of host-guest input files for free

energy calculations

The SAMPL6 organizers provided mol2 files for hosts, OA, TEMOA and
CB8, and ligands, depicted in Fig. 3.1. Each file had the same Cartesian
frame of reference and docking was performed with OpenEye toolkit[217],
[218], [219] to predict the most likely binding mode. Experimental measure-
ments were performed at a pH 11.7 ± 0.1 at 298 K in presence of a buffer
of 10 mM Na3PO4 for OA and TEMOA. CB8 was measured at pH 7.4 ± 0.1
at 298 K with 25 mM Na3PO4 buffer. To understand the influence of the
buffer on binding free energy predictions, two different sets of input files
were prepared, leading to no-buffer and buffer setups.

In the no-buffer simulations, the presence of the additional Na3PO4 buffer
was neglected. OA, TEMOA and CB8 host-guest systems were parametrized
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starting from the mol2 host and guest’s files. OA and TEMOA molecules
force field and charge parameters were retrieved by processing SAMPL5
topology and coordinate files using the python module parmed.[220] Thus,
tleap[168] was used to create the host-guest complex input files. The com-
bined host-guest complex mol2 file was loaded in tleap along with host
force field parameters and GAFF 1.8 for the ligand[170],[171]. The system
was solvated in a cubic box with TIP3P water molecules[173], with a min-
imum distance between the solute and the box of 12 Å. Counter ions were
added to neutralize the total net charge. The same approach was followed
for parametrising the ligand in the free phase.

Next an equilibration protocol was applied to relax the box size. Initially,
energy minimization of the entire system was implemented with 100 steps
of steepest descent gradients, using sander[168]. Then, the positions of the
solute molecules were restrained with a force constant of 10 kcal mol−1 Å−2

while water molecules were allowed to equilibrate in an NVT ensemble, 200
ps at 298 K, followed by a NPT equilibration for further 200 ps at 1 atm pres-
sure. Finally, a 2 ns NPT MD simulation was run with the SOMD software
(revision 2017.1.0) to reach a final density of about 1 g cm−3[221],[222]. The
final coordinate files were retrieved with cpptraj. The edge length of the
solvated guest boxes was about 35 Å, whereas the boxes of the complex
systems had an edge length of about 50 Å.

For the second set of simulations, additional counter ions were added
to mimic the presence of the buffer in the experiments. However, Na3PO4

was modelled by NaCl as force-field parameters for multivalent ions were
not available. Thus, for OA and TEMOA systems, the 10 mM sodium phos-
phate buffer was modelled with 60 mM of NaCl to match the ionic strength
of the solution used for the experiments. Starting from the complex phase
files, created as described previously, 4 additional Na+ and 4 Cl− ions were
added to each system, using tleap. The same equilibration protocol was
reapplied to adjust the placement of the counter ions. For the prepara-
tion the solvated phase, the host molecule was extracted from an equili-
brated host-guest box and the host’s heavy atoms were replaced with water
molecules. After equilibration the final solvated phase system had the same
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amount of Na+ and Cl− ions as in the host-guest complex system, and a
similar box size dimension. The same procedure was followed for CB8. In
this case, 25 mM Na3PO4 were matched with 150 mM NaCl, thus 8 Na+ and
8 Cl− ions were added to each CB8 host-guest system.

3.4 SAMPL6 simulation protocols

For the octa-acid hosts, both complex and solvated phase discharging steps
were run with nine equidistant λ windows. Twelve λ windows (0.00, 0.10,
0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 0.95, 1.00) were employed for
the vanishing step, both in bound and solvated phase. For the CB8 host
the bound and solvated phase discharging steps have been run with nine
equidistant λ windows. The solvated vanishing step was carried out with
the same windows setup as for the octa-acid guests. The bound vanishing
step was carried out with sixteen λwindows (0.00, 0.05, 0.10, 0.15, 0.20, 0.25,
0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.70, 0.85, 1.00) as preliminary runs in-
dicated a need for greater number of windows to obtain reliable free energy
changes.

All the simulations were run for duration of 8 ns with SOMD in an NPT
ensemble. Temperature control was achieved with an Andersen Thermo-
stat with a coupling constant of 10 ps−1.[48] Pressure control was main-
tained by a Monte Carlo barostat that attempted isotropic box edge scaling
every 100 fs. A 12 Å atom-based cutoff distance for the non-bonded interac-
tions was used, using a Barker Watts reaction field with dielectric constant
of 78.3.[223] In the bound phase the restraints parameters of eq. 3.1 were:
Rji = 5 Å, Dji = 2 Å and kji= 10 kcal mol−1 Å−2 for all the octa-acid systems,
while Rji = 7 Å, Dji = 2 Å and kji = 10 kcal mol−1 Å−2 were chosen for the
CB8 simulations.
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3.5 SAMPLing simulation protocols

For the SAMPLing leg of the challenge topologies and coordinate file for
five replicates of OA-G3, OA-G6 and CB8-G3 were provided from the or-
ganizers for both the complex phase and the solvated phase simulations.
All simulations were run for 20 ns per window using SOMD with simula-
tion parameters identical to those used for SAMPL6 unless otherwise men-
tioned.

3.6 Estimation of free energy of binding and eval-

uation of dataset metrics

Free energy changes were computed using the multistate Bennet acceptance
ratio (MBAR) method.[50] To achieve a more robust estimation of free en-
ergies, each simulation was repeated multiple times, using different initial
velocities drawn from the Maxwell-Boltzmann distribution. Unless other-
wise mentioned, the reported binding free energies are the mean of three
runs, and statistical uncertainties are given one standard error of the mean
as shown in Equation 3.12:

err(∆G) =
σ

n
. (3.12)

As described in Bosisio et al[182] for each model a population distribu-
tion for the determination coefficient R2, the mean unsigned error MUE and
the Kendall τ parameters were computed by bootstrapping each free energy
predictions for each host-guest dataset ten thousand times. The determina-
tion coefficient R2 is the fraction of the variance of the dependent variable
that can be predicted from the independent variable. For a dependent vari-
able y and an independent variable x, R2 can be expressed through Equation
3.13:

R2 = (
n ∑ xy−∑ x ∑ y√

[n ∑ x2 − (∑ x)2])− [n ∑ y2 − (∑ y)2]
) . (3.13)
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The MUE is a measure of difference between two continuous variables,
in our case the predicted and the experimental binding free energy. It is
given by Equation 3.14 for a set of n datapoints:

MUE =
∑n

i=1 |yi − xi|
n

. (3.14)

Kendall τ is a measure of the degree of similarity between two quanti-
ties, here the predicted and the experimental binding free energy. Kendall
τ will be high when observations have similar relative positions. Kendall τ

is dependent on the type of the observation pairs, that can be concordant or
discordant. Let’s assume that (x1,y1), (x2,y2), . . . , (xn,yn) are the set of obser-
vations of the random variables X and Y respectively, where all the values
of xi and yi are unique. The pair of observations (xi,yi) and (xj,yj), where i <
j, is called concordant if the sort order by x and y agree, i.e. if both xi>xj and
yi>yj or vice versa. If xi<xj and yi>yj or vice versa the pair of observations
is called discordant. Finally, if xi=xj and yi=yj the pair is neither concordant
nor discordant. The Kendall τ coefficient is depicted in Equation 3.15 as:

τ =
C− D

n(n− 1)\2 , (3.15)

where C is the number of concordant pairs and D is the number of dis-
concordant pairs. The resulting distributions may not be symmetric around
the mean, thus uncertainties are reported with a 95 % confidence inter-
val. Additionally, for the SAMPLing leg of the challenge, binding free en-
ergies were evaluated using Model B by skipping the first 1.5 ns of each
window, and using 1 to 100% of the rest of the dataset. Uncertainties were
taken as the standard deviation output from pymbar and were propagated
to obtain an uncertainty for the reported standard free energy of binding.
The total wall-clock time was also estimated by summing up the wall-clock
time for each λ window, in each phase and simulated process. The num-
ber of iterations was retrieved as the sum of the number of time-steps for
each simulated process. For each host-guest replica, 459,995,400 energy
evaluations were carried out with an average wall-clock time of 245 hours
for CB8 systems and 190 hours for OA. All input files for the SAMPL6
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and SAMPLing protocols are publically available in the repository https:

//github.com/michellab/SAMPL6inputs.

3.7 SAMPL6 results

Results for the full SAMPL6 dataset are shown in Figure 3.4 for each model
without and with a buffer setup. As judged by MUE, Model A/no-buffer is
the least accurate protocol, with a MUE value ca. 5.7 kcal mol−1. Model
A/buffer offers some improvement in accuracy, with the MUE decreasing to
ca. 5.1 kcal mol−1. Addition of long-range dispersions and standard state
correction terms in Model B decreases MUE further (MUE ca. 3.9 and 3.4 kcal
mol−1 for the no-buffer and buffer setups respectively). Model C improves
over Model B with MUE values ca. 1.4 and 1.6 kcal mol−1 for the no-buffer
and buffer setups respectively. Thus, the additional counter-ions in the buffer
setup improve the accuracy for Model A and Model B but not for Model C.
This could be because the SAMPL5 calculations were carried out with a no-
buffer setup,[182] and the empirical correction terms used in Model C do not
transfer to a buffer setup.

Ranking of the protocols according to correlation with experimental data
produces a different result. Model A/no-buffer and Model B/no-buffer perform
similarly well with R2 and τ values ca. 0.6. A small drop in predictive
power is observed for Model C/no-buffer but this is only significant for R2.
This decrease is observed because the empirical correction term helps to
bring the OA host-guest binding energies in line with the experimental val-
ues, but leads to a trend of underestimating the CB8 binding energies. The
use of buffer also appears deteriorates the predictive power, with all buffer
protocols giving significant drops in R2 and τ parameters with respect to
the equivalent no-buffer protocol.

Inspection of the results for the OA subset (Table 3.2 and Table 3.3) shows
that Model B and Model C significantly improve the MUE over Model A but
not for R2 and τ metrics that are ca. 0.7 and 0.5 respectively. The buffer
protocol worsens MUE over the no-buffer protocol but does not affect the

https://github.com/michellab/SAMPL6inputs
https://github.com/michellab/SAMPL6inputs
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predictive power. The same picture holds for theTEMOA subset, with im-
provements for MUE observed as correction terms are introduced. In ad-
dition, switching from no-buffer to buffer deteriorates the MUE for Model A
and Model B. The R2 and τ metrics are higher than OA (ca. 0.9 and 0.8) and
insensitive to the various protocols. For the CB8 subset, dramatic improve-
ments in MUE are also observed upon switching from Model A to Model B
and Model C (Model A/no-buffer MUE ca. 7.3 kcal mol−1 vs Model C/no-buffer
MUE ca. 1.6 kcal mol−1). Unlike for the OA and TEMOA hosts, switching
from a no-buffer to buffer setup significantly improves the MUE for Model
A and Model B, but not for Model C where the MUE gets worse. Thus, the
buffer effects depend on the nature of the host-guest systems. For the octa-
acid guests, the guests are negatively charged acids and explicit modelling
of a buffer favors the binding process (average change in binding energies
of -0.9 kcal mol−1 for Model B). For the cucurbit-uril host, the guests are
positively charged amines and explicit modelling of a buffer disfavors the
binding process (average change in binding energies of +3.1 kcal mol−1 for
Model B). The effect is particularly pronounced for some CB8 guests, e.g. the
binding energies of G3, G4 and G7 increase by more than 4 kcal mol−1 upon
switching from a no-buffer to buffer protocol. None of the models tested yield
significant predictive power with R2 and τ metrics ca. 0.1.

The largest outliers for CB8 are guests G3, G4, G5 and G8. In particular,
the free energies of binding of G3, G5 and G8 are lower than the experimen-
tal data by about 10 kcal mol−1 with Model A/no-buffer or Model B/no-buffer.
The statistical errors are also bigger than for the OA and TEMOA, suggest-
ing greater challenges for converging free energy changes in CB8 over the
simulated time-scales. However, using a buffer protocol lowers free energies
of binding, and by up to ca. 5 kcal mol−1 for G3 and G8.

Among octa-acids the models correctly capture interesting tendencies in
the ITC measurements. For instance, the models correctly predict that G7
binds significantly worse to TEMOA than to OA. The bulkiness of the two β

methyl groups to the carboxylic acid moiety blocks positioning of the guest
in the smaller TEMOA cavity (Fig 1A). The most significant outlier is G2 for
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which the models are not able to reproduce the significantly lowered bind-
ing energetics for TEMOA vs OA. A possible reason for this inconsistency is
that the different ring puckering motions of the cyclohexenil moiety in G2
may have been poorly sampled with the simulation protocols used.
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FIGURE 3.4: Comparison of the predicted and measured bind-
ing free energies for A) Model A/no-buffer B) Model A/buffer
C) Model B/no-buffer D) Model B/buffer E) Model C/no-buffer F)
Model C/buffer for the 27 host-guest systems. The grey line
denotes perfect correlation between predictions and measure-
ments, while the yellow shaded region indicates a ±1 kcal
mol−1 error bound. OA systems are illustrated in blue circles,

TEMOA in green triangles and CB8 in red squares.
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OA
Guest ∆GbindModelA ∆GbindModelB ∆GbindModelC ∆GbindExperimental
G0 -10.5 ± 0.3 -8.4 ± 0.2 -6.1 ± 0.2 -5.7 ± 0.1
G1 -10.0 ± 0.7 -7.9 ± 0.7 -5.8 ± 0.5 -4.7 ± 0.1
G2 -14.7 ± 0.5 -12.5 ± 0.5 -9.2 ± 0.4 -8.4 ± 0.1
G3 -7.2 ± 0.5 -5.0 ± 0.5 -3.6 ± 0.4 -5.2 ± 0.1
G4 -13.3 ± 0.3 -11.2 ± 0.4 -8.3 ± 0.3 -7.1 ± 0.1
G5 -8.4 ± 0.2 -6.3 ± 0.2 -4.6 ± 0.1 -4.6 ± 0.1
G6 -8.7 ± 0.4 -6.6 ± 0.4 -4.8 ± 0.3 -5.0 ± 0.1
G7 -9.4 ± 0.2 -7.2 ± 0.1 -5.3 ± 0.1 -6.2 ± 0.1
R2 0.62 < 0.75 < 0.85 0.62 < 0.73 < 0.84 0.62 < 0.74 < 0.84
MUE 4.17 < 4.41 < 4.66 2.15 < 2.37 < 2.60 0.65 < 0.82 < 1.00
τ 0.43 < 0.54 < 0.64 0.43 < 0.54 < 0.64 0.43 < 0.54 < 0.64

TEMOA
G0 -10.6 ± 0.1 -8.3 ± 0.2 -6.4 ± 0.2 -6.1 ± 0.1
G1 -11.9 ± 0.3 -9.7 ± 0.4 -7.6 ± 0.3 -6.0 ± 0.1
G2 -14.3 ± 0.1 -11.9 ± 0.1 -9.7 ± 0.1 -6.8 ± 0.1
G3 -8.5 ± 0.5 -6.2 ± 0.7 -4.5 ± 0.2 -5.6 ± 0.1
G4 -16.1 ± 0.2 -13.9 ± 0.1 -11.4 ± 0.1 -7.8 ± 0.1
G5 -6.5 ± 0.4 -4.3 ± 0.4 -2.7 ± 0.4 -4.2 ± 0.1
G6 -9.9 ± 0.3 -7.6 ± 0.3 -5.8 ± 0.3 -5.4 ± 0.1
G7 -5.4 ± 0.4 -3.2 ± 0.3 -1.8 ± 0.3 -4.1 ± 0.1
R2 0.90 < 0.93 < 0.96 0.89 < 0.93 < 0.97 0.91 < 0.94 < 0.96
MUE 4.47 < 4.66 < 4.84 2.50 < 2.67 < 2.84 1.58 < 1.72 < 1.86
τ 0.85 < 0.86 < 0.87 0.78 < 0.85 < 0.86 0.85 < 0.86 < 0.87

CB8
G0 -14.3 ± 0.9 -12.8 ± 0.9 -7.4 ± 0.4 -6.7 ± 0.1
G1 -8.9 ± 0.3 -7.5 ± 0.3 -4.7 ± 0.1 -7.7 ± 0.1
G2 -15.0 ± 1.7 -13.6 ± 1.7 -7.8 ± 0.9 -7.7 ± 0.1
G3 -19.2 ± 1.4 -17.8 ± 1.3 -10.0 ± 0.7 -6.5 ± 0.1
G4 -17.7 ± 1.2 -16.4 ± 1.2 -9.2 ± 0.6 -7.8 ± 0.1
G5 -17.8 ± 0.1 -16.5 ± 0.2 -9.3 ± 0.1 -8.2 ± 0.1
G6 -15.8 ± 0.7 -14.4 ± 0.7 -8.2 ± 0.4 -8.3 ± 0.1
G7 -14.5 ± 0.2 -13.2 ± 0.2 -7.6 ± 0.1 -10.0 ± 0.1
G8 -20.4 ± 0.7 -19.0 ± 0.7 -10.6 ± 0.4 -13.5 ± 0.1
G9 -14.3 ± 0.2 -13.0 ± 0.3 -7.5 ± 0.1 -8.7 ± 0.1
G10 -15.9 ± 0.2 -14.5 ± 0.2 -8.3 ± 0.1 -8.2 ± 0.1
R2 0.04 < 0.12 < 0.23 0.04 < 0.12 < 0.23 0.04 < 0.12 < 0.23
MUE 6.90 < 7.33 < 7.76 5.57 < 5.99 < 6.42 1.40 < 1.57 < 1.76
τ -0.09 < 0.04 < 0.20 -0.09 < 0.05 < 0.20 -0.09 < 0.05 < 0.20

TABLE 3.1: Results for all three models (no-buffer protocol)
for individual host-guest families. Energies and MUE are re-

ported in kcal/mol
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OA
Guest ∆GbindModelA ∆GbindModelB ∆GbindModelC ∆GbindExperimental
G0 -11.0 ± 0.4 -8.8 ± 0.4 -6.5 ± 0.3 -5.7 ± 0.1
G1 -10.0 ± 0.2 -8.3 ± 0.2 -6.1 ± 0.2 -4.7 ± 0.1
G2 -15.0 ± 0.4 -12.8 ± 0.5 -9.5 ± 0.3 -8.4 ± 0.1
G3 -8.5 ± 0.1 -6.4 ± 0.1 -4.6 ± 0.0 -5.2 ± 0.1
G4 -15.5 ± 0.2 -13.4 ± 0.2 -9.9 ± 0.2 -7.1 ± 0.1
G5 -8.1 ± 0.2 -6.0 ± 0.2 -4.3 ± 0.1 -4.6 ± 0.1
G6 -10.2 ± 0.3 -8.1 ± 0.2 -5.9 ± 0.2 -5.0 ± 0.1
G7 -9.6 ± 0.3 -7.5 ± 0.5 -5.4 ± 0.4 -6.2 ± 0.1
R2 0.67 < 0.74 < 0.80 0.63 < 0.71 < 0.78 0.63 < 0.71 < 0.78
MUE 4.97 < 5.14 < 5.31 2.87 < 3.05 < 3.23 0.95 < 1.08 < 1.22
τ 0.50 < 0.56 < 0.64 0.43 < 0.52 < 0.64 0.43 < 0.52 < 0.64

TEMOA
G0 -11.6 ± 0.2 -9.3 ± 0.2 -7.3 ± 0.2 -6.1 ± 0.1
G1 -12.8 ± 0.2 -10.6 ± 0.2 -8.4 ± 0.2 -6.0 ± 0.1
G2 -14.7 ± 0.3 -12.4 ± 0.3 -10.1 ± 0.3 -6.8 ± 0.1
G3 -9.5 ± 0.3 -7.3 ± 0.3 -5.5 ± 0.3 -5.6 ± 0.1
G4 -16.6 ± 0.1 -14.3 ± 0.1 -11.8 ± 0.1 -7.8 ± 0.1
G5 -8.1 ± 0.5 -5.9 ± 0.5 -4.2 ± 0.5 -4.2 ± 0.1
G6 -10.5 ± 0.3 -8.2 ± 0.3 -6.3 ± 0.3 -5.4 ± 0.1
G7 -7.6 ± 0.3 -5.2 ± 0.3 -3.6 ± 0.3 -4.1 ± 0.1
R2 0.89 < 0.92 < 0.95 0.89 < 0.93 < 0.96 0.89 < 0.93 < 0.96
MUE 5.48 < 5.66 < 5.84 3.23 < 3.41 < 3.59 1.51 < 1.63 < 1.77
τ 0.78 < 0.84 < 0.85 0.78 < 0.85 < 0.86 0.78 < 0.84 < 0.85

CB8
G0 -11.9 ± 0.5 -10.2 ± 0.5 -6.1 ± 0.2 -6.7 ± 0.1
G1 -7.6 ± 1.0 -6.0 ± 0.8 -3.9 ± 0.4 -7.7 ± 0.1
G2 -13.1 ± 1.6 -11.5 ± 1.7 -6.7 ± 0.9 -7.7 ± 0.1
G3 -14.5 ± 2.2 -13.0 ± 2.1 -7.5 ± 1.1 -6.5 ± 0.1
G4 -13.8 ± 1.2 -12.1 ± 1.2 -7.1 ± 0.6 -7.8 ± 0.1
G5 -15.2 ± 0.4 -13.7 ± 0.5 -7.9 ± 0.3 -8.2 ± 0.1
G6 -12.2 ± 0.1 -10.6 ± 0.0 -6.3 ± 0.0 -8.3 ± 0.1
G7 -9.7 ± 1.7 -8.2 ± 1.8 -5.0 ± 0.9 -10.0 ± 0.1
G8 -17.2 ± 1.4 -15.5 ± 1.5 -8.8 ± 0.8 -13.5 ± 0.1
G9 -12.3 ± 0.3 -11.4 ± 0.4 -6.7 ± 0.2 -8.7 ± 0.1
G10 -13.8 ± 0.4 -12.2 ± 0.4 -7.1 ± 0.2 -8.2 ± 0.1
R2 0.00 < 0.13 < 0.33 0.00 < 0.13 < 0.35 0.00 < 0.13 < 0.35
MUE 4.07 < 4.59 < 5.13 2.96 < 3.52 < 4.08 1.78 < 2.06 < 2.34
τ -0.12 < 0.06 < 0.27 -0.09 < 0.10 < 0.30 -0.09 < 0.10 < 0.30

TABLE 3.2: Results for all three models (buffer protocol) for in-
dividual host-guest families. Energies and MUE are reported

in kcal/mol
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3.8 SAMPLing results

Seven different alchemical or physical binding free energy methodologies
were implemented using OpenMM[222], NAMD[224], GROMACS[225] and
AMBER.[168] Three submissions used weighted ensemble (OpenMM/REVO),
alchemical nonequilibrium switching (GROMACS/NS-DS/SB) or potential
of mean force (AMBER/APR). The other four (OpenMM/XREX, GROMAC-
S/EE, NAMD/BAR, and our submission) are based on the double decou-
pling methodology and only differ in the enhancing sampling strategies and
protocols that were implemented. Detailed information about each protocol
can be found in Rizzi et al.[226] The force-fields and the charges used were
identical for all the calculations, but there were small differences between
our model and the other models. The main differences were in terms of the
treatment of long range interactions as SOMD does not support particle-
mesh Ewald (PME) method used by the other participants. In addition, our
model constrained all the bonds to their equilibrium value rather than con-
straining only the bonds involving hydrogens. We are also using a Lennard-
Jones cutoff of 12 Å instead of 10 Å. All of the standard binding free energies
were computed with respect to a standard concentration of 1M.

Figure 3.5 illustrates the overall results of the seven different method-
ologies for the three host-guest systems. The five replicate calculations for
the different conformations of each method are always within 0.1-0.6 kcal/-
mol for OA-G6 and within 0.1-0.4kcal/mol for OA-G3 with the exception
of OpenMM/REVO and this level of convergence was achieved in less than
400x106 force evaluations. However, for CB8-G3 the agreement between
replicates of the same method is slightly worse. This suggests that if rea-
sonable computational resources are available, absolute binding free energy
calculations can achieve convergence for this class of systems.

It is also interesting to compare the predictions from the five indepen-
dent runs with the ITC measurements from the host-guest challenge.[227–
229] The corresponding experimental data yielded binding free energies of
-5.18± 0.02 kcal/mol for OA-G3, -4.97± 0.02 kcal/mol for OA-G6 and -6.45
± 0.06 kcal/mol for CB8-G3. The computational results were more negative
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on average by 1.2 kcal/mol for OA-G3, -2.1 kcal/mol OA-G6 and -4.4 kcal/-
mol CB8-G3 respectively. These observations were in line with the SAMPL6
host-guest challenge. However, it should be noted that the ionic stengths
of SAMPLing systems were higher than in experimental conditions (60 mM
for OA-G3 and OA-G6 versus 41.25 mM and 150 mM for CB8-G3 versus
57.8 mM) and as we have shown in the SAMPL6 results this could make
a difference for the two octa-acid systems but not for CB8-G3 in terms of
accuracy.
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FIGURE 3.5: Mean free energy, standard deviation and bias as
a function of computational effort. The mean free energies of
binding and 95% t-based confidence intervals computed from
the five replicates of CB8-C3 (left), OA-G3 (center) and OA-
G6 (right) for all submissions are represented by the trajecto-
ries and the shaded areas in the top row. The standard de-
viation and bias as a function of the computational cost are
illustrated in the second and third rows respectively. Given
the differences in the simulation parameters between different
approaches, the finite-time bias is estimated by assuming that
the theoretical binding free energy of the calculation is the fi-
nal value of its mean free energy. Thus, the bias can either
go to zero, or it can be underestimated if the simulation is not

converged. Adapted from Rizzi et al.[215]
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Convergence plots for the calculated binding free energies of the three
host guests CB8-G3, OA-G3 and OA-G6 compared to the ones computed by
the organizers using the software YANK are presented in Figure 3.6. Fig-
ure 3.6A shows that for CB8-G3 the binding free energy obtained using the
full simulation dataset is -13.8 ± 0.7 kcal mol−1. Although the uncertainties
are high, the mean free energy quickly settles around -14 kcal mol−1 and
similar estimates would have been obtained with about 20% of the simula-
tion duration. The calculated binding free energies are consistent with those
obtained for the host-guest part of the SAMPL6 challenge (-13.0 ± 2.1 kcal
mol−1, 3.2). In general, our final prediction is far more negative than the
other participants with the exception of OpenMM/REVO and NAMD/BAR
and from the experimental result (-6.5 ± 0.1 kcal mol−1). For instance, the
SAMPLing reference binding free energy computed by the organizers using
the software YANK is significantly different and more precise (-10.8 ± 0.2
kcal mol−1). The reference value is also in better agreement with the experi-
mental data, though considerable differences remain. It appears that at least
60% of the simulation duration is needed to eliminate drifts in the running
average for the reference calculation.

For OA-G3 (Figure 3.6B) the binding free energies computed with SOMD
and by the other methods are similarly precise. For instance, our prediction
compared to the SAMPLing reference converge to -5.7± 0.1 kcal mol−1 and
-6.7 ± 0.1 kcal mol−1 respectively. The SOMD SAMPLing free energies are
as precise but more accurate than the SOMD SAMPL6 free energies (-6.4 ±
0.1 kcal mol−1, Table 2) in comparison with experimental data (-5.2 ± 0.1
kcal mol−1). The running average for both protocols is stable after ca. 20%
of the simulation duration.

For OA-G6, (Figure 3.6C) the SOMD free energies rapidly converge to
very similar values with the predictions or the other participants. The cal-
culated binding free energies are consistent with YANK’s predictions (-6.9
± 0.1 kcal mol−1 vs -7.1 ± 0.1 kcal mol−1 respectively). These figures are in
better agreement with experiment (-5.0 ± 0.1 kcal mol−1) than the SAMPL6
SOMD free energies (-8.1 ± 0.2 kcal mol−1).

Overall comparison of free energies estimated from the SAMPL6 and
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SAMPLing protocols shows that averaging results over multiple starting
host-guest structures improved agreement of predictions with experiment
for OA-G3 and OA-G6 but not CB8. The differences in binding free ener-
gies computed by SOMD and YANK might be due to the differences in the
simulation protocols.
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FIGURE 3.6: Comparison of standard binding free energies
computed with SOMD (red) to SAMPLing reference values
(blue) for CB8-G3 (A), OA-G3 (B) and OA-G6 (C). Bold lines
denote the average free energy from the five different indepen-
dent simulations started from different coordinates. Shaded
areas denote 1σ. The experimental and SAMPL6 results are il-
lustrated as black and green lines respectively, and the dotted

lines denote 1σ.
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3.9 Conclusions

Alchemical free energy calculations were applied to estimate standard bind-
ing free energies for 27 host-guests in the SAMPL6 competition. Protocols
similar to that used in the SAMPL5 competition were implemented (Model
A/no-buffer and Model B/no-buffer)[182], leading to results of comparable per-
formance to SAMPL5 (SAMPL6 Model B/no-buffer R2 ca. 0.6, MUE 3.9 kcal
mol−1, N=27 vs SAMPL5 Model C R2 ca. 0.7 , MUE 3.4 kcal mol−1, N=22).
Additionally, an empirical correction term derived by a linear regression
approach against SAMPL5 data was designed to correct for systematic er-
rors in the free energy calculation protocol (Model C/no-buffer). This leads
to significant improvements in mean-unsigned error but a slight decrease
in correlation with the experimental data (MUE ca.1.4 kcal mol−1, R2 ca.
0.5). High accuracy predictions and correlations with experimental data
were achieved for the two octa-acid hosts, but CB8 proved more challeng-
ing, with significantly higher uncertainties in the computed binding free
energies and poor correlation with the ITC measurements.

The influence of the modelled buffer on the computed free energies of
binding was also investigated. The main finding is that explicit modelling
of the buffer weakens binding of positively charged guests to CB8 and en-
hances the binding of negatively charged guests to the two octa-acid sys-
tems. Overall the MUE for the dataset (Model A and Model B) drops by about
0.6 kcal mol−1 because the CB8 binding energies are more in line with ex-
perimental data. However, this enhancement is also accompanied by a drop
of ca. 0.2 in R2. The empirical correction term derived against SAMPL5 data
is incompatible with a protocol that models explicitly a buffer, presumably
because no buffer was modelled in the SAMPL5 calculations.[183]

With respect to other SAMPL6 submissions, the results obtained with
SOMD were promising and among the top performing models for the two
octa-acid host-guest systems as judged by R2 and MUE metrics. CB8 proved
challenging for most of the other softwares and methods used. SOMD Model
C/no-buffer gave the lowest MUE values among all submissions (ca. 1.5 kcal
mol−1), but the predictive power was trivial (R2 ca. 0.1).

Concerning the SAMPLing challenge, seven free energy methods were
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applied in three host-guest systems, namely OA-G3, OA-G6 and CB8-G3,
that were parameterised with the same force-field. Their accuracy and their
level of agreement were compared through an analysis framework that was
devised by the organisers. Overall, this analysis showed that absolute bind-
ing free energy calculations can converge within reasonable computing time
for these kinds of systems. However, this research highlighted significant
and system-dependent discrepancies in the methods’ convergence proper-
ties, that depend on both the free energy estimator and the sampling strate-
gies used. In addition, this study illustrated that different methodological
choices, software packages and/or details of the simulation, that should
have trivial impact on the predictions, can introduce significant differences
in the converged free energy estimates for the different methods ranging
from 0.3 to 1 kcal mol−1. Thus, there is a need for further investigation for
the factors that contribute to some of these discrepancies.

Regarding our calculations, the OA-G3 and OA-G6 binding free energies
computed from SOMD with the SAMPLing protocol were significantly dif-
ferent from those computed with SAMPL6 protocol (0.7 and 1.2 kcal mol−1

respectively). A standard practice in the Michel group is to estimate uncer-
tainties in computed binding free energies from triplicate runs starting from
the same input coordinates. This provides a reasonable estimate of the ex-
tent to which free energies are reproducible given a starting condition, but
can also give an ambiguous impression of convergence. Where multiple
reasonable poses can be produced, efforts are better spent evaluating free
energies with simulations started from different input coordinates. Com-
parison of SOMD’s free energies with the reference values (YANK) provided
by the organizers yields a mixed picture, with a significant difference (CB8-
G3, 3 0.7 kcal mol−1), a moderate difference (OA-G3, 1 0.2 kcal mol−1), and
one trivial difference (OA-G6 0.2 0.2 kcal mol−1). There are several differ-
ences between the two codes that could explain discrepancies, a notable one
being a reaction-field treatment of long-range electrostatics (SOMD) versus
PME (YANK). Other differences exist around the coupling of non-bonded
and bonded interactions with the λ schedule,the treatment of soft-cores and
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electrostatic correction terms for charged guests. More systematic repro-
ducibility studies on larger datasets need to be carried out to find the ori-
gins to the observed variability. Such efforts are important to validate the
robustness and transferability of molecular simulation algorithms.
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Chapter 4

Prediction of Absolute Binding
Free Energies of Ligands for the
Intrinsically Disordered Protein
c-Myc

4.1 Introduction

4.1.1 Intrinsically Disordered Proteins

The field of structural biology has assumed for almost a century that the
3D structure of a protein was dictated by its amino acid sequence, and that
a folded protein structure was necessary for biological function. However,
in 1990s the discovery of proteins containing disordered regions linked to
a biological function led many to question this dogma. The notion that
proteins can be biologically active while remaining unstructured has be-
come increasingly prevalent. In 1999, Dyson et al. introduced the term
Intrinsically Disordered Proteins (IDPs) to describe a class of proteins that
can be partially or completely unfolded, and yet biologically active.[230] A
growing number of IDPs have been reported over the years, and are now
classified in the database DisProt.[231] IDPs are composed of protein se-
quences that are unable to fold spontaneously into stable, well-defined glob-
ular three-dimensional structures but are dynamically disordered and fluc-
tuate rapidly over an ensemble of conformations.[232–234] Proteins need
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typically to contain a disordered segment of ca. 30 or longer residues in its
native state to be classified as IDPs. This disordered region is characterised
by little or no tertiary and secondary structure under physiologic condi-
tions. Disordered regions are typically depleted hydrophobic residues and
contain more charged residues than structured regions.[235–237] An exam-
ple of the 3D structures of a well-folded versus a disordered protein is illus-
trated in Figure 4.1.

FIGURE 4.1: A schematic example of the 3D representation
of a disordered versus a well-folded protein. Coloured tubes
denote different conformational states the protein adopt in na-

tive conditions. Adapted from paper Cino et al.[238]

IDPs are highly abundant in nature. They are predicted to amount for
40% of eukaryotic, 25% of viral and 10% of bacterial proteins.[234] They
participate in protein-protein interactions through a coupled-folding upon
binding mechanism. This mechanism is characterized by high-specificity
low-affinity complexes due to the high entropic cost of complex forma-
tion.[239] There are however some examples of IDPs that are not ordered
upon complex creation.[240] In addition, IDPs can interact with multiple
partners in one-to-many or many-to-one binding by changing shape to bind



Chapter 4. Prediction of Absolute Binding Free Energies of Ligands for the
Intrinsically Disordered Protein c-Myc

129

with different targets[241–243] and are though to exhibit intrinsic “confor-
mational preference” for structures adopted upon binding to a protein part-
ner.[244]

Thanks to their structural elasticity, they play vital roles in a plethora of
cellular function such as signalling or transcription.[239, 245, 246] In addi-
tion, IDPs are involved in a variety of diseases such as cancer, cardiovas-
cular disease, neurodegenerative disease, and diabetes.[247] This common
implication of IDPs in the pathogenesis of various diseases led to the ‘dis-
order in disorders’ or D2 concept,[248] according to which IDPs are richly
involved in the development of numerous diseases due to their unique func-
tional and structural properties. Therefore, such diseases may arise from the
misregulation, misidentification of binding partners, missignaling and mis-
folding of the responsible IDPs.[235, 249–251] Thus, given their abundance
and their biological importance there is a need for chemical agents that may
control their function. However, until recently IDPs were considered as un-
druggable since their considerable flexibility is an inherent challenge for
structure based drug design approaches. A major impediment is that this
flexibility restricts the applicability of established structure-based methods
such as NMR or X-ray crystallography to show in detail protein-ligand in-
teractions. Additionally, little is known about the molecular driving forces
that underpin IDP recognition, and how such principles can inform the de-
sign of man-made molecules that can effectively modulate the function of
IDPs.

Yet some reports (Figure 4.2) have demonstrated inhibition of the bi-
ological functions of IDPs. These approaches take advantage of the het-
erogeneous nature of IDPs, which can consist of both ordered and disor-
dered regions, and the ability of IDPs to interact with structured partners.
One technique finds drug-like molecules that bind to the ordered domains
of the IDPs and inhibit their biological functions. Another technique fo-
cuses on targeting critical regions of the IDPs, called molecular recogni-
tion elements (MoRE), that identify the structured binding partners and
fold upon binding with them. After the structural determination of these
complexes, conventional drug design methods can be employed to discover
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small molecules that mimic these regions and compete for the binding site
with the ordered partner.[247],[252] In both instances, structure based drug
design techniques are used to target the ordered proteins.

However, many protein-protein interactions consist of two IDPs whose
complex cannot be solved in isolation. Even in cases where the structure
of the complex is ordered, there may be not apparent pockets that drug
molecules can readily bind. Thus, a third approach involves the direct
targeting of the functional disordered state of the IDPs. Several IDPs can
functionally misfold through non-native intramolecular interactions of their
sticky preformed binding elements that form a non-interacting or a less-
interacting cage. This mechanism takes advantage of the structural elasticity
of these proteins and their ability to morph into differently shaped bound
configurations to prevent them from binding to non-native partners.[240]
Therefore, this concept can be exploited to find small molecules that sta-
bilise functionally inactive conformational ensembles. The idea is to dis-
cover drug molecules that could stabilise the disordered state of an IDP in
an structure different from the structure adopted in the complex with its
binding partner, thus inhibiting biological important interactions that re-
quire coupled folding and binding. This method has the advantage that it
does not need high resolution 3D data for the binding partner but on the
other hand it has the drawback that existing structure based drug design
methods cannot be applied in this case.[253]

In addition, small molecules can be used to target aggregation structures
or to promote the formation and stabilization of non-amyloidogenic and
non-toxic oligomeric or monomeric species.[254–256] A recent example of
this strategy is a series of drug molecules called ‘molecular tweezers’ that
disturb the oligomerization and aggregation processes of several proteins
such as amyloid-protein (Ab) and a-synuclein.[257],[258] Such molecules
specifically bind to lysine residues by encapsulating them into electron-rich
torus shaped cavities decorated with two rotatable peripheral anionic phos-
phonate groups.[259] These tweezers were shown to inhibit the toxicity of
these proteins and could be used to treat other protein misfolding diseases,
such as Alzheimer’s and Parkinson’s disease.
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FIGURE 4.2: Different approaches to disorder-based drug de-
sign. (A) Structure-based drug design method that targets ac-
tive sites of ordered proteins using drug molecules. (B) Inhibi-
tion of protein-protein interactions between an IDP (blue) and
its binding partner (grey) by a small molecule (black) that can
bind to the ordered structure of the binding partner. (C) stabil-
isation of inactive disordered states by a small-molecule which
inhibits the biological functions of the IDP. Adapted from Jin

et al and Kumar et al.[260],[261]

4.1.2 The Oncoprotein c-Myc

One striking example of the direct targeting approach is provided by the
the oncoprotein c-Myc. This 65 kDa nuclear phosphoro-protein consists
of 439 amino acids and contains an an N-terminal transactivation domain
(TAD) and an 88-amino-acid C-terminal bHLHZip (basic helix-loop-helix
leucine zipper) domain.[262] This IDP belongs to the Myc family of tran-
scription factors and serves as a key regulator of numerous genes that are
involved in diverse cellular processes such as cell proliferation, differenti-
ation, metabolism, adhesion, apoptosis, maintenance of cell size, genomic
integrity, and angiogenesis. c-Myc is overexpressed in most human cancers
including breast cancer, colon cancer, cervical cancer, small-cell lung carci-
nomas, osteosarcomas, glioblastomas, melanoma, and myeloid leukaemias
and is often considered the ’holy grail’ in cancer therapy.[247, 263–265] In-
deed several studies have shown that successfully targeting c-Myc can lead
to cell-cycle arrest, apoptosis, re-differentiation of tumor cells, tumor vascu-
lar degeneration, and finally tumor regression.[265–272]
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In order for c-Myc to act as a transcription factor and thus play its impor-
tant biological role it must heterodimerize with the basic-Helix-Loop-Helix-
Leucine zipper (bHLHZip) domain of partner protein Max which lacks a
transactivation segment. The c-Myc/Max heterodimers can be thought of
as microscopic scissors that recognise the DNA double helix (Figure 4.3). In
this arrangement they are able to recognise DNA response elements such
as E-boxes (enhancer boxes).[273–276] Therefore it has been shown that the
disruption of this interaction is a possible anticancer strategy.[245]

FIGURE 4.3: Structure of the bHLHZip domains of Myc (cyan)
and Max (red) in complex with a DNA sequence. Adapted

from Turner et al [276].

An obvious approach would be to specifically inhibit the formation of
the heterodimer, since a crystal structure of the c-Myc/Max together with
the DNA is available. However, the application of structure-based drug
design approaches is challenging as both c-Myc and Max are highly disor-
dered in their unbound states and they fold into a helical coiled coil only
when they interact with DNA.[240, 247, 252] Ultimately, there is a lack of
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potential binding sites in this heterodimer.[277] This is the reason why most
of the inhibitors obtained so far were found by high-throughput screening
rather structure-based approaches.[278]

The first successful HTS attempt was performed by the Vogt lab at the
Scripps Research Institute. They screened 7000 compounds from a combi-
natorial library and identified two molecules, IIA4B20 and IIA6B17. These
peptidomimetics suppressed c-Myc dependent cell growth. Subsequently,
Vogt and Boger et al. replaced the isoindoline core of the these compounds
with a racemic, trans-3,4 dicarboxylic acid core which led to the discovery
of mycmycin-1 and mycmycin-2.[279] These second generation c-Myc in-
hibitors showed a 10-fold stronger inhibition than IIA6B17. In addition,
they demonstrated greater selectivity that the first generation of Myc in-
hibitors as they did not inhibit the oncogenic transcription factor c-Jun.[280]
High-throughput screening of additional libraries paved the way for the
discovery of new small molecule inhibitors of the c-Myc/Max heterodimer-
ization. A fluorescence resonance energy transfer (FRET) assay was per-
formed by Xu et al. on a library of hydrophobic and planar compounds
(a so called "credit card" library) taking advantage of the observation that
most protein-protein interactions have hydrophobic interfaces. Two com-
pounds, NY2267 and NY2280 showed disruption of the c-Myc-Max dimer-
ization, inhibition of specific DNA binding, and inhibition of oncogenic
transformation. However, they did not provide the desired selectivity as
they also showed similar inhibition of c-Jun.[281] The screening of com-
binatorial libraries by Kiessling et al. led to the discovery of a promising
pyrazolo[1,5-a]pyrimidine scaffold for c-Myc inhibition. Mycro3, that was
built upon the two parent compounds Mycro1 and Mycro2, was the first
inhibitor that also disrupted the c-Myc-Max DNA binding. Furthermore,
Mycro3 demonstrated a strong and selective inhibition of c-Myc/Max het-
erodimerization in vitro and improved pharmacokinetics and bioavailabil-
ity.[282] Finally, three more recent inhibitors where discovered using the
same strategy. KJ-Pyr-9 exhibited a direct intracellular binding to c-Myc
with nanomolar affinity (KD of 6.5 nM),[283] sAJM589 bound potently to
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the Myc bHLHLZ domain with an IC50 of 1.8 µM,[284] and finally MYCMI-
6 (NSC354961) demonstrated a potent inhibition of c-Myc/Max dimeriza-
tion with a KD of 1.6 µM, based on surface plasmon resonance (SPR) as-
says.[285],[286]

FIGURE 4.4: Chemical structures of selected small molecule
inhibitors that target c-Myc/Max dimerisation. [247],[286]
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Among all of the known inhibitors only 10058-F4 and 10074-G5 (together
with KJ-Pyr-9) demonstrated complete selectivity towards c-Myc/Max dimer-
ization and shown to bind directly to c-Myc by Circular Dichroism (CD),
NMR experiments.[262],[252] In 2003, Prochownik’s group screened 10,000
compounds from the Chembridge DIVERSE combinatorial library and found
three molecules were able to selectively inhibit the c-Myc transcriptional
function and decrease the fibroblast growth.[269] The rhodanine-based com-
pound 10058-F4 inhibited the proliferation of HL60 cells with an IC50 value
of 41.1 µM, while 10074-G5 inhibited the growth of these human promye-
locytic leukemia cells that overexpress c-Myc with an IC50 value of 22.5
µM.[287] Subsequent fluorescent polarization assays indicated that 10058-
F4 binds to c-Myc with a KD of 5.3 µM and 10074-G5 binds to the oncopro-
tein with a KD of 2.8 µM. Additional surface plasma resonance (SPR) exper-
iments by Müller et al determined the direct binding of 10058-F4 and 10074-
G5 with KD values of 39.7±8.1 µM and 31.7±24.9 µM, respectively.[288]
Finally, Heller et al examined the potency of 10058-F4 with Isothermal Titra-
tion Calorimetry (ITC) and with van’t Hoff analysis using fluorescence titra-
tion experiments at different temperatures. They did not observe any bind-
ing with ITC because of low heat of binding, but they measured a binding
free energy of -27.6 ± 8.5 kJ/mol at 25 C◦ binding with a van’t Hoff analy-
sis. Thus, they concluded that entropic contributions are a key factor for the
binding of 10058-F4 to the oncoprotein c-Myc.[289] The chemical structures
of the two promising inhibitors are shown in Figure 4.5.

FIGURE 4.5: Illustration of the chemical structures of 10058-F4
and 10074-G5.
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Despite the rising number of c-Myc/Max inhibitors, it is also impor-
tant to elucidate the potential binding sites of the intrinsic oncoprotein. c-
Myc402−412 and c-Myc363−381 were identified as the binding sites of 10058-F4
and 10074-G5 respectively, through point mutations and deletions of short,
synthetic peptides of c-Myc, followed by CD and NMR assays.[262] In addi-
tion, Hammoudeh et al proved that the binding of these compounds to these
two sites can happen simultaneously and independently. Finally, a model
of 10058-F4 bound to c-Myc402−412 was proposed on the basis of NMR ex-
periments. This region is located at the interface between the H2 and Zip
region in the c-Myc-Max dimer and forms a hydrophobic cluster of Tyr402,
Ile403, Leu404, Val406, Ala408 in the c-Myc402−41210058-F4 complex.[252]
Therefore, using these findings as a starting point, further studies can be
performed to better understand the binding mechanism of these molecules
with c-Myc

4.1.3 Previous work from the Michel group and scope for

further improvements

Intrigued by this opportunity, Michel and Cuchillo employed molecular dy-
namics and bias-exchange metadynamics simulations to provide new in-
sights about the mechanisms of molecular recognition between the small
molecule 10058-F4 and c-Myc. They reported that the ligand does not have
a dominant binding mode but interacts with multiple binding sites through
weak and non-specific interactions. Moreover, the compound made pref-
erential contacts with the most hydrophobic region of this sequence, a re-
sult that was in agreement with Hammoudeh et al.[290],[252] Therefore, this
study has highlighted the lack of specificity between 10058-F4 and its target
as well as the difficulty to locate possible binding sites for c-Myc.

A first successful example of a general computational approach for tar-
geting c-Myc target has been reported by Yu et al. They performed extensive
MD sampling of the c-Myc370˘409 region to extract an ensemble of conforma-
tions that were used for binding site identification and multi-conformational
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FIGURE 4.6: The small molecule 10058-F4 (purple star, 1) dis-
turbs the heterodimerization of c-Myc (blue), and Max (red),
by preserving conformations in c-Myc that are unsuited with
c-Myc/Max dimerization. Adapted figure from Cuchillo et

al.[290]

molecular docking.[260],[121] However, it remains important to further es-
tablish the mechanisms by which small molecules can interact with c-Myc.
This is a really challenging task through classical experimental approaches
such as X-ray crystallography and NMR, because of the highly disordered
nature of c-Myc. In contrast, MD simulations can be performed to study
and understand the molecular recognition mechanism between a ligand and
c-Myc, since these interactions are often linked with rapid conformational
changes.[291]

The aim of this project is to characterise the interaction between 10058-
F4 and c-Myc using two MD-based strategies. The first approach assesses
the the ability of the absolute binding FEP protocol employed in Chap-
ter 3 to reproduce the binding affinity and binding site preference of two
well-characterized c-Myc binders, 10058-F4 and 10074-G5, on the 402-412
Myc fragment. It was shown in Hammoudeh et al that 10058-F4 prefers to
bind in this segment, while 10074-G5 binds to a different region (363-381)
of c-Myc.[252] The second approach uses long unbiased MD simulations
to reversibly simulate binding/unbinding of 10058-F4 to c-Myc402−412 and
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analyze the resulted trajectories using MSMs.[292],[59] Overall we aim to
test for the consistency of the binding free energies computed by these two
approaches, and to gain insights in the binding mechanism of 10058-F4 to
c-Myc.

4.2 Computational workflow

4.2.1 MD simulations of c-Myc-ligand complexes

For the MD simulations, the binding pose from Hammoudeh et al. was cho-
sen as a starting point for the c-Myc402−412/10058-F4 complex. In addition,
for the c-Myc402−412/10074-G5 complex, the ligand was docked to the same
Hammoudeh et al. pose as 10058-F4 using Cresset’s molecular modelling
package Flare.[162] The docking grid was centered on 10058-F4 bound to
c-Myc and the whole peptide was used as a receptor. The lowest energetic
pose from this complex was chosen as a starting point for the MD simula-
tions.

FIGURE 4.7: Depiction of the starting point of c-
Myc402−412/10058-F4 complex for the MD simulations.
The thiazolidinone ring forms hydrogen bonding interactions

with the side chain of Gln411. [252]
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Two sets of equilibrium MD simulations were performed for this study.
The first set was implemented to derive the most stable pose as an initial
conformation for the absoluteFEP protocol for the two protein-ligand com-
plexes. For this purpose, the input files used for these simulations were cre-
ated using FESetup1.2.1 software.[167] Proteins were parameterised using
ff14SB Amber force-field[169], while GAFF2 parameters[170],[171] that use
AM1-BCC charges[172] were assigned to the ligands. Both systems were
solvated in a rectangular box with TIP3P waters[173] with a minimum dis-
tance between the solute and the box of 12 Å. Counter ions were also added
to neutralise the total net charge.

For the equilibration protocol, energy minimization of the entire system
was implemented with 1000 steps of steepest gradients, using sander. Then,
an NVT protocol for 200 ps was performed at 298K, followed by an NPT
equilibration for further 200 ps at 1 atm. Eventually, a 2 ns MD simulation
in an NPT ensemble was run with sander to reach a final density of 1 g cm−3.
Simulations of each protein-ligand complex were run for a duration of 500
ns using SOMD software in an NPT ensemble. Temperature control was
maintained by an Andersen thermostat with a coupling constant of 10 ps−1.
Pressure control was achieved with a Monte Carlo barostat that attempted
isotropic box edge scaling every 25 fs. A 10 Å atom-based cutoff distance for
the non-bonded interactions was used, using a Barker Watts reaction field,
with dielectric constant of 78.3. The final coordinate files were retrieved
with cpptraj.

The second set of MD simulations consist in three different long MD
simulations to build a Markov state model of the c-Myc402−412/10058-F4.
Each simulation was performed with a different force field.

The first set of input files for the protein-ligand complex were generated
with the same method and force-fields as for the first set of MD simulations.
The same equilibration protocol was employed and the final coordinate file
was obtained with cpptraj. A 20 µs long MD simulations for the protein-
ligand complex was run using the SOMD software (revision 2019.1.0) in
the NPT ensemble at 300 K and 1 atm. A 2 fs timestep was used and
all the bonds involving hydrogens were constrained. Temperature control
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was maintained by an Andersen thermostat with a coupling constant of 10
ps−1. Pressure control was achieved using a Monte Carlo barostat. Periodic
boundary conditions were used with a 10 Å atom-based cutoff distance for
the non-bonded interactions together with a Barker Watts reaction field with
dielectric constant of 78.3 for the electrostatic interactions.

For the second simulation the ff14IDPSFF Amber force-field[293] was
selected for c-Myc402−412 as it is a specific force-field for IDPs, GAFF2 pa-
rameters[170],[171] with AM1-BCC partial charges for the ligand through
the LEaP module in the Amber 17 suite.[168] The model was then solvated
in a rectangular box of TIP3P water molecules and charge neutrality was en-
forced through the addition of the necessary counter ions. The input coor-
dinates were energy minimised using 5000 steps of steepest gradients with
heavy protein atoms were position-restrained with a force constant of 1000
kJ mol1 nm2. The system was then equilibrated for 100 ps using an NVT
ensemble and the same restraints as in the previous step. Finally 100 ps of
NPT ensemble at 1 atm were performed to reach a final density of about 1
g cm−3. Next the software GROMACS 5.0.5[225] was used to perform a 20
µs long MD simulation for the protein-ligand complex in the NPT ensemble
at 300 K and 1 atm. A 2 fs timestep was used and LINCS[294] algorithm
was employed to constrain bonds involving hydrogen. Temperature con-
trol was maintained at 300K with a stochastic Berendsen thermostat.[295]
and pressure was achieved using a Parrinello-Rahman barostat.[296] Elec-
trostatic interactions were handled using Particle Mesh Ewald with a real
space cutoff of 10 AÅ and a Fourier grid spacing of 1.6 Å. Van der Waals in-
teractions were handled using Lennard-Jones with a cut-off of 10 AÅ.[297]

The third force-field tested was Charmm36m which has been parame-
terised for IDPs,[298] GROMACS 5.0.5 package[225] was used to prepare
the third set of the input files. The general Charmm force field[299] was se-
lected for the ligand. The model was then solubilised in a rectangular box
with TIP3P waters[173] with a box length of 12 AÅ away from the edge of
the solute. In addition, counter ions were added to neutralise the total net
charge. A similar equilibration and production protocol as for the previous
setup was followed to produce a 20 µs MD simulations with the software
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GROMACS 5.0.5 [225].

4.2.2 Double decoupling protocol

Alchemical free energy simulations were performed using a double decou-
pling protocol implemented in the SOMD software. Details of the protocol
were given in Chapter 3. For the two protein-ligand complexes, both com-
plex and solvated phase discharging step were run with nine equidistant λ
windows and 16 λwindows (0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.400,
0.45, 0.50, 0.55, 0.60, 0.70, 0.85, 1.00) were employed for the vanishing step,
both in bound and free phase.

Each lambda value was simulated for a duration of 10 ns with SOMD
in the NPT ensemble. Temperature control was achieved with an Andersen
Thermostat with a coupling constant of 10 ps−1.[48] Pressure control was
maintained by a Monte Carlo barostat that attempted isotropic box edge
scaling every 100 fs. A 12 Å atom-based cutoff distance for the non-bonded
interactions was used, using a Barker Watts reaction field with dielectric
constant of 78.3.[223] In the bound phase the restraints parameters of eq. 3.1
were: Rji = 7 Å, Dji = 2 Å and kji= 10kcal mol−1 Å−2. The alpha carbons (Ca)
of residues Leu404 and Gln410 were chosen as the restraint set of the host
atom, while the central carbon atom of 10058-F4 and the central nitrogen
atom of 10074-G5 were the corresponding guest atoms.

Free energy changes were estimated with the multistate Bennet accep-
tance ratio method as implemented in the Sire app analysefreenrg.[50] To
achieve a more robust estimation of free energies, each simulation was re-
peated three times, using different initial velocities drawn from the Maxwell-
Boltzmann distribution and statistical uncertainties are reported as one stan-
dard error of the mean.

4.2.3 Markov State Model’s protocol

The resulting pool of trajectories from the second set of MD simulations
was used to construct a MSM for the three different force-fields using the
pyEMMA 2.3.0 software package.[300] Three different features were used to
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cluster the MD simulations to build MSM models. All features involved dis-
tances between the circled atoms of 10058-F4 (Figure 4.8) and the Ca atoms
of the c-Myc peptide.

FIGURE 4.8: Structure of 10058-F4. The two atoms of the
molecule that are circled were chosen to measure distances be-
tween the ligand and the alpha carbons of the c-Myc peptide.
These distances were used as molecular features for the MSM

models.

The first metric required the calculation of eleven distances between the
nitrogen atom of the ligand and the CAs of each amino acid of the c-Myc
peptide in each snapshot (Metric 1). Then, dimensionality reduction was
performed using TICA to construct a lower dimensionality representation
that could captured the variance of this 11-dimensional space.[55] However,
TICA retained ten out of eleven dimensions to explain 95 % of the total vari-
ance of the system. Thus, we decided to use the original eleven dimensions
for each snapshot, as there was not significant dimensionality reduction us-
ing TICA.

The second metric used only the shortest distance between the nitrogen
of the ligand and the CAs of each amino acid of the oncoprotein for every
snapshot (Metric 2). The third metric used the shortest distance between
either the nitrogen or the carbon atoms highlighted in figure 5.8 and the
alpha carbons of each residue at each snapshot (Metric 3). For the last two
metrics we did not perform reduction of the dimensional space as the initial
feature space consisted of only one dimension.

Subsequently, k-means clustering using 75 clusters was performed to
discretize the trajectories and obtain microstates for the MSM construction.
Implied timescales (ITS) of the dominant eigenvectors were calculated for
each metric. All of the metrics have similar behavior compared to their
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slowest processes. From these plots, we concluded that a lagtime of 200
ps together with the default parameters of pyEMMA should be chosen to
estimate the MSM transition matrices using the Bayesian MSM option of
pyEMMa. The validity of these models were tested with the Chapman-
Kolmogorov test (CK test) where the full transition probability matrix T was
coarse-grained into 2 metastable states.[59]

Having ensured that the dynamics in the space of the 2 metastable states
was Markovian, we performed spectral clustering using PCCA++ algorithm
to coarse-grain the microstates into 2 metastable states.[64] The two states
were identified as bound and unbound based on the maximum distance be-
tween the ligand and the protein in this state. In addition, the stationary
probabilities (π) of the two metastable states were calculated by summing
over the populations of the 75 microstates. The Mean First Passage Times
(MFPT) between the two states were estimated from the Bayesian MSM us-
ing pyEMMA.

The standard binding free energy of the ligand was estimated using
equation 4.1.

∆G◦bind = −kBT ln

(
πbound

πunbound

)
− kBT ln

(
Vunbound

V◦

)
, (4.1)

where kB is the Boltzmann constant, T is the temperature in Kelvin, π ac-
counts for the stationary probabilities of the bound and unbound macrostates.
The second term corrects for the volume of the unbound state in the simu-
lation box being different from the standard volume conditions for a 1M
dilute solute (V◦ = 1660 Å3/mol).

To determine Vbound, the volume of space available to the ligand in the
unbound state, we computed the average distance between the center of
masses of the ligand and the protein from 1000 snapshots sampled from
the bound macrostate. We then estimate the bound volume Vbound as the
volume of a sphere with radius equal to this average distance. We also used
cpptraj to compute the average volume Vtotal of the simulation box from
these 1000 snapshots. The volume of the unbound state was then taken as
the difference between Vtotal and Vbound.
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Finally, we also computed the rate constants kon and ko f f for the bind-
ing process by using the calculated MFPTs between bound and unbound
states. Assuming first order reactions, the relation between the rates and
the corresponding MFPTs are provided by the following equations[301]:

k−1
off = MFPToff , (4.2)

k−1
on = MFPTonCcompound , (4.3)

where Ccompound is concentration of the ligand in the simulation box.

4.3 Results

4.3.1 Binding free energies from the double decoupling pro-

tocol

The established FEP protocol from Chapter 3 was employed to reproduce
the binding affinity and binding site preference of two known c-Myc binders
to the 402-412 Myc fragment. The binding free energies computed from the
absoluteFEP protocol are provided in Table 4.1. Overall, standard state cor-
rections are similar between the two ligands, but we can observe large dif-
ferences between "discharge" and "vanish" steps of the protocol in free and
bound phase. The protocol yielded quite reproducible results between the
three independent runs, but the results do not show 10058-F4’s preference
for binding at this region. The FEP calculations predict that 10074-G5 binds
more favorably to c-Myc402˘412 (-4.7±0.7 kcal/mol) than 10058-F4 (-0.8±0.2
kcal/mol) which contrasts with the previous reported experimental results.

A possible reason for this inconsistency could be the force-field parame-
ters of 10058-F4. In 2017, Heller et al reported a custom parameterization of
the ligand as they observed proved that GAFF was poorly representing the
torsional energetics of this ligand. The GAFF and Heller’s force field terms
of the dihedral angle of 10058-F4 are shown in Figure 4.9.[289]
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FIGURE 4.9: Parameterization of the force field term of the di-
hedral angle of 10058-F4 that is highlighted with four points
in blue circles. The green and red lines represent the potential
energies computed by GAFF and Heller’s parameterization of
the force field respectively. Black bars show the potential en-
ergy function calculated using quantum mechanical calcula-
tions at RB3LYP/6-311+G(d,p) level of theory. Adapted from

Heller et al.[289]

Thus, we repeat the absoluteFEP protocol using the customized param-
eters for 10058-F4 that had been kindly provided by Dr. Heller. The most
significant change was the 6-fold difference in ∆Gbounddischarge (71.67 ± 0.12
for GAFF versus 18.99 ± 0.08) and in ∆G f reedischarge (72.09 ± 0.01 for Am-
ber force field versus 19.25 ± 0.01 for custom parameterisation) between
the two simulations. Unfortunately, the binding free energy of the molecule
was only slightly more negative (-1.3± 0.2 kcal/mol).

One possible reason for the poor computed energetics could be that the
conformation of the c-Myc peptide was not representative of the dominant
binding mode observed experimentally. To test for this we carried out 500-
ns long MD simulations of the c-Myc/10058-F4 and c-Myc/10074-G5 com-
plexes. Subsequently, we performed clustering with k-means algorithm and
the RMSD of the ligand versus the protein as a metric using cpptraj. The
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most representative binding pose for each complex (Figure 4.10) was then
selected and used as the initial conformation for the absoluteFEP protocol.

FIGURE 4.10: Depiction of the new, more stable binding poses
of the two protein-ligand complexes used for the new runs of

the absoluteFEP protocol.

The binding free energies computed using those structures were more
positive than seen previously for both 10058-F4 (0.9±0.4 kcal/mol) and 10074-
G5 (-1.4±0.3 kcal/mol). Furthermore, there was limited evidence of a dom-
inant binding mode in the MD simulation, with the compounds reversibly
binding/unbinding several times. This suggested challenges for the FEP
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protocol that affords limited sampling per window. We therefore considered
next the evaluation of binding free energies using longer MD simulations.

AbsoluteFEP protocol for 10058-F4
c-Myc ∆Gbounddischarge ∆Gboundvanish ∆G f reedischarge ∆G f reevanish ∆Grestraint ∆G◦ModelC
Hammoudeh pose 71.67 ± 0.12 -4.06 ± 0.08 72.09 ± 0.00 -6.76 ± 0.01 -1.51 ± 0.26 -0.77 ± 0.21
Heller’s parameters 18.99 ± 0.08 -4.21 ± 0.16 19.25 ± 0.00 -6.87 ± 0.07 -1.08 ± 0.12 -1.32 ± 0.18
Clustering pose 76.57 ± 0.07 -5.36 ± 0.36 77.47 ± 0.01 -6.56 ± 0.02 -1.21 ± 0.05 0.91 ± 0.39

AbsoluteFEP protocol 10074-G5
Hammoudeh pose 52.55 ± 0.21 -16.90 ± 0.47 53.15 ± 0.02 -23.59 ± 0.04 -1.37 ± 0.04 -4.73 ± 0.68
Clustering pose 52.08 ± 0.07 -18.09 ± 0.31 53.28 ± 0.02 -21.47 ± 0.10 -1.51 ± 0.26 -1.38 ± 0.26

TABLE 4.1: Results from all the different absoluteFEP protocol
simulations for 10058-F4 and 10074-G5. Energies are reported

in kcal/mol

4.3.2 MSM results

Extensive 20 microsecond long MD simulations of the c-Myc402−412/10058-
F4 complex were conducted using three different force-field parameter sets.
The rationale behind these simulations was to examine the behaviour of the
c-Myc-ligand complex when protein force-fields developed specifically for
IDPs are used. Three different metrics that are dependent on the distance be-
tween the protein and the ligand were used to construct three MSM models
for each force-field from the simulation data using pyEMMA software. The
ten slowest ITS for each metric and each force-field were plotted for a range
of lag times, τ. The corresponding plot for the second metric is illustrated
in Figure 4.11, while the other two plots are provided in the Appendix.



Chapter 4. Prediction of Absolute Binding Free Energies of Ligands for the
Intrinsically Disordered Protein c-Myc

148

FIGURE 4.11: Implied time scales plots of the second metric
(shortest distance between the nitrogen of the ligand and the
CAs of each amino acid of the oncoprotein) for the three force
fields, A AmberIDP, B Charmm36m, C FF14SB. Different col-
ors indicate the slowest processes of the system during the MD

simulations.
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The lag time chosen for all analysis was 200 ps. The timescales haven’t
fully leveled off, and the model is only approximately Markovian. The val-
idation of the Markovianity of the different models was performed through
CK tests. The resulting plots for the second metric is depicted in Figure 4.12,
while the other plots are given in the Appendix.
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FIGURE 4.12: Chapman-Kolmogorov test plots of the sec-
ond metric used for the three force fields, A AmberIDP, B

Charmm36m, C FF14SB.
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The CK tests for the second metric show a small deviation from the ki-
netic behavior of the system on longer timescales. Thus, a lag time of 200
ps is an appropriate choice to predict the long-timescale behavior of the
three systems. After successful statistical validation of the models, a two
macrostate MSM model was constructed for each simulation using PCCA++.
The grouping turned out to distinguish different protein-ligand conforma-
tional states and separate them as bound and unbound based on the dis-
tance between the ligand central atom, and the CAs of c-Myc. The proba-
bility distribution of distances for the second metric in bound and unbound
states is depicted in the Figure 4.13, while similar plots for the other met-
rics are provided in the Appendix. Overall there is a clear preference for
microstates in the ’bound’ macrostate to show lower distances between the
ligand and the peptide than in the ’unbound’ macrostate, however some
overlap remains, which could be due to the broad range of MD snapshots
assigned to a single microstate.
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FIGURE 4.13: Probability distribution of distances of the
bound and unbound states of the second metric applied for
the three force fields, A AmberIDP, B Charmm36m, C FF14SB.

The stationary probabilities of these states, π1 for the unbound state and
π2 for the bound state, were computed by summing over all the microstates
and are reported in the following table:
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SOMD/ff14SB/GAFF2
Metrics π1 π2
Metric 1 0.75 ±0.05 0.25 ±0.06
Metric 2 0.48 ±0.05 0.52 ±0.06
Metric 3 0.47 ±0.06 0.53 ±0.09
GROMACS/Charmm36m/Charmm
Metric 1 0.72 ±0.02 0.28 ±0.04
Metric 2 0.47 ±0.05 0.53 ±0.03
Metric 3 0.51 ±0.02 0.49 ±0.04

GROMACS/Amberidp/GAFF2
Metric 1 0.47 ±0.02 0.52 ±0.05
Metric 2 0.32 ±0.02 0.68 ±0.08
Metric 3 0.32 ±0.03 0.68 ±0.01

TABLE 4.2: Stationary probabilities of the bound (π2) and un-
bound (π1) states for the three metrics of each force-field.

The values of the stationary distributions highlighted that the bound
state was more dominant for metrics 2 and 1 but it differed in population
amongst the three force-fields. On the other hand, metric 1 showed that the
unbound state was the most favorable for ff14SB and Charmm36m. It was
apparent that the Amberidp force-field showed the strongest tendency for
10058-F4 to bind favorably to the c-Myc402−412 peptide.

In order to provide a more quantitative interpretation of this binding
process, we calculated both the binding affinity and the kinetics of the over-
all process of binding for the three metrics for each force-field. The overall
binding free energy was computed from the stationary distributions and
the standard state correction term as it was described in the Methods sec-
tion. The values obtained from this calculation for the first two metrics were
similar between the three force-fields, and were only 1 kcal/mol more nega-
tive than those ones obtained from the absoluteFEP protocol. However, for
the case of metric 1, the binding free energies computed for Charmm and
FF14SB were similar with the binding free energy obtained from the ab-
soluteFEP protocol, when custom parameterisation was used, and differed
from the corresponding binding free energy of the Amberidp force-field.
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This finding highlights the reproducibility amongst the methods, although
the details of the simulated conformational ensembles differ.

SOMD/ff14SB/GAFF2
Metrics Average distance Vbound Vunbound ∆G◦msm
Metric 1 10 ± 4 4100 ± 1300 75000 ± 1300 -1.60 ± 0.66
Metric 2 10 ± 5 5000 ± 2000 74100 ± 2000 -2.30 ± 0.71
Metric 3 11 ± 5 5000 ± 1700 74100 ± 1700 -2.32 ± 0.68

GROMACS/Charmm36m/Charmm
Metric 1 8 ± 2 2600 ± 540 76000 ± 600 -1.62 ± 0.77
Metric 2 12 ± 5 8100 ± 540 70000 ± 2700 -2.28 ± 0.51
Metric 3 12 ± 5 7700 ± 2500 71000 ± 2500 -2.21 ± 0.77

GROMACS/Amberidp/GAFF2
Metric 1 8 ± 2 2600 ± 520 77000 ± 600 -2.33 ± 0.48
Metric 2 10 ± 4 4700 ± 1500 75000 ± 1500 -2.71 ± 0.66
Metric 3 10 ± 4 5000 ± 1600 74000 ± 1600 -2.71 ± 0.68

TABLE 4.3: Average distance between the com of the ligand
and the com of the protein in the bound macrostate are given
in Å, volumes of the bound and unbound states are given in

Å3, standard binding free energies are given in kcal/mol.

Another important feature that can be computed from the MSM models
is the kinetics that govern the binding process of 10058-F4 to c-Myc. For this
purpose Mean First Passage Time values (MFPTs) between the two states
in each force field for the three metrics were calculated from the Bayesian
MSM using the pyEMMA software. MFPT values were then converted into
rate constants for the binding and unbinding of 10058-F4 to c-Myc (using a
concentration of the ligand equal to 0.02 M given the box dimensions). The
kon and the ko f f values for each of the three force-fields for the three metrics
are summarised in the following table:
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SOMD/ff14SB/GAFF2
Metrics MFTP1−>2 MFTP2−>1 kon ko f f
Metric 1 14.28 ± 0.04 15.03 ± 0.04 317.04 ± 0.83 7.00 ± 0.02
Metric 2 14.76 ± 0.04 15.88 ± 0.04 300.08 ± 0.79 6.78 ± 0.02
Metric 3 28.80 ± 0.20 9.30 ± 0.15 512.29 ± 3.65 3.47 ± 0.05

GROMACS/Charmm36m/Charmm
Metric 1 11.32 ± 0.02 12.62 ± 0.03 373.69 ± 0.79 8.84 ± 0.01
Metric 2 13.84 ± 0.03 13.95 ± 0.03 340.70 ± 0.67 7.17 ± 0.01
Metric 3 7.37 ± 0.04 22.25 ± 0.10 212.02 ± 0.10 13.56 ± 0.07

GROMACS/Amberidp/GAFF2
Metric 1 13.10 ± 0.02 28.93 ± 0.08 165.39 ± 0.39 7.63 ± 0.02
Metric 2 15.84 ± 0.04 35.11 ± 0.12 136.23 ± 0.33 6.31 ± 0.02
Metric 3 16.59 ± 0.08 14.98 ± 0.13 319.36 ± 2.73 6.03 ± 0.05

TABLE 4.4: Mean first passage times (MFTPs) between the un-
bound (1) and the bound (2) state as were estimated from the
Bayesian MSM. MFTPs are measured in ns. The kinetic reac-
tion rates of the three different force-fields for the three met-
rics, kon and ko f f for the bound and the unbound states respec-

tively. ko f f is reported in µs−1 and kon in µs−1 M−1.

The computed kon and ko f f values from our MSM models can be com-
pared with values that would be expected for a protein-ligand binding pro-
cess. The typical range of the kon rates spans between 103 s−1 M−1 to 109 s−1

M−1, with the latter corresponding to the rate limit of diffusion of a solute
to the solvent.[302] Thus the on rate constants computed (ca. 108 s−1 M−1)
from the MSMs are close to diffusion limit. ko f f values typically range from
1 s−1 to around 107 s−1, due to the long-lasting nature of protein-ligand in-
teractions.[302] The MSM-derived ko f f values appear therefore to be at the
upper range of what is experimentally observed. Overall the picture that
emerges is one of weak affinity with very fast binding/unbinding kinetics.

A final aim of this study was to identify the residues that the ligand
prefers to interact with when in its bound state. For this purpose, 1000
snapshots were extracted based on microstates probabilities using the ap-
propriate pyEMMA functions in order to create a trajectory with snapshots
from the bound state of metric 2. Metric 2 showed the strongest tendency
for 10058-F4 to bind favorably to the c-Myc402−412 peptide for all the applied



Chapter 4. Prediction of Absolute Binding Free Energies of Ligands for the
Intrinsically Disordered Protein c-Myc

156

force-fields. In the resulting trajectory, we applied a homemade python
script using the mdtraj module to count the number of carbon atoms of the
ligand and measure the distance of those atoms with the carbon atoms of
the protein. This metric allowed us to evaluate the hydrophobic contacts of
the ligand with every residue for each snapshot. A cutoff of 4Å was used
for every distance to only identify close contacts between 10058-F4 and each
residue of the oncoprotein c-Myc. We also examined the ability of the lig-
and to engage in hydrogen bonding interactions with each residue using
the cpptraj module. The total number of hydrophobic contacts and hydro-
gen bonds formed during the 1000 snapshots for Amberidp force-field is
depicted in the Figure 4.14, while the total number of contacts for the other
two force-fields are given in the Appendix.

FIGURE 4.14: A) Total number of hydrophobic contacts (on the
left with blue color) and B) Number of hydrogen bonds (on the
right with red color) for Amberidp force-field. The x-axis has
been truncated to 100 for visualisation purposes (number of

contacts less thab 100.

The results for each force-field indicated that the ligand prefers to bind
in the N terminus of c-Myc402−412 especially with Tyr402. In addition, the
binding process is mainly characterised by van der Vaals interactions rather
than hydrogen bonds, since only a small fraction of the 1000 snapshots in-
volve hydrogen bonding interactions between the ligand the peptide. Five
representative snapshots for the Amberidp-Metric 2 analysis were obtained
from the corresponding trajectory and are depicted in the following figure.
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FIGURE 4.15: Five representative snapshots from the bound
state of metric 2 for the Amberidp force-field.

These snapshots highlight the flexibility of the bound state, as c-Myc and
10058-F4 adopt diverse conformations. Finally, we observe that the nature
of the bound state described by the MSM appear to be in line with the find-
ings from the previous metadynamics study of Michel and Cuchillo.[290]

4.4 Conclusions

Two molecular dynamics simulation protocols were established to study
the interactions of small molecules with the intrinsically disordered pro-
tein c-Myc. Alchemical free energy calculations were first applied to com-
pute the absolute binding free energies of c-Myc402−412/10058-F4 and c-
Myc402−412/10074-G4 complexes. This protocol was developed in Chap-
ter 3 and it generated reproducible results for this system. However the
computed free energies of binding (ca. -2 kcal.mol−1) deviated significantly
from experimental data (ca. -6 kcal.mol−1).

The second protocol was employed in order to understand the binding
process of the small molecule 10058-F4 to c-Myc. For this purpose, exten-
sive MD simulations and Markov State models were combined to reversibly
simulate binding/unbinding in the c-Myc402−412/10058-F4 complex. The
binding/unbinding kinetics of the protein-ligand complex can be described
as a two-state process because the slowest transitions are due to the binding
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process. We discretised the MD trajectories into bound and unbound states
by using as features the distances between some parts of the ligands and the
CA atoms of the c-Myc residues.

The binding free energies obtained from these models were broadly sim-
ilar to those obtained from the absoluteFEP protocol. These result highlight
difficulties for the present molecular modelling protocols to reproduce ex-
perimental trends for this system. For this purpose, this study also focused
on the residues that critically affect binding as well as the type of the inter-
actions that govern the binding process. The protein amino acids that were
located in the N-terminus of c-Myc402−412 were more crucial for binding and
the interactions between them and the ligand were mainly hydrophobic.
This is corroborated by a study implemented in 2012 from our group using
a bias-exchange variant of the metadynamics method (BEMD) to sample
extensively the energy landscape of c-Myc402−412/10058-F4 complex. This
study also highlighted these residues as crucial for binding.[290]

To test the accuracy of our method we computed rate constants between
the two states and compare them with the expected values for kon and ko f f

based on experimental studies.[302] Our predicted values are at the upper
ranges of what may be observed experimentally, suggesting the models de-
scribe a ’fast and weak’ binding scenario.

Finally, the use of three different force-fields for the parameterisation
of c-Myc also provided insight into the modelling of IDPs. The stationary
probabilities of the two states were somewhat sensitive to the choice of the
force-field as the bound states were more favored by using the f14IDPSFF
Amber parameters for the oncoprotein.[293] However none of the variabil-
ity observed translates into significantly different standard binding free en-
ergies. Similarly customised GAff parameters for 10058-F4 did not affect
dramatically the binding free energy obtained from the absoluteFEP proto-
col.

Overall, we demonstrate the performance of two different MD based
protocols in computing binding free energies of c-Myc/ligand complexes
and characterising the binding mechanism of a small molecule to c-Myc.
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The results are consistent between the two methods but are in disagree-
ment with the experimental findings. A possible reason for this inconsis-
tency could be that the mechanism of binding of the ligand to c-Myc is
more complex than the 1:1 stoechiometry assumed here. However, despite
the difficulties needed to overcome, our MSM models were effective to de-
fine binding as a two-state process and unravel the potential binding site
and types of interactions between c-Myc402−412 and 10058-F4. Our work
suggests that more efforts should be directed to predict via computational
methods whether a given small molecule will bind to an IDP such as c-Myc.
Our models can be used as a starting point for future work that could con-
sider other force fields.
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Chapter 5

Absolute Binding Free Energy
Calculations of Ligands for the
Flexible Protein MDM2

5.1 Introduction to MDM2

5.1.1 General information on MDM2/p53 interaction

Over the last four decades the protein p53 has been recognised as a crucial
transcription factor for the protection of the integrity of the genome.[303]
p53 is encoded by the TP53 gene and consists of two N-terminal transacti-
vation domains (TADs) followed by a proline rich domain, a DNA binding
domain, a C-terminal domain that encodes nuclear localization signals, and
an oligomerization domain required for transcriptional activity. Upon acti-
vation through various stress signals, p53 can efficiently inhibit the prolif-
eration of precarcinogenic and carcinogenic cells by both blocking cell cy-
cle progression and inducing apoptosis.[304–306] In addition to these func-
tions, p53 can prevent cancer development through non-canonical p53 ac-
tivities such as regulation of microRNA processing, anti-oxidant response,
modulation of tumor stroma and immune response and regulation of metabo-
lism and autophagy.[307]

Inactivation of p53 function is needed for the development and main-
tenance of a variety of tumors.[308] Impairment of p53 tumor suppression
function occurs through two general mechanisms. First, point mutations in
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p53 inactivate its tumor suppressor function, a situation observed in nearly
50% of human cancers.[309] The most well-characterised and common TP53
mutations occur in the region encoding p53’s DNA binding domain, indi-
cating that this region is crucial for preventing cancer development. Re-
activation of p53 function can be achieved with small molecules that bind
to full-length p53[310, 311] or the core DNA-binding domain of mutant
p53.[312] This strategy has resulted to the development of a potent small
molecule, PRIMA-1MET/APR246, that has progressed to Phase III clinical
trials.[313]

In the remaining 50% of human cancers, wild-type p53 is maintained at
low levels by a variety of mechanisms. One major inhibitory mechanism
of p53’s transcriptional activity is through overexpression of murine double
minute-2 (MDM2) protein.[305] MDM2 and its homologue MDMX are the
two primary negative regulators of p53. MDM2 regulates the cellular lev-
els of p53 via different mechanisms. Firstly MDM2 recognises the p53 TAD
domain with its N-terminal, domain and the formation of the p53/MDM2
complex blocks its transcriptional activity.[314] Secondly MDM2 is an E3
ubiquitin ligase that can either monoubiquitinate p53, preventing the bind-
ing of p53 to DNA and promoting exportation of p53 out of the nucleus, or
polyubiquitinate, promoting proteasomal degradation of p53.[315] MDMX
does not have an intrinsic E3 ligase activity, but it does inhibit p53’s tran-
scriptional activity by formation of inactive complexes. MDMX can further
form a heterocomplex with MDM2 that enhances MDM2’s E3 ligase activ-
ity.[316, 317] MDM2 and MDMX participate thus in an important feedback
loop that is illustrated in Figure 5.1.
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FIGURE 5.1: Depiction of autoregulatory feedback loop of
MDM2/p53. p53 transcribes MDM2 and increases MDM2 ex-
pression. MDM2 inhibits p53 tumor suppression function via
three different mechanisms: 1) ubiquitination of p53 that leads
to proteosomal degradation, 2) export of p53 out of the cell nu-
cleus and 3) reduction of p53 transcriptional activity through
binding to p53 TAD domain. Adapted from Wade et al.[317]

Due to the importance of MDM2 and p53 in cancer, a significant body
of work has focused on blocking the MDM2/p53 interaction to restore the
transcriptional activity of wild-type p53. The p53 TAD domain adopts an
α-helical conformation during its interaction with MDM2 through three hy-
drophobic residues, Phe19, Trp23, and Leu26, that protrude into three hy-
drophobic pockets of MDM2.[318, 319] Because the "Phe19-Trp23-Leu26 hy-
drophobic cleft" is compact and well-defined it is feasible to identify small
molecules that block formation of the MDM2/p53 complex via binding to
MDM2.

Thus a range of small molecules have been developed to bind strongly
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to MDM2. The first reported MDM2 inhibitors with in vivo activity con-
tain a cis-diphenyl substituted imidazoline scaffold and are also called nut-
lins.[320] Hoffmann-La Roche group designed Nutlin-3a, the first success-
ful example of a molecule that mimics the molecular interactions between
MDM2 and p53 and binds to MDM2 with IC50 = 90 nM. Further optimisa-
tion of Nutlin-3a led to the RG7112 analogue, the first MDM2 inhibitor to
advance into clinical trials for the treatment of liposarcoma patients with
MDM2 amplification.[321] Finally, RG7388 binds to MDM2 with IC50 = 6
nM and is more potent in induction of p53 activation in vivo than other nut-
lins.[322]

Other remarkable examples are the spirooxindole-containing compounds
(MI series) from the University of Michigan with IC50 values of 30–2000
nM.[323] MI-888 had an excellent MDM2 binding affinity and showed anti-
tumor activity without obvious adverse effects upon oral administration.[324]
This study has led to the discovery of MI-773 (SAR405838) that was ad-
vanced in phase I clinical trials by Sanofi in 2012.[325] Benzodiazepene-
based derivatives from Johnson & Johnson also provided evidence of high
affinity (IC50 values of 0.5–2 µM) and suppression of the growth of cell lines
containing wild-type p53.[326] Finally, a piperidinone class of MDM2 lig-
ands were discovered by Amgen.[327] A structural analysis of previously
known MDM2 inhibitors yielded compound AM-8553 that had an IC50 value
of 1.1 nM to MDM2 and also showed a dose-dependently anti-tumor effect
in SJSA-1 osteosarcoma xenograft mouse model.[328] This finding led to
a series of potent and orally active MDM2 inhibitors including AMG-232,
that was selected for clinical trials in patients with different types of solid
and hematological tumors.[327] Finally, replacement of the carboxylic acid
of AMG-232 with a 4-amidobenzoic acid resulted to AM-7209, the most po-
tent (KD = 38 pM from ITC measurements) and selective inhibitor from this
class of compounds with improved pharmakocinetic properties. It has re-
markable in vivo antitumor activity in both HCT-116 colorectal carcinoma
xenograft model and the SJSA-1 osteosarcoma xenograft model and it is
considered as the most promising molecule for the treatment of human can-
cer.[328] The chemical structures of the aforementioned MDM2 inhibitors
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are illustrated in Figure 5.2.

FIGURE 5.2: Chemical structures of small molecule inhibitors
that target MDM2/p53 interaction.

Most of these drug discovery efforts have focused their attention on
residues 25-120 of MDM2 that are natively structured. This region is called
MDM2 core region and contains the "Phe19-Trp23-Leu26 hydrophobic cleft".
However, the first 24 residues of the N terminal domain of MDM2 form a
flexible lid that is an intrinsically disordered region in native conditions and
can adopt both “open” or “closed” states(Figure 5.3). In the "closed" state,
the lid competes with p53 for binding to the p53 binding site of the core
region via a pseudo-substrate mechanism.[329] In addition, Showalter et al



Chapter 5. Absolute Binding Free Energy Calculations of Ligands for the
Flexible Protein MDM2

165

used NMR experiments to show that the fluctuation between the two states
occur on a time-scale greater than 10 ms.[330]

FIGURE 5.3: The interconversion of the lid (residues 1-24 in
green) between "open" and "closed" state occurs in ms time
scale. In the latter state, the lid occupies the "Phe19-Trp23-
Leu26 hydrophobic cleft" in the MDM2 core region (residues

25-120 in blue). Adapted from Bueren-Calabuig et al.[331]

The lid region has not historically been considered as a “hot spot” for the
design of potent small molecule inhibitors by structure-based drug design
campaigns due to its high structural plasticity. However in 2013, Michelsen
et al. showed that the piperidinone class of MDM2 inhibitors establish inter-
actions with the lid region that are crucial for MDM2 recognition.[332] Such
compounds are able to order the lid region on binding, in spite of the en-
tropic cost incurred. For instance, a piperidinone inhibitor (Pip-2) showed
a 25-fold preference in binding with a long MDM2 construct (1-125) rather
than with a short MDM2 construct (aa. 17-125). Such variability in bind-
ing preference is not observed for in the case of p53 peptide and Nutlin-3a
binding.
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5.1.2 Previous work from the Michel group and scope for

further improvements

Bueren-Calabuig and Michel have previously used molecular simulations
to progress understanding of the structure-activity relationships that enable
the Piperidinone ligands to induce this remarkable conformational change
of the MDM2 lid region. Specifically they employed accelerated molecular
dynamics (aMD), umbrella sampling (US), and variational free energy pro-
file (vFEP) methods to build atomically detailed lid structural ensembles
between the flexible lid region and four ligands (p53, Nutlin-3a, Pip-2 and
1,4-benzodiazepine-2,5-dione (Bzd)). Analysis of the resulting lid structural
ensembles (Figure 5.4) showed indeed that the flexible lid exhibits different
conformational preferences with different classes of small-molecules. Pip-2
is the only ligand that induces the formation of a α-helical/β-strand struc-
ture due to hydrophobic contacts between Pip-2 and the lid. Nutlin-3a and
Bzd compounds also show similar affinity for this structure, but their solu-
bilising groups hinder its formation owing to interactions with segments of
the lid that are more disordered. Therefore, this study highlighted the im-
portance of the MDM2 lid for rational drug design of potent small-molecule
inhibitors.[331]
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FIGURE 5.4: The computed Free Energy Surfaces (kcal mol−1)
from the resulting lid structural ensembles illustrated as a
color coded heat map. Free energies are relative to the low-
est free energy bin and are shown up to 12 kcal mol−1 above
the lowest free energy bin. Ten representative lid conforma-
tions are shown for A) apo MDM2. B) p53(17–29)/MDM2 C)
Nutlin-3a/MDM2 D) Bzd/MDM2 E) Pip-2/MDM2. Adapted

from Bueren-Calabuig et al.[331]

The aim of this project is to build on the computational study of Bueren-
Calabuig et al. to reproduce binding selectivity trends between two variants
of MDM2 and five known MDM2 inhibitors.[331] Three of these inhibitors
belong to the piperidinones class of MDM2 ligands that are able to struc-
ture the disordered lid region, while the other two compounds belong to
the nutlins that do not demonstrate this ability. The two different MDM2
constructs differ in the length of the lid region. In the short construct the lid
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is truncated. The long construct the lid is largely present and can adopt two
distinct conformational states. The first state is a structured and ’ordered’
lid conformation similar to that observed when Piperidones bind to MDM2.
The second state is an unstructured and extended lid state that wraps above
the ligands, as suggested by the simulation study of Bueren-Calabuig and
Michel. The chemical structures of the five MDM2 ligands together with the
three MDM2 conformations considered are depicted in Figure 5.5.

FIGURE 5.5: The three MDM2 conformations together with
the chemical structures of the small molecule inhibitors that

will be evaluated for their binding selectivity trends.

The standard binding free energies of the MDM2/ligand complexes will
be computed through an absolute binding FEP protocol similar to that used
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in Chapter 3. However, as was observed in Chapter 4, accounting for the
flexibility of intrinsically disordered regions is challenging for MD simula-
tions. Further, the potein-ligand complexes considered here are structurally
more complex than the host-guests studied in Chapter 3. Thus we first val-
idate a novel adaptive sampling protocol in order to reduce the computa-
tional cost for this task. We also expand the distance-restraints framework
used in Chapter 3 to facilitate convergence of the standard free energies
of binding. The overall predictive power of the protocol is bench-marked
against measurements of binding affinities collected using calorimetry ex-
periments.

5.2 Methods

5.2.1 Preparation of MDM2/ligands input files for free en-

ergy calculations

For this computational study ,the protein-ligand structures were taken from
the X-ray crystal structures with PDB IDs: 4J74 for Nutfrag/MDM2, 4HG7
for Nutlin-3a/MDM2, 4HBM for Pip-2/MDM2, 4OAS for AMG-232/MDM2
and 4WT2 for AMG-7209/MDM2. All water molecules were removed from
the structures and all proteins were capped at the C-terminal and N-terminal
with N- methyl and acetyl groups respectively. The coordinates of the struc-
tured lid conformation for the five protein-ligand complexes was obtained
from Pip-2/MDM2 crystal structure, while the coordinates of the "closed"
lid conformation was taken from a molecular dynamics study performed
by group member Dr. Salomé Llabrés.

Input files for the free energy simulations were created using tleap.[168]
Protein parameterisation was performed using ff14SB Amber force-field[169],
while ligands were parameterised using the GAFF2 forcefield [170],[171]
and use AM1-BCC partial charges[172]. The system was solvated in a cubic
box with TIP3P water molecules[173], with a minimum distance between
the protein and the edges of the box of 12 Å. Counter ions were added to
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neutralize the total net charge. The same approach was followed for param-
eterising the ligand in the free phase.

Next an equilibration protocol was applied to relax the box size. Ini-
tially, energy minimization of the entire system was implemented with 1000
steps of steepest descent gradients, using sander.[168] Then, an NVT proto-
col was followed for 200 ps at 298 K, followed by an NPT equilibration for
further 200 ps at 1 atm. Finally, a 2 ns NPT MD simulation was run with the
SOMD software to reach a final density of about 1 g cm−3.[221],[222] The
final coordinate files were retrieved with cpptraj.

5.2.2 Adaptive sampling protocol

Alchemical free energy simulations were performed following the double
decoupling protocol that was described in details in Chapter 3. For the
MDM2-ligand complexes, both bound and free phase discharging step were
run with twelve λ windows (0.000, 0.050, 0.100, 0.200, 0.300, 0.400, 0.500,
0.600, 0.700, 0.800, 0.900, 1.000), while 26 λ windows (0.000, 0.025, 0.050,
0.075, 0.100, 0.125, 0.150, 0.200, 0.250, 0.300, 0.350, 0.400, 0.450, 0.500, 0.550,
0.600, 0.650, 0.700, 0.750, 0.800, 0.850, 0.900, 0.950, 0.970, 0.990, 1.000) were
employed for the vanishing step, both in complex and solvated phase.

The above protocol is computationally very expensive as it consists off 76
λ windows. In addition, we need to run long MD simulations for each win-
dow as we do not know a priori the sampling time required for the protein-
ligand complexes to visit all their thermally accessible states and thus im-
prove the convergence of the final free energy of binding. Therefore, there
was a need to derive an improved protocol that could reduce the waste of
simulation time to windows that do not play a major role to the overall
uncertainty of the absolute binding free energy for each simulation. For
this purpose, the novel adaptive sampling approach in this Chapter offers a
promising solution as it allows us to conduct extravagant MD simulations
to a small number of important λ windows.

This approach involves running an initial set of calculations in which
each λwindow is simulated for a duration of 5 ns with SOMD in the NPT
ensemble. Temperature control is maintained with an Andersen Thermostat
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with a coupling constant of 10 ps−1.[48], while pressure control is achieved
by a Monte Carlo barostat that attempts isotropic box edge scaling every
100 fs. A 12 Å atom-based cutoff distance for the non-bonded interactions is
used, using a Barker Watts reaction field with dielectric constant of 78.3.[223]
Distances restraints are used to prevent the decoupled ligand from leaving
the MDM2 binding site. The restraint protocol used for these simulations is
described in the subsection below.

Free energy changes were estimated with the multistate Bennet accep-
tance ratio method as implemented in the Sire utility analysefreenrg.[50] To
achieve a more robust estimation of free energies, each simulation was re-
peated five times, using different initial velocities drawn from the Maxwell-
Boltzmann distribution and statistical uncertainties are reported as 95% of
the standard error of the mean.

Following this, we identify a small number k«M of λ windows that con-
tribute the most to the overall uncertainty in the absolute binding free en-
ergy. To do so, we calculate the standard deviation of the free energy es-
timates between neighboring MBAR windows ∆∆Gi−>j. We then tested
different thresholds of the standard deviation of two windows and we con-
cluded that if this threshold is higher than 0.1 kcal/mol, then these windows
have a great impact at the overall uncertainty of our simulations. Once all
the windows are selected, then additional replicates of these windows are
simulated to improve estimates of the mean free energy change for these
windows. Each round of simulations is denoted an epoch. In each epoch
every λ window selected is simulated for a duration of 5 ns with SOMD in
the NPT ensemble with the same protocol used above. This allows overall
the calculation of precise binding free energies at a fraction of the computing
cost (approximately six times) of the original protocol.

5.2.3 Restraints protocol

The choice of the restraints is important for these calculations as it influences
the convergence of the final binding free energy. For instance, the ligands
used to inhibit MDM2, due to their large size, can adopt multiple orienta-
tions during the course of the simulation once their interactions with the
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surrounding environment are weakened. This translates into an increase in
computing time requirements in order to sample all the thermally accessi-
ble orientations and thus slow down convergence of the final free energy
of binding. To reduce the sampling time needed for these calculations, the
restraint protocol used in the bound phase of the alchemical free energy sim-
ulations in Chapter 3 was modified in order to prevent the ligand from tum-
bling and drifting away from the host cavity. For this purpose, a series of
flat-bottom distance restraints were defined between four guest atoms and
a different number of host atoms depending on the MDM2/ligand com-
plexes.

For the piperidinone class of MDM2 ligands we used four host atoms.
The corresponding residues for each long and short construct of MDM2 and
the corresponding atoms for every piperidinone inhibitor are illustrated in
Figure 5.6. The restraints parameters of eq. 3.1 were: Dji = 2 Å and kji=
10kcal mol−1 Å−2. The Rji distance employed for each host-guest atom is
depicted in Figure 5.6.
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FIGURE 5.6: Illustration of the restraint protocol used for ev-
ery MDM2/piperidinone complex. Each guest atom used for
the flat-bottom distance restraints is depicted with a different
color. The same color is used for their Rji distances with the
corresponding residues. Each host atom selected for the re-
straint scheme is characterised by the number and the name

of the residue that it belongs.

For the nutlin inhibitors, six host atoms were used for Nutlin-3a and
four atoms from MDM2 were selected for Nutfrag (Nut4). The restraints
parameters of eq. 3.1 were: Dji = 2 Å and kji= 10kcal mol−1 Å−2. The Rji

distance applied for each host-guest atom together with the corresponding
protein-ligand atoms used for the restraint protocol are showed in Figure
5.7.
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FIGURE 5.7: Depiction of the restraint protocol used for the
MDM2/nutlin complexes. Each guest atom used for the re-
straint scheme is depicted with a different color. The same
color is used for their Rji distances with the corresponding
amino acids. Each host atom selected for the flat-bottom dis-
tance restraints is characterised by the number and the name

of the residue that it belongs.

5.3 Results

5.3.1 Choice of threshold for the adaptive sampling protocol

A critical aspect of the adaptive sampling protocol described in the previous
section is that it is necessary to define a suitable threshold for the standard
deviation of the free energy estimates between neighbouring λ windows.
This threshold determines the number of λ windows that contribute the
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most to the overall uncertainty of the binding free energy. If the threshold
is too high, the adaptive sampling protocol will terminate early, and may
appear to converge to an answer that deviates from converged results. If
the threshold is too low no significant time savings are achieved.

To better understand what a suitable value of the threshold parameter
could be, we employed initially a brute force sampling protocol for the
MDM2 short construct/Pip-2 complex. Each λ window was thus simulated
for 50 ns (ten epochs) and each simulation was repeated five times using the
protocol described in the Methods section. The binding free energies of the
five independent runs were computed using equation 3.2. In addition, the
average binding free energy of these simulations was also calculated. The
graph of the convergence of these raw free energies of binding as a func-
tion of the cumulative sampling time (convergence plot) of the brute force
sampling protocol is illustrated in the following figure:
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FIGURE 5.8: Depiction of the convergence plot of the MDM2
short construct/Pip-2 complex using the brute force sampling
protocol. Dashed lines denote the binding free energies from
the five different independent simulations started from differ-
ent coordinates. The bold blue line denotes the average free
energy of the five simulations, dotted blue lines represent each

epoch and the shaded area denotes ±0.95σ.

Once the 50ns simulations were completed, we reanalysed the same dataset
using variable thresholds (0.025 ; 0.050 ; 0.075 ; 0.100 ; 0.150 ; 0.200). For
the first epoch, we calculated the binding free energies from the five differ-
ent independent simulations using the same procedure as in the brute force
sampling protocol. After the first epoch, we applied the different cutoffs to
identify a subset of the λ windows that showed one standard deviation of
the mean above the threshold. Then, we computed the binding free ener-
gies of the five independent runs using an additional 5 ns sampling time
only for those selected λ windows. We iterated the same procedure for each
protocol until we could not find neighbouring MBAR windows with stan-
dard deviation greater than the applied threshold, or until we reached the
ten epochs of the brute force sampling protocol. The total number of win-
dows that were selected for every alchemical step of the different protocols
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are illustrated in the windows sampling plots (Figures 5.10, 5.11). The calcu-
lated free energies of binding for each protocol at the end of the procedure
are given in the table below:

Different protocols
Protocols ∆Gaverage
brute force -18.49 ± 0.39
Threshold 0.025 -18.13 ± 0.35
Threshold 0.050 -18.18 ± 0.43
Threshold 0.075 -18.09 ± 0.63
Threshold 0.100 -18.46 ± 0.57
Threshold 0.150 -19.45 ± 0.56
Threshold 0.200 -19.70 ± 0.67

TABLE 5.1: Results for all the protocols for MDM2 short
construct/Pip-2 complex. Energies are reported in kcal/mol

The convergence plots produced from protocols using cutoffs 0.025, 0.050,
0.075, 0.100, 0.150, 0.200 are depicted in Figure 5.9.
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FIGURE 5.9: Convergence plots for protocols with cutoffs A)
0.025, B) 0.050, C) 0.075, D) 0.100, E) 0.150, F) 0.200.

The window sampling plots produced from protocols using thresholds
0.025, 0.050, 0.075, 0.100, 0.150 and 0.200 are shown in Figures 5.10 and 5.11.
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FIGURE 5.10: Convergence plots for protocols with cutoffs A)
0.025, B) 0.050, C) 0.075. Windows sampling plots consist off
four subplots for each alchemical step of the absoluteFEP cal-
culations. The name of the different number windows ranging
from 0.000 to 1.000 is shown on the x-axis, while the number of
epochs that each window was simulated is illustrated on the

y-axis
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FIGURE 5.11: Window sampling plots for protocols with
thresholds A) 0.100, B) 0.150, C) 0.200.



Chapter 5. Absolute Binding Free Energy Calculations of Ligands for the
Flexible Protein MDM2

181

On the basis of the results, we observe that the alchemical steps that con-
tribute the most to the uncertainty of the free energy estimates are mainly
observed during the bound vanish stage of the double decoupling protocol.
We observe that the adaptive sampling protocol with threshold = 0.100 kcal
mol−1 gives us an estimated binding free energy statistically indistinguish-
able from the brute force results (-18.5 ± 0.6 kcal mol−1 versus -18.5 ± 0.4
kcal mol−1), whilst achieving almost 6-fold decrease in computing require-
ments. Thresholds with lower values offer less savings in computing time,
while thresholds with higher values result in binding free energy estimates
that deviate from the full calculation owing to premature convergence of
the adaptive sampling protocol. Therefore, we used the 0.100 kcal mol−1

threshold to process the rest of the dataset.

5.3.2 ITC results

A former member of Michel group, Dr. Cesar Mendoza Martinez, measured
the free energy of binding of different MDM2/ligand complexes using ITC
experiments. Titration data from these assays are provided in the Appendix.
He used two MDM2 constructs, one with the disordered lid region present
(residues 6-125) and one with the lid absent residues (residues 17-125). He
tested all the ligands we used for our study, apart from Pip-2 for which we
used the experimental data reported by Michelsen et al.[332] Measurements
for MDM2-short/Nutfrag and MDM2-short/AMG-232 are less certain as
only one or two replicates could be carried out for these two complexes,
whereas measurements for all other complexes were performed in tripli-
cates at least. The measured binding free energies, the change in enthalpy
of the systems, ∆H and the temperature multiplied by the change in en-
tropy of the systems, T∆S were also derived from the ITC experiments. All
the aforementioned parameters are provided in the table below:



Chapter 5. Absolute Binding Free Energy Calculations of Ligands for the
Flexible Protein MDM2

182

ITC measurements MDM2 short construct
Ligands ∆H −T∆S ∆G
Nutfrag -5.01 -2.49 -7.50 ± 0.30
Nutlin-3a -9.40 ± 0.42 -1.73 ± 0.51 -11.14 ± 0.12
Pip-2 -10.00 ± 0.10 0.90 ± 0.10 -9.10 ± 0.10
AMG-232 -10.30 -0.90 -11.20 ± 0.30
AM-7209 -10.90 ± 0.30 -1.35 ± 0.31 -12.25 ± 0.03

ITC measurements MDM2 long construct
Nutfrag -9.61 ± 0.98 2.79 ± 1.04 -6.81 ± 0.08
Nutlin-3a -9.49 ± 0.27 -1.85 ± 0.38 -11.33 ± 0.16
Pip-2 -17.60 ± 0.20 6.80 ± 0.20 -10.80 ± 0.20
AMG-232 -17.68 ± 0.88 3.39 ± 0.47 -14.29 ± 0.41
AM-7209 -16.00 ± 0.22 0.44 ± 0.38 -15.54 ± 0.08

TABLE 5.2: Binding thermodynamic measurements for the
MDM2 dataset. ∆G, ∆H and -T∆S are reported in kcal mol−1.
Standard deviations for MDM2-short/Nutfrag and MDM2-

short/AMG-232 are not reported due to lack of replicates.

We also calculated the binding selectivity (∆∆G) between the two MDM2
constructs and the five inhibitors by deducting the binding free energy of
the long construct from the free energy of binding of the lid absent region.
The same approach was used to compute the differences in the change in
entropy (T∆∆S) and in enthalpy (∆∆H). The above parameters are given in
Table 5.3.
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ITC measurements MDM2 short construct
Ligands ∆∆H −T∆∆S ∆∆G
Nutfrag -4.60 ± 0.98 5.29 ± 1.04 0.69 ± 0.30
Nutlin-3a -0.08 ± 0.50 -0.11 ± 0.63 -0.20 ± 0.40
Pip-2 -7.60 ± 0.22 5.90 ± 0.22 -1.70 ± 0.10
AMG-232 -7.38 ± 0.88 4.29 ± 0.47 -3.09 ± 0.30
AM-7209 -5.10 ± 0.37 1.79 ± 0.49 -3.28 ± 0.40

TABLE 5.3: Binding thermodynamic measurements for the
MDM2 dataset. ∆∆G, ∆∆H and -T∆∆S are reported in kcal

mol−1.

Inspection of the results shows that the piperidinone class of compounds
bind more favorably to the long construct of MDM2, especially in the case
of AMG-232 (∆∆G = -3.1 ± 0.3 kcal/mol) and AM-7209 (∆∆G = -3.3 ± 0.4
kcal/mol). In addition, the enthalpic contributions to the binding free en-
ergy for Pip-2 and AMG-232 is almost identical between the full length and
lid-truncated variant of MDM2 leading to the conclusion that the difference
in the binding selectivity between these compounds is due to the entropic
contributions. Indeed, the entropic cost required to order the flexible lid
region of the apo structure is decreased in AMG-232 (-T∆∆S = 4.29 ± 0.47
kcal/mol) compared to Pip-2 (-T∆S = 5.90 ± 0.22 kcal/mol). On the con-
trary, AM-7209 has the lowest values of differences in the changes in entropy
(T∆∆S = 1.79 ± 0.49 kcal/mol) and enthalpy (∆∆H = -3.3 ± 0.4 kcal/mol).

For the nutlin inhibitors, ITC measurements show little (∆∆G = 0.69 ±
0.30 kcal/mol for Nutfrag) or no difference ( ∆∆G = -0.20 ± 0.40 kcal/-
mol for Nutlin-3a) in binding between the two MDM2 constructs. This
is in agreement with the experimental binding free energies measured by
Michelsen et al for Nutlin-3a.[332] Interestingly, Nutfrag has a large unfavor-
able increase in entropy on binding to full lid MDM2 construct that mimics
the thermodynamic signature of the piperidinones than Nutlin-3a. A pos-
sible reason for the absence of binding selectivity between short and long
MDM2/nutlin complexes is that nutlins do not appear to structure the lid
based on previous work of Michel group using computer simulations.[331]
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We therefore sought next to compare the experimental findings with bind-
ing free energies calculated from the adaptive sampling protocol.

5.3.3 Adaptive sampling protocol results

A novel adaptive sampling protocol was employed for the computation of
absolute binding free energies of the five MDM2/ligand complexes. We
used an MDM2 variant where the disordered lid region was absent and
two long constructs characterising different lid conformational states. We
wanted to select the lid states that were more plausible for the given in-
hibitor based on the ITC assays. For this purpose, we used a lid state that
the piperidinones order upon binding for the Amgen compounds, while
for the nutlins we chose a more flexible extended closed lid state. All the
convergence plots for the ten MDM2/ligand simulations together with the
corresponding windows sampling plots are provided in the Appendix. The
computed free energies of binding for each dataset and the standard state
corrections are summarised in the following table:
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absoluteFEP protocol MDM2 short construct
Ligands ∆Grestraint ∆G◦ModelC
Nutfrag -4.89 ± 0.10 -6.24 ± 0.51
Nutlin-3a -5.36 ± 0.40 -15.91 ± 0.91
Pip-2 -5.52 ± 0.16 -12.94 ± 0.59
AMG-232 -4.97 ± 0.20 -16.09 ± 0.86
AM-7209 -5.16 ± 0.28 -23.57 ± 0.75
absoluteFEP protocol MDM2 extended-closed construct
Nutfrag -4.56 ± 0.05 -7.47 ± 0.72
Nutlin-3a -5.26 ± 0.22 -16.91 ± 0.33
Pip-2 -5.15 ± 0.13 -11.32 ± 0.79
AMG-232 -5.33 ± 0.12 -12.59 ± 1.22
AM-7209 -5.04 ± 0.16 -22.71 ± 1.41

absoluteFEP protocol MDM2 ordered construct
Nutfrag -4.45 ± 0.08 -8.95 ± 0.48
Nutlin-3a -5.33 ± 0.19 -17.54 ± 1.07
Pip-2 -5.30 ± 0.15 -17.05 ± 0.70
AMG-232 -5.19 ± 0.20 -16.35 ± 0.58
AM-7209 -5.16 ± 0.21 -25.60 ± 0.91

TABLE 5.4: Results from all the absoluteFEP protocol simula-
tions for the MDM2/ligand complexes. Energies are reported

in kcal/mol

In addition, the computed and the experimental standard binding free
energies of the short and the full-lid MDM2 variants are illustrated in Figure
5.12.
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FIGURE 5.12: Computed and measured standard binding free
energies for the MDM2 dataset (kcal/mol). The constructs
used for the adaptive sampling protocol were the short MDM2
variant (MDM2-lid) and the preferred long MDM2 variant for

each ligand (MDM2+lid).

The simulations seem to overestimate the binding free energy of all the
ligands except Nutfrag. The greater the molecular weight, the greater the
discrepancy. This could indicate a systematic issue with the force-field pa-
rameters describing the ligands. Another possible reason for this discrep-
ancy is that the present calculations do not allow for extensive rearrange-
ment of the protein. Since the calculations were all initiated from a well
equilibrated complex this could artificially bias the results towards more
negative free energies of binding. The effect could be expected to be greater
for simulations of MDM2 constructs that include the flexible lid.

We also wanted to test the effect of the starting structure on the com-
puted binding energies of each compound. For this purpose, we swapped
the different lid conformations between the piperidinones and the nutlins.
Then we repeated the absolute binding free energy calculations using the
adaptive sampling protocol. All the convergence plots and windows sam-
pling plots produced from these calculations are given in the Appendix.
The standard binding free energies of each MDM2/ligand complex and the
corresponding standard state correction terms are provided in the Table 5.4
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Moreover, the predicted and the experimental standard binding free en-
ergies of the short and the full-lid MDM2 variants are shown in the Figure
below:

FIGURE 5.13: Calculated and measured standard binding free
energies for the MDM2 dataset (kcal/mol). The protein con-
formations selected for the adaptive sampling protocol were
the short MDM2 construct (MDM2-lid) and the swapped long

MDM2 variant for each ligand (MDM2+lid).

The new standard binding free energies computed for the piperidinones
were more positive compared to their preferred state. The binding affin-
ity of AM-7209 is still overestimated compared to the experimental mea-
surements, but Pip-2 and AMG-232 are in agreement with the ITC mea-
surements. On the contrary, the effect of swapping protein conformations
on the binding free energy of the nutlins was negligible. This effect was
also examined by computing the trends in binding selectivity (difference in
binding free energy between constructs that include/lack the lid region) for
both conformations together with the difference in free energy of binding
between the two lid states. The results for the whole dataset are summarised
in Figure 5.14.
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FIGURE 5.14: Difference in calculated free energy of binding
between MDM2 constructs that include and lack the lid re-
gion. The binding selectivity for the flexible lid conforma-
tional state is coloured in red, while the binding selectivity for
the ordered lid conformation is coloured in blue. Finally, the
difference in measured binding free energy is shown in yellow

color.

The trends in binding selectivity for the preferred lid state seem to be
reproduced, with the possible exception of Nutfrag. Amgen compounds
binds more strongly to the MDM2 construct with an ordered lid conforma-
tion than to the MDM2 short construct. They also bind less strongly to the
MDM2 construct with a closed lid conformation than to the MDM2 short
construct. This in agreement with Michelsen et al and Bueren-Calabuig et
al which shows that the piperidones induce the formation of a α-helical/β-
strand structure.([332],[331] Nutlin-3a does not show a significant prefer-
ence for either lid conformations, which are slightly more preferred than the
construct without lid. This is in line with Cesar’s and Michelsen’s ITC mea-
surements that did not observe difference in binding free energy between
long and short MDM2 constructs. Interestingly Nutfrag seems to show a
slight preference for the ordered lid conformation. This could explain why
the thermodynamic signature of Nutfrag shows a greater unfavorable en-
tropic contribution on binding the MDM2+Lid construct than on binding
the MDM2-Lid construct, whereas Nutlin-3a shows no such trend.
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Another interesting observation is the convergence of the five different
runs of each simulation as a function of time. From the convergence plots,
provided in the Appendix, we can observe that only few systems such as
MDM2-extended-closed-lid/Nutlin-3a had the five independent runs con-
verged towards the average binding free energy at the end of the 50ns. The
highest deviation between two independent runs was ca. 4 kcal mol−1 in the
MDM2-extended-closed-lid/AM-7209 complex showing that unconverged
free energies of binding can provide wrong conclusions for the binding se-
lectivity of the systems. This proves the importance of running independent
long simulations starting from different initial coordinates in order to get a
better estimate of the free energy of binding of the system rather than rely-
ing on a single run of the protocol.

Overall the absolute binding free energy calculation protocol used here
reveals differences in binding mechanisms between Nutlin and Piperidi-
none compounds that are in line with experimental trends.

5.3.4 Comparison between the adaptive sampling protocol

and a docking protocol

We also sought to assess whether the experimental binding selectivity trends
could be explained with simpler methods. For this purpose, we used a
typical docking program provided by Flare and we calculated the dock-
ing scores of the 15 MDM2-ligand complexes. For consistency, we used
the same input structures as for the adaptive sampling protocol. The com-
puted binding free energies and the corresponding binding selectivity are
provided in the Appendix. The binding selectivity plot of these plots are
shown in Figure 5.15.
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FIGURE 5.15: Difference in free energy of binding computed
by docking studies between MDM2 variants that include and
lack the lid region. The binding selectivity for the flexible lid
conformational state is coloured in red, while the binding se-
lectivity for the ordered lid conformation is coloured in blue.
Finally, the difference in binding free energy measured by ITC

assays is shown in yellow color.

Inspection of the results show that the experimental binding selectivity
is not reproduced through the docking studies with the possible exception
of Pip-2. Regarding to the piperidinone inhibitors, the binding selectivity
computed from the flexible-lid MDM2 construct is closer to the experimen-
tal trends. Pip-2 and AMG-232 are predicted to have the same difference
in free energy between variants that include/lack the lid region (-1.5 ± 0.1
kcal/mol and -1.5 ± 0.2 kcal/mol respectively), while AM-7209 shows a
stronger binding selectivity (-4.1 ± 0.1) However, these results are in dis-
agreement with Cesar’s ITC assays that show similar binding preferences
for the lid conformation between AM-7209 and AMG-232. In addition, the
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ordered-lid MDM2 variant is not predicted to be the preferred lid confor-
mational state for the piperidinone class of compounds. Thus, the docking
protocol is not able to correctly capture the tendency of Amgen compounds
to structure the lid.

The docking studies are also unable to accurately predict the binding
preference of the nutlin compounds. Nutfrag is found to bind preferably to
the full lid MDM2 variants regardless the lid state (-1.24 ± 0.02 kcal/mol
for structured lid and -3.56 ± 0.04 kcal/mol for the extended closed state),
while for Nutlin-3a the binding selectivity is positive for the ordered (3.88
± 0.03 kcal/mol) and the flexible lid state (2.5 ± 0.1 kcal/mol), indicating
a strong preference for the short MDM2 construct. The docking results for
the nutlin inhibitors are inconsistent with the ITC measurements that show
no binding preference for the full-lid or the lid absent MDM2 constructs.

5.4 Conclusions

Alchemical free energy calculations were applied to estimate standard bind-
ing free energies of five lead-like inhibitors for the flexible protein MDM2.
MDM2 contains a disordered lid region that adopts different conformations
when bound to diverse ligands. A novel adaptive sampling protocol was
established and validated to predict binding free energies of two full-lid
MDM2 constructs and one lid absent MDM2 variant at a fraction of the com-
puting cost of the original protocol developed in Chapter 3. The resulting
free energies of binding were compared with calorimetry experiments per-
formed by colleagues.

The adaptive sampling protocol was able to capture the tendency of
structurally diverse ligands to bind a specific lid conformational state. The
enhanced binding affinity of the piperidinone class of compounds for MDM2
constructs that include an ordered lid region is in accordance with the ITC
experiments implemented by Cesar and Michelsen et al as well as previous
work from Michel group using computer simulations.[332],[331] In addi-
tion, the protocol suggests that nutlin inhibitors show similar affinity for
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short or long MDM2 lid constructs with a small binding preference for ex-
tended closed lid conformations. This is also in agreement with the compu-
tational and experimental work performed from Bueren-Calabuig et al. and
Cesar Mendoza Martinez respectively.

The absolute binding free energy protocol used here overestimates the
free energy estimates of the entire dataset with few possible exceptions (MDM2-
short/Nutfrag and MDM2-flexible-lid/AMG-232). A possible explanation
for this discrepancy could be that the simulations ignore the ‘lid reorgani-
sation free energy’ required to structure the lid in apo MDM2 from a dis-
ordered to a more ordered state. This energy is expected to be unfavorable
and thus would more the binding free energy estimates more positive. This
should be the focus of further work.

Finally, binding energies and binding selectivity profiles were computed
by a typical docking program using Flare. The main finding is that this
docking study was able to reproduce some binding selectivity trends (for
instance Pip-2) but overall struggled to generate trends consistent with the
binding preferences deduced from experimental observations.

Overall, the results demonstrate the important role played by the lid in
controlling the potency of potency of p53/MDM2 inhibition by structurally
diverse lead-like ligands, and outline a general strategy to target flexible
protein regions with absolute binding free energy methods in structure-
based drug design campaigns.
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Chapter 6

Conclusions

Molecular Dynamics simulations (MD) and associated techniques could be
beneficial for the hit-to-lead and lead optimization stage in the drug dis-
covery process. Although MD-based methods have shown success within
the pharmaceutical sector in the last couple of years, the sampling problem
of these techniques is still a limitation for calculating the binding free en-
ergies of protein-ligand complexes. Therefore, this work has investigated
sampling problem in the MD simulation methods by establishing protocols
that compute the binding free energies of different biomolecular complexes.

Chapter 2 presented a relative free energy protocol using MD simula-
tions as the sampling technique. This protocol was part of a novel compu-
tational workflow for the discovery of selective CypA and CypD inhibitors.
The main target of this workflow was to modify compound 15 to extend
deeper inside the 3 o’clock pocket. For this purpose, a library of ca. 10000
analogues of compound 15 was constructed and all molecules were docked
to CypD. The selection of desirable compounds for the next step of the pro-
tocol included filtering of these molecules according to docking scores, syn-
thetic feasibility and structural diversity. Then MD simulations were em-
ployed to identify molecules that could maintain stable interactions within
the 3 o’clock pocket. Finally, relative FEP calculations were able to suggest
auspicious designs that could improve potency and selectivity for the two
Cyclophilin isoforms. Disulfide derivatives offer substantial binding and
selectivity for CypA over CypD, whereas MP030 and the tetrahydropyran
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analogue were predicted to bind more strongly to CypD over CypA. In ad-
dition, MD/FEP methods led to the discovery of piperidine and morpho-
line scaffolds that could replace the bromine of compound 15 and improve
its physicochemical properties as well as bicyclic and pyrimidine analogues
that could reduce its toxicity.[177] Therefore, the workflow was able to in-
form the synthesis of second generation tri-vector inhibitors, that will be
characterised using biophysical techniques.

Chapter 3 addressed a more difficult task: the generation of an absolute
binding free energy protocol, using MD simulations as a sampling tech-
nique, for the prediction of absolute free energies of binding of protein-
ligand complexes. The efficiency of this protocol was evaluated in the SAMPL6
challenge. In the context of this challenge, series of blinded predictions of
standard binding free energies were made with the SOMD software for a
dataset of 27 host–guest systems featuring two octa-acids hosts (OA and
TEMOA) and a cucurbituril ring (CB8) host. For this purpose, three different
models were used, Model A calculated the free energy of binding based on a
double annihilation protocol; Model B added the long-range dispersion and
standard state corrections and Model C introduced an empirical correction
term derived from a regression analysis of SAMPL5 predictions previously
made with SOMD. The performance of each model was evaluated with two
different setups; buffer explicitly matched the ionic strength from the bind-
ing assays, whereas no-buffer neutralized the host–guest net charge with
counter-ions. The results obtained from our protocol were ranked among
the top ranked submissions in terms of accuracy and correlation with ex-
perimental data. Model C/no-buffer showed the lowest MUE for the overall
dataset (MUE 1.29 < 1.39 < 1.50 kcal mol1, 95% CI), while the buffer setup
improved significantly results for the CB8 host only. Correlation with ex-
perimental data ranges from poor for CB8 (R2 0.04<0.12<0.23), to excellent
for the host TEMOA (R2 0.91<0.94<0.96). Finally, the SAMPLing challenge
examined the level of agreement between seven free energy methods ap-
plied to three host-guest molecules, namely OA-G3, OA-G6 and CB8-G3,
that were parameterised with the same force-field. The analysis framework
devised by the organisers showed compelling differences in the converged
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absolute binding free energies for the different methods ranging from 0.3 to
1 kcal mol−1. For instance, comparison of the YANK’s energies provided by
the organizers with our calculations demonstrated a negligible difference
(OA-G6 0.2 0.2 kcal mol−1), a modest difference (OA-G3, 1 0.2 kcal mol−1),
and a significant difference (CB8-G3, 3 0.7 kcal mol−1). Taking everything
into consideration, there is hope that the AFE protocol could be further en-
hanced for more difficult protein-ligand complexes.

Chapter 4 presented two MD simulation protocols for the computation
of the standard binding free energy of the ligand 10058-F4 to the intrinsically
disordered protein c-Myc, and the characterisation of the binding mecha-
nism of this molecule with c-Myc. The first protocol used the AFE protocol
developed in chapter 3 and gave reproducible results but unfortunately the
calculated standard binding free energy (ca. -2 kcal.mol−1) diverged signif-
icantly from the van’t Hoff analysis of Heller et al (ca. -6 kcal.mol−1).[289]
The second protocol combined extensive MD simulations and Markov State
models in order to model the binding process of 10058-F4 to c-Myc. The
MSM models were able to define binding as a two-state process using as
features distances between parts of the ligand and the Ca’s of c-Myc. In
addition, they highlighted the N-terminus residues of the oncoprotein as
critical for the binding process and the interactions were mainly hydropho-
bic. This result was in agreement with a previous study from Cuchillo and
Michel, which used the BEMD method to sample the energetic landscape
of c-Myc402˘412/10058-F4 complex.[290] However, the binding free energies
obtained from the MSM models were unable to reproduce the experimen-
tal values, and were broadly similar to those obtained with the AFE proto-
col. Finally, the oncoprotein c-Myc was parameterised with three different
force-fields (AmberIDP, Charmm36m, FF14SB) to assess to what extent the
MSM results depend on the chosen forcefield. None of the three force-fields
showed significantly different standard binding free energy. .

Finally, chapter 5 introduced an adaptive sampling version of the AFE
protocol to estimate standard binding free energies of five lead-like inhibitors
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for the flexible protein MDM2. MDM2 also contains an intrinsically disor-
dered region that can adopt multiple conformations upon binding to structurally-
diverse inhibitors. The novel adaptive sampling protocol was employed to
compute the absolute binding free energies of two full-lid MDM2 variants
and one lid absent MDM2 construct using approximately one fifth of the
computational time of the original protocol. The protocol was also able
to predict the binding preference of the piperidinones for the ordered lid
conformation as well as the similar affinity of nutlins for short or long con-
structs with a small preference for the more disordered lid region. These
results were in agreement with ITC experiments carried out by lab mem-
ber Cesar Mendoza-Martinez, and published work from Michelsen et al,
as well as with the computational work performed previously by Bueren-
Calabuig et al.[332],[331] However, the binding free energies computed from
the adaptive sampling protocol were generally overestimated for all the
MDM2/ligand complexes. This could be happening because in the alchem-
ical free energy calculations the lid moves very little, whereas we know that
is is quite flexible in practice. Thus, further work can be performed to de-
vise a correction term (‘lid reorganisation free energy’) that would make
the binding free energy estimates more positive. Taking everything into
account, the results were encouraging as the protocol was able to predict
the binding selectivity of the different MDM2 inhibitors at a fraction of the
computing cost of the original AFE protocol.

Overall, this work has pushed the boundaries of binding free energy
calculation methods for flexible protein-ligand complexes, and it is hoped
that some of the methodologies tested during this research will find broader
applications in pharmaceutical RD in due course.
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Appendix A

Introduction

A.1 Total momentum and energy conservation.

The mathematical prove of the total momentum and energy conservation is
described below:

1. Total momentum, P, which is the sum of all the momenta of N number
of particles, must be fixed, therefore it must not depend on time, as it
is illustrated in Equation A.1:

dP
dt

=
N

∑
i=1

dpi

dt
=

N

∑
i=1

fi =
N

∑
i=1

N

∑
j 6=1

fij = f12 + f21 + f13 + f31 + ... = 0

(A.1)
where the total force of a particle i is calculated as the sum of all the
forces due to all the other particles, ∑N

i=1 ∑N
j 6=1 fij. Newton’s third law

of motion states that every action has a reaction, fji = fij thus, as the
forces are vectors and operate in opposite directions, the total sum of
the forces of all the particles is equal to zero.
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2. Total energy, E, must be also constant and must not depend on time,
as it is depicted in Equation A.2:

dE
dt

=
d
dt
(K + U) =

d
dt
(

N

∑
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i
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+

1
2
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∑
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∑
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=
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∑
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dt
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1
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∑
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∑
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+
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=
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∑
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vi fi −
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2

N

∑
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vi fi −
1
2

N

∑
i=1

vi fi = 0 (A.2)

Where K is the kinetic energy of the particles and U is the potential
energy of the particles.

A.2 Ewald summation method

The Ewald method for the computation of the long-range interactions is pre-
sented below: Each ion is considered to interact with all the other replicas
of all the other ions besides itself. This is a computationally costly simula-
tion, because there is a need to sum all the Coulombic interactions between
all the replicas of the simulation cell. For a system with N particles that
are assumed to be located in a cube with edge length L and a conducting
boundary ε = ∞, Coulombic interactions are expressed by Equation A.3:

U(Coulomb) =
1
2 ∑

n

N

∑
i=1

N

∑
j=1

qiqj

|rij + Ln|
(A.3)

where n are the lattice vectors, n = (nxL, nyL, nzL) and nx, ny, nz = 0, ±1,
±2 ± . . . qi and qj are the charges of the ions and rij is the distance between
the ions. The factor 1

2 avoids the double counting. That is a very large sum
and it is difficult to converge in a reasonable computation time. However,
there is a way to split up that sum into two quickly converging contributions
by using properties of Fourier transforms in Equation A.4:
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U(Coulomb) =
1
2

N

∑
i=1

N

∑
j=1

qiqjer fc(
√

αrij

rij
+

1
2πL3 ∑

k 6=0

4π

k2 e− f rack24α2
pq(k)pq(−k)−

− α√
π

N

∑
i=1

q2

(A.4)
Where the first term is the real space sum that involves the complemen-

tary error function from the statistics. The second term is the sum at the
reciprocipal space, which is due to a charge distribution pq(k) that consists
of a periodic sum of Gaussians where k is the wave vector and is equal to
2πn
L2 . In addition, α is a screening parameter that equals to 5

L .
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Appendix B

Computationally Driven
Discovery of Novel Cyclophilin A
and D Inhibitors

B.1 Binding mode I and II

Results from the extensive MD simulations performed by de Simone et al
on CypA in complex with compound 1.[156]

FIGURE B.1: Distance distribution between the two NH in the
urea. Orange is used for the proximal one and blue for the

distal one. Adapted from [156]
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Schematic representation of the binding II mode hypothesis conducted
by the Michel group.[156]

FIGURE B.2: B) Interactions between compound 1 and CypA
in a type-I binding mode. C) Interactions between a hypo-
thetic acylated urea and CypA in a type-II binding mode.

Adapted from [156]
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B.2 Perturbation maps for free energy calculations
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Appendix C

Blinded Predictions of Standard
Binding Free Energies: Lessons
Learned from the SAMPL6
Challenge

C.1 α, β, R2 parameters for the Model C of SAMPL6

challenge

Host α β R2

OA +1.32 -0.27 0.87
TEMOA +1.10 -1.29 0.77
CB8 +1.96 +1.70 0.64

TABLE C.1: α, β, R2 parameters for the Model C of SAMPL6
challenge. The parameters were calculated from the linear re-
gression models performed by correlating the SAMPL5 bind-
ing free energies calculated with SOMD to experimental data.
α and β are the slope and intercept of the linear regression
model and R2 is the coefficient of determination of the model.
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Appendix D

Prediction of Absolute Binding
Free Energies of Ligands for the
Intrinsically Disordered Protein
c-Myc

D.1 ITS plots
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FIGURE D.1: Implied time scales plots of the first metric for
the three force fields, A AmberIDP, B Charmm36m, C FF14SB.
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FIGURE D.2: Implied time scales plots of the third metric for
the three force fields, A AmberIDP, B Charmm36m, C FF14SB.
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D.2 CK tests
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FIGURE D.3: Chapman-Kolmogorov test plots of the first
metric used for the three force fields, A AmberIDP, B

Charmm36m, C FF14SB.
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FIGURE D.4: Chapman-Kolmogorov test plots of the third
metric used for the three force fields, A AmberIDP, B

Charmm36m, C FF14SB.
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D.3 Probability distribution of distances

FIGURE D.5: Probability distribution of distances of the bound
and unbound states of the first metric applied for the three

force fields, A AmberIDP, B Charmm36m, C FF14SB.
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FIGURE D.6: Probability distribution of distances of the bound
and unbound states of the third metric applied for the three

force fields, A AmberIDP, B Charmm36m, C FF14SB.
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D.4 Total number of contacts for 10058-F4

FIGURE D.7: A) Total number of hydrophobic contacts (on the
left with blue color) and B) Number of hydrogen bonds (on
the right with red color) for Charmm force-field. The x-axis
has been truncated to 100 for visualisation purposes (number

of contacts less than 100.

FIGURE D.8: A) Total number of hydrophobic contacts (on the
left with blue color) and B) Number of hydrogen bonds (on
the right with red color) for ff14SB force-field. The x-axis has
been truncated to 100 for visualisation purposes (number of

contacts less than 100.
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Appendix E

Absolute Binding Free Energy
Calculations of Ligands for the
Flexible Protein MDM2

E.1 ITC titration data

FIGURE E.1: Representative graphs from ITC titrations with
the full variant of MDM2 and compounds AM-7209, AMG-

232, Nutlin-3a, Nutfrag.
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FIGURE E.2: Representative graphs from ITC titrations with
the lid absent variant of MDM2 and compounds AM-7209,

AMG-232, Nutlin-3a, Nutfrag.

E.2 Convergence and window sampling plots from

adaptive sampling protocol
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FIGURE E.3: Convergence plots for A) MDM2-short/AM-
7209, B) MDM2-extended-close-lid/AM-7209 and C) MDM2-

ordered-lid/AM-7209.
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FIGURE E.4: Window sampling plots for A) MDM2-
short/AM-7209, B) MDM2-extended-close-lid/AM-7209 and

C) MDM2-ordered-lid/AM-7209.
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FIGURE E.5: Convergence plots for A) MDM2-short/AMG-
232, B) MDM2-extended-close-lid/AMG-232 and C) MDM2-

ordered-lid/AMG-232.
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FIGURE E.6: Window sampling plots for A) MDM2-
short/AMG-232, B) MDM2-extended-close-lid/AMG-232

and C) MDM2-ordered-lid/AMG-232.
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FIGURE E.7: Convergence plots for A) MDM2-short/Pip-2,
B) MDM2-extended-close-lid/Pip-2 and C) MDM2-ordered-

lid/Pip-2.
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FIGURE E.8: Window sampling plots for A) MDM2-
short/Pip-2, B) MDM2-extended-close-lid/Pip-2 and C)

MDM2-ordered-lid/Pip-2.
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FIGURE E.9: Convergence plots for A) MDM2-short/Nutlin-
3a, B) MDM2-extended-close-lid/Nutlin-3a and C) MDM2-

ordered-lid/Nutlin-3a.
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FIGURE E.10: Window sampling plots for A) MDM2-
short/Nutlin-3a, B) MDM2-extended-close-lid/Nutlin-3a and

C) MDM2-ordered-lid/Nutlin-3a.



Appendix E. Absolute Binding Free Energy Calculations of Ligands for the
Flexible Protein MDM2

231

FIGURE E.11: Convergence plots for A) MDM2-
short/Nutfrag, B) MDM2-extended-close-lid/Nutfrag

and C) MDM2-ordered-lid/Nutfrag.
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FIGURE E.12: Window sampling plots for A) MDM2-
short/Nutfrag, B) MDM2-extended-close-lid/Nutfrag and C)

MDM2-ordered-lid/Nutfrag.
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E.3 Docking results

Docking studies MDM2
Ligands ∆GMDM2−short ∆GMDM2−long− f lexible ∆GMDM2−long−ordered ∆∆Gordered/short ∆∆G f lexible/short
Nutfrag -4.79 ± 0.01 -8.35 ± 0.01 -6.03 ± 0.02 -1.24 ± 0.01 -3.56 ± 0.01
Nutlin-3a -10.91 ± 0.05 -8.38 ± 0.13 -7.03 ± 0.03 3.88 ± 0.04 2.53 ± 0.09
Pip-2 -8.00 ± 0.02 -9.47 ± 0.21 -7.67 ± 0.11 0.33 ± 0.06 -1.47 ± 0.11
AMG-232 -8.50 ± -0.08 -9.97 ± 0.14 -9.54 ± 0.14 -1.31 ± 0.13 -1.47 ± 0.11
AM-7209 -10.00 ± 0.10 -14.07 ± 0.15 -10.94 ± 0.04 -0.94 ± 0.07 -4.07 ± 0.13

TABLE E.1: Docking studies for the MDM2 dataset. Energies
are reported in kcal mol−1.
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