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Abstract 
 

Liver disease causes over 2 million deaths world-wide each year and is 

the most common disease related deaths in adults aged between 35-49 years 

old in the UK. While the liver has a large capacity to regenerate this is 

overwhelmed during chronic injury. Currently there is no drug-based treatment 

for end stage liver disease, with transplantation the only option. This is 

problematic as only around 10% of the global transplantation needs are met 

and urgent new therapeutics are required to tackling this highly prevalent 

disease. Despite decades of research elucidating the mechanisms behind the 

liver’s natural capacity to regenerate, there has not yet been a therapeutic 

agent approved. The prominent feature of liver regeneration is the replication 

of mature hepatocytes. Research has assumed homogeneity in function 

among the hepatocyte population during regeneration, however recent studies 

have shown that there is a more heterogeneous response. More work is 

required to understand the complex nature of this process at a higher 

resolution to unpick any heterogeneity and discover any further regenerative 

signals. Therefore, this project aimed to use a single cell RNA sequencing 

approach to identify any potentially novel heterogeneous populations of 

hepatocytes during liver regeneration and further identify any key signalling 

molecules.  

Replicating and non-replicating hepatocytes were sorted from a partial 

hepatectomies FUCCI2a mouse model which reports G1 cells with a mCherry 

signal and S/G2/M cells with a mVenus signal. Hepatocytes were sorted 

directly into 384 well plates for single cell sequencing. Unsupervised cluster 

was performed to identify several populations of hepatocytes. Non-replicating 

cells split into cluster denoting there spacial location in the liver lobule. This 

was identified through the gradient of expression of zonal marker genes. While 

no novel heterogeneous cluster of replicating hepatocytes were found, several 

novel signalling molecules such as Il33, Il15, Dll1, Cklf, and Bmp7, were 

identified to be expressed only by replicating hepatocytes. Furthermore, a 

population of “primed” mCherry positive hepatocytes appeared to express 
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several cell cycle marker genes. This population could represent a population 

of cells captured just before entry into S phase or a priming action of 

hepatocytes to prepare for cell cycle entry, awaiting an appropriate initiating 

signal. Interesting this population showed high expression for a circadian 

rhythm associated gene Timeless. Replication during partial hepatectomy is 

believed to be highly synchronous and Timeless may be the protein that 

controls the timing of replication during the model. Further studies of these 

genes are required to understand their function and importance in liver 

regeneration. In conclusion, the work demonstrated within this thesis highlights 

the need to study liver regeneration using high resolution techniques such as 

single cell RNA sequencing.  
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Lay Abstract 
 

Liver disease is a major cause of death for many people worldwide. It 

is caused mainly by excessing alcohol consumption or obesity, although viral 

infections and drug overdose are also less common factors. There is no 

treatment for liver disease other than transplantation of the organ and 

unfortunately the number of people needing a transplant far exceeds the 

number of liver donors. Therefore, there is an urgent need to find a novel drug 

therapy to cure this disease. Luckily, the liver has a remarkable capacity to 

regenerate on its own, when it is still healthy. This occurs through cell division 

of the livers main cell type, the hepatocyte. Over the past decades, the many 

signalling pathways that are involved in the process of initiating a hepatocyte 

to divide, and regenerate the liver, have been identified. However, 

understanding of these pathways has yet to lead to any potential therapy. 

Further understanding of the regenerative process is needed. While most 

previous studies have thought of all hepatocytes as acting the same manner, 

recent studies have shown that this is not the case. While most hepatocytes 

will copy their genomic content, the first step of cell division, not all hepatocytes 

will continue to divide into two cells, the final step of cell division. Instead some 

hepatocytes stay as one cell. It is unclear why or how this occurs, however, it 

demonstrates a difference within the hepatocyte populations, a phenomenon 

called heterogeneity. Therefore, the aim of this project was to identify if there 

are any heterogeneous populations of regenerating hepatocytes, and if these 

cells are producing any new signals that will help us understand the process 

further.  

One of the most common methods to force a liver to regenerate is the 

2/3rd partial hepatectomy model conducted in mice. Here, 2/3rds of the liver is 

removed, and over a 7-day period, the hepatocytes will replicate, divide and 

regenerate the lost mass, resulting in a normal functioning liver. To isolate the 

replicating cells from the non-replicating cells, we used a transgenic mouse 

that causes the hepatocyte to produce a red signal when they are not 

replicating and a green signal when they are. The different hepatocytes can 
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then be classified by looking for either the red or green signal. To study the 

difference between the cells, a technique called single cell RNA sequencing 

was used. This technique allows the mRNA of each cell to be sequenced and 

compared to the mRNA of the other cells. The mRNA of each cell tells us what 

proteins the cell is making or intends to make, and these proteins define how 

the hepatocyte will function. By comparing tens to hundreds of green 

replicating hepatocytes and red non-replicating hepatocytes, I am able to 

identify if there are any differences between different types of hepatocytes. 

Unfortunately, I did not find any novel heterogeneous populations of replicating 

hepatocyte, however I did identify mRNA molecules expressed by the 

replicating hepatocytes that were previously unknown. These were Il33, Il15, 

Cklf, Dll1 and Bmp7. Furthermore, I also identified a population of hepatocytes 

that appeared to be waiting to replicate. These cells were expressing a mRNA, 

Timeless, that is associated with telling the cells what time of day it is, such as 

day or night. This protein made by Timeless could be controlling when each 

hepatocyte is allowed to enter the cell cycle. I would need to do further work, 

by first validating that the mRNA molecules are expressed into protein, as 

sometimes this does not occur. Then I will go on to identify the distinct function 

of each protein and how it plays a role during liver regeneration. The work 

shown within this thesis demonstrates the need to look at liver regeneration 

using these higher resolution techniques.  
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1 Introduction 

 

1.1 Liver Disease – The Global Burden 

 

Approximately two million people die each year from liver disease (Asrani 

et al., 2019). Although the term liver disease can encompass many different 

aetiologies, they can be roughly categorised into two groups, acute and 

chronic. Acute liver failure (ALF) is defined by a rapid loss of liver function, 

usually in a person with no pre-existing liver disease. Chronic liver disease 

(CLD) is a condition where iterative liver injury results in fibrosis (scarring), and 

if injury is ongoing, eventually cirrhosis. 

Viral hepatitis and drug overdose are two of the leading contributors to 

ALF depending on geographical location (Bernal and Wendon, 2013). 

Infections of hepatitis A, B and E are more prevalent in developing countries, 

where there is less access to vaccination and good sanitation. Conversely, 

drug overdose is the greater contributor to ALF in developed countries. 

Acetaminophen accounts for ~60% and ~40% of acute liver failure in the UK 

and USA respectively.  

Principle causes of CLD include viral infections, obesity and alcohol 

consumption (Asrani et al., 2019). In 2019 acute hepatitis accounted for 

145,000 deaths while cirrhosis caused ~1.16 million deaths. Chronic liver 

failure and liver cancer taken together accounted for 3.5% of all deaths 

worldwide in 2019 (11th and 16th most common cause of death, respectively), 

with 90% of liver carcinomas developing in those with cirrhosis (Asrani et al., 

2019; Seitz and Stickel, 2006). This figure is likely to be an underestimate; 

firstly, even though the numbers are small in comparison, this figure does not 

account for acute cases (Asrani et al., 2013). Furthermore, recording of deaths 

are known to underestimate liver disease and cirrhosis. 

 These figures become even more sobering when looking closer to 

home. Year-on-year mortality due to liver disease has been increasing in the 

UK (Williams et al., 2014). Figures from 2010 have shown that standardised 
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mortality due to liver disease has increased by over 400% since 1970 (Figure 

1.1). It is now the most common cause of death in those aged between 35-49, 

and is the third biggest cause of premature deaths behind ischaemic heart 

disease and self-harm (Marshall et al., 2019; Williams et al., 2014). 

Furthermore, over 60% of adults are currently classified as obese or 

overweight which will no doubt lead to an  increase in the liver disease burden 

(Baker, 2019; Williams et al., 2018). The impact of lifestyle goes beyond our 

health, with statistics from England and Wales showing alcohol misuse and 

obesity costing the NHS £21 billion and £27 billion, respectively, each year 

(Williams et al., 2018).  

 With 90% of all liver disease in the UK being attributed to obesity, 

excessive alcohol consumption and viral hepatitis, this disease is preventable 

for many (Verne, 2014). Balanced diet, moderate alcohol consumption and 

effective vaccination schemes are all simple preventative measures against 

this disease. In addition, strides have been made to further tackle these 

problems including the introduction of sugar taxes and minimum unit pricing of 

alcohol. However, it may be many years before we are able to comment on 

the full effectiveness of these solutions.  

 While prevention is the ultimate goal, there will still be a need for 

effective treatment of liver disease. Currently, liver transplantation is the only 

treatment for end stage liver disease. Globally liver transplantation is the 

second most common solid organ transplant performed, and currently only 

10% of the global needs are met (Asrani et al., 2019). This highlights a grave 

need for alternative treatments and therapeutics to cure liver cirrhosis. 
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Figure 1.1 – Standardised UK Mortality Rate of Disease in People Under 
65 years old 

Data shows changes in mortality rate from 1970-2010 for Circulatory, 

Ischaemic heart, Cerebrovascular, Respiratory, Liver, Endocrine or Metabolic 

diseases, Neoplasms and Diabetes, normalised to 100% in 1970 . Reprinted 

from The Lancet (Williams et al., 2014) ©2014, with permission from Elsevier. 
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1.2 Liver Biology  

 

1.2.1 General Liver Function and Anatomical Structure 

 

The liver performs a myriad of key physiological functions critical for an 

organism’s survival. Such processes include; macronutrient metabolism and 

storage, bile secretion, detoxification of toxins, cholesterol and lipid 

homeostasis (Stanger, 2015; Trefts et al., 2017). The functions of the liver can 

be broadly divided into three subgroups; bile secretion, synthetic function and 

detoxification.  

These functions are generally conserved across all mammals. There 

are, however, some anatomical changes between species, although these 

result in only small quantitative differences (Kruepunga et al., 2019). For 

instance although divided into 4 main lobes: the left and right lobe, the caudate 

lobe and the quadrate lobe , the human liver has a non-lobulated architecture 

(Allen, 2009; Kruepunga et al., 2019). On the other hand, the mouse liver is 

lobulated due to the presence of fissures. It also adopts a 4-lobe nomenclature, 

with the presence of the left and right lateral, medial (which can be sub divided 

further into left and right) and caudate lobes (Gross, 2005; Kruepunga et al., 

2019). A 1:1 ratio of lobes between mouse and human is not present and the 

terminology only partially correlates. Lobes of both species can be further 

divided into a second microscopic functional unit called the hepatic lobule, the 

structure of which is described in 1.2.3 - Lobular Architecture (Sasse et al., 

1992). The microarchitecture of the lobules is largely conserved amongst 

mammals (Kruepunga et al., 2019). 

 

1.2.2 Cellular Constituents and Function 

 

1.2.2.1 Hepatocytes 

 

Hepatocytes are the main parenchymal cell population, constituting 

~60-70% of the liver by number, or ~80% by mass (Stanger, 2015; Taub, 
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2004). These cells are powerhouses of metabolism and synthesis. 

Hepatocytes produce large quantities of albumin as well as bile acids, a host 

of other serum proteins, and can perform glutamine synthesis, urea formation 

and glycogenesis (Stanger, 2015). Furthermore, hepatocytes contain a wealth 

of cytochrome P450 (detoxifying) enzymes, used to neutralise a variety of 

chemicals and sequester them for elimination. These functions are not 

homogenous across all hepatocytes (Jungermann and Keitzmann, 1996). 

Hepatocytes in the periportal regions perform different functions than those 

that reside in the pericentral zone (1.2.4 - Lobular Zonation). 

A further source of hepatocyte heterogeneity is their difference in ploidy 

and nuclear number (Donne et al., 2020). Unlike most cell types, hepatocytes 

undergo polyploidization during postnatal growth, and polyploid hepatocytes 

can exist with either one or two nuclei. In rodents, the level of polyploidization 

is high, with up to 90% of adult hepatocytes characterised as polyploid, while 

in humans this figure is lower at around 30%. Moreover, this process can also 

lead to aneuploidy in hepatocytes, which has been suggested to be an 

adaptive response to stress, aiding liver recovery (Duncan et al., 2012).  

 

1.2.2.2 Cholangiocytes 

 

Cholangiocytes, also known as biliary epithelial cells, are the second 

parenchymal cell type of the liver. These cells make up between 3-5% of the 

liver cell number and line the intrahepatic and extrahepatic biliary ducts (Glaser 

et al., 2009). Although they are less metabolically active in comparison to 

hepatocytes they still serve key metabolic functions (Stanger, 2015). These 

include modification of bile composition through absorption of water, 

electrolytes and other organic solutes (Glaser et al., 2009). Notably, one of its 

main functions is the production and secretion of bicarbonate into the bile 

(Maroni et al., 2015). 
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1.2.2.3 Nonparenchymal cells 

 

The remaining cell populations are termed nonparenchymal cells which 

consist of mesenchymal cells, endothelial cells and macrophages. Each serve 

a distinct function.  The mesenchymal population can be split into hepatic 

stellate cells (HSC), portal fibroblasts, vascular smooth muscle cells and 

mesothelial cells. HSC, during homeostasis, are relatively quiescent, and 

function as sites of vitamin A storage (Dobie and Henderson, 2016; Wells, 

2014). The role of the portal fibroblast is contested but seems mainly to 

produce and deposit extracellular matrix (ECM) to provide support for the 

portal triad (1.2.3 - Lobular Architecture). The liver endothelial populations can 

also be split into several sub-groups; liver sinusoidal endothelial cells (LSECs), 

vascular endothelial cells (hepatic artery, portal and central veins) and 

lymphatic endothelial cells. LSECs are a specialised endothelial subtype which 

have ‘fenestrae’ and lack basement membrane (Poisson et al., 2017). This 

produces a highly permeable barrier between the endothelial lumen and the 

parenchyma, allowing the diffusion of nutrients, macromolecules and 

metabolites. Lastly, the Kupffer cell (KCs, resident liver macrophage) make up 

the majority of the liver macrophage population and serve as ‘janitors’ of the 

liver, clearing circulating microorganisms, dead cells, endotoxins and debris, 

thereby preventing infection (Dixon et al., 2013). 

 

1.2.3 Lobular Architecture 

 

As alluded to earlier, the liver can be subdivided into 

structural/functional subunits. Over decades of study, hepatologists have 

come up with three main ways that these subunits can be specified: the 

classical lobule, the portal lobule and the acinus (Rappaport et al., 1954; Sasse 

et al., 1992). The “hexagonal” classical lobule architecture is derived from 

focusing on blood supply, whilst the “triangular” portal lobule view is the 

converse of this, focusing on the counter flowing secreted bile (Adrian, 2020). 

Lastly, the “elliptical” liver acinus focuses on the zonal metabolism 
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arrangement of the liver and is the smallest subunit. While all three 

descriptions are correct, the classical lobule is the most widely used as a 

structural subunit, while the acinus is considered the more functional subunit. 

Due to its ease of conceptualising and for consistency, the classical lobule will 

be used throughout this thesis to describe both the structure and zones of the 

liver. 

The liver lobule is roughly hexagonal in shape centring on the central 

vein (Figure 1.2 A). Hepatocyte cords radiate out to the periphery with the 

vertices of each hexagon denoted by the portal triad, consisting of the portal 

vein, hepatic artery and the bile ducts (Ishibashi et al., 2009; Trefts et al., 

2017). The fenestrated endothelia run adjacent to the chords forming 

sinusoids, with KCs located inside the sinusoidal lumen (Figure 1.2 B). The 

space between the hepatocyte and the sinusoid is referred to as the Space of 

Disse and is where the HSC reside. Capillary like structures called bile 

canaliculi (BC) run parallel to the sinusoids transporting bile from hepatocytes 

to the bile ducts via the Canals of Hering (Boyer, 2013). BC are formed by the 

apical domain of adjacent hepatocytes which are contiguous with one another 

and are sealed by tight junctions. Although the biliary and vascular systems 

run parallel, flow within them runs in opposite directions. Oxygen rich blood 

from the hepatic artery (~20% of flow) and nutrient rich blood from the portal 

vein (~80% of flow) enter the liver from the portal triad and drain through the 

sinusoids before exiting the liver through the central vein (Jungermann and 

Keitzmann, 1996). Conversely, bile is secreted into the BC and flows towards 

the portal triad to then be drained out of the liver by the bile ducts. The 

arrangement of blood flow through the lobule causes the composition of the 

blood to change. As oxygen and nutrients are taken up and metabolites and 

waste secreted, the blood that leaves the liver is more hypoxic and nutrient 

poor than that which enters. This change in composition results in a partitioning 

of function in the liver that has become commonly known as liver zonation.  

  



 8 

1.2.4 Lobular Zonation 

 

The liver lobule can be divided into three main regions; the periportal 

region (Zone 1) which surrounds the portal triad, the pericentral/perivenous 

zone which encompasses the region around the central vein (Zone 3), and the 

intermediary zone which sits between the pericentral and periportal zones 

(Zone 2). Many of the liver’s functions have been shown to be zonally 

regulated (Figure 1.2 A&C). For instance, carbohydrate catabolism and 

anabolism has been one major focus in this area. The periportal regions have 

been linked to glucose production through gluconeogenesis while the 

pericentral region utilises glucose through glycolysis and glycogen synthesis 

(Jungermann and Kietzmann, 1997). The periportal hepatocytes also produce 

glycogen but use lactate over glucose (Bartels et al., 1987). Similarly, the 

zonation aspects of fatty acid (Schleicher et al., 2015), amino acid (Brosnan 

and Brosnan, 2009) and xenobiotic metabolism (Lindros, 1997), plus bile 

formation (Boyer, 2013), have been delineated.  

While several different models have been put forward to explain these 

zonal patterns, by far the most comprehensive view is the post-differentiation 

concept. This describes how gradients of morphogens, hormones, growth 

factors, oxygen and nutrients work in concert to pattern the livers function 

through both pre- and post-translational modulation (Jungermann and 

Keitzmann, 1996). For example, the portal to central, high to low, oxygen 

gradient has been shown to regulate carbohydrate metabolism, with high 

oxygen levels increasing enzymes involved in gluconeogenesis (Nauck et al., 

1981). Wnt/β-catenin signalling is considered as the main driver of central to 

portal zonation, with central associated functions such as glutamine 

synthetase and cytochrome P450 enzymes expression dependent upon β-

catenin signalling (Gebhardt and Hovhannisyan, 2009; Gebhardt and Matz-

Soja, 2014). Conversely, Adenoma Polyposis Coli protein (APC) forms the 

inverse gradient and is a negative regulator of β-catenin (Benhamouche et al., 

2006). Furthermore, preliminary findings from Kietzmann (2017) have 

indicated increases in mRNA of leucine-rich repeat-containing G-protein 
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coupled receptor (LGR) 5 due to hypoxia. Taken together with the findings of 

Planas-Paz et al. (2016) which show R-Spondin (RSPO) and LGR4/5 as 

positive regulators of Wnt signalling in the liver (through Wnt receptor 

stabilisation), this suggests a possible interaction between the oxygen and 

Wnt/ β-catenin gradients.  

Although the description of metabolic zonation sounds static, it is in fact 

dynamic, with perturbations of nutrient, oxygen gradients or changes in 

physiology all having impacts on gene expression and subsequently metabolic 

zonation (Jungermann and Keitzmann, 1996; Racine-Samson et al., 1996). 

There are, like most biological systems, caveats to this with some processes 

that are in fact static. One such example is glutamine synthesis which only 

occurs in ~3 rows of hepatocytes surrounding the central vein (Gebhardt and 

Mecke, 1983). However, Planas-Paz et al. (2016) showed that injecting 

RSPO1 into control mice causes a central to portal expansion of glutamine 

synthetase (GS) expression, suggesting glutamine synthesis may be dynamic 

under certain conditions. 
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Figure 1.2 – Lobule Organisation and Zonation 

(A) Hexagonal representation of the liver lobule centred on the central vein. 

Zones are depicted radiating out towards the vertices where the portal 

triad resides. Each triad contains a portal vein, hepatic artery and bile 

duct. 

(B) Diagrammatic cross section showing a single sinusoid and bile 

canaliculi (not labelled). Nutrient rich venal blood and oxygen rich 

arterial blood flow from the periportal region (Zone 1) into the sinusoid, 

eventually draining into the central vein in the pericentral region (Zone 
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3). All major parenchymal (hepatocytes, cholangiocytes) and non-

parenchymal (endothelia, Kupffer cells and HSC) cells are labelled. 

(C)  Schematic of the distribution of the major metabolic pathways and the 

signalling pathways that form these distributions. O2 – Oxygen, Ggn, 

Glycogen Synthesis, GS – Glutamine Synthesis, Cho, Cholesterol 

Synthesis, CYPs – Cytochrome P450 enzymes (Xenobiotic 

Metabolism), APC - Adenoma Polyposis Coli, LGR5 - Leucine-rich 

repeat-containing G-protein coupled receptor. 

Adapted from Trefts, Gannon and Wasserman (2017) ©2017, with 

permission from Elsevier. (A) & (B) are direct reprint from the publication 

with (C) being my sole alteration.  

 

1.3 Liver Regeneration 

 

The capacity of cellular regeneration varies across different tissues. The 

epithelial tissue of the skin and intestines have a high turnover during 

homeostasis and are dependent on a stem cell pool. On the other hand, the 

heart and brain exhibit minimal cellular turnover. Liver regenerative capacity is 

context dependent. In homeostasis, minimal cellular turnover is observed, with 

less than 1-2% of hepatocytes in cell cycle at any given time, and each cell 

having a lifespan between 200-400 days (Macdonald, 1961; Stanger, 2015). 

However, following injury, the liver exhibits a remarkable capacity to 

regenerate. This is potentially an evolutionary adaptation brought about by the 

critical nature of hepatic function. Physiologically this regenerative process will 

occur mainly due to exposure to toxins, however, the extent of the liver’s 

capacity to regenerate is seen more prominently during surgical removal of a 

portion of the liver (Stanger, 2015). In rodents that have undergone 2/3rd partial 

hepatectomy (PHx), the liver can regenerate it’s mass in less than two weeks, 

through hepatocyte proliferation and hypertrophy (Mitchell and Willenbring, 

2008). The same rapid regenerative capacity is also exhibited in humans, 

although the process takes slightly longer, between 6-8 weeks (Katoonizadeh, 

2017). In certain conditions when hepatocyte proliferative ability is blocked 
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(senescense), such as experimentally or in chronic liver disease, hepatic 

progenitor cells (HPCs) located in the canals of Hering, have been shown to 

proliferate and give rise to hepatocytes and ductular cells (Lu et al., 2015). 

However, the most common mechanism of liver regeneration, and the main 

focus of this thesis, is through the proliferation of fully differentiated 

hepatocytes (Michalopoulos, 2017).  

 The liver regenerative process is complex with cellular components and 

signalling changing depending on the insult that initiates the regeneration. 

There are therefore a multitude of rodent models that are used to study this 

process in vivo. 

 

1.3.1 Models of Liver Regeneration 

 

There many different pre-clinical mouse models of liver regeneration, 

each trying to recapitulate a different condition which triggers the regenerative 

process. These models make for ideal systems to study the cellular and 

molecular mechanisms that occur during liver regeneration. 

 

1.3.1.1 Partial Hepatectomy 

 

Partial hepatectomy (PHx) is one of the most widely used model of liver 

regeneration in rodents, whereby 2/3rds or ~70% of the liver mass is surgically 

removed. This model was originally described by Higgins and Anderson (1931) 

and was later standardised by Mitchell and Willenbring, (2008). Due to the 

lobulated architecture of the mouse liver, liver lobes can be easily separated 

and resected. For the standard PHx model, the left lateral and medial lobes 

are removed. This allows for a “clean” removal of the liver with the regeneration 

process initiating within the first five minutes after the resection, and full liver 

mass regeneration occurring over the next 7-10 days. The process involves 

minimal involvement of any necrotic or acute inflammatory response and is 

mediated by crosstalk between the parenchymal and non-parenchymal 

(NPCs) populations. Although this is referred to as a regenerative process, it 
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is not true regeneration but compensatory hyperplasia. Rather than the 

resected lobes growing back, the remnant lobes enlarge through hypertrophy 

and replication of the hepatic cellular populations. During 70% PHx, 

hypertrophy precedes proliferation of hepatocytes while during a 30% PHx, the 

regained liver mass is mainly attributed to hypertrophy of the parenchyma 

alone, with very few cells entering S phase (Miyaoka et al., 2012).  

 The mechanism of 70% PHx (hereby referred to as PHx) can be broadly 

split into three main stages: 1) initiation or priming of hepatocytes, 2) the 

proliferative stages, and 3) the termination of cellular proliferation (Rmilah et 

al., 2019). The initiation event, occurring between 0-5h post-surgery, is marked 

by a rapid increase in gene expression of over 100 different genes. These 

include the production of growth factors and mitogenic signals, such as 

hepatocyte growth factor (HGF) and epidermal growth factor receptor (EGFR) 

ligands, that are needed to stimulate the various cell populations to enter the 

cell cycle from their quiescent state. 

During the proliferative phase these signals continue to persist until the 

liver has regenerated and regained its lost mass. Hepatocytes are the first cell 

type to undergo proliferation with peak proliferation said to occur between 36 

- 48h in mice (Mitchell and Willenbring, 2008; Zou et al., 2012). This variation 

could be due to differences in mouse strain and method of measurement of 

hepatocyte proliferation. Peak proliferation of the remaining cell populations is 

around 1-2 days after that of hepatocytes, for instance, endothelial peak 

proliferation is around day 3 (Michalopoulos, 2007, 2017). Paracrine signalling 

between hepatocytes, cholangiocytes and the other NPCs is crucial 

throughout the proliferative phase to maintain the regenerative response.  

The initial kinetic theory of hepatocyte proliferation suggested that 

almost all hepatocytes enter the cell cycle and complete cell division at least 

once, with a second round of cell division occurring in a smaller subset of 

hepatocytes (Rmilah et al., 2019). This equates to each hepatocyte 

undergoing 1.6 divisions. However, recent evidence suggests that although 

the majority of hepatocytes enter S phase, only around half undergo cellular 

division, while the rest do not divide and therefore increase their ploidy 
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(Miyaoka et al., 2012; Miyaoka and Miyajima, 2013). This gives a reduced 

figure of only 0.7 divisions per hepatocyte. The mechanisms behind 

hepatocytes not entering M phase are still not fully understood, neither are the 

signals that causes the difference between each hepatocyte’s potential to 

complete M phase.  

The final stage, termination, is just as vital as the initiation phase, as 

this prevents excess proliferation of hepatocytes which could result in 

carcinogenesis (Liu and Chen, 2017; Michalopoulos, 2007). This stage is 

usually denoted by a small wave of apoptosis to account for “over shooting” of 

the proliferative response (Sakamoto et al., 1999). Again, as with the first two 

phases, there are a multitude of signalling pathways activated, however those 

involved at this stage are less well studied. This is also somewhat true for the 

proliferative phase. While many of the signalling pathways established during 

the initiation phase perpetuate during the proliferation phase, the signals that 

control the temporal and spatial patterns of replications are still not fully 

understood and require further investigation. Many of the current known 

signalling pathways are discussed later in section 1.4 – Cellular and Molecular 

Mechanisms following Partial Hepatectomy. 

 

1.3.1.2 Acetaminophen 

 

Acetaminophen (APAP), or more commonly referred to as paracetamol 

in the UK, is a well-tolerated drug with minimal side effects when administered 

at therapeutic dose. However, overdose from APAP (henceforth referred to as 

paracetamol overdose [PoD]), whether accidental or intentional, can cause 

severe liver damage, resulting in ALF and potentially death. As discussed in 

section 1.1, PoD is the leading cause of ALF in the western world.  

Similar to PHx, PoD can be divided into three main stages although 

each stage is not comparable (Bhushan and Apte, 2019). The first stage, 

known as the initiation phase, is characterised by rapid metabolism of APAP 

into N-acetyl-p-benzoquinone imine (NAPQI) by cytochrome P450 family 2 

subfamily E member 1 (CYP2E1; Zaher et al., 1998). NAPQI is quenched by 
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glutathione (GSH) however, the rapid production of NAPQI quickly depletes 

the GSH stores within hepatocytes and exceeds the production rate of new 

GSH (Jaeschke et al., 2014; Mitchell et al., 1973). The excess NAPQI forms 

cellular protein adducts within the mitochondria, resulting in dysfunction of the 

organelle and the release of reactive oxygen species (ROS; Bhushan and 

Apte, 2019). Furthermore, activation of intracellular signalling molecules such 

as c-Jun N-terminal kinase, exacerbates the situation by increasing 

mitochondrial permeability and subsequent release of endonucleases 

(Hanawa et al., 2008; Henderson et al., 2007; Jaeschke et al., 2012). These 

events ultimately lead to cell death by necrosis, specifically in the hepatocytes 

in the pericentral region. This localised cell death is due to the zonation of the 

CYP2E1 protein which is found at higher levels in the pericentral regions.  

The initiation phase is followed by the progression phase, and 

collectively these two phases are described as the injury phase. During the 

progression of PoD, necrotic cells release damage associated molecular 

patterns (DAMPS) such as high-mobility group box 1 protein as well as DNA 

fragments (Jaeschke et al., 2014). The release of such molecules causes a 

strong sterile immune response, which is seen throughout the progression of 

PoD induced liver injury and is vital for the recovery of the liver. Cell death also 

continues during this stage as a result of the proteolytic enzymes such as 

calpains released from dying hepatocytes.  

Regeneration of the necrotic area begins during the recovery phase 

through hepatocellular proliferation. However, injury is only resolved if a robust 

regenerative response is achieved. In cases where the injury is too severe, the 

regenerative response cannot cope with the amount of cell death and the liver 

acutely fails, followed by multiorgan failure and death (Mehendale, 2005). For 

effective recovery of the liver, the necrotic debris needs to be cleared by 

macrophages followed by the replication of the hepatocytes surrounding the 

necrotic region. Some of the mitogenic signals that promote hepatocytes to 

enter into the cell cycle are shared across PHx and PoD, such as EGFR 

ligands, however their exact mechanism of action can differ (Bhushan et al., 

2014). It is not surprising that these signalling mechanisms between PHx and 



 16 

PoD differ, as the latter manifests a much more extensive immune response 

(Bhushan and Apte, 2019). Furthermore, the proliferation kinetics of 

hepatocytes also differ, with all hepatocytes proliferating in a synchronous 

manner during PHx, while only those hepatocytes surrounding the necrotic 

region proliferating in PoD in an asynchronous manner.  

While PoD is a clinically relevant mouse model, there can be differences 

in injury extent, temporal dynamics and mechanistic response between mice 

within an single study and between studies (Mossanen and Tacke, 2015). Age, 

sex, fasting period and methods of APAP administration can all potentially 

introduce variability. For instance, female mice are more resistant to APAP 

hepatoxicity than male mice given the same dose of APAP.  

 

1.4 Cellular and Molecular Mechanisms following Partial 

Hepatectomy 

 

Study of the mechanisms of liver regeneration following PHx have been 

ongoing for many decades. A large pool of signalling molecules and pathways 

have been shown to be involved and important for the regenerative process 

(Michalopoulos, 2007; Rmilah et al., 2019). Understanding the interactions and 

identifying the key molecular players in this intricate process is vital for the 

generation of novel therapeutics. The pool of known signalling molecules that 

are involved can be split into two main groups based on their ability to cause 

proliferation of hepatocytes. These are the complete mitogens and the 

auxiliary mitogens (Michalopoulos, 2010). Complete mitogens are the growth 

factors that can initiate replication in cultured hepatocytes with chemically 

defined serum free media. Such growth factors will also cause liver 

enlargement and hepatocyte DNA synthesis when injected in vivo  in sufficient 

quantities. Currently the only two known complete mitogens are hepatocyte 

growth factor (HGF)/c-Met receptor, and ligands of the epidermal growth factor 

(EGF) receptor (EGFR). Auxiliary mitogens cause delays in liver regeneration 

when removed, but do not abolish the whole regenerative process. They also 

fail to cause DNA synthesis in hepatocytes when administered alone, either to 
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hepatocytes in culture or when injected in vivo. These mitogens are seen to 

enhance the effects of the compete mitogens. The list of these molecules is 

much larger than the complete mitogens, and include; interleukin 6 (IL-6; 

Cressman et al., 1996), Notch and Jagged (Köhler et al., 2004), 

norepinephrine (Cruise et al., 1987), tumour necrosis factor (TNF; Yamada et 

al., 1998), insulin (Cruise et al., 1985), bile acids (Huang et al., 2006), 

serotonin (Lesurtel et al., 2006), vascular endothelial growth factor (VEGF; 

LeCouter et al., 2003) and fibroblast growth factor (FGFs; Steiling et al., 2003). 

FGFs and recombinant Jagged 1 are somewhat unique by the fact they can 

induce some degrees of proliferation in cultured hepatocytes however, cannot 

in vivo (Michalopoulos, 2010). Further to these two groups, urokinase 

plasminogen activator (uPA), circulation dynamics and the Wnt/ β-catenin also 

play an important role in hepatocyte proliferation.  

While all molecules mentioned so far initiate and perpetuate 

regeneration, only TGF-β1 has been shown to be vital in the termination of 

regeneration. Outlined below is an overview of how some of these signals 

interact to control hepatocyte proliferation/regeneration and will be evaluated 

temporally. A generalised overview can be found in Figure 1.3. 

 

1.4.1 Circulation and Urokinase Plasminogen Activator 

 

During 2/3rds PHx there are large changes in hepatic blood flow. Arterial 

blood supply per unit of liver is not altered, however the portal blood supply 

per unit triples (Michalopoulos, 2007). This is because the entire blood supply 

from the portal vein now traverses a liver that is 1/3rd of the size it was pre-

PHx. Shunting of the portal blood supply coincides with a reduction in HGF 

activation and increased apoptosis of hepatocytes, suggesting that increased 

portal pressure is a key initiating response for liver regeneration following PHx 

(Marubashi et al., 2004).  

 Alongside the initial increase in hemodynamic pressure, uPA is one of 

the first molecules known to increase in activity during PHx, starting as early 

as five minutes post-surgery (Mars et al., 1995). uPA is a known activator of 
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matrix remodelling and is seen in most tissues during wound healing 

(Michalopoulos, 2007). uPA acts to convert inactive plasminogen to active 

plasmin, which can facilitate the breakdown of fibrinogen into fibrinogen 

degradation products (Kim et al., 1997; Tanaka et al., 2001). Furthermore, a 

second matrix altering protein metalloproteinase 9 (MMP9) is also increase 

early in PHx (Olle et al., 2006). In homeostatic liver, HGF is inactive and bound 

to the ECM, but the increase in these matrix altering proteins leads to the 

remodelling of the ECM early in PHx and the subsequent release of HGF (Mars 

et al., 1995). uPA now functions to activate the single chain HGF to its 

heterodimeric form (Mars et al., 1993). HGF then  acts locally and systemically 

as one of the main mitogens for liver regeneration. 

 Data in human coronary artery endothelial cells also suggests that 

circulatory changes could increase uPA activity. Sokabe et al. (2004) showed 

that increases in turbulent shear stress results in an increase in uPA mRNA 

half-life and stability, as well as an increase in protein secretion in human 

coronary artery endothelial cells. Further work is required to assess to what 

extent this may be a relevant mechanism regulating liver regeneration 

following PHx. Furthermore, changes in oxygen and nutrient supply also 

drastically change during PHx and this is currently an understudied area of the 

model. 

 

1.4.2 Complete Mitogens 

 

1.4.2.1 Hepatocyte Growth Factor and c-Met 

 

HGF during homeostasis is stored in relatively large quantities in the 

ECM of the liver. During PHx these stores are mobilised through ECM 

remodelling causing a significant increase in HGF plasma levels (Lindroos et 

al., 1991). In the rat model, these intrahepatic stores are consumed within the 

first 3h followed by new HGF synthesis (Pediaditakis et al., 2001). In mice, 

which lack HGF expression through conditional knock out (KO), the HGF 

protein and mRNA stores prior to KO were sufficient to sub serve at least one 
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regenerative response, be that either PHx or a single CCl4 injection (Nejak-

Bowen et al., 2013). HSC have been shown to sense HGF levels and it is 

speculated that HGF mRNA is long-lived in homeostasis. However, following 

injury, HGF protein in the ECM is rapid depleted. HSC will therefore utilise pre-

existing mRNA to produce new HGF, resulting in degradation of HGF mRNA. 

Subsequent insult to the liver would then require de novo synthesis of HGF 

which would is not possible in the KO mice, leading to compromised liver 

regeneration. Production of new HGF is also carried out by liver endothelial 

cells (LeCouter et al., 2003), however there is some controversy regarding 

whether mature LSECs are the main HGF producing endothelial cell or if it is 

in fact the endothelial progenitors (Wang et al., 2012). Reciprocally, VEGF 

produced by hepatocytes causes an increase in endothelial cell proliferation 

(Shimizu et al., 2001). Recent evidence has identified hypoxia, acting through 

hypoxia inducible factor 2a (HIF2a), as a driver of hepatocyte VEGF production 

(Kron et al., 2016). This would suggest non-vascular regions of proliferating 

hepatocytes are induced to produce VEGF through HIF2a causing replication 

of the endothelial cells and the vascularisation of the new region. In turn the 

endothelial cells then promote proliferation of hepatocytes. In addition to these 

two intrinsic liver sources of HGF, distal organs, such as lung, kidney and 

spleen, induce HGF production in response to PHx (Kono et al., 1992; 

Yanagita et al., 1992). 

HGF acts through its receptor c-Met to induce proliferation in 

hepatocytes. Upon binding to HGF, c-Met will dimerise resulting in its 

activation through tyrosine phosphorylation (Wang et al., 2020). c-Met 

activation has been seen within the first 1h post-PHx and results in a myriad 

of signalling cascades (Stolz et al., 1999). Studies in hepatocytes and other 

cells types have shown that pathways such as the PI3K, MAPK, NF-κb, and 

STAT3 are activated by c-Met and in turn lead to proliferation (Borowiak et al., 

2004; Rmilah et al., 2019). Deletion of the c-Met receptor causes a delay in 

liver regeneration, but when combined with EGFR inhibition this completely 

abolishes the regenerative process (Paranjpe et al., 2016). While promoting 
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proliferation, the c-Met receptor can also bind to the Fas apoptotic receptor 

and prevent its trimerization and activation of apoptosis (Wang et al., 2002).  

 

1.4.2.2 Epidermal Growth Factor Receptor and Ligands 

 

Similar to c-Met, elimination of EGFR signalling results in delay but not 

complete abolishment of liver regeneration unless c-Met is also removed 

(López-Luque et al., 2016). EGFR signals through many of the same 

mechanisms as c-Met and becomes activated at a similar time during PHx 

(Collin De L’hortet et al., 2012; Stolz et al., 1999). The lack of complete 

regeneration abolishment through removal of only c-Met or EGFR signalling 

would suggest a compensatory mechanism occurring between these two 

receptors. 

There are four ligands of EGFR that are currently known to play a role 

in PHx; EGF, TGFα, Heparin Binding EGF (HB EGF) and amphiregulin (Collin 

De L’hortet et al., 2012). While there is redundancy in this system, each ligand 

is not acting in a completely similar manner. TGFα deficient mice appear to 

have normal liver regeneration while those deficient in HB EGF and 

amphiregulin do have deficient regeneration (Berasain et al., 2005; Mitchell et 

al., 2005; Russell et al., 1996). Currently there has been no genetic KO of EGF, 

however removal of the known sources of EGF does result in reduced 

regeneration (Lambotte et al., 1997; Olsen et al., 1988).  

EGF is constantly available to the liver through the portal circulation. 

The Brunner’s and salivary glands produce EGF, with removal of either gland 

resulting in either decreased or delayed regeneration (Lambotte et al., 1997; 

Olsen et al., 1988). Injection of EGF in vivo results in initiation of DNA synthesis 

in hepatocytes, demonstrating its mitogenic potential (Bucher et al., 1977). 

However, with the constant supply of EGF to the liver it is not fully understood 

how EGF can become more mitogenic during injury than homeostasis. One 

potential answer is due to the reduction of the liver mass. EGF now targets 

fewer hepatocytes and therefore has enhanced effects. Also norepinephrine, 

which increases during PHx, enhances production of EGF from the Brunner’s 
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gland (Cruise et al., 1987; Olsen et al., 1985). A second theory involves the 

increased sensitivity of EGFR to EGF. Cultured hepatocytes have increased 

DNA synthesis when exposed to norepinephrine, but only in the presence of 

EGF (Cruise et al., 1985). It is suggested that norepinephrine, acting through 

the α-adrenoreceptor, increase EGFR sensitivity to EGF. Furthermore, cross 

talk between c-Met and EGFR could also be a second source of increased 

sensitivity for EGFR (Jo et al., 2000). 

Inactive TGFα is produced by hepatocytes during PHx and is activated 

through cleavage of the extracellular domain by tumour necrosis factor 

converting enzyme (TACE; Le et al., 2003; Mead and Fausto, 1989). As 

hepatocytes produce TGFα, it is speculated that there is an autocrine loop of 

cellular proliferation. While TGFα deficient mice do not have altered liver 

regeneration, over expression results in liver enlargement and hepatocyte 

replication, demonstrating its mitogenic potential for hepatocytes (Webber et 

al., 1994). 

HB EGF mRNA expression is increased in endothelia and KCs in rats 

1.5h after PHx (Kiso et al., 1995). When measured, protein expression was 

also increased 2.8-fold over normal, 10h after PHx. KO of HB EGF in mice 

causes a delay in regeneration while overexpression accelerates the 

proliferative response (Kiso et al., 2003; Mitchell et al., 2005). 

 

1.4.3 Auxiliary Mitogens 

 

1.4.3.1 Interleukin 6 

 

Il-6 is an important signalling molecule that has been linked to the 

increased expression of around 36% of the genes that are activated early in 

PHx (Li et al., 2001). Il-6 is mainly produced by KC and is believed to be under 

the control of TNF-α (Aldeguer et al., 2002; Yamada et al., 1997). Il-6 binds to 

the Il-6 receptor on hepatocytes and forms a complex with gp130 to activate 

STAT3 signalling (Taub, 2004). This ultimately leads to enhanced proliferation 

with increases in cyclin D1 expression (Cressman et al., 1996). This was 
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evident in Il-6 deficient mice which had a defective or delayed regenerative 

response after PHx, with some mice characterised with liver necrosis and liver 

failure.  Il-6 deficiency also resulted in decreased STAT3 signalling and cyclin 

D1 expression during PHx. It should be reiterated however that Il-6 is not 

considered a complete mitogen for hepatocytes, with injected Il-6 having no 

impact outside of an injury context. Il-6 is considered to prime hepatocytes for 

replication. However, other studies have shown that regeneration in Il-6 

deficient mice is somewhat normal, with deficient mice having increased 

hepatocyte replication at 24h over wild type (WT) but the converse at later 

timepoints (Sakamoto et al., 1999). Further studies have shown that Il-6 may 

act to cause cell cycle arrest and increase DNA repair proteins at early 

timepoints in PHx (Tachibana et al., 2014). This suggests that Il-6 could be 

acting as a cell cycle checkpoint protein, ensuring accurate DNA replication.  

More recent studies have also shown a link between Yap and Notch 

signalling with the gp130 receptor in a STAT3 independent manner (Taniguchi 

et al., 2015). This suggests cross talk between the many signalling pathways 

involved during PHx. Clearly, Il-6 plays a positive important role in PHx but 

similar to many of the signalling molecules and pathways, more work is 

required to fully understand these processes. 

 

1.4.3.2 Wnt/β-catenin 

 

Wnt/β-catenin signalling is activated early during PHx, with a 2.5-fold 

increase in β-catenin and its translocation to the nucleus (Monga et al., 2001). 

This subsequently causes the increase in expression of its target genes which 

include cyclin D1 (Tan et al., 2006). Finding the source of Wnt has been 

difficult, but it is now believed that LSECs and KCs are at least two sources of 

Wnt (Ding et al., 2010; Yang et al., 2014). Conditional KO of β-catenin caused 

a delayed regenerative response (Tan et al., 2006). There was a 2-fold 

decrease in the number of proliferative hepatocytes at 40h post PHx, which is 

usually around the time of peak hepatocyte proliferation. Instead there was an 

increase in proliferation 3 days post PHx, which would suggest that 
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compensatory pathways were eventually able to account for the loss in β-

catenin signalling. A similar response is also observed in mice that lack Wnt 

co-receptors LRP5/6 or LGR4/5 (Planas-Paz et al., 2016; Yang et al., 2014). 

Interestingly while Wnt signalling can be pro-regenerative, Wnt5a has been 

shown to be inhibitory, suppressing β-catenin signalling, in primary hepatocyte 

cultures (Yang et al., 2015). A Wntless KO (the protein which transport Wnt 

out of the cell for secretion), showed prolonged proliferation of hepatocytes 

compared to controls, which the study theorises was a result of decreased 

Wnt5a secretion. 

 

1.4.3.3 Notch signalling 

 

Notch signalling is comprised of several membrane bound ligands and 

receptors which are able to co-ordinate the differentiation and proliferation of 

many different cell types and tissues (Alves-Guerra et al., 2011; Bray, 2016). 

Mammals have 4 Notch paralogues (Notch 1-4) and two ligand families, delta 

like (DLL1, 3 & 4) and Jagged (JAG1 & 2). Notch is considered the receptor of 

this signalling network, binding to either the DLL or JAG ligands, however, 

increasing evidence is showing that this signalling can be bi-directional with 

each having both a receptor and ligand role (Alves-Guerra et al., 2011; Metrich 

et al., 2015; Six et al., 2003). Nevertheless, in the classical view, binding of 

either DLL or JAG caused the cleavage of the Notch intracellular domain 

(NICD) by ADAM proteases and γ-secretase (Alves-Guerra et al., 2011; Bray, 

2016). This then allows NICD to translocate to the nucleus where it functions 

as a transcription factor/co-activator to mediate the expression of HES and 

HEY proteins, and is also believed to control cell cycle genes such as cyclin 

D1 (Ronchini and Capobianco, 2001; Zhang et al., 2018). Notch-1 and JAG-1 

are known to be upregulated during PHx, with NICD seen to translocate to the 

nucleus of hepatocytes after just 15 minutes post-surgery in rats (Köhler et al., 

2004). Increased expression of HES-1 was seen after 30-60 minutes post PHx. 

Mutations in JAG-1 in humans is known to cause Alagille syndrome, a disorder 

that effects the liver, heart and other parts of the body (Li et al., 1997). Most 
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notable however, is the major liver damage and abnormalities in the bile ducts 

within patients of Alagille syndrome. Deletion of Notch 1 in mice showed a 

retarded liver regenerative response, with livers of KO mice taking 4 weeks to 

full regain liver mass as opposed to the 9 days of the control mice (Croquelois 

et al., 2005). As Notch 1 is embryonically lethal, Notch 1 was deleted after birth 

using a condition KO system. Interesting, outside the context of injury, mice 

with Notch 1 deletion showed nodular regenerative hyperplasia, and have an 

increase liver weight to body ratio. This would suggest a cell cycle inhibitory 

role of Notch 1. The authors believe that Notch 1 is more of an inhibitory 

regulator of regeneration and defend this by first showing that while hepatocyte 

proliferation was reduced in Notch 1 KO mice, the liver to body weight ratio 

was not significantly different between the control and KO mice. They also 

show that the remnant liver of the Notch 1 mice makes up a larger percentage 

of the body weight over the control mice (due to their enlarged livers). They 

state, “the regenerative response is inversely correlated with the amount of 

remaining liver after” PHx, and the Notch 1 KO mice have a less vigorous 

proliferative response because of their larger percentage of remnant liver and 

not their inability to signal though Notch 1. It appears there is a reasonable 

argument to suggest that Notch 1 acts as an inhibitor of hepatocyte 

proliferation rather than a promoter, but further work is required to fully confirm 

this.  
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Figure 1.3 – Schematic of Signalling Pathways following Partial 
Hepatectomy 

Summary of signalling pathways following PHx with arrows depicting signalling 

direction. In some situations, an alternative hypothesis of the function of a 

signalling molecule is depicted by a dashed arrow. * represents the 

continuation of the main c-Met and EGFR signalling cascade. Brown cell – 

Hepatocyte, Pink cell – Endothelial cell, Turquoise cell – Kupffer cell, Lilac cell 

– Hepatic Stellate cell.  
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1.4.4 Cell Cycle 

 

The purpose of these pro-regenerative signals is to guide the hepatocyte 

through the cell cycle. The cell cycle is made up of 4 predominant phases, G1, 

in which cells grow in preparation for DNA replication, S phase, in which cells 

copy their DNA, G2, which is a second growth phase, and finally, M phase, the 

phase in which mitosis occurs. During homeostasis, hepatocytes reside in G0, 

which is the quiescent phase, or G1. The transition between each phase is a 

highly controlled and well-ordered system. This is to ensure that the cell has 

enough intracellular material to allow replication, and that the DNA of each cell 

has correctly copied without any errors. The key proteins which are the ‘gate 

keepers’ of these phases are the cyclin-dependent kinases (CDKs) 

(Nevzorova and Trautwein, 2015; Vermeulen et al., 2003). These are a family 

of serine/threonine protein kinases. These proteins remain stable throughout 

the cell cycle, whereas their activator proteins, cyclins, do not. Cyclin levels 

rise and fall at different stages of the cell cycle to activate the correct CDK at 

the correct time. In mammalian cells, there is sequential activity of at least four 

different CDKs. These are CDK1, 2, 4, and 6. There are of course various 

families of cyclins which activate each or multiple CDKs. Cyclin D (D1, D2 ,D3) 

activates CDK4 & 6, cyclin E (E1, E2) activates CDK2, cyclin A (A1, A4) 

activates CDK1 & 2, and finally cyclin B (B1, B2, B3) activates CDK1. 

 During G1, type D cyclins initiate phosphorylation of retinoblastoma 

protein (RB) through activation of CDK 4/6 (Albrecht, Hu and Cerra, 1995; 

Borowiak et al., 2004; Jaumot et al., 1999; Figure 1.4). When 

unphosphorylated, RB acts to repress gene transcription through binding to 

E2F transcription factors (TFs; Giacinti and Giordano, 2006). These are a 

family of transcription factors which drive entry into S phase. Now with RB 

phosphorylated, E2F TFs are able to initiate E2F early responsive cell cycle 

genes such as cyclin E. CDK2 is then activates by Cyclin E in late G1 and 

completes the phosphorylation of RB, causing further activation of E2F TFs 

(Hu et al., 2014; Pujol et al., 2000; Figure 1.4). These cells are then able to 

pass through the G1/S restriction point into S phase.  
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 Here Cyclin A regulates the DNA synthesis process along with CDK2 

(Castro et al., 1994). Usually, once DNA replication has successfully finished, 

cells enter into G2 where, CDK2 is swapped for CDK1 to prepare the cell for 

mitosis (Corlu and Loyer, 2012; Nevzorova and Trautwein, 2015). Finally, 

cyclin B and CDK1 complexes are active through mitosis to complete the 

process (Figure 1.4). However, evidence has shown that CDK1 also regulates 

the S phase in hepatocytes, with CDK1 and cyclin B or A complexes shown to 

be active during this phase (Corlu and Loyer, 2012; Garnier et al., 2009). There 

is also evidence that CDK1 can compensate for CDK2 in CDK2 KO mice. 

 The process is also fine-tuned through a group of negative regulator 

proteins (Vermeulen et al., 2003). As well as RB there is; the INK4 family (p16, 

p15, p18, p19) which binds to CDK 4/6 and prevents cyclin D activity, and the 

cyclin dependent kinase inhibitors family (p21, p27, p57) which inhibits CDK2/1 

and cyclin E/A/B complex activity (Figure 1.4). p53 specifically is known for its 

pausing of the cell cycle and recruitment of DNA repair proteins when there is 

DNA damage. This protein also triggers apoptosis when the damage cannot 

be repaired, preventing propagation of the incorrect genomic content and 

therefore preventing possible cancer development. There are of course many 

more proteins that are layered on top of these mentioned here that control the 

activity of these proteins. This allows for tight control of the cell cycle through 

sensing of various problems such as DNA damage or spindle malformations. 
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Figure 1.4 – Cell Cycle Control 

Specific cyclin and cyclin dependent kinases (CDKs) interact at various points 

around the cell cycle. Early cyclin and CDK complexes interact with 

retinoblastoma protein (RB) to causes phosphorylation of RB and release E2F 

transcription factors which bind to DNA. Examples of the INK4 cyclin/CDK 

inhibitor family (p15, p16) and cyclin dependent kinase inhibitors family (p27, 

p21) specifically regulate certain cyclin/CDK complexes. Adapted from 

(Nevzorova and Trautwein, 2015) ©2015, with permission from Elsevier.  
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1.4.5 Termination and TGF-β 

 

Whilst there is a deep understanding of the events and molecules that 

contribute to the initiation and replication of hepatocytes, the mechanisms 

regulating the termination of regeneration are much less understood. By far 

the most studied in this area is TGF-β (Michalopoulos, 2007). This molecule is 

produced by mesenchymal cells and inhibits the epithelia of most tissues. The 

liver is no different, with HSC being at least one source of TGF-β. TGF-β is a 

mito-inhibitor for hepatocytes (Houck et al., 1988; Ikeda et al., 1998). Similar 

to HGF, TGF-β is bound to the ECM and is believed to exert a competing ‘tonic’ 

effect against the growth factors that are also bound to the ECM, therefore 

keeping hepatocytes in a quiescent state (Michalopoulos, 2007). If TGF-β 

receptor 1 is inactivated by dominant negative DNA constructs, there is a 

noticeable increase in DNA synthesis, suggesting the ‘tonic theory’ is a 

reasonable mechanism of action (Ichikawa et al., 2001). Cleary, during PHx, 

hepatocytes become resistant to this inhibition in some way. As the ECM 

becomes remodelled during PHx, the release of the various mitogens shifts 

the balance in favour of a more proliferative environment. Furthermore, the 

release of TGF-β1 into the circulation allows it then to be inactivated by alpha-

1-macrogobulin and norepinephrine (Houck et al., 1988; Houck and 

Michalopoulos, 1989; LaMarre et al., 1991, 1990). It should be noted however 

that the roles of alpha-1-macrogobulin and norepinephrine have only been 

confirmed in hepatocyte cultures and currently not directly in the context of 

PHx. In addition, hepatocytes also show decreased expression of TGF-β 

receptors during the first few days of PHx, therefore conferring a further 

resistance to its effects (Chart et al., 1995). As the regenerative model 

progresses, new TGF-β is synthesised, with synthesis starting at around 2-3h 

and remaining elevated until 72h in rats (Jakowlew et al., 1991). TGF-β1 is 

known to stimulate the producing of ECM proteins by mesenchymal cells 

(Roberts et al., 1992). Evidence has shown that mouse Englebreth-Holm-

Swarm sarcoma matrix extracts inhibit DNA synthesis in hepatocytes (Rana et 

al., 1994). Furthermore, removal of integrin-linked kinases have also lead to 
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increased cell proliferation and improper termination of PHx (Apte et al., 2009; 

Gkretsi et al., 2008). This suggest that ECM also provides a mito-inhibitory 

effect. This could be through direct binding to the ECM, but also the newly 

synthesised ECM can rebind HGF, preventing its activation and mitogenic 

effects, and also rebind TGF-β, returning to the previous paradigm in which 

TGF-β exerts a ‘tonic’ mito-inhibitory effect (Michalopoulos, 2007).  

While this makes for a very clean model with TGF-β1 at the centre, 

almost normal regeneration with effective termination occurs in TGF-β1 

receptor KO mice, unless activin, another known mito-inhibitor of hepatocytes, 

is also removed through follistatin administration (Oe et al., 2004). This 

suggests that termination requires at least one of these molecules and that 

there are again compensatory effects by multiple pathways to ensure proper 

regeneration occurs. Moreover, the importance of integrins in the ECM cannot 

be overlooked as the key terminator of PHx. 

 

1.4.6 Partial Hepatectomy Mechanisms Summary  

 

The mechanisms that control PHx are extensive and can overlap in 

many ways. Due to the large number of signalling pathways that are triggered 

during this model, identifying the individual function of any one molecule 

becomes difficult and can lead to contradicting theories. Many studies have 

used techniques that look at global changes and try to assign function based 

from these global changes. However, this is likely a source of confusion in the 

field and higher resolution techniques are required to resolve many of these 

complex mechanisms and pathways. 
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1.5 Single-Cell RNA Sequencing 

 

1.5.1 RNA Sequencing 

 

Gene expression studies have become one of the major ways in which 

researchers compare the differences between samples such as between 

conditions or time points. They allow a researcher to gain insight into the 

transcriptomic prolife of the cell by measuring the relative amount of each 

mRNA molecule from a sample. This is then commonly used as a pseudo-

representation of the protein level within the cell. These types of studies only 

became possible with the advent of next generation sequencing (NGS). NGS 

was a major advancement over sanger sequencing, and allowed for 

sequencing of millions of fragments of DNA at once, giving NGS sequencers 

a much higher throughput (Sanger et al., 1977; Shendure and Ji, 2008). 

However, there is not as yet a commercially available sequencer that can 

sequence RNA molecules directly. Therefore, mRNA molecules are 

sequenced by first converting the mRNA into cDNA using reverse transcription 

polymerase chain reaction (RT-PCR; Haque et al., 2017). This is then followed 

by standard PCR to amplify the small amount of cDNA created from the RT-

PCR reaction, to gain enough material for sequencing. This is even more vital 

for single cell RNA sequencing (scRNA-seq) where the starting material is very 

low.  

 The main difference between bulk RNA sequencing and scRNA-seq is 

within the name. Bulk RNA sequencing takes the RNA from a large sample of 

many different cells, usually from a particular organ and/or particular cell type. 

While there are many methods allowing separation of cells into specific 

populations to allow bulk RNA sequencing, we are limited by the current 

biological knowledge about these cell types. scRNA-seq however considers 

each cell as an individual sample and allows the transcriptome of each 

individual cell to be measured. Therefore, it is able to distinguish unknown 

heterogeneous populations without any prior knowledge of these populations 

that would have otherwise been masked by the bulk samples. 
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 scRNA-seq is a multistep process, which follows many of the same 

processes as bulk RNA seq (G. Chen et al., 2019; Haque et al., 2017). Cells 

first need to be isolated and captured, lysed and their mRNA reverse 

transcribed. The cDNA is then amplified before being sequenced.  

 

1.5.2 Cell Isolation and Capture 

 

There are multiple ways to isolate the cells of interest for scRNA-seq 

and these can be spilt into low-throughput and high-throughput methods (Hu 

et al., 2016; Figure 1.5 A). Low throughput methods include laser capture 

microdissection or micropipetting. Both these methods allow for very precise 

selection of cells or a region of cells however are very labour and time 

intensive. High throughput methods on the other hand are very fast and include 

the use of techniques such as fluorescence activated cell sorting (FACS) or 

microfluidic based systems.  

Theses isolation techniques usually go hand in hand with the style of 

scRNA-seq that is being carried out (G. Chen et al., 2019). The different types 

of scRNA-seq can be split into many categories but for a capture orientated 

view, they can be broadly split as plate-based or droplet-based. Plate-based 

techniques involve sorting/pipetting the isolated cells into either 94 or 384 well 

plate. This can be achieved by use of the low throughput methods, but 

prominently is achieved by FACS. The main reason for this, is a FACS  is able 

to process hundreds of cells in minutes as opposed to the hours of individually 

picking cells. The technique however relies on the ability to be able to identify 

the cells of interest using intrinsic properties of the technique or fluorescently 

labelled antibodies. Once the cells are sorted into a plate, there are many 

different types of library preparation protocols including; SMART-seq, MARS-

seq or NEBNext® Single cell sequencing, to name but a few (Haque et al., 

2017). 

Droplet-based sequencing, such as Drop-seq or 10x Genomics 

Chromium, feed cells through a microfluidic device and use oil droplet 

emulsions to capture the cells along with the necessary reagents (Salomon et 
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al., 2019). This process allows for thousands of cells to be captured in one run. 

This is by far the highest throughput technique available. Each droplet-based 

platform has its own distinct library preparation protocol, however the 

fundamentals remain the same. While a user can feed in a freshly isolated 

population of cells without any prior enrichment, most researchers again utilise 

FACS.  

 

1.5.3 Library Preparation 

 

The overall steps in all scRNA-seq library preparation, as with bulk RNA 

sequencing, are the same (Haque et al., 2017). These involve, lysis of the cell, 

followed by first and second strand synthesis. Final steps include cDNA 

amplifications and the attachment of sequencing primers. While each different 

library preparation achieves these steps in different ways, the main two 

differences that are seen between library preparation are; the use of  unique 

molecular identifiers (UMIs) and transcript coverage (Figure 1.5 B). 

Protocols such as SMART-seq 2 and NEBNext® single cell are able to 

produce full length transcript coverage which can provide extra information 

such as alternative-splicing events and allele-specific expression (G. Chen et 

al., 2019). Other plate-based techniques produce either 5’ and 3’ transcripts, 

such as CEL-seq. This still allows for effective counting of transcripts, but you 

lose the ability to find isoform variants. However, a decrease in sensitivity, 

reduces cost (Ding et al., 2019). These types of protocol are therefore used 

when high numbers of cells are desired. This type of coverage is the only type 

that is offered by current droplet-based techniques.  

There is a correlation with the use of UMI and the transcript coverage 

generated for each library preparation technique. Almost all full-length 

transcript protocols do not allow for the use of UMIs, except MATQ-seq (G. 

Chen et al., 2019). The use of UMIs is predominantly seen with droplet-based 

sequencing approaches such as 10x Chromium single cell RNA sequencing, 

or any of the 3’ and 5’ coverage plate-based techniques. UMIs are small 

barcodes of DNA that are attached to each piece of mRNA during the initial 
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RT-PCR (Hwang et al., 2018). The barcodes are different for each mRNA 

molecule and therefore allow the detection of PCR duplicates when comparing 

the sequences during the alignment and analysis. Removal of PCR duplicates 

is a great advantage as a more realistic estimation of the cell’s transcriptome 

is recovered with the removal of duplicate bias.  

One final choice that can be made during the library preparation step is 

the inclusion of spike-ins. Spike-ins, such as the External RNA Control 

Consortium (ERCC), are RNA transcripts with known sequences that are 

added to each sample (cell) in a known quantity (Lun et al., 2017). In theory, 

the use of spike-ins would allow the estimation of technical noise. Like UMIs, 

these can only be used with certain protocols, in general, plate-based 

approaches implement spike-ins. However, the use of spike-ins can be 

problematic within themselves. The effective use of spike-ins relies heavily on 

the accurate concentration being added to each sample. They are also found 

to be quickly degraded and are not as efficiently captured as endogenous 

RNA. For these reasons, the use of spike-ins has fallen out of favour with many 

research groups.  

 

1.5.4 Sequencing 

 

Broadly speaking, the lower number of cells captured in plate-based 

approaches is usually associated with a deeper sequencing readout per cell. 

On the other hand, when higher cell numbers are captured, for example in 

droplet-based protocols, a lower sequencing depth is obtained (Figure 1.5 B). 

One main reason for this is cost (Ziegenhain et al., 2017). When considering 

how many reads that can be afforded for a particular experiment, spreading 

these reads across fewer cells will give a higher read depth per cell, while 

spreading them across a larger number of cells will reduce the depth per cell. 

That being said multiple studies have shown that sequencing any library at one 

million reads per cell reaches a reasonable level of saturation (Wu et al., 2014; 

Ziegenhain et al., 2017). In practise it is usually more efficient to sequence the 

cells from a droplet-based approach at a factor of 10 lower than those of plate-
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based full length approaches (Haque et al., 2017). It should be noted that 

sequencing cells from one protocol to the same degree as another will not 

result in discovering the same number of genes, nor will doubling the 

sequencing depth necessarily give a 2x increase in the number of genes 

detected (Ziegenhain et al., 2017). The reason for this is that each protocol will 

have its own efficiency of capturing and reverse transcribing the RNA for each 

cell. Furthermore, regardless of platform many genes that are expressed at a 

moderate or low level may not be captured and detected. Therefore, after a 

certain point, increasing sequencing depth will give diminishing returns as 

more PCR duplicates are sequenced.  

The sequencing itself for most studies is likely to be conducted on an 

Illumina platform (Buermans and den Dunnen, 2014). Illumina are by far the 

largest company in the NGS sector and it has become the norm to use their 

machines in almost all sequencing experiments. Their process of sequencing 

DNA is known as sequence by synthesis. First, cDNA from a sample is 

immobilised on a flow cell through binding of the adapter sequences to 

oligonucleotides attached to the flow cell. The cDNA fragments are then 

amplified through bridge amplifications to form colonies of the same cDNA 

fragment. A cluster of cDNA molecules allows for a stronger signal to be 

produced during sequencing. This process was greatly improved through the 

introduction of nano-wells into the flow cell. These pre-formatted grids of nano-

wells allow for specific amplification of a colony originating from a single cDNA 

molecule. This is achieved through the difference in speed between initial 

capture and amplification of the cDNA. Amplification of cDNA is faster than the 

initial capture, therefore, once a cDNA has bound into a nano-well, the cDNA 

fragment is amplified faster than a second cDNA fragment can bind into the 

same well. Following on from cluster generation, the reverse strands of cDNA 

are cleaved and removed to allow the forward strand to be sequenced first. 

Sequencing is achieved through the addition of fluorescently tagged 

nucleotides by a DNA polymerase. As each nucleotide binds to its 

complementary base, the fluorescent signal is measured, with each nucleotide 

corresponding to a particular fluorescent signal. Once the forward strand has 
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been sequenced, the same occurs for the reverse strand (which is generated 

through a single round of amplification) to generate paired end reads. This 

allows for millions of bases to be sequenced in one run which are collated and 

aligned to a reference genome to generate an expression or counts matrix of 

genes and cells. 

 

1.5.5 Data analysis 

 

 There are many well established pipelines to conduct bulk RNA 

sequence analysis (Love et al., 2015; Robinson et al., 2010). scRNA-seq is 

however a newer technique and while there are many different papers 

describing the “best” way to analyse the data, currently, there is no “gold 

standard” pipeline (Luecken and Theis, 2019). One of the main differences that 

was initially considered between the two techniques, was the large number of 

zeros that is found within scRNA-seq data (Qiu, 2020). Commonly referred to 

“dropouts”, these are transcripts which are seen to be expressed at a moderate 

or low level in one cell but are completely absent from another cell of the same 

type. These arise due to the low starting material, mRNA capture efficiency, 

the non-linear nature of the amplification steps, and the stochastic nature of 

sampling. These technical zeros cannot be distinguished from biological zeros 

which represent the potentially true “on- off” nature of a gene (Andrews and 

Hemberg, 2019; Silverman et al., 2020). Nevertheless, it is believed that 

“dropouts” cause a zero inflation within the data, and therefore many analytical 

techniques have been developed to deal with this. One suggestion is to use 

zero-inflated statistical models such as the zero-inflated negative binomial 

model (Kharchenko et al., 2014; Qiu, 2020). These have quickly become 

popular, however recent evidence has shown that the use of zero-inflated 

models may not be appropriate for UMI based data (Svensson, 2020). While 

many methods attempt to model the count data directly, it is still common to 

find many workflows using logged normalised counts (Luecken and Theis, 

2019). Studies evaluating various single cell analysis pipelines have shown 

that good normalisation removed the need for specialised tools such as those 
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used for differential expression. The analysis of scRNA-seq data is explained 

in greater detail in chapters 4 and 5.  

 

1.5.6 Novel Findings 

 

The number of publications and studies that use scRNA-seq 

approaches has increased dramatically over the past couple of years. scRNA-

seq allowed for the identification and interrogation of previously unknown 

population of cells. 

One area of liver biology that has expanded rapidly with the advent of 

scRNA-seq is that of zonation. Halpern et al. (2017) used a combination of 

single-molecule fluorescence in situ hybridization (smFISH) and scRNA-seq to 

uncover the extent to which the hepatocyte transcriptome is zonated. This was 

achieved by reconstructing the spatial zonation in the scRNA-seq data based 

on their expression of landmark genes. The liver lobule was divided into nine 

regions and they found that more than 50% of expressed genes are zonated 

as well as the presence of non-monotonic gene zonated profiles which peak 

in the mid-zonal regions. Furthermore, they found the genes associated with 

bile acid biosynthesis were zonated in the order of their function along the 

direction of bile flow. Enzymes early in the pathway were expressed 

pericentrally, and those later in the pathway expressed more periportally. This 

work challenged the binary/tertiary classification of liver zones. Therefore, if 

zones are to be described as distinct regions, it may be more appropriate to 

distinguish between a more fixed spacial classification, i.e. periportal or 

pericentral, with fixed division based on distance from the central vein and 

portal triad, and a more dynamic metabolic definition, i.e. gene x is expressed 

in metabolic zone x. The latter having a dynamic boundary that is linked to well 

established zonated genes and processes. 

scRNA-seq has also led to the discovery of spatial and functional 

zonation of other cell types in the liver (Dobie et al., 2019; Halpern et al., 2018). 

A recent study by the Henderson lab (Dobie et al., 2019) revealed zonation of 

HSC, identifying portal vein associated HSC (PaHSC) and central vein 
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associated HCS (CaHSC). Importantly, CaHSC were shown to be responsible 

for the majority of pathogenic fibrillar collagen production in a model of 

centrilobular fibrosis. This study clearly shows the importance of identifying 

sub-populations, as such resolution allows for highly targeted therapeutic 

approaches to be developed.  

Another exciting area that has developed with the advent of scRNA-

seq, is the generation of a cell atlas. Large efforts are underway to combine 

studies to produce a “Human Cell Atlas” to identify all cell types and sub-

populations of cells that are found within the human body (Regev et al., 2017). 

This will generate an exceedingly high resolution map of the cells of the human 

body, with a view to helping understand the biology of the various organ 

systems. This will also have a significant impact on the field of biomedicine 

and aid the identification of targeted treatments for a broad range of diseases. 

Two such examples exist already for human liver in which both the 

parenchymal and NPCs were classified by scRNA-seq (Aizarani et al., 2019; 

MacParland et al., 2018). Within both studies, hepatocyte and endothelial 

zonation was identified, as well as identifying sub-populations of cell types that 

were once believed to be homogenous. MacParland et al. (2018) were able to 

identify two sub-populations of KCs that showed functional differences, while 

Aizarani et al. (2019) discovered a novel bipotent epithelial progenitor. 

 As well as uncovering homeostatic cell populations, scRNA-seq has 

been vital to expand our knowledge of disease specific populations. 

Ramachandran et al. (2019) identified a scar associated TREM2+CD9+ 

subpopulation of macrophages in human liver cirrhosis. It was shown that this 

sub-population expands in cirrhosis through the differentiation of circulating 

monocytes and established a pro-fibrotic phenotype. Such work will aid the 

identification of potential therapeutic targets for liver cirrhosis. 

As scRNA-seq as a technology advances further, researchers will be 

able to unpick more subtle differences in biology. In particular with the advent 

of spatial transcriptomics, these novel cell types will be able to be mapped 

spatially and more precise hypotheses of cellular interactions will be able to be 

derived from the data.  
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1.5.7 Choice of Single Cell RNA Sequencing Approach 

 

As discussed, there are many different methodologies for scRNA-seq. 

The choice of method is dependent on the biological question and/or what is 

expected to be found (Haque et al., 2017). For instance, when trying to identify 

a rare subpopulation, a large number of cells is most likely required, however, 

this usually will come at a cost of number of gene detected per cell. Generally 

speaking, most plate based full length transcript methods (SMART-seq, 

NEBNext®) will give a greater depth into the transcriptome of each cell and 

therefore yield a greater number of genes per cell as well as also allowing gene 

isoform discovery. However, these methods are only able to sequence a few 

hundred cells in any one run, and to sequence thousands of cells would be 

very expensive. Molecular tag-based methods (MARS-seq) do not give full 

transcript coverage or as many genes per cell, but they allow for UMI 

incorporation which helps to reduce many downstream technical artefacts. 

UMIs are also used in conjunction with droplet-based isolation methods (10x 

Genomics) that allow for many thousands of cells to be sequenced at once. 

It is clear that the regenerative process during PHx is complex and 

researchers are still uncovering new key signals pathways involved within the 

process. To date, most studies have looked broadly at hepatocyte signalling, 

however it has been shown hepatocytes contribute to the process in a 

heterogenous manner, with only a proportion of hepatocytes that enter the cell 

complete mitosis (Miyaoka and Miyajima, 2013). Therefore, scRNA-seq would 

be the ideal technique to try and unpick the heterogenous response of 

hepatocytes during injury and attempt to identify the signals that may be 

specific regulators of certain populations of hepatocytes. Such novel signalling 

may provide avenues for new and novel therapeutic targets to tackle liver 

diseases. 

For this project I initially felt that a droplet based approached would be 

the most optimal for my research questions, as the larger number of cells 

would allow for the greatest potential to identify subpopulations and therefore 
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any key signals from these populations. However, due to technical reasons I 

had to turn to a plate-based approach. Although this might make identification 

of sub-populations more challenging, the greater number of genes detected 

allowed for better identification of key signals from the data. Due to the lower 

number of cells captured by a plate-based approach, I selectively enriched for 

replicating hepatocytes using a transgenic mouse (Fucci). I felt the analysis of 

replicating hepatocytes would be key in the identification of the signalling 

molecules that regulate the regenerative niche, helping to uncover the 

molecular mechanisms that regulate hepatocyte proliferation. 
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Figure 1.5 – Characterisation of Common Cell Isolation and Single Cell 
RNA Sequence Methods 

A) Shown are difference methodologies of cell isolation for single cell 

sequencing, along with associated properties, such as ability to select 

cells, potential of doublets, throughput and capture efficiency. 

Commonly associated single cell methodologies are shown. Image was 

adapted from Nguyen et al. (2018) 

B) Various library preparations with the transcript coverage, associated 

platform, usually cell throughput and  typical read depth shown for each 

one. Image was adapted from Haque et al. (2017). 
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1.6 Hypothesis and Aims 

 

Hypothesis - Subpopulations of replicating hepatocytes produce key signals 

that regulate the hepatic regenerative niche. 

 

Aim – Use scRNA-seq to investigate the transcriptomic profile of both 

replicating and non-replicating hepatocytes following PHx in mice. 

 

The experimental objectives to test this hypothesis are: 

 

1. Optimise the isolation of replicating and non-replicating hepatocytes for 

single cell RNA sequencing. 

2. Perform single cell RNA sequencing on both replicating and non-

replicating hepatocytes to study the transcriptional changes of these 

cells following PHx. 

3. Use cutting-edge bioinformatics techniques to analyse transcriptomic 

data to identify putative pro-regenerative signals produced by 

replicating hepatocytes. 

 

 

  



 43 

2 Material and Methods 

 

2.1 Mice 

 

C57BL/6J wild type (WT) mice were purchased from Charles River or 

Bioresearch & Veterinary Services (University of Edinburgh). FUCGLC+/- mice 

(hence referred to as Fucci+) were obtained from Dr. Kylie Matchett. All mice 

were maintained on a C57BL/6J background and bred at the University of 

Edinburgh under specific pathogen-free conditions. All experiments were 

conducted using 8 to 20-week-old male mice following approval from 

Bioresearch & Veterinary Services under UK Home Office Legislation. 

 

2.2 Partial Hepatectomy 

 

All two-thirds partial hepatectomy surgeries (PHx) were performed by Dr. 

Kylie Matchett with assistance from myself. Mice were initially anesthetised by 

inhalation of 3% isoflurane (Henry Schein) mixed with 3L/min oxygen flow and 

kept on a heated mat while they were prepped for surgery. Warm sterile 0.9% 

saline (25mL/kg, Braun, Sodium Chloride 0.9% w/v) and buprenorphine 

(0.1mg/kg, Ceva, Vetergesic) diluted to 0.03 mg/ml in sterile water was 

injected subcutaneously. Eye lubricate (Viscotears Liquid Gel, Alcon 

Laboratories UK Ltd.) was applied and mice were shaved, and their skin 

sterilised with chlorhexidine. Mice were then transferred to a sterile heatmap 

and anaesthesia inhalation was reduced to 2% isoflurane with 2L/min oxygen 

flow. 

 

PHx was performed as described in Mitchell and Willenbring (2008). A 

small abdominal skin and muscle incision was made along the midline close 

to the sternum. The medial and left lateral lobes were exteriorised, individually 

ligated with 1.5M braided silk (SMI) and then excised. The small abdominal 

muscular incision was sutured closed via a continuous stick with 1.5M 

polyglactin 910 (Ethicon, Vicryl) thread. The outer skin incision was close with 
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surgical clips (Biochrom, 9mm Autoclips). Animals were humanely killed by 

either CO2 induction or perfusion termination (Methods 2.4) at stated 

timepoints post PHx surgery. 

 

2.3 5-Ethynyl-2’-deoxyuridine Administration  

 

2.5mg/mL of 5-Ethynyl-2’-deoxyuridine (EdU, Sigma Aldrich) was 

dissolved in sterile Phosphate Buffered Saline (PBS; Thermo Fisher Scientific) 

and injected intra-peritoneally at 50mg/kg into mice, 3 hours prior to humane 

termination. 

 

2.4 Liver Digestion via Portal Vein Perfusion 

 

Liver digestion protocol was kindly supplied by Dr Sofia Ferreira-

Gonzalez. Mice were anaesthetised by inhalation of 3% isoflurane mixed with 

3L/min oxygen flow and kept on a heated mat during the procedure. A long 

incision was made along the midline of the mouse’s abdomen. The portal vein 

(PV) was cannulated with a 24G cannula (VWR), tied in place with a suture, 

and the intra vena cava (IVC) was cut. A peristaltic pump (Minipuls 2, Gilson) 

was used to perfuse 15ml of liver perfusion media (LPM, Thermo Fisher 

Scientific) at a rate of 5ml/min through the PV into the liver and out of the IVC. 

Liver perfusion media was pre-warmed at 45oC and kept at this temperature 

in a water bath throughout the procedure. Following this, the IVC was secured 

shut with a second suture and the heart was cut to allow a further 15ml of LPM 

to pass through the liver and out through the superior vena cava (SVC). Finally, 

the SVC was secured with a third suture and the liver was perfused with 30ml 

of pre-warmed (45oC in water bath) liver digest media (LDM, Thermo Fisher 

Scientific).  

 

The digested liver was dissected out of the mouse with care not to cut 

the oesophagus or the liver capsule and the gall bladder was removed. The 

liver was placed in 25ml Hepatocyte media (HM, Williams E medium, no 
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glutamine [Thermo Fisher Scientific, 22551022], 1% v/v 

Penicillin/Streptomycin [10,000 U/ml, Thermo Fisher Scientific], 1% v/v L-

Glutamine [200mM, Thermo Fisher Scientific], 1% v/v MEM non-essential 

amino acids [100x, Thermo Fisher Scientific]) on ice if the shortened 

hepatocyte isolation protocol was followed (Methods 2.5) or at room 

temperature (RT) if the longer protocol was being followed (Methods 2.6). 

 

2.5 Hepatocyte Isolation – Long (Original) 

 

The digested liver from Methods 2.4 was gently pulled apart with forceps 

in 25ml of HM. The resulting cell suspension was filtered through a 70µm filter 

with addition 25ml of HM followed by a 135xg centrifugation (acceleration = 9 

/ deceleration = 9, Thermo Heraeus Multifuge, 1S-R, D-37520) for 1 minute 

(min[s]). The supernatant was discarded and 50ml of a 50:50 ratio of HM and 

Percoll solution (9:1 v/v Percoll [Sigma Aldrich, P1644-1L], Hanks Balanced 

Salt Solution [HBSS,10x, Thermo Fisher Scientific]) was added to the cell 

pellet. The cell suspension was mixed gently by inversion. The cell suspension 

was centrifuged (acceleration = 1 / deceleration = 1) at 50xg for 10 mins. The 

supernatant was carefully removed via aspiration, discarded and the pellet was 

resuspended in 25ml of HM. The cell suspension was centrifuged at 135xg for 

1 min, supernatant discarded, and washed again with 25ml of HM. Once 

centrifuged a second time the pellet was resuspended in 10-25ml of HM. Cells 

were subsequently counted using the TC20™ Automated Cell Counter (Bio-

Rad). Individual samples of 1x106 cells were created and either washed twice 

with wash buffer (WB, Phosphate Buffered Saline – Calcium – Magnesium 

[PBS, Sigma-Aldrich], 0.38mg/ml Ethylenediaminetetraacetic acid [EDTA, 

Sigma]) or were stained with 1.5µl/ml Hoechst 33342 (10mg/ml stock, Life 

Technologies) plus 1µl/ml Reserpine (5mM stock, Sigma-Aldrich) for 35 mins 

at 37˚C prior to the two washes. Cells were finally resuspended in 500 ul of 

WB. 
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2.6 Hepatocyte Isolation – Short (Optimised) 

 

The shortened hepatocyte isolation protocol followed the same steps as 

Methods 2.5; however, the percoll purification and 2 subsequent wash steps 

were removed. Following the initial centrifugation prior to the percoll 

purification, the cells were resuspended in 10-25ml of HM before being 

counted. 

 

2.7 Liver Fixation and Paraffin-Embedding 

 

The liver was perfused via the portal vein with 10ml of PBS before being 

harvested into 4% formaldehyde overnight. The tissue was transferred into 

70% Ethanol prior to paraffin-embedding and sectioning (5µm) by the Queen 

Medical Research Institute (QMRI) Histology service. 

 

2.8 Immunofluorescence and Immunohistochemistry  

 

2.8.1 Paraffin-Embedded tissue preparation 

 

Tissue sections were de-waxed and rehydrated through two 

incubations in xylene for 5mins, followed by 2 min incubations in each of 100%, 

75% and 65% ethanol. Sections were subsequently washed for 5 mins in dH20 

before 20 min post fixation in 4% formaldehyde. Sections were washed for 5 

mins in 0.5 % PBS-Tx (v/v Triton-x [Sigma-Aldrich] in PBS) prior to stated heat 

mediated antigen retrieval by microwaving in 10mM Sodium Citrate buffer, 

pH6, for 15 mins. Endogenous peroxidase activity was inhibited through 10 

min incubation in 3% v/v hydrogen peroxidase. Finally tissue sections were 

permeabilised for 20 mins in 0.5% PBS-Tx at RT. All subsequent wash steps 

were performed for 5 mins using 0.5% PBS-Tx at RT and blocking was 

performed with serum block (Biolegend) at RT, unless otherwise stated. All 

primary, secondary and isotype controls can be found in Table 2.1 and were 

diluted in antibody diluent (Abcam). Appropriate isotype controls were used to 
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asses non-specific binding and act as negative controls to confirm positive 

staining, unless otherwise stated. 

 

2.8.2 Hnf4α/Edu/E-Cadherin 

 

Paraffin-embedded tissue was washed two times in PBS prior to the 

addition of EdU detection cocktail for 30 mins at RT, made per the 

manufacturer’s guidelines (Click-iT Plus EdU Imaging Kit Alexa Fluor 647 

[Thermo Fisher Scientific]), to visualise incorporated EdU. Tissue from mice 

that had not been subjected to EdU incorporation was used as a negative 

control, alongside tissue with EdU incorporation incubated with Antibody 

diluent. Sections were washed thrice and blocked for 30 mins followed by 

staining with E-cadherin for 1h at RT. Tissue sections were washed thrice prior 

to a 30 min incubation with anti-mouse polymer ImPRESS (Vector 

Laboratories) at RT processed by a further three washes. Tyramide Signal 

Amplification (TSA) plus Fluorescein (Perkin Elmer) was applied for 10 mins 

at 1:1000 and RT. Sections were washed three times prior to a second round 

of antigen retrieval and permeabilisation as described in Methods 2.8.1. Tissue 

sections were blocked for 30 mins followed by overnight incubation of HNF4α 

at 4˚C. The same wash, polymer incubation, and TSA steps as for E-Cadherin 

were repeated with the substitution of Fluorescein for Cyanine 3 (Perkin 

Elmer). Following TSA incubation sections were washed a final three times in 

PBS-Tx, counterstained with DAPI (Sigma Aldrich) diluted at 1:1000 in PBS 

for 10 mins at RT, washed once in PBS before mounting in ProLong Gold 

(Thermo Fisher Scientific). 
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Table 2.1 - Antibodies used in Immunohistochemistry 

 

Description Application Manufacturer Catalogue 

Number 

Dilution  

Mouse Anti-

HNF4 

1 Bio-Techne Ltd PP-H1415-

00 

1:200 

Mouse Anti-

E-Cadherin 

1 BD Biosciences 610181 1:1000 

Mouse 
IgG2a 

Isotype Sigma-Aldrich M5409 1 
dependent 

 

2.9 Image Capture 

 

Fluorescent images of whole tissue sections were captured on the 

AxioScan.Z1 (Carl Zeiss) at 20x magnifications. Cells sorted from Fucci+ mice 

were imaged using the Leica Confocal (SP8, Leica) at 20x on a POC mini 

(Pecon). Evaluation of single hepatocytes in 384 well plates was achieved 

using the Axio Vert.A1 Bio (Carl Zeiss) inverted microscope. Fluorescence 

intensity was set using negative controls and kept constant throughout a single 

experiment. 

 

2.10 Hepatocyte Replication Quantification 

 

Slide scanned images were loaded into QuPath (Bankhead et al., 2017) 

for quantification analysis and visualisation. Random fields were chosen from 

one repeat per timepoint to generate a training image. The QuPath Cell 

Detection algorithm was optimised using the DAPI signal on the training image. 

HNF4α+ and HNF4α- cells were manually selected within the training image to 

optimise the QuPath Object Classifier. This allowed automated classification 

of Hepatocytes (HNF4α+) and other cell types (HNF4α-). A threshold was built 

into the classifier to further assign cells as EdU+ or EdU- based on the intensity 

of the EdU signal. The threshold value was chosen based on the training 
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image. E-Cadherin+ and E-Cadherin- regions were manually curated within the 

training image to optimise the QuPath Pixel classifier. The Pixel classifier 

allowed for automated classification of periportal (E-Cadherin+) and pericentral 

(E-Cadherin-) regions. Whole slide sections were analysed using the three 

optimise classifiers to generate the number of replicating hepatocytes 

(HNF4α+/EdU+) stratified by their zonal position (periportal or pericentral). 

 

2.11 Flow Cytometry and Fluorescence-Activated Cell Sorting 

 

For flow cytometry and fluorescence-activated cell sorting (FACS), cells 

were isolated as described in section 2.5 or 2.6. WT mice were used as a 

negative control for the Fucci+ transgenic mouse. Cell viability was assessed 

using Draq7 (1:500; Biolegend) added 10 minutes prior to cell sorting. Cell 

sorting was performed on FACSAria II (BD Biosciences) and data was 

analysed using FCSExpress 7 Research software. 

 

2.11.1 Gating Strategy 

 

Hepatocytes were detected by gating on the larger cells using forward 

(FSC-A) and side (SSC-A) scatter (Figure 2.1). Doublets were removed via 

FSC-A vs FSC-H followed by SSC-A vs SSC-H. Live cells were isolated based 

on exclusion of Draq7. For identification of proliferation and non-proliferating 

cell the gating strategy is described in section 3.2.4. Briefly, replicating 

hepatocytes were isolated as mVenus+/mCherry-/Auto-fluorescent- and non-

replicating hepatocytes were defined as mVenus-/mCherry+. All quantification 

was calculated as a percentage of live single hepatocytes. 
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Figure 2.1 – Live Single Hepatocyte Gating Strategy 

Gating strategy for live single hepatocytes. Hepatocytes were gated using 

forward scatter (FCS-A) and side scater (SSC-A). Single hepatocytes were 

gated using FCS-A vs FCS-H followed by SSC-A vs SSC-H. Live hepatocytes 

were isolated by the exclusion of Draq7. Title above each plot refers to parent 

gate. 
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2.12 Droplet-Based Single Cell RNA Sequencing 

 

Single live hepatocytes were first isolated using the gating strategy 

described (Figure 2.1). The resulting hepatocyte population was processed 

through the 10x Genomics Chromium™ Single Cell Platform using the 

Chromium™ Single Cell 3’ Library and Gel Bead Kit v2 (10x Genomics) and 

the Chromium™ Single Cell A Chip Kit (10x Genomics) as per the 

manufacture’s protocol. The hepatocytes were sorted into sterile PBS, washed 

twice, filtered using a 40μm Flowmi® filter (Sigma) and counted using the 

TC20 (Bio-Rad). 7000 cells and 10x reagents were added to one lane of the 

10x microfluidics chip. 10x gel beads were added into the second lane and oil 

into the third. The chip was inserted into the 10x Chromium™ controller where 

the cells were partitioned into a gel bead emulsion. Within the emulsion, the 

cells where lysed, the RNA barcoded and reverse transcribed. The resulting 

cDNA was amplified, fragmented and followed by attachment of the 5’ 

adaptors and sample index. Libraries were sequenced on an Illumina HiSeq 

4000 at Edinburgh Genomics. 

 

2.13 Plate-Based Single Cell RNA Sequencing 

 

Each well of a 384 well plate (Eppendorf TwinTec 384 Well PCR Plate) 

was first filled with 2μl of the lysis buffer from the NEBNext® Single Cell/Low 

Input RNA Library Prep Kit for Illumina® using a E1-ClipTip™ Bluetooth™ 

Electronic Multichannel Pipette. Plates were sealed with Adhesive PCR plate 

foils (Thermo Fisher Scientific) and stored at -80oC prior to use. Plates were 

defrosted one ice and the seal removed before being placed in the FACSAria 

II. One live single cell (hepatocyte) were index sorted into each well. The 384 

well plates were re-sealed and spun at 1200g for 5 seconds before being 

frozen on dry ice and stored at -80oC prior to shipping to the Welcome Sanger 

Institute for cDNA creation and library preparation using NEBNext® Ultra™ FS 

DNA Library Prep Kit for Illumina. The quality of cDNA was assessed using 

2100 Bioanalyser (Agilent) for 11 randomly selected wells. cDNA 
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concentration was measured for all wells using Omega FLUOstar plate reader 

(BMG Labtech). Sequencing was performed using a NovaSeq 6000 at a depth 

of 600,000 reads per cell.  

 

2.14 Bioinformatics Analysis of Single Cell RNA sequencing Data 

 

2.14.1 Droplet-Based Sequencing Data 

 

FASTQ files were downloaded from Edinburgh Genomics and aligned 

to the mm10 (Ensembl84) mouse reference genome using the Cell Ranger 

v2.1.0 Single-Cell Software Suite (10x Genomics). The web summary output 

from this pipeline was inspected to ascertain the quality of the data. As 

discussed in section 3.2.3 the data was below the quality expected of 

publishable material, and analysis was stopped at this point. 

 

2.14.2 Plate-Based Sequencing Data 

 

2.14.2.1 Quality Control 

 

FASTQ files were downloaded from the Welcome Sanger Institute and 

trimmed using Flexbar v3.5.0. Trimmed FASTQ files were aligned to the 

(GRCm38.p4; Ensembl release 81) mouse gene and an expression matrix 

generated using the nf-core rnaseq pipeline (version 1.4.2; Ewels et al. [2019]). 

All subsequent analysis was performed using the R statistical programming 

language (version 3.6.3; R Core Team [2020]). Cells were removed if they 

expressed fewer than 5000 genes or had a mitochondrial read count 

percentage above 10%. Genes were excluded if they did not show a count 

level of five or more in at least three cells. Contaminating cells were removed 

based on their marker expression (Table 4.2). All cells expressing at least one 

count of any contaminating marker were removed. Associated fluorescence 

metadata from the Aria II index sort was linked to corresponding hepatocytes 

to allow for classification of each cell as mVenus+ only, mCherry+ only or 
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mCherry+/mVenus+ (Dual+; Figure 4.7). Cell variability prior to normalisation 

was assessed by first performing principle component analysis (PCA) on log 

gene expression of all genes and then fitting a linear regression for PC 1-10 

against individual associated quality control (QC) metrics. All logs are natural 

log unless otherwise stated. The R-squared value from the linear regression 

was used to determine the influence each QC metric had on the data. Gene 

variability prior to normalisation was determined using a linear regression 

model of log gene expression of all genes against individual associated QC 

metrics. The plotExplanatoryVariables function from the scater R package 

(version 1.14.6) was used to perform this analysis (McCarthy et al., 2017). 

Again, the R-squared value functioned as a measure of how much variability 

was explained by each QC metric. 

 

2.14.2.2 Normalisation, Variable Genes and Scaling Data 

 

Various normalisation approaches were assessed using the scone R 

package framework (Cole et al., 2019). Briefly, scone was used to test: scran 

(version 1.14.6; Lun, McCarthy and Marioni [2016]), SCnorm (version 1.8.2, 

Bacher et al. [2017]), TMM (trimmed mean of M), sum (counts corrected by 

the summed library size of each cell), and batchelor (version 1.2.4; Haghverdi 

et al. [2018]). For scran normalisation, quickCluster (scran package) was first 

used to cluster cells into broad groupings, computeSumFactors (scran 

package) was used to generate the size factors for each cell and finally 

normalize (scran package)  was used to apply the scale factor normalisation 

and log the resulting values. For SCnorm normalisation, the SCnorm function 

(SCnorm package) was used specifying batch as the different conditions. The 

TMM_FN and SUM_FN  functions from the scone package were used to 

perform TMM and Sum normalisation respectively. Finally, for batchelor 

normalisation, quickCluster and computeSumFactors were used to cluster 

cells and generate scale factors for each batch independently. The 

multiBatchNorm function from the batchelor package was used to re-scale the 
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batch specific scale factors and apply them to the data to normalise the read 

count values, again these values were logged.  

The QC metrics, number of read counts per cell, mitochondrial read 

percentage and batch, as well as the biological classification (mVenus+, 

mCherry+, Dual+) were used within the scone analysis. The resulting metrics 

(Table 4.3) were visualised using a PCA biplot. Relative log expression per 

normalisation strategy was calculated and visualised using a modified version 

of plotRLE from the scater R package, that allowed for RLE to be calculated 

per normalisation strategy and plotted on the same graph. 

Following normalisation, the top 2000 highly variable genes were 

selected using the modelGeneVar and getTopHVGs functions from the scater 

package. Gene variation was calculated for each batch separately, before 

averaging across all batches to achieve a single score for each gene. 

Finally log normalised gene expression for all genes was scaled and centred 

by subtracting the mean expression of each gene and dividing by its standard 

deviation. 

 

2.14.2.3 Batch Correction 

 

Two methods of batch correction were compared: the Seurat integration 

method (Seurat version 3.1.3; Stuart et al. [2019]) and Harmony (version 1.0; 

Korsunsky et al. [2019]). Seurat integration first finds pairs of mutual nearest 

neighbours in canonical correlation subspace using the 

FindIntegratedAnchors function from Seurat. These pairs are referred to as 

anchors and are used to correct the expression matrices in a pairwise manner 

between batches using the IntegrateData function.   

The RunHarmony function from the Harmony R package was used to 

correct PCs for batch effects. Harmony uses fuzzy clustering to assign cells to 

multiple clusters favouring mixed dataset representations. Centroids are 

calculated for each cluster and for each batch within a cluster. A correction 

factor is calculated based on the centroids. Cells from each batch are 

corrected by a cell specific factor; linear combination of the correction factor 
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and weight of fuzzy clustering. These steps are repeated until batches have 

converged. 

 

2.14.2.4 Dimensionality Reduction, Clustering, Differential Gene Analysis 

and Pathway Analysis 

 

Unsupervised (SNN graph-based) clustering, UMAP visualisations and 

differential gene expression analyses were performed using the Seurat  R 

package. The SNN graph and UMAPs were constructed using between 1 and 

15 PCs or Harmony dimensions as determined by dataset variability shown in 

the PCA and the Harmony analysis. All PCA analysis was performed using the 

2000 variable genes calculated previously unless otherwise stated. The R-

squared values used to assess post normalisation cell wise variability were 

calculated in the same manner as above using the same PCs or Harmony 

dimensions as for the UMAP and SNN graph creation. The clustree R package 

was used to generate a cluster tree to assess the resolution parameter.  The 

silhouette function from the cluster R package was also used to assess the 

resolution parameter for cell clustering.  

All heatmaps, UMAP visualisations and violin plots, were produced 

using Seurat functions in conjunction with the ggplot2 (version 3.2.1; Wickham 

[2016]), grid (version 3.6.3; R Core Team [2020]) and viridis (version 0.5.1; 

Garnier [2018]) R packages. Differential gene expression analysis was 

conducted in Seurat using a logistic regression framework. Genes with a log-

fold change of at least 0.25 and expression in at least 25% of cells in the cluster 

under comparison were retained and the rest were excluded. Batch and 

replicate were included as covariates within the logistic regression analysis. 

Predicted genes, mitochondrial genes and ribosomal genes were removed for 

the heatmap displaying the top ten differential expressed genes per cluster 

(Figure 5.3). This was to prevent uninformative genes being used to assess 

each cluster. The Cellphonedb database was used for cross referencing of 

differential genes with known ligand and receptors (Efremova et al., 2020). 

Pathway enrichment analysis was performed using ReactomePA (version 
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1.30.0; Yu and He [2016]) on significantly differentially expressed (<0.05 

adjusted p value) genes with greater than 0.5 average log fold change in 

expression. 

 

2.14.2.5 Statistical Analysis 

 

All non scRNA-seq data was analysed using GraphPad Prism 8 for macOS 

(version 10.15.5). All graphs are shown as the mean +/- standard error of the 

mean (SEM). Statistical analyses are described in the corresponding figures. 

Significant values *P≤0.05, **P≤0.01, ***P≤0.001, ****P≤0.0001. 
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3 Optimising Hepatocyte Isolation for Single-Cell RNA 

Sequencing 

 

3.1 Introduction 

 

3.1.1 Hepatocyte Replication Dynamics 

 

The replication dynamics of hepatocytes in mice has been described in 

many studies. Peak hepatocyte proliferation is considered to be between 36 

to 48 hours depending on the study (Mitchell and Willenbring, 2008; Zou et al., 

2012). This variation is likely a result of differences in mouse strain and the 

method of proliferation quantification used. Other studies take a broader 

approach to quantifying hepatocyte proliferation: it is widely accepted that 48h 

post PHx shows a higher level of hepatocyte proliferation compared to 24h and 

72h (Y. Chen et al., 2019; Miyaoka et al., 2012).   

A small number of reports have also assessed the spacial dynamics of 

hepatocyte proliferation. Although evidence is limited, it is now generally 

documented that hepatocyte proliferation proceeds in a wave from the 

periportal to pericentral region following PHx (Rabes et al., 1976; Sun et al., 

2020). 

 

3.1.2 Fucci2a Transgenic Mouse 

 

Florescent Ubiquitination-base Cell Cycle Indicator (Fucci) technology 

allows for the monitoring of the cell cycle in live cells (Zielke and Edgar, 2015). 

Immunohistochemistry is one of the most common techniques used to analyse 

the cell cycle of hepatocytes. Usually, EdU, or proliferation proteins such as 

Ki67, are visualised using antibody-based systems to identify which 

hepatocytes and how many are replicating at any one time. However, these 

techniques require samples to be fixed and take several days of processing to 

yield results. As a result, these methods are not suitable for live cell imaging, 



 58 

or for the sorting of live cells for sequencing experiments. The Fucci construct 

mitigates these problems and allows for the real time visualisation of cellular 

replication, enabling hepatocytes at various stages of the cell cycle to be 

sorted, interrogated and compared. 

The Fucci system utilities two components of the cell cycle machinery: 

Chromatin Licensing and DNA replication factor 1 (Cdt1) and Geminin. The 

concentration of these proteins oscillates as cells divide and therefore provide 

an accurate readout of the cell cycle (Figure 3.1). Cdt1 and Geminin have 

differing effects on DNA replication. Cdt1 is a component of the pre-replication 

complex and peaks in G1, just before the onset of DNA replication (Arias and 

Walter, 2007). The levels of Cdt1 quickly decline after the initiation of S phase. 

On the other hand, Geminin concentration is high throughout the S and G2 

phases but declines during late mitosis (M phase), remaining low during this 

phase and G1 (McGarry and Kirschner, 1998). Geminin is a replication 

inhibitor and acts by inhibiting Cdt1 and preventing the assembly of pre-

replication complexes. The quantity of these proteins are controlled by the E3 

ubiquitin ligases APC/CCdh1 and SCFSkp2 (Arias and Walter, 2007). APC/CCdh1 

targets Geminin for degradation and is active during mid-mitosis and remains 

so until the end of G1. The reciprocal expression of SCFSkp2 during S phase 

and G2 targets Cdt1 for degradation. Furthermore, SCFSkp2 is a substrate for 

APC/CCdh1, which ensures the accumulation of these proteins at the correct 

time.  

Several different versions of the Fucci system have been used to create 

transgenic mice. The Fucci2a construct combines truncated versions of Cdt1 

(30/120 amino acids) and Geminin (1/110 amino acids) to mCherry and 

mVenus fluorophores, respectively (Mort et al., 2014a). The advantage of the 

2a Fucci system is the combination of both tagged proteins into a single 

construct, separated by a Thosea asigna virus 2a self-cleaving peptide. The 

mCherry-Cdt1 protein was found to be optimally placed in the N-terminus 

portion. Creating the construct in this way results in the production of equimolar 

amounts of each protein and a reliable signal. 
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This mouse has previously been used to examine hepatocyte 

regeneration during PHx in a study by Chen et al. (2019), which demonstrated 

that the Fucci2a system is a reliable and rapid method of visualising 

hepatocellular regeneration in this particular model of liver damage. 

 

3.1.3 NEBNext® Single-Cell RNA sequencing 

 

I hypothesised that key signals are produced by sub-populations of 

replicating hepatocytes during liver injury. I therefore sought to use scRNA-

seq to analyse the replicating and non-replicating hepatocyte populations of 

mice that underwent PHx. The use of the Fucci2a mouse enabled the efficient 

sorting and enrichment of replicating hepatocytes for subsequent analysis. As 

will be discussed below, the method of scRNA-seq was restricted to a plate-

based approach.  

The NEBNext® scRNA-seq method is a high-quality, full length, plate-

based sequencing approach. This form of scRNA-seq provides full length 

transcript data from cells sorted into 384 well plates. Technical notes from New 

England Biolabs® Ltd. (NEB) suggest that this form of library preparation gives 

high concentrations of cDNA yield per cell, as well as a high number of 

consistently identified transcripts and good transcript coverage (New England 

Biolabs, 2018). These are all qualities that are expected and required in order 

to obtain good quality scRNA-seq data. 
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Figure 3.1 – Fucci2a Reporting Schematic 

Schematic showing the expression and accumulation of the mCherry – Cdt1 

signal and mVenus – Geminin signal during the associated stages of the cell 

cycle. The yellow area defines the small overlap of dual positive cells. Adapted 

from Bertero and Vallier (2015). 
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3.2 Results 

 

3.2.1 Characterisation of 2/3rd Partial Hepatectomy in Mice 

 

To assess the dynamics of hepatocyte replication, I initially  

characterised the proliferation of hepatocytes over time in mice following PHx. 

PHx was performed on C57/BL6 wild type (WT) mice. EdU was injected 

intraperitoneally 3h prior to harvesting the liver. Mice were terminated at 24h, 

48h, 72h, 96h, and 168h and the caudate lobe dissected. Liver from uninjured  

mice was included to represent the quiescent, homeostatic state. Hepatocytes 

were identified through HNF4α staining. E-cadherin is a well-known marker 

that defines the periportal region of the liver and was used to define the 

periportal zones (Hempel et al., 2015). Negative E-cadherin areas were 

defined as pericentral zones.  

To quantify the staining, QuPath software was utilised. Cells were 

detected based on DAPI signal using an in-built cell detection algorithm. A cell-

based classifier was created to identify HNF4α+ cells, and a threshold for EdU 

was built into the classifier to identify those that were replicating. To assess 

the possible zonal distribution of hepatocyte proliferation, a pixel classifier was 

trained to divide the whole slide section into E-Cadherin+ (periportal) and E-

Cadherin– (pericentral) regions. Combining the output of these two classifiers 

allowed for an automated, semi-bias method of quantifying hepatocyte 

proliferation dynamics. Representative images from each timepoint are shown 

in Figure 3.2. 

A significant increase in hepatocyte proliferation was observed at 48h 

post PHx compared to all other timepoints, which is consistent with previous 

reports (Figure 3.3A; Zou et al., 2012). A downward trend of proliferation 

occurring between 72h and 168h was observed, which again fits with previous 

studies (Figure 1.2A; Zou et al., 2012). Taken together, these results 

demonstrated that I was able to reliably reproduce the key features of PHx that 

have previously been shown. More specifically, it was clear that between 24 
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to 72h post PHx was a key time for hepatocyte regeneration. I therefore 

focused on these timepoints to identify heterogeneity and any novel signalling 

patterns in the regenerative response. 

To assess any potential zonation in hepatocyte proliferation, I used E-

cadherin staining to define a boundary between the periportal and pericentral 

regions. This eliminated the bias of defining such a margin by eye and instead 

relied on a biologically relevant definition. Furthermore, this removed any 

variability that arose as a result of sectioning by comparing biologically defined 

regions between each liver section.  

Firstly, E-cadherin+ regions were quantified as a percentage of the total 

area classified. There was no significant difference in the percentage of E-

cadherin+ area (Figure 3.3B). Proliferation was calculated as a percentage of 

the total number of hepatocytes per zone (i.e. E-Cadherin+ zone or E-

Cadherin- zone).  No significant differences were seen in the percentages of 

proliferating hepatocytes between the E-Cadherin+ and E-Cadherin- areas at 

any timepoint (Figure 3.3C). This suggests that at all timepoints measured, 

hepatocyte proliferation is proportionally equal across the pericentral and 

periportal zones.  
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Figure 3.2 – EdU, E-Cadherin and HNF4α Staining in Mouse Livers 
following 2/3 Partial Hepatectomy 

Representative immunofluorescent images of liver sections from uninjured and 

24h, 48h, 72h, 96h and 168h post partial hepatectomy. Staining shows 

HNF4α, EdU, E-cadherin and DAPI. Scale bar = 100μm. 
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Figure 3.3 – Analysis of Hepatocyte replication dynamics following 
partial Hepatectomy 

A) Quantification of HNF4α+ EdU+ cells in uninjured mouse liver sections 

and 24h, 48h, 72h, 96h and 168h post partial hepatectomy. Percentage 

is measured as the total number of HNF4α+ cells per whole liver section.  
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B) Quantification of E-cadherin+ area in uninjured mouse liver sections and 

24h, 48h, 72h, 96h and 168h post partial hepatectomy. Data shown as 

a percentage of the total area classified. 

C) Quantification of HNF4α+ EdU+ cells in uninjured mouse liver sections 

and 24h, 48h, 72h, 96h and 168h post partial hepatectomy. Data shown 

as a percentage of total HNF4α+ cells per E-cadherin+ or E-cadherin- 

area. 

Data was collected from one experiment (n=3). Data shown is mean +/- 

standard error for each group. A one-way ANOVA was performed to test 

for differences between timepoints (A & B). A two-way ANOVA was 

performed to assess the difference between E-cadherin+ and E-cadherin- 

groups (C). A Bonferroni multiple comparisons post-test was used to 

assess differences between groups (C). **** p < 0.0001 

 

 

3.2.2 Optimisation of Hepatocyte Isolation Protocol for Single-Cell RNA 

Sequencing 

 

One of the key elements of any experiment in which the aim is to 

measure a parameter of a cell ex vivo is the speed at which it is isolated. This 

ensures that the sample is stable and minimises the chances of changes 

occurring during processing. In this case, the aim was to lyse the cells as 

quickly as possible, preventing RNA degradation and transcription of any new 

genes that result from the isolation procedure. Therefore, my aim was to 

reduce the time taken to isolate a population of hepatocytes from the mouse 

liver, ready for single cell isolation.  

The original protocol employed by the laboratory that was used to 

isolate hepatocytes was already a very rapid procedure. However, there was 

one step I felt that could be omitted (Figure 3.4): the percoll centrifugation, and 

subsequent wash steps, which aimed to remove dead cells and debris from 

cell suspensions, as well as enrich for hepatocytes. This step is one of the 

most time-consuming (with the exception of in-situ digestion) and is 
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predominantly used when isolating hepatocytes for cell culture experiments 

where no flow cytometry-assisted cell sorting is performed. However, I 

optimised an isolation protocol in which I sorted live hepatocytes using a FACS 

sorter to obtain a pure population of live hepatocytes. As a result, the use of 

percoll became somewhat redundant. Furthermore, this step was performed 

at room temperature (RT), whilst the remainder of the protocol was carried out 

at 4oC to slow any RNA degradation. Incorporating a percoll gradient would 

require that either a) the cells be kept at RT up until this point, potentially 

allowing for a higher degree of RNA degradation and changes to the 

hepatocyte transcriptome, or, b) increasing the temperature of the cells back 

up to RT from 4oC and back down again, which could cause unnecessary 

stress to the cells and again potential affect the transcriptome. It has also 

previously been demonstrated that percoll purifications reduce the yield of 

viable cells (Horner et al., 2019). Removal of any cells at this point based on 

a density gradient could bias the hepatocyte population and prevent the 

identification of any rare subpopulations. For these reasons, I decided that 

removal of the percoll purification gradient would be more beneficial to ensure 

minimal disruption to the in-situ state of the hepatocytes (Figure 3.4). Several 

other studies have taken a similar approach (Halpern et al., 2017; MacParland 

et al., 2018).  
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Figure 3.4 – Diagrammatic Representation of Hepatocyte Isolation. 

The key steps for isolating primary mouse hepatocytes are depicted with 

temperature and time taken shown for each step. Original preparation refers 

to the protocol that was used prior to optimisation. Optimised protocol depicts 

the steps that were removed (red crosses) to allow faster isolation. 

 

3.2.3 Droplet based Single-Cell RNA Sequencing of Mouse Hepatocytes 

During Partial Hepatectomy 

 

Before proceeding with a time course sequencing experiment of mouse 

hepatocytes following PHx using the 10x Genomics Chromium droplet-based 

scRNA-seq platform, I decided to generate data from a single sample of 

uninjured hepatocytes to assess the quality of the data I could obtain using this 

technique. Live mouse hepatocytes were isolated as previously described in 

section 2.6 and sorted as shown in section 2.11. Cells were then filtered using 

a 40μm Flowmi™ cell strainer, as recommended in the 10x Genomics sample 

preparation guide, prior to re-counting and loading of 7000 cells into the 10x 

Genomics Chromium controller. This filtering step was deemed necessary to 

ensure that the hepatocytes were able to flow through the microfluidics of the 

10x Genomics chip and prevent the machine from clogging. The reported max 

diameter of the chip channel width is ~50μm. Mouse hepatocyte are a large 

cell type and I have recorded mouse hepatocyte diameters at a mean of 

28.02±0.5 (S.E.M, n=116), with some hepatocytes as large as 45μm, in 

suspension. Therefore, doublets and larger hepatocytes could potentially 

block the chip and result in an unsuccessful droplet capture. Samples were 

sent to Edinburgh Genomics for sequencing, and the resulting data was 

aligned and analysed using the Cell ranger pipeline from 10x Genomics. 

Unfortunately, the resulting data was unusable. When loading 7000 

cells, the expected return in cell number is around 5,000 when taking into 

consideration the capture efficiency of the 10x Chromium system. However, 

the QC report from the Cell ranger pipeline showed that ~65,000 cells were 
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identified (Figure 3.5). Only 177 median genes and 6,101 mean reads were 

found per cell.  

Over 80% of the reads had a Q-score of 30 or above, which is indicative 

of good quality sequencing. Furthermore, the majority of reads were 

confidently mapped to the transcriptome. This suggests that the issues arising 

with the data are not related to the sequence quality. The very large number 

of cells detected most likely originates from a large concentration of ambient, 

or extracellular RNA that was captured in droplets when the cells were being 

isolated. It is possible that large hepatocytes were lysed prior to capture, either 

by the filtering process or the microfluidic pressure within the 10x Chromium 

Controller, thereby releasing their RNA. A proportion of the cells captured are 

likely to be intact hepatocytes. However, most of the sequencing reads and 

power were likely taken up by the large number of empty droplets containing 

ambient RNA. As a result, with very few reads sequenced for these cells, the 

cell detection algorithm of Cell Ranger was unable to confidently distinguish 

the empty droplets and the intact hepatocytes. Overall the sample had a 

saturation level of 93.4%, although, this is for the sample as a whole. It is 

therefore likely that the captured intact cells are under sequenced. Attempting 

to filter these cells out manually would be challenging and even if successful, 

the results would be underpowered. 

Due to the inability of hepatocytes to survive the 10x Genomics droplet 

capture procedure, I decided that a plate-based approach would be a more 

appropriate method. This involves sorting cells into individual wells which 

removes the possibility of capturing ambient RNA in empty droplets. 
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Figure 3.5 – Quality Control Output from Cell Ranger Pipeline of 10x 
Genomics Single Cell RNA Sequencing of Uninjured Mouse Hepatocytes 

Quality control output of 10x Genomic sequencing of uninjured mouse 

hepatocytes. Estimated number of cells detected alongside the median 

number of genes and the mean number of reads per cell are shown. Cells – A 

knee plot shows the distribution of detected UMIs over “cell” barcode. The 

green line shows the area of the density plot in which cells were detected, 

while the grey line represents the background non cell containing droplets. 

Sequencing – Total number of reads, as well as percentages of reads, 

barcodes, indexes and UMIs that meet the Q30 quality score, which is used to 

defined good quality reads, are shown. Sequence saturation represents the 

percentage level at which the sequencing has captured the available reads in 

the sample. Mapping – Confidently (uniquely) mapped read percentage to the 

Genome, Intergenic regions, intronic regions, exonic regions and 

transcriptome are shown. 
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3.2.4 Isolation of Mouse Hepatocytes Based on Cell Cycle during Partial 

Hepatectomy 

 

Due to the inability to sequence hepatocytes using a droplet-based 

methodology, I decided to use a plate-based approach, which allows for 

hepatocytes to be sorted straight into the well of an Eppendorf TwinTec 384 

well PCR plate. As shown in section 3.2.2, ~20% hepatocyte proliferation was 

observed at 48h post PHx. If hepatocytes were sorted with no enrichment for 

those replicating, the number of such cells captured would be insufficient to 

examine the potential heterogeneity in this population. To mitigate this 

problem, I used the Fucci+ mice, which constitutively express the Fucci2a 

construct in all cells, including hepatocytes. As described previously, this 

construct allows for the identification of replicating, mVenus expressing cells 

from the non-replicating, mCherry expressing cells. To assess if the Fucci 

fluorescent signals could be identified by flow cytometry and sorted by FACS, 

I performed PHx on Fucci+ mice and isolated hepatocytes 48h later. WT mice 

that also underwent PHx were used as a negative control for the mCherry and 

mVenus signal.  

The gating strategy for live (Draq7-) single hepatocytes is outlined in 

Figure 2.1. Following this, the non-replicating population was defined as 

mCherry+/mVenus- cells, whereas those replicating were identified as 

mVenus+/mCherry-/Auto- cells (Figure 3.6A). 

The replicating hepatocytes were difficult to accurately identify as they 

were highly auto-fluorescent in a similar part of the spectrum compared to the 

mVenus emission. To overcome this and ensure the specific capture of 

replicating hepatocytes, I used the blue laser to excite the mVenus fluorophore 

and a 525/50 detector to measure the mVenus signal (and potential auto-

fluorescence), together with a 695/40 detector to discern the auto-

fluorescence signal. By comparing the intensity captured by these two 

detectors, I was able to distinguish the auto-florescent cells from mVenus+ 

hepatocytes. More specifically, auto-fluorescent cells had a linear relationship, 
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while the mVenus+ cells were identifiable by a stronger mVenus signal (Figure 

3.6A). This is because the signal from the mVenus fluorophore has a more 

specific peak when using the B525/50 detector while the auto-fluorescent will 

produce a more widespread emission across multiple detectors. 

Using this gating strategy, I was able to see clear replicating cells 

(mVenus+/mCherry-/Auto-, hence referred to as mVenus+) and non-replicating 

cells (mCherry+/mVenus-, hence referred to as mCherry+; Figure 3.6B). In 

order to validate these observations, I sorted the two populations and imaged 

them using a confocal microscope (Figure 3.6C). Sorted cells were imaged 

suspended within a droplet of cell suspension on a coverslip and I 

subsequently counted, per population, how many mVenus+ and mCherry+ 

nuclei I could identify. While no mVenus signal was detected in the mCherry 

population and vice versa, I was unable to identify 100% of cells showing 

mVenus and mCherry positivity from their respective populations (Figure 

3.6D). Only 48% of the mVenus population were mVenus+, and only 25% of 

the mCherry population were mCherry+. There are several potential 

explanations for this loss of signal, including; bleaching of the fluorophores, 

out of focus light from imaging inside a droplet, loss of signal from potentially 

fragile hepatocytes, or decreased sensitivity to detect the fluorophore from one 

technique to the next. Nonetheless, I was confident that the results from the 

FACS sorter were accurate and proceeded to use these mice and gating 

strategy to isolate the replicating and non-replicating hepatocyte populations. 
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Figure 3.6 – Sorting Strategy of Replicating and Non-Replicating Cells 
from Fucci+ mice at 48h Post-Partial Hepatectomy 

A) Live, single hepatocytes were gated prior to the strategy shown. Gating 

strategy for sorting replicating (mVenus+/mCherry-/Auto-, referred to as 

mVenus+) and non-replicating (mCherry+/mVenus-, referred to as 

mCherry+) hepatocytes, using mVenus, auto-fluorescent (Auto) and 

mCherry signals. “Not gate” refers to cells that are not contained within 

the gate shown. Title above each plot refers to parent gate. 

B) Comparison of mVenus and mCherry signals produced by Fucci+ mice 

and wild type (WT) mice, 48h post partial hepatectomy. All cells are live, 

single hepatocytes. Red dots represent the gated, non-replicating cells 

(mCherry+), while the green dots represent those replicating (mVenus+). 

C) Representative confocal images of the mVenus and mCherry signals 

from sorted mVenus+ and mCherry+ populations. Scale bar = 20μm. 

D) Quantitation of mVenus+ and mCherry+ nuclei, identified via confocal 

imaging, in the mVenus and mCherry populations shown in (C). 

 

3.2.5 Sorting Efficiency of Live Hepatocytes into 384-Well Plates 

 

Having made the decision to move to a plate-based sequencing 

approach (NEBNext® scRNA-seq), it was important to test the efficiency of 

sorting single hepatocytes into single wells. Uninjured hepatocytes were 

isolated and stained with Hoechst 33342, to allow for cellular identification post 

sorting. Single live hepatocytes were sorted into wells of a 384 well plate 

(Figure 2.1). Two independent repeats were conducted. Each well was then 

examined to identify how many hepatocytes were in each well, and recorded 

as singlets, doublets, empty wells or unknown (Figure 3.7A). Unknown wells 

were defined as such where it was difficult to establish if there were two 

hepatocytes or a binucleate cell. Fifteen cells were sorted into the first well as 

an easily identifiable reference. Very few doublets were observed (~1%), with 

no wells containing more than two cells (Figure 3.7B). Furthermore, less that 

1% of wells were labelled as unknown in both replicates. The number of wells 
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containing a single hepatocyte were 44% and 56% respectively for each 

repeat. The remaining wells contained no visible hepatocytes.   
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Figure 3.7 – Sorting Efficiency of Hepatocytes using the Becton 
Dickinson Aria II Fluorescent Activated Cell Sorter  

A) A representation of the single cell sorting of live hepatocytes into single 

wells of a 384 well plate. Cell A1 had 15 hepatocytes sorted to act as a 

reference point. Empty wells are orange and labelled with a “0”. Wells 

with a single hepatocyte are labelled with a “1” and are green. Wells 

containing two wells are labelled with a “2” and are red. Wells coloured 

blue and labelled with a “?” are wells with unknown number of 

hepatocytes.  
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B) Bar plot showing the percentage of wells containing either a single 

hepatocyte (Green), two hepatocytes (Red), no hepatocytes (Orange) 

or an unknown number (Blue), from two independent sorts of single, live 

hepatocytes into single wells of a 384 well plate using a BD Aria II sorter. 

 

3.2.6  Sorting of Replicating and Non-Replicating Hepatocytes for NEBNext® 

Single Cell RNA Sequencing 

 

With the protocol fully optimised, I performed PHx on four Fucci+ mice. 

WT mice were included to confirm the gating was accurate for each sort. 

Hepatocytes from mice at 24h, 48h and 72h post PHx were sequenced, as 

these represent the timepoints that cover the peak of the hepatocyte 

regenerative response (Figure 3.8A; Zou et al., 2012). Uninjured hepatocytes 

were also sequenced as a comparison to quiescent hepatocytes. One mouse 

was used per timepoint. I decided to limit the number of hepatocyte isolations 

to two mice per day, one Fucci+ and one WT mouse, to ensure high quality 

cells were sequenced (i.e. no cells were sitting on ice for long periods of time 

while waiting to be processed). To further minimise tissue to cell capture time, 

I processed WT controls first. As a result, only one timepoint was sorted per 

day, which meant it was not possible to sort multiple timepoints into any one 

384 well plate. One plate per timepoint was sorted for sequencing, with the 

exception of 48h, for which two plates were sequenced, from the same mouse, 

to increase the number of cells at this critical timepoint (Figure 3.8A). Index 

sorting was performed for all plates so that the mCherry and mVenus signals 

could be integrated with the scRNA-seq data. Only non-replicating mCherry+ 

cells were sorted for the uninjured timepoint. This was due to the very limited 

number of hepatocytes that replicate in a quiescent liver. As such, time taken 

to sort a reasonable number of replicating cells would have been impractical. 

Furthermore, due to the small percentage of mVenus+ only hepatocytes at the 

24h and 72h timepoints, I decided to widen my gating strategy to sort the 

mVenus+/mCherry+ (Dual+) as well as the mVenus+ only cells (at a ratio of 30% 

Dual+ & mVenus+ to 70% of mCherry+ only hepatocytes; Figure 3.8A &B). This 
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kept the sort time to a minimum whilst ensuring enough cells were sorted. 

These dual positive cells represent hepatocytes that have begun to, or will 

subsequently, enter S phase and should ultimately replicate their genome. 

One might therefore consider them an important population of hepatocytes that 

is worth analysing in the context of regeneration. With the higher percentage 

of replicating hepatocytes at 48h, mVenus+ only hepatocytes were sorted at a 

ratio of 60% to 40% of mCherry+ only cells. Hepatocytes were sorted directly 

into the lysis buffer contained in each well, centrifuged and frozen immediately 

on dry ice before being stored at -80oC.  Each plate took approximately 30 

minutes to sort. Plates were shipped to the Sanger Institute for NEBNext® 

scRNA-seq library preparation and sequencing using the NovaSeq 6000.  
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Figure 3.8 – Experimental Design of Sorting Replicating and Non-
Replicating Hepatocytes Following Partial Hepatectomy Time Course for  
NEBNext® Single Cell RNA Sequencing Experiment 

A) Pictographic representation of experimental design. Hepatocytes from 

uninjured mice were isolated and sorted into a 384 well plate on day 

one. Partial hepatectomies were carried out on day two. Hepatocytes 
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were isolated and sorted into 384 well plates on days three, four and 

five. The number of plates and the percentage of mVenus+ only, 

mCherry+ only and Dual+ plus mVenus+ only hepatocytes contained in 

each plate are shown. Representative flow plots of the populations 

sorted are shown, with non-replicating mCherry+ only hepatocytes (red 

gate), replicating dual+ plus mVenus+ only hepatocytes (yellow gate)  

and mVenus+ only hepatocytes (green gate). 

B) Quantification of the percentage of mVenus+ only hepatocytes using 

flow cytometry for uninjured hepatocytes and those isolated 24h, 48h 

and 72h post partial hepatectomy. 

 

3.3 Discussion 

 

Initial characterisation confirmed the replication dynamics of mouse 

hepatocytes post PHx. Furthermore, I successfully developed a protocol for 

the rapid isolation of mouse hepatocytes and the sorting of these cells based 

on cell-cycle. 

I confirm 48h post PHx to be peak hepatocyte proliferation.  Although this 

is in line with previous reports (Y. Chen et al., 2019; Miyaoka et al., 2012), 

performing additional timepoints between 24h and 48h may have identified the 

peak of hepatocyte proliferation to lie between these two times. However, 

examining timepoints between 24h and 48h would have been logistically 

challenging. Furthermore, using these timepoints reduced the number of mice 

being used which is in accordance with the guidelines stated in the three Rs. 

Therefore, the decision was made to proceed with the 48h timepoint.  

 In this study, I found no difference in the proliferation between liver 

zones. As discussed previously, several studies have found a portal to central 

wave of hepatocyte proliferation over time following PHx. The first study, 

conducted in rats, used [3H]thymidine to analyse replicating hepatocytes and 

split the liver lobule into 9-11 sections depending on size (Rabes et al., 1976). 

However, dividing the liver in this way results in high variation in region size 

between samples, making it difficult to compare one section to another. In 
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addition, research into the use of [3H]thymidine has revealed it can inhibit DNA 

synthesis and therefore is not a reliable measure of DNA replication (Hu et al., 

2002). As such, results from this study should be interpreted with caution. 

Furthermore, there are known differences in the temporal replication dynamics 

of hepatocytes in mice compared to rats. For instance, peak hepatocyte 

proliferation is observed at 24h in rats, as opposed to 36-48h in mice 

(Michalopoulos, 2007; Zou et al., 2012). It is therefore difficult to make 

meaningful comparisons between this study and my work. However, Sun et al. 

(2020) recently published data to suggest that this proliferation wave could 

also be observed in mice following PHx. In this study, the liver lobule was also 

divided manually into three 100μm regions around the portal triad and central 

vein, with the remaining area classified as parenchyma. Although the authors 

did not specify whether the areas that were measured were of equal size. As 

discussed above, dividing the lobule into regions manually can introduce bias 

and result in uneven comparisons. In addition, neither study used any marker 

to identify hepatocytes and therefore one can only assume that they relied on 

morphological aspects for classification.  

In my study, to assess the spatiotemporal dynamics and overcome the 

issues described above, I used E-Cadherin, a known marker of the periportal 

region, and HNF4α as a marker of hepatocytes (Hempel et al., 2015). 

Classifiers were trained in the QuPath software to enable a less bias 

quantification method than manual counting, and also permit the assessment 

of whole slide sections as opposed to regions of interest. By comparing 

HNF4α+ EdU+ cells in E-Cadherin+ areas, I was able to compare similarly 

defined regions regardless of liver lobule orientation. Using this method, I 

found that there was no significant change in the percentage of E-Cadherin+ 

area across the time course. Furthermore, there was no significant difference 

in proportional proliferation between the E-Cadherin+ area (periportal) or E-

Cadherin- region (pericentral).  Taken together, this indicates that at all 

timepoints, there is no bias of hepatocellular proliferation in one region over 

the other. 
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Following hepatocyte isolation optimisation for scRNA-seq, I was 

unable to generate useable data from a 10x Genomics droplet-based 

approach. It is likely that the principal cause was bursting of hepatocytes and 

capture of ambient RNA in empty droplets. There are several possible 

explanations for this, including the process of sorting, the filtration prior to 10x 

Genomics Chromium chip loading and/or the microfluidics of the 10x 

Genomics Chromium Chip. However, omitting the cell sorting step would have 

required the introduction of an additional process in order to remove dead 

hepatocytes, such as the re-introduction of the percoll gradient centrifugation. 

This was not considered a viable option due to the reasons previously 

discussed (i.e. heat shock and change to hepatocyte transcriptome). Removal 

of the filtration prior to chip loading was also considered, although doing so 

would likely have caused blocking of the microfluidics in the chip as outlined in 

the 10X sample preparation manual. For these reasons, I turned to a plate-

based approach. 

Plate-based approaches allow a higher level of sequencing depth per 

cell than that of the 10x Genomics method (Ziegenhain et al., 2017). However, 

given the higher sequencing costs per cell, the number of cells sequenced in 

a plate-based workflow tends to be far fewer than in high-throughput droplet-

based scRNA-seq protocols. To ensure the capture of hepatocytes of interest 

(replicating), I decided to use the Fucci+  mouse line, which contains the 

Fucci2a construct. Using this reporter mouse allowed for enrichment of 

replicating cells, at all-time points. This was key to the experiment; if sorting 

was left to random sampling, there would not have been enough cells to make 

any valid conclusions regarding the replicating population. 

Before sorting hepatocytes for sequencing, I assessed the sort 

efficiency. I was able to sort a single live hepatocyte into ~50% of the wells. 

Although a greater sort efficiency was expected, empty wells pose less of a 

problem in terms of informatic analysis compared to a doublet. It is harder to 

distinguish a doublet than an empty well within the resulting scRNA-seq data. 

Therefore, this low number of doublets was optimal. It is likely the high number 

of empty wells was a result of hepatocytes’ tendency to settle and clump over 
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time. Indeed clumping of cells is one potential reason for poor sorting efficiency 

(Cossarizza et al., 2017).  

I have found throughout my work with hepatocytes that they are a very 

fragile cell type. For this reason, it was crucial I minimise processing time. 

Reducing this time reduces the possibility of any RNA degradation and 

changes to the hepatocyte transcriptome. This is in line with previous single 

cell studies in which isolation protocols were as short and gentle on the cells 

as possible (Halpern et al., 2017; MacParland et al., 2018).  The fragility of 

hepatocytes also had a bearing on the choice of proportion of replicating and 

non-replicating cells to be FACS sorted for sequencing. A 60% to 40% split of 

replicating over non-replicating hepatocytes was chosen for 48h, as this was 

the timepoint with the highest proportion of replicating hepatocytes. Therefore, 

the time taken to sort a higher percentage was not as long as at 24 and 72h. 

The slightly higher percentage of replicating cells over non-replicating was 

chosen to provide a greater chance at identifying heterogeneous pro-

regenerative hepatocytes. However, the lower percentage of hepatocellular 

proliferation at 24h and 72h limited the number of replicating hepatocytes that 

could be sorted at these times points in a reasonable timeframe. Therefore, I 

deemed 70% to 30% split as a reasonable trade-off between isolating sufficient 

replicating cells for analysis and the time taken to sort. Dual positive cells were 

also included in the sorting of the replicating hepatocytes for these two time 

points to decrease sort time. These cells represent hepatocytes that have 

committed to replication and the formation of a regenerative niche (Zielke and 

Edgar, 2015). Index sorting of each plate enabled me to classify the 

hepatocyte of each well as being either mVenus+ only or dual positive. This 

enabled the correlation of these hepatocytes with any potential heterogeneity 

found within the data. 

In summary, I was able to utilise the PHx model to isolate and sort 

replicating and non-replicating hepatocytes across a PHx time-course. The 

data generated from this experiment allowed me to assess the potential 

heterogeneous responses of these populations and subsequently identify key 

signals that are produced to regulate regeneration and the replicative niche.  
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4 Single-Cell RNA Sequencing: Quality Control, 

Normalisation and Batch Correction 

 

4.1 Introduction 

 

scRNA-seq is a highly technical process and for this reason, there are 

several quality control (QC) steps that are required to ensure that good quality 

data is being produced and analysed. During the library preparation stage of 

the NEBNext® single-cell RNA seq protocol, RT-PCR and PCR amplification 

are performed for each cell. The small concentration of RNA captured from 

each individual cell makes this process challenging: cells may have very little 

or degraded RNA, despite attempts to mitigate this (Section 3.2.2). Due to the 

large number of individual reactions performed when using a 384 per plate, it 

is impractical to measure the quality of the cDNA generated from each 

individual well. Therefore, a smaller number are randomly sampled from 

across each plate to get a rough quantification of the quality of cDNA 

generated. However, it is likely that some wells will contain insufficient 

quantities of cDNA as a result of either empty wells, or insufficient mRNA 

capture, RT and amplification due to mRNA degradation. The inevitable 

capture and sequence of poor quality cells, or empty wells, has been observed 

by us and others (Ilicic et al., 2016; Luecken and Theis, 2019).  

The effective removal of these poor-quality cells is vital for generating 

accurate results downstream. To achieve this, various QC metrics are 

commonly inspected at a cellular level. These include number of total 

genes/features detected per cell (Total genes), number of total read counts 

per cell (Total counts), and the percentage of read counts that correspond to 

mitochondrial genes (Luecken and Theis, 2019). Cells that contain a low 

number of total counts or total genes as a result of either empty wells or 

degraded mRNA are considered to be poor quality, as are cells with high levels 

of mitochondrial read count percentages (mitochondrial percentage). While 

useful, these metrics should be treated with caution and on a case by case 
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basis. Each single cell technology and dataset may produce QC values that 

differ from other studies and different cell types will express different numbers 

of genes (Ziegenhain et al., 2017). Therefore, biological relevance and a 

pragmatic approach should be taken when defining thresholds for each of 

these QC metrics.  

As well as cell QC, gene QC must be performed. Any given scRNA-seq 

dataset may contain tens of thousands of genes with a large number of these 

displaying zero counts in almost all cells (Silverman et al., 2020). ScRNA seq 

by nature contains a large number of zero counts due to both biological and 

technical variation (Silverman et al., 2020). Lowly expressed genes that are 

only expressed in a very small number of cells are generally considered to be 

uninformative to cellular heterogeneity and only add noise to the data. These 

genes are therefore removed. Two approaches have been considered. First, 

a single average approach can be taken in which the expression of each gene 

is averaged across all cells and then log transformed (Lun et al., 2016). Genes 

that do not meet a certain average log expression are considered to be 

uninformative. A second approach one could employ is to filter genes by 

removing those that don’t meet a certain count value per number of cells 

criterion (Luecken and Theis, 2019; Stuart et al., 2019). For example, all genes 

must have a count value of five in at least three cells. This is easier to 

conceptualise and a threshold can be chosen based on the smallest cluster of 

cells that is expected to be found. For example, when looking for rare 

populations, removing genes that are expressed in fewer than 10 cells may 

remove those that are markers for rare cell population.  

Once cells and genes have been filtered based on quality, the data is 

then normalised. The main aim of any normalisation is to effectively correct for 

library size (total counts), whilst retaining as much biological variance as 

possible. There are many different normalisation methods that have been 

suggested over the past few years to tackle the unique challenges of scRNA-

seq data (Vieth et al., 2019). The large number of zeros in scRNA-seq data 

cause issues for standard bulk RNA seq methods of normalisation. One of the 

first scRNA-seq specific methods was developed for the Scater analysis 



 86 

pipeline (L. Lun et al., 2016). This method involves pooling similar cells and 

averaging their gene counts. The pseudocell is normalised to an average 

reference of all cells within a sample, before deconvolving individual 

normalisation factors for each cell. The act of pooling the cells reduced the 

incidence of zeros. This method, like bulk methods, still produces a global 

scaling factor for each cell, whereas other methods such as SCnorm do not 

(Bacher et al., 2017). The creators of Scnorm believe global scaling factors do 

not account for the difference in gene dependence on sequence depth. This 

method therefore groups genes based on their count-depth relationship and 

then finds scaling factors within each group for each cell. These are just two 

scRNA-seq-specific approaches and it is not uncommon to find bulk methods 

still being used, such as counts per million (CPM), which take a summed 

approach to defining a global scaling factor (Stuart et al., 2019). Due to the 

large differences in technical variation between scRNA-seq datasets, the 

choice of which normalisation approach to take can be difficult. Recent 

frameworks such as scone aim to alleviate this problem by comparing multiple 

normalisation approaches and ranking these based on a number of different 

metrics (Cole et al., 2019).  

One final hurdle is the effective integration of multiple scRNA-seq 

datasets. Technical differences can be introduced unequally when preparing 

and sequencing datasets. These differences lead to batch effects within the 

combined data, and cells from each dataset will cluster together and appear 

more similar to one another solely based on the dataset they originate from. 

Luckily, there are many tools to rectify this issue such as Harmony and the 

integration approach implemented in Seurat (Korsunsky et al., 2019; Stuart et 

al., 2019). Again, the choice of which of these methods to employ can be 

challenging. However, the aim remains the same as that of normalisation: 

removal of technical variation whilst preserving biological variation. 

To help the processing of scRNA-seq datasets, multiple pipelines and 

frameworks have been developed and implemented in the R statistical 

programming language. Examples include Seurat, scater and monocle (Cao 

et al., 2019; McCarthy et al., 2017; Stuart et al., 2019). Each differ in their 
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approach and whilst they work reasonably well alone for any single dataset, a 

more bespoke pipeline is usually required to fully utilise a dataset. The 

following chapter describes how I performed the QC, normalisation and batch 

correction of my scRNA-seq datasets. 

 

4.2 Results 

 

4.2.1 Quality Control of cDNA during NEBNext® Single cell RNA sequencing 

library preparation 

 

Following the sorting of cells into 384 well plates (as described in 

chapter 3), the five plates were sent to The Welcome Sanger Institute for library 

preparation and sequencing. Cells were sequenced on a NovaSeq 6000 at a 

depth of 600,000 reads per cell. To check the quality of cDNA prepared from 

each plate, 11 wells were randomly sampled from across the plate and 

analysed using a 2100 Agilent Bioanalyser. Furthermore, the concentration of 

cDNA per well was measured using an Omega FLUOstar plate reader. Figure 

4.1 shows a representative example of the traces observed from a well with 

<1ng/μl cDNA (empty well; Figure 4.1A), and a well that contains >1ng/μl 

cDNA (well with cell; Figure 4.1B). The empty well shows a flat trace with a 

small peak at around 150 base pairs (bp), which is a result of primer dimers. 

The well that contains a cell shows a clear large peak closer to the larger bp 

marker (purple), which is indicative of good quality cDNA and is comparable 

to the example supplied in the NEBNext® protocol manual. 

For the remaining wells, The Welcome Sanger Institute provided a 

matrix of concentrations of cDNA per well. Any well containing over 1ng/μl was 

deemed to be containing a good quality cell. Previous results suggested 

(Figure 3.7) that around half of the wells contained a cell. Indeed, ~40-50% of 

wells contained >1ng/μl cDNA (Figure 4.1C). Once the plates had been 

sequenced, fastq files were generated. I used the nf-core RNAseq pipeline 

(Ewels et al., 2020) to align the sequencing reads to a reference genome and 

generate a counts matrix to be analysed in the R programming language. 
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Figure 4.1 – Library Preparation Quality Control 

A)  Representative 2100 Agilent bioanalyser trace of a well with less than 

1ng/μl of cDNA. Primer dimers are denoted on the graph.  

B) Representative 2100 Agilent bioanalyser trace of a well with more than 

1ng/μl. Expected peak denoted on the graph. 
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C) Cumulative bar chart showing the number of wells grouped by cDNA 

concentration at each timepoint post Phx or uninjured. 

A & B) Line chart shows DNA Fragment size range (x-axis) and florescent units 

(FU – representative of signal intensity; y-axis). Gel image of cDNA sample 

shown to the side of the line graph. Purple line represents high size marker 

(10380bp) and green line represents low size marker (35bp).  

 

4.2.2 Cell Quality Control 

 

As discussed previously, low quality cells contain low numbers of total 

counts or genes. By plotting these metrics on a histogram, the profile of each 

dataset was visualised, which allowed for a threshold to be determined and 

the removal of poor-quality cells. Firstly, by looking at the number of genes 

(Total genes) detected in each cell, it was clear that there was a population of 

cells far below a 5000 gene threshold (Figure 4.2). While individual thresholds 

can be placed on each dataset separately, a 5000 gene threshold worked well 

for all 384 well plates in this study. Most of the cells/wells below the threshold 

likely represent those that contained no cell. Next, the total counts per cell was 

visualised (Figure 4.3). Rather than setting a threshold here, the histogram 

was coloured to show those cells that were filtered by the previous threshold 

and those that remained. It was clear that the cells that had low total genes 

also had low total counts. Based on this visualisation, it appeared no further 

count-based threshold was needed.  

 The final cell QC step was to compare the percentage of mitochondrial 

read counts of each cell. It has been suggested that poor quality/dying cells 

have disrupted cellular membranes and as a result, the cellular mRNA leaks 

out (Luecken and Theis, 2019). However, the mRNA in the mitochondria is 

protected, for a time, by the mitochondrial organelle membrane. Therefore, 

such cells would contain a higher number of mitochondrial mRNA read counts. 

I found that cells from all 384 well plates had a low mitochondrial percentage 

(Figure 4.4). A threshold of 10% was chosen, as this encapsulated the majority 

of cells, whilst removing the outliers that had up to 30% mitochondrial count 
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Figure 4.2 – Number of Genes Profiled per Dataset 

Histogram representing the total number of genes detected across 384 wells 

per dataset (timepoint) following scRNA-seq. Each dataset represents a 



 92 

timepoint post partial hepatectomy, with uninjured representing a timepoint 

prior to surgery. Red line denotes the threshold at which cells below this were 

removed. 
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Figure 4.3 – Number of Counts Profiled per Dataset 

Histogram representing the total number of read counts across 384 wells per 

dataset (timepoint) following scRNA-seq. Each dataset represents a timepoint 

post partial hepatectomy, with uninjured representing a timepoint prior to 

surgery. Bars are coloured white for those cells removed by a 5000 threshold 

on number of genes expressed. Black represents those cells that were kept 

under the same threshold 
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Figure 4.4 – Percentage Mitochondrial Count Profiled per Dataset 

Histogram representing the percentage of counts assigned to mitochondrial 

genes across 384 wells per dataset (timepoint) following scRNA-seq. Each 

dataset represents a timepoint post partial hepatectomy, with uninjured 
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representing a timepoint prior to surgery. Red line denotes the threshold at 

which cells above this were removed. 

 

4.2.3 Gene Quality Control 

 

Removing genes that have a near zero count across all datasets 

improves statistical inferences downstream (Lun et al., 2016). Furthermore, 

removal of these uninformative genes saves on computing power and 

increases the efficiency of the pipeline. However, deciding on a threshold and 

determining which genes are uninformative can be challenging. As discussed 

previously, there are two common methods, which I decided to compare. The 

first is an average expression-based threshold (Lun et al., 2016). An average 

count of one, or log10 count of zero, is commonly chosen as it usually bisects 

a histogram of average counts in the flat level portion of the graph (Figure 4.5). 

This splits the graph into the informative higher expressed genes on the right 

and the lower potentially uninformative genes on the left. The second 

detection-based thresholding does not use a standard threshold. The Seurat 

pipeline suggests a default of at least one count per gene in at least three cells 

(Stuart et al., 2019). The profile of genes removed by such a threshold can be 

seen in Figure 4.5A. It is clear from this that only a small number of these lowly 

expressed genes would be removed. This threshold may work well for UMI 

based data, where the overall counts are lower compared to non-UMI based 

protocols. Simply increasing the detection per cell to five while keeping the 

number of cells to express the gene at three, removes a larger number of 

genes (Figure 4.5B) and accounts for a larger expected count per gene. It has 

been suggested that downstream analysis should be considered when 

determining/setting an appropriate threshold using this method (Luecken and 

Theis, 2019). Keeping the detection at five but increasing the number of cells 

needing to express the gene to ten results in all genes that are not expressed 

in at least ten cells to be removed (Figure 4.5C). As mentioned previously, this 

consequently hinders the identification of clusters of ten cells or less, as the 

genes used to identify these cells have been removed. As a result, rare 
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populations could potentially be lost by using this higher threshold. It is 

important to point out that the average based cut-off of one removes an even 

greater number of genes than this higher detection-based threshold (Figure 

4.5C). Based on this data, I decided that a threshold of five counts in at least 

three cells would be appropriate. To ensure that this did not remove a large 

number of read counts from a particular cell or population, a histogram of read 

counts of genes to be removed was plotted (Figure 4.5D). 
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Figure 4.5 – Gene Quality Control 

(A,B,C) Histogram of average log10 gene expression for single hepatocytes 

sequenced from uninjured mice, and 24h, 48h and 72h post partial 

hepatectomy. Average log10 expression was calculated from a total of 900 cells 

that was split into the following datasets; Uninjured – 235 Cells, 24h Post PHx 

– 152 Cells, 48h Post PHx Plate 1 – 160 Cells, 48h Post PHx Plate 2 – 149 

Cells, 72h Post PHx – 204 Cells. Genes that have zero counts in all cells were 

not used to generate the histogram. Red dashed line represents a threshold 

of average log10 expression 0. Black colour bars and white colour bars 
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represent genes included or excluded by the following thresholds, 

respectively. A) Denotes threshold of at least one gene count detected in at 

least three cells. B) Denotes threshold of at least five gene counts detected in 

at least three cells. C) Denotes threshold of at least five gene counts detected 

in at least ten cells.  

D) Histogram of read counts removed per cell after a threshold of at least five 

gene counts in at least three cells was used. 

 

4.2.4 Removal of Contaminating Cells 

 

After gene and cell QC was performed, I proceeded to identify any 

potential contaminating cells prior to normalisation. In order to do so, I first 

processed the data through a very rough Seurat pipeline of global-scaling 

normalisation, followed by principle component analysis (PCA) on scaled and 

centred normalisation data. I then performed uniform manifold approximation 

and projection (UMAP) dimensionality reduction. The expression of several 

key marker genes was visualised on the UMAP projection. The data was 

interrogated for marker genes of several cell types (Table 4.2). No expression 

of any cholangiocytes, mesenchymal, or leucocyte markers was found (Figure 

4.6). Low expression levels of Icam2 and Pecam1 suggested that there was 

some endothelial contamination (Figure 4.6). These cells also expressed 

hepatocyte markers, suggesting that they were doublets, or that fragments of 

endothelia were captured in the wells of these cells. A strict threshold was 

implemented in which any cell that expressed at least one count of either 

Pecam1 or Icam2 was removed. This would prevent any aberrant endothelial 

specific genes appearing in downstream differential analysis. Fifty-three cells 

were removed during this process. The rest of the cells were verified as 

hepatocytes through the expression of the hepatocyte markers shown (Figure 

4.6). The expression of Mki67 confirmed that the datasets had also captured 

replicating cells, as intended. 
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Figure 4.6 – Expression of Cell Type Specific Markers 

Uniform manifold approximation and projection (UMAP) of hepatocytes 

scRNA-seq data following a partial hepatocyte time course (Uninjured, 24h, 

48h, 72h). Each dot represents one cell (n=900). UMAPs are coloured by the 

log normalised expression of the titled gene. GE = Gene expression. 
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4.2.5 Classification of Fucci Expression State 

 

The normalisation testing framework scone, discussed in section 4.1, 

uses a priori biological knowledge to help determine the best normalisation 

strategy. All hepatocytes were index sorted prior to sequencing and therefore 

had associated fluorescence data for the mVenus and mCherry fluorophores. 

During the cell cycle, large changes in the transcriptome occur and as a result, 

one would generally expect to see differences in gene expression between 

mVenus and mCherry-expressing cells (Giotti et al., 2017; Liu et al., 2017). 

Using the fluorescence data, hepatocytes were categorised as mVenus+ only 

(mVenus+), mCherry+ only (mCherry+) or mCherry+/mVenus+ (Dual+) using the 

gating shown in Figure 4.7. Based on these classifications , 576 hepatocytes 

were classified as mCherry, 69 as dual, and 202 as mVenus across all 

timepoints. Assignment to one of these categories was used to inform the 

normalisation process downstream. 
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Figure 4.7 – Classification of Hepatocyte FUCCI expression status 

Scatter plot showing the mCherry and mVenus expression in hepatocytes that 

were sorted for scRNA-seq and passed quality control (n=847). Green area 

shows hepatocytes classified as mVenus+ only, red area shows hepatocytes 

classified as mCherry+ only and the yellow area represents mCherry+ mVenus+ 

(Dual+) classified hepatocytes. 
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4.2.6 Feature Bias and Confounding 

 

4.2.6.1 Gene-wise variability 

 

All steps during sample preparation for scRNA-seq are conducted in a 

way that minimises technical variability. However, it is not possible to 

completely abrogate this and as a result, it is critical to interrogate what 

explanatory variables may confound or introduce technical variance within the 

data. For example, differences in the totals counts per cell originate from the 

stochastic random sampling of the cDNA, leading to variation in sequence 

depth. This does not provide any useful information with regards to differences 

between cell populations. Other factors were also analysed, such as 

mitochondrial percentage, total genes, batch (i.e., Uninjured, 24h, 48h plate 1, 

48h plate 2, 72h)  and biological state (i.e., mCherry, mVenus, or Dual). Ideally, 

the total counts, mitochondrial percentage and batch would explain small 

amounts or no gene-wise variance, whereas the biological state would account 

for the most. The total genes detected is a slightly more problematic feature to 

consider. On the one hand, the literal number of genes detected may be of 

little interest, as this may arise from the sampling process. However, the 

number of genes expressed could also be linked to the underlying biological 

state. For example, replicating cells will activate a myriad of cell cycle related 

genes when DNA replication begins (Liu et al., 2017). Therefore, complete 

removal of this feature may not be desirable as this may also eliminate 

interesting biological information. 

Linear regression was used to model each gene against Total counts, 

total genes, percentage mitochondrial reads, batch or biological state. The R-

squared value for each model was assessed to evaluate the variance 

explained by each feature. This was then visualised on a density plot (Figure 

4.8A). It is clear from this plot that the batch, total genes and total counts were 

the strongest drivers of variance in the data, with the distribution of these 

factors showing peaks above 10%. The mitochondrial percentage had less 

control over the data. For the data to be driven by the biology, we would expect 
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the distribution of R-squared values for all these QC/explanatory factors to be 

below that of the biological state. 

 

4.2.6.2 Cell-wise variability 

 

The same factors can also be assessed from a cell-wise perspective. 

PCA analysis was first performed on logged unnormalized scaled data. The 

first ten PCs were used in a linear regression model, along with the explanatory 

variables used above. Looking at the R-squared values, again the total counts 

explained the most variance within the first PC, showing a high R-squared 

value (Figure 4.8B). The batch also accounted for a considerable amount of 

variance across many of the first ten PCs. When this was visualised on a PCA 

plot, it became clear that the total counts was driving the shape of the data 

(Figure 4.8C). This factor was therefore the prime candidate to be controlled 

for/removed by normalisation. Batch is also a potentially important factor to 

remove, although this is usually achieved in a separate batch correction step 

and will be discussed below (Section 4.2.10).  
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Figure 4.8 – Confounding Quality Control Factors 

A) Density plot showing gene wise R-squared value for key quality control 

variables in scRNA-seq data from mouse hepatocytes following partial 

hepatectomy. Five key factors are shown, Batch (i.e., Uninjured, 24h, 

48h plate 1, 48h plate 2, 72h), total number of expressed genes (Total 

Genes), Total number of read counts (Total counts), biological state 

(Biology; i.e., mCherry+ only, mVenus+ only, or Dual+) and percentage 

mitochondrial counts (% Mitochondrial reads). The further the 

distribution lies to the right, the greater the contribution of variables 
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towards the gene expression variability. A dashed line represents a 

percentage variability of 1%. Distributions below this threshold are 

considered acceptable. 

B) Heatmap showing the cell wise (linear regression on principle 

components) R-squared value for key quality control variables in 

scRNA-seq data from mouse hepatocytes following partial 

hepatectomy. The same five factors are represented as in (A).  

C) Uniform manifold approximation and projection of hepatocytes scRNA-

seq data following a partial hepatocyte time course. Cells are coloured 

by the number of read counts they possess. PC 1 shows a clear 

correlation with the number of read counts. 

 

4.2.7 Normalisation 

 

Considering total counts accounted for the most variability in the data, 

library size normalisation was required to remove this effect. There are many 

different ways to normalise scRNA-seq data. Fortunately, a framework called 

scone has been developed to test various normalisation strategies and 

compare their effectiveness using performance metrics (defined in Table 4.3). 

Desirable scores for these metrics can be summarised as follows; 

Higher values - BIO_SIL, PAM_SIL 

Lower values - BATCH_SIL, EXP_QC_COR, RLE_IQR, RLE_MED 
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biological variation and heterogeneity with good scores for BIO_SIL and 

PAM_SIL.  

The effect normalisation has on the data can be easily visualised using 

a relative log expression (RLE) plot. Good library size normalisation will 

produce a median RLE close to zero for most cells. Indeed, looking at the RLE 

plot for the various normalisation strategies tested, Batchelor showed all cells 

had a median RLE close to/equal to zero and the overall variability of RLE  was 

lower than the other normalisations (Figure 4.9B). The other normalisation 

strategies showed larger RLE variation or cells that did not have an RLE 

centred on zero. This was most prominent when looking at the values for no 

normalisation and demonstrates the need to normalise the data. I therefore 

used Batchelor to normalise these datasets. 
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Figure 4.9 – Normalisation Comparisons 

A) Biplot showing the first two principle components of the six ranked 

scone performance metrics; BIO_SIL (Measure of preservation of 

biological difference), BATCH_SIL (Measure of removal of batch 

structure), PAM_SIL (Measure of heterogeneity preservation), 

EXP_QC_COR (Measure of QC artefact removal), RLE_IQR (Measure 

of the reduction in global differential variability) RLE_MED (Measure of 

the reduction in global differential expression). Each dot represents a 

normalisation approach that are coloured blue (low) to yellow (high) 

based on rank score. The least effective normalisation is further circled 

in blue and the best circled in red. Length and direction of black arrows 
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are a measure of how each metric contributes to the principle 

components. Normalisation approaches shown include; Batchelor, 

Scran, SCnorm, TMM, Sum, None (No normalisation). 

B) Tufte-style boxplot of relative log expression for each of the 

normalisation approaches. Each coloured region represents all the cells 

from the combined scRNA-seq datasets of hepatocytes across a partial 

hepatectomy time course. The median is represented by a circle, grey 

lines represent inter quantile range, and coloured lines represent the 

whiskers (1.5 times the inter quantile range).  

 

4.2.8 Highly Variable Genes 

 

Once normalised, highly variable genes were selected for use in 

downstream analyses. The purpose of picking highly variable genes is to 

remove genes that add random noise within the data and are “uninteresting” 

with respect to understanding differences between the cells. However, the 

genes that are chosen need to preserve the interesting biological structure. As 

with gene filtering, selection of a smaller subset of genes also improves 

computation efficiency. 

 To choose a list of genes, I used the modelGeneVar function from 

scater. This functions first computed the variance of the log-normalised counts 

for each gene across all the cells. The log-normal counts, as opposed to raw 

counts or unlogged values, were used to remove the mean-variance 

relationship seen within the scRNA-seq data. This is where the variance of the 

gene is most affected by the abundance of the gene than the underlying 

biology. However, the log transformation does not fully stabilise the variance 

and some relationships still persist. The modelGeneVar function therefore 

fitted a trend to the variances with respect to mean log-expression, which was 

then used to identify technical (uninteresting) variance. This was then 

subtracted from the total variance to yield the biological component. As my 

dataset contained several batches, this process was repeated across each 

batch separately as opposed to calculating this trend on all the data together. 
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This was to prevent any specific batch dominating the selection. Once the 

technical and biological component had been calculated for each gene in each 

dataset, these were averaged across each batch. I decided to use the top 2000 

genes with the most biological variation for downstream analysis. Highlighting 

these genes on a mean variance graph showed that selecting the first 2000 

covers many of the genes above the trend for all datasets; these genes still 

capture the interesting biological information (Figure 4.10). Choosing a higher 

number could potentially introduce genes that represent uninteresting and 

noisy variation. 
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Figure 4.10 – Highly Variable Genes per Dataset 

Dot plot represents the variation of log-expression with respect to mean log 

expression of genes across 384 hepatocyte cells per dataset (timepoint) 
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following scRNA-seq. Each dataset represents a timepoint post partial 

hepatectomy, with uninjured representing a timepoint prior to surgery. Blue line 

represents the trend fit produced by modelGeneVar. Red dots represent the 

chosen 2000 highly variable genes. 

 

4.2.9 Principle Component Analysis 

 

Following highly variable gene selection, the log-normal counts were 

scaled and centred prior to PCA analysis. PCA analysis was the first 

dimensionality reduction step in the workflow and was conducted using the 

highly variable genes chosen above. Again, at this point in the analysis, a 

subset of the PCs were chosen based on the variation they capture. This was 

to eliminate those that were of little interest and had the potential to add 

technical noise to the analysis. One way to decide the number of PCs is to use 

a heuristic approach, in which the variation contribution of each PC is plotted 

on an Elbow plot (Figure 4.11A). An appropriate threshold was considered to 

be the point at which the graph reaches the “joint” of the elbow, at which the 

addition of more PCs does not contribute a large amount of variation and may 

start to add uninteresting noise. My data revealed that between 10 to 20 PCs 

could have been chosen. 

Another method is to visualise the expression of the genes with the 

most positive and negative PC scores of each PC (Appendix 1). This showed 

the biological components captured, as well as the degree of separation of 

each PC. Based on all the information, I decided that 15 PCs was the ideal 

number, as there was a small dip in variation captured when using more. This 

was also mirrored in a lower degree of separation of gene expression in PCs 

above 15. 

 

4.2.10 Batch Correction 

 

Using these 15 PCs, a UMAP visualisation was constructed. This is a 

non-linear dimensionality reduction method that allows the visualisation of 
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cells in 2D space. Presenting the data in this way highlighted a large batch 

component, in which replicating cells clustered together, as did the non-

replicating cells, but each separated by the individual plate from where they 

originated (Figure 4.12A & B). It is possible that the difference was biologically 

driven, however, the separation of the two 48h groupings of replicating 

hepatocytes would suggest that there was a significant batch effect (Figure 

4.12A). Again, linear regression was used to assess the degree of cell-wise 

variance that is explained by the QC/explanatory factors. The R-squared value 

from the linear regression for batch was high throughout many of the first 10 

PCs. The dependency on total counts and mitochondrial percentage had, 

reassuringly, decreased, showing effective normalisation (Figure 4.13A). 

To circumvent the batch component, a batch correction was performed 

on the data. Two methods were chosen and compared to find the most optimal 

approach. The first was a method available in the Seurat pipeline and will be 

referred to from this point onwards as Seurat integration. Seurat integration 

changes the log-normal counts to correct for the batch component. Following 

this correction, these corrected counts are re-scaled and re-analysed using 

PCA and UMAP visualisation. Using the same approach as described 

previously, 15 PCs was found to be the most suitable for the corrected data 

(Figure 4.11B, Appendix 2). The UMAP clearly showed overlap of the different 

batches, and while the cells were somewhat separated by the biological 

component, many of the non-replicating uninjured hepatocytes sat closer to 

the injured replicating hepatocytes, which was not expected (Figure 4.12C & 

D).  

A second approach called Harmony displayed a more optimal result. 

This method corrects the original PCs generated to eliminate the batch 

component. These new harmony components (HCs) were used to create the 

UMAP representation. The same heuristic elbow plot can still be used to 

assess the optimal number of HCs (Figure 4.11C, Appendix 3). Fifteen HCs 

were chosen, as this, once again, appeared to the most optimal number. Much 

like the Seurat integration, hepatocytes from the various datasets overlapped. 

However, Harmony kept a greater separation of the non-replicating and 
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replicating hepatocytes (Figure 4.12E & F). This can be seen by a larger R-

squared value for the biological factor when using Harmony compared to 

Seurat Integration (Figure 4.13B & C). While the total genes showed a slightly 

higher R-squared value for Harmony than with Seurat integration, the value 

was reduced when compared to that which was obtained prior to 

normalisation. Furthermore, some or all of the remaining explanatory power in 

total genes may originate from biological variation. Considering the large 

number of cell cycle associated genes, it is likely that this variation is cell cycle 

related (Giotti et al., 2017). Based on these visualisations and analyses, I 

decided that Harmony was the best approach to employ for batch correction 

in order to inform downstream analyses. 
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Figure 4.11 – Comparison of Batch Correction – Elbow Plot 

Elbow plot showing the standard deviations of each of the first 30 principle 

components (A & B) or harmony components (C). All data shown above was 

generated from scRNA-seq of hepatocyte cells following a partial hepatectomy 

time course (Uninjured, 24h, 48h plate 1, 48h plate 2, 72h). Data was 

normalised and either processed with no batch correction (A), corrected using 

the Seurat integration method (B) or corrected using the Harmony method (C) 

prior to this analysis. Red dashed line denotes the number of principle or 

harmony components chosen for each method. 
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Figure 4.12 – Comparison of Batch Correction – UMAP Visualisations 

Uniform manifold approximation and projection, where each dot represents 

one hepatocyte. Colour denotes the batch (A, C & E) or biological classification 

(B, D & E) of each cell. All data shown above were generated from scRNA-seq 

of hepatocytes following a partial hepatectomy time course (Uninjured, 24h, 

48h plate 1, 48h plate 2, 72h). Data were normalised and either processed 

with no batch correction (A & B), corrected using the Seurat integration method 

(C & D) or corrected using the Harmony method (E & F) prior to this analysis. 
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Figure 4.13 – Comparison of Batch Correction – Analysis of Explanatory 
Variables 

Heatmap showing the R-squared value of linear regression models fitted 

individually to the first 10 principle components (A & B) or first 10 harmony 

components (C) against key five explanatory variables. The five explanatory 

variables are; Batch (i.e., Uninjured, 24h, 48h plate 1, 48h plate 2, 72h), total 

number of expressed genes (Total Genes), Total number of read counts (Total 

counts), biological state (Biology; i.e., mCherry+ only, mVenus+ only, or Dual+) 

and percentage mitochondrial counts (% Mitochondrial reads). Data was 

normalised and either processed with no batch correction (A), corrected using 

the Seurat integration method (B) or corrected using the Harmony method (C) 

prior to this analysis. 

 

4.3 Discussion 

 

The aim of this chapter was to develop a bespoke scRNA-seq pipeline to 

analyse NEBNext® scRNA-seq data from hepatocytes. I have shown within 

this chapter that I was able to determine optimal cell based and gene-based 

thresholds to isolate high-quality cells, followed by effective removal of 

contaminating cell populations. Subsequent steps aimed to remove technical 

variations, whilst preserving biological variation. Explanatory QC variables 

were used to assess how much technical variation remained in the data at 

each stage. Classification of hepatocytes as either mVenus+, mCherry+ or 

Dual+ was used to ensure that the biological variation was maintained within 

the data. Several normalisation and batch correction strategies were 

compared to ascertain the most appropriate. Determining these optimal 

approaches was key to generating highly accurate downstream results. 

The NEBNext® scRNA-seq workflow produced high quality scRNA-seq 

data from live mouse hepatocytes following a PHx time course, sorted by cell 

cycle phase. The QC thresholds described in this chapter are important to 

remove data generated from empty wells or cells/wells containing degraded 

RNA, which is often observed in scRNA-seq experiment (Luecken and Theis, 
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2019; McCarthy et al., 2017; Stuart et al., 2019). However, the point at which 

these thresholds are placed is very subjective and dataset dependent. For 

example, previous studies on hepatocyte scRNA-seq data use higher 

thresholds for mitochondrial genes (Chembazhi et al., 2020; MacParland et al., 

2018). The reason for this is the metabolic capacity of hepatocytes, which 

some have suggested causes an increase in mitochondrial gene percentage. 

While this may be a reasonable assumption, it is clear from my data that 

hepatocytes can be sequenced without obtaining high mitochondrial read 

percentage. One main difference between this study and those published 

previously is the method of scRNA-seq. For example, Chembazhi et al. (2020) 

and MacParland et al. (2018) both used a droplet-based approach as opposed 

to a plate-based technique. Based on my experience, isolating hepatocytes 

using a droplet-based technique is challenging as discussed in (section 3.2.3). 

One might suggest that the hepatocytes sequenced in the aforementioned 

studies were, to some degree, stressed. In order to reliably identify the source 

of these differences between different studies, a direct comparison of scRNA-

seq methods of hepatocytes isolated from the same source should be 

performed. 

I was able to perform effective gene level QC and remove cell 

contaminants. A strict threshold was placed to remove potential endothelial 

doublets and completely mitigate the identification of any endothelial driven 

gene expression in downstream differential gene analysis. Had a more lenient 

threshold been used, there would have been an increased chance of false 

positives occurring.  

Several QC factors were then identified as confounding variables, 

which explained most of the variation in the first few PCs. It has been 

previously reported that detection rate (i.e. number of genes detected above a 

certain threshold) is the main driver of PC 1 in most single cell datasets. This 

was somewhat the case in this study, however total counts (number of read 

counts) and batch also explained a lot of the variance (Hicks et al., 2017). The 

total counts and batch were effectively removed with the chosen normalisation 

and batch correction methods, as shown by a decrease in R-squared values 
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(Figure 4.13C). The number of genes detected still accounted for some of the 

variation in the first PC, although this was much lower than that of the biological 

component. Furthermore, the variability described by the number of genes in 

this case were likely to originate from a biological perspective. Looking at the 

Seurat integration, where uninjured non-replicating cells were found to group 

with those that were injured and replicating, the variance explained by the total 

genes was reduced (Figure 4.13B). This supports the underlying assumption 

that the variance accounted for by total genes is linked to the biological 

classification of the hepatocytes. This led me to choose the Harmony method, 

despite the higher R-squared value for total genes. 

Although I have described batch as something that requires removal, in 

this case, an argument can be made that the difference in batch is actually 

driven more by timepoint and biology. Unfortunately, due to the constraints of 

the experimental design, the batch and timepoints are confounded. However, 

the disparity between the two 48h plates suggested that technical batch 

differences was causing cells from these technical replicates to separate. The 

choice to perform batch correction was therefore made for two reasons. If the 

separation of cells from these two plates was driven by technical variation, 

removal of the batch component enabled the identification of common 

differential genes between the timepoints. On the other hand, if biology was 

the main driver of this separation, grouping the hepatocytes into similar groups 

allowed for easier classification of heterogeneous populations. Differential 

expression between clusters and between timepoints can then be made. 

Nonetheless, the latter should be treated with caution, as this analysis may 

contain an inflated number of false positives. As a result, validation would be 

key for any genes identified in this way.  
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5 Single-Cell RNA Sequencing: Clustering and 

Differential Gene Expression Analysis 

 

5.1 Introduction 

 

Following QC and normalisation, the subsequent steps in a scRNA-seq 

analysis pipeline aim to interrogate the data to find novel biology. Two of the 

main analyses conducted in most workflows involve clustering the cells and 

performing differential gene expression (DGE) analysis (Luecken and Theis, 

2019; McCarthy et al., 2017; Stuart et al., 2019). These analyses are used to 

identify different populations of cells, as well as the genes they express. These 

are therefore the two steps I used to answer the core aims and hypothesis of 

this study. More specifically, potential replicating and non-replicating 

populations of hepatocytes, key genes expressed by these populations, and 

in particular the replicating hepatocytes, were identified and assessed to 

understand their impact on the replicative niche and liver regeneration. 

There are many different methodologies of unsupervised clustering of 

cells in a scRNA-seq pipeline, including K-means, hierarchical and graph-

based (Andrews and Hemberg, 2018). Each have individual advantages and 

disadvantages. However, a graph-based approach has become the most 

popular, in part due to its primary use in the Seurat package (Stuart et al., 

2019). Furthermore, an independent study found that the shared nearest 

neighbour (SNN) graph-based approach implemented in Seurat performed 

better overall than the other algorithms tested (Duò et al., 2018). Graph-based 

approaches are highly scalable and faster than other methodologies for large 

scRNA-seq datasets. Moreover, they make fewer assumptions about the 

shape of the clusters and cell distributions within each cluster (Amezquita et 

al., 2020).  

One difficulty with this form of clustering is the choice of an “optimal” 

resolution parameter. The resolution parameter controls the number of clusters 

that are obtained from the SNN clustering. Lower resolutions will yield fewer 
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clusters and higher resolutions will yield more clusters. The word “optimal” is 

used lightly here as the choice of resolution can vary depending on the 

underlying questions. Luckily, there are several parameters that can help guide 

the selection process. One method is to visualise how the relationships 

between clusters change across multiple resolutions using a cluster tree 

(Huang et al., 2017). Stability scores can also be overlaid on such 

visualisations to assess how stable a cluster is across the various resolutions. 

The stability score is measured from 0-1, where 1 represents a cluster that 

does not change at all across all resolutions.  

Another commonly used measure is the silhouette score, which ranges 

from -1 to +1 (Kiselev et al., 2017). This is calculated per cell and is a measure 

of how similar a cell is to others of its own cluster, compared to the other 

clusters. Box plots of silhouette scores can be plotted for each cluster at each 

resolution to assess how the cohesion changes. Again, high scores represent 

high cohesion between the cells in a cluster. While it might appear counter-

intuitive, choosing the resolution with the highest scores is not always the best 

option. A delicate balance is required that involves selecting the higher scoring 

methods, deciding on the number of clusters expected and the number of 

clusters that will give the best chance at discovering novel biology. A pragmatic 

approach therefore has to be taken in order to make this decision. 

Following clustering of cells in scRNA-seq data, DGE analysis can be 

performed to identify what cell types or subpopulations are present within the 

data, based on known biology. Pre-defined markers of cell populations and 

pathway analysis can also help to define the clusters. The DGE analysis also 

enables identification of novel markers or genes that are expressed by the 

various cell populations. Despite the fact that specific DGE analyses have 

been developed for scRNA-seq data, these may not be the best methods for 

a particular dataset.  Recent evidence has suggested that the choice of 

normalisation effects the performance of the DGE analysis. A simple t-test can 

perform well with size factor-based normalisations, while MAST, a specific 

scRNA-seq based approach, performed consistently worse than other 

methods tested (Vieth et al., 2019). In practice, no consensus has been 
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reached as to which approach is best when performing DGE analysis. Several 

methods have been used, including Wilcox rank sum, area under the curve 

classifier and negative binomial modelling (Aizarani et al., 2019; Halpern et al., 

2017; Ramachandran et al., 2019). For this study, a logistic regression (LR) 

framework was implemented, as this is a fast approach that leverages the 

large number of cells within single cell data (Ntranos et al., 2018). Furthermore, 

co-variables can be introduced into the LR model to account for batch when 

performing the DGE test. 

Within this chapter, I use the methods described above to inform my 

decision on the cluster resolution and use the LR to analyse the differential 

genes between the different hepatocyte populations. 

 

5.2 Results 

 

5.2.1 Clustering of Hepatocyte Single Cell RNA Sequencing Data 

 

As discussed in chapter 4, Harmony was the most optimal batch 

correction method for this data. As a result, the harmony dimensions used to 

produce the UMAP visualisations were also used to generate the shared 

nearest neighbour graph for Seurat’s graph-based clustering. A range of 

resolutions were chosen from 0.1 to 2 to assess which resolutions best fits the 

data. The team who created Seurat recommend using 0.4 – 1.2, which usually 

provides good results. I therefore included this range span within my choice of 

resolutions, as well as extending beyond to capture clustering structure that 

may not fall within the norm. In order to assess which resolutions best fits the 

data, I initially used the clustree R package. This allowed me to visualise the 

number of clusters found at each resolution and how the proportion and 

number of cells shift from the clustering of the previous resolution to the next. 

Overlaying of the cluster’s stability score across the tested resolutions was 

also helpful in deciding the best resolution. I also calculated silhouette scores 

for each cell at each resolution, which were then plotted via a box plot for each 

cluster at each resolution. 
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 Clusters at low resolutions (0.1 - 0.5) had high silhouette scores but low 

stability scores with the exception of cluster ‘3’ (Figure 5.1 & Figure 5.2). While 

high silhouette scores are desirable, the low number of clusters identified at 

these low resolutions does not allow for the identification of novel 

heterogeneity. At the higher resolutions (1.3 – 2), clusters exhibited low 

stability scores due to the shifting of cells (Figure 5.1). Furthermore, the larger 

number of clusters results in lower silhouette scores due to the similarity of 

cells within one cluster to its neighbours (Figure 5.2). Clusters defined by these 

high resolutions are therefore unlikely to represent realistic biological 

subpopulations. The middle resolutions provided a more optimal clustering. I 

subsequently chose resolution 0.9 over 0.7 or 1.1, as most of the clusters had 

the same, if not better, stability scores (Figure 5.1). In addition, the median 

silhouette score was higher at 0.9 over 1.1, although lower in comparison to 

0.7 (Figure 5.2). Choosing resolution 0.9 balanced the ability to identify more 

clusters, giving a greater chance of identifying novel heterogeneity, while still 

retaining a reasonable median silhouette score and good stability scores. 
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Figure 5.1 – Cluster Tree of Hepatocyte Single Cell RNA Sequencing 
Data. 

Cluster tree showing the number of clusters found from Seurat shared 

nearest neighbour graph-based clustering of the single cell RNA sequencing 

data of mouse hepatocytes. Data contains cells from uninjured mice and 24h, 

48h and 72h post partial hepatectomy. Resolutions 0.1, 0.3, 0.5, 0.7, 1.1, 1.3, 

1.5, 1.7 and 2.0 were assessed. The size of each spot represents the number 

of cells within each cluster, with each cluster spot defined by a number. The 

numbering of clusters is sequential from large clusters to small. Each spot is 

shaded by the stability score of that cluster. Arrows show the movement of 

cells between clusters of different resolutions where the colour representing 

the number of cells and the transparency represents the proportion of cells. 
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Figure 5.2 – Cluster Silhouette Scores of Hepatocyte Single Cell RNA 
Sequencing Data. 

Box plot of the silhouette scores for each cell in each cluster found using 

Seurat shared nearest neighbour graph-based clustering of the single cell RNA 

sequencing data of mouse hepatocytes. One graph per resolution is shown 

and labelled. Data contains cells from uninjured mice and 24h, 48h and 72h 

post partial hepatectomy. Resolutions 0.1, 0.3, 0.5, 0.7, 1.1, 1.3, 1.5, 1.7 and 

2.0 were assessed. A red line in each graph represents the median silhouette 

scores of all cells at each resolution. 

 

5.2.2 Differential Gene Expression Analysis 

 

The next stage in the analysis was to define each of the six clusters 

identified at resolution 0.9. Figure 5.3A shows a UMAP coloured by cluster 

assignment. The most common method for achieving this is DGE analysis and 

known marker interrogation. DGE analysis can give a quick insight into what 

cell type or subpopulation each cluster may represent by examining the 

differentially upregulated genes. This can then be confirmed by visualisation 

of the expression of known marker genes. DGE analysis was performed using 

a logistic regression (LR) framework for all clusters, where all cells of one 

cluster were compared to all cells of the remaining clusters. This comparison 

is made for each cluster individually to generate a list of differentially 

expressed genes. Plotting the top ten genes by positive average log fold 

change on a heatmap is a useful method to qualitatively visualise the 

differences between clusters. This type of DGE analysis is not designed to 

identify unique markers. However, in practice, many of the top differentially 

expressed genes will distinguish one or two clusters depending on the overall 

variation in cell types captured. The top ten genes are expected to show blocks 

of high scaled expression in one or two clusters, and low expression in the 

remaining clusters. The genes associated with each cluster also give insight 

into what cell type or subpopulation each represents.  
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Performing this analysis showed blocks of expression within the 

hepatocyte dataset (Figure 5.3B, Appendix 4). Clusters 1 and 3 showed 

distinct expression between one another but overlapped expression with 

cluster 1. Clusters 2 and 4 showed very similar expression patterns as well as 

shared low-level expression of genes associated with clusters 0 and 3 

respectively. Cluster 5 expressed distinct genes that were not found to a high 

degree in any other cluster. 

 

5.2.2.1 Defining Clusters 0, 1, and 3 

 

The reciprocal expression of genes such as Histidine Ammonia-Lyase 

(Hal) and cytochrome P450 genes between clusters 0 and 3 suggested that 

these clusters defined the periportal and pericentral zones, respectively 

(Brosch et al., 2018; Kietzmann, 2017; Figure 1.3B). The shared expression 

of genes in cluster 1 with clusters 0 and 3 therefore suggested that this cluster 

represents the midzone hepatocyte populations. Building upon this 

assumption, I plotted known marker genes of the periportal, pericentral and 

midzone regions (Halpern et al., 2017).  

First, cluster 0 had higher expression for Phosphoenolpyruvate 

Carboxykinase 1 (Pck1), E-cadherin (Cdh1), and Argininosuccinate Synthase 

1 (Ass1; Figure 5.4A). These genes have previously been reported as markers 

of the periportal zone (Halpern et al., 2017; Hempel et al., 2015). Next, I 

performed pathway enrichment analysis using the significantly differentially 

expressed genes of this cluster that had an average log fold increase of 0.5 or 

above, which revealed one term: Metabolism of amino acids and derivatives 

(Figure 5.4B, Appendix 6). The metabolism of amino acids is a periportal 

associated process (Kietzmann, 2017). I was therefore able to confidently label 

this cluster as periportal hepatocytes. 

Cluster 3 showed high scaled expression of Cytochrome P450 Family 

1 Subfamily A Member 2 (Cyp1a2), Cytochrome P450 Family 2 Subfamily E 

Member 1 (Cyp2e1) and Glutamate-Ammonia Ligase (Glul; Figure 5.5A). 

These genes have previously been reported to mark pericentral hepatocytes 
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(Halpern et al., 2017). Pathway enrichment analysis was performed using the 

same criteria of DGE genes, which revealed that several pathways were 

enriched within this cluster (Appendix 9). These terms included cytochrome 

P450 activity and bile acid synthesis (Figure 5.5B), both of which supported 

the classification of these hepatocytes as pericentral.  

I hypothesised that cluster 1 most likely represented midzonal 

hepatocytes. However, there are fewer distinct markers for cells within this 

region as they share expression of genes from both the pericentral and 

periportal zones. Nevertheless, I used the few non-monotonic markers that 

have been discovered to aid my confirmation of this cluster as midzonal 

hepatocytes (Halpern et al., 2017). More specifically, Hepcidin Antimicrobial 

Peptide (Hamp) and Insulin Like Growth Factor Binding Protein 2 (Igfbp2) both 

showed higher expression in cluster 1 hepatocytes (Figure 5.6A). Pathway 

enrichment analysis of genes from this cluster appeared to show more 

pericentral associated pathways, such as cytochrome p450 activity and bile 

acid metabolism and synthesis (Figure 5.6B, Appendix 7). However, the 

associated p values were higher and number of terms defining each pathway 

were lower than that of the pericentral cluster (3). I therefore defined these 

cells as midzonal hepatocytes. 

Almost all hepatocytes contained within these three clusters were 

mCherry+ only (Figure 4.12) and all timepoints contributed to each of the three 

clusters. As such, these clusters represented the non-replicating hepatocyte 

populations. 
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Figure 5.3 – Initial Clustering and Differential Gene Analysis of 
Hepatocyte Single Cell RNA Sequencing Data. 

A) Uniform manifold approximation and projection, where each dot 

represents one hepatocyte. Colour denotes the cluster classification of 

each cell, based on Seurat shared nearest neighbour clustering. 

B) Heatmap showing scaled expression of up to 10 significantly 

differentially expressed genes (<0.05 adjusted p value) weighted by 

average log fold change for each cluster. Cells are represented by 

columns and genes are represented by rows. Cells are grouped by 

cluster annotation. 

Data used to generate the plots was from single cell sequencing of 

uninjured mouse hepatocytes and 24h, 48h and 72h post partial 

hepatectomy. Logistic regression was used to identify differential 

expressed genes. 
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Figure 5.4 – Cluster 0 Marker Gene Expression and Pathway Enrichment 

Uniform manifold approximation and projection, where each dot represents 

one hepatocyte. Dots are coloured by the log normalised expression of the 

labelled gene. Data used to generate the plots was from single cell sequencing 

of uninjured mouse hepatocytes and 24h, 48h and 72h post partial 

hepatectomy. 
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Figure 5.5 – Cluster 3 Marker Gene Expression and Pathway Enrichment 

A) Uniform manifold approximation and projection, where each dot 

represents one hepatocyte. Dots are coloured by the log normalised 

expression of the labelled gene. Data used to generate the plots was 

from single cell sequencing of uninjured mouse hepatocytes and 24h, 

48h and 72h post partial hepatectomy. 

B) Bar plot showing the top 8 results of pathway enrichment analysis using 

all significantly expressed differential expressed genes for cluster 3 

(<0.05 adjusted p value) with an average log fold change above 0.5. 

Bars are coloured by adjusted p value and represent the number of 

genes that are associated with each term. A hypergeometric model in 

the ReactomePA package was used to perform the enrichment test 

against the Reactome database. 
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Figure 5.6 – Cluster 1 Marker Gene Expression and Pathway Enrichment 

A) Uniform manifold approximation and projection, where each dot 

represents one hepatocyte. Dots are coloured by the log normalised 

expression of the labelled gene. Data used to generate the plots was 

from single cell sequencing of uninjured mouse hepatocytes and 24h, 

48h and 72h post partial hepatectomy. 

B) Bar plot showing the top 8 results of pathway enrichment analysis using 

all significantly differentially expressed genes for cluster 1 (<0.05 
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adjusted p value) with an average log fold change above 0.5. Bars are 

coloured by adjusted p value and represent the number of genes that 

are associated with each term. A hypergeometric model in the 

ReactomePA package was used to perform the enrichment test against 

the Reactome database. 

 

5.2.2.2 Defining Clusters 2 and 4 

 

Cluster 2 and 4 shared higher scaled expression for many of the same 

marker genes (Figure 5.3B). These included cell cycle division proteins and 

cyclins, suggesting that these two clusters represented the replicating 

hepatocytes. This was consistent with the classification of the hepatocytes in 

this cluster as either Dual+ or mVenus+ only (Figure 4.12). Nevertheless, I 

decided to plot two well-known markers of proliferation on a UMAP: Marker of 

Proliferation Ki-67 (Mki67) and DNA Topoisomerase II Alpha (Top2a; Figure 

5.7A). This confirmed that all cells in this cluster were expressing cell cycle 

markers and that there were no outliers. 

The pathway analysis for cluster 2 and 4 revealed that these cells were 

likely to be in M phase or late S phase (preparing to enter M phase; Figure 

5.7B &C, Appendix 8, Appendix 10). While both clusters displayed similar 

expression levels of cell cycle genes, the expression of zonated genes 

differed, resulting in the separation of cells into 2 clusters. Cluster 2 expressed 

many of the same zonal markers as cluster 0, defining these as the periportal 

replicating hepatocytes (Figure 5.4A). On the other hand, cluster 4 expressed 

many of the same zonal markers as cluster 3, suggesting that these cells 

represented the pericentral replicating hepatocytes (Figure 5.5A). Capturing 

this zonal division in the replicating populations enabled the examination of 

potential differences in gene expression between periportal and pericentral 

replicating hepatocytes. 
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Figure 5.7 – Cluster 2 and 4 Marker Gene Expression and Pathway 
Enrichment 

A) Uniform manifold approximation and projection, where each dot 

represents one hepatocyte. Dots are coloured by the log normalised 

expression of the labelled gene. Data used to generate the plots was 

from single cell sequencing of uninjured mouse hepatocytes and 24h, 

48h and 72h post partial hepatectomy. 

B & C) Bar plot showing the top 8 results of pathway enrichment analysis 

using all significantly differentially expressed genes for cluster 2 (B) or 

cluster 4 (C) (<0.05 adjusted p value) with an average log fold change 

above 0.5. Bars are coloured by adjusted p value and represent the number 

of genes that are associated with each term. A hypergeometric model in 

the ReactomePA package was used to perform the enrichment test against 

the Reactome database. 

 

5.2.2.3 Defining Cluster 5 

 

Cluster 5 was fairly distinct from the other hepatocyte populations 

(Figure 5.3A). Similarly to clusters 2 and 4, cluster 5 had higher scaled 

expression for cell cycle related genes (Helicase, Lymphoid Specific - Hells, 

Cell Division Cycle 6 - Cdc6, Cyclin E2 - Ccne2), although didn’t share the 

same expression patterns as that of cluster 2 and 4. Cdt1 was within the top 

ten differentially expressed genes for cluster 5. Plotting the expression of Cdt1 

on a UMAP showed the specificity of its expression to this one cluster (Figure 

5.8A). In the Fucci system, CDT1 protein abundance is used as a marker of 

the G1 cell population (Mort et al., 2014b). Indeed, the majority of cells in this 

cluster were defined as mCherry+ only (Figure 4.12). However, expression of 

the Geminin gene (Gmnn) was also high in these hepatocytes, as well as the 

other replicating populations (Figure 5.8A). The mCherry protein signal within 

these cells suggests that these are non-replicating hepatocytes, although their 

transcriptional profile appears to be similar to those replicating.  
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Pathway analysis was conducted in the same manner as above for this 

cluster and revealed interesting terms (Appendix 11). DNA replication and S 

phase were the top enriched terms suggesting that these cells were 

replicating. Whereas, the Mitotic-G1-G1/S phases term suggested that these 

cells maybe in a transition state (Figure 5.8B). Moreover, separate clustering 

of these hepatocytes from the two replicating clusters showed that these cells 

were clearly in a different phase of the cell cycle. For these reasons, I decided 

to describe these cells as primed hepatocytes. At a protein level, these 

hepatocytes are still in G1 and therefore non-replicative. However, they 

expressed many genes associated with the S phase, demonstrating that they 

were preparing or “primed” for replication, or potentially in transition. 
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Figure 5.8 – Cluster 5 Marker Gene Expression and Pathway Enrichment 

A) Uniform manifold approximation and projection, where each dot 

represents one hepatocyte. Dots are coloured by the log normalised 

expression of the labelled gene. Data used to generate the plots was 

from single cell sequencing of uninjured mouse hepatocytes and 24h, 

48h and 72h post partial hepatectomy. 

B) Bar plot showing the top 8 results of pathway enrichment analysis using 

all significantly differentially expressed genes for cluster 5 (0.05 

adjusted p value) with an average log fold change above 0.5. Bars are 
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coloured by adjusted p value and represent the number of genes that 

are associated with each term. A hypergeometric model in the 

ReactomePA package was used to perform the enrichment test against 

the Reactome database. 

 

5.2.3 Ligand/Receptor Analysis 

 

Once each cluster was defined (Figure 5.9), the aim was to assess key 

signals that are produced by replicating hepatocytes that can control and 

influence the regenerative niche. The primary mechanism through which cells 

communicate with the environment is through cell surface receptors and by 

excreting or presenting ligands. In order to identify genes that are upregulated 

by the replicating population, I compared the differentially expressed genes 

from the DGE analysis to a known list of ligands and receptors. Such a list can 

be found from CellphoneDB, a manually curated database of ligands and 

receptors (Efremova et al., 2020). The comparison was performed with the 

current DGE gene list, as the two replicating clusters (2 & 4) only contained 

proliferating injured hepatocytes (Figure 5.7 & Figure 4.12). The resulting 

genes were visualised on a heatmap of scaled expression (Figure 5.10, 

Appendix 5). 

While some genes were expressed predominantly in only one of the 

replicating clusters (e.g. Leucine Rich Repeat Containing G Protein-Coupled 

Receptor 5 [Lgr5], Natriuretic Peptide Receptor 2 [Npr2]), these genes were 

also expressed in the corresponding non-replicating cluster (Figure 5.10). 

Most genes appeared to be consistently upregulated in both replicating 

clusters. 

This does not mean no new genes of interest were identified. 

Interestingly, two interleukins (IL) were expressed predominantly in the 

replicating populations: Il15 and Il33 (Figure 5.11 & Figure 5.12). IL15 has 

previously been described to play an important pro-regenerative role during 

PHx (Suzuki et al., 2006). However, this is the first evidence to suggest that it 

is produced mainly by the replicating population. IL33 has been shown to play 
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a protective role during viral hepatitis, but its role during liver regeneration and 

PHx remain unknown (Carrière et al., 2017). The expression of Il33 also 

appeared to be higher in the periportal replicating hepatocytes compared to 

the pericentral hepatocytes. This hints at potential zonation of the gene. The 

replicating hepatocytes also appeared to express another immunomodulatory 

molecule, Chemokine Like Factor (Cklf; Figure 5.11 & Figure 5.12). Again, the 

functions of the ligand have not yet been studied in the context of liver 

regeneration.  

Among the expressed cell surface proteins, Delta 1 (Dll1) was 

predominantly expressed in these two cluster (Clusters 2 & 4; Figure 5.11 & 

Figure 5.12). Many studies have looked at the implication of Notch signalling 

during liver regeneration. Removal of Notch has been shown to be detrimental 

to the regenerative response, although it is not yet completely understood if 

the signals are pro-regenerative or inhibitory (Croquelois et al., 2005). Notch 

and Jagged are the two main components that have been studied in this 

pathway; the implications of Delta remain unclear. 

As well as marking the two replicating clusters, Il33, Cklf and Dll1 were 

also expressed in the primed cluster but to a lesser extent (Figure 5.11 & 

Figure 5.12). Given potential priming of these hepatocytes to enter into DNA 

replication, it is not surprising they upregulate the same markers that are 

expressed in the two replicating populations. 

 As discussed previously, many of the ligand and receptor genes are 

expressed in both replicating clusters. However, this is not the case for Bmp7, 

which appeared to show a specific pericentral expression pattern (Figure 5.11 

& Figure 5.12). Bone Morphogenetic Protein 7 (Bmp7) is an important pro-

regenerative molecule during PHx, although its potential zonal expression is 

unknown (Sugimoto et al., 2007). Bmp7 expression was seen to a lesser 

degree in the primed cluster (Figure 5.11 & Figure 5.12). As this did not 

separate into periportal and pericentral populations within the current 

clustering strategy, I was unable to confirm whether the same zonal pattern of 

expression persists in this population. Nevertheless, one might speculate that 
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the expression of Bmp7 is zonated within this cluster based on its limited 

expression within the cluster. 
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Figure 5.9 – Final Hepatocyte Cluster Annotation 

Uniform manifold approximation and projection, where each dot represents 

one hepatocyte. Colour denotes the cluster classification of each cell, based 

on Seurat shared nearest neighbour clustering. Data used to generate the 

plots was from single cell sequencing of uninjured mouse hepatocytes and 

24h, 48h and 72h post partial hepatectomy. 
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Figure 5.10 – Heatmap of CellphoneDB Expressed Genes 

Heatmap showing scaled expression of ligand and receptor genes significantly 

upregulated in the replicating hepatocyte populations. Logistic regression was 

used to generate differentially expressed genes. Genes significantly (<0.05 

adjusted p value) upregulated in the replicating hepatocyte (P) and (C) 

populations were cross referenced with genes from CellphoneDB. Cells are 

represented by columns and genes are represented by rows. Cells are 

grouped by cluster annotation. Data used to generate the plots was from single 

cell sequencing of uninjured mouse hepatocytes and 24h, 48h and 72h post 

partial hepatectomy.  
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Figure 5.11 – Feature Plots of Key CellphoneDB Genes 

Uniform manifold approximation and projection, where each dot represents 

one hepatocyte. Dots are coloured by the log normalised expression of the 

labelled gene. Data used to generate the plots was from single cell sequencing 

of uninjured mouse hepatocytes and 24h, 48h and 72h post partial 

hepatectomy. 
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Figure 5.12 – Violin Plots of Key CellphoneDB Genes 

Violin plots showing the log normalised expression level of the labelled genes. 

Each violin represents expression profile from one cluster. Each dot represents 
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one hepatocyte. Data used to generate the plots was from single cell 

sequencing of uninjured mouse hepatocytes and 24h, 48h and 72h post partial 

hepatectomy. 

 

5.2.4 Circadian Rhythm, Cell Cycling and Timeless Gene Expression 

Following Partial Hepatectomy 

 

Following interrogation of the replicating populations, I sought to 

determine whether any key ligands or receptors were upregulated by the 

primed hepatocytes compared to other populations. By doing so, I sought to 

identify signals that trigger a non-replicating hepatocyte to enter the cell cycle 

in order to promote the regenerative process. Unfortunately, no ligand or 

receptor genes from the Cellphone database were uniquely expressed by the 

primed hepatocytes. However, the Timeless gene was highly specific to this 

cluster. The protein produced by this gene has been implicated in both cell 

cycle and circadian rhythm regulation, thereby connecting the two processes. 

This therefore implies a potential role for the circadian rhythm in controlling the 

hepatic regenerative response following PHx. 
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Figure 5.13 – Timeless Gene Expression 

A) Uniform manifold approximation and projection, where each dot 

represents one hepatocyte. Dots are coloured by the log normalised 

expression of the Timeless gene. 

B) Violin plots showing the log normalised expression level of the Timeless 

genes. Each violin represents expression profile from one cluster. Each 

dot represents one hepatocyte.  

Data used to generate the plots was from single cell sequencing of 

uninjured mouse hepatocytes and 24h, 48h and 72h post partial 

hepatectomy. 
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5.3 Discussion 

 

The aim of this chapter was to identify clusters of hepatocyte 

subpopulations within my scRNA-seq dataset. Furthermore, I aimed to assess 

their differential markers with the goal of identifying key signalling molecules 

produced by the replicating hepatocytes. Within this chapter I was able to use 

scoring metrics to choose the optimal resolution for Seurat shared nearest 

neighbour clustering. DGE analysis enabled the classification of the six 

populations: three non-replicating populations that were split by their zonation 

profile, two replicating clusters also split by zonation, and one cluster of primed 

hepatocytes. Cross referencing the differentially expressed genes with 

CellphoneDB highlighted key markers produced by the replicating hepatocytes 

that may control and regulate the regenerative niche. Furthermore, I provide 

evidence that suggests the circadian rhythm plays a role during the hepatic 

regenerative process. 

Identification of hepatocyte clusters associated with zones has 

previously been identified in other scRNA-seq studies. Furthermore, changes 

in gene expression across these zones has been extensively studied by 

Halpern et al. (2017). The identification of these three clusters (0, 1 & 3) of 

non-replicating hepatocytes therefore fits with the current literature. All 

uninjured cells reside within these three clusters, which is as expected based 

on the experimental design.  

Based on my previous observation that there is no proportional 

difference in the potential of periportal and pericentral hepatocytes to replicate 

following partial hepatectomy, it was reassuring to see that cells from all 

timepoints post PHx contributed to the two replicating clusters. Within the 

replicating populations, I was surprised to only identify zonal heterogeneity. 

Previous studies have shown only half of the hepatocytes that replicate their 

genome continue to M phase and cytokinesis (Miyaoka et al., 2012; Miyaoka 

and Miyajima, 2013). I therefore expected to see more heterogeneous 

subpopulations that show differences in their expression due to the lack of M 

phase transition. One potential explanation for this is insufficient capture of 



 154 

such cells or that the mechanisms that control these events are not regulated 

at a transcriptional level. While no heterogeneity was found in hepatocyte cell 

cycle completion, I was able to identify a novel “primed” hepatocyte population. 

I was also able to identify key signals produced by these replicating and 

“primed” cells, confirming the hypothesis that replicating hepatocytes produce 

specific signals following PHx. Of the 20 ligand/receptor genes identified 

following cross referencing, five were of particular interest.  

A previous study investigating the impact of Il15 on liver regeneration 

has already been conducted (Suzuki et al., 2006). Suzuki et al. (2006) 

demonstrated that administration of mice with IL15 increased mature 

hepatocyte proliferation, over vehicle controls. Furthermore, they also 

observed an accumulation of oval cells, the liver stem cell that can differentiate 

into both hepatocytes and biliary cells. The authors speculated the 

accumulated oval cells differentiated into hepatocytes to enhance liver 

regeneration. However, the study only used whole liver lysates to uncover the 

hepatic expression of IL15. My work provides evidence that expression of IL15 

is restricted or upregulated in proliferating hepatocytes, potentially forming a 

positive feedback loop. Il15 has also been associated with the progression of 

fibrosis (Jiao et al., 2016). Knock out of IL15 receptor α showed an increase in 

liver fibrosis, suggesting IL15 plays a protective role. One might speculate that 

hepatocyte senescence caused by liver fibrosis exacerbates the condition as 

a result of a decrease in hepatocyte replication and therefore Il15 production.  

IL33 has not yet been studied in the context of liver regeneration. There 

have been several published reports of IL33 being both beneficial and harmful 

in certain liver diseases. For instance, IL33 has positive effects on viral 

hepatitis but can also promote HSC activation, which can exacerbate liver 

fibrosis (Carrière et al., 2017; Sun et al., 2017). The immunomodulatory role 

of IL33 might be of most interest in the context of liver regeneration. IL33 is a 

known potent activator of eosinophils, which in turn have been linked with 

improved liver regeneration (Johansson et al., 2017). Eosinophils produce IL4, 

which acts directly through Il4 receptor α to promote hepatocyte proliferation 

(Goh et al., 2013). 
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CKLF is a known potent chemoattractant for a variety of immune cells, 

including neutrophils, monocytes and lymphocytes (Han et al., 2001). 

However, this immunoregulatory property may not be the most interesting 

function in this context. CKLF1 and CKLF2, two of the isoforms of the CKLF 

gene, possess the ability to increase proliferation of skeletal muscle cells (Han 

et al., 2001; Xia et al., 2002). It remains to be seen whether CKLF has the 

same pro-proliferative trait with other cells types and through which 

mechanism CKLF acts to achieve this. Nevertheless, the strong expression of 

this gene by replicating hepatocytes following PHx warrants further 

investigation. One might speculate that CKLF may act to enhance hepatocyte 

proliferation, or potentially that of other cell types within the liver. 

The upregulation of Bmp7 in the regenerating hepatocytes is interesting 

with respect to the current literature. For instance, administration of 

recombinant human BMP7 was shown to facilitate liver regeneration following 

PHx in mice (Sugimoto et al., 2007). However, BMP7 was not expressed in 

the liver and was believed to be released from the kidney. My results diverge 

from this: Bmp7 appeared to be expressed by pericentral replicating 

hepatocytes. One potential reason for this discrepancy is the methodology 

employed to detect BMP7. Sugimoto et al. (2007) used whole liver lysates to 

assess BMP7 expression but given the confined expression of Bmp7 to the 

pericentral replicating hepatocytes, detecting the protein might prove difficult 

from a whole lysate. Protein analysis from a sorted population of replicating 

pericentral hepatocytes might show an increase in protein expression, as 

indicated by the increased gene expression. 

While one would hypothesize a pro-regenerative role for the four 

molecules/genes (IL15, IL33, CKLF, BMP7) mentioned so far, DLL1 may 

function to inhibit hepatocyte proliferation. As discussed previously, there is 

supporting evidence of NOTCH1 playing an inhibitory role on hepatocyte 

proliferation (Croquelois et al., 2005). For example, KO of NOTCH1 after birth 

led to nodular hyperplasia in mouse livers. Regeneration post PHx in these 

mice was decreased, however, the authors speculated the larger liver to body 

weight ratio in the KO mouse was the primary reason for this, with regenerative 
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potential inversely correlated to the amount of remnant liver. The expression 

of Dll1 in replicating hepatocytes therefore creates a paradigm, in which those 

that have committed to proliferation signal to prevent the surrounding 

hepatocytes from entering the cell cycle. This may force the consistent equal 

replication of hepatocytes across the liver lobule and prevent the nodular 

regeneration seen in NOTCH1 KO mice. The spacial control of liver 

regeneration remains unclear, although Dll1 may represent a prime candidate 

to examine in order to elucidate this mystery. Furthermore, DLL1 may also play 

a role in hepatocyte fate specification of hepatic progenitor cells (HPCs). Notch 

signalling is known to coordinate the differentiation of HPCs into biliary cells 

following PHx (Lu et al., 2016). However, knockdown of DLL1 in cultured liver 

progenitor cells results in a decrease in HNF4α expression and an increase in 

osteopontin+ (OPN) cells, a biliary cell marker (Kaylan et al., 2018). One might 

therefore suggest that DLL1 modulates the surrounding regenerative niche to 

enhance hepatocyte fate trajectories of HPCs. 

There is strong evidence that suggests all five genes/proteins 

discussed above play important roles in liver regeneration. The identification 

of these upregulated ligands has allowed me to form several hypotheses about 

their function within the context of liver repair. Overall, replicating hepatocytes 

potentially produce a range of secreted ligands that enhance and promote 

proliferation in a global context. On the other hand, the cell surface ligand DLL1 

may inhibit local hepatocytes from replicating in order to maintain the structure 

of the liver lobes and prevent nodular regeneration. 

Finally, as discussed previously, I identified a population of primed 

hepatocytes. These were referred to as primed due to the discrepancy 

between their protein and transcriptional expression profiles. The lack of an 

mVenus+ signal in these cells places them in either G1/G0 of the cell cycle. 

However, at the transcript level, many of their differentially expressed genes 

are associated with either the S phase or the G1/S phase transition. For this 

reason, I believe these cells were either preparing to enter S phase and were 

waiting for the right signals, or had received the correct signal and were just 

beginning to replicate. Zou et al. (2012) have demonstrated that hepatocytes 
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have a synchronous cell cycle entry with mitosis peaking at Zeitgeber time (ZT) 

0 throughout the PHx time course. Matsuo et al. (2003) proposed that the 

Bmal1-Clock/Wee1/Cdc2 pathway controls the circadian rhythm of hepatocyte 

G2/M transition, and therefore the synchronicity of the regenerative response. 

Bmal1 should be low at ZT0, however, Zou et al. (2012) found evidence that 

Bmal1 was high in hepatocytes at this point. Furthermore, Wee1 did not follow 

the same pattern as Bmal1. This suggested that the Bmal1-Clock/Wee1/Cdc2 

pathway may not be in control of the hepatocyte cell cycle. As such, it was 

interesting to identify Timeless as a differentially expressed gene for the 

primed cluster. Studies have shown a circadian regulation of TIMELESS 

expression in mammals. Furthermore it has been suggested that TIMELESS 

functions as an intra-S and replicating checkpoint protein (Barnes et al., 2003; 

Ünsal-Kaçmaz et al., 2005). Knock down of TIMELESS can result in defective 

replication checkpoints and the early entry of cells into mitosis under DNA 

damaging conditions. Ünsal-Kaçmaz et al. (2005) found TIMELESS 

expression to be high in S/G2/M phases and low during G1/G0 in normal 

human fibroblasts (NHF1). The gene expression data from this study suggests 

that TIMELESS expression is high in late G1 and early S phase, whereas 

no/low expression of Timeless was observed in the replicating clusters that 

were in G2 and M phase. Considering the defective and early entry of cells 

into M phase after UV treatment and when TIMELESS is down regulated, it 

appears this protein prevents cells from progressing through the cell cycle 

(Ünsal-Kaçmaz et al., 2005). In support of this, TIMELESS interacts with 

Checkpoint Kinase 1 (CHK1), which when phosphorylated, can lead to slowing 

or stalling of DNA replication (Patil et al., 2013; Ünsal-Kaçmaz et al., 2005). 

This mechanistic paradigm would suggest that hepatocytes are stalled around 

S phase as a result of the expression of TIMELESS. Following downregulation 

of TIMELESS, hepatocytes can enter S phase, doing so in a synchronous 

manner. Further work will be required to assess protein expression of 

TIMELESS and understand its mechanism of action.  
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6 Discussion 

 

The PHx model has been extensively studied over the past few decades 

and many of the signalling pathways and mechanisms of regeneration have 

been uncovered. However, it is clear that we do not have the full picture and 

new signals are still being uncovered as well as changes in our understanding 

of the overall mechanisms involved (Fazel Modares et al., 2019; Miyaoka and 

Miyajima, 2013; Wang et al., 2019). The heterogeneous nature of hepatocytes 

has also been widely studied, although primarily in the context of metabolism. 

For instance, since the mid to late 1900s, it has been known that hepatocytes 

from the periportal zone express different genes and carry out different 

functions compared to those residing in the pericentral region. Nevertheless, 

Halpern et al. (2017) were able to uncover novel biology with the advent of 

single cell RNA sequencing, a technology that enables the heterogenous 

nature of any cell type or tissue to be investigated. Despite this, the central 

dogma for many years was that hepatocytes react in a homogeneous manner 

during partial hepatectomy, with all hepatocytes entering the cell cycle and 

dividing at least once. However, in 2012, Miyaoka et al. (2012) demonstrated 

that this is not the case and only a certain percentage of hepatocytes fully 

complete mitosis. This suggested a heterogeneous hepatocyte response to 

regeneration. The aim of this project was therefore to use scRNA-seq to 

examine the potential heterogeneous nature of hepatocellular regeneration 

and identify novel signalling molecules that could play a role. I hypothesized 

that subpopulations of replicating hepatocytes produce key signals that 

regulate the hepatic regenerative niche. 

I first demonstrated that the PHx model could be reliably reproduced 

and determined that peak hepatocyte proliferation occurred at 48h. However, 

my results suggested that a periportal to pericentral wave of hepatocyte 

proliferation does not occur following PHx, which diverges from previously 

published studies (Rabes et al., 1976; Sun et al., 2020). Following model 

characterisation, a hepatocyte isolation protocol was optimised for the purpose 

of scRNA-seq. I was unable to produce usable sequencing data from a droplet-
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based sequencing approach. However, I successfully produced scRNA-seq 

data using a plate-based technique.  

I also developed a bespoke analysis pipeline that enabled me to 

maintain complete control of all the analysis approaches used in this study. 

For example, I considered several different approaches of thresholding in 

order to remove poor quality cells (and genes) and examined the use of 

multiple sophisticated normalisation strategies. In addition, I compared two 

batch correction methods and assessed their suitability using the intrinsic a 

priori Fucci signal classifications. 

Following QC, downstream analysis revealed that hepatocytes formed 

6 clusters. Clusters 0, 1 and 3 were identified as non-replicating periportal, 

midzone and pericentral hepatocytes, respectively. Clusters 2 and 4 consisted 

of replicating periportal and pericentral cells, respectively. Finally, cluster 5 

was suggested to be a novel “primed” non-replicating hepatocyte population. 

As expected, uninjured hepatocytes were only found in clusters 0, 1 and 3, as 

mCherry+ only hepatocytes were sorted form uninjured mice. Hepatocytes 

isolated following PHx were present in all 6 clusters. 

I  further identify several signals specifically expressed by replicating 

cells. Based on previously published literature, I hypothesize that these 

molecules potentially play important roles in the regenerative process and 

even control the regenerative niche. Moreover, the primed hepatocyte cluster 

represents a potentially novel phase within the cell cycle of hepatocytes, in 

which they are pre-programmed to undergo DNA replication. Interestingly, 

TIMELESS was found to be expressed specifically by hepatocytes within this 

cluster. The circadian rhythm and cell cycle regulatory functions of this protein 

suggest that the expression of TIMELESS may regulate hepatocyte cell cycle 

entry (Ünsal-Kaçmaz et al., 2005).  

 

6.1 Future and Ongoing Work 

 

Due to time constraints, only one biological scRNA-seq replicate was 

performed for each timepoint. While additional timepoints are unlikely to 
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change the overall conclusions drawn in this study, performing further 

replicates may enable the identification of smaller differences with more 

confidence. More specifically, a pseudobulk approach could be employed in 

order to compare different timepoints. This procedure accounts for type 1 error 

and reduces the number of incorrectly identified differentially expressed genes 

in the DGE analysis (Lun and Marioni, 2017). 

In addition to generating more replicates, re-evaluation of the existing 

data can continue as further advances in scRNA-seq analyses are made. Over 

the past few years, many new analysis methods have been developed for 

scRNA-seq data and it is likely that this will continue (Luecken and Theis, 

2019). Datasets can therefore be analysed using these new approaches, 

which could potentially lead to the generation of new hypotheses. In addition, 

as more single cell experiments are conducted, a large pool of data will 

become publicly available. This will allow for comparisons with my data and 

enable further discoveries. For example, by integrating datasets from PHx that 

contain different cell types, inferences about cell to cell interactions can be 

made. Programs such as Cellphone or NicheNet aim to answer such questions 

(Browaeys et al., 2020; Efremova et al., 2020). Pseudotime is another area of 

active study with a multitude of different algorithms to infer a time trajectory 

within single cell data (Saelens et al., 2019). What can be considered as the 

main pseudotime R package, Monocle, is currently in beta testing of its third 

iteration, demonstrating how quickly techniques are updated as we gain 

greater understanding of scRNA-seq data (Qiu et al., 2017). 

As discussed in chapter 5, several genes of interest were identified that 

were specifically expressed by the replicating and primed populations, 

including Il33, Il15, Cklf, Dll1, Bmp7 and Timeless. Further work is required to 

validate the protein expression of these markers. For example, 

immunofluorescence staining could be performed to determine whether or not 

these markers are exclusively expressed/upregulated in specific hepatocyte 

populations, as observed in the scRNA-seq data. Where commercially 

available antibodies are unavailable, the scRNA-seq results could be 

confirmed by Florescence In-Situ Hybridisation (FISH), in which mRNA is 
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directly stained in tissue samples. Proteins specific to replicating hepatocytes 

could also be validated by western blot or qPCR, as a bulk sample could be 

obtained by sorting these cells from a Fucci mouse.  

Following validation, one could assess the function of each protein in 

the context of liver regeneration and PHx. For secreted molecules such as 

CKLF, which I hypothesised to act directly on hepatocytes, in vitro techniques 

could be employed similar to those used to discover the auxiliary mitogen 

norepinephrine (Cruise et al., 1985). For example, the proliferation of primary 

hepatocytes in culture could be quantified with and without the addition of 

CKLF in order to assess its mitogenic potential. The effect of CKLF can be 

tested both with and without additional growth factors, such as HGF and EGF, 

two commonly used mitogens in hepatocyte cell culture (Greenhalgh et al., 

2019). On the other hand, in cases where the protein of interest may act 

indirectly to increase hepatocyte proliferation, co-cultures or conditioned 

media experiments could be performed to evaluate their potential function. For 

example, I previously hypothesised that IL33 activates eosinophils to produce 

IL4, which subsequently causes an increase in hepatocyte proliferation (Goh 

et al., 2013). Media from eosinophils cultured in the presence of IL33 could be 

applied to hepatocytes in vitro to assess cellular replication. In addition, a 

similar experiment could be performed in which IL33 is administered to co-

cultures of hepatocytes and eosinophils. An increase in the number of 

proliferating hepatocytes of those cultured with eosinophils compared to those 

without, would also support this hypothesis. Protein analysis of the culture 

media could reveal these molecular signals produced by the eosinophils under 

IL33 treatment. 

While in vitro techniques are very useful tools, they cannot fully 

recapitulate the complex nature of the PHx model. Conditional and/or inducible 

KO mice can be created for each gene and the impact on PHx assessed. 

Changes in the regenerative response, such as decreased or increased 

hepatocyte proliferation, changes in lobular structure or in liver to body weight 

ratio all indicate an important role in liver regeneration. For instance, similar to 

the inducible KO of Notch1 shown by Croquelois et al. (2005), a conditional 
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and inducible Dll1 KO could be generated and tested in a similar manner. 

If nodular regenerative hyperplasia was observed in a Dll1 KO, this would 

provide evidence that Dll1 is the key ligand for Notch1 mediating this 

phenomenon. Taking this further, deletion of Dll1 prior to PHx may lead to 

dysregulation of the regenerative response, and an increase in proliferation. 

Croquelois et al. (2005) noted that Notch1 KO mice displayed lower 

hepatocyte proliferation over WT due to a larger liver to body weight ratio. The 

aforementioned study had waited several days after the removal of Notch1 and 

allowed the liver to increase in size before performing the PHx. I would aim to 

assess the impact on PHx more immediately after removal of Dll1 to assess 

its direct impact on PHx. Any increase in proliferation or changes in lobular 

structure would provide evidence that Dll1 controls the spatial organisation of 

hepatocellular regeneration. 

As well as assessing the importance of these genes in the context of 

PHx, the wider influence of these genes should also be considered. 

Comparison to scRNA-seq data generated from acetaminophen or carbon 

tetrachloride-induced liver injury models could aid our overall understanding of 

the functions of these genes during liver regeneration.  

Ultimately, I would like to assess the expression of Dll1, CKLF, IL33, 

IL55, BMP7 and TIMELESS in human tissue through immunofluorescence and 

flow cytometry. Interrogation and validation of the data generated within this 

project in humans is vital with regard to gaining insights into the human liver 

regenerative response. In conjunction, comparison of these target genes can 

be cross referenced with human scRNA-seq data. A handful of human liver 

single cell datasets are publicly available (Aizarani et al., 2019; MacParland et 

al., 2018). However, many of these are from ischemic livers due to the nature 

of tissue collection. For instance, those obtained are either diseased or 

deemed unsuitable for transplantation and as such, would have been without 

a blood supply for an extended period of time. In order to overcome these 

issues, our group has developed a method for removing a small segment of 

the liver, prior to interruption of blood flow. Previous attempts to isolate live 

hepatocytes from this small cube of human liver tissue proved difficult, 
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however advances in single nuclei RNA-seq protocols mean that in the future 

we will be able to accrue hepatocyte data from these biopsy samples.   

 

6.2 Concluding Remarks 

 

Using scRNA-seq, I have shown that multiple signalling molecules are 

specifically produced by replicating hepatocytes. Several of these, such as 

Il15, Il33, and CKLF, may be pro-regenerative and therefore provide a potential 

therapeutic target for liver disease. Direct administration may not be feasible 

for some of these molecules as their roles go beyond liver regeneration (Han 

et al., 2001; Miller, 2011; Perera et al., 2012). IL15, IL133 and CKLF all have 

immunomodulatory roles and direct administration of these may lead to off 

target effects that would not be desirable. However, understanding the 

downstream effector molecules and signalling will generate a deeper 

understanding of the regenerative process. This in turn will lead to new 

avenues to explore, producing more specific targets. On the other hand, 

potential proliferation inhibitors such as Dll1 may lead to new treatments for 

hepatocellular carcinoma.  

Understanding the function of these proteins and their mechanism of 

action following PHx may prove valuable to future studies. It is clear that liver 

regeneration is a complex, heterogeneous response and high-resolution 

techniques are required to uncover the finer details of this process. Only once 

the complete picture has been discovered, will we be able to fully control this 

marvellous biological system. 
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7 Appendix 

 

7.1 PCA Heatmaps 

 

Heatmap of gene scaled expression, where cells and genes are sorted 

by their principle/harmony component scores. The scaled expression of the 

top 15 genes with a positive principle/harmony component score and the 15 

genes with the biggest negative principle/harmony component score are 

shown. The top 500 cells are used for the heatmap visualisation. All data 

shown were generated from scRNA-seq of hepatocytes following a partial 

hepatectomy time course (Uninjured, 24h, 48h (plate 1), 48h (plate 2), 72h). 

Data were normalised prior to analysis. Dark blue = Low expression, Yellow = 

High expression. 
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Appendix 1 – Heatmap of Top PCA Genes from Data without Batch 
Correction 
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Appendix 2 – Heatmap of Top PCA Genes from Data with Seurat 
Integration Batch Correction 
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Appendix 3 – Heatmap of Top Harmony Genes from Data with Harmony 
Batch Correction 
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