

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Learning Dynamic Motor Skills
for Terrestrial Locomotion

By CHUANYU YANG

First Supervisor: ZHIBIN LI
Second Supervisor: TAKU KOMURA

School of Informatics
UNIVERSITY OF EDINBURGH

2020

Abstract

The use of Deep Reinforcement Learning (DRL) has received significantly increased attention
from researchers within the robotics field following the success of AlphaGo, which demonstrated
the superhuman capabilities of deep reinforcement algorithms in terms of solving complex
tasks by beating professional GO players. Since then, an increasing number of researchers
have investigated the potential of using DRL to solve complex high-dimensional robotic tasks,
such as legged locomotion, arm manipulation, and grasping, which are difficult tasks to solve
using conventional optimization approaches.

Understanding and recreating various modes of terrestrial locomotion has been of long-
standing interest to roboticists. A large variety of applications, such as rescue missions,
disaster responses and science expeditions, strongly demand mobility and versatility in legged
locomotion to enable task completion. In order to create useful physical robots, it is necessary
to design controllers to synthesize the complex locomotion behaviours observed in humans
and other animals.

In the past, legged locomotion was mainly achieved via analytical engineering approaches.
However, conventional analytical approaches have their limitations, as they require relatively
large amounts of human effort and knowledge. Machine learning approaches, such as DRL,
require less human effort compared to analytical approaches. The project conducted for this
thesis explores the feasibility of using DRL to acquire control policies comparable to, or better
than, those acquired through analytical approaches while requiring less human effort.

In this doctoral thesis, we developed a Multi-Expert Learning Architecture (MELA) that
uses DRL to learn multi-skill control policies capable of synthesizing a diverse set of dynamic
locomotion behaviours for legged robots. We first proposed a novel DRL framework for the
locomotion of humanoid robots. The proposed learning framework is capable of acquiring
robust and dynamic motor skills for humanoids, including balancing, walking, standing-up
fall recovery. We subsequently improved upon the learning framework and design a novel
multi-expert learning architecture that is capable of fusing multiple motor skills together in
a seamless fashion and ultimately deploy this framework on a real quadrupedal robot. The
successful deployment of learned control policies on a real quadrupedal robot demonstrates
the feasibility of using an Artificial Intelligence (AI) based approach for real robot motion control.

i

Lay summary

In this doctoral thesis, we aim to achieve dynamic terrestrial locomotion of legged robots in
the complex environments within the real-world. To achieve this goal, we developed a novel
multi-expert DRL framework to learn the multi-skill policy capable of performing a diverse set
of dynamic locomotion skills needed to deal with the unexpected changes and disturbances in
real-world environments. The research work presented within the thesis can be divided into
the following three stages.

• Part I: Validating the Feasibility of Deep Reinforcement Learning Based Control

In the first stage, we begin by investigating the feasibility of using DRL for robotic control
by designing a DRL based control framework for a simplified biped in a 2D simulation
environment as a proof of concept. The DRL based control framework acquires control
policies that are capable of performing balancing behaviours, such as ankle push-offs
for humanoid robots, without explicit human design of the controllers, demonstrating the
capability of DRL based control methods.

• Part II: Learning Individual Motor Skills

In the second stage, we then proceeded to implement DRL in a 3D environment with
realistic torque and velocity limits to learn the three essential motor skills for bipedal
locomotion which are balancing, walking, and fall recovery. We first designed a learning
framework for balancing that is capable of balancing in the sagittal and lateral plane. We
subsequently improved upon the learning framework for balancing and added imitation
learning and new neural network structures to obtain a learning framework for bipedal lo-
comotion. The framework is then further improved to incorporate upper body movements
to enable the learning of a standing-up policy for fall recovery. The three motor skills will
be used as a kickstart to speed up the development of the multi-skill policy.

• Part III: Multi-Skill Locomotion of Real Quadruped

In the final stage, we developed a Multi-Expert Learning Architecture (MELA) to incorpo-
rate balancing, walking, and fall recovery motor behaviours into a single unified policy.
The proposed MELA framework is able to generate various diverse motor skills. The

iii

multi-skill policy obtained from the proposed MELA learning framework has been de-
ployed successfully on a real quadrupedal robot. The successful deployment of learned
control policies on in a real quadrupedal robot demonstrates the feasibility of using an
AI-based approach for real robot motion control.

iv

Dedication and acknowledgements

I would like to express my gratitude to my supervisor Dr. Zhibin Li and my secondary supervisor
Dr. Taku Komura for their guidance and support throughout the three and half years of my PhD.
I would also like to thank Chao Li from DeepRobotics Co. Ltd. and Qiuguo Zhu from Zhejiang
University for providing me the opportunity to conduct experiments on the Jueying quadruped
robot. I would also like to thank Kai Yuan, Wolfgang Merkt, Wanming Yu and Shuai Heng for
their collaboration in my published papers. Finally, I would like to express my utmost gratitude
to my family for their support and love.

v

Publications

First authored publications:

1. Yang, Chuanyu, Taku Komura, and Zhibin Li. "Emergence of human-comparable bal-
ancing behaviours by deep reinforcement learning." 2017 IEEE-RAS 17th International
Conference on Humanoid Robotics (Humanoids). IEEE, 2017.

2. Yang, Chuanyu, Kai Yuan, Wolfgang Merkt, Taku Komura, Sethu Vijayakumar, and Zhibin
Li. "Learning whole-body motor skills for humanoids." 2018 IEEE-RAS 18th International
Conference on Humanoid Robots (Humanoids). IEEE, 2018.

3. Yang, Chuanyu, Kai Yuan, Shuai Heng, Taku Komura, and Zhibin Li. "Learning natural
locomotion behaviors for humanoid robots using human bias." 2020 IEEE Robotics and
Automation Letters. IEEE, 2020.

4. Yang, Chuanyu*, Kai Yuan*, Qiuguo Zhu, Wanming Yu, and Zhibin Li. "Multi-expert
learning of adaptive locomotion behaviours." Revision under review.

5. Yang, Chuanyu, Wanming Yu, Quentin Rouxel, and Zhibin Li. "Generating locomotion
recovery behaviours for terrestrial robots by responsive motor skills." Manuscript in
preparation.

vii

Co-authored publications:

1. Song, Doo Re, Chuanyu Yang, Christopher McGreavy, and Zhibin Li. "Recurrent deter-
ministic policy gradient method for bipedal locomotion on rough terrain challenge." 2018
15th International Conference on Control, Automation, Robotics and Vision (ICARCV).
IEEE, 2018.

2. Yuan, Kai, Christopher McGreavy, Chuanyu Yang, Wouter Wolfslag, and Zhibin Li.
"Decoding Motor Skills of Artificial Intelligence and Human Policies: A Study on Humanoid
and Human Balance Control." IEEE Robotics & Automation Magazine (2020).

3. Sun, Zhaole, Kai Yuan, Wenbin Hu, Chuanyu Yang, and Zhibin Li. "Learning Pregrasp
Manipulation of Objects from Ungraspable Poses." In 2020 IEEE international conference
on robotics and automation (ICRA). IEEE, 2020

viii

Table of Contents

Page

List of Tables xiii

List of Figures xv

1 Introduction 1
1.1 Terrestrial Locomotion using Deep Reinforcement Learning 3
1.2 Problem Statement . 4
1.3 Thesis Overview and Contribution . 4

1.3.1 Validating the Feasibility of Deep Reinforcement Learning Based Control 5
1.3.2 Learning Individual Motor Skills . 6
1.3.3 Multi-Skill Locomotion of Real Quadruped 7

2 Literature Review and Background 9
2.1 Background . 9

2.1.1 Reinforcement Learning . 9
2.1.2 Deep Reinforcement Learning . 10
2.1.3 Concepts in Legged Locomotion . 10

2.2 Related Work . 13
2.2.1 Balancing using Reinforcement Learning 13
2.2.2 Locomotion using Reinforcement Learning 14
2.2.3 Robust Recovery from Fall using Reinforcement Learning 18
2.2.4 Deep Reinforcement Learning on Real-World Robots 19

3 Learning Balancing Skills within a 2D sagittal plane for Bipeds 21
3.1 Human-Comparable Balancing Behaviours . 21
3.2 Related Work and Motivation . 23
3.3 Principles . 24

3.3.1 State Representation . 24
3.3.2 Explainable Design of the Reward . 25

ix

TABLE OF CONTENTS

3.3.3 Deep Deterministic Policy Gradient . 26
3.3.4 Exploration through Noise . 27
3.3.5 Bounding Network Output . 28

3.4 Hierarchical Structure of High-Level Learning and Low-Level Control 28
3.4.1 High-Level Controller . 29
3.4.2 Low-Level Controller . 29

3.5 Results . 29
3.6 Conclusion . 33

4 Learning Balancing Skills for Bipeds in 3D simulation 35
4.1 Introduction . 35
4.2 Related Work . 37

4.2.1 Conventional Push Recovery Methods . 37
4.2.2 Deep Reinforcement Learning of Locomotion 38

4.3 Background . 38
4.3.1 Software Setup . 38
4.3.2 Deep Reinforcement Learning . 39
4.3.3 Capture Point . 40

4.4 Methodology . 41
4.4.1 Hierarchical Control Framework . 41
4.4.2 Observation Space and Action Space . 41
4.4.3 Design of Reward Function . 42
4.4.4 Network Structure . 44
4.4.5 Exploration during Training . 44
4.4.6 Deep Reinforcement Learning . 45

4.5 Results . 45
4.5.1 Horizontal Push on Pelvis . 46
4.5.2 Force Disturbance on other Body Segments 47
4.5.3 Landing from Height . 48
4.5.4 Combined Test Case . 48
4.5.5 Robustness against Noise in Observation and Action Space 49
4.5.6 Comparison against other Control Methods 49
4.5.7 Realism of Generated Motions . 49

4.6 Conclusion . 50

5 Learning Walking Skills for Bipeds 51
5.1 Introduction . 51
5.2 Related Work . 53

5.2.1 Leveraging Demonstrations . 53

x

TABLE OF CONTENTS

5.2.2 Leveraging Human Knowledge in Network Design 53
5.3 Learning Setup for Locomotion . 54

5.3.1 Control Structure . 54
5.3.2 Robot Platform . 54
5.3.3 Human Motion Collection . 55
5.3.4 Deep Reinforcement Learning . 56

5.4 Framework Design . 58
5.4.1 Reward Design . 58
5.4.2 Network Design . 60
5.4.3 Sample Collection . 61

5.5 Results . 62
5.5.1 Learning and Comparison Setup . 62
5.5.2 Analysis of the Influence of Imitation Learning 63
5.5.3 Comparison Study between Neural Network Structures 64
5.5.4 Performance Comparison . 65

5.6 Conclusion . 67

6 Learning Fall Recovery Skills for Bipeds and Quadrupeds 69
6.1 Introduction . 69
6.2 Related Work . 71
6.3 Methodology . 72

6.3.1 Complexity of Fall Recovery Motions . 72
6.3.2 Robot Model . 73
6.3.3 Reward Design . 75
6.3.4 Deep Reinforcement Learning . 77
6.3.5 Sample Distribution Augmentation . 77
6.3.6 Action Filtering . 78
6.3.7 Smoothing Loss . 78
6.3.8 Control Framework . 79

6.4 Results . 80
6.4.1 Fall Recovery on Quadrupeds . 81
6.4.2 Fall Recovery on Humanoids . 84
6.4.3 Real-World Implementation . 87

6.5 Conclusion . 87

7 Multi-Expert Learning of Adaptive Locomotion Behaviours 89
7.1 Introduction . 90

7.1.1 Related Work . 91
7.1.2 Contribution . 93

xi

TABLE OF CONTENTS

7.2 Methodology . 94
7.2.1 Robot Platform . 95
7.2.2 Control Framework . 95
7.2.3 Soft Actor Critic . 96
7.2.4 Reward Design . 97
7.2.5 State Observation . 100
7.2.6 Action Space . 100
7.2.7 Action Filtering . 101
7.2.8 Smoothing Loss . 102
7.2.9 Sample Collection Procedure . 102
7.2.10 MELA Training Procedure . 105

7.3 Results . 108
7.3.1 Multi-Expert Learning Framework . 108
7.3.2 Learning Individual Motor Skills . 109
7.3.3 Multi-Expert Learning Structure . 112

7.4 Discussion . 132

8 Conclusion 135
8.1 Conclusion . 135
8.2 Limitations and Future Extensions . 136

8.2.1 Limitations . 136
8.2.2 Future Extensions . 137
8.2.3 Exploring Diverse Skillsets . 137
8.2.4 Policy Transfer . 138
8.2.5 Neural Network Structures . 139
8.2.6 Imitation Learning from Nature . 139

Bibliography 141

xii

List of Tables

TABLE Page

3.1 PD gains . 30

4.1 PD gains for the joints of Valkyrie. Only the torso pitch, left and right hip pitch & roll,
knee pitch, and ankle pitch & roll joints are actuated. 41

4.2 Detailed description of task reward terms. The terms are combined to construct
the task reward. The corresponding normalization factor and weight for the reward
terms are α and w. 43

4.3 Maximal rejectable impulses for the various learning algorithms without taking steps. 46

4.4 Emerging behaviour for impulse disturbances of different magnitudes. A checkmark
indicates that the respective strategy is applied in addition to the other marked
strategies. 47

4.5 Maximum rejected impulse for different body parts. 48

4.6 Push disturbance from various push recovery studies 50

4.7 Peak torques and velocities for different scenarios. 50

5.1 PD gains for the joints of Valkyrie. Only the joints in the torso and lower body are
actuated. 55

5.2 Detailed description of imitation reward terms. The imitation reward terms are used
to measure the distance between the generated and the reference motions. The
corresponding normalization factor and weight for the reward terms are α and w. . 59

5.3 Detailed description of task reward terms. The terms are combined to construct
the task reward. The corresponding normalization factor and weight for the reward
terms are α and w. 59

5.4 Maximum reward during each episode. MANN with imitation achieves the highest
task reward. 64

5.5 Performance analysis for imitation learning and different network structures. 65

5.6 Performance analysis for imitation learning and different network structures. 66

5.7 Peak torques and velocities of leg joints. Torso joints are omitted due to their limited
influence on walking. 67

xiii

LIST OF TABLES

6.1 This Table provides the basic definitions of the mathematical notation used in the
equations for the reward terms shown in Table 6.2 . 75

6.2 Detailed description of task reward terms for humanoids. The corresponding nor-
malization factor and weight for the reward terms are α and w. 76

6.3 Detailed description of task reward terms for quadrupeds. The corresponding
normalization factor and weight for the reward terms are α and w. 76

6.4 PD gains for Spotmicro and Jueying Pro. 79
6.5 PD gains for Sigmaban and Valkyrie. Valkyrie consists of more joints compared to

Sigmaban . 80
6.6 State input dimension. 80

7.1 Proportional-Derivative parameters for joint-level PD controller. 96
7.2 Hyperparameters for SAC algorithm. 97
7.3 This Table describes the basic definitions of mathematical notations to help explain

the equations of the reward terms in Table 7.4. 97
7.4 Detailed description of task reward terms. The terms are combined to construct the

task reward. 99
7.5 Weights of the reward terms for different tasks. Trotting and fall recovery used a

subset of the reward terms, and the multimodal MELA locomotion used all the
reward terms. 99

7.6 Selection of states for different tasks and neural networks. 100

xiv

List of Figures

FIGURE Page

1.1 Humanoid robots; from left to right, Atlas, NASA Valkyrie, Walkman, and HRP2. . 2

1.2 Quadruped robots; from left to right, Spotmini, Anymal, and Jueying. 2

2.1 The support polygon created by the feet of the Valkyrie humanoid robot while standing. 11

2.2 Depiction of the support polygon, ZMP and projection of COM. 11

2.3 Hierarchical control system overview. The high-level neural network generates
target joint angles, while the low-level PD controller translate the angles to the target
joint torques. 13

2.4 Learning feedback control policies with trajectory generators 15

2.5 Symmetric neural network structure consisting of four types of outputs: left side,
right side, common, and opposite. 17

3.1 Depiction of the humanoid character. (a) Side view of 2D humanoid and the Valkyrie
robot. (b) State features. 22

3.2 Physical quantities for reward design. 24

3.3 Overview of neural network structure. 29

3.4 The learning curve is obtained by averaging over 6 trials, each with a different
random seed during training. All 6 trials are able to obtain a successful balancing
policy. 30

3.5 Simulation data of forward push recovery (72.8 N·s). (a) Reference/measured
ankle joint angle; (b) Orientation of torso/pelvis/foot pitch; (c) Angular rate of
torso/pelvis/foot pitch; (d) Ankle joint torque; (e) COM x and z position. 31

3.6 Responses generated by the policy upon forward pushes. 31

3.7 Simulation data of backward push recovery (-42.6 N·s). (a) Reference/measured
ankle joint angle; (b) Orientation of torso/pelvis/foot pitch; (c) Angular rate of
torso/pelvis/foot pitch; (d) Ankle joint torque; (e) COM x and z position. 31

3.8 Responses generated by the policy upon backward pushes. 31

3.9 Overlay figure of the biped model highlighting the ankle push-off and knee lock
behaviour. 32

xv

LIST OF FIGURES

4.1 Learned push recovery behaviour: (a) ankle strategy, (b) hip strategy, (c) foot-tilting
strategy, (d) stepping strategy. 36

4.2 Snapshots of Valkyrie recovering from an impulse at the shin of 108Ns, which is
a test scenario not encountered during training. The learned policy automatically
generates a stepping behaviour (cf. https://youtu.be/43ce2cLV0ZI). 39

4.3 Overview of neural network structure. 45

4.4 Learning curves for DDPG, PPO, and TRPO. The performance are evaluated using
the deterministic policy. The mean of the Gaussian policy learned by PPO/TRPO is
used for evaluation. The results are averaged over 7 learning trials. 46

4.5 Resulting motions from impulse disturbance and balance recovery. 47

4.6 Resulting motions from an impulse disturbance at the shank. The robot takes 6
steps before standing stably. 48

5.1 Natural human-like symmetric walking pattern generated by the learning framework.
The blue and green bar represents left, right foot contact phases respectively. . . . 52

5.2 The 1D Sawtooth phase is projected onto a 2D unit-cycle for a smooth transition
between each cycles. 56

5.3 The detailed structure of PFNN and MANN. Both have a gating mechanism that
generates the blending weights αi, which are used to blend the expert networks to
construct the prediction network. 60

5.4 Learning curve for 4 different network setups averaged over 5 trials. 63

5.5 Learning curve of the task reward component. The addition of the imitation reward
allows the agent to achieve the task objective much better, reflected by the higher
task reward value. 63

5.6 Locomotion behaviour of MANN (a) with and (b) without imitation. The blending
weights fluctuate over a gait cycle, indicating that the primitive networks are activated
differently during different gait phases, demonstrating specialization within the multi-
expert structure. (a) a human-like gait pattern with symmetrically distributed left,
right foot contact periods. (b) an un-human like gait pattern with asymmetric foot
contact period. 64

5.7 Robustness: (a) 550Ns impulse on pelvis; (b) walking over stairs with variable
heights: 2.5cm, 5cm, 10cm, 5cm, 2.5cm; (c) constantly throwing cubes at 20m/s
initial velocity. 66

xvi

https://youtu.be/43ce2cLV0ZI

LIST OF FIGURES

6.1 (A) The control graph for a standing-up sequence designed for Valkyrie robot,
consisting of a total of 15 key poses that will be used as initialization states. (B)
The control graph for a standing-up sequence designed for the Spotmicro robot
consisting of a total of 9 key poses that will be used as initialization states. The
graph only shows a small set of solutions for fall recovery motions; there are many
other feasible solutions that lead to successful fall recovery. 72

6.2 The four robot models investigated. From left to right: (i) Spotmicro, (ii) Jueying Pro,
(iii) Sigmaban, and (iv) Valkyrie. 73

6.3 Joint configuration of the Valkyrie robot. (A) Original joint range (top row) and
modified joint range (bottom row) of the Valkyrie robot. (B) Human-like key postures
during standing up that are enabled by the modified joint range. 74

6.4 Learning curve for the fall recovery policies of (A) Spotmicro, (B) Jueying Pro, (C)
Sigmaban, (D) Valkyrie. The results are averaged over 5 trials, each with a different
random seed. All 5 trials are able to obtain a successful fall recovery policy. 81

6.5 Snapshots of Spotmicro performing fall recovery maneuvers in simulation. (A)
Supine. (B) Left lateral. (C) Right lateral. 82

6.6 Detailed analysis of the contact status of the body segments of Spotmicro during
fall recovery. (A) Contact status of body segments over time. (B) Normalized contact
duratioin of body segments. (C) Total number of body segments in contact during
each timestep. (D) Orientation error and Height of robot base. The orientation error
is defined by the angle between the local z axis of the robot base frame and the
global z axis of the world frame which points towards the opposite side of the gravity
vector. When the robot stand in its nominal posture, the local z axis is aligned with
the global z axis and thus the orientation error is 0. 82

6.7 Snapshots of Jueying Pro performing fall recovery maneuvers in simulation. Due to
the rounded curvature of the Lidar sensor unit at its front, the Jueying Pro is unable
to lie on its back and will roll over to its side. Therefore, only the left lateral (A) and
right lateral (B) postures are shown. 83

6.8 Detailed analysis of the contact status of the body segments of Jueying Pro during
fall recovery. (A) Contact status of body segments over time. (B) Normalized contact
duratioin of body segments. (C) Total number of body segments in contact during
each timestep. (D) Orientation error and Height of robot base. 83

6.9 Snapshots of Sigmaban robot performing fall recovery. 85

6.10 Detailed analysis of the contact status of the body segments of Sigmaban during
fall recovery. (A) Contact status of body segments over time. (B) Normalized contact
duratioin of body segments. (C) Total number of body segments in contact during
each timestep. (D) Orientation error and Height of robot base. 85

6.11 Snapshots of Valkyrie robot performing fall recovery. 86

xvii

LIST OF FIGURES

6.12 Detailed analysis of the contact status of the body segments of Valkyrie during fall
recovery. (A) Contact status of body segments over time. (B) Normalized contact
duratioin of body segments. (C) Total number of body segments in contact during
each timestep. (D) Orientation error and Height of robot base. 86

6.13 Snapshots of real-world experiments showing the Jueying Pro robot performing fall
recovery. 87

7.1 Challenging locomotion scenarios and agile manoeuvres of a quadruped robot. (A)
Three challenging scenarios of the Jueying robot during various tests: unexpected
body contacts with the environment and unpredictable robot states. The white
circled regions highlight unusual contact that can occur at any body areas. (B)
Different adaptive behaviours from our proposed learning framework that generated
dynamic motions and complex coordinations of legs for immediate recovery from
failures. (Time in snapshots is in second). 90

7.2 Multi-Expert Learning Architecture (MELA): a hierarchical deep reinforcement learn-
ing framework that synthesises multiple deep neural networks (DNNs) together to
produce versatile locomotive skills. The Gating Neural Network (GNN) generates
variable weights (α) to fuse the parameters of all eight expert networks (each expert
is illustrated by its primary motor skill), such that newly synthesised motor skills
are adapted to different locomotion modes by blending useful learned behaviours
collectively from the collection of experts. 93

7.3 Specification of the Jueying quadruped robot . 95

7.4 Illustration of the 2D phase vector for training the locomotion policy. The sine
and cosine functions are used to represent the time-varying phase variable in a
continuous manner, and the resulting phase vector contains temporal information
to describe the phase (0-100%) of a periodic gait. 101

7.5 Nine distinct configurations used as the initialisation for training fall recovery policies
in simulation. Snapshots are taken from the physics-based simulator using the
PyBullet engine [1] . 103

7.6 Setting of the target location for training MELA policies in simulation. During the
initialisation of each sample collection episode, the target location (the green ball) is
randomly placed within the area of 6 m radius around the robot, and remains fixed
within the same episode. 104

7.7 Two-stage training of MELA. (A) In stage 1, the fall recovery and trotting policies are
individually trained. (B) In stage 2, the pre-trained trotting and fall recovery policies
from stage 1 are used to initialise two evenly distributed groups of experts, each
containing 4 experts. All these expert networks are co-trained together with the
gating network. 106

xviii

LIST OF FIGURES

7.8 Learning curves during the first and second stage of MELA training. For training
experts in the first stage of MELA, 250 episodes were required for both fall recovery
and trotting tasks. For co-training in the second stage, 400 episodes were required.
One episode consists of 5000 samples that were collected at 25 Hz. 107

7.9 Comparison of MELA’s learning curves using different numbers of expert networks.
It can be seen that using more than 8 experts does not improve the task perfor-
mance, and has a slower convergence instead. 110

7.10 Baseline experiments of fall recovery and trotting from engineered controllers. (A)
The fall recovery from the engineered controller has a fixed sequence of motions
and takes more than 12 s to stand up. (B) The trotting gait sample from the robot’s
control suite. 110

7.11 Individual motor skills for the fall recovery and trotting respectively. (A1) A con-
figuration between prone and lateral decubitus positions where legs were stuck
underneath the body: the robot first pushed the ground to lift up the body for ground
clearance, and then retrieved legs to a prone posture for standing up. (A2) The robot
actively used elbow-push to generate a large momentum to self-right to a prone
position. (A3) A stepping behaviour was learned and performed naturally to keep
balance. (B1) Stable trotting on a hard floor. (B2) Stable trotting on soft slippery
foam mats. (B3) Stable trotting over scattered obstacles, showing the compliant
interaction and robustness learned by the trotting expert. (Time in snapshots is in
second). 111

7.12 Analysis on the specialisation of experts, and the patterns of the gating network
and the expert networks using the t-distributed Stochastic Neighbour Embedding
(t-SNE). (A) Specialised activation of eight experts across different motor skills.
(B-C) The 2D projection of the gating network’s activation pattern by t-SNE. (B)
Classified by the index of the dominant expert (see Fig. 7.12A). (C) Classified by the
physical states during a distinct locomotion mode, e.g., trotting, balancing, turning
left/right. (D-E) The 2D projection of the actions from the pre-trained, co-trained,
and synthesised expert policies during fall recovery (D) and trotting (E) tasks. . . . 114

7.13 Activation patterns of experts across all motor skills. The unique activation pattern
of each expert, in which the specialisation is indicated by the highest activation of a
motor skill numerated by roman numbers. The specialised motor skills of expert 1-8
are: (i) right turning, (ii) balance stabilisation, (iii) large-step trotting, (iv) left turning,
(v) posture control, (vi) back righting, (vii) small-step trotting, and (viii) lateral rolling,
respectively. The data used for visualising the activation patterns are obtained from
simulation tests of the trained MELA policy. 115

xix

LIST OF FIGURES

7.14 Dynamically synthesised MELA policy running on a real quadruped robot. (A)
Successful fall recovery performed by the MELA expert, inheriting original skills
from the pre-trained expert. (B) Newly emerged skills of dynamic steering on the
spot naturally learned through the MELA framework (first to the right then to the
left). (C) Target-following experiment with simultaneous trotting and steering. (D1)
Target-following experiment showing the capability of failure-resilient trotting and
critical recovery within one second (averagely 0.5 second for restoring body posture
and 0.4 seconds for returning to the trotting mode). (D2) Elapsed-time snapshots of
the same experiment as in (D1) from the front view. (Time in snapshots is in second).117

7.15 Five representative cases showing adaptive behaviours of the MELA expert under
new situations in simulation. (A) An emerged behaviour of left and right steering on
the spot. (B) An emerged behaviour of simultaneous steering and standing up while
recovering from fall to trotting. (C) A tripping case caused by a slippery ground with
a low friction coefficient of 0.1. The tripping and recovery behaviour was similar to
that in the real experiment (see Fig. 7.14D1-D2). (D) A large impact disturbance
caused by a 20 kg box hitting the robot at 8 m/s velocity. (E) An extreme crash test
of blind locomotion over a cliff of 1 m height. (Time in snapshots is in second). . . 118

7.16 Forward trotting velocity during the variable speed trotting simulation. The robot
adapted its trotting speed and followed the moving target. 118

7.17 Heading angle and angular velocity during the steering experiment on the real robot.
The heading data here corresponds to the experiment in Fig. 7.14B. (A) The robot
first steered counter-clockwise towards the left and then clockwise towards the
right. (B) The average yawing velocities were 1.6rad/s (92.0deg/s) and −1.1rad/s

(−61.7deg/s) during left and right steering, respectively, while the peak velocities
reached 2.7rad/s (156.8deg/s) and −2.7rad/s (−156.9deg/s). 119

7.18 Relative target positions with respect to the robot from the user command as the
input to the MELA networks during the real multimodal locomotion experiment. (A)
The changing target position (x, y) during the real target-following experiment (Fig.
7.14C), and runtime was 14 seconds. (B) The changing target position (x, y) during
the fall-resilient experiment (Fig. 7.14D1-D2), and runtime was 18 seconds. 120

7.19 Measured torques of the front left leg during the real multimodal locomotion experi-
ment (Fig. 7.14D1-D2). During this experiment, the robot trotted at large steps (see
the larger commanded (x, y) target positions in Fig. 7.18B) and saturated the motor
torques at times, e.g., the hip pitch joint. In this case, the torque-saturated leg was
not able to move as intended and the robot stumbled and tripped (yellow regions),
leading to falling motions (red regions). 121

xx

LIST OF FIGURES

7.20 Roll and pitch angles during the real multimodal locomotion experiment. The mea-
surements correspond to the experiment presented in Fig. 7.14D1-D2. Significant
changes were observed in the body orientation by the roll and pitch angles during
the tripping moments. The peaks in roll and pitch angles were up to 0.47 rad (26.7
deg) and 0.7 rad (39.8 deg), respectively. The recovery was accomplished within 1
second time. 121

7.21 Normalised power spectrum analysis of motions during the real multimodal loco-
motion experiment (without the DC component). The data were collected from the
experiment shown in Fig. 7.14D1-D2. The majority of the frequency components
were below 1Hz, and some small components were around 1.67Hz corresponding
to the trotting motions, which indicated that all useful motion components were
unaffected by the action filters. 121

7.22 Continuous and variable weights of all experts during the real multimodal MELA
experiment (Fig. 7.14D1-D2). (A) The variable activations within a zoomed period to
show the transition of weights between multiple experts. (B) The variable activations
of the entire multimodal locomotion with trotting, turning and fall recovery during a
target-following task. (C-E) The activation levels of paired weights from collaborating
experts, where the expert groups (3, 7), (5, 6, 8), (1, 4) cooperated together in
trotting (forward, left, right), fall recovery, and turning (left, right), respectively. . . . 123

7.23 Four types of new terrains for testing the multi-skill MELA policy in the simulation.
(A) The gravel is constructed by a variety of freely moving cubes with dimensions of
0.02m, 0.035m, and 0.05m. (B) The inclined surfaces consist of rectangular slabs
(0.4 m x 0.4 m x 0.2 m), which are statically placed with random orientations on the
ground. (C) The moving slope has a changing inclination created by a seesaw with
a maximum inclination of 0.17 rad (10 deg). (D) The rough terrain created by planks
with the mass of 2.5kg and a size of 1.2 m x 0.12 m x 0.02 m randomly distributed
on the ground. 124

7.24 Simulated test scenarios for evaluating the robustness of the MELA policy. (A-B)
Uncertainties in dynamic properties are simulated by modifying the robot model,
i.e., robot mass with variations of 25%, 30% and 40% of the original value (40kg).
We show snapshots with the mass variation of 40% as an extreme example. (A) Fall
recovery and trotting with 60% of the original mass. (B) Fall recovery and trotting
with 140% of the original mass. (C-D) Motor failures are emulated by disabling (zero
torque) the front legs (C) and rear legs (D) respectively for one second. In both
cases, the robot was able to recover from failures and accomplish the task. 125

xxi

LIST OF FIGURES

7.25 Representative adaptive behaviour from the simulated scenario of steering on spot
(Fig. 7.15A). (A) Snapshots depicting the behaviours during left and right steering.
(B) Position references of all the joints during left and right steering phases. The
smooth change in desired joint positions indicates that the MELA framework has
learned how to synthesise expert skills during various transitions seamlessly. . . . 126

7.26 Representative adaptive behaviour from the simulated scenario of steering while
recovering to trotting (Fig. 7.15B). (A) Snapshots depicting the behaviours during
recovery and steering. (B) Position references of all the joints during recovery,
steering, recovery, and trotting phases. The smooth change in desired joint positions
indicates that the MELA framework has learned how to synthesise expert skills
during various transitions seamlessly. 127

7.27 Representative adaptive behaviour from the simulated scenario of tripping (Fig.
7.15C). (A) Snapshots depicting the behaviours during slipping and recovery. (B)
Position references of all joints during slipping, recovery, and trotting phases. The
smooth change in desired joint positions indicates that the MELA framework has
learned how to synthesise expert skills during various transitions seamlessly. . . . 128

7.28 Representative adaptive behaviour from the simulated scenario of a large im-
pact (Fig. 7.15D). (A) Snapshots depicting the behaviours during the moment of
disturbance and recovery (B) Position references of all the joints during trotting,
disturbance, and recovery phases. The smooth change in desired joint positions
indicates that the MELA framework has learned how to synthesise expert skills
during various transitions seamlessly. 129

7.29 Representative adaptive behaviour from the simulated scenario of falling off a cliff
(Fig. 7.15E). (A) Snapshots depicting the behaviours during falling and recovery.
(B) Position references of all the joints during falling, recovery, and steering. The
smooth change in desired joint positions indicates that the MELA framework has
learned how to synthesise expert skills during various transitions seamlessly. . . . 130

xxii

LIST OF FIGURES

7.30 Analysis of responses from the MELA policy during the simulated scenario of a
large external perturbation (Fig. 7.15D). We use the case of a flying box impact as a
representative example to show how the policy actively reacts to perturbations with
a smooth and seamless transition. The coloured bars at the top of each plot show
the 3 phases during the cube impact scenario: the green, red, and yellow phases
represent stable trotting, the time during the force impact by the high-speed cube,
and the recovery process, respectively. In each subplot, the 8 semi-transparent
lines are the outputs of each individual expert, and the blue solid line is the output
of the synthesised MELA network. The outputs of the synthesised policy (solid blue
lines) have very different characteristics from that of the 8 basic experts during all
the phases, which suggests an interpolated behaviour and a nonlinear synthesis
among the expert skills. 131

xxiii

Chapter 1

Introduction

In this chapter, an overview of the thesis is provided. We begin by providing a basic introduction
to the research topic. We then list the problem statements and research objective, followed by
our research contributions to the problem statements. Finally, we present an outline of the rest
of the thesis.

Humans and animals are able to navigate through terrains in an agile manner using a
collection of motor skills and are thus commonly used as inspiration for designing legged robots
for movement over complex terrains. For example, humanoid robots have a morphology similar
to that of humans and are designed to traverse complex and dynamic environments easily
accessible by humans. Legged robots generally exhibit high maneuverability and flexibility
and are thus capable of achieving stable locomotion while navigating through uneven terrain
and stepping over obstacles. Considering the physical limitations of a wheeled robot, there
are many advantages to choosing legged locomotion over wheeled locomotion, as legged
robots are able to traverse complex terrains, such as stairs, gaps, and obstacles. Moreover,
knowledge of legged locomotion can also help us design prosthetic limbs and exoskeletons
capable of producing human-like natural walking gaits, which will be of great benefit to people
with gait pathologies.

Honda’s ASIMO humanoid robot had a large impact on robotic locomotion. Research on
humanoid locomotion has boomed since ASIMO was unveiled in 2000. Currently, there are
multiple high-performance humanoid robots that have been developed by different universities
and institutions, such as Valkyrie, HRP2+, Walkman, and Atlas, as seen in Figure 1.1.

Despite the advances in hardware design for humanoid robots, the locomotion perfor-
mances of humanoid robots are still not robust enough to be used in real world environments
and are restricted to structured laboratory environments. This situation is partly due to their
unstable inverted pendulum structure, which makes them prone to falling, a failure on full
display at the DARPA Robotics Challenge. Multi-legged robots, such as quadruped robots,
exhibit better locomotion performances in terms of speed, energy efficiency, and obstacle
negotiation skills [2]. The most publicly renowned quadruped is Spot from Boston Dynamics.

1

CHAPTER 1. INTRODUCTION

Figure 1.1: Humanoid robots; from left to right, Atlas, NASA Valkyrie, Walkman, and HRP2.

Figure 1.2: Quadruped robots; from left to right, Spotmini, Anymal, and Jueying.

Apart from Spot, there are other high-performance quadruped robots that have been developed
by different universities and institutions, such as Anymal and Jueying, as seen in Figure 1.2.

Bipedal locomotion is a very difficult problem to tackle, as it takes a great deal of effort
for a humanoid to maintain stability and not fall over. Currently, bipedal locomotion is mainly
accomplished via analytical engineering approaches. However, engineering-based analytical
approaches require a lot of substancial understanding of locomotion in terms of designing the
controllers and additional efforts in tuning, which is a disadvantage. A majority of analytical
approaches produce unnatural behaviours, such as keeping the knee bent and the foot
constantly flat on the ground. These unnatural behaviours are due to an engineering attempt
to avoid the singularity of a straight knee and under-actuation caused by foot tilting. Usually,
walking gaits that exhibit these behaviours use more energy compared to more human-like

2

1.1. TERRESTRIAL LOCOMOTION USING DEEP REINFORCEMENT LEARNING

walking gaits.

Machine learning approaches, e.g., reinforcement learning (RL), require less human effort
compared to analytical approaches. Although RL also requires a certain amount of human
knowledge, the main human effort is directed towards the construction of the RL agent and
reward, instead of the explicit controllers. Once the proper agent and reward are constructed,
the agent will be capable of learning the optimal policy by itself. The effort spent on designing
learning agents and rewards is relatively less than the effort spent on designing controllers
using analytical approaches. Regarding the issue of unnatural and inefficient motion behaviours,
for RL, as long as the reward is designed properly, it will be able to learn a diverse set of more
natural, human-comparable behaviours through exploration.

The success of AlphaGo has jump started the robotics research community’s interest in
Deep Reinforcement Learning (DRL), as it has demonstrated the capabilities of DRL algorithms
in solving complex tasks by beating professional GO players. The recent announcement of the
success of AlphaGo Zero serves as a further indication of the potential of DRL. Various works
regarding novel DRL algorithms capable of working in continuous state and action spaces
authored by researchers from OpenAI and DeepMind have also demonstrated the capability of
DRL in solving highly complex and dynamic motor-control tasks. Given the increasingly more
powerful DRL algorithms being developed, an increasing number of research works have used
DRL to solve control tasks and are beginning to examine the possibility of utilizing RL to deal
with continuous-control tasks involving complicated dynamics.

1.1 Terrestrial Locomotion using Deep Reinforcement Learning

In recent years, there has been a growing interest in using DRL algorithms to solve complex
control tasks. Recent developments in DRL have shown that DRL can be a possible alternative
to analytical approaches. Quite a few studies have been focusing on using DRL for the
locomotion of bipedal or humanoid characters in physical simulation. Research done by
OpenAI and DeepMind has demonstrated the capabilities of DRL with respect to learning
complex and dynamic behaviours for humanoids in a simulated environment.

Researchers in the computer science and robotics community have published papers on us-
ing DRL for both humanoid motion control and quadruped control, as bipedal and quadrupedal
locomotion are typical cases of legged terrestrial locomotion. Peng et al. successfully applied
Continuous Actor Critic Learning Automaton (CACLA) [3], [4] to train a bipedal character
to learn terrain traversal skills for a terrain with gaps and walls [5]. Later, they developed a
hierarchical DRL framework with a low-level controller (LLC) specializing in balance and limb
control and a high-level controller (HLC) focusing on navigation and trajectory planning. Using
their framework, the bipedal character successfully learned the skills necessary to perform
tasks such as guiding a soccer ball, following a path, and avoiding an obstacle [6].

3

CHAPTER 1. INTRODUCTION

Apart from basic locomotion, DRL has also been used to learn more complex and diverse
motions. Kumar et al. used DRL to learn a safe falling strategy for humanoids to minimize
damage during falls. Their algorithm is based on CACLA and the Mixture of Actor-Critic Experts
(MACE) architecture [7]. In this architecture, each joint is assigned with an independent
actor-critic pair. The actor with the highest corresponding critic value is activated to generate
action. This architecture combines both continuous and discrete controls. Peng et al. combined
imitation learning and RL to learn dynamic motions, such as back flips, side rolls, jumping and
so forth, for simulated humanoids and quadrupeds [8], [9].

Learning locomotion policies for legged locomotion skills will prove to be valuable alterna-
tives to engineering-based approaches as machines become more prevalent in unstructured
environments because it is very difficult to consider all a priori needs during the manual design
process for a controller. DRL alleviates the tedious manual efforts required in designing con-
trollers by automating the entire process through trial and error without human intervention.
With DRL, it is possible to build complex systems capable of processing rich, high-dimensional
sensory information as well as responding robustly and adapting to unfamiliar situations and
unstructured environments with minimal human effort.

1.2 Problem Statement

Humans and Animals are able to able to traverse over complex terrains in the real-world in an
agile and robust manner. The main objective of the thesis project is to design a controller to
replicate the terrestrial locomotion capabilities of humans and animals over complex terrains
on artificial robot agents. In order to achieve the same locomotion capabilities of humans
and animals, the controller needs to be able to perform multiple different skills to deal with
the unexpected changes and disturbances in real-world environments. We propose a novel
DRL framework to learn the multi-skill controller capable of performing diverse set of dynamic
locomotion skills necessary for traversing over complex and unstructured terrains in the real-
world.

A three stage research plan was drawn up to achieve the goal of learning the multi-skill
control policy. The first stage investigates the capability of DRL using a toy example in a
simplified physics simulation. The second stage focuses on learning basic locomotion skills
individually in more realistic 3D simulation. The final stage will use the learned basic locomotion
skills as a kickstart, and merge the skills into a single unified multi-skill control policy.

1.3 Thesis Overview and Contribution

The thesis consists of eight chapters, with chapter 1 presenting the motivation, objective and
aim of the thesis and chapter 2 summarizing the background knowledge and related work.
Chapters 3 to 7 constitute the main part of the thesis, cover the research work from five papers,

4

1.3. THESIS OVERVIEW AND CONTRIBUTION

and are organized following the order of research. Chapter 8 concludes with the limitation of
the work and discusses potential future research directions. To give the thesis a more coherent
structure and improve the readability, we divided the research work presented in chapters 3 to
7 into three parts, which also coincides with the three stage research plan mentioned above.

• Part I: Validating the Feasibility of Deep Reinforcement Learning Based Control

In part I, we designed a learning framework based on the state-of-the-art DRL algorithm,
which was then deployed in a simplified 2D simulation environment to validate the
feasibility of learning human-comparable motor skills with DRL.

• Part II: Learning Individual Motor Skills

In part II, we focused on designing various learning frameworks to learn multiple funda-
mental motor skills for humanoid and quadruped robots (namely balancing, walking, and
fall recovery) individually in a physically realistic simulation environment. The learned
motor skills will serve as a kickstart for the multi-skill control policy.

• Part III: Multi-Skill Locomotion of Real Quadruped

In part III, we presented a novel Multi-Expert Learning Architecture (MELA) that is able
to fuse multiple different individual motor skills into a single multi-skill control policy. We
have further demonstrated MELA’s effectiveness by successfully deploying the learned
multi-skill control policy on a real quadruped.

1.3.1 Validating the Feasibility of Deep Reinforcement Learning Based
Control

Chapter 3 In this chapter, we verify the feasibility of using DRL for continuous motor- control
tasks with a simplified humanoid model in a 2D simulation environment. This chapter presents
a hierarchical framework based on DRL that naturally acquires control policies capable of
performing balancing behaviours, such as ankle push-offs in humanoid robots, without explicit
human design of the controllers. The reward for training the neural network is specifically
formulated based on physical principles and quantities, rendering it explainable. Furthermore,
the successful emergence of human-comparable behaviours through DRL demonstrates the
feasibility of using an AI-based approach for humanoid motion control in a unified framework.
Moreover, the emergence of human-like dynamic balancing behaviours proves the feasibility
and potential of using DRL to obtain complex and dynamic motor skills for robotic control,
suggesting a research direction for using learning-based controls to explore motor skills for
optimal performance. The contents of this chapter are presented in the paper "Emergence of
human-comparable balancing behaviours by deep reinforcement learning" published in the
Humanoids 2017 conference proceedings.

5

CHAPTER 1. INTRODUCTION

Contribution The initial idea of using deep reinforcement learning to learn control policies for
balancing was provided by the supervisor. The author built upon the initial idea and realised it in
simulation. The author has set up the entire learning framework individually, which includes the
simulation environment and the DRL algorithm. The author also conducted the data analysis
and written the first draft of the paper.

1.3.2 Learning Individual Motor Skills

Chapter 4 In this chapter, we present a DRL framework for obtaining the motor skills for
balancing. The presented framework has a hierarchical control structure and is capable of
acquiring motor skills for a variety of push recovery and balancing behaviours, i.e., ankle, hip,
foot tilting, and stepping strategies. The policy is trained in a physics simulator with realistic
settings of the robot model and low-level impedance control that make it easy to transfer the
learned skills to real robots. The advantage over traditional methods is the integration of high-
level planner and feedback control within a single coherent policy network, which is generic in
terms of learning versatile balancing and recovery motions against unknown perturbations at
arbitrary locations (e.g., legs, torso). Furthermore, the proposed framework allows the policy to
be learned quickly by many state-of-the-art learning algorithms. The contents in this chapter
are presented in the paper "Learning whole-body motor skills for humanoids" published in the
Humanoids 2018 conference proceedings.

Contribution The majority of the work were done by the author. The author proposed the
idea of using DRL to learn bipedal balancing policies in 3D simulation environment. The
author also handled the bulk of the work in setting up the DRL framework, conducting the data
analysis, and writing the paper. Kai Yuan contributed equally on data analysis and paper writing.
Wolfgang Merkt has significant contribution on setting up the 3D simulation environment.

Chapter 5 In this chapter, we present the DRL framework for obtaining the motor skills for
walking. The presented learning framework leverages knowledge from imitation learning, DRL,
and control theories to achieve a human-style walking motion for the locomotion of humanoids
that is natural, dynamic, and robust. We proposed two novel approaches to introduce human
bias, i.e., motion-capture data and a special multi-expert network structure. We used the
multi-expert network structure to blend behavioural features smoothly and use an augmented
reward design for the task and imitation rewards. Our proposed reward design principle is
composable, tunable, and explainable because it uses fundamental concepts from conventional
humanoid control. We rigorously validated and benchmarked the learning framework, and find
that it consistently produces robust locomotion behaviours in various test scenarios. Further,
we demonstrated its capability of learning robust and versatile policies in the presence of
disturbances, such as terrain irregularities and external pushes. The content in this chapter is

6

1.3. THESIS OVERVIEW AND CONTRIBUTION

presented in the paper "Learning natural locomotion behaviours for humanoid robots using
human bias" published in the journal RA-L.

Contribution The majority of the work were done by the author. The author proposed the idea
of combining Imitation Learning (IL) and DRL to learn human-like walking gaits for simulated
humanoids. The author also came up with the idea of using multi-expert network structures for
walking gaits together with Kai Yuan. The author handled the bulk of the work in setting up the
DRL framework, conducting the data analysis, and writing the paper. Kai Yuan provided useful
insights on multi-expert network structures, and contributed equally to the data analysis and
paper writing. Shuai Heng assisted in the comparison studies and data analysis.

Chapter 6 In this chapter, we investigate the potential of using DRL to learn challenging fall
recovery maneuvers involving multiple contacts. The ability to recover from a failure caused by
a fall is an essential skill for traversing rugged terrains successfully. A common approach is to
handcraft a trajectory, which requires significant engineering effort. Handcrafted trajectories
also suffers from lack of generalization, cannot be used for different robot models, and are
prone to failure in corner cases. In this chapter, we presented a framework based on model-free
DRL to learn a control policy that is able to utilize its entire body, including all limbs, to generate
a standing-up recovery maneuver. The learning-based approach requires minimal human
engineering effort and is capable of generalizing across robots with different morphologies,
i.e., bipeds and quadrupeds. The effectiveness of the framework is further validated by the
robust performance of the policy while being deployed on a real-world quadruped. The con-
tents of this chapter will be presented in a future paper with the title "Generating locomotion
recovery behaviours for terrestrial robots via responsive motor skills." which is currently under
preparation.

Contribution The initial idea of using DRL to learn fall recovery control policies for humanoids
and quadrupeds was provided by the supervisor. The author built upon the initial idea and
realised it in simulation. The author handled the bulk of the work in setting up the DRL
framework, conducting the data analysis, and writing the paper. Wanming Yu contributed
equally to the data analysis and paper writing, and worked on part of the simulation setup.

1.3.3 Multi-Skill Locomotion of Real Quadruped

Chapter 7 In this chapter, we present a Multi-Expert Learning Architecture (MELA) that is
capable of fusing the motor skills involved in balancing, locomotion, and fall recovery all into
one unified control framework. Achieving versatile and adaptive skills for robot locomotion is
challenging and can underpin a wide range of mobility solutions, Furthermore, developing
algorithms for acquiring new and effective skills is essential for enabling legged robots to

7

CHAPTER 1. INTRODUCTION

be flexible in various scenarios. The proposed MELA is dynamically fuses multiple deep
neural networks (DNNs) into one synthesized DNN to generate new skills for adapting to new
situations. MELA first learns the core skills for distinct tasks via bootstrapping in separate deep
neural networks (DNNs), then trains all DNNs to refine more advanced skills across various
locomotion modes, including all the dynamic transitions that fall in between. During runtime,
MELA constantly recombines multiple DNNs and fuses a new synthetic DNN dynamically to
generate new behaviours in response to changing situations. The proposed MELA framework
has produced successful multi-skill locomotion in a real quadruped robot that performed
coherent trotting, steering, and fall recovery autonomously, indicating the merit of multi-expert
learning that adapts flexible motor skills to novel scenarios. The contents in this chapter are
presented in the paper "Multi-expert learning of adaptive motor skills," which is currently under
review.

Contribution Both the author and Kai Yuan contributed equally to this work, with the author
having more contribution on the real-world experiments. The author and Kai Yuan have worked
together to come up with the idea of using multi-expert learning structure for robot control.
The author focused on designing the learning framework and conducting the data analysis,
while Kai Yuan focused on programming the control software. Qiuguo Zhu developed the robot
hardware and provided the facilities necessary for the experiment. Wanming Yu contributed to
the paper writing. The supervisor has directed the research and has contributed to the majority
of the paper writing.

8

Chapter 2

Literature Review and Background

In this section, we first present the basic background knowledge and concepts related to DRL
and legged locomotion that are essential for the understanding of the project. We then present
some of the related work that involve using DRL to learn control policies for legged locomotion.

2.1 Background

2.1.1 Reinforcement Learning

Reinforcement learning (RL) as a machine learning algorithm resembles the learning process
of animals and is partly inspired by behavioral studies of animal learning psychology. The
fundamental concept is that an intelligent agent, either biological or artificial, is able to learn
a desirable behavior by rewarding intended outcomes and penalizing an undesired ones in
through trial-and-error interactions with the environment.

Apart from the environment and agent, a reinforcement learning system consists of four
other main components, namely, (i) policy, (ii) reward, (iii) value function, and optionally, the
(iv) model of the environment [10]. The policy can be viewed as a mapping from an observed
state to the executed action and is the determining factor of the behavior of the agent. The
reward indicates the performance of the immediate action generated by the policy at a given
state observation according to a specified goal. The value function is the accumulated reward
over the future, and indicates the long-term desirability of the state and action. The model
describes the state transition within the environment. Given a state and an action, the model
is able to predict the resulting next state, which is necessary for long-term planning. Not all
reinforcement learning algorithm uses a model, the algorithms that uses model for long-term
planning are called model-based reinforcement learning, while those that do not are called
model-free reinforcement learning.

9

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND

2.1.2 Deep Reinforcement Learning

Recent breakthroughs in RL and deep learning have given rise to DRL, which is a combination
of RL and deep neural networks. Within DRL, deep neural networks are utilized to approximate
the value function V (s), or Q(s), the policy π(s,a) and model (state transition and reward) [11].

DRL has enjoyed increased popularity in recent years in its capacity as a non-linear state
abstraction tool capable of dealing with action decisions. A great deal of progress has been
made in the development of DRL since it was first proposed by Mnih et al. [12]. The rise of
DRL has allowed agents to perform more complex and dynamic tasks in high-dimensional
continuous state and action spaces. There are wide variety of DRL algorithms dedicated to
solving problems in high-dimensional continuous state and action spaces, such as Trust Region
Policy Optimization (TRPO) [13], Normalized Advantage Function (NAF) [14], Proximal Policy
Optimization (PPO) [15], Asynchronous Advantage Actor Critic (A3C) [16], Soft Actor Critic
(SAC) [17], and Deep Deterministic Policy Gradient (DDPG) [18]. Meanwhile, SAC and PPO
are the most commonly used DRL algorithms.

2.1.3 Concepts in Legged Locomotion

The following are the commonly appearing concepts in the research field control and legged
locomotion. These concepts will be referred to in the following chapters to be used as a
guideline to design the reward function and construct the DRL control framework.

2.1.3.1 Linear Inverted Pendulum Model

The linear inverted pendulum model is a classical approach that is used to model the dynamics
of walking. According to the linear inverted pendulum model, the total mass of the robot is
concentrated at a single point mass at the centre of mass (COM); as a result, the COM acts as
an inverted pendulum around the stance foot. The COM maintains a constant height when it
moves along the stance foot [19].

2.1.3.2 Support Polygon

A support polygon is the convex hull (i.e. smallest convex region) that covers all the contact
point between the feet of the robot and the ground. It is the region in which the projection of
COM along gravity must lie within to achieve static stability.

2.1.3.3 Zero Moment Point

The zero moment point (ZMP) is the point on the ground where the component of the tipping
moment created by gravity and inertial forces is tangential to the supporting surface [20]. ZMP
was introduced initially by Vukobratovis et al. in 1972 and is used commonly in the motion
planning for anthropomorphic gaits in bipedal robots. The concept of centre of pressure (COP)

10

2.1. BACKGROUND

Figure 2.1: The support polygon created by the feet of the Valkyrie humanoid robot while
standing.

is also used commonly when researching anthropomorphic gaits. The COP is the point on the
ground where the ground reaction force produces a zero moment [20].

The relationship between the ZMP and COP is worth mentioning. The ZMP is defined with
respect to gravity plus inertial forces, while the COP is defined with respect to ground-foot
reaction forces. Borovac et al. has clarified that the concept of ZMP is only valid when the ZMP
lies within the support polygon in the case of a dynamically balanced gait [21]. They state that
when the ZMP lies within the support polygon and the biped is dynamically balanced, the COP
coincides with the ZMP during flat foot contact [21].

During static walking, the projection of the COM of the robot must lie within the support
polygon. During dynamic walking, the projection of the COM of the robot can lie outside of the
support polygon for a limited amount of time as long as the ZMP is kept within the support
polygon [22].

Figure 2.2: Depiction of the support polygon, ZMP and projection of COM.

11

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND

2.1.3.4 Capture Point

The capture point is another concept used commonly in humanoid locomotion. It is defined
as a point on the ground that the robot can step to in order to bring itself to a complete stop
[23]. Knowing the velocity and height of the inverted pendulum as well as the gravitational
acceleration, we are able to compute the capture point:

xcapture = xCOM + ẋCOM

√
zc

g
, Jreject = m

√
g
zc
∆COP, (2.1)

where the impulse Jreject derived by the capture point is the theoretical maximum of the impulse
that can be rejected without taking a step, zc is the COM height, ∆COP is the relative horizontal
distance between the edge of the foot and the COM, and m is the total mass of the inverted
pendulum [24].

Normally, during humanoid balancing, the COM and COP are considered to stay within the
support polygon created by the foot. The capture point, as an indication of balance, is also
considered to be within the support polygon, so the maximum reachability of the capture point
without taking a step is at the edge of the foot. If the total duration of impulse timpulse and the
mass of the humanoid m are known, we can derive other useful physical properties, such as
the maximum force Fmax the robot can withstand and the maximum velocity disturbance Vmax

of the COM the robot can withstand and still be able to balance.

Vmax =
Jreject

m
, Fmax =

Jreject

timpulse
(2.2)

2.1.3.5 Hierarchical Structure of High-Level Joint Angle Control and Low-Level
Torque Control

The choice of output action parameterization has been proven to have a significant effect on
the performance of RL. Peng et al. compared the impact of four different actuation models
that has different action parameterization on DRL: 1. direct torque control; 2. muscle activation
for musculotendon units (MTU); 3. target joint angle for proportional-derivative controllers; 4.
target joint angle velocity. Their study showed that action parameterization that includes basic
feedback such as target angle for PD control and muscle activation for MTU can improve policy
performance and learning speed [25]. The hypothesis proposed for the explanation of the
improved performance of PD control is that a PD controller exhibits spring damping properties
that resembles the biomechanics of biological systems, e.g. muscles.

Therefore, instead of directly controlling the joint motor torque, we designed a hierarchical
control structure with a neural network as the high-level controller that generates the desired
joint angles, and a PD controller as the low-level controller that generates the torque. The PD
controller is used to translate joint angles produced by the neural network into joint torques.

12

2.2. RELATED WORK

High level
Neural Network

Low level
PD controller

1000Hz pybullet
physics simulation

500Hz feedback

25Hz feedbackState

Target
Joint angle

Joint
torque

Joint angle/velocity

Reward

Figure 2.3: Hierarchical control system overview. The high-level neural network generates
target joint angles, while the low-level PD controller translate the angles to the target joint
torques.

The resulting torque is computed as:

u = Kp(qtarget − qmeasured)−Kd q̇measured, (2.3)

where Kp,Kd are the PD gains respectively, qtarget is the targeted joint angle, and qmeasured, q̇measured

are the measured joint angles and velocities respectively.

2.2 Related Work

In this section, we will do a literature review on the state of the art that involves learning a
control policy for legged locomotion. The contribution of our work over state of the art will also
be briefly discussed.

2.2.1 Balancing using Reinforcement Learning

Balancing is one of the fundamental motor skills needed for the successful locomotion of legged
robots, including bipedal and quadruped robots. During bipedal locomotion, the robot is often
subject to large impact forces from external disturbance, such as pushes. The impact force will
destabilize the bipedal robot and cause the robot to fall, not only hindering the execution of the
task but also damaging the robot. Therefore, it is important to design a controller that is able to
recover from push disturbances and regain its balance.

There have been a few research papers that have focused on obtaining a balance controller
for the push recovery of bipedal robots using the RL paradigm. Peng et al. designed a balance
controller that learns the optimal ankle impedance using integral RL [26]. Zhou et al. proposed
a fuzzy RL approach based on a fuzzy neural network [27]. Apart from bipedal balancing, RL
has been used to obtain push recovery control policies for quadruped robots [28].

Our work: Compared to previous works that uses RL to learn balancing policies for bipedal
robots, we went a step further and achieved natural human-like natural balancing policies.

13

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND

We have demonstrated that human-like knee lock and toe-tilt balancing behaviours emerge
naturally from DRL in a 2D simulation within the sagittal plane [29]. We later extended upon the
work and achieved human-comparable 3D balancing behaviors in both the sagittal and lateral
planes [30]. The resulting work on bipedal balancing will be presented in detail in Chapter 3
and 4.

2.2.2 Locomotion using Reinforcement Learning

The main goal of the research is to achieve the same natural human and animal like locomotion
behaviors on artificial robot agents using DRL. The locomotion behaviors of humans and
animals are symmetric and periodic. Therefore, in order to achieve human-like and animal-like
locomotion, we need to explore a way to enforce symmetry and periodicity.

2.2.2.1 Enforcing Periodic Motions in Locomotion

Steady locomotion gait patterns can emerge without any gait phase information being provided
as an input or reward when using the DRL algorithm, as shown by various studies [31].
However, most of the locomotion policies generate asymmetric jerky gaits that look unnatural
[31]. Further, they are inefficient and feature a lot of unnecessary movements.

Researchers have come up with various solutions to solve those problems. The solutions
can be divided roughly into three categories: (1) learning from demonstration, (2) periodic
network architecture, and (3) feedback control of a predefined trajectory.

1. Learning from Demonstration
The artificial agent can be guided to learn periodic and symmetric walking behaviours by
providing human walking motion as an expert demonstration for the agent to learn from.
This technique, which extracts information from the reference motion generated by expert
demonstrations to guide an agent, is referred to as learning from demonstration. Examples
include Behaviour Cloning (BC) [32], Inverse Reinforcement Learning (IRL) [33], Generative
Adversarial Imitation Learning (GAIL) [34], and Imitation by Tracking (IT) [35]. BC minimizes
the difference between the student and expert behaviour in a supervised learning fashion
through a loss function, while IRL fits a reward function to describe the demonstration and
seeks to maximize it. GAIL learns a discriminator to measure the similarities between expert
demonstrations and behaviours generated by the policy, and the objective of the agent is to
learn a policy that is indistinguishable from the demonstration. Finally, IT involves designing
a tracking reward dedicated to measuring the similarities between the agent’s state and the
demonstration data [8], [36], [37].

Furthermore, there are a few research papers in the field of character animation that
have utilized learning from demonstration to learn impressive human-like behaviours for
humanoids. Merel et al. implemented GAIL [34] to train a neural network policy to produce
human-like walking and standing-up behaviours from human motion capture data [38]. Peng et

14

2.2. RELATED WORK

(a) Feedback control with fixed trajectory generator

(b) Feedback control with adaptive trajectory generator

Figure 2.4: Learning feedback control policies with trajectory generators

al. implemented a tracking reward to imitate various motions, such as walking, performing a
backflip, running, and ball throwing, in a simulated humanoid [8] as well as trotting and jumping
in quadrupeds [9].

2. Periodic Network Architecture
Locomotion is periodic in nature; therefore, many locomotion controllers have structures that
produce rhythmic outputs, such as the Central Pattern Generator (CPG). The CPG is used
commonly to construct a bio-inspired neural network control policies for bipedal locomotion
due to its ability to produce coordinated rhythmic and periodic gaits [39]. However, the CPG
is not necessary for designing a periodic controller, as other periodic structures can be used.
Holden et al. proposed a special architecture named Phase-Functioned Neural Networks
(PFNN) to generate locomotion animations from motion-capture data for computer graphics
and have successfully synthesized various human motions. Sharma et al. incorporated the
PFNN architecture with DRL and developed a phase-parametric action-value function and a
phase-parametric policy to learn locomotion policies in simulation [40].

3. Feedback Control of a Predefined Trajectory
Instead of training the agent to learn a natural-looking locomotion gait directly, a trajectory
generator can be used to provide a periodic and symmetric locomotion trajectory and allow
the agent to focus instead on learning a feedback control loop that fine tunes the trajectory to

15

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND

adapt to external disturbances. Usually, the trajectory generator is a separate entity and can
function individually without the learning agent. Xie et al. used a feedback controller on top of a
predefined joint trajectory to control the bipedal Cassie robot in simulation [41]. Their method is
able to generalize in terms of different velocities and terrain slope features. Tan et al. has come
up with a similar approach for the quadrupedal Minotaur robot by using a trajectory generator
that generates a fixed trajectory [42], and the structure of the control framework is shown in
Fig. 2.4a. Iscen et al. improved upon the work of Tan et al. and developed a framework that
consists of an adaptive trajectory generator and a learned feedback controller that modulates
both the output of the trajectory generator and the parameters of the trajectory generator [43],
improving the generalization capability of the policy. This framework is illustrated in Fig. 2.4b.

2.2.2.2 Enforcing Symmetric Motions in Locomotion

Animal gaits are symmetric in nature; hence, using policies that learn symmetric motions might
introduce benefits in terms of learning speed and task performance. Abdolhosseini et al. have
conducted a thorough review on the different methods that can be used to introduce symmetric
motion behaviours [44].

The solutions proposed for enforcing symmetry can be roughly divided into four categories:
(1) learning from demonstration, (2) feedback control of the predefined trajectory, (3) auxiliary
loss, and (4) symmetric network architecture. The first and second approaches are the same
approaches that can be used to enforce periodic behaviour and are described in detail in
the previous section. In the following sections, we will introduce auxiliary loss and symmetric
network architectures, both of which are dedicated solely to enforcing symmetry.

1. Auxiliary Loss
An auxiliary loss can be designed to enforce symmetry [45]. Yu et al. proposed the following
symmetry auxiliary loss:

Lsym(Θ)=
T∑

t=1
||πθ(st)−Ma(πΘ(Ms(st)))||2, (2.4)

where Ma(a) is the function that mirrors the action space, and Ms(s) is the function that mirrors
the state space. In the paper, the auxiliary loss is added to the proximal policy optimization
loss, and the two losses are computed altogether. As opposed to designing a reward to enforce
symmetry, the auxiliary loss is differentiable, and the gradient can be propagated back directly
into the neural network.

2. Symmetric Network Architecture

Symmetry can be enforced by integrating symmetric properties into the network architecture.
There are multiple ways of imposing symmetry on the neural network design. Abdolhosseini et
al. introduced a universal method that can convert any neural network into a symmetric neural
network, which involves designing a neural network architecture containing a policy module

16

2.2. RELATED WORK

Figure 2.5: Symmetric neural network structure consisting of four types of outputs: left side,
right side, common, and opposite.

and its mirrored counterpart [44]. The original and mirrored policy modules are combined to
create the symmetric neural network architecture as shown in Fig. 2.5.

For mirroring purposes, Abdolhosseini et al. divided the joints of the robot into three
categories: common, opposite, and side. Common joints are joints that are invariant to the
mirroring. Opposite joints are joints for which the direction needs to be inverted. Side joints
are joints that need to be swapped with their mirroring counterparts. Using a humanoid robot
as an example, torso pitch, head pitch and many other joints that rotate around the pitch are
common joints. The torso roll and torso yaw joints are opposite joints. The joints on the arms
and legs are side joints. Common, opposite, and side joints exhibit different behaviours and
need to be treated differently during the mirroring procedure.

The drawback of this method is that it requires sufficient knowledge on the symmetry
relations between state and action to design the network properly. Complications also arise
in the network design when there are body parts with no mirroring counterparts, such as the
head and torso of a humanoid robot.

Our work: We realized that Learning from Demonstration is a simple and effective way of
enforcing symmetry and periodicity into the learned control policy. In our work, through the
use of a tracking reward, we are able to learn a periodic and symmetric walking motions that
closely resembles the demonstrated human walking motion [37]. The tracking reward is crucial
for learning the human-like walking motions, without the tracking reward, the DRL agent will
learn an asymmetric leaping motion [37]. The resulting work on human-like bipedal walking will
be presented in detail in Chapter 5.

17

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND

2.2.3 Robust Recovery from Fall using Reinforcement Learning

Robots operating in complex environments need to be able to react to unforeseen circum-
stances and to recover from failure. Although it is possible to generate safe and robust motions
with the most advanced state-of-the-art techniques for locomotion, there will always unforeseen
circumstances in which the disturbance is too much for the robotic system to handle. First, the
robot needs to be able to detect or predict when a fall occurs [46] and perform the appropriate
safe falling maneuvers to minimize hardware damage [47], [48], [49]. After the fall, the robot
then needs to be able to recover automatically from many different possible configurations,
especially when operating in dangerous environments, such as search and rescue, disaster
response, and exploration.

There have been various attempts in the robotics community to design a controller for
humanoids and quadrupeds that will get them to stand back up and recover from fall. Such a
controller would be especially useful in the case of humanoids due to their unstable nature.
Standing back up on two feet is not a trivial task for humanoid robots, as it involves multiple
contact points with the ground, is difficult to model, and poses many challenges for optimization-
based controllers. Humans are particularly good at standing up from a fallen position, as their
soft bodies and compliant muscle joints allow for many different stable types of standing-up
motions. Humanoid robots, in contrast, are usually lacking some fundamental degrees of
freedom present in humans (e.g., in the torso). In addition, their joints lack the necessary
ranges and torques required for performing standing-up motions.

One common approach to designing a fall recovery controller for humanoids and quadrupeds
is to handcraft the trajectory manually by imitating the recovery motions used by humans and
dogs. Stückler et al. have designed a controller for standing up by manually scripting the target
joint angles for the entire trajectory of the standing routine [50]. Kanehiro et al. designed a
fall-recovery controller for the HRP-P2 robot by designing a graph consisting of the key contact
states within the standing motion and devising a ZMP-based controller for the transitions
between the contact states. They have deployed the controller successfully on a real HRP
robot, achieving the task of standing up from supine and prone positions [51]. Finally, Semini et
al. handcrafted a self-righting recovery sequence for the HyQ2MAX quadruped robot manually
[52].

The above hard-coded methods require a large amount of effort and human knowledge to
design and usually break down in corner cases due to poor generalization. Recent advance-
ments in RL have given rise to more automatic and intelligent methods of obtaining fall recovery
control policies. Model-free RL appears to be a promising alternative for solving the problem
of fall recovery. With model-free RL, the learning agent is able to obtain the policy through
interactions with the environment, avoiding the need to model complex real-world dynamics
explicitly. Endeavors have been made within the research community to obtain fall recovery
control policies using the RL approach. Jeong et al. applied Q-Learning to solve the problem of

18

2.2. RELATED WORK

fall recovery for humanoids by discretizing the state and action spaces of the simulated robot
[53], while Lee et al. has trained a fall recovery policy applying proximal policy optimization to
learn a continuous fall recovery control policy and deployed the policy successfully on a real
ANYmal quadruped robot [54].

Our work: The work listed above all focuses on solving fall recovery for a very specific robot
model, and does not appear to be generalizable to other robots. In comparison, we developed
a versatile DRL framework that is capable of learning fall recovery policies for various different
humanoid and quadruped robot morphologies. The resulting work on the generalizable fall
recovery learning framework will be presented in detail in Chapter 6.

2.2.4 Deep Reinforcement Learning on Real-World Robots

Some research groups have achieved dynamic and agile locomotion policies from DRL and
have successfully implemented the learned policies on real-world robots. Hwangbo et al, have
learned the control policies for trotting, self-righting, and standing-up and successfully deployed
the learned policies on the Anymal quadruped robot [54]. Xue et al. have used imitation learning
and DRL to learn natural animal-like dynamic motions such as pacing, trotting, hopping. They
have also successfully bridged the simulation to reality gap and deployed the learned policy on
Laikago robot [9].

Despite the successful implementation of the learned DRL control policies from Hwangbo
et al. and Xue et al. on real-world quadrupeds, there are some limitations to their proposed
approach. First of all, their policies are only able to perform a single locomotion skill for each. In
order to execute different skills, a switching mechanism has to be designed separately, which
can be a simple human command or a programmed state machine. Secondly, the learned
policies are only tested on flat terrain, which does not demonstrate the robustness of the
learned policies.

Our work: Our work goes beyond and achieves a multi-skilled locomotion policy that is able
to perform multiple behaviors coherently and robustly in real-world unstructured environments.
Our learned locomotion policy exhibits multiple locomotion related skills, including trotting,
steering, and fall recovery. Moreover, our policy has been validated in the real world on uneven
terrains with grass and pebbles. The resulting work on multi-skill locomotion will be presented
in detail in Chapter 7.

19

Chapter 3

Learning Balancing Skills within a 2D
sagittal plane for Bipeds

In this chapter, we investigate the feasibility of using DRL for locomotion-related motor control
tasks. We designed a bipedal balancing task in a simplified 2D environment as a toy example
for the investigation.

This chapter presents a control framework based on deep reinforcement learning that
naturally acquires control policies that are capable of performing balancing behaviours such
as ankle push-offs for humanoid robots, without explicit human design of controllers. Only the
reward for training the neural network is specifically formulated based on the physical principles
and quantities, and hence explainable. The successful emergence of human-comparable
behaviours through the deep reinforcement learning demonstrates the feasibility of using an
AI-based approach for humanoid motion control in a unified framework. Moreover, the balance
strategies learned by reinforcement learning provides a larger range of disturbance rejection
than that of the zero moment point based methods, suggesting a research direction of using
learning-based controls to explore the optimal performance.

3.1 Human-Comparable Balancing Behaviours

Humans efficiently make use of under-actuated motions, such as toe tilting and heel rolling,
for keeping balance while standing and walking. Biomechanical study of human walking has
discovered the advantage of rolling around the heel and toe during walking phase [55]. From
a biomechanical point of view, foot tilting creates better foot-ground clearance allowing the
maximum ankle torques to be exploited [56], [24], [57].

Ankle push-off in humanoids without toes creates a control problem as an underactuated
degree of freedom (DOF) is introduced. Once foot tilting occurs, the edge of the foot namely
the heel or toe, becomes the only contact point between the foot and the ground which the
robot pivots around. The physical feasible range of centre of pressure (COP) reduces to a

21

CHAPTER 3. LEARNING BALANCING SKILLS WITHIN A 2D SAGITTAL PLANE FOR BIPEDS

 (a) (b)

Figure 3.1: Depiction of the humanoid character. (a) Side view of 2D humanoid and the Valkyrie
robot. (b) State features.

singular boundary line on the edge of the foot. This new pivot is an underactuated DOF as
zero torque can be applied on the pivoting axis, thus can not be controlled by the controller.

Many humanoid robots are designed to closely resemble the human morphology to perform
human-comparable behaviours. However, their control mainly produces flat-footed locomotion,
which is unnatural and inefficient. The reason does not lie in the physical capabilities, but
rather the limitation in the control paradigm. Most zero moment point (ZMP) based balance and
walking controls assume the foot is placed flat on the ground creating a large size of support
polygon as a fixed base. Most ZMP based methods will fail during the underactuation, as they
require the restriction of the ZMP or COP to be within a support polygon.

Controllers that permit the COP to lie on the narrow edge of the foot have been developed
to generate underactuated foot tilting behaviours, demonstrating the possibility and existence of
control that is capable of actively dealing with underactuated phases during balance recovery
[24].

Recently, an increasing number of research work have used machine learning, such as
Deep Reinforcement Learning (DRL), to solve control tasks. Engineering based approaches
require a lot of human knowledge in designing the controllers and additional effort in tuning,
which is a disadvantage. Machine learning approaches, e.g. DRL, require less manual tuning.
Though RL also requires a certain amount of human knowledge, rather, the main effort is in
the construction of the RL agent and reward, instead of structuring explicit controllers. Once
the proper agent and reward are constructed, the agent will be capable of learning the optimal
policy by itself. Recent work on DRL have demonstrated that the capability of learning very
complex and dynamic motor tasks. Therefore, we are motivated to explore the potential of RL

22

3.2. RELATED WORK AND MOTIVATION

in learning a control policy to deal with both flat foot and foot tilting during humanoid balance
control.

This work presents a hierarchical framework based on DRL that exploits the under-actuated
behaviour for humanoid balancing control. We contribute to a reward design in an explainable
manner by analysing the principles of balancing. Since DRL paradigm allows very distinct
and complex behaviours to emerge from simple rewards [31], following the prior work [24],
we demonstrate a successful study of exploring the DRL to acquire a policy for producing
human-comparable behaviours during push recovery, without any prior knowledge of the
control policies.

This chapter is organized as follows. The limitations and inevitable uncertainties of current
model-based methods and the progress in DRL are discussed in Section 4.2. The proposed
methodology is elaborated in Section 5.3. Results obtained in simulation are presented in
Section 5.4, followed by final remarks and future work in Section 5.5.

3.2 Related Work and Motivation

Recent breakthroughs in RL and deep learning have given a rise to DRL, which is a combination
of RL and deep neural networks. The DRL has enhanced the capability of agents to perform
more complex and dynamic tasks. Moreover, there are well known DRL algorithms suitable for
continuous state and action spaces [13], [16], [18].

There are a few successful studies on using DRL for humanoid motion control. Peng et al.
successfully applied Continuous Actor Critic Learning Automaton (CACLA) [3] to train a bipedal
character to learn traversal skills for terrain with gaps and walls [5]. Later, they developed a
hierarchical DRL framework that has the low-level controller (LLC) to specialize on balance
and limb control, while the high-level controller (HLC) focuses on navigation and trajectory
planning. Using their framework, the bipedal character successfully learned to perform tasks
such as soccer ball guiding, path following and obstacle avoidance [6]. Kumar et al. used DRL
to learn a safe falling strategy for humanoids to minimize the damage. Their algorithm is based
on CACLA and the Mixture of Actor-Critic Experts (MACE) architecture [7] in which each joint
is assigned with an independent actor-critic pair. The actor with the highest corresponding
critic value will be activated to generate the action. This architecture combines both continuous
and discrete controls.

Most controllers developed by classical control methods for locomotion can tackle balancing
problems to some degrees [58], [59], [60], but they do not intentionally deal with foot tilting
as the restriction of the COP to a single point causes the system to be underactuated, which
creates immense difficulties for the design of controllers. Instead, this problem is bypassed by
restricting at least one foot to remain flat on the ground while the other foot simply imitates the
heel-to-toe motion [61].

23

CHAPTER 3. LEARNING BALANCING SKILLS WITHIN A 2D SAGITTAL PLANE FOR BIPEDS

Friction cone

x axis
z axis

Figure 3.2: Physical quantities for reward design.

Some work has explored active foot tilting for balance recovery. The work in [24] analysed
thoroughly the dynamics of foot tilting and had successfully designed a control strategy
for underactuated ankle push-off with an implementation on a real robot. The underlying
mechanism of foot tilting and the concrete mathematical proof in [24] suggest that foot tilting
balance strategy is more robust against force perturbations than a flat-footed balance strategy.

Since the physical viability of stable underactuated behaviours has been achieved in a
deterministic and analytic approach using control techniques [24], our study hereby aims to
answer whether similar balancing performance and behaviour can be a natural outcome using
the machine learning approach, specifically, the DRL.

3.3 Principles

3.3.1 State Representation

The bipedal character configuration used in this project is shown in Fig. 3.1(a), it is roughly
modelled according to Valkyrie robot, with the goal to apply the DRL based balancing control
on the Valkyrie robot in the future. The bipedal character has a the height and mass of 1.604m
and 127.96kg and has 4 DOF: waist, hip, knee, ankle.

State features that contain the information of kinematics and dynamics of the humanoid
were selected. Fig. 3.1(b) shows the selected state features, including pelvis height (hheight),
joint angle and joint velocity, the angle (φtorso, φpelvis) and angular velocity (φ̇torso, φ̇pelvis) of the
pelvis and torso, ground contact information, displacement of COM of each link with respect
to the pelvis (red) and the linear velocities of all body links (green). The total number of state
features used as the input for the controller is 26.

24

3.3. PRINCIPLES

3.3.2 Explainable Design of the Reward

In this section, the design of our reward function based on physical models and quantities is
described. The reward has to be designed carefully in order to produce desired results. Amodei
et al. has mentioned that a poorly designed reward function in reinforcement learning can
cause the performance and safety issues [62].

The physical quantities needed for computing the reward is shown in Fig. 3.2. ẋCOM and
żCOM are the actual COM velocities. xCOM and zCOM is the position of the COM on the sagittal
plane. φtorso and φpelvis are orientation of the upper body. l is the length from the centre of the
foot to the pelvis.

Balancing can be decomposed into six objectives: keeping the torso and pelvis orientation
upright (rφtorso , rφpelvis), keeping the horizontal position of the COM close to the centre of the
foot (rxCOM), keeping the COM vertical position at a certain height (rzCOM) and minimizing
the horizontal and vertical velocity of the COM (r ẋCOM , r żCOM). The total reward is the linear
combination of each objective as:

r =wφtorso rφtorso +wφpelvis rφpelvis +wxCOM rxCOM

+wzCOM rzCOM +wẋCOM r ẋCOM +wżCOM r żCOM ,
(3.1)

where the weights w[·] of each objective in the reward are set to 1 by default, except wzCOM

which is set to 5 for counteracting gravity.
The individual reward terms r[·] are defined such that the individual parameters are attracted

to their target values, while degrading exponentially as deviation gets larger:

rφtorso = exp(α (φtorso/eφtorso)2)

rφpelvis = exp(α (φpelvis/eφpelvis)2)

rxCOM = exp(α ((xtarget
COM − xCOM)/exCOM)2)

rzCOM = exp(α ((ztarget
COM − zCOM)/ezCOM)2)

r ẋCOM = exp(α ((ẋtarget
COM − ẋCOM)/e ẋCOM)2)

r żCOM = exp(α ((żtarget
COM − żCOM)/e żCOM)2).

(3.2)

The target for the orientation of the torso and pelvis is 0 rad. xtarget
COM and ztarget

COM are the target
horizontal and vertical COM position. ẋtarget

COM and żtarget
COM are the target horizontal and vertical

COM velocity.
Normalization has to be performed because the range of the values of the physical prop-

erties are different. For normalization, we divide the error of each physical quantity with their
respective maximum range e[·]. The individual rewards presented in (3.2) are expected to be
1×10−5 when the physical error reaches the maximum. Let r[·] = exp(α ·1)= 1×10−5, we obtain
the coefficient α=−11.513.

We now describe how to compute the maximum error range e[·] for each term. Regarding
the maximum error range for the torso angle eφtorso and pelvis angle eφpelvis with respect to

25

CHAPTER 3. LEARNING BALANCING SKILLS WITHIN A 2D SAGITTAL PLANE FOR BIPEDS

the gravity line, that occurs at φtorso = φpelvis = π/2, when the body is fully horizontal. Thus,
eφtorso = eφpelvis =π/2 rad.

The maximum error range for the horizontal and vertical COM positions exCOM , ezCOM can
be determined by physical constraints using the linear inverted pendulum model. Fig. 3.2
shows a humanoid leaning on the boundary of the friction cone, which is an extreme situation,
because any configuration that falls outside the friction cone is destined to fail. Assuming a
coefficient of friction µ= 1, the maximum angle of the friction cone θmax is π/4 rad. As shown
in Fig. 3.2, the maximum error range for the horizontal and vertical COM positions can be
computed by

exCOM =−xCOM

= sin(θmax)l,

ezCOM = l− zCOM

= (1−cos(θmax))l.
(3.3)

From (3.3), we get ex = 0.768 m and ez = 0.318 m.
Regarding the maximum error range for the horizontal and vertical COM velocities, e ẋCOM ,

e żCOM , we can compute them using the extreme orientation angle θmax and the Vmax based on
the capture point in (2.2) presented in Chapter 2. As mentioned above, we consider θmax =π/4

rad to be the extreme condition. The height of the COM is z0 = l cos(θmax) and the horizontal
displacement of the COM to the centre of foot is ∆xCOM = l sin(θmax). The target horizontal
velocity ẋtarget

COM is set by referring to Vmax. From (2.1) and (2.2), we can derive the target
horizontal velocity as ẋtarget

COM = −∆xCOM

√
g
zc

that converges to zero equilibrium with the sign

opposite to ∆xCOM, because ẋtarget
COM always points back to the equilibrium. The target vertical

velocity żtarget
COM is set to 0 as we wish to minimize the vertical movement of the COM. As a result,

e ẋCOM = ẋtarget
COM − ẋCOM, e żCOM = żtarget

COM − żCOM can be computed:

e ẋCOM =−sin(θmax)l
√

g
cos(θmax)l

−cos(θmax)
√

2g(1−cos(θmax))l ,

e żCOM =−sin(θmax)
√

2g(1−cos(θmax))l

(3.4)

The maximum error for horizontal and vertical COM velocity is thus 4.510 m/s and 1.766 m/s.
Substitute the calculated maximum range of the physical properties into (3.2), the individual

reward components are obtained. The total reward can be computed by adding each weighted
reward into (3.1).

3.3.3 Deep Deterministic Policy Gradient

The algorithm we chose to use is the Deep Deterministic Policy Gradient (DDPG) algorithm
[18], which is a model-free, off-policy DRL algorithm based on Deterministic Policy Gradient
[63] and Deep Q Networks [64].

DDPG is a type of actor critic RL algorithm, it uses two separate networks to parameterize
the actor function and the critic function, respectively. The actor network µ(s|θµ) maps the

26

3.3. PRINCIPLES

states to a deterministic action, and the critic network Q(s,a|θQ) maps the state action pair to a
Q-value. The learning curve of the training process can be seen in Fig. 3.4

The critic network is trained by minimizing the loss function:

LQ(θQ)= Est,at,r t,st+1∼R

[
(Q(st,at)− yt)2]

, (3.5)

Where yt = r t +γQ′(st+1,a)|a=µ′(st+1).
The actor network is trained by applying the deterministic policy gradient:

∇θµ J = Est∼R

[
∇aQ(st,a|θQ)|a=µ(st)∇θµ(st|θµ)

]
. (3.6)

Algorithm 1 Deep Deterministic Policy Gradient
Initialize critic Q(s,a|θQ) and actor network µ(s,a|θµ)
Initialize target networks Q′ and µ′: θQ′ ← θQ ,θµ

′ ← θµ

Initialize replay buffer R ←;
for episode=1,M do

Initialize random process N for action exploration
Receive initial state observation s1
for t=1,T do

Select action at =µ(st|θµ)+Nt
Execute at and observe reward r t and new state st+1
Store transition (st,at, r t, st+1) in R

Sample N transitions (si,ai, r i, si+1) from R

for i=1,N do
if state si+1 is terminal state then

Set yi = r i
else

Set yi = r i +γQ′(si+1,µ′(si+1|θµ′
)|θQ′

)
end if

end for
Update critic by minimizing loss:
L = 1

N
∑

i(yi −Q(si,ai|θQ))2

Update actor using sampled policy gradient:
∇θµ J ≈ 1

N
∑

i ∇aQ(si,ai|θQ)∇θµµ(si|θµ)
Update target networks:
θQ′ ← τθQ + (1−τ)θQ′

,θµ
′ ← τθµ+ (1−τ)θµ

′

end for
end for

3.3.4 Exploration through Noise

One of the major challenge in RL is to ensure the exploration provides samples diverse enough
for the RL agent. In our DRL control framework, the 2D biped is initialized in the same upright
standing posture for every episode, and we rely on using the Ornstein-Uhlenbeck process (OU

27

CHAPTER 3. LEARNING BALANCING SKILLS WITHIN A 2D SAGITTAL PLANE FOR BIPEDS

noise) to generate temporally correlated values, and applied the value as perturbation to the
action output of the policy to induce exploration [18].

3.3.5 Bounding Network Output

The output of the network is the desired joint angles. Joints have mechanical limits which
restrict the range of motion, therefore we have to bound the action space within the angle limit.
Using a squashing sigmoid activation function such as tanh in the output unit is a common way
to bound network outputs. However, using tanh has its disadvantages: it is easily saturated at
the upper and lower bound of the range, and requires many updates to decrease, increasing
the training time and hindering the performance.

Hence, we use an approach called inverting gradients to bound the output action parameters
[65],

∇p =∇p ·
(pmax − p)/(pmax − pmin) if ∇p ≥ 0

(p− pmin)/(pmax − pmin) otherwise
, (3.7)

where ∇p indicates the critic gradient with reference to action parameter, pmax, pmin, p indicate
the minimum, maximum and current activation of the action parameter, respectively. From
(3.7), we can see that with inverting gradients approach, the gradients are reduced as the
output parameter approaches the boundary of the desired value range, and are inverted if the
parameter exceeds the boundary, hereby restraining the value of the output.

Since joint angles were chosen as the action parameters of the actor network within this
work, the minimum pmin and maximum pmax activation of the action parameter correspond to
the lower and upper boundaries of the physical joint. The inverting gradients acts as a soft
constraint for the output action and does not guarantee that the generated action stays within
the set range. We therefore further applied a hard clipping in the environment to ensure that
the output action does not exceed the physical limits of the joints. The clipped joint angle is
then translated to joint torque by the PD controller (2.3). The generated joint torque will also be
clipped to bound it within the torque limits.

3.4 Hierarchical Structure of High-Level Learning and Low-Level
Control

The overall system is designed to have a hierarchical architecture that can be easily applied
to the real robot system. The idea of constructing a hierarchical control architecture is widely
adopted by many studies [6], [66]. In such control systems, the Lower-Level controller (LLC)
and High-Level controller (HLC) work at different frequencies, where the HLC usually works at
a lower frequency. Details of the hierarchical structure is described in Chapter 2. The overall
structure of the control system is shown in Fig 2.3.

28

3.5. RESULTS

State
input

State
input

Action
input

Actor network Critic network

Action
output

Q-Value
output

Figure 3.3: Overview of neural network structure.

3.4.1 High-Level Controller

DDPG is used to learn the high level control policy for producing the desired motion synergies,
i.e desired joint angles, given the feedback. As the network structure shown in Fig. 3.3, both
the critic and actor network have 2 hidden layers, and each hidden layer contains 100 nodes
followed by a rectified linear unit (ReLU) activation function. In addition to the 26 state features,
the critic network also takes the 4 action parameters as inputs, the action value is directly
forwarded to the second hidden layer. The outputs of the actor network are the 4 references of
joint angles. The network inputs of both the actor and critic network consists of 24 continuous
state features, which are filtered through lowpass butterworth filters with a cutoff frequency of
10Hz, and 2 discrete state features that remain untouched.

3.4.2 Low-Level Controller

We used PD controller as the LLC, the input for the PD controller is desired joint angles
produced by the HLC, and the output is the joint torque:

τ= Kp(θtarget −θmeasured)−Kd θ̇measured. (3.8)

The feedback for the PD controller is filtered through a lowpass butterworth filter with a
cutoff frequency of 50Hz. The parameters of the PD controller are tuned empirically and are
shown in Table 3.1.

3.5 Results

We can calculate the maximum rejectable impulse when the humanoid is in its stable balanc-
ing configuration according to capture point theory. In the stable configuration of the policy

29

CHAPTER 3. LEARNING BALANCING SKILLS WITHIN A 2D SAGITTAL PLANE FOR BIPEDS

Table 3.1: PD gains

Joints

PD parameters Waist Hip Knee Ankle

Kp (Nm/rad) 720 1080 2580 3160

Kd (Nms/rad) 60 70 150 300

representation of the trained network, the horizontal distance from the COM to the front tip
and back tip of the feet is respectively 0.189m and 0.111m. The height of the COM is 1.084m.
According to (2.1), the maximum forward rejectable impulse is 72.8 N·s, maximum backward
rejectable impulse is 42.6 N·s. A push force with duration of 0.1s is applied on the pelvis, which
coincides with the COM, for simulating the impulse disturbance, therefore magnitude of the
force are 728N and 426N respectively for the forward and backward pushes. Previous work
has proven that foot tilting balancing strategy is capable of working under boundary rejectable
impulse conditions [24].

Figure 3.4: The learning curve is obtained by averaging over 6 trials, each with a different
random seed during training. All 6 trials are able to obtain a successful balancing policy.

30

3.5. RESULTS

5 5.5 6 6.5 7 7.5 8
time (s)

1.5

1.6

1.7

1.8

an
gl

e
(ra

d)
a

5 5.5 6 6.5 7 7.5 8
time (s)

-0.2

-0.1

0

0.1

an
gl

e
(ra

d)

b

5 5.5 6 6.5 7 7.5 8
time (s)

-2

-1

0

1

R
at

e
(ra

d/
s)

c

5 5.5 6 6.5 7 7.5 8
time (s)

-600

-400

-200

0

200

to
rq

ue
 (N

m
)

d

5 5.5 6 6.5 7 7.5 8
time (s)

0

0.05

0.1

C
O

M
 x

 p
os

iti
on

 (m
)

1.1

1.12

1.14

1.16

C
O

M
 z

 p
os

iti
on

 (m
)e

Figure 3.5: Simulation data of forward
push recovery (72.8 N·s). (a) Refer-
ence/measured ankle joint angle; (b)
Orientation of torso/pelvis/foot pitch; (c)
Angular rate of torso/pelvis/foot pitch; (d)
Ankle joint torque; (e) COM x and z position.

No disturbance

Figure 3.6: Responses generated by the policy
upon forward pushes.

5 5.5 6 6.5 7 7.5 8
time (s)

1.4

1.5

1.6

1.7

an
gl

e
(ra

d)

a

5 5.5 6 6.5 7 7.5 8
time (s)

-0.2

0

0.2

an
gl

e
(ra

d)

b

5 5.5 6 6.5 7 7.5 8
time (s)

-1

0

1

2

R
at

e
(ra

d/
s)

c

5 5.5 6 6.5 7 7.5 8
time (s)

-200

0

200

400

to
rq

ue
 (N

m
)d

5 5.5 6 6.5 7 7.5 8
time (s)

-0.06

-0.04

-0.02

0

0.02

C
O

M
 x

 p
os

iti
on

 (m
)

1.1

1.11

1.12

C
O

M
 z

 p
os

iti
on

 (m
)e

Figure 3.7: Simulation data of backward
push recovery (-42.6 N·s). (a) Refer-
ence/measured ankle joint angle; (b)
Orientation of torso/pelvis/foot pitch; (c)
Angular rate of torso/pelvis/foot pitch; (d)
Ankle joint torque; (e) COM x and z position.

No disturbance

Figure 3.8: Responses generated by the policy
upon backward pushes.

31

CHAPTER 3. LEARNING BALANCING SKILLS WITHIN A 2D SAGITTAL PLANE FOR BIPEDS

Figure 3.9: Overlay figure of the biped model highlighting the ankle push-off and knee lock
behaviour.

Figure 3.5 and 3.7 respectively presents the data from forward and backward push recover-
ies. Figure 3.6 and 3.8 show the snapshots of maximum ankle joint angles from successful
balance recoveries of forward and backward pushes under various pushes. The snapshots
show that under different amount of disturbances, the tilting angles of the foot and the angle of
ankle joint are different. From the simulation results, it is observed that emerged behaviours are
comparable to that of humans after sufficient amount of training without any prior knowledge
explicitly given by designers:

• Knee lock behaviour naturally emerges;

• Heel/toe tipping behaviours naturally emerge;

• Able to work beyond the maximum rejectable impulse calculated using capture point (due
to vertical motion);

• Able to actively push-off ankle joint and create foot tilting stably in response to different
disturbance;

• Exploitation of maximum achievable ankle torque.

The amount of impulse the control system is capable of withstanding is slightly larger than
the rejectable impulse calculated from the capture point theory, since the capture point uses a
linear model assuming constant COM height. The network learns a balancing policy capable
of withstanding impulse up to 87N·s and -47.5N·s, which is respectively 119.5% and 111.5%
the amount of the forward and backward maximum rejectable impulse calculated using capture
point (72.8N·s and -42.6N·s). This is because while the humanoid is pivoting around its toe, the
horizontal velocity is partially redirected upward, increasing the height of the COM, therefore
converting part of the kinetic energy into potential energy, slowing down the overall COM

32

3.6. CONCLUSION

velocity. Learning-based control system is less restricted than traditional methods using ZMP
in this aspect, because any stable action than improves the balance recovery will be reinforced
such as ankle push-off, knee lock or any possible upper body movement.

Some human-comparable features naturally emerge after sufficient amount of training
without any prior knowledge given explicitly by humans. From Fig. 3.5(b) and 3.7(b), we can
see the policy actively adjusts the ankle angle to produce ankle push off behaviour. It is also
shown that the humanoid has also learned to actuate its knee in a knee-lock configuration that
minimizes knee torque and provides a lot of stability by simply exploiting the biomechanical
constraint of the knee joint, very similar to what humans do.

The balance strategy learned by reinforcement learning has shown to have the ability to
actively adjust the ankle joint angle and the tilting angle of the foot in response to the amount
of disturbance applied. The active change in magnitude of ankle rotation ∆θ relative to home
position increases as the magnitude of force increases as seen in Fig. 3.6 and 3.8.

Figure 3.5(f) and 3.7(f) show the torque responses of all sagittal joints, where ankle joint
in particular fully exploits the maximum achievable ankle torque for balance recovery. The
control system responses to the disturbance by quickly generating ankle torque as large as
possible, firstly larger than the gravitational torque for a short period to accelerate foot for tilting
around the toe/heel, and then sustaining the maximum achievable torque for staying at the
toe/heel with a total underactuation time about 0.8s. From the thickness, length and tilting
angle of the foot, plus the mass of the body, it can be calculated that the magnitude of the
maximum achievable torque while tilting around the toe and heel is respectively 216.14N·m
and 106.86N·m. Simulation results from Fig. 3.5(f) and 3.7(f) shows that the magnitude of
ankle torque applied during underactuation is around 210.41N·m and 110.24N·m for forward
and backward push, which is close to the theoretical maximum achievable torque. The frontal
section of the foot is longer than the rear section, thus the maximum achievable torque during
forward push is larger than that of the backward push.

3.6 Conclusion

Previous studies have already demonstrated that human-comparable balancing behaviours
such as foot tilting behaviours can be achieved using deterministic and analytical engineering
approaches. The study presented in this chapter concerns about whether it is possible to
produce similar or better humanoid balance strategies that involves stable underactuated ankle
push-off behaviour comparable to humans using deep reinforcement learning approach.

The preliminary results demonstrated the feasibility and realizability of using deep reinforce-
ment learning to learn a human-like balancing behaviour with limited amount of prior structure
being imposed on the control policy. We transfer knowledge from control engineering based
methods and applied them into the design of rewards for RL. The importance of a physic based

33

CHAPTER 3. LEARNING BALANCING SKILLS WITHIN A 2D SAGITTAL PLANE FOR BIPEDS

reward design shall be acknowledged. Otherwise it is difficult to balance the influence among
different physical quantities and the balance behaviour is difficult to be guaranteed by RL. The
ankle push-off behaviour learned by RL is able to work robustly under circumstances where
impulses are as much as the theoretical maximum that can be rejected. Moreover, DRL has
learned an adaptive way of actively changing ankle push-off angle in response to the applied
disturbance.

The scope of the work presented within this chapter only covers standing balance within
the sagittal plane in a 2D simulation as a proof-of-concept using learning approach. The next
step will be to perform simulation in a 3D environment with more realistic physical settings. The
details of the implementation of 3D balancing framework will be presented in the next chapter.

34

Chapter 4

Learning Balancing Skills for Bipeds
in 3D simulation

In Chapter 3, we described how human-like balancing behaviours, such as active foot tilting
and knee locking, emerge naturally from deep reinforcement learning in a 2D simulation
environment. The balancing policy presented in Chapter 3 is limited to the 2D sagittal plane.
In this chapter, we describe how to extend the work done on 2D balancing to a 3D balancing
policy that operates in both the sagittal and lateral planes.

This chapter presents a hierarchical framework for deep reinforcement learning that ac-
quires motor skills for a variety of push recovery and balancing behaviours, i.e., ankle, hip, foot
tilting, and stepping strategies. The policy is trained in a physics simulator with realistic setting
of robot model and low-level impedance control that are easy to transfer the learned skills to
real robots. The advantage over traditional methods is the integration of high-level planner
and feedback control all in one single coherent policy network, which is generic for learning
versatile balancing and recovery motions against unknown perturbations at arbitrary locations
(e.g., legs, torso). Furthermore, the proposed framework allows the policy to be learned quickly
by many state-of-the-art learning algorithms. By comparing our learned results to studies of
preprogrammed, special-purpose controllers in the literature, self-learned skills are comparable
in terms of disturbance rejection but with additional advantages of producing a wide range of
adaptive, versatile and robust behaviours.

4.1 Introduction

Legged robots have great potential for being deployed in environments where wheeled robots
are limited, such as obstacle obstructed terrain as well as narrow and elevated surfaces (e.g.,
stairs). However, in contrast to wheeled or tracked robots, humanoids are intrinsically unstable
and require active control to balance due to their limited support area, high center of mass, and
limited actuator capabilities. Therefore, the range of possible scenarios in which humanoids

35

CHAPTER 4. LEARNING BALANCING SKILLS FOR BIPEDS IN 3D SIMULATION

(a) (c)(b) (d)

Figure 4.1: Learned push recovery behaviour: (a) ankle strategy, (b) hip strategy, (c) foot-tilting
strategy, (d) stepping strategy.

can be deployed is mostly limited by the humanoids’ ability to maintain balance and deal with
disturbances and uncertainties. Balance can therefore be considered as one of the core skills
for humanoid robots and locomotion.

Classical control methods propose a wide range of balance recovery algorithms, which
however lack in the universality of their application. In order to deal with a wide range of pushes,
different control strategies need to be applied and traditionally a switching between controllers
for the given situation is needed. Generally, different sets of parameters are used for the four
main push recovery strategies: ankle, hip, foot-tilting, and stepping (cf. Fig. 4.1).

Methods from machine learning on the other hand provide a promising alternative as they
can incorporate multiple push recovery skills without the need for hand-tuned gains. Their use
is motivated by three main factors:

First, supplementing existing control strategies with learning methods allows dealing with
scenarios that are hard to engineer in a traditional sense such as sudden, high impact forces
and discrete, sudden switches of contact.

Second, in contrast to planning and control algorithms that demand high computational
power to run at or close to real-time, e.g. Model-Predictive Control, the computation for
machine learning approaches can be outsourced offline [67]. I.e., the computation for Deep
Reinforcement Learning (DRL) can be off-loaded into the neural network training phase. By
doing so, faster online performance for high dimensional control systems such as humanoids
can be achieved.

Last, in recent years, DRL has been shown to be capable of solving complex manipulation
and locomotion tasks that involve learning a control policy in high-dimensional continuous ob-
servation and action spaces [13], [18], [15]. Instead of manually tuning the control parameters,
a feasible policy is learned through interaction with the environment.

While there exist various studies using DRL to learn bipedal locomotion for humanoids [68],

36

4.2. RELATED WORK

[6], [45], the used robot models leverage simplified dynamic and collision models and environ-
ments in order for faster than real-time simulations at the cost of less realistic simulations. The
motivation of this work is to learn locomotion skills using a realistic robot model obtained from
system identification in a realistic simulation environment in order to apply the learned skills
on the real robot. We leverage recent advances in DRL to design a unified balance recovery
controller which is able to generate sequences of actions that perform similar to or even exceed
traditional methods with respect to their disturbance rejection ability. Our work has the following
contributions:

1. Application of DRL on an accurate robot model of the Valkyrie platform with realistic
settings for simulation.

2. Design of a learning framework that generates a generic policy. This policy captures
a variety of sensor-motor synergies and various control strategies emerge in a unified
manner without the need of multiple controllers and the related switching mechanism.

3. Proposal of a balance recovery specific reward design and training settings of distur-
bances. These allow the exploration of versatile motions and as a result, human-like
balancing behaviours, such as foot-tilting and stepping, emerge naturally.

4. Benchmarking the learned policy against control methods. The learned policies gen-
erate balance recovery strategies which reject impulses in a similar (or even superior)
magnitude as traditionally designed controllers.

This chapter is organized as follows. A brief review on conventional push recovery methods
and DRL is presented in Section 4.2. Background information on some concepts of DRL and
push recovery is explained in Section 5.3. The proposed methodology is elaborated in Section
5.4. The obtained results are demonstrated and discussed in Section 5.5. Finally, a conclusion
is drawn in Section 5.6.

4.2 Related Work

4.2.1 Conventional Push Recovery Methods

Over the past two decades, remarkable progress in the field of push recovery for humanoid
robots has been made. Without the use of arms, humanoids can leverage four lower body
balancing strategies: ankle, hip, stepping, and foot-tilting. The first three strategies, controlling
ankle torque, angular momentum around the Center of Mass (COM), and the timing and
position of steps, are analyzed with respect to their ability to reject disturbances in [69]. A
control framework for the foot-tilting strategy has been proposed in [24] demonstrating a
humanoid’s ability to use foot-tilting for push recovery. Traditionally control schemes can be

37

CHAPTER 4. LEARNING BALANCING SKILLS FOR BIPEDS IN 3D SIMULATION

divided into predictive schemes which calculate reference motions, and reactive schemes
which respond to sudden disturbances.

A Model Predictive Control (MPC) scheme that constrains the Center of Pressure to be
within the Support Polygon has been proposed in [70]. Strategies involving modulating the
Angular Momentum to reactively deal with disturbances have been formally analyzed in [23],
[71]. Due to the limited size of the contact area, i.e. the foot size, stepping strategies have
been proposed [72], [73]. This idea was formalized as the Capture Point (CP), the point on
which one needs to step in order to come to a complete halt [23]. Enlarging the support area
by stepping has been extended to multi-contact push recovery scenarios in [74], [75]. Methods
for balancing on inclined slopes has also been proposed [76]. Lastly, strategies modulating the
height of the COM in order to compensate for disturbances have been proposed in [77]. This
COM height modulation can be achieved by either lengthening the leg or in form of foot tilting
[24].

4.2.2 Deep Reinforcement Learning of Locomotion

There exists various successful studies using model-free DRL to solve bipedal locomotion tasks
in 3D simulation environments. Schulman et al. proposed a DRL algorithm, Proximal Policy
Optimization (PPO), which was applied to successfully learn a locomotion policy that is capable
of heading towards a target location in the Roboschool humanoid simulation environment [15].
PPO, together with Deep Deterministic Policy Gradient (DDPG) [18] and Trust Region Policy
Optimization (TRPO) [13], are the most commonly used state-of-the-art DRL algorithms for
continuous observation-action space control. Further extensions include a parallel computing
version of PPO, Distributed Proximal Policy Optimization (DPPO) [31], which was applied on a
humanoid and successfully learned dynamic and diverse parkour movements for the humanoid
character.

Various frameworks have been proposed to allow the DRL agent to learn a policy that
generates human-like locomotion behaviour for bipedal locomotion tasks. Merel et al. proposed
a framework that uses generative adversarial imitation learning [34] to enable the network to
learn a policy that produces human-like locomotion gait using limited demonstrations from
motion capture data [38]. Peng et al. proposed a framework that incorporated imitation learning
by reshaping the reward through the introduction of an imitation term that provides higher
reward when the motion is closer to the reference motion capture data [8].

4.3 Background

4.3.1 Software Setup

The simulation environment of the Valkyrie robot is built using PyBullet [1] (Fig. 4.2). The
robot model used in the simulation is the NASA Valkyrie robot [78] with realistic inertia, center

38

4.3. BACKGROUND

Figure 4.2: Snapshots of Valkyrie recovering from an impulse at the shin of 108Ns, which is a
test scenario not encountered during training. The learned policy automatically generates a
stepping behaviour (cf. https://youtu.be/43ce2cLV0ZI).

of mass, and joint actuation limits. Self-collisions are enabled in the simulation. The DRL
algorithm is built using Tensorflow [79].

4.3.2 Deep Reinforcement Learning

For learning a suitable policy, Deep Reinforcement Learning, particularly model-free policy
gradient methods, are used. Policy gradient algorithms operate by maximizing the direct sum
of rewards with reference to a stochastic policy. The policy gradient algorithms used in this
work are the TRPO [13], PPO [15], and DDPG [18]. Due to resulting in the best and most
robust policy, the TRPO algorithm will be outlined in the following.

4.3.2.1 Trust Region Policy Optimization

In practice, policy gradient methods suffer from high variance which can lead to fluctuations in
the performance of the policy between iterations. This problem of instability during training is
remedied by introducing a trust region to the numerical optimization which takes a step in the
improving direction within a determined trust region. By constraining the amount of changes
to the parameters, measured by the Kullback-Leibler (KL) divergence, TRPO guarantees a
theoretical monotonic performance improvement of the reward.

For every parameter update iteration, TRPO performs several rollouts and stores the state
st, action at and reward r t into a batch D until enough data samples are collected, which will
then start the update process. During the update process, TRPO updates the policy parameters
by minimizing a surrogate loss function while constraining the KL divergence between the new
and old policies πθ, πθold to remain within a trust region:

min
θ

Lθold (θ)=−Et

[
πθ(at|st)
πθold (at|st)

At

]
(4.1)

subject to Et
[
KL

[
πθold (·|st)πθ(·|st)

]]≤ δ, (4.2)

where δ is the hyperparameter that determines the trust region, At = Rt−V (st) is the advantage
which is calculated by subtracting the return with a baseline. A value estimation V (st) provided
by a critic is used as the baseline.

39

https://youtu.be/43ce2cLV0ZI

CHAPTER 4. LEARNING BALANCING SKILLS FOR BIPEDS IN 3D SIMULATION

4.3.2.2 Discounted Return

The total return is used as an evaluation of performance and is determined by calculating the
discounted reward,

Rt =
T−t∑
l=0

γl r t+l , (4.3)

where T is the total number of samples in an episode and γ is the discount factor. The half-life of
future rewards is used as a reference to decide the value of the discount factor γ. For balancing,
a time horizon between 0.5s and 2s is short. With a frequency of 25Hz, 0.5s equates to 13
time steps. We choose the discount value in a way that the half-life of the future reward occurs
at 0.5s, meaning that the accumulated discount factor equates to 0.5 at 13 time step γ13 = 0.5,
hence γ≈ 0.95.

4.3.2.3 Generalized Advantage Estimation

With the policy gradient method and a stochastic policy, we obtain an unbiased estimate of the
gradient of the expected total reward, however the estimated policy gradient has high variance.
An effective variance reduction scheme for policy gradients called Generalized Advantage
Estimator (GAE) was proposed in [80]. GAE interpolates between a high bias and low bias
estimator through the parameter λ ∈ [0,1]. One can adjust the bias/variance trade-off by tuning
λ. The GAE for the parameters γ,λ at time t is:

AGAE(γ,λ)
t :=

∞∑
l=0

(γλ)lδV
t+1

δV
t+1 = r t +V (st+1)−V (st).

(4.4)

4.3.3 Capture Point

The Capture point (CP) describes the point on the ground on which the robot should step
on in order to come to a complete rest [23]. The detailed explanation of the capture point is
presented in Chapter 2.

When the CP is within the support polygon, the robot does not need to perform any footstep
to maintain balance. Knowing the feet dimensions and therefore the support polygon, the
theoretical maximum impulse which can be rejected without foot-stepping can be approximated
as follows. [23]:

Jreject = m
√

g
zc
∆COP, (4.5)

Where ∆COP is the distance between the COM and the closest border of the Support Polygon
in the direction of the push. For the nominal, upright-standing pose the dimensions of the
Support Polygon of Valkyrie is 0.26m×0.38m, the COM height is at 1.1m , the mass of the
Valkyrie robot is 137kg. Equation (4.5) yields an approximate maximal impulse of 53Ns in the
sagittal plane and 78Ns in the lateral plane for ∆COP = [0.13m,0.19m].

40

4.4. METHODOLOGY

Table 4.1: PD gains for the joints of Valkyrie. Only the torso pitch, left and right hip pitch & roll,
knee pitch, and ankle pitch & roll joints are actuated.

Valkyrie

Kp (Nm/rad) Kd (Nms/rad)

Torso pitch 3000 300

Hip roll 1500 150

Hip pitch 2000 180

Knee pitch 2000 180

Ankle pitch 2000 120

Ankle roll 1500 90

4.4 Methodology

4.4.1 Hierarchical Control Framework

We designed our control framework to have a hierarchical structure (Fig. 2.3). A hierarchical
structure allows implementation of two (high and low-level) layers that are independent from
each other and can be designed and calibrated separately. The high-level control works
under a frequency of 25Hz while the low-level control works at 500Hz. The high-level control
is responsible for generating joint angles for a desired motion and the low-level control is
responsible for translating the joint angles into joint torques. Details of the hierarchical control
structure can be seen in Chapter 2. The PD gains for the low-level PD controller are shown in
Table 4.1.

4.4.2 Observation Space and Action Space

Input states are chosen in a way such that they can be acquired by sensors on the robot
with minimal amount of computation. Immeasurable states are inferred or estimated by the
Neural Network. All the sensory information provided as the observational input for the policy
is heading-invariant. For balancing, the rotation along the direction of the gravity vector is
irrelevant to the balancing state, therefore information about the heading is not needed as
feedback, i.e. the policy will perform the same action regardless of global yaw orientation. In
order to make the state observation heading invariant, we preprocessed the state by performing
transformation of the observations along the gravity axis.

The state S ∈R47 consists of 11 joint angles and 11 joint velocities, pelvis states (transla-
tional and angular velocity, orientation), COM states (translational velocity and position w.r.t.
pelvis), ground contact force, torso position w.r.t. pelvis, and foot position w.r.t pelvis. The obser-
vation states are sampled at a frequency of 500Hz and are filtered by a first-order Butterworth
filter with a cut-off frequency of 10Hz.

41

CHAPTER 4. LEARNING BALANCING SKILLS FOR BIPEDS IN 3D SIMULATION

Under consideration of computation efficiency, we minimize the size of action space. A
minimum of 11 joints that includes only roll and pitch joints are sufficient for balancing. The
action space A ∈ R11 of the policy describes the motion of the joint angles. The upper body
joints are locked in a nominal position, while for the lower body, only the pitch joint and roll
joint are controlled. The controlled joints therefore are: torso pitch, left and right hip pitch & roll,
knee pitch, and ankle pitch & roll.

4.4.3 Design of Reward Function

The design of the reward function is a crucial part in reinforcement learning as the reward
governs the outcome behaviour. The reward design follows a similar design rule as in [29].
Balancing can be divided into four subtasks: regulating upper body pose, regulating COM
position, regulating COM velocity, and regulating ground contact force. The individual reward
is calculated using K(x, xtarget,αi)= exp(αi(xtarget − x)2), with xtarget as the desired value, x as
the real value, and αi as the normalization factor. These are then weighted by wi (Table 4.2).
Furthermore, additional penalty terms are added: ground contact regulation, loss of contact
with the ground, and when other parts of the body other than the foot make contact with the
ground. We also apply a penalty for the control effort used. The overall reward can be viewed
as a sum of the individual reward terms:

r =rpose + rCoM_pos + rCoM_vel + rGRF+
rcontact + rpower.

(4.6)

4.4.3.1 Upper Body Pose Modulation

The upper body pose is represented by the pitch and roll angle of the torso and pelvis. The
desired orientation for the pitch roll angle for both pelvis and torso is 0, which is the orientation
of the upper body when it is upright:

rpose =wφtorsoPitch r̃φtorsoPitch +wφpelvisPitch r̃φpelvisPitch+
wφtorsoRoll r̃φtorsoRoll +wφpelvisRoll r̃φpelvisRoll .

(4.7)

4.4.3.2 COM Position Modulation

The reward term for COM modulation is decoupled into horizontal and vertical components.
For the horizontal COM position, the target position is the center of the support polygon to
provide maximum disturbance compensation. For the vertical COM position, the robot should
stand upright and maintain a certain height,

rCoM_pos = wxyCoM r̃xyCoM +wzCoM r̃zCoM . (4.8)

42

4.4. METHODOLOGY

Table 4.2: Detailed description of task reward terms. The terms are combined to construct the
task reward. The corresponding normalization factor and weight for the reward terms are α

and w.

Task reward terms
Torso pitch K(θn,0,α),n = torso pitch α=−2.80 w = 0.059
Torso roll K(θn,0,α),n = torso roll α=−2.80 w = 0.059
Pelvis pitch K(θn,0,α),n = pelvis pitch α=−2.80 w = 0.059
Pelvis roll K(θn,0,α),n = pelvis roll α=−2.80 w = 0.059
Position in xy plane K(xy, x̂y,α) α=−14.10 w = 0.118
Position in z axis K(z, ẑ,α) α=−14.10 w = 0.235

Velocity in xy plane

{
0, if no foot contact with ground
K(ẋy, ˆ̇xy,α)

α=−6.91 w = 0.118

Velocity in z axis K(ż,0.0,α) α=−6.91 w = 0.059
Left foot contact force K(FLef t,673.1,α) α=−2.45e−6 w = 0.059
Right foot contact force K(FRight,673.1,α) α=−2.45e−6 w = 0.059

Ground contact

{
0, if no foot contact with ground
1, if upper body contact with ground.

w = 0.059

Power penalty 0.005 ·∑11
j=0(τ j)2 w = 0.059

4.4.3.3 COM Velocity Modulation

Similar to the COM position, the reward for COM velocity is decoupled into two components:
velocity in the horizontal and vertical planes. The COM velocity is represented in the world
frame. The desired vertical COM velocity is 0 as we want to minimize vertical movement, while
the desired velocity for horizontal COM velocity is derived from capture point. The Capture
Point is only valid when the robot has contact with the ground with no slipping, therefore when
the robot is in the air, the reward term for horizontal COM velocity r̃ ẋyCoM is deemed invalid and
is set to 0:

rCoM_vel =
wẋyCoM r̃ ẋyCoM +wżCoM r̃ żCoM , foot contact

wẋyCoM ·0+wżCoM r̃ żCoM , no foot contact.
(4.9)

4.4.3.4 Contact Force Modulation

The force has to be evenly distributed between both feet for a stable robust balance. The total
mass of 137kg yields a force of 671.3N for each foot:

rGRF = wFle f t r̃Fle f t +wFright r̃Fright . (4.10)

4.4.3.5 Ground Contact

When the robot is standing, only the feet are in contact with the ground, therefore a penalty is
introduced whenever both feet lose contact with the ground or body parts other than the feet

43

CHAPTER 4. LEARNING BALANCING SKILLS FOR BIPEDS IN 3D SIMULATION

make contact with the ground:

rcontact = wcontact ·
−2, if no foot contact with ground

−10, if upper body contact with ground.
(4.11)

4.4.3.6 Power Consumption

The power consumption is calculated as follows,

rpower = wpower ·0.005 ·
11∑
j=0

∥∥∥τ j · q̇ j
∥∥∥ , (4.12)

with τ j is the torque applied on individual joints, and q̇ j is the joint velocity.

4.4.4 Network Structure

The stochastic policy πθ(a|s) is represented as a conditional Gaussian policy πθ(a|s)∼N (µθ(s),σθ).
The mean of the Gaussian policy is parametrized by a neural network with parameters θ, the
covariance of the Gaussian policy is independent from the neural network and is maintained
by a separate set of parameters σθ.

The critic Vφ parametrizes the value function with a separate set of neural networks using
parameters φ. Both the actor and the critic are parametrized by a fully connected feedforward
neural network that consists of 3 hidden layers with 100, 50 and 25 neurons for each layer. The
actor network uses tanh activation for the hidden layers while the critic uses ReLU activation
for the hidden layers. The output of both network is produced by linear activation.

The actor network is trained to maximize the reward function (section 4.4.3), while the critic
network is trained by minimizing the loss function LV(φ):

LV(φ)= Et
[
(V (st)− yt)2]

, (4.13)

with the discounted Return yt (eq. 4.3), value function V (st).

4.4.5 Exploration during Training

In order to learn a policy capable of withstanding large push disturbances, sufficient exploration
during the training phase needs to be provided. Therefore, in addition to the stochastic policy,
random forces are applied on the pelvis during the training. From Capture Point theory, the
maximum disturbance in the sagittal plane without foot-stepping is 53Ns. The bounds of the
training disturbances is chosen to be [53×0.5Ns,53×2Ns]. The orientation of the force in the
horizontal plane and the disturbance in the bound are randomized using a uniform distribution.
Disturbances are applied to the robot multiple times during each trial, with 5s interval between
subsequent push disturbances for push recovery. The posture during the initialization of each
episode is fixed at the same upright standing posture and does not contribute to the exploration.

44

4.5. RESULTS

Action
output

100 50 25

100 50 25

State
input

State
input

Value
output

Actor network

Critic network

tanh tanh tanh

ReLU ReLU ReLU

Figure 4.3: Overview of neural network structure.

4.4.6 Deep Reinforcement Learning

Due to the structure and choice of our framework, the learned policy is independent of the
type of learning algorithm. We trained a policy for maintaining balance via TRPO, PPO, and
DDPG, and found similar resulting behaviour (cf. Table 4.3). All four balancing strategies (Fig.
4.1) emerges regardless of the DRL algorithm used. However, from our simulations, TRPO is
able to achieve higher rewards and is able to withstand higher impulses. Figure 4.4 shows the
learning curves for the policies learned in Table 4.3. DDPG is trained off-policy and utilizes
a replay buffer, whereas TRPO and PPO are trained on-policy batch-wise, which makes it
difficult to directly compare.

All three DRL algorithms are able to learn a feasible balancing policy. The difference in
performance can be attributed to the randomness in different trials of training and hyperpa-
rameters. Training is performed entirely on a single Intel Core i7-6700K with 4.0 GHz and
converges in two days.

4.5 Results

In the following, a series of test scenarios are presented to evaluate the performance of the
control policy acquired by the deep reinforcement learning agent. Furthermore, we show its
robustness to external disturbances, as well as noise in the observation (measurement) and
action (actuation) spaces. Next, a comparison against traditional methods from other work is
made. Lastly, the physical validity of the generated motions is analysed and verified. Please

45

CHAPTER 4. LEARNING BALANCING SKILLS FOR BIPEDS IN 3D SIMULATION

Table 4.3: Maximal rejectable impulses for the various learning algorithms without taking steps.

Maximal disturbance in Ns

Learning algorithm Sagittal Lateral

TRPO 240 78
DDPG 75 160
PPO 192 36

Baseline from (4.5) 53 78

0 50 100 150 200 250 300 350 400−100

0

100

200

300

400

500

600

700

Test episode

R
ew

ar
d

pe
re

pi
so

de

DDPG Std. Dev. DDPG Mean reward

(a) DDPG

0 50 100 150 200 250 300 350

0

200

400

600

800

Epoch

R
ew

ar
d

pe
re

po
ch

TRPO std. dev. TRPO mean reward
PPO std. dev. PPO mean reward

(b) TRPO & PPO

Figure 4.4: Learning curves for DDPG, PPO, and TRPO. The performance are evaluated using
the deterministic policy. The mean of the Gaussian policy learned by PPO/TRPO is used for
evaluation. The results are averaged over 7 learning trials.

refer to the accompanying video for the results (cf. https://youtu.be/43ce2cLV0ZI).

4.5.1 Horizontal Push on Pelvis

Horizontal disturbances were applied on the pelvis during the training phase, and therefore
the DRL agent should be able to learn to withstand such type of disturbances. The robot
exhibits different behaviour depending on the amount of disturbance applied (Table 4.4, Fig.
4.5). Different control strategies emerge and range from generating ankle torque to shift the
COP (ankle strategy), generating angular momentum (hip strategy), over tilting the foot to
dissipate the disturbance (foot tilt strategy), to taking a step to recover from the large push
(stepping strategy). The magnitude of the lateral pushes, for which the robot is capable of
withstanding, is significantly smaller than in the sagittal plane. This is due to the fact that the
support leg will block the swing leg in the lateral direction, limiting the range for leg movement.
Dealing with this problem involves either jumping to take a step, or crossing the legs, which,
due to the kinematic constraints, is not possible for Valkyrie. These jumping manoeuvres were
not learned by the policy, as high velocities in the COM resulted in lower rewards.

From the COM position (Fig. 4.5a) and the pelvis orientation (Fig. 4.5b) it can be inferred
that the robot is standing still after 3s. As can be seen by the eight flat plateaus in Figure 4.5(c),

46

https://youtu.be/43ce2cLV0ZI

4.5. RESULTS

Table 4.4: Emerging behaviour for impulse disturbances of different magnitudes. A checkmark
indicates that the respective strategy is applied in addition to the other marked strategies.

Impulse disturbance in Ns

Emerging behaviour 24Ns 72Ns 240Ns 78Ns

Push direction sagittal sagittal sagittal lateral
Ankle strategy X X X X
Hip strategy X X X X
Foot tilt strategy × X X X
Stepping strategy × × X ×

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
−8

−6

−4

−2

0

2

4

6

8
·10−2

Time [s]

C
O

M
po

si
tio

n
[m

]

Sagittal: 24Ns Sagittal: 72Ns
Sagittal: 240Ns Lateral: 78Ns
Disturbance duration

(a) COM motion over time for multi-
ple forces. The COM position of the
240Ns impulse is scaled by 0.05

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
−6

−4

−2

0

2

4

6

8

10

12

14

Time [s]

O
rie

nt
at

io
n

[d
eg

] Roll: sagittal 24Ns
Roll: sagittal 72Ns
Roll: sagittal 240Ns
Roll: lateral 78Ns
Pitch: sagittal 24Ns
Pitch: sagittal 72Ns
Pitch: sagittal 240Ns
Pitch: lateral 78Ns
Disturbance duration

(b) Pelvis orientation over time.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time [s]

Po
si

tio
n

[m
]

Left foot Right foot
COM Disturbance duration

(c) Foot and COM movement for
sagittal impulse of 240Ns.

Figure 4.5: Resulting motions from impulse disturbance and balance recovery.

eight steps are taken in order to deal with a impulse disturbance of 240Ns at the pelvis. After
the eighth step the robot stands still in the nominal pose. For other horizontal pushes, the
stepping behaviour is similar.

4.5.2 Force Disturbance on other Body Segments

During the training phase only horizontal disturbances were applied on the pelvis. It is well
known in machine learning that the test set should vary from the training set. Therefore, we also
designed test scenarios which the DRL agent has never encountered before during training to
see how well the policy generalizes.

In push recovery studies, the disturbance is usually applied near the COM to avoid introduc-
ing any torque into the system, as it is more challenging to balance a robot with high amount of
angular momentum. We are interested in how well the policy will perform when disturbance is
applied on other parts of the body far away from the CoM. We chose three body parts for which
a large torque and angular movements would result when force is applied on: the upper torso,
leg thigh, and leg shank (Table 4.5). The resulting motion for being pulled at the shank can be
seen in Figure 4.6. In Figure 4.6a) six steps for recovering balance are observed. The support
foot height, and roll and pitch angle relative to the ground can be seen in Figure 4.6b). Finally,

47

CHAPTER 4. LEARNING BALANCING SKILLS FOR BIPEDS IN 3D SIMULATION

Table 4.5: Maximum rejected impulse for different body parts.

Body part Max. impulse in [Ns] Lever in [m] Torque in [Nm] Amount of steps

Upper torso 120 0.32 320 6
Leg thigh 108 0.50 450 4
Leg shank 108 0.70 630 6

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

−0.4

−0.2

0

0.2

0.4

0.6

Time [s]

Po
si

tio
n

[m
]

Left foot Right foot
COM Disturbance duration

(a) COM and feet motion.

0 0.5 1 1.5 2 2.5 3 3.5
−0.4

−0.3

−0.2

−0.1

0

0.1

Time [s]

Fo
ot

[m
],

A
ng

le
s

[ra
d]

Lfoot z Rfoot z
Lfoot roll Rfoot roll
Lfoot pitch Rfoot roll

(b) Support foot behaviour (swing
foot not depicted).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

−15

−10

−5

0

Time [s]

E
ul

er
an

gl
es

[d
eg

]

Roll of the pelvis
Pitch of the pelvis
Disturbance duration

(c) Angular movement of the pelvis.

Figure 4.6: Resulting motions from an impulse disturbance at the shank. The robot takes 6
steps before standing stably.

the angular movement of the pelvis Euler angles (Fig. 4.6c) show that the robot recovers into
an almost nominal pose after six steps.

4.5.3 Landing from Height

A different type of impact is applied to the robot by dropping it from a height above the ground
with the objective to land stably. Landing involves high impact and sudden changes in ground
contact. Various control strategies involving the Zero-Moment Point (ZMP) or CP assume
steady contact with the ground and, without a switching mechanism, fail to perform when the
robot is in the air. This test scenario is used to test whether the policy can handle high impact
and sudden change in ground contact and land stably.

The robot is capable of landing after being dropped from a maximum height of 0.55m above
the ground. Furthermore, it is able to handle randomly initialized pitch orientations of the pelvis
within [−5◦,5◦] under a dropping height of 0.4m (with a leg length of 1m, this is a displacement
of 0.087m = 1m ·sin(5 π

180 compared to the initial position).

4.5.4 Combined Test Case

Lastly, a combined test case involving linear and angular momentum disturbances is designed.
In this test scenario, we first apply a vertical force upward to lift the robot off the ground and
then apply a horizontal force when the robot is in the air. As a result, the robot has to handle
linear and angular momentum and sudden high impacts at the same time. The robot is able to
recover for a vertical impulse of 500Ns, and a horizontal impulse of 70Ns. In order to deal with

48

4.5. RESULTS

this combined disturbance, the policy used all four push recovery strategies: ankle, hip, toe,
step. Apart from the physical impossibility of throwing a 137kg robot, the resulting joint torques,
velocities are within the joint limits of the real Valkyrie (cf. Section 4.5.7).

4.5.5 Robustness against Noise in Observation and Action Space

In real world applications, noisy measurements and actuation signals are a main contributor to
the discrepancy between simulations and reality. In order to test our control framework’s ability
to be applied in the real world, its ability to handle noise both in action and observation space
is tested. For this, a Gaussian distributed noise d ∼ N (µ,σ) is added to both action space
(µ= 0,σ= 0.1), and state space (µ= 0,σ= 0.5). We found that the control framework is able to
handle both. The observation noise is filtered by the Butterworth lowpass filter, while noise in
the action space is handled by the robustness of the policy.

4.5.6 Comparison against other Control Methods

In order to compare the results obtained from the policy with other work, the disturbance is
normalized. The applied force needs to be put in relation with the duration of the push, resulting
in the impulse acting on the system. Furthermore, the mass and the resulting inertia is a crucial
variable to a robot’s ability to deal with disturbances. Therefore, the impulse is normalized by
the weight of the robot.

The normalized impulse is used for comparison between the controllers of other work [72],
[70], [81], [82] and the learned policy (Table 4.6). We compared sagittal and lateral pushes.
For the sagittal push, two impulses are chosen such that foot stepping occurs for the larger
impulse (1.73Ns/kg), while the smaller impulse (0.57Ns/kg) will result in a strategy without
stepping. By comparing the rejectable normalized impulse of the strategies not taking a step
(A, B, E, G), it can be seen that our policy performs similar (E: 0.57Ns/kg, G: 0.56Ns/kg) to the
other controllers (A: 0.6Ns/kg, B: 0.52Ns/kg). For the strategies taking a step (C, D, F), our
policy is able to perform better (F: 1.73Ns/kg) than the stepping controllers C (0.52Ns/kg) and
D (0.6Ns/kg). Albeit our results are obtained from simulation whereas C and D are obtained
from real experiments, we show in the next section that the generated motions are realistic
and within the real physical constraints.

4.5.7 Realism of Generated Motions

Despite learning is trained in a simulator, we emphasize realistic motions by enforcing joint
angle, velocity, and torque limits, which are the same as on the real Valkyrie robot. Therefore,
the learned motion could be applied on the real Valkyrie robot without violating physical
constraints. Table 4.7 compares the peak torques and velocities for different scenarios. The
chosen scenarios require the largest joint torque for dropping and the largest joint velocities for

49

CHAPTER 4. LEARNING BALANCING SKILLS FOR BIPEDS IN 3D SIMULATION

Table 4.6: Push disturbance from various push recovery studies

A:
Wieber
2006a
[70]

B:
Wieber
2006b
[81]

C:
Stephens
2010 [82]

D: Urata
2011
[72]

E: Sagittal
push w/o foot
stepping

F: Sagittal
push w/ foot
stepping

G: Lateral
push w/o foot
stepping

Robot HRP-2 Biped
model

Sarcos
Primus

HRP3L-
JSK

Valkyrie Valkyrie Valkyrie

Robot height [m] 1.539 1.425 1.575 N/A 1.8 1.8 1.8
COM height [m] N/A N/A N/A 0.803 1.1 1.1 1.1
Mass [kg] 58 40 92 53 137 137 137
Force [N] 1500 750.0 N/A 597 600 2000 650
Interval [s] 0.025 0.025 N/A 0.05 0.12 0.12 0.12
Impulse [Ns] 37.5 18.8 42.0 29.9 72.0 240.0 78.0
Normalized impulse [Ns

kg] 0.6 0.52 0.52 0.6 0.57 1.73 0.56

Stepping No No Yes Yes No Yes No
Simulated Yes Yes No No Yes Yes Yes

Table 4.7: Peak torques and velocities for different scenarios.

Peak joint torque [N] Peak joint velocity [rad/s]
Torso
pitch

Hip
pitch

Hip
Roll

Knee
pitch

Ankle
Pitch

Ankle
Roll

Torso
pitch

Hip
pitch

Hip
Roll

Knee
pitch

Ankle
Pitch

Ankle
Roll

Joint limit 150 350 350 350 205 205 9.00 6.11 6.11 11.00 11.00 11.00
Nominal standing 68.4 39.5 57.1 122 44.9 46.2 0.0 0.0 0.0 0.0 0.0 0.0
0.55m Drop 150 221 350 350 205 205 4.69 2.01 6.11 9.95 11.0 11.0
78Ns Pelvis (lateral) 104 147 103 264 117 106 0.15 0.58 0.46 1.09 0.96 11.0
240Ns Pelvis (sagittal) 150 187 350 350 205 205 6.49 1.47 6.11 5.69 11.0 11.0

taking multiple steps due to large pushes at the pelvis. All other presented test cases required
less joint torque and velocity than the the ones presented in Table 4.7.

4.6 Conclusion

In this chapter we proposed a learning framework which is able to learn a versatile unified
control policy via Deep Reinforcement Learning. We found that the policy is able to deal with
different types of disturbances and has comparable performance to conventional controllers.
The policy acquired is capable of functioning in unseen situations, demonstrating that it
is generalizing well over tasks. Furthermore, the proposed learning framework is learning
algorithm independent. We showed successful balance recovery with a policy trained with
three of the state-of-the-art DRL algorithms: TRPO, PPO, and DDPG. The emerging motions
for push recovery are similar to human motions demonstrating the ankle, hip, foot-tilting, and
stepping strategy. We compared the learned policy against traditional push recovery controllers
and found similar disturbance rejection capabilities.

50

Chapter 5

Learning Walking Skills for Bipeds

In Chapters 3 and 4, we explained how deep reinforcement learning can be used to obtain
robust 2D and 3D bipedal balancing policies. In this chapter, we use the learning framework
from Chapters 3 and 4 as a basis for designing the learning framework for bipedal locomotion.

This chapter presents a new learning framework that leverages the knowledge from imitation
learning, deep reinforcement learning, and control theories to achieve human-style locomotion
that is natural, dynamic, and robust for humanoids. We proposed novel approaches to introduce
human bias, i.e. motion capture data and a special Multi-Expert network structure. We used
the Multi-Expert network structure to smoothly blend behavioural features, and used the
augmented reward design for the task and imitation rewards. Our reward design is composable,
tunable, and explainable by using fundamental concepts from conventional humanoid control.
We rigorously validated and benchmarked the learning framework which consistently produced
robust locomotion behaviours in various test scenarios. Further, we demonstrated the capability
of learning robust and versatile policies in the presence of disturbances, such as terrain
irregularities and external pushes.

5.1 Introduction

How can one advance the autonomous capabilities of legged robots by leveraging and incorpo-
rating 50 years of research on legged locomotion into a new paradigm [24], [83]? This chapter
proposes a Deep Reinforcement Learning (DRL) Framework that is able to incorporate both
prior research knowledge in legged locomotion and human reference motions for training the
robotic gait. We investigate to what extent human inductive bias can and should be incorporated
into a learning framework to aid the exploration while not limiting the discovered motion, and
generating realistic motions. Human bias is mainly induced by incorporating imitation data,
and designing a DRL framework that emphasizes on generating realistic, implementable, and
energy-efficient motions.

Design choices reflecting human inductive bias for versatile motion on the real robot can

51

CHAPTER 5. LEARNING WALKING SKILLS FOR BIPEDS

Single support (Right) Single support (Left)

Left

Right

0% 100%50%

Figure 5.1: Natural human-like symmetric walking pattern generated by the learning framework.
The blue and green bar represents left, right foot contact phases respectively.

be roughly categorized by the choices influencing (a) the training results, and (b) the behaviour
during run-time. During training, one can influence the behaviour and success of the learning
in the reward design, providing reference motions, designing appropriate training procedures,
and selecting the appropriate network structure. For run-time, the designer needs to guarantee
that the trained agent produces realistic and feasible motions that can be implemented on the
real system while also keeping the reality gap between simulation and the real robot as small
as possible. Here, we aim to provide novel technical approaches that lead to the success of
both training and deployment of learned policies on simulated robots.

The key question we want to investigate is: how can we induce more human bias for more
realistic and natural looking motion? We have studied three novel approaches in the framework
design where bias can be introduced: 1.) initialization and termination of the state, 2.) selection
of a task appropriate network structure, 3.) augmented reward design: task completion and
imitation of reference motions.

The contribution of this chapter are summarized as follows.

• Novel approaches to introduce human bias in the framework generating human-like,
realistic motions through imitation learning;

• A multi-expert network structure with smooth blending properties for humanoid bipedal
locomotion;

• Integration and design of control system and the reinforcement learning framework for
better replication of the results.

In the following, related research involving leveraging human knowledge in machine learning
are briefly reviewed in Section II. Background information of the robot platform, simulation
environment and control framework is presented in Section III. Next, the details involved in the

52

5.2. RELATED WORK

framework design is expanded on in Section IV. The training results are demonstrated and
analyzed in Section V. Finally, the work is concluded in Section VI.

5.2 Related Work

Commonly, reinforcement learning attempts to automate the learning process to avoid over-
using human engineering and thus preventing human bias by allowing the agent to infer the
reward by itself [84]. While over-engineering and shaping the reward leave possibility of reward
exploitation [62], carefully introducing human knowledge in DRL, such as specially designed
network structures, can yield better results compared to baseline vanilla Fully-Connected
Neural Networks (FCNN) [85]. Incorporating human prior knowledge into learning based
methods is also known to increase the data efficiency [86]. To generate realistic motions, we
review two main methods, i.e. imitating reference motions and network structure choice, in the
following sections.

5.2.1 Leveraging Demonstrations

By incorporating human inductive bias such as reference motions from human expert demon-
strations, the quality of the resulting motions can be improved. Learning from demonstration is
a technique that extracts information from the reference motion generated by expert demon-
strations to guide an agent. Notable examples include Behaviour cloning (BC) [32], Inverse
Reinforcement Learning (IRL) [33], and Generative Adversarial Imitation Learning (GAIL) [34].
BC minimizes the difference between the student and expert behaviour in a supervised learning
fashion. IRL predicts a reward function such that RL can reproduce the demonstrated motion.
GAIL learns a discriminator to measure the similarity between demonstrations and behaviours
generated by the policy.

Directly leveraging demonstrations in the reinforcement learning paradigm can be achieved
through the use of a tracking reward [8]. This method involves designing a reward dedicated to
measuring the similarity between the robot state and the demonstration dataset. The tracking
reward will then be combined with the task reward.

5.2.2 Leveraging Human Knowledge in Network Design

Introducing human preferences by designing special network structures has shown to improve
the overall performance and learning speed of the agent in multiple benchmarking simulation
environments [85].

Residual policy learning methods involves hand-designing a base policy, and learning
a residual policy that augments upon the base policy to adapt to external disturbance [87].
Many specially designed network structures fall into this category. For locomotion, a base
periodic trajectory is hand designed to generate periodic gaits, and a residual neural network

53

CHAPTER 5. LEARNING WALKING SKILLS FOR BIPEDS

is added upon to regulate the output of the base policy [43]. Additionally, this type of residual
networks are not only used to construct policies, but also to augment simulators for more
realistic dynamics [88].

Mixture of Experts (MoE) is a supervised learning architecture composed of of many
separate experts, each of which is specialized for a subdomain of the task. A gating mechanism
is responsible for selecting the required expert for a given input. Special neural network
architectures inspired by MoE, such as Phase-Functioned Neural Networks (PFNN) [89]
and Mode-Adaptive Neural Networks (MANN) [90], have been proposed to generate smooth
locomotion behaviours for animation of humanoid and quadrupedal characters

Additionally, a bio-inspired approach uses the Central Pattern Generator (CPG), a neural
oscillator, to model the functionality neural circuits within the spinal cord of verterbretes for
rythmic movements. CPG is commonly used to construct the bio-inspired control policy for the
locomotion of legged robots due to their ability to produce coordinated rhythmic and periodic
gaits [91].

5.3 Learning Setup for Locomotion

In this section, we describe the specifications of the robot platform and the simulation environ-
ment, and detail the control structure and the human demonstration data.

5.3.1 Control Structure

The control framework contains two layers and is explained in detail in Chapter 2. The high-level
control loop consists of a DRL agent that operates at 25Hz, while the low-level control loop
consists of a PD controller that operates at 500Hz. The neural network generates desired joint
angles for the low-level PD controllers that produce joint torques (c.f. Fig. 2.3). The gains for
the PD controller can be seen in Table 5.1.

5.3.2 Robot Platform

The algorithm is simulated in an environment with the Valkyrie robot platform. Valkyrie has a
total of 26 DOF, for which only the 15 lower body joints are actuated in this chapter: 3 waist
joints (roll, pitch, yaw), and two 6 DoF leg joints (hip roll, hip pitch, hip yaw, knee pitch, ankle
pitch, ankle roll).

5.3.2.1 Action Space

The outputs of the policy are the 15 target joint angles for the lower body joints of Valkyrie
robot. The target joint angles are sent to the PD controller to be translated into torque for the

54

5.3. LEARNING SETUP FOR LOCOMOTION

Table 5.1: PD gains for the joints of Valkyrie. Only the joints in the torso and lower body are
actuated.

Valkyrie

Kp (Nm/rad) Kd (Nms/rad)

Torso yaw 1000 100

Torso pitch 3000 300

Torso roll 3000 300

Hip yaw 1000 100

Hip roll 1500 150

Hip pitch 2000 180

Knee pitch 2000 180

Ankle pitch 2000 120

Ankle roll 1500 90

joint motor. Low level joint position control was chosen over torque control as this has been
shown to achieve better performance [25].

5.3.2.2 State Space

The policy only receives egocentric proprioceptive features as state observations. The state
is adjusted to align with the gravity vector in relative coordinates, and is invariant to the
yaw orientation of the pelvis in the world frame, and thus not affected by any steering in
yaw orientation. The state space is chosen as in Chapter 4 and consists of joint angles
and velocities, end-effector-to-pelvis vector, pelvis linear velocity and angular velocity, pelvis
orientation relative to the gravity vector, Center of Mass (CoM) velocity, CoM-to-pelvis vector,
and ground contact force. The observation is filtered using a low-pass Butterworth filter with a
cutoff frequency of 10Hz.

An additional time input is added to the state to provide a time reference. Providing only
reference motion for imitation learning without time will introduce temporal ambiguity, since the
agent will not be able to infer the temporal relations of the reference motions. Time information
is provided as normalized phase input that increments from 0 to 1 and resets after a certain
time period [8]. This phase function, however, has an abrupt discrete jump from 1 to 0 that
may cause non-smoothness in the learning behaviour in the neural network. To mitigate this
problem, we generate smoothness by projecting the 1D phase onto a 2D unit-cycle (Fig. 5.2).

5.3.3 Human Motion Collection

The motion capture data is obtained using the Vicon motion tracking system. The reference
features from motion capture data originate from a human of different morphology than the robot.

55

CHAPTER 5. LEARNING WALKING SKILLS FOR BIPEDS

Figure 5.2: The 1D Sawtooth phase is projected onto a 2D unit-cycle for a smooth transition
between each cycles.

Therefore, the human motion data has to be preprocessed before being used as reference for
imitation learning. Since the human foot is narrower than the robot’s, the reference hip yaw
and hip roll angles are set to 0 to avoid the robot tripping on its own feet. Due to its limited
influence on the gait, the torso roll and torso yaw are also set to 0.

The phase must be labeled for the human motion data and need to be used as a time
reference to ensure that the state of the robot is aligned to the corresponding state of the
human demonstration. The phase is labeled by observing the contact of both feet. We label
the moment when the right foot makes contact with the ground with a phase of 0, the moment
when the left foot makes contact with the ground with a phase of 0.5, and the moment when
the next right foot makes contact with a phase of 1 (Fig. 5.1). These are then interpolated for
the remaining in-between data points.

5.3.4 Deep Reinforcement Learning

The goal of reinforcement learning is to find an optimal policy that maximizes the discounted
return. The discounted return is used as an evaluation of performance and is determined by
summing the exponentially discounted reward,

Rt =
T−t∑
l=0

γl r t+l , (5.1)

where T is the total number of samples in an episode and γ is the discount factor.

5.3.4.1 Choosing the Discount Factor

Alternatively to tuning the discount factor γ, the half-life of discounted future rewards can be
used as a reference [54], [30]. For locomotion, a time horizon of one foot step with a duration
around 0.5s is enough to plan a stepping strategy. At a frequency of 25Hz this equates to 13
time steps. We choose the discount value in a way that the half-life of the future reward occurs
at 0.5s, meaning that the accumulated discount factor becomes 0.5 at 13 time step γ13 = 0.5,
hence γ≈ 0.95.

56

5.3. LEARNING SETUP FOR LOCOMOTION

5.3.4.2 Policy Optimization

In this chapter, we chose to use Proximal Policy Optimization (PPO) [15]. PPO is an on-policy
DRL algorithm that tackles the problem of convergence by constraining the update step size
through the use of clipped surrogate objective.

LCLIP = Et
[
min(r t(πθ)At,clip(r t(πθ),1−ε,1+ε)At)

]
r t(πθ)= πθ(at|st)

πθold(at|st)
, LPPO =−LCLIP.

(5.2)

LCLIP is the objective function that PPO maximizes. The term clip(r t(πθ),1− ε,1+ ε) clips
the probability ratio, discouraging large policy changes. Furthermore, the clipped objective
clip(r t(πθ),1−ε,1+ε)At) is compared to the unclipped objective r t(πθ)At, and the lower bound
is chosen. The advantage At will be computed using generalized advantage estimator (GAE)
[80].

5.3.4.3 Bounding the Action Space

Bounding the action space is important as the real robot systems have actuation limits. Using
hyperbolic squashing functions tanh for bounding the action space have been shown to be
disadvantageous due to saturation close to the boundary [65].

Instead of providing a hard constraint on the boundary of the network, we propose to
implement a soft constraint by designing a bounding loss. Penalty is applied when the output
of the neural network µ exceeds the lower ∆low and upper ∆up boundary, allowing the network
to operate with outputs near the limit without saturation.

Lbound =

0, ∆low ≤µ≤∆up

0.5(µ−∆up)2, ∆up <µ
0.5(∆low −µ)2, µ<∆low

. (5.3)

The loss function L used for back-propagation is the sum of LPPO and Lbound:

L =LPPO +Lbound. (5.4)

The action space of the actor network directly maps to the target joint angle of the robot’s
actuated motor. The lower ∆lower and upper ∆up boundary of the soft constraint correspond
to the lower and upper boundaries of the physical joint. An additional hard clipping is applied
in the environment to ensure that the output action does not exceed the physical limits of the
joints.

57

CHAPTER 5. LEARNING WALKING SKILLS FOR BIPEDS

5.4 Framework Design

The major contribution of this work presented in this chapter will be discussed thoroughly here:
the approaches of introducing human bias, e.g. reference motions and specialized network
design, into the learning framework through imitation reward design.

5.4.1 Reward Design

Reward design is an important aspect in reinforcement learning as it governs the behaviour of
the agent. Our reward consists of a task term and imitation term similar to that presented in
[8]. The task term provides the guidance necessary for the agent to achieve the locomotion
objective, while the imitation term biases the behaviour towards a human-preferred walking
pattern.

Due to their bounded nature within the range of [0,1], Radial Basis Function (RBF) kernels
are preferred for shaping the reward [29], [30], [54] and will be used in the following:

K(x, x̂,α)= eα(x̂−x)2
, (5.5)

where x is the current state, and x̂ is the desired value for that state. The hyperparameter α
controls the width of the kernel. The correct choice of α largely impacts learning as it guides
the gradient of the reward and thus gives crucial signals for correct credit assignment of the
DRL algorithm.

The reward r = w1rimitation +w2rtask consists of an imitation term rimitation and a task term
rtask weighted by the weights w1,w2. The imitation term encourages the robot to follow the
human demonstration, while the task term encourages the robot to satisfy the task specific
objective:

5.4.1.1 Imitation Reward

The imitation reward consists of a joint position tracking rjoint_pos and foot ground contact
tracking rcontact (c.f., Table 5.2):

rimitation =rjoint_pos + rcontact. (5.6)

The joint position reward rjoint_pos is calculated at phase φ by measuring the difference between
the measured joint angle qφ and the target joint angle reference q̂φ. Furthermore, the foot
contact has to match the contact configuration in the motion reference, represented by the
support phase in the human motion data.

58

5.4. FRAMEWORK DESIGN

Table 5.2: Detailed description of imitation reward terms. The imitation reward terms are used
to measure the distance between the generated and the reference motions. The corresponding
normalization factor and weight for the reward terms are α and w.

Task reward terms
Joint position K(θi, θ̂i,α) (i represents joint index) α=−56.69 w = 0.454

Ground contact

{
1, matches desired foot contact
0, does not match desired foot contact.

w = 0.045

Table 5.3: Detailed description of task reward terms. The terms are combined to construct the
task reward. The corresponding normalization factor and weight for the reward terms are α

and w.

Task reward terms
Torso pitch K(θn,0,α),n = torso pitch α=−2.80 w = 0.017
Torso roll K(θn,0,α),n = torso roll α=−2.80 w = 0.017
Pelvis pitch K(θn,0,α),n = pelvis pitch α=−2.80 w = 0.017
Pelvis roll K(θn,0,α),n = pelvis roll α=−2.80 w = 0.017
Position in y axis K(y, ŷ,α) α=−14.10 w = 0.034
Position in z axis K(z, ẑ,α) α=−14.10 w = 0.069
Velocity in x axis K(ẋ,1.0,α) α=−6.91 w = 0.138
Velocity in y axis K(ẏ,0.0,α) α=−6.91 w = 0.017
Velocity in z axis K(ż,0.0,α) α=−6.91 w = 0.034
Yaw velocity K(ωyaw,0,α) α=−11.21 w = 0.069
Ground contact force K(F,1342,α) α=−2.45e−6 w = 0.017
Torque penalty 0.001 ·∑11

j=0(τ j)2 w = 0.017

Ground contact

{
0, if no foot contact with ground
1, if upper body contact with ground.

w = 0.017

Alive bonus

{
0, if no foot contact with ground
1, if upper body contact with ground.

w = 0.017

5.4.1.2 Task Reward

The task reward is the sum of multiple reward terms. Each individual reward term reflects
different physical aspects of the system:

rtask =rpose + rCOM_pos + rCOM_vel + ryaw_vel

+ rcontact + rfail + rtorque.
(5.7)

The task reward for the locomotion objective is constructed using the designed principle
presented in [30]. The chapter presents a reward design principle for bipedal balancing tasks.
By setting the target COM velocity in the x axis to positive 0.5m/s, the reward for balancing can
be repurposed for locomotion objectives. For further details of the reward design, please refer
to Table 5.3.

59

CHAPTER 5. LEARNING WALKING SKILLS FOR BIPEDS

5.4.2 Network Design

Human locomotion is inherently periodic, and is therefore reasonable to incorporate structures
and elements that are periodic in nature into the network design. In this work, we investigate
the periodic characteristics of PFNN (Fig. 5.3a) and MANN (Fig. 5.3b) and their effects on
locomotion tasks.

α0 α1

α2α3

Θ
Expert 1 Expert 2

Expert 3Expert 4

(a) Phase Functioned Neural Network

AS

ϕ

Expert 1 Expert 2

Expert 3Expert 4

(b) Mode Adaptive Neural Network

AS

α0 α1

α2α3

S g

Gating network

α0 α1

α2α3

Θ
Expert 1 Expert 2

Expert 3Expert 4

(a) Phase Functioned Neural Network

AS

ϕ

Expert 1 Expert 2

Expert 3Expert 4

(b) Mode Adaptive Neural Network

AS

α0 α1

α2α3

S g

Gating network

Figure 5.3: The detailed structure of PFNN and MANN. Both have a gating mechanism that
generates the blending weights αi, which are used to blend the expert networks to construct
the prediction network.

Considering the unique gating mechanism in MANN and PFNN, the state input of PFNN
and MANN differs from FCNN. For PFNN, the phase input is isolated from the other state and
is fed into a phase function. For MANN, the input Sg for the gating network consists of the
phase, joint positions and joint velocities. The expert networks for both PFNN and MANN have
access to all state features except from the phase. For FCNN, all available states including the
re-parameterized phase are sent into the network.

Unlike most networks where network parameters θ stay fixed during runtime, the parameters
of a PFNN are function values that change depending on the phase variable φ. Within PFNN
exists multiple individual sub-networks which we refer to as expert networks, each of which
specializes in a particular task. The expert networks are not directly accessed, instead they
are blended to reconstruct a separate network which we will refer as prediction network.

The parameters of the prediction network are computed during runtime by performing a
weighted sum operation to blend the parameters of the expert networks:

θprediction =
i∑
n
αiθ

i
expert, (5.8)

where αi are the blending weights generated by a phase function Θ(φ). For MANN, the phase
function Θ(φ) is replaced with a separate gating network G(Sg) to generate the blending weights
αi. For a detailed explanation of PFNN and MANN, please refer to [89], [90] respectively.

60

5.4. FRAMEWORK DESIGN

5.4.3 Sample Collection

In locomotion tasks, not all states are reversible. Due to the existence of gravity, the robot is
naturally inclined to fall towards the ground. The distribution of the samples will thus be biased
towards samples in which the robot is struggling on the ground to get up. Those samples are
not necessarily good for the network to learn to achieve the desired locomotion tasks. We thus
augment the sample distribution in favor of samples that are relevant to the tasks by changing
both the initialization and termination of the episode in certain states:

5.4.3.1 Initializing Starting State

A disadvantage of fixed state initialization lies in the required time for the agent to learn to
encounter high value states. Furthermore, the collected samples will suffer from a lack of
diversity since it will be dominated by states close to the fixed initialization. The following
approaches have been proposed to leviate this problem:

• Initialize from demonstration: In cases when demonstrations are available, it is common to
initialize the agent with a state sampled from demonstration trajectory [8]. In the absence
of demonstration states, hand-designed reference states can also be added [54].

• Initialize from history samples: Alternative to initializing from external demonstrations,
selected, past samples as initialization states is applied [92].

• Learning separate initialization policy: A separate reset policy can be trained in parallel
to the task policy. This method is necessary for learning in real world where instant reset
is impossible [93].

In this work, we chose to use the approach of initialization from demonstration, since the
human motion capture data used for imitation learning can also be reused to initialize the robot.

5.4.3.2 Early Termination

During early termination, the rollout is terminated when the robot reaches a terminal state.
The terminal state can be either a successful goal state or an irreversible fail state. Early
termination diversifies the sample distribution by increasing the reset frequency. For scenarios
with irreversible fails states, termination and resetting the rollout prevents the samples from
being dominated by fail states during the early learning stage:

• Termination with physical criteria: A common way to determine a irrecoverable fail state
is to use a physical criteria from the environment, i.e. pelvis height and undesirable body
contact for locomotion tasks [8].

61

CHAPTER 5. LEARNING WALKING SKILLS FOR BIPEDS

• Termination with Critic value: A low critic value can be used as a makeshift criteria to
determine a fail state [93] as fail states tend to have low reward, which would then be
reflected in the learned critic value.

• Early termination due to time constraint: Even in cases where there are no irreversible
fail state, it might be useful to terminate the episode after a prolonged period for more
frequent reset to diversify the samples [94].

Initialization from demonstration can be combined with early termination to augment the
sample distribution in a way that increases sample diversity. In our work, we initialized the robot
using joint references from human motion capture data. The termination condition is triggered
when the pelvis height is beneath 0.5m and when the upper body contacts with the ground.
The episode will be also be terminated and reset after a prolonged period exceeding the time
constraint of 30s.

5.5 Results

We first present the learning results compared to the achieved cumulative, undiscounted
reward, and then quantitatively and qualitatively show the effect of imitation learning and the
choice of the network structure in a comprehensive performance analysis based on three
criteria: stability, robustness, and energy consumption.

5.5.1 Learning and Comparison Setup

All agents are trained on a commercial Intel i9 CPU equipped with a Nvidia 2080Ti GPU.
For comparison purposes, each policy is trained for 400 iterations with 4096 steps for each
iteration using either a FCNN, PFNN, or MANN network structure and converges after 48 hours.
Each network consists of two hidden layers, the multi-expert networks use 4 experts with
128×128 neurons. MANN has an extra gating network with 32×32 neurons. To guarantee that
the behaviours and performances originate from the network structure and is not constrained
by the amount of neurons available, we trained with larger amounts of neurons.

At each iteration the cumulative reward is obtained by executing the deterministic policy on
the current state. The reward for including imitation is calculated by r = 0.5 · rimitation +0.5 · rtask;
and r = 0.0 · rimitation +1.0 · rtask if no imitation is used (c.f. Section 5.4.1). At a maximum reward
of 1 in a single timestep, the highest achievable cumulative reward for a complete episode is
750 at 750 time steps (30s).

Fig. 5.4 depicts the learning curves for different network structures averaged over 5 trials.
With imitation reward provided, MANN obtains the highest reward followed by PFNN in close
margins. Without imitation, the FCNN with 128 neurons (FCNN 128×128) has the highest
reward.

62

5.5. RESULTS

(a)

(b)

(a)

(b)

Figure 5.4: Learning curve for 4 different network setups averaged over 5 trials.

Figure 5.5: Learning curve of the task reward component. The addition of the imitation reward
allows the agent to achieve the task objective much better, reflected by the higher task reward
value.

5.5.2 Analysis of the Influence of Imitation Learning

The agent is able to learn a successful policy both with and without imitation reward. The task
reward itself is sufficient to generate a locomotion behaviour. However, the most significant
difference arises in the gait pattern. By including the imitation reward, the agent is able to learn
a symmetric gait that resembles the human walking motion data from which it learns. Without
imitation learning the agent learns an asymmetric leaping gait with one leg constantly in the
front and the other at the back (c.f. Fig. 5.6b).

Introducing the imitation term not only creates a better, human-like gait pattern, but also
improves the overall locomotion task performance of the policy. From Fig. 5.5 and Table 5.4
we can see that including the imitation term allows the agent to learn a policy that achieves
a higher reward in the task term, meaning that adding human demonstration also allows the
agent to achieve the locomotion task better. Amongst all combinations, MANN with imitation
achieves the best performance with respect to the collected reward.

However, introducing an imitation term reduces the performance of the agent in terms of
generalization (tasks and environments that the policy was not trained in), such as disturbances
and walking over uneven terrain (c.f. Table 5.5). This decline in performance can be explained
by the fact that the agent encounters less distinct states as the imitation reward encourages

63

CHAPTER 5. LEARNING WALKING SKILLS FOR BIPEDS

(a) (b)

Figure 5.6: Locomotion behaviour of MANN (a) with and (b) without imitation. The blending
weights fluctuate over a gait cycle, indicating that the primitive networks are activated differently
during different gait phases, demonstrating specialization within the multi-expert structure. (a)
a human-like gait pattern with symmetrically distributed left, right foot contact periods. (b) an
un-human like gait pattern with asymmetric foot contact period.

Table 5.4: Maximum reward during each episode. MANN with imitation achieves the highest
task reward.

Neural
Network

w/ Imitation w/o Imitation
Imitation term Task term Task term

FCNN 128×128 465 596 567
PFNN 549 612 439
MANN 528 652 541
FCNN 512×512 416 599 463

the agent to be in states as close as possible to the reference motion.

5.5.3 Comparison Study between Neural Network Structures

The PFNN and MANN network consist of 4 individual experts with two hidden layers containing
128 neurons, therefore having 4 times the neurons. For fair comparison, we included another
FCNN with 512 neurons in the hidden layer to even out the advantage of PFNN and MANN.

FCNN (512×512) performs poorly on locomotion in both with and without imitation learning
scenarios even though having the same amount of neurons with PFNN and MANN, and 4
times the neurons of FCNN (128×128). Showing that the behaviour is not limited by the
expressiveness of the network and increasing network size does not guarantee improvement.
This further indicates that the high performance from MANN and PFNN is a result of the
network structure rather than the increased number of neurons.

From Fig. 5.4, a difference for all three neural networks in convergence speed and the
converged cumulative reward can be seen. With imitation learning, MANN and PFNN converges
to a higher reward with faster speed compared to that of FCNN. Furthermore, it can be seen that
PFNN performs poorly on the locomotion tasks without imitation reference provided. However,

64

5.5. RESULTS

Table 5.5: Performance analysis for imitation learning and different network structures.

Disturbance type with Imitation without Imitation
FCNN MANN PFNN FCNN

512
FCNN MANN PFNN FCNN

512
Impulse in [Ns] 280 280 300 290 470 420 400 550
Can blindly walk over stairs 3 3 7 7 3 3 7 3
Thrown cube weight in [kg] 5 4 6 7 10 7 7 11

PFNN is able to generate human-like symmetric periodic gaits without human reference
due to its inherent periodic structure, unlike FCNN and MANN which relies on the human
demonstration.

We recorded the output of the gating network of MANN to analyze the specialization of each
experts. The blending weights αi for each expert show a distinctive pattern that corresponds
to the phase cycle of the walking gait (Fig. 5.6), which indicates that the MANN has an
understanding that specialization is necessary for different instance in the phase.

5.5.4 Performance Comparison

Many research papers have used Genetic Algorithm (GA) to obtain the parameters for CPG
[95], while some others have used policy search reinforcement learning [96]. However, training
CPG with policy search requires special modification of the RL framework [96]. Also, due to its
internal states, the CPG neuron is regarded as one type of recurrent neural network (RNN), thus
training CPG with policy search requires Back-Propagation Through Time (BPTT). Therefore,
CPG has not been included in our comparison study as it requires a different technique - BPTT
- in order to be compatible with standard RL procedure. In contrast, both PFNN and MANN can
be trained on the same basis using the same back-propagation technique of regular FCNN.

In the following, we analyze the performance for using imitation, and different network
structures. The performance is evaluated based on the robustness, stability, and energy
efficiency of the resulting gait.

5.5.4.1 Robustness

Different test scenarios are used to evaluate the robustness of the learned locomotion policy:

• Push on pelvis: We applied various amount of forces on the robot pelvis and observe
how much disturbance the robot can withstand. The robot is able to withstand a impulse
up to 550Ns (5500N over 0.1s), c.f., Fig. 5.7(a). A comprehensive comparison across all
combinations is shown in Table 5.5. The policies that are trained without the imitation
term are able to resist larger disturbances.

65

CHAPTER 5. LEARNING WALKING SKILLS FOR BIPEDS

(a)

(b)

(c)

Figure 5.7: Robustness: (a) 550Ns impulse on pelvis; (b) walking over stairs with variable
heights: 2.5cm, 5cm, 10cm, 5cm, 2.5cm; (c) constantly throwing cubes at 20m/s initial velocity.

Table 5.6: Performance analysis for imitation learning and different network structures.
with Imitation without Imitation

FCNN MANN PFNN FCNN 512 FCNN MANN PFNN FCNN 512
Performance
metric

mean std mean std mean std mean std mean std mean std mean std mean std

Distance CP
to SP

0.141 0.083 0.154 0.099 0.193 0.131 0.147 0.089 0.182 0.104 0.233 0.106 0.248 0.156 0.250 0.116

Cost of Trans-
port [W/m]

301 142 258 153 278 130 281 146 259 168 309 155 261 128 405 268

• Blindly traversing uneven terrain: Even though the agent is trained without external visual
input and in a flat environment, some of the learned policy are able to generate a robust
locomotion behaviour traversing over uneven terrain without falling (Fig. 5.7(b)).

• Persistent small disturbance: Lastly, we investigate how the policy behaves under frequent
small disturbances. Random cubes of various weights are thrown towards the robot with
an initial velocity of 20m/s (Fig. 5.7(c)). All policies are able to withstand disturbances
induced by the cubes. The robot is able to withstand heavier cubes with policies trained
without imitation.

5.5.4.2 Stability

To investigate the stability, the Capture Point (CP) is analyzed with respect to their shortest
distance to the edge of the Support Polygon (SP), which are listed in Table 5.6. The larger the
distance, the more stable it is as the CP have a larger margin before shifting out of the SP

66

5.6. CONCLUSION

Table 5.7: Peak torques and velocities of leg joints. Torso joints are omitted due to their limited
influence on walking.

Peak joint torque [N] Peak joint velocity [rad/s]

Hip
roll

Hip
pitch

Hip
yaw

Knee
pitch

Ankle
Pitch

Ankle
Roll

Hip
roll

Hip
pitch

Hip
yaw

Knee
pitch

Ankle
Pitch

Ankle
Roll

Joint
limit

350 350 190 350 205 205 6.11 6.11 5.89 11.00 11.00 11.00

FCNN
512

343 350 190 350 205 205 2.99 6.11 3.09 9.58 12.20 11.96

FCNN 234 350 158 350 205 205 2.40 4.69 2.75 6.61 7.01 11.00

PFNN 243 350 141 350 205 205 2.64 6.11 3.92 6.27 11.93 11.14

MANN 278 350 131 350 205 205 1.97 5.47 4.83 8.41 9.08 11.37

5.5.4.3 Energy Consumption

Energy consumption is an important aspect to be considered in reality, and hence, we are
interested in whether including imitation reference or changing network structure influences
the energy-efficiency of learned gaits. We analyze the cost of transport (energy consumed
per distance traveled) for each policy, and found no significant correlation between the cost of
transport and the training setups.

5.5.4.4 Physics Simulation Setting

The pybullet physics engine uses sequential impact solver to calculate the contact dynamics
[1]. We set joint angle, velocity, and torque limits in the physics simulation the same as the
real Valkyrie robot, so as to enforce the policy to learn motions that does not violate the
physical constraints. Table 5.7 compares the peak torques and velocities from different policies.
The ankle joint velocity occasionally exceeds the limit of 11.00 rad/s due to the large ground
impacts.

5.6 Conclusion

In this chapter, we present key novel design approaches of a Deep Reinforcement Learning
(DRL) Framework, and demonstrate that DRL is able to learn a robust, human-like walking
policies that are reactive and robust against external disturbances. In particular, the diversity
of behaviours and the variety of gait patterns exhibited during different test scenarios are all
learned and emerged naturally, instead of being explicitly programmed as in the traditional
approaches.

The comprehensive analysis on the influence of different network structures and imitation
of human demonstrations shows that every structure has its advantage: if designed properly
using the framework in this chapter, FCNN provides a good baseline that is able to generalize

67

CHAPTER 5. LEARNING WALKING SKILLS FOR BIPEDS

well and withstand large disturbances due to the intentionally designed training. If no reference
for imitation learning is available, PFNN is able to generate periodic, symmetric gaits due to
its inherent periodic structure. If a reference is available, MANN using imitation learning is
able to accomplish the best task performance. For all network structures, introducing human
demonstration proves to be beneficial for locomotion tasks, which is reflected by the increased
value of the task objective.

Though we have applied realistic joint torque and velocity constraints in the simulation, the
learned control policy will have difficulty to be directly transferred on a real system due to the
discrepancies between simulation and the real world, such as variations in mass distribution,
friction, and contact dynamics etc. The next step is to bridge the gap between simulated
dynamics and real-world physics and deploy the learned policies on a real robot. Further
research on real-world deployment of DRL based control policies can be seen in Chapter
7. Furthermore, in Chapter 7, we have also continued the research on multi-expert network
structures and developed our own Multi-Expert Learning Architecture.

68

Chapter 6

Learning Fall Recovery Skills for
Bipeds and Quadrupeds

In Chapters 3, 4, and 5, we addressed balancing and walking, both fundamental aspects of
bipedal locomotion. However, there are other skills that are important for locomotion in real-
world environments. In real-world environments, there are many unexpected perturbations.
The robot will likely fall. Hence, a robot needs to have the ability to stand up and recover from
a fall so as to continue to pursue the desired locomotion task.

The ability to recover from a failure caused by a fall is an essential skill for traversing over
rugged terrains successfully. A common approach is to handcraft a trajectory, which requires
significant amount of engineering effort. Handcrafted trajectories also suffers from lack of
generalization, cannot be used for different robot models, and are prone to failure in corner
cases. In this paper, we presented a framework based on model-free deep reinforcement
learning to learn a control policy that is able to utilize its whole body and limbs to generate
a standing-up recovery maneuver. We solved the challenge of reactive and dynamic online
replanning by learning a highly nonlinear versatile feedback policy represented by a deep
neural network. This learning-based approach requires minimal human engineering effort and
is capable of generalizing across robots with different morphologies and scales– humanoids
and quadrupeds. The effectiveness of the framework has been further validated by the robust
performance of the policy while deployed on a real-world quadruped.

6.1 Introduction

Humanoid robots have a morphology and mobility similar to that of humans, which makes
humanoid robots better suited to environments designed ergonomically for humans than other
kinds of mobile robots. Such an ability provides humanoid robots with greater potential for
integrating into human society and everyday life. However, a humanoid robot has a small
supporting region consisting of just two feet, thus making it unstable and very prone to falling.

69

CHAPTER 6. LEARNING FALL RECOVERY SKILLS FOR BIPEDS AND QUADRUPEDS

Failure-resilient locomotion is crucial for the operation of legged robots, including humanoid
and quadruped robots, in unstructured environments. It is necessary for deployment in disaster
response, rescue missions, and scientific expeditions, which all feature unpredictable circum-
stances. When a robot does fall, it is important for it to be able to recover into a canonical
operating state and continue the operation of the desired tasks. The DARPA robotics challenge
is a good real-world example illustrating the importance of fall recovery for humanoid robots.
The tasks within the DARPA challenge focus on disaster or emergency-response scenarios in
unstructured environments that are extremely challenging. Despite tremendous engineering
efforts on the part of all the competing teams and the use of cutting-edge technologies, only the
WPI-CMU team’s Warner robot avoided falling. Among the robots that fell over, Team Tartan’s
Chimp robot was the only one able to stand up after falling.

Humans and animals are remarkably resilient to fall failure, as they have the ability to
recover from any falling posture, making them good sources of inspiration when designing
controllers for fall recovery maneuvers. Many fall recovery controllers for humanoids are
constructed by handcrafting a trajectory that resembles a human fall recovery maneuver
through a heuristic and labor intensive process [97],[52],[51],[50]. The heuristic approaches
require strict conditions to operate properly and do not generalize well to corner cases which
are not accounted for during the design process. Other methods automate the process by
calculating the trajectory depending on the specific falling posture offline [98], [99]. These
automated approaches are able to operate under a wider range of fall postures. However, they
still lack the responsiveness needed to react to external disturbances in real time.

A promising alternative for obtaining fall recovery motions is model-free reinforcement
learning (RL). In this paradigm, an agent interacts with its environment and learns the control
policy through a process of trial and error. One major benefit of using RL is that it requires less
prior knowledge from human experts and is less labor intensive compared to the handcrafted
approach. RL has been used successfully for learning fall recovery policies in humanoid and
quadruped robots [53], [54].

In this research, we design a responsive feedback controller by training a neural network
policy using Deep Reinforcement Learning (DRL). The controller is able to generate the
necessary movements for a humanoid robot to recover to an initial upright standing posture
given any initial fall configuration while also responding to an external disturbance. The aim
of the project is to investigate the use of DRL to generate a robust humanoid fall recovery
controller. The task is to reach an upright standing configuration with two feet in contact with
ground from a random fall configuration. The result shown in this research will serve as a proof
of concept and inspire future researchers to use DRL for humanoid control. The successful
simulation results suggest that it could potentially be used to fully automate humanoid robots
able to move in a non-structured environment outside a robotics laboratory.

70

6.2. RELATED WORK

6.2 Related Work

There has been progress in the robotics community in terms of designing a controller to enable
humanoids to stand up and recover from a fall. For humanoids, standing back up on two feet
is not a trivial task, as it involves multiple contact points with the ground. Such a scenario is
difficult to model and poses many challenges for optimization-based controllers. Fall recovery in
humanoid robots has been achieved with various different approaches. One common strategy
is to handcraft a standing motion by imitating the standing motion of humans. Stückler et al.
have designed a controller for standing up by scripting the target joint angles of the entire
trajectory of the standing routine manually [50]. Kanehiro et al. designed a controller for fall
recovery for the HRP-P2 robot by constructing a graph consisting of the key contact states
within the standing motion and devising a Zero Moment Point (ZMP)-based controller for the
transitions between contact states. This controller has been successfully deployed in a real
HRP robot, which was able to stand up task from supine and prone positions [51].

Compared to humanoid robots, quadrupedal robots are more stable and are less prone to
failures involving a fall and rendering the robot inoperable. Nevertheless, there are still quite a
few papers that have tackled fall recovery in quadrupedal robots. Semini et al. handcrafted a
self-righting recovery sequence for the HyQ2MAX quadruped robot manually [52]. Castano
et al. designed a finite-state machine to achieve fall recovery for the wheeled quadrupedal
robot CENTAURO [100]. The fall recovery designed for the CENTAURO robot is unique, as the
CENTAURO is a non-standard quadruped that has an upper body with two arms, resembling
the mythical centaur. Thus, the fall recovery policy involves utilizing the upper arms.

DRL has shown incredible results in many different fields in recent years. Previous research
has shown that DRL can be successfully applied to learn fall recovery for quadrupedal robots
like ANYmal. Model-free reinforcement learning appears to be a valid autonomous and intelli-
gent alternative for solving the problem of fall recovery. With model-free RL, the learning agent
is able to obtain the policy through interactions with the environment, avoiding the need to
model complex real-world dynamics explicitly. The effectiveness of RL for robot control has
been validated by existing works. Jeong et al. applied Q-learning to solve the problem of fall
recovery for humanoids by discretizing the state and action spaces of the simulated robot
[53], while Lee et al. has trained a fall- recovery policy, applied proximal policy optimization to
learn a continuous fall recovery control policy, and successfully deployed the policy on the real
ANYmal quadruped robot [54].

71

CHAPTER 6. LEARNING FALL RECOVERY SKILLS FOR BIPEDS AND QUADRUPEDS

Figure 6.1: (A) The control graph for a standing-up sequence designed for Valkyrie robot,
consisting of a total of 15 key poses that will be used as initialization states. (B) The control
graph for a standing-up sequence designed for the Spotmicro robot consisting of a total of 9 key
poses that will be used as initialization states. The graph only shows a small set of solutions
for fall recovery motions; there are many other feasible solutions that lead to successful fall
recovery.

6.3 Methodology

6.3.1 Complexity of Fall Recovery Motions

Fall recovery can be viewed as a complex motor behaviour in the context of multi-contact
locomotion tasks using the concept of contact-richness, i.e., the greater the contact-richness,
the more complex the motion. The richness of contact can be reflected by the potentially
large number of unpredictable time-varying points on different body segments making contact
with the environment during the motion. Using this concept, in order to perform a successful
fall recovery motion, a robot is required to utilize multiple body segments to interact with the
environment through multiple contacts.

However, both in simulation and reality, the number of contact points is difficult to specify
for particular body segments which are in contact with the environment. Borràs et al. proposed
a taxonomy of whole-body poses for analyzing multi-contact motions of humanoid robots [101],
[102]. Inspired by the simplification of contact poses within the taxonomy, we simplify our

72

6.3. METHODOLOGY

Figure 6.2: The four robot models investigated. From left to right: (i) Spotmicro, (ii) Jueying Pro,
(iii) Sigmaban, and (iv) Valkyrie.

explanation of contact-richness by focusing on how many body segments are in contact at
each timestep instead of contact points and how the number varies with respect to time during
the motion. We further explain body segments in contact and its variation with time as contact
locations and contact transitions (or contact timing), respectively. In summary, the complexity
of motions for multi-contact cases can be evaluated in terms of contact locations and contact
transitions.

We handcrafted the humanoid and quadruped fall recovery contact transitional graphs (Fig.
6.1) to show the possible transitions between multiple contact configurations (body segments
in contact at a certain time) capable of enabling successful fall recovery. Here, the complexity
of fall recovery behaviours are reflected in the following aspects: (i) there exist multiple fall
recovery strategies, i.e., transitions of different combinations of contact configurations, for
a single initial fall posture; (ii) each strategy requires transitions between multiple different
contact configurations to succeed; (iii) each contact configuration involves multiple body
segments coming into contact with the ground. Moreover, Fig. 6.1 shows just a very small
set of handcrafted solutions. Many other feasible solutions exist in reality that are capable
of leading to successful fall recovery motions, but these solutions are difficult for humans to
discover or design manually, making fall recovery a challenging and complex motion.

6.3.2 Robot Model

Learning fall recovery is challenging for a humanoid due to its inherently unstable nature.
Therefore, we start with the less challenging quadrupeds and then work towards learning fall
recovery for humanoids. We ultimately test the algorithm on two humanoid and two quadruped
robot models. The purpose of using multiple models is to determine whether the proposed
learning framework can be generalized to different robot morphologies. The four robots in
question are: (i) Spotmicro, (ii) Jueying Pro, (iii) Sigmaban, and (iv) Valkyrie.

The Spotmicro is an open-source community project that aims to replicate the Spotmini
with a smaller and more miniature form-factor. It uses servo motors as actuators for the 12 leg
joints. The Jueying Pro robot is a high- performance quadruped that is capable of performing

73

CHAPTER 6. LEARNING FALL RECOVERY SKILLS FOR BIPEDS AND QUADRUPEDS

Figure 6.3: Joint configuration of the Valkyrie robot. (A) Original joint range (top row) and
modified joint range (bottom row) of the Valkyrie robot. (B) Human-like key postures during
standing up that are enabled by the modified joint range.

jumping maneuvers. Jueying Pro weighs 70kg and has 3 DOF per leg, with a maximum torque
limit of 100 Nm for the motors in the hip and knee joints.

The Sigmaban robot was designed for the robocup soccer tournament, in which robots will
constantly tip over due to collisions from other robots [103]. Therefore, the ability to recover from
a fall was already taken into consideration during the robot hardware design process. Valkyrie
is a 44-DOF robot that was designed by NASA in 2013 to operate in harsh environments that
would be too dangerous for humans. It stands 1.87m tall, weighs 129kg, and is the byproduct
of years of NASA research on humanoid robotics.

Simulations for Jueying Pro, Spotmicro, and Sigmaban use the original joint ranges found
on the real robots, while the joint range for the Valkyrie robot has to be modified in simulation.
The original joint limit of the Valkyrie robot is too restrictive and does not allow for human-like
standing-up behaviour. We modified the joint limit and collision mesh to allow more dexterity in
the legs, increasing the resemblance to humans. The collision mesh has also been slightly
altered to enable the increased range of motion without causing self-collisions. The modified

74

6.3. METHODOLOGY

Table 6.1: This Table provides the basic definitions of the mathematical notation used in the
equations for the reward terms shown in Table 6.2

Nomenclature
ϕbase Orientation vector: the projection of the gravity vector in the robot base frame

to represent the orientation
ϕtorso Orientation vector: the projection of the gravity vector in the robot torso frame

to represent the orientation
hbase The robot base height (z) in the world frame
hhead The robot head height (z) in the world frame
vbase The linear velocity of the robot base in the world frame
τ The vector of all joint torques
q The vector of all joint angles
q̇ The vector of all joint velocities
(·̂) The desired quantity of selected property (·), where (·) serves as a placeholder
p f oot,n The n-th foot horizontal placement in the world frame
pbase The horizontal xy coordinates of the base in the world frame

Valkyrie robot is able to perform human-like squatting, crouching, kneeling, and sitting motions,
as shown in Figure 6.3 , which are crucial joint configurations during the human standing-up
sequence. Such actions could not have been achieved with its original joint limit and collision
mesh.

6.3.3 Reward Design

The design of the reward function for fall recovery follows the same design rule as the balancing
reward presented in previous work [29], [30], [37]. The fall recovery task is similar to a balancing
task, as fall recovery focuses on recovering a stable standing configuration and maintaining
balance while in that stable configuration.

We used a Radial Basis Function (RBF) to design the bounded reward function:

K(x, x̂,α)= eα(x̂−x)2
, (6.1)

where x is the physical quantity used for the evaluation, x̂ is the desired value, and α is the
parameter that controls the width of the RBF. All reward terms composed of continuous physical
properties utilize this RBF. The exceptions are the three reward terms for discrete properties,
i.e., foot-ground contact, body-ground contact, and ground contact for the imitation gait. Details
of the individual reward terms using the nomenclature Table 6.1 are presented in Table 6.2.

Table 6.2 shows the list of reward terms designed for humanoid fall recovery. The base
height and head height terms are the two main terms that are responsible for the standing-up
motion. They encourage the robot to stand up and maintain the desired height. The upper torso
and base poses are responsible for regulating the upper body posture of the robot. The base
velocity terms encourages the robot to learn a smooth standing-up motion without jerky motions

75

CHAPTER 6. LEARNING FALL RECOVERY SKILLS FOR BIPEDS AND QUADRUPEDS

Table 6.2: Detailed description of task reward terms for humanoids. The corresponding normal-
ization factor and weight for the reward terms are α and w.

Task reward terms
Base pose K(ϕbase, [0,0,−1],α) α=−2.35 w = 0.0625
Base height K(hbase, ĥbase,α) α=−4.60 w = 0.25
Upper torso pose K(ϕtorso, [0,0,−1],α) α=−2.35 w = 0.0625
Head height K(hhead, ĥhead,α) α=−1.59 w = 0.250
Base velocity K(vbase,[0,0,0],α) α=−4.60 w = 0.125
Joint torque regularization K(τ,0,α) α=−5.11e−5 w = 0.0625
Joint velocity regularization K(q̇,0,α) α=−0.046 w = 0.0625

Body-ground contact

{
0, upper body contact with ground
1, .

w = 0.0625

Left foot placement K(p f oot,le f t, pbase,αp) α=−14.10 w = 0.03125
Right foot placement K(p f oot,right, pbase,αp) α=−14.10 w = 0.03125

Table 6.3: Detailed description of task reward terms for quadrupeds. The corresponding
normalization factor and weight for the reward terms are α and w.

Task reward terms
Base pose K(ϕbase, [0,0,−1],α) α=−2.35 w = 0.278
Base height K(hbase, ĥbase,α) α=−51.16 w = 0.278
Base velocity K(vbase,[0,0,0],α) α=−18.42 w = 0.167
Joint torque regularization K(τ,0,α) α=−0.003 w = 0.111
Joint velocity regularization K(q̇,0,α) α=−0.026 w = 0.111

Body-ground contact

{
0, upper body contact with ground
1, .

w = 0.056

by penalizing high velocity. The joint torque regularization and joint velocity regularization terms
penalizes high torque in, and high velocity of, the joints, respectively. The body ground contact
reward rewards the agent whenever upper body parts are not in contact with the ground. The
foot placement reward encourages the left and right feet to be placed close to the projected
pelvis position on the ground, resulting in a more human-like standing posture. Without this
reward term, the agent will still be able to learn to stand up, but the resulting pose might look
unnatural.

Table 6.3 shows the list of reward terms designed for quadruped fall recovery. The reward
for quadrupeds is similar to that for humanoids, with a few differences to accommodate the
different robot morphology. The head height term, upper torso pose term and the two foot
placement terms are removed for the quadrupeds, while the other reward terms remain the
same.

76

6.3. METHODOLOGY

6.3.4 Deep Reinforcement Learning

6.3.4.1 Soft Actor Critic

The task of fall recovery is more challenging than the balancing and locomotion tasks, as it
involves more degrees of freedom and more complex contact situations. For balancing and
walking, only the lower body of the bipedal robot is needed, and the contact is restricted to that
between the feet and the ground. Whereas, for fall recovery, the bipedal robot has to utilize its
entire body fully.

In such a case, more samples will be required to obtain a reasonable policy. Therefore,
off-policy DRL algorithms are more favorable than off-policy algorithms in these scenarios. We
chose to use Soft Actor Critic (SAC), an off-policy DRL algorithm, due to its sample efficiency
[17]. SAC optimizes an expected sum of rewards augmented with an additional maximum
entropy objective as:

JSAC(π)=
T∑

t=0
E(st,at)∼ρπ(r(st,at))+αH(π(·|st)), (6.2)

where
∑T

t=0 E(st,at)∼ρπ (r(st,at)) is the expected sum of rewards, and H(π(·|st)) is the expected
entropy of the policy π over the sample distribution ρ. The temperature parameter affects
the stochasticity, and thus the exploration capability, of the optimal policy by changing the
importance of the entropy term, where a higher temperature leads to more stochastic policies
and vice versa. SAC balances the well-known problem of exploitation and exploration by
tuning the temperature parameter α automatically and thus governing exploration. The policy is
expressed as a Gaussian distribution N (µθ(st),σθ(st)2) with mean µθ(st) and covariance σθ(st)

generated by a neural network. A tanh-squashing function is applied to the Gaussian samples
to project an action distribution within âst ∈ (−1,1). The squashed action âst is then scaled by
the joint range q̄ and formulates the target action ast ∈ q̄ as joint angle references for the robot.

6.3.5 Sample Distribution Augmentation

As described in various papers, the sample distribution affects the learning of the control policy
[8], [37]. There are two approaches for augmenting the sample distribution: (i) initializing the
starting state, and (ii) early termination. Both approaches can be combined to augment the
sample distribution in a way that increases sample diversity.

6.3.5.1 Initializing the Starting State

A disadvantage of fixed-state initialization lies in the time required for the agent to learn to
encounter high-value states. Furthermore, the collected samples will suffer from a lack of
diversity since the collection will be dominated by states close to the fixed initialization.

77

CHAPTER 6. LEARNING FALL RECOVERY SKILLS FOR BIPEDS AND QUADRUPEDS

The key postures within the handcrafted contact transitional graph shown in Fig. 6.1 will
be sampled randomly for starting states to initialize the robot during simulation. The postures
shown in Figure 6.1A will be used to initialize the training of the Valkyrie robot. The same
initial postures are used for the Sigmaban robot after slight adjustments to the height and joint
angles to accommodate its different size and joint configuration. The postures shown in Figure
6.1B will be used to initialize the training of the Spotmicro robot. The same initial postures are
used for Jueying Pro after slight adjustments to the height and joint angles to accommodate its
different size and joint configuration.

6.3.5.2 Early Termination

Due to the existence of gravity, the humanoid and quadruped robots are naturally inclined to
fall towards the ground. During the early training iterations, the distribution of the samples
will be dominated by samples in which the robot is struggling to get up from the ground due
to the existence of gravity. Having many samples with the same falling configuration is not
necessarily a good way for the network to learn the standing-up behaviours necessary for
achieving fall recovery due to the lack of diversity. Therefore, we set a time limit of 10s for
the early termination of the episode and initialize the episode in different states to ensure the
diversity of the experienced samples.

6.3.6 Action Filtering

A common phenomenon encountered with RL in simulation is that the learning policy takes
advantage of the pure torque source, which has unlimited control bandwidth, and learns to
generate abrupt, jerky motions in simulation [104], [105]. We implement a first-order Butterworth
filter with a cut-off frequency of 5Hz on the output action to smooth out the action, i.e., restrict
high-frequency actions and prevent the policy from overly exploiting of such risky motions.
The cutoff frequency of 5Hz is set according to our experience with human motion analysis
and robot control. We have observed that the frequencies of human (animal) motion normally
do not exceed 5Hz in common cases; therefore, 5Hz is a reasonable choice for the cutoff
frequency.

6.3.7 Smoothing Loss

The previously proposed action filter is not sufficient for generating smooth motion. As an
action filter only limits the frequency of the action but not the amplitude, the policy may still
explore and utilize low-frequency, large-amplitude motions with large torques to achieve a
task. Large joint torques lead to large interaction forces with the environment that can cause
abrupt motion and lead to instability. Hence, to encourage the policy to generate motions with

78

6.3. METHODOLOGY

Table 6.4: PD gains for Spotmicro and Jueying Pro.

Spotmicro Jueying Pro

Kp (Nm/rad) Kd (Nms/rad) Kp (Nm/rad) Kd (Nms/rad)

Hip roll 10 0.1 700 10

Hip pitch 10 0.1 700 10

Knee pitch 10 0.1 700 10

smooth torque profiles, we designed a special loss function, called a smoothing loss function
Jsmoothing:

Jsmoothing(µ(st))=
∥∥µ(st)− q

∥∥ , (6.3)

where the µ(st) are the deterministic mean outputs of the stochastic policy that are used as
joint references, and the q are the measured joint angles. The smoothing loss Jsmoothing is the
objective function that minimizes the difference in joint angles between the target µ(st) and the
current measurement q. As the joint commands are the inputs for PD control, this minimization
leads to minimal joint torques, thus encouraging the policy to learn smoother motion with less
effort.

The smoothing loss Jsmoothing is added to the standard SAC training loss JSAC(π), and is
used for backpropagation of the neural network. Instead adding it to the reward function, the
smoothing loss term is added to the neural network loss function, which allows the information
to backpropagate directly through the neural network and bypass the reward bootstrap and
Q-function approximation process, thus removing the "wait time" needed for the Q-function to
obtain a valid approximation of the expected return.

6.3.8 Control Framework

The control framework consists of two layers, a high-level neural network policy that generates
position references for all joints at 25 Hz, and a low-level PD controller that generates torque at
500Hz. An update frequency of around 25 30 Hz is a common setting for a high-level motion
planning layer in robot control [6],[8],[106],[54]. The PD gains are tuned differently for the four
robot models used in this work (Table 6.4 and Table 6.5).

6.3.8.1 State Representation

The state representations selected for the fall recovery control policy are: (i) gravity vector,
(ii) base angular velocity, and (iii) joint position. The base angular velocities and all the joint
positions are measured directly using an Inertial Measurement Unit (IMU) and joint encoders.
The gravity vector is a 3D unit vector pointing along the direction of gravity in a local frame of

79

CHAPTER 6. LEARNING FALL RECOVERY SKILLS FOR BIPEDS AND QUADRUPEDS

Table 6.5: PD gains for Sigmaban and Valkyrie. Valkyrie consists of more joints compared to
Sigmaban

Sigmaban Valkyrie

Kp (Nm/rad) Kd (Nms/rad) Kp (Nm/rad) Kd (Nms/rad)

Torso yaw 1900 38 N/A N/A

Torso pitch 1500 30 N/A N/A

Torso roll 1500 30 N/A N/A

Shoulder pitch 1900 19 23.54 0.48

Shoulder roll 1900 38 23.54 0.48

Shoulder yaw 650 6.5 N/A N/A

Elbow pitch 650 13 23.54 0.48

Hip yaw 1900 38 47.08 0.96

Hip roll 3500 70 47.08 0.96

Hip pitch 3500 70 47.08 0.96

Knee pitch 3500 70 47.08 0.96

Ankle pitch 2050 20.5 47.08 0.96

Ankle roll 2050 10.25 47.08 0.96

the robot base. Other similar learning-based approaches include the linear velocity and height
of the robot in the state input. However, considering that the height and velocity cannot be
measured directly, we omit them from the input. We anticipate that height and linear velocity
are not necessary for learning a successful fall recovery policy. The state input dimension can
be seen in 6.6.

Table 6.6: State input dimension.

Physical quantity
Input dimension

Spotmicro Jueying Pro Sigmaban Valkyrie
Gravity vector 3 3 3 3
Base angular velocity 3 3 3 3
Joint position 12 12 18 20
Total 18 18 24 26

6.4 Results

We first present the results from the relatively simple task of fall recovery for quadrupeds and
then proceed to present the results from the more challenging fall recovery task for humanoids.
We then finish up the section by presenting the implementation results on a real Jueying Pro

80

6.4. RESULTS

quadruped platform. The learning curve for the traiining of the fall recovery policies can be
seen in Fig. 6.4.

Figure 6.4: Learning curve for the fall recovery policies of (A) Spotmicro, (B) Jueying Pro, (C)
Sigmaban, (D) Valkyrie. The results are averaged over 5 trials, each with a different random
seed. All 5 trials are able to obtain a successful fall recovery policy.

6.4.1 Fall Recovery on Quadrupeds

Compared to fall recovery for humanoids, fall recovery for quadrupeds is relatively simple due
to their lower Center of Mass (COM) heights and larger support polygons. We have trained a
policy to successfully perform fall recovery motions on the Spotmicro robot and Jueying Pro
robot, as shown in Fig. 6.5 and 6.7. In particular, the fall recovery policy for Spotmicro is able
to recover from supine, prone, and left and right lateral postures. Due to the curved geometry
of the Lidar sensor on the top of its body, the Jueying Pro is unable to lie in a supine posture,
therefore the fall recovery policy for Jueying Pro is only trained to recover from a lateral posture.

81

CHAPTER 6. LEARNING FALL RECOVERY SKILLS FOR BIPEDS AND QUADRUPEDS

Figure 6.5: Snapshots of Spotmicro performing fall recovery maneuvers in simulation. (A)
Supine. (B) Left lateral. (C) Right lateral.

Figure 6.6: Detailed analysis of the contact status of the body segments of Spotmicro during
fall recovery. (A) Contact status of body segments over time. (B) Normalized contact duratioin
of body segments. (C) Total number of body segments in contact during each timestep. (D)
Orientation error and Height of robot base. The orientation error is defined by the angle between
the local z axis of the robot base frame and the global z axis of the world frame which points
towards the opposite side of the gravity vector. When the robot stand in its nominal posture,
the local z axis is aligned with the global z axis and thus the orientation error is 0.

82

6.4. RESULTS

Figure 6.7: Snapshots of Jueying Pro performing fall recovery maneuvers in simulation. Due
to the rounded curvature of the Lidar sensor unit at its front, the Jueying Pro is unable to lie
on its back and will roll over to its side. Therefore, only the left lateral (A) and right lateral (B)
postures are shown.

Figure 6.8: Detailed analysis of the contact status of the body segments of Jueying Pro during
fall recovery. (A) Contact status of body segments over time. (B) Normalized contact duratioin
of body segments. (C) Total number of body segments in contact during each timestep. (D)
Orientation error and Height of robot base.

83

CHAPTER 6. LEARNING FALL RECOVERY SKILLS FOR BIPEDS AND QUADRUPEDS

Spotmicro is able to perform swift recovery maneuvers in under 2 seconds, while it takes
the Jueying Pro around 5∼ 7 seconds to complete a recovery maneuver. This difference is due
to their differences in mass, i.e., Spotmicro weights 2.3kg and Jueying Pro weighs 70kg. Its
low inertia allows Spotmicro to gain the momentum needed to right itself very quickly.

From Fig. 6.6 and Fig. 6.8 we can observe that fall recovery can be roughly divided into
three phases: (i) Self righting, (ii) standing up, and (iii) stabilization. In the first phase, the robot
reorients itself to minimize the error between the nominal standing posture. In the second
phase, the robot pushes against the ground and increases its height. In the final phase, the
robot performs minor adjustments to the body posture and stabilizes itself.

6.4.2 Fall Recovery on Humanoids

The principle for fall recovery for humanoids is the same as that for quadrupeds. The proposed
learning framework is not limited to quadruped robots and can be used to learn fall recovery
policies for different humanoid robots with different morphologies, demonstrating the versatility
and generalizability of our framework. Compared to quadruped robots, humanoid robots
have higher centre of mass height and smaller support polygon, which makes fall recovery
behaviours for humanoids more challenging.

We have successfully trained a policy to perform fall recovery motions on the Valkyrie robot
and Sigmaban robot, as shown in Fig. 6.9 and 6.11. The fall recovery policy is able to recover
from supine, prone, and left and right lateral postures. From Fig. 6.10 and Fig. 6.12 we can
observe that humanoid fall recovery has a three phase process similar to that of quadrupeds:
(i) Self righting, (ii) standing up, and (iii) stabilization.

Despite the differences in the morphologies of the Valkyrie and Sigmaban robots, when
recovering from supine and lateral postures, the Sigmaban and Valkyrie robots both learn a
policy that involves rolling and adjusting into a prone posture with the abdomen facing down
that provides enough clearance for the arms before executing the standing-up motion using
all four limbs. The motion of using the arms to support the upper body while standing up is
human-like and natural.

84

6.4. RESULTS

Figure 6.9: Snapshots of Sigmaban robot performing fall recovery.

Figure 6.10: Detailed analysis of the contact status of the body segments of Sigmaban during
fall recovery. (A) Contact status of body segments over time. (B) Normalized contact duratioin
of body segments. (C) Total number of body segments in contact during each timestep. (D)
Orientation error and Height of robot base.

85

CHAPTER 6. LEARNING FALL RECOVERY SKILLS FOR BIPEDS AND QUADRUPEDS

Figure 6.11: Snapshots of Valkyrie robot performing fall recovery.

Figure 6.12: Detailed analysis of the contact status of the body segments of Valkyrie during
fall recovery. (A) Contact status of body segments over time. (B) Normalized contact duratioin
of body segments. (C) Total number of body segments in contact during each timestep. (D)
Orientation error and Height of robot base.

86

6.5. CONCLUSION

Figure 6.13: Snapshots of real-world experiments showing the Jueying Pro robot performing
fall recovery.

6.4.3 Real-World Implementation

The fall recovery policy for the Jueying Pro learned in simulation can be deployed directly
on the real robot, as shown in Fig. 6.13. The policy is transferred to the real robot without
additional measures being used to bridge the simulation and reality gap, indicating that the
policy is robust enough to be able to generalize to the discrepancy between the simulation
and real world. Other reasons for the successful implementation without sim-to-real transfer is
that the robot hardware is fairly robust with accurate sensor readings and good actuators that
matches the model in simulation close enough. This might not apply to other robots, further
research has to be done to investigate in the situation sim-to-real transfer where sim-to-real is
not necessary.

6.5 Conclusion

Previous studies have demonstrated that fall recovery motions involved in standing up in hu-
manoid and quadruped robots can be achieved using deterministic and analytical engineering
approaches. In this chapter, we have shown that it is possible to produce similar or better fall
recovery behaviour using DRL.

In this chapter we propose a DRL framework which is able to learn a versatile fall recovery
policy for humanoid robots. The obtained fall recovery policy looks natural and human-like.
The results demonstrated the feasibility and realizability of using DRL to learn human-like
standing-up behaviours for humanoid robots. Furthermore, the proposed learning framework
can generalize over different robot morphologies, as shown by the successful fall recovery
policies for four different robot models; two humanoids and two quadrupeds.

The current limitation of the proposed method is that it has only been trained and tested
on a flat surface with high stiffness and friction, and might fail in scenarios including steep
inclinations, rough terrain, or low friction. To overcome these limitations, we need to randomize

87

CHAPTER 6. LEARNING FALL RECOVERY SKILLS FOR BIPEDS AND QUADRUPEDS

the physical settings of the environment in simulation to allow the agent to learn a policy that is
generalizable to a broader range of extreme terrain cases.

88

Chapter 7

Multi-Expert Learning of Adaptive
Locomotion Behaviours

In Chapters 3,4, and 5, we used deep reinforcement learning to achieve balancing and walking
for bipedal robots. In Chapter 6, we obtained fall recovery policies for both humanoid robots
and quadruped robots in simulation and validated the policy on a real quadruped. Since we
have successfully obtained a wide range of different motor skills, including balancing, walking,
and fall recovery, we have now gathered the necessary components for the design of a unified
learning framework capable of fusing multiple skills. In this chapter, we transferred the learning
framework designed in previous chapters to obtain locomotion and fall recovery policies for
quadruped robots. Moreover, we extended the multi-expert framework described in Chapter
4 and used it as a basis to design a multi-skill control policy that combines various trotting,
steering, and fall recovery skills into a unified neural network control policy.

Achieving versatile robot locomotion requires adaptive motor skills in various new scenarios.
We proposed a Multi-Expert Learning Architecture (MELA) that learns to synthesise adaptive
skills from a group of representative expert skills. MELA first learns the core skills by separate
deep neural networks (DNNs) for distinct tasks, and then refines all DNNs to acquire more
diversified skills across various locomotion modes, including all the dynamic transitions in
between. During runtime, MELA constantly blends multiple DNNs and dynamically fuses a new
synthesised DNN to generate adaptive behaviours in response to changing situations. This
approach leverages the advantages of the trained expert skills and the fast online synthesis
of adaptive policies to achieve responsive reactions to unexpected perturbations. Using one
unified MELA framework, we demonstrated successful multi-skill locomotion on a quadruped
robot that performed coherent trotting, steering, and fall recovery autonomously, and showed
the merit of multi-expert learning that generated behaviours adaptive to new scenarios.

89

CHAPTER 7. MULTI-EXPERT LEARNING OF ADAPTIVE LOCOMOTION BEHAVIOURS

Figure 7.1: Challenging locomotion scenarios and agile manoeuvres of a quadruped robot. (A)
Three challenging scenarios of the Jueying robot during various tests: unexpected body con-
tacts with the environment and unpredictable robot states. The white circled regions highlight
unusual contact that can occur at any body areas. (B) Different adaptive behaviours from our
proposed learning framework that generated dynamic motions and complex coordinations of
legs for immediate recovery from failures. (Time in snapshots is in second).

7.1 Introduction

Adaptive motor skills enable living organisms to accomplish novel motor tasks and offer them
better chances to survive in nature. Among vast sensorimotor skills, locomotion is essential
for most animals to move in the environment. Therefore, to understand and create adaptive
locomotion behaviours is a long-standing scientific theme for biologists and roboticists. From
a neurological perspective, it is worth understanding how sensorimotor control processes
various sensory information and produces adaptive reactions in new situations that were not
seen before [107], [108], [109], [110]. From a robotics perspective, it is interesting to take a
bio-inspired approach and transfer biological principles, such as primitive neural circuits, to
produce robot behaviours similar to that of animals [107]. Since the underlying mechanisms
of the motor cortex are not yet fully replicated [110], [111], we take the latter approach by
drawing inspirations from biological motor control to develop learning algorithms to achieve
skill adaptation for robot locomotion [112].

This study is to investigate how an artificial agent can learn to generate multiple motor skills
from a set of existing skills, particularly for critical locomotion tasks that require immediate
responses. As an example of learning a complex physical task, playing soccer consists of a

90

7.1. INTRODUCTION

number of sub-skills, such as dribbling, passing, and shooting. During training, players first
practise the most important sub-skills separately. Once mastered, all different sub-skills are
used in a flexible combination to improve all these techniques coherently. Our research of multi-
skill learning has studied such skill-adaptive capabilities, and we also draw inspirations from
animal motor control for designing the learning and control architecture. Using a quadruped
robot as the testbed, we aim to produce versatile skills and adaptive behaviours to succeed in
unexpected situations and unseen scenarios in a responsive manner.

The DARPA Robotics Challenge (DRC) from 2012 to 2015 fostered the development of semi-
autonomous robots for dangerous missions: disaster response in unstructured environments
[113]. Most DRC robots had different forms of legged design for the dexterity to traverse
irregular surfaces and recover from falls. Despite the tremendous engineering efforts, no robot
could recover from falls autonomously [114]. To date, most legged robots still lack such an
autonomous ability to generate adaptive actions to deal with unexpected situations.

Due to the uncertainties in unseen situations, locomotion failures are likely to happen and
are devastating for real robots, resulting in hardware damage. We illustrate representative
challenges in robot locomotion from real field tests (see Fig. 7.1A). Typically, falling occurs
within a second and the time window for fall prevention is about 0.2 - 0.5 second. Therefore, it
is critical to react immediately to coordinate different locomotion modes, mitigate perturbations,
and prevent or recover from failures. In comparison to man-made robots, biological systems,
e.g., cats, dogs, and humans, exhibit higher versatility [115], and the performance gap lies in
the motion intelligence to handle changing and complex situations [115], [116], [117].

Our research studies a machine learning approach that learns reactive locomotion skills and
generates adaptive behaviours by reusing and recombining trained skills. Here, we investigate
the motor skills in the form of feedback control policies to address the reactive adaptation to
multimodalities during robot locomotion, leading to increased robustness against failures.

7.1.1 Related Work

Unspecified body contacts due to uncertain interactions with the environment impose major
challenges in finding control solutions. The main approach in the legged locomotion community
uses model-based mathematical optimisation to solve these multi-contact problems, such as
Model-Predictive Control (MPC), whole-body Quadratic Programming (QP), and Trajectory
Optimisation (TO). To achieve fast online computation, MPC utilises simplified models and short
predictive horizons to plan task-space motions for walking [118], running [119] and pacing [120].
QP methods are used for whole-body control to map task-space motions (e.g., those from the
MPC) to joint-space actions, considering the whole robot model and physical constraints [121],
[2]. A unified but computationally expensive technique is to optimise all models and constraints
together (whole robot model, contact model, environment constraints), i.e., through nonlinear
MPC (NMPC) [122] and whole-body optimisation [123], [124], [125].

91

CHAPTER 7. MULTI-EXPERT LEARNING OF ADAPTIVE LOCOMOTION BEHAVIOURS

In the optimisation scheme, all physical contacts between the robot and the environment
need to be defined as constraints in the formulation. The contact sequence, such as the contact
location, timing, and duration, needs to be specified either by manual design or by an additional
planner [126], [127]. Furthermore, the explicit properties of the robot and the environment need
to be modelled [128], but are expensive to compute [129] and thus difficult to run in real-time
in complex settings even with exhaustive computing [130]. This fundamental principle suffers
from the curse of dimensionality, and therefore limits the scalability to real-time solutions in
more complex and challenging problems [131].

To this end, Deep Reinforcement Learning (DRL) becomes attractive for acquiring task-level
skills: through rewarding intended outcomes and penalising undesired ones, an artificial agent
can learn desirable behaviours [126], [127]. Using DRL offers several advantages: the training
process can be realised by using physics engines to perform a large number of iterations
in simulations without risks of hardware damage; the agent can explore freely and learn
effective policies that are difficult for humans to manually design; and the computation of readily
trained neural networks can be real-time. For legged locomotion, many DRL results have been
achieved in simulation [6], [8] and on hardware from recent studies [132], [133], [134], e.g.,
demonstration of learning-based control on a real robot using separate policies for fall recovery
and walking [54]. However, similar to other DRL approaches, the learning policies in [54] were
specialised in separate tasks, instead of being a unified policy across different tasks. This is a
common feature due to the learning structure that only trains a single DRL agent for solving
one specific task, which results in a narrowly skilled policy.

Hierarchical Reinforcement Learning (HRL) solves complex tasks at different levels of
temporal abstraction using the existing knowledge in experts [135]: experts are trained to
encode low-level motor primitives, while a high-level policy selects the appropriate expert
[136], [36]. However, generating new skills cannot be achieved in the standard HRL framework
since only one expert is selected at a time. This problem can be addressed by learning to
continuously blend high-dimensional latent variables of all experts [137]. One related approach
is the Mixture of Experts (MoE) that synthesises the outputs of individual experts specialised on
sub-problems using a gating function [138], which has been used in robotics [139], computer
vision [140], and computer graphics [141]. However, compared to blending the experts’ high-
dimensional latent variables, MoE has known limitations in scaling to high degree-of-freedom
systems [141], because the limited expressivity of the low-dimensional latent space causes
expert imbalance problems, i.e., favouring certain experts while degrading others [90].

We draw inspirations from biological motor control to design our control and learning
framework. Biological studies suggest that motor behaviours are controlled by the Central
Nervous System (CNS) that resets the reference position of body segments, and the difference
between the reference and the actual position excites the muscular activities for generating
appropriate forces [142]. This precludes the need of computing the inverse dynamics, simplifies

92

7.1. INTRODUCTION

Figure 7.2: Multi-Expert Learning Architecture (MELA): a hierarchical deep reinforcement
learning framework that synthesises multiple deep neural networks (DNNs) together to produce
versatile locomotive skills. The Gating Neural Network (GNN) generates variable weights (α) to
fuse the parameters of all eight expert networks (each expert is illustrated by its primary motor
skill), such that newly synthesised motor skills are adapted to different locomotion modes by
blending useful learned behaviours collectively from the collection of experts.

control and minimises the computation [143]. Since the spring-damper property provided by
the impedance control resembles the elasticity of biological muscles, we applied the hypothesis
of Equilibrium-Point (EP) control to generate joint torques by offsetting the equilibrium point.

Inspired by the biomechanical control of muscular systems and the EP-hypothesis, we
distribute the robot motor control in two layers: (i) at the bottom layer, we use torque control to
configure the joint impedance for the robot; and (ii) at the top layer, we designate deep neural
networks (DNNs) to produce set-points for all joints to modulate posture and joint torques,
establishing suitable force interactions with the environment. By doing so, we can focus on
developing the learning algorithms at the top layer to achieve motor intelligence.

7.1.2 Contribution

This work aims to achieve a breadth of adaptive behaviours for contact-rich locomotion and
present research of hierarchical motor control using deep reinforcement learning. To this
end, we propose a Multi-Expert Learning Architecture (MELA), which contains multiple expert
neural networks (each with unique motor skills) and a gating neural network that fuses expert
networks dynamically into a more versatile and adaptive neural network (see Fig. 7.2).

Compared to the approach of using kinematic primitives [144], [145], the proposed MELA
policy indirectly modulates the joint torques by changing the references of joint angles, where

93

CHAPTER 7. MULTI-EXPERT LEARNING OF ADAPTIVE LOCOMOTION BEHAVIOURS

the resulting motions are the natural outcomes of the dynamic interactions with the environment.
In contrast to other hierarchical learning approaches that select one policy representing one
skill at a time [136], [36], MELA continuously combines network parameters of all experts
seamlessly, and therefore is responsive without wait time from disjoined switching. Additionally,
since MELA synthesises the experts in a high-dimensional feature space, i.e., weighted average
of the network parameters (weights and biases of the neural networks), and therefore, it does
not suffer from the expert imbalance problem as in MoE [90]. Similar multi-expert structures
that blend experts in high-dimensional feature space were studied in computer graphics for
kinematic animation [90], [89], [146], but have not yet been developed as feedback policies for
the control of dynamical systems such as robots.

Our presented work contributes to a learning framework that (i) effectively generates
multiple distinctive skills, (ii) diversifies expert skills through co-training, and (iii) synthesises
multi-skill policies with adaptive behaviours in new situations, which are supported by the
proof-of-concept experiments on a real robot with validations of adaptive behaviours, as well
as various extreme test scenarios in the physics simulation. By synthesising multiple expert
skills, the collective expertise of MELA is more versatile compared to that of each single
expert, thanks to the dynamic structure of integrating all experts based on the online state
feedback. Such multi-expert learning allows each expert to specialise in unique locomotive
skills, i.e., some prioritise postural control and failure recovery while others acquire strategies
for maximising task performance. As a result, MELA can perform a broad range of adaptive
motor skills in a holistic manner, and is more versatile because of the diversification among
experts.

The proposed framework is effective to achieve reactive and adaptive motor behaviours to
changing situations consisting of unseen scenarios, unexpected disturbances, and different
locomotion modes, which have not been addressed well by a unified framework in the literature.
The results in Fig. 7.1B shed light on the advantages of the proposed work that accomplish
a variety of strategies for the task success, for example, quick responses to counterbalance
perturbations at different unexpected postures and the ability to produce stable dynamical
transitions. This is an indicative level of machine intelligence – the capability of autonomous lo-
comotive skills that do require significant intelligence to design if these need to be programmed
by humans. In the following sections, we report technical details of our learning framework and
the results of adaptive behaviours and robust locomotion.

7.2 Methodology

In this section, we will first introduce the robot platform and the control framework, then explain
the core designs of the learning framework, including reward terms, state observations, and
action space .etc. Particularly, we will present an emulation of the frequency response of

94

7.2. METHODOLOGY

Figure 7.3: Specification of the Jueying quadruped robot

actuators and a loss function design for producing smooth and feasible actions. Finally, we
elaborate on the MELA framework and the 2-stage MELA training procedure.

7.2.1 Robot Platform

We implemented our learning algorithms on the Jueying quadruped robot [147](52) to validate
the adaptive behaviours with feasible and safe tests on the real hardware. Jueying has 3
degrees of freedom (DoF) per leg (12 DoFs in total) which is actuated by brushless electric
motors with low gear ratio (i.e., 7:1) and high-fidelity joint torque control (see specifications in
Fig. 7.3).

7.2.2 Control Framework

Joint torque control of the real Jueying robot is used to create an impedance mode for all
joints because having mechanical impedance is known to be robust during the physical contact
and interactions [148], [149]. Hence, the synthesised DNN plays a role similar to a CNS that
produces trajectory attractors constantly pulling and pushing all joints in the impedance mode
to generate joint torques similar to a spring-damper system.

The neural network policy generates joint position references at 25 Hz (see Fig. 7.7A). A
policy with an update frequency of around 25 Hz is a common setting as a high-level motion
planning layer in robot control [6], [8], [134], [30], [37]. The standard joint-level trajectory
interpolation and speed limit were implemented to generate smooth position references at
1000 Hz for the low-level impedance control.

The Proportional-Derivative (PD) gains used for the impedance control are shown in Table
7.1. The feedback gains were 700Nm/rad and 10Nms/rad for stiffness and damping respectively
and were sufficient for the robot to have good control over its swing leg and placement of stance

95

CHAPTER 7. MULTI-EXPERT LEARNING OF ADAPTIVE LOCOMOTION BEHAVIOURS

Table 7.1: Proportional-Derivative parameters for joint-level PD controller.

Hip roll Hip pitch Knee pitch
Kp(Nm/rad) 700 700 700
Kd(Nms/rad) 10 10 10

foot. Based on our proposed smoothing loss, the policy has learned an active compliance
behaviour in the simulation as well as in the experiments by adjusting the position references.

During the dynamic response, the stiffness produced by the active control can be lower
than the original PD gains set in the impedance mode, as it is regulated the same way as for
series elastic actuators (SEA) [150]. Therefore, it is desirable to have medium PD gains in the
low-level joint control, and render the desired or a lower impedance by adjusting the high-level
position set-point, i.e., a deliberate motion to buffer an impact.

The MELA policy learns how to regulate the set-point for the impedance controller to achieve
compliant behaviour, which is similar to active compliance found in the control of robotic arms.
Robot manipulators are usually controlled by high PD gains and are thus very stiff, but soft
and compliant behaviours can still be achieved by limiting the amount of torque applied on
joints [151], [152]. Since the neural network receives feedback of the actual joint positions
qm and has direct control of the desired joint positions qd, according to the SEA principle
τ= Kp(qd − qm), actively changing the set-point qd with respect to the measured position qm

can restrict the amount of torque, lower the stiffness, and thus increase the compliance.

7.2.3 Soft Actor Critic

For our experiment, the computation bottle neck is the time needed for simulation to obtain
the samples. We chose to use Soft Actor Critic (SAC) an off-policy DRL algorithm due to its
sample efficiency [17]. SAC optimizes over an expected sum of rewards augmented with an
additional maximum entropy objective as:

JSAC(π)=
T∑

t=0
E(st,at)∼ρπ(r(st,at))+αH(π(·|st)), (7.1)

where
∑T

t=0 E(st,at)∼ρπ (r(st,at)) is the expected sum of rewards, H(π(·|st)) is the expected entropy
of policy over the sample distribution. The temperature parameter affects the stochasticity and
thus exploration capability of the optimal policy by changing the importance of the entropy term,
where a higher leads to more stochastic policies and vice versa. SAC balances the well-known
problem of exploitation and exploration by automatically tuning the temperature parameter α.

The policy is expressed as a Gaussian distribution N (µθ(st),σθ(st)2) with mean µθ(st) and
covariance σθ(st) generated by a neural network. A tanh-squashing function is applied to the
Gaussian samples to project the action distribution to be within âst ∈ (−1,1). The squashed
action âst is then scaled by the joint range q̄ and formulate the target action ast ∈ q̄ as joint

96

7.2. METHODOLOGY

Table 7.2: Hyperparameters for SAC algorithm.

SAC hyperparameters
Smoothing loss coefficient 2.0
Learning rate 3e-4
Weight decay 1e-6
Discount factor 0.987
Polyak averaging weight 0.001
Replay buffer size 1e6
Steps per epoch 5e3

Table 7.3: This Table describes the basic definitions of mathematical notations to help explain
the equations of the reward terms in Table 7.4.

Nomenclature
ϕbase Orientation vector: the projection of the gravity vector in the robot base frame

to represent the orientation
hworld The robot base height (z) in the world frame
vworld

base The linear velocity of the robot base in the world frame
vlocal

base The linear velocity of the robot base in the robot’s local heading frame:
RT (θworld

yaw)×vworld
base

θworld
yaw The yaw orientation of the robot body in the world frame
ωworld

yaw The yaw angular velocity of the robot body in the world frame
τ The vector of all joint torques
q The vector of all joint angle
q̇ The vector of all joint velocity
(·̂) The desired quantity of selected property (·), where (·) serves as a placeholder
hworld

f oot,n The n-th foot height (z) in the world frame
vworld

f oot,n The n-th foot horizontal linear velocity (ẋ, ẏ) in the world frame
pworld

f oot,n The n-th foot horizontal placement in the world frame
pworld

goal The horizontal component of the goal position (x, y) in the world frame
pworld

robot The horizontal component of the robot base position in the world frame
ubase

goal,base The unit vector pointing from the robot base to goal in the base frame

angle references for the robot. The hyperparameters of the SAC algorithm can be found in
Table 7.2.

7.2.4 Reward Design

For training individual tasks, such as fall recovery, trotting and target-following, we designed a
specific reward function with corresponding weights for reward terms that represent different
physical quantities. The full list of reward terms is: (i) base pose, (ii) base height, (iii) base
velocity, (iv) joint torque regularisation, (v) joint velocity regularisation, (vi) body ground contact,
(vii) foot ground contact, (viiii) yaw velocity, (ix) swing and stance, (x) average foot placement,
(xi) reference joint position, (xii) reference foot contact, (xiii) robot’s heading to the goal, and

97

CHAPTER 7. MULTI-EXPERT LEARNING OF ADAPTIVE LOCOMOTION BEHAVIOURS

(xiv) the goal position. Different tasks require a specific subset of reward components, i.e.,
fall recovery requires reward (i) to (vii), locomotion requires reward (i) to (xii), and multimodal
target-following requires all 14 reward terms. In summary, the first 7 reward terms are common
physical quantities across all tasks to ensure stable robot motion, while the other terms are
task-specific. The mathematical formulation of all reward terms and the task-specific weights
are in Table 7.4 and Table 7.5, respectively.

We used a Radial Basis Function (RBF) to design the bounded reward function:

K(x, x̂,α)= eα(x̂−x)2
, (7.2)

where x is the physical quantity for the evaluation, x̂ is the desired value, and is the parameter
that controls the width of the RBF. All reward terms composed of continuous physical properties
utilize this RBF. The exceptions are the three reward terms of discrete properties, i.e. foot-
ground contact, body-ground contact and ground contact from the imitation gait. Details of the
individual reward terms using the nomenclature Table 7.3 are presented in Table 7.4.

The reward design follows a similar design rule as in [29], [30], and [37]. In Table 7.4,
the first twelve terms are straightforward and task-related since each evaluates a physical
quantity directly related to the physical movements. The reference joint position reward and
reference foot contact reward provide reference trajectories from an existing trotting gait for the
agent to imitate. By providing such a reference gait, the agent is able to learn stable trotting
more efficiently and effectively through imitation. We also clarify the purpose of the last two
remaining reward terms in Table 7.4 as follows. The Swing and stance reward reflects the
contact constraint that encourages a higher velocity at a smaller height error to encourage
the swing motion, and a lower velocity at a larger height error while the feet deviate from the
nominal height ĥ. By discouraging the stance foot to move, the Swing and stance reward is
able to prevent slippage as well. The foot placement reward encourages the feet to place
around the robot body averagely, guiding the policy to perform more symmetric and stable foot
placement during locomotion.

98

7.2. METHODOLOGY

Table 7.4: Detailed description of task reward terms. The terms are combined to construct the
task reward.

Task reward terms
Base pose K(ϕ, [0,0,−1],α), α=−2.35
Base height K(h, ĥ,α), α=−51.16
Base velocity K(vworld

base , v̂world
base ,α), α=−18.42

Joint torque regularization K(τ,0,α), α=−0.003
Joint velocity regularization K(q̇,0,αy), α=−0.026

Foot ground contact

{
0, foot not in contact with ground
1, foot in contact with ground.

Body ground contact

{
0, main body in contact with ground
1,

Yaw velocity K(ω,0,α), α=−7.47
Reference joint position K(q, q̂,α), q̂ is the joint reference, α=−29.88

Reference foot contact

{
0,
1, match desired foot contact

Robot heading K(ubase
goal,base, [1,0,0],α), α=−2.35

Goal position K(pworld
goal , pworld

base ,α), α=−0.74
Foot clearance K(1/4

∑n=1
4 (hworld

f oot,n − ĥworld
f oot,n),0,α), α=−460.50

Average foot placement K(1/4
∑n=1

4 (pworld
f oot,n), pworld

base ,α), α=−18.42

Table 7.5: Weights of the reward terms for different tasks. Trotting and fall recovery used a
subset of the reward terms, and the multimodal MELA locomotion used all the reward terms.

Weights of reward terms
Physical quantities Trotting Fall Recovery MELA
Base pose 0.071 0.333 0.100
Base height 0.036 0.333 0.100
Base velocity 0.178 0.067 0.071
Joint torque regularization 0.018 0.067 0.020
Joint velocity regularization 0.018 0.067 0.020
Foot ground contact 0.018 0.067 0.020
Body ground contact 0.018 0.067 0.020
Yaw velocity 0.071 0.000 0.020
Foot clearance 0.036 0.000 0.036
Reference joint position 0.416 0.000 0.167
Reference foot contact 0.083 0.000 0.033
Average foot placement 0.036 0.000 0.036
Robot heading 0.000 0.000 0.143
Goal position 0.000 0.000 0.214

99

CHAPTER 7. MULTI-EXPERT LEARNING OF ADAPTIVE LOCOMOTION BEHAVIOURS

Table 7.6: Selection of states for different tasks and neural networks.

Physical quantities Locomotion Fall recovery MELA gating
network

MELA expert
network

Joint position 3 3 7 3

Gravity vector 3 3 3 3

Angular velocity of the
robot

3 3 3 3

Linear velocity of the
robot agnostic to the
heading direction

3 7 3 3

Phase vector 3 7 7 3

Goal position 7 7 3 3

7.2.5 State Observation

We used the following state observations that are essential and minimalistic to train successful
policies: (i) base (robot body) orientation, (ii) angular velocity of the robot base, (iii) linear
velocity of the robot base, (iv) joint positions, (v) phase vector, and (vi) goal position. The body
orientation is represented as a normalised gravity vector projected in the robot local frame
using the measurements from the Inertial Measurement Unit (IMU). The angular velocities of
the body and all the joint positions were measured by the IMU and joint encoders, respectively.
The linear velocity was estimated from IMU as a strap-down inertial navigation system and
then transformed to the heading coordinate, so the resulting velocity is agnostic to the heading
direction. The 2D phase vector was designed to clock along the unit-circle to describe the
phase of the periodic trotting (see Fig. 7.4). Lastly, the target position is represented by a
relative 3D vector with respect to the robot’s local frame, and only the horizontal components
are used as the state inputs. The detailed combination of the state observations for different
tasks and networks are in Table 7.6.

7.2.6 Action Space

The benchmark of DRL-based locomotion [54], [25] showed a suitable configuration for the
action space that yields better performance and faster learning due to the compliant interaction:
a DRL agent provides joint references and an impedance mode for controlling the joint. The
related work using this setting produced successful motions [54], [25], and hence we adopted
the same design of the action space here. To guarantee smooth and feasible actions for the
real robot, we developed two important techniques: (i) emulation of the characteristics of the
actuators’ frequency response using low-pass filters, which enforces physically realisable
reference motions, and (ii) design of a special loss function to generate smooth and non-jerky
joint references and torques. We named these two techniques action filtering and smoothing
loss, respectively.

100

7.2. METHODOLOGY

Figure 7.4: Illustration of the 2D phase vector for training the locomotion policy. The sine and
cosine functions are used to represent the time-varying phase variable in a continuous manner,
and the resulting phase vector contains temporal information to describe the phase (0-100%)
of a periodic gait.

7.2.7 Action Filtering

Real actuators have limited control bandwidth and hence the references with frequencies
higher than the bandwidth cannot be tracked. However, a common issue in simulation is that
the learning policy takes advantage of the pure torque source with unlimited control bandwidth:
exploitation of abrupt and jerky motions that are only possible in simulation to maximise the
reward but infeasible on real systems. The difference between ideal actuators (pure torque
source) in simulation and real actuators (restricted bandwidth, torque, speed and power) needs
to be addressed appropriately in the learning framework. In addition to the basic position and
velocity limit [105], we performed action filtering using a first-order Butterworth filter to emulate
the frequency response of real motors and to guide the policy to learn a smoother and more
feasible behaviour.

For the Jueying robot, we found that emulating the frequency response and setting the
speed limit are sufficient to represent realistic characteristics of actuators. The properties of
Jueying’s actuators, such as good torque tracking control and low gear ratio which results
in decoupled inertia and minimal gear friction, avoid the need of modelling detailed actuator
properties and simplify the simulation setting. During the simulation training, we emulated
the limited frequency response of actuators by applying action filtering on the output action
with the cut-off frequency of 5 Hz, which was higher than the 1.67 Hz trotting gait (see Fig.
7.21). This provides realistic restriction of high-frequency actions and prevents the policy from
over-exploiting risky motions while still permitting necessary movements for dynamic tasks. For
safety reasons in real experiments, we applied a more conservative cut-off frequency of 3 Hz in
case of unexpected jerky references. As a result, we obtained all policies with smooth motions

101

CHAPTER 7. MULTI-EXPERT LEARNING OF ADAPTIVE LOCOMOTION BEHAVIOURS

within the bandwidth (see Fig. 7.21) that can be executed on the real robot directly and safely.

7.2.8 Smoothing Loss

The action filtering mentioned above alone may not always guarantee smooth or feasible
motions, because it only limits the frequency of the DNN output but not the magnitude, so
the learning process may still explore and exploit low-frequency but large-amplitude motions
regardless. Therefore, we further designed the smoothing loss based on the principle of
minimal interaction to minimize the applied torques [142].

Biological studies show that when the CNS resets a new equilibrium, the displacement
between the equilibrium and the actual position will activate a neuromuscular response that
tries to reduce the muscular activity (torque). This principle of minimal interaction serves as a
biological foundation of studying the proposed smoothing loss, which is effective for smoothing
the exerted torque, i.e., τ= Kp(qd − qm). To guide the policy and generate actions following the
minimal interaction principle, we designed a smoothing loss function Jsmoothing as:

Jsmoothing(µ(st))=
∥∥µ(st)− q

∥∥ , (7.3)

where µ(st) are the deterministic mean outputs of the stochastic policy used as the target
joint references, and q are the measured joint positions. The smoothing loss Jsmoothing is the
objective function that minimises the differences between the the target µ(st) and the current
measurement q. As the joint references are the inputs for impedance control, this minimisation
leads to more gentle torque profiles, thus encouraging the learning of strategies with the least
effort as possible.

The proposed smoothing loss Jsmoothing is incorporated into the SAC training loss JSAC(π)

and is used for the backpropagation of neural networks, instead of being part of the reward
function. Adding the smoothing loss term to JSAC(π) allows the information (the causality of
actions) to backpropagate directly through the neural network and to bypass the process of
reward bootstrap and Q-function approximation. Since for training the policy, the Q-function
requires iterations to obtain a valid and accurate enough approximation of the expected return,
our approach of bypassing the Q-function avoids the wait time and permits the information to
backpropagate within the first few iterations.

7.2.9 Sample Collection Procedure

The distribution of samples collected by the agent during training will affect the learning
outcome of the policy. In order to obtain a sample distribution containing a variety of robot
states for better generalisation, we used two techniques to augment the standard sample
collection: reference state initialisation and early termination.

102

7.2. METHODOLOGY

Figure 7.5: Nine distinct configurations used as the initialisation for training fall recovery policies
in simulation. Snapshots are taken from the physics-based simulator using the PyBullet engine
[1]

First, to increase the diversity among collected samples, we initialised each simulation
episode by a random selection from a set of reference configurations. The diversity in the
sample distribution allows the agent to learn a policy of good generalisability for a range of
different states. Furthermore, by initialising the robot in difficult configurations, the agent can
experience challenging cases more often. Second, we applied early termination to the episode
during training when the robot encountered an undesirable state, such as a failure state in
which the robot was unable to recover. Early termination prevents irreversible failures from
skewing the sample distribution.

1. Reference State Initialization

We designed a set of initial reference states to initialise episodes for each task. As shown
in Fig. 7.5, for fall recovery, we designed 9 distinct poses to ensure the diversity within
the collected samples: (i) standing at nominal height, (ii) standing at maximal height
with straight knees, (iii) leg sprawling posture, (iv) lying on the back, (v) lying on the
left side, (vi) lying on the right side, (vii) crouching, (viii) kneeling, and (ix) lying on the
abdomen. Posture (i) - (vi) are common configurations during standing and fall recovery,
while posture (vii) - (ix) are unusual contact configurations that are difficult to recover.
For learning to trot, a trotting gait sample from the robot’s factory setting was used as

103

CHAPTER 7. MULTI-EXPERT LEARNING OF ADAPTIVE LOCOMOTION BEHAVIOURS

reference states for imitation. We combined the reference state initialisation datasets
of fall recovery and trotting to create a new set of initialisation states for the multimodal
locomotion, since the target-following using MELA would involve all modes and their
transitions. For training the MELA policy, the goal position was initialised within a circular
area of 6 m radius around the robot at the beginning of each episode (see Fig. 7.6).

Figure 7.6: Setting of the target location for training MELA policies in simulation. During the
initialisation of each sample collection episode, the target location (the green ball) is randomly
placed within the area of 6 m radius around the robot, and remains fixed within the same
episode.

2. Early Termination

We specified three termination criteria for locomotion related tasks: (i) any body part
other than feet are in contact with the ground, (ii) body orientation exceeding a threshold
of 90° (The body orientation is represented as a normalised gravity vector projected in
the robot local frame using the measurements from the Inertial Measurement Unit (IMU)),
and (iii) reaching the time limit of the episode. For the fall recovery task, only criterion 3
was used because the robot had to undergo the states specified in criteria (i) and (ii) in
order to learn how to recover from failures autonomously.

104

7.2. METHODOLOGY

7.2.10 MELA Training Procedure

Figure 7.7 depicts both the network architecture and training procedure of our MELA framework.
The MELA network consists of one gating network and eight expert networks (see Fig. 7.7B).
The gating network has 2 hidden layers with 128 neurons each, using a ReLU activation
function. All expert networks have 2 hidden layers with 256 neurons each and use a ReLU
activation function, which has the same network structure as that of the pre-trained expert
policy networks shown in Fig. 7.7A.

Here, we elaborate on MELA’s two-stage training procedure. In stage 1, as shown in Fig.
7.7A, successful trotting and fall recovery policies were pre-trained to warm-start the expert
networks in the second stage. In stage 2, MELA first initialised eight expert networks as two
subgroups by copying the weights and bias from the pre-trained experts (see Fig. 7.7B) and
randomly initialised the weights and bias of the gating network. Then MELA embedded all
the experts together with the gating network, and co-trained all of them with diverse samples.
During the stage 2 co-training, the gating network needed to learn how to compute correct
weights for all experts and synthesise a new skill-adaptive network, as illustrated in Fig. 7.7B.
The robot feedback states were the input of the synthesised network for generating motor
actions.

105

CHAPTER 7. MULTI-EXPERT LEARNING OF ADAPTIVE LOCOMOTION BEHAVIOURS

Figure 7.7: Two-stage training of MELA. (A) In stage 1, the fall recovery and trotting policies are
individually trained. (B) In stage 2, the pre-trained trotting and fall recovery policies from stage
1 are used to initialise two evenly distributed groups of experts, each containing 4 experts. All
these expert networks are co-trained together with the gating network.

106

7.2. METHODOLOGY

Figure 7.8: Learning curves during the first and second stage of MELA training. For training
experts in the first stage of MELA, 250 episodes were required for both fall recovery and trotting
tasks. For co-training in the second stage, 400 episodes were required. One episode consists
of 5000 samples that were collected at 25 Hz.

Following the framework in Fig. 7.7, both stages were trained using the SAC algorithm, and
the samples were collected at 25 Hz frequency while the actions were executed through the
impedance control at 1000 Hz frequency. Both training stages initialised the robot in diverse
configurations during the simulation episodes so as to increase the diversity of the collected
samples. The learning curves during stage1 and stage 2 of the MELA training can be found in
Fig. 7.8.

All neuron connections within MELA are differentiable, including those between the gating
network and expert networks. This allows every network weight and bias to update through
backpropagation simultaneously. Thus, all the MELA networks can be trained with the same
backpropagation techniques used for Fully Connected Neural Networks. The actor for SAC was
encoded using a MELA network, while the critic consisting of two Q functions was encoded
as Fully Connected Neural Networks which were adopted from Double Q-learning to prevent
overestimation [153],[154].

Let x, y, h denote the dimensions of the input, output, and the hidden layer respectively;
let W and B be the weights and bias of the network. The parameter-set of the skill-adaptive

107

CHAPTER 7. MULTI-EXPERT LEARNING OF ADAPTIVE LOCOMOTION BEHAVIOURS

network is:

Ψsynth =
{
W0 ∈Rx×h,W1 ∈Rh×h,W2 ∈Rh×y,B0 ∈Rh,B1 ∈Rh,B2 ∈Ry,

}
(7.4)

and the parameter-set of each individual expert network is:

Ψsynth =
{
Wn

0 ∈Rx×h,Wn
1 ∈Rh×h,Wn

2 ∈Rh×y,Bn
0 ∈Rh,Bn

1 ∈Rh,Bn
2 ∈Ry,

}
(7.5)

During runtime, the weights W and bias B of skill-adaptive network are fused by the weighted
sum formulation as:

Wi =
8∑

n=1
αnWn

i , Bi =
8∑

n=1
αnBn

i (7.6)

where n = 1, ...,8 is the index of experts, i = 1,2,3 is the corresponding layer index, and αn ∈ [0,1]

are the variable weights generated by the gating network.
The fused W and biases B are used to construct the synthesised network dynamically

during runtime using the equation as follows.

Φsynth = Tanh(W2ReLU(W1ReLU(W0X +B0)+B1)+B2) (7.7)

Where X ∈Rx is the input parameter, and Tanh(∗) and ReLU(∗) are the nonlinear activation
functions. The sum of the 8 variable weights αn, (n = 1, ...,8) is normalized to one using a
Softmax function. There are several nonlinear features in the blending process: each expert
DNN is a nonlinear control policy by nature, and each blending weight is produced by nonlinear
rescaling of the output of the gating network with a Softmax function to normalise different
values of the original sum. Therefore, the resulting synthesised expert is a highly nonlinear
control policy – a nonlinear mapping between the feedback states and actions that is required
to deal with challenging scenarios.

7.3 Results

7.3.1 Multi-Expert Learning Framework

We first define key terminology to explain better the concepts referred to in this article: motor
skill or skill in short, expert, and locomotion mode. Motor skill : a feedback policy that generates
coordinated actions to complete a specific type of tasks, which serves as a building block for
composing more complex manoeuvres. Expert : a deep neural network with specialised motor
skills. Locomotion mode: a type of movements occurring in quadrupedal locomotion, such as
standing, fall recovery, turning on the spot, steering left/right, and trotting forward/backward.

To complete tasks in new scenarios, an artificial agent needs the ability to adapt appropriate
skills during runtime, for which MELA is proposed: a hierarchical reinforcement learning
structure constituting a collection of Deep Neural Networks (DNNs) and a Gating Neural
Network (GNN). As shown in Fig. 7.2, the GNN continuously fuses expert DNNs into a

108

7.3. RESULTS

synthesised neural network at every time step by computing the weighted average of all
experts’ network parameters. The synthesised policy fully encodes the motor skills of the
experts in a high-dimensional feature space. Through repurposing and synthesising existing
skills, MELA acquires a wide array of adaptive behaviours and achieves versatile locomotion in
new scenarios.

The multi-expert policy of MELA is trained in a two-step process. In the first stage, we
train individual policies to accomplish representative and distinct tasks. Specifically, we use
the trained experts, such as fall recovery and trotting experts, to initialise all experts by two
sub-groups. In the second stage, we use a gating neural network as the merging mechanism to
fuse all network-parameters and train all experts together, so that their collective specialisations
can be fully utilised by the gating network. Meanwhile, the gating network is trained to learn
the continuous and variable activation of different experts to generate optimal policies at each
control loop. The MELA policy was trained in the physics simulation and evaluated on a real
robot system.

For constructing MELA, the number of experts is determined by the relation between the
desired locomotion tasks and the required skills. A particular motor skill corresponds to a
distinct control strategy (e.g., to roll the body by pushing the ground), and thus one locomotion
task would require a set of different skills. In our study, we focus on five locomotion tasks (Fig.
7.2): fall recovery, standing, turning left, turning right, and trotting. All these movements need a
variety of motor skills for interacting with the environment.

According to the configurations that the robot would encounter during these five tasks, a
basic number of experts can be determined. There are 7 distinct situations each requiring at
least one motor skill, namely: (i) fall recovery from a supine pose (lying on the back), (ii) fall
recovery from lateral decubitus poses (lying on the left/right side), (iii) balance control during
stance, (iv) body postural control, (v) trotting forward, (vi) left steering, and (vii) right steering.
Hence, a minimal number of 7 DNNs can be determined to represent these skills. We also
introduced a redundant expert that can represent nonlinear features and additional skills which
are difficult to anticipate. As a result, we constructed the MELA collection using 8 experts in
total. In addition, our further comparison found that using more than 8 experts had no further
performance but more training time (see Fig. 7.9). It shall be noted that the 7 situations are
only used as a guideline to determine the number of experts at the initial design process, and
does not need to match the numeration of MELA’s learned motor skills in the latter section.

7.3.2 Learning Individual Motor Skills

In challenging physical tasks, it is difficult to directly train control policies where a variety of skills
are needed, such as recover falling poses and resume walking gaits. Prior studies show that
pre-learning skills allow the experts to learn task representations, otherwise the policies were
not able to learn to solve more difficult composite tasks [137], [141]. Like training in sports, it is

109

CHAPTER 7. MULTI-EXPERT LEARNING OF ADAPTIVE LOCOMOTION BEHAVIOURS

Figure 7.9: Comparison of MELA’s learning curves using different numbers of expert networks.
It can be seen that using more than 8 experts does not improve the task performance, and has
a slower convergence instead.

Figure 7.10: Baseline experiments of fall recovery and trotting from engineered controllers. (A)
The fall recovery from the engineered controller has a fixed sequence of motions and takes
more than 12 s to stand up. (B) The trotting gait sample from the robot’s control suite.

essential to practise individual skills that are distinctly different. Similarly, MELA has a two-step
training procedure of experts, in which two distinct, separate modes are specialised first: fall
recovery and trotting. In the following, we will show the experimental results of fall recovery and
trotting using individually trained neural networks, and then present the multimodal locomotion
experiments using MELA.

7.3.2.1 Fall Recovery

For quadrupeds, a canonically stable configuration is a standing posture with four feet forming
a support polygon close to the body’s length and width. For fall recovery, the DRL agent is
rewarded for feedback policies that restore such stable postures from various failures. We

110

7.3. RESULTS

Figure 7.11: Individual motor skills for the fall recovery and trotting respectively. (A1) A con-
figuration between prone and lateral decubitus positions where legs were stuck underneath
the body: the robot first pushed the ground to lift up the body for ground clearance, and then
retrieved legs to a prone posture for standing up. (A2) The robot actively used elbow-push
to generate a large momentum to self-right to a prone position. (A3) A stepping behaviour
was learned and performed naturally to keep balance. (B1) Stable trotting on a hard floor.
(B2) Stable trotting on soft slippery foam mats. (B3) Stable trotting over scattered obstacles,
showing the compliant interaction and robustness learned by the trotting expert. (Time in
snapshots is in second).

applied random initial configurations to explore diverse robot states and facilitated the agent’s
ability to generalise policies for various fall poses (see Fig. 7.5).

We evaluated the robustness of recovery policies and Fig. 7.11A shows the learned reactive
behaviours by four strategies: (i) natural rolling exploiting semi-passive movements, (ii) active
righting and flipping, (iii) standing up from prone positions, and (iv) stepping. Natural rolling

111

CHAPTER 7. MULTI-EXPERT LEARNING OF ADAPTIVE LOCOMOTION BEHAVIOURS

describes the behaviour that the robot exploits the natural dynamics and gravity to roll over.
This is activated when the robot is in a prone and/or lateral decubitus position, as shown in
Fig. 7.11A1. Active righting is the strategy that the robot pushes by leg and elbow, creating
momentum to actively flip itself to a prone position, as shown in Fig. 7.11A2. Stepping emerges
when necessary during standing to regain balance, involving coordination and switching of
support legs. An example of stepping is shown in Fig. 7.11A3, and such multi-contact switching
was all generated naturally using the learned policy based on the online state feedback.

From all fall recovery experiments (see Fig. 7.11), we can see the responsive and versatile
reactions, including the emerged stepping behaviour. Compared to the baseline fall recovery
which is manually engineered with a fixed pattern (see Fig. 7.10), our learning policy is able to
recover from various different fall scenarios, because it can respond to dynamic changes using
online feedback, while the handcraft controller only addresses a narrow range of situations.

7.3.2.2 Trotting

Based on our proposed deep reinforcement learning framework, we applied imitation learning
to train trotting skills using a reference trajectory (Fig. 7.10). By providing reference trajectories
from an existing trotting gait to explore upon, the agent was able to learn stable trotting more
efficiently and effectively through imitation.

Jueying can robustly trot under three ground conditions with different stiffness, friction,
and obstacles (Fig. 7.11B). In Fig. 7.11B1, the concrete ground was covered by thin carpets
with high friction, while in Fig. 7.11B2, 2cm thick foam mats were laid, creating a softer and
more slippery surface. In Fig. 7.11B3, 5cm thick bricks were scattered as small obstacles. The
learned motor skills were robust under different ground conditions, and the Jueying robot was
able to continue trotting steadily in all three scenarios.

All these trained policies have exhibited behaviours of compliant interaction to handle
physical interactions and impacts. The joint impedance mode offers the ability to indirectly
regulate joint torques by the deviation between the desired joint position qd and actual joint
position qm via the principle similar to the series elastic actuators, i.e., τ= Kp(qd − qm) [150].
The expert has indirectly learned active compliance control by regulating the references based
on feedback of the current joint positions to minimise joint torques.

7.3.3 Multi-Expert Learning Structure

7.3.3.1 Analysis of learned MELA policy

After the first stage of the two-stage training process, the network parameters of fall recovery
and trotting policies are transferred to the expert networks in MELA. In the second stage, all
experts are co-trained with the gating network, and MELA repurposes the initial experts to learn
adaptive behaviours necessary for multimodal locomotion, while the gating network learns

112

7.3. RESULTS

how to blend the acquired skills according to the changing tasks. As a result, MELA is able
to achieve non-cyclic and asymmetric motions (fall recovery), rhythmic movements (trotting),
goal-oriented tasks (target-following), as well as all dynamical transitions between different
modes. These key adaptive behaviours of the MELA policy were realised on a real robot, which
demonstrated the capabilities of achieving a diversity of locomotion tasks, adapting to external
environmental changes responsively, and meanwhile following variable user commands.

To analyse the inner workings of MELA, we performed systematic tests of the trained MELA
networks in the physics simulation, so as to fully stimulate a wide range of sensory inputs to
maximum. Without hardware risks, we operated the robot in extremely dynamic motions to
activate different experts, allowing the analysis of all distinct motor skills. This provides data
of variable weights that reflects the activation level of all experts over each motor skill. The
analysis in Fig. 7.12 was based on the simulation tests using the policy from a single training
run, which was representative because the training process can consistently reproduce policies
with very similar characteristics of skill specialisation. Fig. 7.12A shows the correlations and
patterns between the activation of experts and the motor skills, and reveals that each motor
skill has a dominant expert, suggesting the primary specialisation of each MELA expert.

As shown in Fig. 7.12A, 8 fundamental motor skills are acquired: (i) back righting, e.g.,
push elbow to roll over from supine positions (lying on the back); (ii) lateral rolling, e.g., retrieve
legs and roll the body to a prone position (lying on the abdomen); (iii) postural control, e.g.,
maintain a nominal body posture; (iv) standing balancing, e.g., maintain stable stance and take
steps when necessary; (v) turning left; (vi) turning right; (vii) trotting at small steps; and (viii)
trotting at larger steps. These 8 fundamental motor skills are the building blocks for MELA to
compose variable skills and produce adaptive behaviours.

113

CHAPTER 7. MULTI-EXPERT LEARNING OF ADAPTIVE LOCOMOTION BEHAVIOURS

Figure 7.12: Analysis on the specialisation of experts, and the patterns of the gating network
and the expert networks using the t-distributed Stochastic Neighbour Embedding (t-SNE). (A)
Specialised activation of eight experts across different motor skills. (B-C) The 2D projection of
the gating network’s activation pattern by t-SNE. (B) Classified by the index of the dominant
expert (see Fig. 7.12A). (C) Classified by the physical states during a distinct locomotion
mode, e.g., trotting, balancing, turning left/right. (D-E) The 2D projection of the actions from
the pre-trained, co-trained, and synthesised expert policies during fall recovery (D) and trotting
(E) tasks. 114

7.3. RESULTS

Figure 7.13: Activation patterns of experts across all motor skills. The unique activation pattern
of each expert, in which the specialisation is indicated by the highest activation of a motor
skill numerated by roman numbers. The specialised motor skills of expert 1-8 are: (i) right
turning, (ii) balance stabilisation, (iii) large-step trotting, (iv) left turning, (v) posture control,
(vi) back righting, (vii) small-step trotting, and (viii) lateral rolling, respectively. The data used
for visualising the activation patterns are obtained from simulation tests of the trained MELA
policy.

The skill specialisation and distribution among experts emerge naturally through the MELA
co-training. Therefore, the order of the experts does not need to follow the numeration of the
specialised motor skills. The primary specialisation of expert 1 to 8 over the motor skills are:
turning right (skill vi), standing balance (skill iv), large-step trotting (skill viii), turning left (skill
v), body posture control (skill iii), back righting (skill i), small-step trotting (skill vii) and lateral
rolling (skill ii). As the result of introduced redundancy, expert 7 was exploited and trained as a
complementary role in conjunction with expert 3 for trotting forward, i.e., expert 7 and 3 were
specialised in trotting at small and large steps, respectively. An alternative visualisation can
also be found in Fig. 7.13 by the activation patterns of experts across different motor skills.

7.3.3.2 Analysis of skill adaptation and transfer

Apart from the skill specialisation (Fig. 7.12A), we studied how skills are adapted and trans-
ferred in the MELA networks by using t-distributed Stochastic Neighbour Embedding (t-SNE) to
analyse coactions of the gating network and the expert networks, respectively. The t-SNE algo-
rithm is a dimensionality reduction technique to embed and visualise high-dimensional data in a
low-dimensional space. It first computes a conditional probability distribution, representing the
similarities of samples in the original high-dimensional space based on a distance metric, and
then projects samples to a low-dimensional space in a probabilistic manner. Therefore, similar
output actions from the networks will appear with high probability in the same neighbourhood
as clustered points (Fig. 7.12B-E), and vice versa.

115

CHAPTER 7. MULTI-EXPERT LEARNING OF ADAPTIVE LOCOMOTION BEHAVIOURS

In Fig. 7.12B-C, the t-SNE analysis on the outputs of the gating network (the variable
weights for all experts) reveals the relationship between experts and the resulting motor skills,
and how the gating network synthesises experts after the MELA learning process. There are
two maps of clusters in both Fig. 7.12B-C, which are grouped by dashed lines corresponding
to locomotion (green) and fall recovery (bronze) separately, suggesting that the gating network
perceives these two as different modalities. The t-SNE analysis is labelled according to the
experts (Fig. 7.12B) and motor skills (Fig. 7.12C), respectively, where the clustered samples
have matching distributions mostly between these two maps, indicating each expert’s primary
motor skill is in agreement with the activation patterns shown in Fig. 7.12A.

We also compared actions generated by all experts using t-SNE and revealed how multiple
skills evolved and diversified after co-training. As shown in Fig. 7.12D-E, the actions generated
from 8 experts are distant from each other, meaning that experts have been specialised towards
more unique skills. The limited intersection between the clusters of the trained experts in stage
2 and the initial experts from stage 1 also implies that: the trained experts have diversified
from the original warm-start skills and further acquired more profound and newly emerged
skills during MELA’s co-training stage. The data in Fig. 7.12D-E show interesting results: the
cluster of actions from the synthesised network intersects with those from the pre-trained
expert policies, meaning newly emerged behaviours of fall recovery and locomotion share
some similarities with the original ones; the dynamically synthesised expert preserves partially
the original skills, which are reconstructed by fusing 8 distinctive experts.

7.3.3.3 Multi-skill Locomotion

To validate the performance of the MELA policy, we designed experiments that were safe to
execute on the real robot with an increasing number of locomotion modes: (i) single-mode
fall recovery (Fig. 7.14A); (ii) double-mode left-right steering on the spot (Fig. 7.14B); (iii)
triple-mode of simultaneous left-right steering and trotting (Fig. 7.14C); and (iv) target-following
locomotion involving all modes, i.e., standing, left-right steering, trotting and fall recovery (Fig.
7.14D).

116

7.3. RESULTS

Figure 7.14: Dynamically synthesised MELA policy running on a real quadruped robot. (A)
Successful fall recovery performed by the MELA expert, inheriting original skills from the
pre-trained expert. (B) Newly emerged skills of dynamic steering on the spot naturally learned
through the MELA framework (first to the right then to the left). (C) Target-following experiment
with simultaneous trotting and steering. (D1) Target-following experiment showing the capability
of failure-resilient trotting and critical recovery within one second (averagely 0.5 second for
restoring body posture and 0.4 seconds for returning to the trotting mode). (D2) Elapsed-time
snapshots of the same experiment as in (D1) from the front view. (Time in snapshots is in
second).

117

CHAPTER 7. MULTI-EXPERT LEARNING OF ADAPTIVE LOCOMOTION BEHAVIOURS

Figure 7.15: Five representative cases showing adaptive behaviours of the MELA expert under
new situations in simulation. (A) An emerged behaviour of left and right steering on the spot.
(B) An emerged behaviour of simultaneous steering and standing up while recovering from
fall to trotting. (C) A tripping case caused by a slippery ground with a low friction coefficient
of 0.1. The tripping and recovery behaviour was similar to that in the real experiment (see
Fig. 7.14D1-D2). (D) A large impact disturbance caused by a 20 kg box hitting the robot at 8
m/s velocity. (E) An extreme crash test of blind locomotion over a cliff of 1 m height. (Time in
snapshots is in second).

Figure 7.16: Forward trotting velocity during the variable speed trotting simulation. The robot
adapted its trotting speed and followed the moving target.

In our study, adaptive behaviours refer to the online synthesised skills that adapt reactively

118

7.3. RESULTS

Figure 7.17: Heading angle and angular velocity during the steering experiment on the real
robot. The heading data here corresponds to the experiment in Fig. 7.14B. (A) The robot
first steered counter-clockwise towards the left and then clockwise towards the right. (B) The
average yawing velocities were 1.6rad/s (92.0deg/s) and −1.1rad/s (−61.7deg/s) during left
and right steering, respectively, while the peak velocities reached 2.7rad/s (156.8deg/s) and
−2.7rad/s (−156.9deg/s).

to new situations. We summarise the adaptive behaviours achieved by MELA in two categories:
(i) Emerged skills that are newly acquired during training in stage 2 of MELA, i.e., skills for
steering and turning (see Fig. 7.14 and Fig. 7.15) and variable speed trotting (see Fig. 7.16); (ii)
Transitional skills that coordinate dynamical transitions smoothly between different locomotion
modes, e.g., transition from various failure poses to trotting (see Fig. 7.14 and Fig. 7.15B-E).
Five representative cases of the adaptive behaviours from the MELA policy can also be found
in Fig. 7.15.

Figure 7.14A shows successful fall recovery performed by the MELA policy, and the
similarity with those in Fig. 7.11A indicates that the MELA policy has reused some pre-trained
skills. Figure 7.14B shows that the MELA policy was able to infer the heading direction from the
target location, and learned how to perform swift turning to track the changing target. During
the left and right steering experiments (see Fig. 7.14B), the average turning velocities were
1.6 rad/s (92.0 deg/s) and -1.1 rad/s (-61.7 deg/s) with peak values at 2.7 rad/s (156.8 deg/s)
and -2.7 rad/s (-156.9 deg/s), respectively (see Fig. 7.17). Although the experts initialised in
MELA were only for trotting and fall recovery, MELA was able to reshape the existing experts
for the steering tasks as one of the newly emerged skills.

Figure 7.14C-D show more challenging target-following tasks requiring simultaneous trotting
and steering on the real robot. The task was to chase a virtual target given by the user

119

CHAPTER 7. MULTI-EXPERT LEARNING OF ADAPTIVE LOCOMOTION BEHAVIOURS

Figure 7.18: Relative target positions with respect to the robot from the user command as
the input to the MELA networks during the real multimodal locomotion experiment. (A) The
changing target position (x, y) during the real target-following experiment (Fig. 7.14C), and
runtime was 14 seconds. (B) The changing target position (x, y) during the fall-resilient
experiment (Fig. 7.14D1-D2), and runtime was 18 seconds.

command, i.e., a variable position vector with respect to the robot. In Fig. 7.14C, a smaller
target position ahead of the robot was provided, e.g., 0.28 m in the heading direction (see Fig.
7.18A), and the robot performed left/right turning while trotting forward. In the next locomotion
experiment (Fig. 7.14D1- D2), a farther target position of 0.48 m was commanded (see
Fig. 7.18B). In this case, the robot chased such a distant target by trotting at larger steps,
and the torque saturation of motors occurred more often (see Fig. 7.19), which naturally
induced three tripping incidents. Key snapshots around the falling and reactive responses are
presented in Fig. 7.14D. Once anomalous robot states were sensed, MELA was able to produce
immediate reactions to restore balance within a second (see the body orientation in Fig. 7.20),
and the robot recovered from tripping and continued locomotion without human intervention.
The synthesised MELA expert demonstrated flexible transitions to resume locomotion in all
these three successive incidents, and such reactive response using feedback is crucial for
autonomous and resilient locomotion.

120

7.3. RESULTS

Figure 7.19: Measured torques of the front left leg during the real multimodal locomotion
experiment (Fig. 7.14D1-D2). During this experiment, the robot trotted at large steps (see the
larger commanded (x, y) target positions in Fig. 7.18B) and saturated the motor torques at
times, e.g., the hip pitch joint. In this case, the torque-saturated leg was not able to move as
intended and the robot stumbled and tripped (yellow regions), leading to falling motions (red
regions).

Figure 7.20: Roll and pitch angles during the real multimodal locomotion experiment. The
measurements correspond to the experiment presented in Fig. 7.14D1-D2. Significant changes
were observed in the body orientation by the roll and pitch angles during the tripping moments.
The peaks in roll and pitch angles were up to 0.47 rad (26.7 deg) and 0.7 rad (39.8 deg),
respectively. The recovery was accomplished within 1 second time.

Figure 7.21: Normalised power spectrum analysis of motions during the real multimodal loco-
motion experiment (without the DC component). The data were collected from the experiment
shown in Fig. 7.14D1-D2. The majority of the frequency components were below 1Hz, and
some small components were around 1.67Hz corresponding to the trotting motions, which
indicated that all useful motion components were unaffected by the action filters.

121

CHAPTER 7. MULTI-EXPERT LEARNING OF ADAPTIVE LOCOMOTION BEHAVIOURS

As shown in Fig. 7.14, the hierarchical MELA enabled the robot to complete four types
of validations successfully, and demonstrated dynamic fall-resilient locomotion. The gating
network in MELA has learned how to generate variable weights of all experts in response to the
state feedback and provides smooth transitions across all modalities, and more data analysis of
the representative case shown in Fig. 7.14D1-D2 can be found in Fig. 7.22. Meanwhile, all the
trained experts were activated coherently to collaborate with each other under the regulation of
the gating network, in order to synthesise an optimal skill suited for the situation.

From Fig. 7.22A, the changing weights around the boundaries of locomotion modes indicate
that MELA produced smooth and quick transitions across successive modalities. The data
in Fig. 7.22C-E shows a clear correlation between the sum of the experts’ weights and the
locomotion mode, suggesting that MELA trained the experts to be activated in a collaborative
manner. Figure 7.19C delineates the sum of the weights of expert 3 and 7, which is high
throughout the trotting mode but low during standing and fall recovery. Similar patterns of
activation can also be observed in Fig. 7.22D, where the sum of expert 5, 6 and 8 has
particularly high peaks during fall recoveries but constantly low in other modes. Figure 7.22E
shows the differential weight between expert 1 and 4 (weight of expert 1 deducted by that
of expert 4), and the complementary activation during left and right trotting, i.e., activation of
expert 1 and inhibition of expert 4 during right trotting, and vice versa.

122

7.3. RESULTS

Figure 7.22: Continuous and variable weights of all experts during the real multimodal MELA
experiment (Fig. 7.14D1-D2). (A) The variable activations within a zoomed period to show
the transition of weights between multiple experts. (B) The variable activations of the entire
multimodal locomotion with trotting, turning and fall recovery during a target-following task.
(C-E) The activation levels of paired weights from collaborating experts, where the expert
groups (3, 7), (5, 6, 8), (1, 4) cooperated together in trotting (forward, left, right), fall recovery,
and turning (left, right), respectively.

123

CHAPTER 7. MULTI-EXPERT LEARNING OF ADAPTIVE LOCOMOTION BEHAVIOURS

Figure 7.23: Four types of new terrains for testing the multi-skill MELA policy in the simulation.
(A) The gravel is constructed by a variety of freely moving cubes with dimensions of 0.02m,
0.035m, and 0.05m. (B) The inclined surfaces consist of rectangular slabs (0.4 m x 0.4 m x
0.2 m), which are statically placed with random orientations on the ground. (C) The moving
slope has a changing inclination created by a seesaw with a maximum inclination of 0.17 rad
(10 deg). (D) The rough terrain created by planks with the mass of 2.5kg and a size of 1.2 m x
0.12 m x 0.02 m randomly distributed on the ground.

To further evaluate the performance, the MELA policy was validated by additional test
scenarios in simulation that were not encountered during training, including gravel, inclined
surfaces, moving slope, rough terrain (Fig. 7.23) as well as robustness tests with variations of
masses and motor failures (Fig. 7.24). During successful locomotion in these unseen scenarios,
the MELA policy performed versatile adaptations to new situations. We note that the MELA
framework has learned how to deal with transitions at various gait phases (see analysis in
Fig. 7.25-7.29), and the synthesised policy is different from the eight basic motor skills which
indicates a nonlinear interpolated behaviour among expert skills (see Fig. 7.30). All these

124

7.3. RESULTS

Figure 7.24: Simulated test scenarios for evaluating the robustness of the MELA policy. (A-B)
Uncertainties in dynamic properties are simulated by modifying the robot model, i.e., robot
mass with variations of 25%, 30% and 40% of the original value (40kg). We show snapshots
with the mass variation of 40% as an extreme example. (A) Fall recovery and trotting with 60%
of the original mass. (B) Fall recovery and trotting with 140% of the original mass. (C-D) Motor
failures are emulated by disabling (zero torque) the front legs (C) and rear legs (D) respectively
for one second. In both cases, the robot was able to recover from failures and accomplish the
task.

experiments and simulations validate MELA’s capability of producing flexible behaviours in a
variety of unseen situations.

125

CHAPTER 7. MULTI-EXPERT LEARNING OF ADAPTIVE LOCOMOTION BEHAVIOURS

Figure 7.25: Representative adaptive behaviour from the simulated scenario of steering on
spot (Fig. 7.15A). (A) Snapshots depicting the behaviours during left and right steering. (B)
Position references of all the joints during left and right steering phases. The smooth change
in desired joint positions indicates that the MELA framework has learned how to synthesise
expert skills during various transitions seamlessly.

126

7.3. RESULTS

Figure 7.26: Representative adaptive behaviour from the simulated scenario of steering while
recovering to trotting (Fig. 7.15B). (A) Snapshots depicting the behaviours during recovery and
steering. (B) Position references of all the joints during recovery, steering, recovery, and trotting
phases. The smooth change in desired joint positions indicates that the MELA framework has
learned how to synthesise expert skills during various transitions seamlessly.

127

CHAPTER 7. MULTI-EXPERT LEARNING OF ADAPTIVE LOCOMOTION BEHAVIOURS

Figure 7.27: Representative adaptive behaviour from the simulated scenario of tripping (Fig.
7.15C). (A) Snapshots depicting the behaviours during slipping and recovery. (B) Position
references of all joints during slipping, recovery, and trotting phases. The smooth change
in desired joint positions indicates that the MELA framework has learned how to synthesise
expert skills during various transitions seamlessly.

128

7.3. RESULTS

Figure 7.28: Representative adaptive behaviour from the simulated scenario of a large impact
(Fig. 7.15D). (A) Snapshots depicting the behaviours during the moment of disturbance and
recovery (B) Position references of all the joints during trotting, disturbance, and recovery
phases. The smooth change in desired joint positions indicates that the MELA framework has
learned how to synthesise expert skills during various transitions seamlessly.

129

CHAPTER 7. MULTI-EXPERT LEARNING OF ADAPTIVE LOCOMOTION BEHAVIOURS

Figure 7.29: Representative adaptive behaviour from the simulated scenario of falling off a cliff
(Fig. 7.15E). (A) Snapshots depicting the behaviours during falling and recovery. (B) Position
references of all the joints during falling, recovery, and steering. The smooth change in desired
joint positions indicates that the MELA framework has learned how to synthesise expert skills
during various transitions seamlessly.

130

7.3. RESULTS

Figure 7.30: Analysis of responses from the MELA policy during the simulated scenario
of a large external perturbation (Fig. 7.15D). We use the case of a flying box impact as a
representative example to show how the policy actively reacts to perturbations with a smooth
and seamless transition. The coloured bars at the top of each plot show the 3 phases during
the cube impact scenario: the green, red, and yellow phases represent stable trotting, the time
during the force impact by the high-speed cube, and the recovery process, respectively. In each
subplot, the 8 semi-transparent lines are the outputs of each individual expert, and the blue
solid line is the output of the synthesised MELA network. The outputs of the synthesised policy
(solid blue lines) have very different characteristics from that of the 8 basic experts during all
the phases, which suggests an interpolated behaviour and a nonlinear synthesis among the
expert skills.

131

CHAPTER 7. MULTI-EXPERT LEARNING OF ADAPTIVE LOCOMOTION BEHAVIOURS

7.4 Discussion

This study aims to achieve versatile robot motor skills in contact-rich multimodal locomotion.
In contrast to most solutions dedicated to separate narrow-skilled tasks, we approached this
challenge by a hierarchical control architecture of multi-expert learning – MELA – which is able
to generate adaptive motor skills and achieve a breadth of locomotion expertise. In particular,
MELA learns to generate adaptive behaviours from trained expert skills by dynamically fusing
a new synthesised neural network, i.e., a feedback policy that reacts quickly to new situations.
This is essential for autonomous robots to respond rapidly in critical conditions and is more
useful for the mission success in real-world applications.

Compared to MoE, MELA’s approach of fusing network parameters prevents the expert
imbalance problem while providing diversity among the expert skills. As a result, all experts
are required to have the same neural network structure for implementing MELA. The training
of MELA is a two-stage process with an initialisation of fall recovery and trotting policies at the
first stage, and the multi-expert co-training with the gating network at the second stage. The
t-SNE analysis of all expert networks and the gating network suggest that: the collection of
multiple experts have expanded the initial pre-trained expert skills and acquired more distinct
and diverse skillsets; the high-level gating network has learned to distinguish each expert
and blend weights of each specialisation according to different conditions; and the composed
synthesised MELA expert partially preserves some of the original skills.

The experimental and simulation results outline MELA’s key contributions in learning a
variety of adaptive behaviours from specialised experts, the adaptation to changing environ-
ments, and the robustness against uncertainties. The experimental results show that MELA
achieved multimodal locomotion with agile adaptation and fast responses to different situations
and perturbations, i.e., smooth transitions between standing balancing, trotting, turning, and
fall recovery. As a learning-based approach, MELA leverages computational intelligence and
shows the advantage of generating adaptive behaviours compared to traditional approaches
that purely rely on explicit manual programming.

Though our current MELA scheme is able to generate adaptive policies, it has no visual and
haptic perception which are critical for long-term motion planning [155], dynamic manoeuvres
[156], and utilisation of affordance to coordinate whole-body support poses [101]. To acquire
more advanced motion intelligence in unstructured environments, future research needs to
integrate visual cues and haptic sensing to develop environment-aware locomotion.

While scaling up the number of modalities, training in physics simulation may impose some
limitations. Though all policies were validated by the Jueying robot in five locomotion modes,
the discrepancy between the simulation and the real world may accumulate and arise as an
issue, when the number of tasks increases. Since the scope of this research is to achieve a
diversity of reactive skills rather than sim-to-real transfer, we performed training in simulation
and avoided potential damage to the real 40kg-robot during the exploration of the learning

132

7.4. DISCUSSION

algorithm. Based on the results of MELA, the future work will be on the learning algorithms
that can refine motor skills safely on real hardware for more complex multimodal tasks.

133

Chapter 8

Conclusion

8.1 Conclusion

The contribution of the work presented in this thesis are threefold. (i) We have developed a
versatile DRL framework that is able to balancing, walking, and fall recovery motor skills. (ii)
We proposed a Multi-Expert Learning Architecture (MELA) for DRL that is able to produce
dynamic multi-skilled locomotion behaviors. (iii) We have successfully implemented learned
control policies on real-world robots.

In this thesis, the first major contribution is that we have presented a number of Deep
Reinforcement Learning (DRL) based control frameworks for tackling three individual control
policies for bipedal and humanoid robots in simulation, namely, balancing, walking, and fall
recovery. Which are all essential skills for the successful locomotion of terrestrial legged robots.
The learning frameworks presented share the same underlying design principles, with slight
variations to solve the different problems of balancing, walking, fall recovery, and multi-skill
locomotion. The shared common design principles are reflected in the following: (i) state
representation, (ii) action representation, (iii) reward design, and (iv) sampling distribution.

The second major contribution is that we have proposed a novel multi expert learning
architecture with a hierarchical structure to combine the learned balancing, walking and fall
recovery policies to create a single unified multi-skill policy through a multi-expert network
structure and a two stage pre-training and co-training procedure. We showed that these three
motor skills can be merged into a single control policy to synthesize new motor skills within our
novel hierarchical multi-expert learning architecture. The performance of the multi-skill policy is
later validated on a real quadruped robot.

The final contribution is that we have demonstrated the feasibility of implementing DRL
based control policies on real robot systems. However, while we have successfully deployed
our learning framework on a real quadruped robot, we have also observed that the learned
control policies tend to generate jerky motions with high frequency oscillations, which is a
phenomenon that have been observed in other work [104]. We introduced two techniques

135

CHAPTER 8. CONCLUSION

termed smoothing loss and action filtering to guide the policy to learn to generate smoother
motions which can be executed on the robot and directly and safely. The proposed techniques
are crucial components of the framework as they prevent the policy from generating abrupt
and jerky motions that are infeasible to be deployed on the real system.

8.2 Limitations and Future Extensions

Though our proposed DRL scheme is able to learn flexible policies for both humanoid and
quadruped robots, there are still several limitations. In this section, we discuss the limitations in
the current work and also propose future research directions to improve and extend upon the
methods presented within the thesis.

8.2.1 Limitations

8.2.1.1 Hardware Implementation on Humanoids

One limitation of the work is that the balancing, walking, and fall recovery policies have not
been validated in the real world on real humanoid robots. Although the effectiveness of the
approach has been validated by the successful implementation of multiple motor skills on
real quadrupedal robots, it can still be argued that the control of humanoid robots is much
more challenging and that success on quadrupeds does not guarantee that the learned control
policies will function as intended on real humanoids. One interesting next step is to tackle the
difficulties during hardware implementation and deploy the control policies on real humanoids.
It will then be possible to investigate the performance of the learned policy while implemented
in real-world environments.

8.2.1.2 Visual and Haptic Feedback

The research conducted in this thesis does not utilize the high dimensional visual feedback
from cameras or the haptic feedback from artificial skin and thus have no means to obtain
information from the external environment. Although the current selection of state feedback is
sufficient for blind traversing over relatively flat terrains, the lack of visual and haptic perceptions
may impose future limitations when dealing with more complex tasks. There are a few studies
that have trained policies with visual feedback in the form of height maps, which were shown to
be capable of navigating through obstacles and terrains in simulation [6], [31]. There are also
attempts in training DRL policies with tactile feedback to perform manipulation tasks where the
sense of touch plays a crucial role [157], [158]. Visual and haptic perceptions are critical for
long-term planning and utilising affordances. To acquire more advanced motion intelligence in
unstructured environments, more research needs to be done to utilize useful visual and haptic
inputs and to incorporate visual and haptic feedback effectively.

136

8.2. LIMITATIONS AND FUTURE EXTENSIONS

8.2.1.3 Learning on Hardware

The fact that all the policies were trained in physics simulation may impose future limitations
when scaling up the modality. Although all policies were validated successfully by the Jueying
robot across five locomotion modes, discrepancies between the simulations and the real
world may arise when the number of tasks increases. Since the scope of this research is to
achieve a diversity of skills at runtime instead of sim-to-real transfer, we performed simulated
training for the safety of the robot and lab personnel. During the exploration of the learning
algorithm, the robot was made to progress through infeasible and aggressive actions, which
led to inevitable crashes in all possible ways. Duplicating such learning with a real robot would
have caused significant damage to, and incur repair costs for, the 40kg Jueying robot [42].
Based on the results of MELA, we suggest future work on learning refined motor skills on
real hardware for more complex multi-modal tasks, which are hard to simulate accurately and
feature accumulated discrepancies.

A major limitation of the work presented in this thesis is that the policy is not trained on real
hardware and thus may suffer from discrepancies between the simulations and the real world.
No matter how well the simulation resembles the real world, there will always be gaps between
simulation and reality, which will lead to performance issues. One way of circumventing the
issue is to use data gathered from the real environment to train the policy. Learning on hardware
is a method that can be used to bypass the sim-to-real gap, as the policy is learned directly on
the real hardware, avoiding any model discrepancies [159].

The most challenging aspect of learning directly on hardware is the sample efficiency. It
takes time to gather the samples, and it is not possible to run the robot for too long due to
possible hardware damage and fatigue. Some work pre-train the policy in simulation and use
real-world data for fast adaptation to uncertainties in the environment in real time [160]. Other
studies abandon simulation data completely and train the policy directly on real hardware [159].
For future work, meta-learning and model-based RL could be adopted to increase the sampling
efficiency, thus making it feasible to learn on hardware with a minimum number of trials.

Additional safety measures must be considered when learning directly on hardware. Under
such circumstances, safety constraints must be included in the learning framework to allow
the robot to explore and operate in a safe manner in the real world to minimize physical
damage[161].

8.2.2 Future Extensions

8.2.3 Exploring Diverse Skillsets

The MELA results presented in Chapter 7 are limited to a small number of motor skills, while,
in principle, MELA’s framework is highly scalable and could be extended to incorporate more
motor skills by increasing the number of experts within the MELA network. The motor skills

137

CHAPTER 8. CONCLUSION

investigated in this thesis were limited to balancing, trotting, and fall recovery. However, humans
and animals exhibit many other motor skillsets. In the character animation field, researchers
have trained human characters to punch and kick as well as perform backflips and various
other motions in physics simulation by imitating real human data. In robotics, researchers have
also designed controllers to perform dynamic motions, such as jumping, backflipping, and
galloping, using real-world quadrupedal robots [54], [162], [9]. An interesting research direction
would be to study unique and challenging motor skills and incorporate these new motor skills
into the existing MELA framework, creating a highly versatile multi-expert control policy with
the ability to adapt to a wide range of scenarios.

The proposed MELA has only been implemented to learn skills for quadruped locomotion.
However, other challenging applications such as manipulation might also benefit from the
multi-expert structure of MELA. It would be an interesting research direction to implement
MELA for robotic arms and multi-fingered manipulators and see if MELA is capable of learning
the necessary skillsets for solving the challenging task of dexterous manipulation of objects
with complex geometries.

8.2.4 Policy Transfer

Training new policies demands a lot of computation. The efficiency can be increased if pre-
viously trained skills can be transferred across different domains to facilitate the acquisition
of new skills. Transfer learning is a concept in machine learning that focuses on leveraging
past knowledge to improve and accelerate the learning in order to solve new tasks. It has had
notable successes within the RL paradigm [163].

The skill transfer presented in Chapter 7 for the MELA network is done by transferring the
network parameters of the initial fall recovery and trotting policies directly. The proposed MELA
was designed with the ease of policy transfer in mind. Since each expert encapsulates a single
behaviour, the hierarchical structure of MELA allows new expert policies to be transferred
into the framework by simply adding a new expert network. This addition can be achieved
easily, as the source policy has state and action representations that are similar to those of the
destination MELA policy. There is the added benefit that the policies are trained on the same
robot, making the transfer easier.

However, in many cases, the goal is to transfer skills between robots with different mor-
phologies and state and action representations [164]. Such cases demand more intricate
approaches for transferring known skills. Policy transfer is an interesting research topic worth
pursuing for future research, as the ability to transfer a policy easily and effectively between
different tasks and robots will increase the versatility of the MELA network.

138

8.2. LIMITATIONS AND FUTURE EXTENSIONS

8.2.5 Neural Network Structures

We have experimented on 4 different neural network structures within the thesis: (i) Fully
Connected Neural Network, (ii) Phased-Functioned Neural Network [89], (iii) Mode-Adaptive
Neural Network [90], and (iv) our proposed MELA network. However, there exists many other
neural network architectures with different and unique characteristics and advantages.

Researchers have explored the usage of various different neural network design within
the deep reinforcement learning paradigm, such as Long Short Term Memory (LSTM) and
Convolutional Neural Network (CNN). LSTM have been used for tasks that require the mem-
orization of past experience such as maze navigation [165], while CNN have been used for
tasks that involve visual information such as terrain traversing and object manipulation [166].
For future work, it might be worth exploring the strength and weaknesses of different neural
network structures and investigating how to design the suitable neural network for the desired
application.

8.2.6 Imitation Learning from Nature

Quadruped and humanoid robots have their equivalent counterparts in nature, which are
dogs, cats and humans. It makes sense to use the motions of humans and dogs as an expert
demonstration for the artificial learning agents to learn more diverse motor skills. There have
been quite a few works that have successfully used real-world motion data of humans and
animals to guide the agent to learn dynamic and natural looking motions [8], [9].

The first and most crucial step of Imitation Learning is to obtain the necessary expert
demonstrations. A common approach is to capture the motions using a specialized motion
capture device [89], [9]. The advantage of such methods is that they can provide accurate
and dense information on the orientation and position of the limbs and joints. However, the
disadvantage is also quite clear, the motion capture device are expensive and may sometimes
restrict the movement of the subject wearing the device. Recognizing the limitation of mocap
devices, some researchers have attempted to explore other sources of motion data that are
more easily accessible. Peng et. al. proposed a framework that is capable of extracting 2D and
3D pose estimation from videos for the imitation of a broad range of dynamic skills [167],

In this thesis, we have only used imitation learning to achieve the motion of bipedal walking
and quadrupedal trotting. For future work, we will further investigate the use of imitation
learning to learn more motor skills such as bipedal running, quadrupedal bounding, pacing,
and galloping etc.

139

Bibliography

[1] E. Coumans and Y. Bai, “Pybullet, a python module for physics simulation for games,
robotics and machine learning,” GitHub repository, 2016.

[2] M. Hutter, C. Gehring, D. Jud, A. Lauber, C. D. Bellicoso, V. Tsounis, J. Hwangbo,
K. Bodie, P. Fankhauser, M. Bloesch, et al., “Anymal-a highly mobile and dynamic
quadrupedal robot,” in 2016 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, 2016, pp. 38–44.

[3] H. Van Hasselt and M. A. Wiering, “Reinforcement learning in continuous action spaces,”
in 2007 IEEE International Symposium on Approximate Dynamic Programming and
Reinforcement Learning. IEEE, 2007, pp. 272–279.

[4] H. Van Hasselt, “Reinforcement learning in continuous state and action spaces,” in
Reinforcement learning. Springer, 2012, pp. 207–251.

[5] X. B. Peng, G. Berseth, and M. Van de Panne, “Dynamic terrain traversal skills using
reinforcement learning,” ACM Transactions on Graphics (TOG), vol. 34, no. 4, pp.
1–11, 2015.

[6] X. B. Peng, G. Berseth, K. Yin, and M. Van De Panne, “Deeploco: Dynamic locomotion
skills using hierarchical deep reinforcement learning,” ACM Transactions on Graphics
(TOG), vol. 36, no. 4, pp. 1–13, 2017.

[7] X. B. Peng, G. Berseth, and M. Van de Panne, “Terrain-adaptive locomotion skills using
deep reinforcement learning,” ACM Transactions on Graphics (TOG), vol. 35, no. 4,
pp. 1–12, 2016.

[8] X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne, “Deepmimic: Example-guided
deep reinforcement learning of physics-based character skills,” ACM Transactions on
Graphics (TOG), vol. 37, no. 4, pp. 1–14, 2018.

[9] X. B. Peng, E. Coumans, T. Zhang, T.-W. Lee, J. Tan, and S. Levine, “Learning agile
robotic locomotion skills by imitating animals,” arXiv preprint arXiv:2004.00784, 2020.

141

BIBLIOGRAPHY

[10] R. Sutton and A. Barto, Reinforcement Learning: An Introduction, 1988.

[11] Y. Li, “Deep reinforcement learning: An overview,” arXiv preprint arXiv:1701.07274, 2017.

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Ried-
miller, “Playing atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602,
2013.

[13] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy opti-
mization,” in International conference on machine learning, 2015, pp. 1889–1897.

[14] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine, “Continuous deep q-learning with model-
based acceleration,” in International Conference on Machine Learning, 2016, pp.
2829–2838.

[15] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy opti-
mization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[16] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in Inter-
national conference on machine learning, 2016, pp. 1928–1937.

[17] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor,” arXiv preprint
arXiv:1801.01290, 2018.

[18] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv preprint
arXiv:1509.02971, 2015.

[19] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, “The 3d linear inverted
pendulum mode: A simple modeling for a biped walking pattern generation,” in
Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and
Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat.
No. 01CH37180), vol. 1. IEEE, 2001, pp. 239–246.

[20] P. Sardain and G. Bessonnet, “Forces acting on a biped robot. center of pressure-
zero moment point,” IEEE Transactions on Systems, Man, and Cybernetics-Part A:
Systems and Humans, vol. 34, no. 5, pp. 630–637, 2004.

[21] M. Vukobratović and B. Borovac, “Zero-moment point—thirty five years of its life,” Inter-
national journal of humanoid robotics, vol. 1, no. 01, pp. 157–173, 2004.

[22] S. Kajita, H. Hirukawa, K. Harada, and K. Yokoi, Introduction to humanoid robotics.
Springer, 2014, vol. 101.

142

BIBLIOGRAPHY

[23] J. Pratt, J. Carff, S. Drakunov, and A. Goswami, “Capture point: A step toward humanoid
push recovery,” in 2006 6th IEEE-RAS international conference on humanoid robots.
IEEE, 2006, pp. 200–207.

[24] Z. Li, C. Zhou, Q. Zhu, and R. Xiong, “Humanoid balancing behavior featured by under-
actuated foot motion,” IEEE Transactions on Robotics, vol. 33, no. 2, pp. 298–312,
2017.

[25] X. B. Peng and M. van de Panne, “Learning locomotion skills using deeprl: Does the
choice of action space matter?” in Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, 2017, pp. 1–13.

[26] F. Peng, L. Ding, Z. Li, C. Yang, and C.-Y. Su, “Optimal balancing control of bipedal
robots using reinforcement learning,” in 2016 12th World Congress on Intelligent
Control and Automation (WCICA). IEEE, 2016, pp. 2186–2191.

[27] C. Zhou and Q. Meng, “Dynamic balance of a biped robot using fuzzy reinforcement
learning agents,” Fuzzy sets and Systems, vol. 134, no. 1, pp. 169–187, 2003.

[28] Y.-z. Chen, W.-Q. Hou, J. Wang, J.-W. Wang, and H.-x. Ma, “A strategy for push recovery
in quadruped robot based on reinforcement learning,” in 2015 34th Chinese Control
Conference (CCC). IEEE, 2015, pp. 3145–3151.

[29] C. Yang, T. Komura, and Z. Li, “Emergence of human-comparable balancing behaviours
by deep reinforcement learning,” in 2017 IEEE-RAS 17th International Conference
on Humanoid Robotics (Humanoids). IEEE, 2017, pp. 372–377.

[30] C. Yang, K. Yuan, W. Merkt, T. Komura, S. Vijayakumar, and Z. Li, “Learning whole-body
motor skills for humanoids,” in 2018 IEEE-RAS 18th International Conference on
Humanoid Robots (Humanoids). IEEE, 2018, pp. 270–276.

[31] N. Heess, D. TB, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa, T. Erez, Z. Wang,
S. Eslami, et al., “Emergence of locomotion behaviours in rich environments,” arXiv
preprint arXiv:1707.02286, 2017.

[32] D. A. Pomerleau, “Efficient training of artificial neural networks for autonomous naviga-
tion,” Neural computation, vol. 3, no. 1, pp. 88–97, 1991.

[33] A. Y. Ng, S. J. Russell, et al., “Algorithms for inverse reinforcement learning.” in Icml,
vol. 1, 2000, pp. 663–670.

[34] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in Advances in neural
information processing systems, 2016, pp. 4565–4573.

143

BIBLIOGRAPHY

[35] C. G. Atkeson and S. Schaal, “Robot learning from demonstration,” in ICML, vol. 97.
Citeseer, 1997, pp. 12–20.

[36] J. Merel, A. Ahuja, V. Pham, S. Tunyasuvunakool, S. Liu, D. Tirumala, N. Heess,
and G. Wayne, “Hierarchical visuomotor control of humanoids,” arXiv preprint
arXiv:1811.09656, 2018.

[37] C. Yang, K. Yuan, S. Heng, T. Komura, and Z. Li, “Learning natural locomotion behaviors
for humanoid robots using human bias,” IEEE Robotics and Automation Letters, vol. 5,
no. 2, pp. 2610–2617, 2020.

[38] J. Merel, Y. Tassa, D. TB, S. Srinivasan, J. Lemmon, Z. Wang, G. Wayne, and N. Heess,
“Learning human behaviors from motion capture by adversarial imitation,” arXiv
preprint arXiv:1707.02201, 2017.

[39] G. Endo, J. Morimoto, T. Matsubara, J. Nakanishi, and G. Cheng, “Learning cpg-based
biped locomotion with a policy gradient method: Application to a humanoid robot,”
The International Journal of Robotics Research, vol. 27, no. 2, pp. 213–228, 2008.

[40] A. Sharma and K. M. Kitani, “Phase-parametric policies for reinforcement learning in
cyclic environments,” in Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

[41] Z. Xie, G. Berseth, P. Clary, J. Hurst, and M. van de Panne, “Feedback control for cassie
with deep reinforcement learning,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 1241–1246.

[42] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bohez, and V. Van-
houcke, “Sim-to-real: Learning agile locomotion for quadruped robots,” arXiv preprint
arXiv:1804.10332, 2018.

[43] A. Iscen, K. Caluwaerts, J. Tan, T. Zhang, E. Coumans, V. Sindhwani, and V. Vanhoucke,
“Policies modulating trajectory generators,” arXiv preprint arXiv:1910.02812, 2019.

[44] F. Abdolhosseini, H. Y. Ling, Z. Xie, X. B. Peng, and M. van de Panne, “On learning
symmetric locomotion,” in Motion, Interaction and Games, 2019, pp. 1–10.

[45] W. Yu, G. Turk, and C. K. Liu, “Learning symmetric and low-energy locomotion,” ACM
Transactions on Graphics (TOG), vol. 37, no. 4, pp. 1–12, 2018.

[46] Z. Li, C. Zhou, J. Castano, X. Wang, F. Negrello, N. G. Tsagarakis, and D. G. Caldwell,
“Fall prediction of legged robots based on energy state and its implication of balance
augmentation: A study on the humanoid,” in 2015 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2015, pp. 5094–5100.

144

BIBLIOGRAPHY

[47] S. Wang and K. Hauser, “Real-time stabilization of a falling humanoid robot using
hand contact: An optimal control approach,” in 2017 IEEE-RAS 17th International
Conference on Humanoid Robotics (Humanoids). IEEE, 2017, pp. 454–460.

[48] S. Wang and K. Hauser, “Realization of a real-time optimal control strategy to stabilize a
falling humanoid robot with hand contact,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2018, pp. 3092–3098.

[49] S. Wang and K. Hauser, “Unified multi-contact fall mitigation planning for humanoids via
contact transition tree optimization,” in 2018 IEEE-RAS 18th International Conference
on Humanoid Robots (Humanoids). IEEE, 2018, pp. 1–9.

[50] J. Stückler, J. Schwenk, and S. Behnke, “Getting back on two feet: Reliable standing-up
routines for a humanoid robot.” in IAS, 2006, pp. 676–685.

[51] F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, S. Kajita, K. Yokoi, H. Hirukawa,
K. Akachi, and T. Isozumi, “The first humanoid robot that has the same size as
a human and that can lie down and get up,” in 2003 IEEE International Conference on
Robotics and Automation (Cat. No. 03CH37422), vol. 2. IEEE, 2003, pp. 1633–1639.

[52] C. Semini, J. Goldsmith, B. U. Rehman, M. Frigerio, V. Barasuol, M. Focchi, and D. G.
Caldwell, “Design overview of the hydraulic quadruped robots,” in The Fourteenth
Scandinavian International Conference on Fluid Power, 2015, pp. 20–22.

[53] H. Jeong and D. D. Lee, “Efficient learning of stand-up motion for humanoid robots with
bilateral symmetry,” in 2016 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, 2016, pp. 1544–1549.

[54] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and M. Hutter,
“Learning agile and dynamic motor skills for legged robots,” Science Robotics, vol. 4,
no. 26, p. eaau5872, 2019.

[55] P. G. Adamczyk, S. H. Collins, and A. D. Kuo, “The advantages of a rolling foot in human
walking,” Journal of experimental biology, vol. 209, no. 20, pp. 3953–3963, 2006.

[56] Z. Li, C. Zhou, Q. Zhu, R. Xiong, N. Tsagarakis, and D. Caldwell, “Active control of under-
actuated foot tilting for humanoid push recovery,” in 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2015, pp. 977–982.

[57] Z. Li, B. Vanderborght, N. G. Tsagarakis, and D. G. Caldwell, “Human-like walking with
straightened knees, toe-off and heel-strike for the humanoid robot icub,” 2010.

[58] Z. Li, C. Zhou, N. Tsagarakis, and D. Caldwell, “Compliance control for stabilizing the
humanoid on the changing slope based on terrain inclination estimation,” Autonomous
Robots, vol. 40, no. 6, pp. 955–971, 2016.

145

BIBLIOGRAPHY

[59] S.-H. Hyon, R. Osu, and Y. Otaka, “Integration of multi-level postural balancing on
humanoid robots,” in 2009 IEEE international conference on robotics and automation.
IEEE, 2009, pp. 1549–1556.

[60] B. J. Stephens and C. G. Atkeson, “Dynamic balance force control for compliant hu-
manoid robots,” in 2010 IEEE/RSJ international conference on intelligent robots and
systems. IEEE, 2010, pp. 1248–1255.

[61] Z. Li, B. Vanderborght, N. G. Tsagarakis, and D. G. Caldwell, “Fast bipedal walk us-
ing large strides by modulating hip posture and toe-heel motion,” in 2010 IEEE
International Conference on Robotics and Biomimetics. IEEE, 2010, pp. 13–18.

[62] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D. Mané, “Concrete
problems in ai safety,” arXiv preprint arXiv:1606.06565, 2016.

[63] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller, “Deterministic
policy gradient algorithms,” 2014.

[64] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control through deep
reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[65] M. Hausknecht and P. Stone, “Deep reinforcement learning in parameterized action
space,” arXiv preprint arXiv:1511.04143, 2015.

[66] N. Heess, G. Wayne, Y. Tassa, T. Lillicrap, M. Riedmiller, and D. Silver, “Learning and
transfer of modulated locomotor controllers,” arXiv preprint arXiv:1610.05182, 2016.

[67] K. Yuan and Z. Li, “An improved formulation for model predictive control of legged robots
for gait planning and feedback control,” in 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 1–9.

[68] C. Liu, A. G. Lonsberry, M. J. Nandor, M. L. Audu, A. J. Lonsberry, and R. D. Quinn,
“Implementation of deep deterministic policy gradients for controlling dynamic bipedal
walking,” Biomimetics, vol. 4, no. 1, p. 28, 2019.

[69] B. Stephens, “Humanoid push recovery,” in 2007 7th IEEE-RAS International Conference
on Humanoid Robots. IEEE, 2007, pp. 589–595.

[70] P.-B. Wieber, “Trajectory free linear model predictive control for stable walking in the
presence of strong perturbations,” in 2006 6th IEEE-RAS International Conference
on Humanoid Robots. IEEE, 2006, pp. 137–142.

146

BIBLIOGRAPHY

[71] T. Komura, A. Nagano, H. Leung, and Y. Shinagawa, “Simulating pathological gait using
the enhanced linear inverted pendulum model,” IEEE Transactions on biomedical
engineering, vol. 52, no. 9, pp. 1502–1513, 2005.

[72] J. Urata, K. Nshiwaki, Y. Nakanishi, K. Okada, S. Kagami, and M. Inaba, “Online decision
of foot placement using singular lq preview regulation,” in 2011 11th IEEE-RAS
International Conference on Humanoid Robots. IEEE, 2011, pp. 13–18.

[73] W. Hu, I. Chatzinikolaidis, K. Yuan, and Z. Li, “Comparison study of nonlinear optimization
of step durations and foot placement for dynamic walking,” in 2018 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2018, pp. 433–439.

[74] W. Han and R. Tedrake, “Feedback design for multi-contact push recovery via lmi
approximation of the piecewise-affine quadratic regulator,” in 2017 IEEE-RAS 17th
International Conference on Humanoid Robotics (Humanoids). IEEE, 2017, pp.
842–849.

[75] T. Marcucci, R. Deits, M. Gabiccini, A. Bicchi, and R. Tedrake, “Approximate hybrid
model predictive control for multi-contact push recovery in complex environments,” in
2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids).
IEEE, 2017, pp. 31–38.

[76] Z. Li, N. G. Tsagarakis, and D. G. Caldwell, “Stabilizing humanoids on slopes using terrain
inclination estimation,” in 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2013, pp. 4124–4129.

[77] T. Koolen, M. Posa, and R. Tedrake, “Balance control using center of mass height varia-
tion: limitations imposed by unilateral contact,” in 2016 IEEE-RAS 16th International
Conference on Humanoid Robots (Humanoids). IEEE, 2016, pp. 8–15.

[78] N. A. Radford, P. Strawser, K. Hambuchen, J. S. Mehling, W. K. Verdeyen, A. S. Donnan,
J. Holley, J. Sanchez, V. Nguyen, L. Bridgwater, et al., “Valkyrie: Nasa’s first bipedal
humanoid robot,” Journal of Field Robotics, vol. 32, no. 3, pp. 397–419, 2015.

[79] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, et al., “Tensorflow: A system for large-scale machine learning,”
in 12th Symposium on Operating Systems Design and Implementation), 2016, pp.
265–283.

[80] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-dimensional continu-
ous control using generalized advantage estimation,” arXiv preprint arXiv:1506.02438,
2015.

147

BIBLIOGRAPHY

[81] P.-B. Wieber and C. Chevallereau, “Online adaptation of reference trajectories for the
control of walking systems,” Robotics and Autonomous Systems, vol. 54, no. 7, pp.
559–566, 2006.

[82] B. J. Stephens and C. G. Atkeson, “Push recovery by stepping for humanoid robots with
force controlled joints,” in 2010 10th IEEE-RAS International conference on humanoid
robots. IEEE, 2010, pp. 52–59.

[83] Z. Li, N. G. Tsagarakis, and D. G. Caldwell, “Walking trajectory generation for humanoid
robots with compliant joints: Experimentation with coman humanoid,” in 2012 IEEE
International Conference on Robotics and Automation. IEEE, 2012, pp. 836–841.

[84] J. Fu, A. Singh, D. Ghosh, L. Yang, and S. Levine, “Variational inverse control with
events: A general framework for data-driven reward definition,” in Advances in Neural
Information Processing Systems, 2018, pp. 8538–8547.

[85] M. Srouji, J. Zhang, and R. Salakhutdinov, “Structured control nets for deep reinforcement
learning,” arXiv preprint arXiv:1802.08311, 2018.

[86] K. Chatzilygeroudis, V. Vassiliades, F. Stulp, S. Calinon, and J.-B. Mouret, “A survey on
policy search algorithms for learning robot controllers in a handful of trials,” IEEE
Transactions on Robotics, 2019.

[87] T. Johannink, S. Bahl, A. Nair, J. Luo, A. Kumar, M. Loskyll, J. A. Ojea, E. Solowjow, and
S. Levine, “Residual reinforcement learning for robot control,” in 2019 International
Conference on Robotics and Automation (ICRA). IEEE, 2019, pp. 6023–6029.

[88] A. Ajay, J. Wu, N. Fazeli, M. Bauza, L. P. Kaelbling, J. B. Tenenbaum, and A. Rodriguez,
“Augmenting physical simulators with stochastic neural networks: Case study of planar
pushing and bouncing,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2018, pp. 3066–3073.

[89] D. Holden, T. Komura, and J. Saito, “Phase-functioned neural networks for character
control,” ACM Transactions on Graphics (TOG), vol. 36, no. 4, pp. 1–13, 2017.

[90] H. Zhang, S. Starke, T. Komura, and J. Saito, “Mode-adaptive neural networks for
quadruped motion control,” ACM Transactions on Graphics (TOG), vol. 37, no. 4, pp.
1–11, 2018.

[91] L. Righetti and A. J. Ijspeert, “Programmable central pattern generators: an application
to biped locomotion control,” in Proceedings 2006 IEEE International Conference on
Robotics and Automation, 2006. ICRA 2006. IEEE, 2006, pp. 1585–1590.

148

BIBLIOGRAPHY

[92] A. Tavakoli, V. Levdik, R. Islam, and P. Kormushev, “Prioritizing starting states for rein-
forcement learning,” arXiv preprint arXiv:1811.11298, 2018.

[93] B. Eysenbach, S. Gu, J. Ibarz, and S. Levine, “Leave no trace: Learning to reset for safe
and autonomous reinforcement learning,” arXiv preprint arXiv:1711.06782, 2017.

[94] F. Pardo, A. Tavakoli, V. Levdik, and P. Kormushev, “Time limits in reinforcement learning,”
arXiv preprint arXiv:1712.00378, 2017.

[95] N. Ogihara and N. Yamazaki, “Generation of human bipedal locomotion by a bio-mimetic
neuro-musculo-skeletal model,” Biological cybernetics, vol. 84, no. 1, pp. 1–11, 2001.

[96] T. Mori, Y. Nakamura, M.-A. Sato, and S. Ishii, “Reinforcement learning for cpg-driven
biped robot,” in AAAI, vol. 4, 2004, pp. 623–630.

[97] V. Klemm, A. Morra, C. Salzmann, F. Tschopp, K. Bodie, L. Gulich, N. Küng, D. Mannhart,
C. Pfister, M. Vierneisel, et al., “Ascento: A two-wheeled jumping robot,” in 2019
International Conference on Robotics and Automation (ICRA). IEEE, 2019, pp.
7515–7521.

[98] K. Araki, T. Miwa, H. Shigemune, S. Hashimoto, and H. Sawada, “Standing-up control of
a fallen humanoid robot based on the ground-contacting state of the body,” in IECON
2018-44th Annual Conference of the IEEE Industrial Electronics Society. IEEE,
2018, pp. 3292–3297.

[99] A. Radulescu, I. Havoutis, D. G. Caldwell, and C. Semini, “Whole-body trajectory opti-
mization for non-periodic dynamic motions on quadrupedal systems,” in 2017 IEEE
International Conference on Robotics and Automation (ICRA). IEEE, 2017, pp.
5302–5307.

[100] J. A. Castano, C. Zhou, and N. Tsagarakis, “Design a fall recovery strategy for a wheel-
legged quadruped robot using stability feature space,” in 2019 IEEE International
Conference on Robotics and Biomimetics (ROBIO). IEEE, 2019.

[101] J. Borràs, C. Mandery, and T. Asfour, “A whole-body support pose taxonomy for multi-
contact humanoid robot motions,” Science Robotics, vol. 2, no. 13, 2017.

[102] J. Borras and T. Asfour, “A whole-body pose taxonomy for loco-manipulation tasks,” in
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2015, pp. 1578–1585.

[103] R. Fabre, H. Gimbert, L. Gondry, L. Hofer, O. Ly, S. N’Guyen, G. Passault, and Q. Rouxel,
“Rhoban football club–team description paper,” Humanoid KidSize League, Robocup
2015 Hefei, 2015.

149

BIBLIOGRAPHY

[104] K. Bergamin, S. Clavet, D. Holden, and J. R. Forbes, “Drecon: data-driven responsive
control of physics-based characters,” ACM Transactions on Graphics (TOG), vol. 38,
no. 6, pp. 1–11, 2019.

[105] A. R. Mahmood, D. Korenkevych, B. J. Komer, and J. Bergstra, “Setting up a rein-
forcement learning task with a real-world robot,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 4635–4640.

[106] Z. Xie, P. Clary, J. Dao, P. Morais, J. Hurst, and M. van de Panne, “Iterative reinforce-
ment learning based design of dynamic locomotion skills for cassie,” arXiv preprint
arXiv:1903.09537, 2019.

[107] A. J. Ijspeert, A. Crespi, D. Ryczko, and J.-M. Cabelguen, “From swimming to walking
with a salamander robot driven by a spinal cord model,” science, vol. 315, no. 5817,
pp. 1416–1420, 2007.

[108] T. Drew, J. Kalaska, and N. Krouchev, “Muscle synergies during locomotion in the cat:
a model for motor cortex control,” The Journal of physiology, vol. 586, no. 5, pp.
1239–1245, 2008.

[109] M. Mischiati, H.-T. Lin, P. Herold, E. Imler, R. Olberg, and A. Leonardo, “Internal models
direct dragonfly interception steering,” Nature, vol. 517, no. 7534, pp. 333–338, 2015.

[110] S. K. Karadimas, K. Satkunendrarajah, A. M. Laliberte, D. Ringuette, I. Weisspapir, L. Li,
S. Gosgnach, and M. G. Fehlings, “Sensory cortical control of movement,” Nature
neuroscience, vol. 23, no. 1, pp. 75–84, 2020.

[111] H. Markram, “The blue brain project,” Nature Reviews Neuroscience, vol. 7, no. 2, pp.
153–160, 2006.

[112] S. Gay, J. Santos-Victor, and A. Ijspeert, “Learning robot gait stability using neural
networks as sensory feedback function for central pattern generators,” in 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems. Ieee, 2013,
pp. 194–201.

[113] “DARPA robotics challenge (DRC),” https://www.darpa.mil/program/

darpa-robotics-challenge, accessed: 2020-7-16.

[114] C. G. Atkeson, B. P. W. Babu, N. Banerjee, D. Berenson, C. P. Bove, X. Cui, M. DeDonato,
R. Du, S. Feng, P. Franklin, et al., “No falls, no resets: Reliable humanoid behavior in
the darpa robotics challenge,” in 2015 IEEE-RAS 15th International Conference on
Humanoid Robots (Humanoids). IEEE, 2015, pp. 623–630.

[115] N. Bernstein’s, “The co-ordination and regulation of movements,” 1967.

150

https://www.darpa.mil/program/darpa-robotics-challenge
https://www.darpa.mil/program/darpa-robotics-challenge

BIBLIOGRAPHY

[116] M. L. Latash, “Stages in learning motor synergies: A view based on the equilibrium-point
hypothesis,” Human movement science, vol. 29, no. 5, pp. 642–654, 2010.

[117] J. Ramos and S. Kim, “Dynamic locomotion synchronization of bipedal robot and human
operator via bilateral feedback teleoperation,” Science Robotics, vol. 4, no. 35, 2019.

[118] D. Dimitrov, A. Sherikov, and P.-B. Wieber, “A sparse model predictive control formula-
tion for walking motion generation,” in 2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2011, pp. 2292–2299.

[119] H.-W. Park, P. M. Wensing, S. Kim, et al., “Online planning for autonomous running
jumps over obstacles in high-speed quadrupeds,” 2015.

[120] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, “Dynamic locomotion in the mit
cheetah 3 through convex model-predictive control,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 1–9.

[121] S. Feng, E. Whitman, X. Xinjilefu, and C. G. Atkeson, “Optimization-based full body
control for the darpa robotics challenge,” Journal of Field Robotics, vol. 32, no. 2, pp.
293–312, 2015.

[122] M. Neunert, M. Stäuble, M. Giftthaler, C. D. Bellicoso, J. Carius, C. Gehring, M. Hutter,
and J. Buchli, “Whole-body nonlinear model predictive control through contacts for
quadrupeds,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1458–1465,
2018.

[123] H. Dai, A. Valenzuela, and R. Tedrake, “Whole-body motion planning with centroidal
dynamics and full kinematics,” in 2014 IEEE-RAS International Conference on Hu-
manoid Robots. IEEE, 2014, pp. 295–302.

[124] A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli, “Gait and trajectory optimization for
legged systems through phase-based end-effector parameterization,” IEEE Robotics
and Automation Letters, vol. 3, no. 3, pp. 1560–1567, 2018.

[125] I. Chatzinikolaidis, Y. You, and Z. Li, “Contact-implicit trajectory optimization using an
analytically solvable contact model for locomotion on variable ground,” IEEE Robotics
and Automation Letters, 2020.

[126] A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret, “Robots that can adapt like animals,”
Nature, vol. 521, no. 7553, pp. 503–507, 2015.

[127] E. O. Neftci and B. B. Averbeck, “Reinforcement learning in artificial and biological
systems,” Nature Machine Intelligence, vol. 1, no. 3, pp. 133–143, 2019.

151

BIBLIOGRAPHY

[128] K. Bouyarmane, S. Caron, A. Escande, A. Kheddar, A. Goswami, and P. Vadakkepat,
“Multi-contact planning and control,” in Humanoid Robotics: A Reference. Springer,
2019, pp. 1763–1804.

[129] B. Siciliano and O. Khatib, Springer handbook of robotics. Springer, 2016.

[130] M. M. A. Posa, “Optimization for control and planning of multi-contact dynamic motion,”
Ph.D. dissertation, Massachusetts Institute of Technology, 2017.

[131] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731, pp. 34–37, 1966.

[132] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bohez, and V. Van-
houcke, “Sim-to-real: Learning agile locomotion for quadruped robots,” arXiv preprint
arXiv:1804.10332, 2018.

[133] T. Li, H. Geyer, C. G. Atkeson, and A. Rai, “Using deep reinforcement learning to learn
high-level policies on the atrias biped,” in 2019 International Conference on Robotics
and Automation (ICRA). IEEE, 2019, pp. 263–269.

[134] Z. Xie, P. Clary, J. Dao, P. Morais, J. Hurst, and M. Panne, “Learning locomotion skills for
cassie: Iterative design and sim-to-real,” in Conference on Robot Learning, 2020, pp.
317–329.

[135] A. G. Barto and S. Mahadevan, “Recent advances in hierarchical reinforcement learning,”
Discrete event dynamic systems, vol. 13, no. 1-2, pp. 41–77, 2003.

[136] K. Frans, J. Ho, X. Chen, P. Abbeel, and J. Schulman, “Meta learning shared hierarchies,”
arXiv preprint arXiv:1710.09767, 2017.

[137] T. Haarnoja, K. Hartikainen, P. Abbeel, and S. Levine, “Latent space policies for hierar-
chical reinforcement learning,” arXiv preprint arXiv:1804.02808, 2018.

[138] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive mixtures of local
experts,” Neural computation, vol. 3, no. 1, pp. 79–87, 1991.

[139] K. Mülling, J. Kober, O. Kroemer, and J. Peters, “Learning to select and generalize striking
movements in robot table tennis,” The International Journal of Robotics Research,
vol. 32, no. 3, pp. 263–279, 2013.

[140] X. Chang, T. M. Hospedales, and T. Xiang, “Multi-level factorisation net for person
re-identification,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 2109–2118.

152

BIBLIOGRAPHY

[141] X. B. Peng, M. Chang, G. Zhang, P. Abbeel, and S. Levine, “Mcp: Learning composable
hierarchical control with multiplicative compositional policies,” in Advances in Neural
Information Processing Systems, 2019, pp. 3686–3697.

[142] A. G. Feldman, V. Goussev, A. Sangole, and M. F. Levin, “Threshold position control and
the principle of minimal interaction in motor actions,” Progress in brain research, vol.
165, pp. 267–281, 2007.

[143] E. Bizzi, N. Hogan, F. Mussa-valdi, and S. Giszter, “Does the nervous system use
equilibrium-point control to guide single and multiple joint,” Behavioral and brain
sciences, vol. 15, pp. 603–613, 1992.

[144] F. L. Moro, N. G. Tsagarakis, and D. G. Caldwell, “A human-like walking for the compliant
humanoid coman based on com trajectory reconstruction from kinematic motion
primitives,” in 2011 11th IEEE-RAS International Conference on Humanoid Robots.
IEEE, 2011, pp. 364–370.

[145] A. T. Sprowitz, A. Tuleu, A. J. Ijspeert, et al., “Kinematic primitives for walking and
trotting gaits of a quadruped robot with compliant legs,” Frontiers in computational
neuroscience, vol. 8, p. 27, 2014.

[146] S. Starke, H. Zhang, T. Komura, and J. Saito, “Neural state machine for character-scene
interactions,” ACM Transactions on Graphics (TOG), vol. 38, no. 6, pp. 1–14, 2019.

[147] “Jueying® | DeepRobotics,” http://www.deeprobotics.cn/default/details, accessed: 2019-
12-13.

[148] N. Hogan and D. Sternad, “Dynamic primitives of motor behavior,” Biological cybernetics,
vol. 106, no. 11-12, pp. 727–739, 2012.

[149] E. Spyrakos-Papastavridis, N. Kashiri, J. Lee, N. G. Tsagarakis, and D. G. Caldwell,
“Online impedance parameter tuning for compliant biped balancing,” in 2015 IEEE-
RAS 15th International Conference on Humanoid Robots (Humanoids). IEEE, 2015,
pp. 210–216.

[150] J. W. Hurst and A. A. Rizzi, “Series compliance for an efficient running gait,” IEEE
Robotics & Automation Magazine, vol. 15, no. 3, pp. 42–51, 2008.

[151] Y. Hashiguchi, K. Takaoka, and M. Kanemaru, “The development of a practical dexterous
assembly robot system without the use of force sensor,” in Proceedings of the
2001 IEEE International Symposium on Assembly and Task Planning (ISATP2001).
Assembly and Disassembly in the Twenty-first Century.(Cat. No. 01TH8560). IEEE,
2001, pp. 470–475.

153

http://www.deeprobotics.cn/default/details

BIBLIOGRAPHY

[152] Y. Zhao, N. Paine, S. J. Jorgensen, and L. Sentis, “Impedance control and performance
measure of series elastic actuators,” IEEE Transactions on Industrial Electronics,
vol. 65, no. 3, pp. 2817–2827, 2017.

[153] H. V. Hasselt, “Double q-learning,” in Advances in neural information processing systems,
2010, pp. 2613–2621.

[154] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double
q-learning,” in Thirtieth AAAI conference on artificial intelligence, 2016.

[155] C. Gilbert, “Visual control of cursorial prey pursuit by tiger beetles (cicindelidae),” Journal
of Comparative Physiology A, vol. 181, no. 3, pp. 217–230, 1997.

[156] J. Camhi and E. Johnson, “High-frequency steering maneuvers mediated by tactile cues:
antennal wall-following in the cockroach,” Journal of Experimental Biology, vol. 202,
no. 5, pp. 631–643, 1999.

[157] B. Wu, I. Akinola, J. Varley, and P. K. Allen, “Mat: Multi-fingered adaptive tactile grasping
via deep reinforcement learning,” in Conference on Robot Learning, 2020, pp. 142–
161.

[158] S. H. Huang, M. Zambelli, J. Kay, M. F. Martins, Y. Tassa, P. M. Pilarski, and R. Had-
sell, “Learning gentle object manipulation with curiosity-driven deep reinforcement
learning,” arXiv preprint arXiv:1903.08542, 2019.

[159] Y. Yang, K. Caluwaerts, A. Iscen, T. Zhang, J. Tan, and V. Sindhwani, “Data efficient
reinforcement learning for legged robots,” arXiv preprint arXiv:1907.03613, 2019.

[160] W. Yu, J. Tan, Y. Bai, E. Coumans, and S. Ha, “Learning fast adaptation with meta strategy
optimization,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 2950–2957,
2020.

[161] S. Ha, P. Xu, Z. Tan, S. Levine, and J. Tan, “Learning to walk in the real world with
minimal human effort,” arXiv preprint arXiv:2002.08550, 2020.

[162] B. Katz, J. Di Carlo, and S. Kim, “Mini cheetah: A platform for pushing the limits of
dynamic quadruped control,” in 2019 International Conference on Robotics and
Automation (ICRA). IEEE, 2019, pp. 6295–6301.

[163] M. E. Taylor and P. Stone, “Transfer learning for reinforcement learning domains: A
survey,” Journal of Machine Learning Research, vol. 10, no. Jul, pp. 1633–1685,
2009.

[164] Y. Hu and G. Montana, “Skill transfer in deep reinforcement learning under morphological
heterogeneity,” arXiv preprint arXiv:1908.05265, 2019.

154

BIBLIOGRAPHY

[165] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard, A. Banino, M. Denil, R. Goroshin,
L. Sifre, K. Kavukcuoglu, et al., “Learning to navigate in complex environments,” arXiv
preprint arXiv:1611.03673, 2016.

[166] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki,
A. Petron, M. Plappert, G. Powell, A. Ray, et al., “Learning dexterous in-hand ma-
nipulation,” The International Journal of Robotics Research, vol. 39, no. 1, pp. 3–20,
2020.

[167] X. B. Peng, A. Kanazawa, J. Malik, P. Abbeel, and S. Levine, “Sfv: Reinforcement learning
of physical skills from videos,” ACM Trans. Graph., vol. 37, no. 6, Nov. 2018.

155

	List of Tables
	List of Figures
	Introduction
	Terrestrial Locomotion using Deep Reinforcement Learning
	Problem Statement
	Thesis Overview and Contribution
	Validating the Feasibility of Deep Reinforcement Learning Based Control
	Learning Individual Motor Skills
	Multi-Skill Locomotion of Real Quadruped

	Literature Review and Background
	Background
	Reinforcement Learning
	Deep Reinforcement Learning
	Concepts in Legged Locomotion

	Related Work
	Balancing using Reinforcement Learning
	Locomotion using Reinforcement Learning
	Robust Recovery from Fall using Reinforcement Learning
	Deep Reinforcement Learning on Real-World Robots

	Learning Balancing Skills within a 2D sagittal plane for Bipeds
	Human-Comparable Balancing Behaviours
	Related Work and Motivation
	Principles
	State Representation
	Explainable Design of the Reward
	Deep Deterministic Policy Gradient
	Exploration through Noise
	Bounding Network Output

	Hierarchical Structure of High-Level Learning and Low-Level Control
	High-Level Controller
	Low-Level Controller

	Results
	Conclusion

	Learning Balancing Skills for Bipeds in 3D simulation
	Introduction
	Related Work
	Conventional Push Recovery Methods
	Deep Reinforcement Learning of Locomotion

	Background
	Software Setup
	Deep Reinforcement Learning
	Capture Point

	Methodology
	Hierarchical Control Framework
	Observation Space and Action Space
	Design of Reward Function
	Network Structure
	Exploration during Training
	Deep Reinforcement Learning

	Results
	Horizontal Push on Pelvis
	Force Disturbance on other Body Segments
	Landing from Height
	Combined Test Case
	Robustness against Noise in Observation and Action Space
	Comparison against other Control Methods
	Realism of Generated Motions

	Conclusion

	Learning Walking Skills for Bipeds
	Introduction
	Related Work
	Leveraging Demonstrations
	Leveraging Human Knowledge in Network Design

	Learning Setup for Locomotion
	Control Structure
	Robot Platform
	Human Motion Collection
	Deep Reinforcement Learning

	Framework Design
	Reward Design
	Network Design
	Sample Collection

	Results
	Learning and Comparison Setup
	Analysis of the Influence of Imitation Learning
	Comparison Study between Neural Network Structures
	Performance Comparison

	Conclusion

	Learning Fall Recovery Skills for Bipeds and Quadrupeds
	Introduction
	Related Work
	Methodology
	Complexity of Fall Recovery Motions
	Robot Model
	Reward Design
	Deep Reinforcement Learning
	Sample Distribution Augmentation
	Action Filtering
	Smoothing Loss
	Control Framework

	Results
	Fall Recovery on Quadrupeds
	Fall Recovery on Humanoids
	Real-World Implementation

	Conclusion

	Multi-Expert Learning of Adaptive Locomotion Behaviours
	Introduction
	Related Work
	Contribution

	Methodology
	Robot Platform
	Control Framework
	Soft Actor Critic
	Reward Design
	State Observation
	Action Space
	Action Filtering
	Smoothing Loss
	Sample Collection Procedure
	MELA Training Procedure

	Results
	Multi-Expert Learning Framework
	Learning Individual Motor Skills
	Multi-Expert Learning Structure

	Discussion

	Conclusion
	Conclusion
	Limitations and Future Extensions
	Limitations
	Future Extensions
	Exploring Diverse Skillsets
	Policy Transfer
	Neural Network Structures
	Imitation Learning from Nature

	Bibliography

