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Abstract

Active matter is a burgeoning topic of current soft matter research due to its

innate non-equilibrium behaviour. However, because of the difficult and complex

procedures that are common with experimental active systems, it is appealing

to investigate what active properties can be retained in mixtures of active and

passive particles. In particular, we are interested in systems with polymer-induced

depletion attractions, where we review if attractions can increase the interaction

timescales between active and passive particles, with the aim of increasing the

effect of activity on the passive particles. For this work, we use motile E. coli

for active particles, micron-sized spherical colloids for the passive particles and a

polymer depletant of polymer-colloid size ratio, ξ = 0.06.

We start by investigating how depletion attractions affect the enhanced diffusion

of passive particles in baths of motile bacteria. For diffusion on a two-dimensional

surface, bacteria are observed to push the particles via steric interactions. As

attraction strength is increased, the bacteria can stick to the particles and drag

passive particles along. This depletion-enhanced, activity-enhanced diffusion can

result in a thirty-fold increase in diffusivity over the passive particle’s Brownian

diffusivity. However, for three-dimensional diffusion, depletion attractions are not

as effective. Even though the active diffusivity remains low, for large attraction

strengths, when a tracer does stick to a bacterium, the tracer can be dragged for

distances up to 50 µm.

We proceed by studying the effect of doping motile bacteria into a phase-

separating, two-dimensional colloid-polymer mixture. In the absence of bacteria,

the passive particles phase separate into a dilute gas phase and dense crystals

which macroscopically look gel-like. We find that bacteria can accumulate at

the edges of crystals due to their persistent motion. The bacteria are observed

to then break the cluster apart and swim through the gap, pushing the two

halves out of the range of depletion forces. The competition between aggregation
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and fragmentation results in a steady-state cluster phase, this incomplete phase-

separation is known as micro-phase separation. The mean steady-state cluster size

is found to increase with increasing attraction strength and decreasing bacterial

concentration. We show that the production of a steady-state and its scaling with

bacterial concentration, as well as the form of the cluster size distribution agrees

with predictions of Smoluchowski equation modelling aggregation-fragmentation.

Finally, we start to explore the possibility of using samples containing only

light-activated bacteria to create designer structures at micron scales. These

light-activated bacteria continuously swim when exposed to green light and thus

accumulate in dark regions of the sample. It has been previously shown that with

a spatially modulated light field, templated structures can be created from light-

activated bacteria. Such structures rapidly decay on the deactivation of the light

source due to diffusion. We show that the addition of polymer depletants stabilise

the structures, increasing their lifetime by at least two orders of magnitude. Such

work relies on the detail that the attraction strength required to induce phase

separation increases with activity and thus, with a carefully tuned attraction

strength, phase separation can be locally induced within dark regions of the

sample. This work represents a few initial steps to building structures from

passive colloids using bacteria.
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Lay Summary

The development of active matter, where here, active matter refers to the ability

of particles to self-propel, has yielded many novel and results; phase separation,

turbulence, powering micro-machines and pattern formation to name a few. These

active particles are often difficult to produce and use at high concentrations, so it

can be desirable to try to impose their unique properties onto passive (non-self-

propelled) particles. We extend studies on active-passive mixtures by introducing

short-ranged attractive interactions between the populations. Throughout we will

use one of the most well studied active particles, a non-pathogenic strain of highly

motile Escherichia coli.

First, we study enhanced diffusion, the process by which the diffusivity of

an individual passive particle is increased by the presence of active particles.

Without attractions between the active and passive particles, enhanced diffusion

has been previously found to occur due to hydrodynamic flows from the active

particles. We find that with attractions, the passive particles can stick to the

active particles and be dragged short distances which can increase resulting

diffusion enhancement thirty-fold when near a surface. This increase in diffusion

enhancement is not nearly as prevalent far from a surface, which we attribute to

the increased range of active particles flow field that is able to push the active

particle away limiting the frequency of sticky interactions.

Next, we review the phase behaviour of a collection of passive particles when

doped with active particles. Without active particles, attractions between the

passive particles induce aggregation yielding crystalline clusters. We observe

that active particles can swim through the clusters along the grain, breaking

them apart. The competition between the passive particles aggregating and the

active particles breaking the clusters apart creates a highly dynamic steady state

of small clusters. We go on to find that our results are well described by an

existing model for systems undergoing aggregation and fragmentation.
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Finally, by carefully tuning the attraction strength, we develop a system where

we can spatially control the phase behaviour with the application of green light.

This work requires a new strain of E. coli (developed elsewhere) which converts

the energy from light into a propulsive force, so when illuminated, it can locally

escape attractive interactions.
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Chapter 1

Introduction

1.1 Brownian Motion

The random motion of micron-sized particles was first observed by Brown in

1827. Einstein later showed that this motion was the result of thermally driven

solvent molecules pushing the larger particle around. The stochastic nature of

forces pushing dispersed particles results in a random walk, characterised by a

mean square displacement (MSD)

〈∆r2(τ)〉 = 2NDτ (1.1)

For N dimensions, over time τ , with a diffusion constant D. In the absence of an

external field, colloids diffuse in random directions which ensures 〈∆r〉=0. Their

diffusion constant is defined as

D =
kBT

6πηR
(1.2)

Where the Boltzmann constant kB, temperature T , viscosity η and particle radius

R.

The dynamics of such a system is fundamentally equilibrium in nature and has

been well understood for decades. We will refer to these types of particles as

passive particles because they passive move due to thermal fluctuations.
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1.2 Active Particles

The alternative to a passive particle is an active particle, one which consumes

energy to perform some non-equilibrium activity. Examples of active systems

include cells that grow and replicate, however, within this thesis, we will focus

exclusively on active particles which undergo self-propulsion. A common class of

self-propulsive particles are natural micro-organisms, for example, bacteria, algae

and spermatozoa. Recently a second class has been created, synthetic active

particles like the two-faced Janus particle, which self-propel by decomposing

hydrogen peroxide on their platinum-coated face. The details of the mechanism

for Janus particle propulsion is still under review [21, 22].

The motion of active particles is dominated by their low Reynolds number, the

ratio of inertial to viscous forces

Re =
avρ

η
(1.3)

For a characteristic dimension a, speed v, density ρ and viscosity η. Typical

active particle have a characteristic dimension of ∼ 1 µm, v 10 µms−1, ρ = 103

kgm−3, and η = 10−3Pa.s which gives a Reynolds number of 10−5, so it is fair

to say, inertia plays no role here.

The lack of inertia has a dramatic impact on fluid motion, as described by the

Navier-Stokes equation (expressed in units of force per unit volume)

−∇p+ η∇2v = ρ
∂v

∂t
+ ρv · ∇v (1.4)

Where the right-hand side is the inertial term, ∇p is the pressure gradient and

η ∇2 v is the viscous term. In this low Reynolds number environment, we can

neglect the inertial term, which yields

−∇p+ η∇2v = 0 (1.5)

This description no longer contains any time derivatives, and thus states any

response to motion is instantaneous. Consider the effect this has on swimming by

reciprocal motion, which is the act of performing an action to move, then the same
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in reverse. For example, the scallop, which slowly opens its shell and slams it shut

to propel its self forward. In a high Reynolds number environment, where scallops

exist, after quickly closing its shell the scallop moves quickly and continues to

move as its velocity is dissipated. In a low Reynolds number environment, the

speed of the action no longer matters, and the scallop would remain in its original

position. The reversibility of reciprocal motion was famously shown by Taylor

et al [139], who injected ink into a very viscous fluid between two cylinders and

then began to shear the fluid. After several cycles, they reverse the shear for the

same duration which returns the ink to its exact starting point.

To swim at low Reynolds number, active particles requires some form of non-

reciprocating motion. There are two famous examples within nature, firstly the

“flexible oar”. If the oar is stiff, pushing it back and forth is reciprocal motion

and yields no net displacement. However if the oar is allowed to bend on each

stroke, it will bend in one direction on the first half of the stroke and the opposite

as it returns. This flex is sufficient to allow propulsion, and for example, it is how

spermatozoa beat their single flagellum to swim.

Figure 1.1 The drag force on helix comprising of a sequence of cylinders. a)
A cylinder being dragged through a fluid with velocity v with an
off-inverse drag force f . b) A sequence of cylinders making up a
helix. As the helix is rotated with angular velocity Γ experiences
net force f .

The second famous example of non-reciprocal motion is the rotation of helix or

“corkscrew”. Consider the helix as a series of cylinders, for example, see figure 1.1.

As the helix is rotated with some angular velocity, each cylinder moves through

the fluid at velocity, v. The drag, f , on the cylinder is larger perpendicular to

its central axis than along it, causing the total drag to not be anti-parallel to

the velocity. Averaging over all cylinders across the length of the helix yields a

total drag along the axis of the helix, and thus a propulsive force in the opposite

direction. These do not slip through the medium like a corkscrew does a cork,

but exert a force upon the surrounding medium and can require 100 rotations to
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propel themselves a single wavelength [77, 102]. This is the mechanism used by

E. coli to self-propel.

The bacterium E. coli, which is the active particle we will focus on in this work,

is approximately 0.75 µm in diameter with a length of 2-5 µm depending on its

growth stage. Each cell has ∼7 flagella randomly distributed around the body of

75 nm diameter and length of 7-10 µm which are connected to complex rotatory

motor proteins embedded within the cell wall. When all of the flagella are turned

counter clockwise they form a single helical bundle behind the cell, the process

by which this occurs is still under investigation. Note that within a single culture

of E. coli, a fraction of the cells do not have flagella and are thus non-motile.

Each flagellum is connected to a flexible hook which then connects to a complex

motor protein assembly in the cell membrane. The motors are driven by a proton

motive force (PMF), a flux of H+ entering the cell from the surrounding medium.

The PMF is maintained at 150 mV by the consumption of a carbon source, i.e.

a fuel [123, 130]. Without a carbon source present, for example, glucose, E. coli

can continue to swim if oxygenated [123].

Figure 1.2 Taken from [37]. a) Experimentally measured flow field created by a
single free-swimming E. coli, far from a surface, where the direction
of the flow is indicated by arrows. b) The decay of the fluid velocity,
when the cell is far from a surface. c) The decay of the fluid velocity,
when the cell is 2 µm above the surface.

The swimmer’s body exerts a force on fluid, f , which is balanced by an opposing

force by the flagella, −f . These opposing forces can be described as a force dipole,

where the fluid velocity v ∝ f/ηr2. Experimentally, the force dipole model has

been found to be accurate in the far-field by Drescher et al. as shown in figure

1.2a and b, while it overestimates the flow in the near-field [37]. Drescher et

al. found that the best to fit their data was achieved using two force monopoles

instead of a point dipole, giving the force dipole f = 0.42 pN [37]. The cell drag

monopole was determined to be behind the cell body, indicating the importance
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of the flagella bundle.

The flow fields exerted by motile cells must decrease in proximity to a surface

due to the no-slip boundary condition on the fluid velocity, where molecules at

the surface have zero velocity [17]. So when in proximity to a wall (figure 1.2c) a

cell’s flow field decays faster than in the bulk (figure 1.2b) [37].

1.3 Active Motion

In this work we are interested in imparting active properties on passive particles,

here we will introduce one of the most fundamental active properties, their

motion. The observed motion of an active particle is dependant on the observation

window. Active particles are still subject to Brownian forces, which dictate their

motion over short time scales. Active particles then exhibit ballistic motion over

intermediate time scales, where the square displacement is 〈∆r2〉 ≈ v2τ 2 for a

given swimming speed v and time τ . For long times, Brownian forces randomise

the particle’s orientation giving rise to long-time diffusive behaviour. The time-

scale over which an active particle turns from ballistic to effective diffusion is

controlled by their rotational diffusion time, τr [102]

τr =
8πηR3

kBT
(1.6)

The mean square displacement of an active Brownian particle in two dimensions

is [98]

〈∆r2(τ)〉 = 4Dτ +
v2τ 2

r

3

[
2τ

τr
+ exp

(
−2τ

τr

)
− 1

]
(1.7)

Whereat short times, τ � τr, this can be approximated as 〈∆r2(τ)〉 = v2τ 2.

While at long times, τ � τr, gives an effective diffusion constant of Deff =

D + v2τr/6

Note that equation 1.7 can also be used to describe the motion of a Brownian

particle and its fast decorrelation due to inertia (obviously for such a description

the first term is set to zero, i.e. 4Dt = 0) [10, 145]. This is reduced to equation

1.1 because the time scales involved in Brownian motion are several orders of

magnitude smaller than what is generally measured in experiments [73].
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In this work, we focus on the active particle, motile E. coli. So far we have

described particles that undergo continuous propulsion which undergoes rotation

due to Brownian forces, which we call “smooth swimmers”, however, such motion

is atypical for the species. The wild type (WT), i.e. the typically observed type,

swims with “run-and-tumble” motion, named after the bacterium’s runs where

they swim for ∼ 1s and then tumble for ∼0.1s [12]. A tumbling event is triggered

when one or more of the motors reverses its direction briefly, this breaks the

flagella bundle apart and causes the cell to spin with no net displacement. When

the motors all turn counter-clockwise again, the flagella reforms a bundle and the

cell will undergo another run in a new direction [144]. Run-and-tumble motion

allows each cell to control its reorientation timescale, τr, an ability that is useful

for processes like chemotaxis, where the cell will preferentially swim up or down

a concentration gradient [1]. To remove run-and-tumble motion, and thus induce

smooth swimming in E. coli requires the deletion of appropriate chemotactic

genes [123].

Within this thesis, we will use active baths, a fluid containing a wealth of active

particles. These baths are far from equilibrium, and thus can generate novel

non-equilibrium states. A particularly striking property of dense active baths

is the manifestation of swirling patterns and short-lived vortices, caused by the

collective motion of its parts. Such turbulent behaviour is generally the result of

inertial forces, which are not present in these systems. While the details are still

under debate, the basic phenomenology can be understood by the Vicsek model,

which is a minimal model where each constituent (or here particle) within the

system attempts to align itself with its neighbours [150]. For baths of E. coli,

long-range hydrodynamics act as aligning interactions. These interactions have

a characteristic range, which limits the lowest density at which each constituent

senses its neighbours, below this limit, where we will focus, uncorrelated motion

occurs.

1.4 Particle Interactions

1.4.1 Hard-Spheres

We introduce particle interactions with one of the simplest interactions, the hard-

sphere potential. The interaction potential, U(r), is infinite between two particles
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in contact (repulsive) and drops to zero when the centre-to-centre separation, r,

increases.

UHS(r) =

{
∞ r ≤ σ

0 r > σ
(1.8)

where σ is the particle diameter.

These hard-spheres do not deform and cannot penetrate or overlap with other

particles. However experimentally, solid particles are not perfect hard spheres

because of van der Waals attractions. Electrostatic repulsions or steric polymer

brushes can be used to minimise the effect of these attractions, but at best these

result in steep potentials that are only an approximation to hard-spheres [114].

1.4.2 Electrostatic Interactions

Van der Waals forces, which here refer to London dispersion forces, are the result

of fluctuations of the electron clouds in a particle, resulting in momentary dipole,

which can then induce a momentary dipole in a neighbouring particle resulting in

an attractive force. These forces are always attractive. For two spheres of radius

R at a centre-to-centre separation of r, the Van der Waals potential is [71]

UVdW(r) =
−A
6

[
2R2

r2 + 4Rr
+

2R2

r2 + 4Rr +R2
+ ln

(
r2 + 4Rr

h2 + 4Rr +R2

)]
(1.9)

where A is the Hamaker constant, R is particle radius and r is centre-to-centre

separation. This potential is very short-ranged and very strong, which can result

in the aggregation of particles, sketched in figure 1.3a.

In this work, we use electrostatic repulsions to stabilize particles and prevent

aggregation and phase separation. For charged particles in a fluid, repulsive

forces occur due to the formation of a double layer. Particles with ionisable

groups on the surface undergo dissociation when dispersed in a fluid, leaving

the particle with a surface charge. The charged surface adsorbs counter-ions,

depleting co-ions from the surface. The co-ions then form a more diffuse second

layer, the combination of these layers is the so-called double-layer [71]. As the
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ionicity in the fluid increases, the surface charge is screened more, i.e. the double

layer becomes more compact.

As a charged particle approaches another, their double layers begin to overlap

resulting in a repulsive force, given by [71]

UDLR(r) = kBT
8p2

c

1 + p2
c

R

λB
exp(−r/λD) (1.10)

where pc = 2πλDλBsc/e for the elementary charge e and surface charge density

sc. λD is the Debye screening length

λD =

√
1

8πλBns
(1.11)

for salt number density, ns. λB is the Bjerrum length

λB =
e2

4πε0εrkBT
(1.12)

where e is the elementary charge, εr is the relative dielectric constant and ε0 is

the dielectric constant of a vacuum.

Figure 1.3 Schematic representation of the DLVO potential. a) The DLVO
potential as the sum of Van der Waals attraction and electrostatic
repulsion. b) The effect of increasing salt concentration on the
DLVO potential

The DLVO potential is given by the sum of Van der Waals attraction and double
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layer repulsion

UDLVO(r) = UVdW(r) + UDLR(r) (1.13)

The DLVO potential is illustrated in figure 1.3a, if the maximum is larger than

a few kBT , aggregation is prevented [71]. However, as the double layer repulsion

is screened by increasing salt concentrations the potential can become purely

attractive, as illustrated in figure 1.3b. This introduces a salt concentration limit

for particle stability.

1.4.3 Polymer Depletion

Figure 1.4 Schematic representation of the polymer-induced depletion interac-
tion. a) Depiction of polymer-particle interactions resulting in a
depletion zone around the particle. b) Sketch of the interaction
potential arising from polymer depletion.

Particle attractions can also be induced by the addition of a non-adsorbing

polymer. Since the polymers do not adsorb, within the fluid there is a zone around
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the particles which the polymer centres cannot penetrate without significant

deformation, called the depletion zone. As two particles approach the depletion

zones overlap which increases the volume available to the polymer. As the free

volume increases the polymers free energy decreases. So, even though polymer-

particle and particle-particle interactions are repulsive, the favoured state is one

where the particles are in close proximity, yielding an effective attraction between

the particles. A schematic showing the overlap of depletion zones is shown in

figure 1.4a.

This depletion force is the result of an unbalanced osmotic pressure from the

surrounding fluid which is given by [6, 7, 158]

UHS(r) =


∞ r ≤ σ

−ΠpVoverlap σ < r < σ + 2rg

0 r > σ + 2rg

(1.14)

where Voverlap is the overlapping volume of the depletion zones and Πp is the

osmotic pressure. The range of the attraction is given by the polymer’s radius of

gyration, rg.

The osmotic pressure is proportional to the number density of polymer depletants,

np [71]

Πp = npkBT (1.15)

For two symmetric spheres, the overlap volume is given by

Voverlap(r) =
π

6
σ3(1 + ξ3)

[
1− 3r

2σ(1 + ξ)
+

r3

2σ3(1 + ξ)3

]
(1.16)

where the size ratio is ξ = 2rg/σ.

This means the potential is controlled by the radius of the polymer depletant

and the depth by its number density. A sketch of the potential, equation 1.14 is

shown in figure 1.4
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1.4.4 Interaction Potentials in Baths of E. Coli

In the experiments presented here, we use high salt concentrations to promote

‘ideal’ conditions for active particles, motile E. coli. Here, ideal means what has

widely been studied. We report in appendix A how changing salt concentrations

can alter the behaviour of E. coli. Note, this salt also screens electrostatic

repulsions between particles (equation 1.11). The salt concentration must

therefore be carefully selected to be close to ideal but not high enough to induce

aggregation.
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Chapter 2

Materials and Methods

In this thesis, we use microscopy to study the dynamics and structure of passive

particles with depletion-induced attraction in a bath of motile E. coli. In this

chapter, we review the materials and general methods used.

2.1 Polymer

To induce particle-particle and particle-bacteria attractions, we add a non-

adsorbing polymer depletant, where the attraction strength U(r) ∝ φfreep , for a

polymer volume fraction in the free volume φfreep . In this work, we will use sodium

polystyrene sulfonate, NaPSS (Mw ∼ 106 Da, linear chain purchased from Sigma

Aldrich), which has previously been shown to act as a non-adsorbing depletant in

samples of E. coli [121, 122, 124]. Ideally, the polymer used would be a random

coil, however, NaPSS is a polyelectrolyte for which the charges on the backbone

repel inducing a self-avoiding behaviour. Random coils can be induced in NaPSS

at sufficient salt concentrations, which screens the negative charge. Here, PSS is

dispersed in a phosphate buffer (to accommodate bacteria and particles), which

is lower ionicity than ideal conditions [160]. In an ideal solvent, polymer chains

have random walks, however here, the chain is slightly self avoiding. This swelling

of the polymer coil at lower than ideal salt concentrations increases the depth and

width of the depletion potential [6, 142].

Since the volume fractions of particles and cells used within this work are very

low, the volume fraction in the free volume, φfreep ≈ φp, where φp = cp/c
∗
p for a
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polymer mass concentration, cp and the overlap concentration [51]

c∗p =
3Mw

4πr3
gNA

(2.1)

For a radius of gyration rg and Avogadro’s number NA.

One of the best methods of calculating the overlap concentration is from the

measurement of the intrinsic viscosity [η], where c∗p ≈ [η]−1 [118]. The intrinsic

viscosity can be written as the virial expansion of the viscosity, η and the polymer

concentration, cp, where the polymers occupy the available free volume

η = ηs(1 + [η]cp + kH [η]2c2
p + ...) (2.2)

where kH is the Huggins coefficient. At low polymer concentrations, equation 2.2

fits results well and therefore higher-order terms can be ignored [118]. Solving

for [η] gives the Huggins fit for the intrinsic viscosity

η − ηs
ηsc

= [η] + kH [η]2cp (2.3)

An alternative involves solving equation 2.2 for η/ηs and then taking the natural

logarithm

ln(η/ηs) = ln(1 + [η]cp + kH [η]2c2
p + ...) (2.4)

For small cp, expansion of this logarithm produces

ln(η/ηs) = [η]cp + (kH −
1

2
)[η]2c2

p + ... (2.5)

Yielding a different form known as the Kraemer equation

ln(η/ηs)

cp
= [η] +

(
kH −

1

2

)
[η]2cp (2.6)

Both equations 2.3 and 2.6 should return the same value for the y-intercept, [η].
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We measure the viscosity at various concentrations of PSS in motility buffer (6.2

mM K2HPO4, 3.8 mM KH2PO4, 0.1 mM EDTA at pH ∼ 7.5) using a shear rate-

controlled rheometer with cone-and-plate geometry, the viscosity and Huggins

and Kraemer fits are plotted in figure 2.1. Fits to the Huggins equation yield

[η] ≈ 3.7 dL/g and the Kraemer equation [η] ≈ 3.0 dL/g, for our purposes we will

take the average value, [η]= 3.35 dL/g (and c∗p = 0.435 wt%). For more accurate

measurements of [η], where both fits yield the results, maybe possible with the

use of lower polymer concentrations and careful use of capillary viscometers [118].

With the intrinsic viscosity and thus c∗p, using equation 2.1, we can now extract

the polymer’s radius of gyration, rg = 45 nm.

Figure 2.1 Measurement of the intrinsic viscosity of sodium polystyrene
sulfonate in motility buffer (6.2 mM K2HPO4, 3.8 mM KH2PO4,
0.1 mM EDTA at pH ∼ 7.5). a) Fits to the Huggins and Kraemer
equations, equations 2.3 and 2.6. b) The viscosity measurements
used for the plotting of Huggins and Kraemer fits, fitted to a straight
line.

2.2 Particles

In this thesis, we use two separate particle stocks for our two types of experiments.

For our quasi-two-dimensional system, we use 1.5 µm diameter silica particles

from Bangs particles, of density, ρ= 2 g/cm3, twice that of water. These dense

particles quickly sediment to the bottom of the capillary with velocity, vsed =

∆mg/3πησ, where ∆m is the buoyant mass, giving vsed = 1.2 µms−1. In our

400 µm high capillaries, the silica particles take ∼ 5 minutes to reach the bottom
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surface. In section 4.2, we will show that on average these particles remain within

200 nm of the surface.

For measurements far from the surface, we use 1.8 µm diameter fluorescent

polystyrene (yellow-green) from Invitrogen. Polystyrene is used due to its close

density matched with water (where the density mismatch, ∆ρ= 0.04 g/cm3)

and are therefore much more stable to sedimentation. The fluorescence labelling

allows for the particles to be easily discriminated from E. coli.

The particles are dispersed in a phosphate buffer composed of 6.2 mM K2HPO4,

3.8 mM KH2PO4, 0.1 mM EDTA at pH ∼ 7.5, this buffer is used for the later

addition of motile E. coli. These salts will partially screen the charge stabilisation

of both particles, but here, not by enough to induce aggregation. We also add

0.3 wt% TWEEN 20 surfactant to minimize surface adhesion [156].

2.3 Biological Materials and Methods

2.3.1 Bacteria

Throughout this thesis, we use a non-pathogenic strain of E. coli, AB1157, which

is highly motile, relatively easy to mutate and has already been extensively

studied and optimised for the use as an active colloid [123]. Unless otherwise

specified, we use AB1157 ∆CheY, where the ∆ refers to the deletion of the

chemotactic CheY gene, yielding smooth swimming bacteria. In brief sections,

we will also use the wild-type (WT) which undergo run-and-tumble motion and

also use AB1157 ∆CheZ which undergo constant tumbling.

In chapter 8, we will discuss the use of AD10, a strain of AB1157 which is

able to self-propel by illumination with green light activating genetically added

proteorhodopsin (PR) proteins [5]. PR exists as extrachromosomal DNA within

the cell, further to that the unc gene was deleted to decrease stopping time after

green-light is switched off and again the CheY gene is deleted to yield smooth

swimmers. Resistance to the antibiotic ampicillin was also encoded, as this allows

for growing cultures of this strain in media containing ampicillin, hindering the

loss of the evolutionarily unfavourable genetic modifications.

The ∆CheY and ∆CheZ strains were transformed by J. Schwarz-Linek and AD10
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was transformed by A. Dawson.

2.3.2 Media

Luria broth (LB) is a rich growth medium containing 10 g/L tryptone, 5 g/L yeast

extract and 5 g/L NaCl, dispersed in deionised water, which is then sterilised by

autoclaving at 120Celsius for 20 minutes. LB agar contains an additional 15 g/L

agar.

Tryptone broth (TB) is a moderately rich growth medium used for growing

reproducibly highly motile cultures of E. coli [2]. TB contains 10 g/L tryptone

and 5 g/L NaCl, dispersed in deionised water, which is then sterilised by

autoclaving at 120Celsius for 20 minutes.

Motility buffer (MB) composed of 6.2 mM K2HPO4, 3.8 mM KH2PO4, 0.1 mM

EDTA at pH ∼ 7.5, in which the bacteria do not grow. This buffer is based

on Berg’s motility buffer (BMB), which is commonly used for suspensions of

motile E. coli, however here, MB is BMB without 67 mM NaCl. We removed

salt from the MB to reduce screening between tracer particles that were added to

the same mixture. The removal of NaCl does not appear to dramatically change

the behaviour of E. coli or alter our findings. We report observed behavioural

changes of E. coli in appendix A.

2.3.3 Growth Protocols

The bacteria are stored on LB agar plates at 4 Celsius in a fridge and disposed of

after 1 month. These plates were prepared by J. Schwarz-Linek and A. Dawson.

To prepare a batch of cells (AB1157 WT, ∆CheY or ∆CheZ), first overnight

cultures are grown, inoculated from a single colony and grown aerobically in 10

mL LB in an orbital shaker at 30 Celsius and 200 RPM for ∼16 hours. A fresh

culture is prepared by 1:100 dilution of the overnight culture into tryptone broth,

which is grown in the same conditions for 4 hours. At this point, the culture is

mid-exponential phase, at which point the growth is stopped by filtration and a

single wash into MB, yielding a final optical density (OD) ∼ 7, corresponding to

cB = 0.8 × 1010mL−1. This protocol has been previously studied and optimised

for motility [123] [60].
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The growth protocol for AD10 required modification. First, 100 µg/mL ampicillin

is added to all growth stages to minimise genetic mutations. Secondly, after

growing in TB for 4 hours, the transcription of PR is then induced by the addition

of 1 mM arabinose and the necessary co-factor all-trans-retinal to 10 µM and is

allowed to grow for a further 75 minutes to allow expression to take place. The

growth is again stopped by filtration and washing into motility buffer.

2.3.4 Note on Experimental Procedure

When in MB, i.e. a media without nutrients, the swimming speed of E. coli

is observed to steadily decrease over time until oxygen is depleted, upon which

swimming stops [123]. This decrease in motility in starvation conditions is not

fully understood, however, to minimise its impact we run experiments in parallel

(where possible). By running experiments at the same time, the variation in

motility is minimised between samples.

2.4 Methods for Studying Dynamics

Within this thesis, the main experiments revolve around direct observations with

a microscope. We use three types of microscopy, bright-field, phase-contrast and

epifluorescence. We process the micrographs using two separate methods, particle

tracking and differential dynamic microscopy (DDM). In the following sections,

we will review the above-mentioned methods.

2.4.1 Transmission Light Microscopy

Bright-field microscopy is one of the simplest microscope techniques, where the

sample is illuminated from behind and the image is directly transposed on to

a camera. As the light passes through the sample, contrast is generated by

absorption and refraction.

Both bright-field and phase contrast are set up with Köhler illumination. For

bright-field, Köhler illumination aims to remove any imaging artefacts from the

light source and increase contrast [161]. Light from the source passes through a

collector lens which is then focused on to the condenser. After passing through
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Figure 2.2 Simplified optical paths for left, bright-field and right, phase-
contrast microscopes.

the condenser, light from each point on the source evenly illuminates each point

on the sample. The image of the sample is then inverted as it passes through the

objective, which is then captured by the camera. A simplified optical path for

bright-field is depicted in figure 2.2.

Bright-field imaging of semi-transparent biological samples are generally low

contrast, for such samples phase-contrast microscopy can be utilised for higher

contrast imaging. Phase-contrast, as the name suggests, generates contrast in

the final image from changes in the phase of the light.

In phase-contrast microscopy, a phase ring is added to the condenser, leaving

only the most oblique illuminating light, figure 2.2. The condenser again focuses

the light through the sample and into the objective forming a bright background.

Semi-transparent cells, diffract the light which proceeds to destructively interfere

with the background light. The use of oblique illumination emphasises the phase
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shifts in the diffracted light increasing the contrast [161].

2.4.2 Epifluorescence Microscopy

Figure 2.3 Simplified optical path used for epifluorescence microscopy.

Fluorescence is the emission of a photon from a molecule or atom as an electron

decays from a raised energy level. The raised energy level is caused by the

absorption of a photon from within a small band of wavelengths. Due to

collisional relaxation occurring in the brief 1 µs window between absorption

and emission, the emitted light is of higher wavelength (lower energy) than that

initially absorbed. With careful choice of filters, the change in wavelengths means

that the excitation source can be excluded from the imaging plane, allowing for

the clear observation of the fluorescing object.

Fluorescence microscopy refers to microscopes that utilise fluorescence to observe

the sample, epifluorescence microscopy refers specifically to the emission of

excitation light from the objective (the same objective used for imaging). For

parts of our work, we used an inverted epifluorescent microscope, for which a

simplified layout is depicted in figure 2.3. We start with the excitation light

source, here a mercury-vapour lamp with a neutral density filter (ND8) to reduce

its intensity. The light is filtered to 450-490 nm by a Chroma EGFP filter cube
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which is then reflected by a dichroic mirror into the objective and onto the sample.

The dichroic mirror is key to epifluorescence as it reflects most of the excitation

light while allowing the emission light to pass through. An emission filter is placed

behind the dichroic mirror to minimise any of the excitation light proceeding to

reach the camera. These experiments are also done in a dark room to further

minimise any background light reaching the camera. The fluorescing sample can

then be visualised as bright on a dark background.

We use epifluorescence to study polystyrene tracer particles from Invitrogen,

which are labelled with an unspecified fluorescent dye which absorbs around ∼
490 nm and emits ∼ 520 nm. We will use epifluorescence microscopy in chapter 5

to study the dynamics of fluorescent colloidal tracers in a bath of non-fluorescing

E. coli.

2.4.3 Multiple Particle Tracking

Particle tracking is the process of identifying and locating particle centres over a

time-lapsed series of images and then ‘connecting the dots’ to compile a trajectory.

To track a large number of particles over long periods of time, algorithms are

implemented to automate the process. The exact method used varies between

project and research group as no universal best method exists [28]. Within this

work, we opt to use simple methods, made possible by the use of high-quality

experimental data (high frame rates and small pixels sizes) [28].

Here, we use a four-part process. First, the image pre-processed to improve

clarity, then it is thresholded to identify particle locations, followed by a centre

of mass (or centroid) calculation to find the sub-pixel location, then finally the

linking of particle positions over time to create the trajectory.

To identify candidate particles, we note that the particles are significantly brighter

than the background. To improve the signal, we convolve the image with the

Gaussian kernel, resulting in blurring. For a two-dimensional image, the Gaussian

filter is

G(x, y) =
1√
2πσ

exp−
x2+y2

2σ2 (2.7)

where x and y are the distances from a central pixel and σ is the standard

20



Figure 2.4 Example showing the visual process of identifying a particle and
calculating its centre. a) raw image, b) pre-processed image, c)
thresholded pre-processed image and d) the centre labelled in red
on the pre-processed image.

deviation. This filter is applied to all pixels in an image. A raw image of a silica

particle in bright-field is shown in figure 2.4a and the same image processed with

a Gaussian filter, σ = 2, figure 2.4b.

Next, we threshold the image to identify the particles. To remove variations in

illumination between experiments, we first subtract the average brightness of the

image from the processed image and then threshold the image. The thresholded

image is shown in figure 2.4c. The threshold is then used to then label each

individual bright object in the image. While we did not need to, for each object,

the number of pixels of a particle can be used to discriminate between real

particles and dirt or dust.

For the pixels associated with each particle, the centre of mass is calculated,

where the centre is [26]

Cx =

∑n
i=1

∑m
i=j xi · Iij∑n

i=1

∑m
i=j Iij

(2.8)

where I is the intensity matrix, for pixels above the threshold and Cx centre

of mass in the x-axis. Figure 2.4d shows the identified centre (in red) on the

processed image. This method identifies the particle centre to a sub-pixel level

[28].

The centre of mass is a computationally inexpensive calculation, which is sufficient

for our needs as long as no sub-pixel biasing is present [26]. Sub-pixel bias occurs

when the particle spans over too few pixels and the identified centre shows bias

towards the centre of a pixel (instead of finding a uniform distribution of sub-

pixel locations). The presence of sub-pixel biasing is a problem for the study of
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Figure 2.5 Histogram showing representative sub-pixel locations of particles.

particle displacements, where at short times, the biasing to a central pixel can

cause the particle to appear stationary and then jump a large distance. In figure

2.5, we report a representative histogram of sub-pixel locations for the tracking

used here, which shows a uniform distribution and no sub-pixel bias.

If sub-pixel biasing was present, other, more accurate and slower methods can

be utilised to identify centres. A common, next best method is fitting the pixel

intensities to a Gaussian in x and y, where the centre of the function is the particle

centre [26] (which is not used in this thesis).

Finally, the particle locations are connected across frames to build each particle’s

trajectory. We identify the particles next location by finding the nearest

neighbour method, i.e. the closest particle on the next frame. To ensure the

trajectories do not ‘jump’ between particles, we impose a maximum range of the

next frame of σ/3, for particle diameter σ, made possible by the use of high frame

rate movies (∼100 fps).

We use the results from particle tracking for calculations of the particles mean

square displacement in chapter 4 and for structural analysis of clusters in chapter

7.
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2.4.4 Intermediate Scattering Function

We also measure the intermediate scattering function, f(q, τ), to study both

tracer and bacteria dynamics, using a method called differential dynamic

microscopy. The ISF is a measure of structure correlation after a timescale τ

over a length scale, 2π/q, as given by the Fourier transform of the probability

distribution function of particle displacements.

f(q, τ) =

〈
N∑
j=1

eiq.(r(t+τ)−r(t))

〉
(2.9)

where r is the displacement of the particle and f(q, 0) = 1.

The ISF is commonly measured by dynamic light scattering and differential

dynamic microscopy and requires fitting to a model to extract dynamic properties

like diffusivity or swimming. For isotropic particles undergoing Brownian

diffusion, where the displacement distribution is Gaussian, equation 2.9 reduces

to [13]

subject to the condition that f(q, 0) = 1

f(q, τ) = e−Dq
2τ (2.10)

For motile E. coli, the ISF is modelled assuming they swim on an infinitely

straight trajectory with velocity v, δr(τ) = vτ . For an isotropic culture in three-

dimensions, the ISF is [13]

f(q, τ) = e−Dq
2τ

∫ ∞
0

P (v)sinc(qvτ)dv (2.11)

where P (v) is the distribution of bacteria velocities and the multiplicative factor

e−Dq
2/τ accounts for the Brownian motion experienced by the bacteria and the

function sinc(x) = sin(x)/x. The velocity distribution, P (v) is well modelled as

a Schulz distribution [79]

P (v) =
vZ

Z!

(
Z + 1

v̄

)Z+1

exp

[
− v

v̄
(Z + 1)

]
(2.12)
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where Z is related to the standard deviation, σ, by Z = (v̄/σ)2 − 1.

However, a third of an E. coli culture will typically be non-motile [79], described

by a non-motile fraction, β, which undergo purely diffusive motion (the fraction

of motile cells α = 1 − β). After accounting for the non-motile cells, the ISF

becomes

f(q, τ) = e−Dq
2τ

[
(1− α) + α

∫ ∞
0

P (v)sinc(qvτ)dv

]
(2.13)

We will later make fits to equation 2.13, where, to reduce computing time, we

make use of the simplification [79, 107]

∫ ∞
0

P (v)sinc(qvτ)dv =

(
Z + 1

Zqv̄τ

)
sin(Ztan−1Λ)

(1 + Λ2)Z/2
(2.14)

where Λ = (qv̄τ)/(Z + 1).

For motile populations, this model of the ISF is only valid for 0.5 < q < 6µm−1

[79, 162]. For large length scales, q < 0.5µm−1, the trajectories are no longer

straight due to tumbling events or rotational diffusion. Whereas short length

scales, q > 6µm−1, probe the precessive motion of the cells. While it is possible

to access these q values with ultra-low-angle dynamic light scattering [95], the

results are more readily accessible with differential dynamic microscopy.

2.4.5 Differential Dynamic Microscopy

The advent of Differential Dynamic Microscopy (DDM) has provided access to

information on the dynamics of colloids while averaging over significantly larger

populations than those accessible by tracking. DDM is an extension of light

scattering, but instead of requiring a laser light source like traditional methods,

DDM uses the more accessible optical light microscope with a camera and

computer for analysis.

The raw input for DDM here is a high frame rate movie from a microscope of

colloids undergoing diffusion or self-propulsion. The light intensity (pixel values)

of each frame is described as I(~r, t) where ~r describes the imaging plane in terms

of pixel position for a time, t. As particles move, the I(~r, t) changes accordingly.

We then calculate the difference between frames D(~r, τ) = I(~r, t+ τ)− I(~r, t) for
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a time t and time difference of τ .

The Fourier transform of D(~r, τ) is

FD(~q, τ) =

∫
D(~r, τ)exp[i~q · ~r]d~r (2.15)

Since the fluctuations in light intensity are due to the movement of colloids we

assume

∆I(~r, t) = κ∆ρ(~r, t) (2.16)

Where the constant κ is dependent on the imaging setup. Here we define

∆I(~r, t) = I(~r, t)− 〈I〉 and ∆ρ(~r, t) = ρ(~r, t)− 〈ρ〉

Combining equations 2.15 and 2.16 give

FD(~q, τ) = κ[∆ρ(~q, τ)−∆ρ(~q, 0)] (2.17)

Since we are studying continuous and homogeneous process, we average radially

and the initial time t, from which we calculate the differential intensity correlation

function, DICF

〈
|FD(q, τ)|2

〉
= A(q)[1− f(q, τ)] +B(q) (2.18)

where the prefactor A(q) is

A(q) = 2κ2〈[∆ρ(~r, t)]2〉 (2.19)

and f(q, τ) is the intermediate scattering function

f(q, τ) =
〈∆ρ(~q, τ)∆ρ(~q, 0)〉
〈[∆ρ(~q, τ)]2〉

(2.20)

The final term, B(q), is added to account for camera noise. The differential

intensity correlation function can be fit using an appropriate form of the

intermediate scatting function.

DDM has two separate uses within this thesis, firstly for measuring the diffusivity
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of colloids in the bulk (as we report in chapter 5) and secondly to characterise

bacterial motility and note batch-to-batch variations.

Here, we report representative results from DDM for samples of E. coli in motility

buffer with glucose, the bacteria concentration, cB = 5.1 × 108 µm−3. The

movie was recorded in phase-contrast illumination (10×/0.3 NA Ph1 objective)

at 512×512 pixels (where pixel size = 1.4 µm/px for ∼ 4000 images at 100fps.

These are bulk measurements, where the objective is focused 100 µm up from

the bottom of a 400 µm high capillary. These setup parameters (bacteria density,

objective, frame rate, etc.) were previously optimised for the signal to noise ratio

[79].

Figure 2.6 The differential intensity correlation function as measured by DDM
(points) and the fits to equation 2.13 for a range of q. The sample
is WT E. coli (bacteria concentration, cB = 5.1 × 108 µm−3) in
motility buffer with glucose, 5 minutes after sealing the capillary.

The differential intensity correlation function is calculated and then plotted in

figure 2.6 (points) and the fits using equations 2.18 and 2.13 are also plotted

(lines). The value of the DICF is for τ → 0,
〈
|FD(q, τ)|2

〉
= B(q) and for τ →∞,〈

|FD(q, τ)|2
〉

= A(q) + B(q), where the intermediate form is determined by the

intermediate scattering function.

The fitting of the DICF yields 6 variables as a function of q, shown in figure 2.7.
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For this example, averaging in the range 0.5 < q < 2.4µm−1, we extracted D

= 0.51 ± 0.03 µm2s−1, v = 17.7 ± 0.3 µms−1, β = 0.37 ± 0.02, Z = 1.74 ±
0.20, where the errors correspond to the variance in q. Here, Z appears slightly

q-dependent, this only corresponds to a small increase in the standard deviation

of the velocity distribution at high q.

A(q) is the only fitting parameter with significant q-dependence, which occurs

due to the strong q-dependence of the form factor of the bacterium and imaging

setup [79]. Further, ratios of A(q) between samples can be used as a measure of

the relative sample density [5].

The velocity has slight q-dependence based on the swimming mode [79]. For

swimmers with infinitely straight trajectories, which are recorded with an infinite

depth of field, the velocity will have no q dependence. However, if the bacteria

undergo run-and-tumble motion, for length scales longer than the persistence

length, bacteria are swimming further than the length probed by DDM, making

them appear slower for smaller q. Alternatively, smooth swimmers can swim out

of the imaging plane, which makes them appear to swim faster for smaller q.

DDM can also be used with recordings from epi-fluorescent setups (or fluorescence

DDM, fDDM). If for example you have mixed populations of fluorescent colloids

and non-fluorescent bacteria, the fluorescence movies detail the dynamics of the

colloids alone [59]. Subsequent DDM analysis yields information of the fluorescent

colloids alone. We will use fDDM for this purpose in chapter 5.
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Figure 2.7 Fitting parameters for DDM corresponding to the fits shown in
figure 2.6, for a sample of WT E. coli (bacteria concentration, cB
= 5.1 × 108 µm−3) in motility buffer with glucose, 5 minutes after
sealing the capillary.
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Chapter 3

Introduction to Enhanced Diffusion

In the context of this work, the enhanced diffusion of a micron-sized tracer particle

is the process by which the diffusivity is increased due to the presence of active

swimmers. In this chapter, we will review the key mechanisms which lead to

enhanced diffusion.

3.1 Enhanced Diffusion by Collective Motion

Enhanced diffusion was first observed by Wu and Libchaber [164] in a mixture of

tracer particles and motile E. coli. They started with a free-standing soap film

which was ∼ 10 µm thick in which passive particles exhibited diffusive motion

[29]. To the film, they added large quantities of motile E. coli, up to bacterial

concentrations of 5.35 × 1010 mL−1, sufficient to induce collective motion, the

formation of short-lived vortices much larger than individual bacteria. Upon

addition of motile bacteria to the sample, they observed two changes to the mean

square displacement of tracer particles, their results are reproduced in figure 3.1.

At short times, t < tc, the tracers are observed to be superdiffusive, i.e. the mean

square displacement increases with tx for 1 < x < 2. For long times, t > tc, the

tracer behaves diffusively, where x = 1, with an effective diffusion constant that

is higher than the passive diffusivity. This behaviour was observed for tracers of

diameter 4.5 and 10 µm.

By integrating the velocity autocorrelation function, Wu and Libchaber obtained

an expression for the mean square displacement [164]
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Figure 3.1 Mean square displacements of 10 µm diameter beads in an
active bath, taken from [164]. Each dataset corresponds to a
different bacterial concentration where triangles, squares and circles
correspond to 0.67, 1.34 and 5.35 × 1010 mL−1. The timescale tc
detailing the crossover from superdiffusive to diffusive behaviour is
obtained from fitting to equation 3.1 and is marked for the highest
and lowest bacterial concentrations.

〈∆r2〉 = 4Dt
[
1− e−t/tc

]
(3.1)

where D describes the total long-time diffusivity. By fitting their mean square

displacements to equation 3.1, they observe that both D and tc increase with

increasing bacterial concentration. The increase in tc is observed to correlate

with an increase in the lifetime of the vortices.

Grégoire et al. reported a model for the Wu and Libchaber experiments based

on a Vicsek model [52], where the bacteria orient to align with neighbours within

a cut-off radius with an additional noise term. The bacteria in these systems are

able to align due to their long-range hydrodynamic flow fields. These simulations

confirmed the emergence of enhanced diffusivity due to the presence of collective

motion and validate that the timescale tc describes the vortex lifetime. They

also found that enhanced diffusion could originate from steric, hydrodynamic

interactions or a mixture of the two.
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Valeriani et al. replicated both experimental and simulation results for 4 µm

diameter polystyrene tracers trapped between two glass coverslips separated by

5-7 µm in a bath of B. subtilis, which are approximately 4 µm in length and 1

µm in width [146]. This setup is also quasi-two-dimensional, but the confinement

minimises particle drift. They semi-quantitatively reproduced their experimental

results with simulations which omitted hydrodynamic interactions, highlighting

that steric effects play an important role in enhanced diffusion.

3.2 Enhanced Diffusion due to Single Scattering

Events

While initial work focused on collective behaviour, this is not required to enhance

the diffusion of tracer particles. There has been extensive work investigating how

tracers interacting with a single active particle can result in enhanced diffusion,

this work is reviewed within this section.

Leptos et al. used a predictive algorithm to track tracer particles in three-

dimensions, 100 µm from a surface [72]. They studied the diffusion of 2 µm

diameter polystyrene tracers in a bath of C. reinhardtii, a spherical algae with

a radius of 5 µm, which swim by beating their two flagella in a ‘breaststroke’

pattern pulling the bacteria forward. These are fast swimmers, here the mode of

the speed distribution was identified as ∼ 100 µms−1. Unlike the bacteria used

in previously reported studies, the algae used here are ‘pullers’ which are not

observed to undergo collective motion [152]. Enhanced diffusion of the tracers

occurs when a cell swims within ∼ 25 µm of the tracer, ∼ 8 µm out of the

reach of the flagella, where the tracers are observed to form loop-like trajectories.

Example trajectories are shown in figure 3.2. The formation of loops is found to

correlate with the beating motion of the flagella. Note, these experiments are also

found to exhibit the linear increase in tracer diffusivity with increasing bacterial

concentration.

Numerical and theoretical studies have since validated the observation that single

active-passive scattering events result in quasi-closed loops of the passive tracer,

where the tracers are displaced due to far-field advection [38, 108, 166]. The

structure of the loop and direction of the tracer’s motion is dependent on the

flow field and thus the specific swimmer. In the limit of a swimmer, swimming
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Figure 3.2 Taken from [72]. Experimental tracks of 2 µm diameter polystyrene
tracers with loop-like trajectories induced by scattering events with
C. reinhardtii. The inset focuses on an individual tracer.

on an infinitely straight trajectory which moves significantly faster than the

induced motion of the tracer, it is found that the symmetry of the swimmer’s

hydrodynamic flow field results in the tracer moving in a perfect loop. In order

for enhanced diffusion to occur, the tracers must not move in perfect loops and

therefore one of the following criteria must be fulfilled. Firstly, the swimmer can

undergo reorientation during the scattering event, this is often interpreted as a

tumbling event [108, 166]. Secondly, if the tracer is displaced at similar velocities

to the swimmer, the tracer will move with the swimmer initially, and when the

swimmer passes, the tracer moves quickly in the opposite direction (i.e. the tracer

is pushed in one direction more than the other). This asymmetric experience of

the flow field results in net displacement. An extreme limit of this is entrainment,

the process by which the tracer is caught in the fluid being dragged along with

the swimmer.

Further experimental studies verified that at these low swimmer concentrations,

scattering events still enhance tracer diffusivity for quasi-two-dimensional [87]

and three-dimensional systems [59]. For these low concentrations, the number
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Paper Swimmer Tracer Diameter (µm) z (µm) β µm4

[87] Janus Rods 1 and 2 At surface 13
[87] E. coli (WT) 1 and 2 At surface 5
[88] E. coli (WT) 2 5-110 10-50
[59] E. coli (WT) E. coli (NM) 100 7.1
[72] C. reinhardtii 2 100 500
[58] C. reinhardtii 1 13 900

Table 3.1 Values of β reported for various experimental systems. The tracers
used in [59] are non-motile E. coli cells, all others used spherical
particles.

tracer-swimmer scattering events increase linearly with the active flux, JA = vcB,

where v is the mean swimmer speed and cB is the swimmer (or motile bacteria)

concentration. The total effective diffusivity is described by

Deff = D0 + βJA (3.2)

where D0 is the tracer’s diffusivity in the absence of swimmers. The constant

β, which is not fully understood, is a length scale to the fourth power, the value

is known to depend on the swimmer’s propulsion mechanism, large changes in

tracer diameter and the distance to a surface (z) [58, 59, 87, 88, 99]. Values of

β have been reported for several experimental systems, summarised in table 3.1.

The reported values for β range from 5 µm4 for 2 µm diameter beads at a surface

in a bath of WT E. coli [87] up to values of ∼ 900 µm4 for 2 µm diameter beads

in the bulk in a bath of C. reinhardtii [58].

Several simulation and theoretical works have focused on modelling E. coli and

determining the underlying mechanism and developing an understanding of the

origin and meaning of the constant β [90, 108–110, 166]. These works rely on

the same set of assumptions. Based on measurements of the flow field of E.

coli by Drescher et al. [37], swimmers are modelled as point dipoles, which

accurately describes far-field interactions. The point-dipole model overestimates

the near-field flow and completely omits steric interactions, instead, a short-

ranged cut-off is introduced, defining a minimum distance in which tracers

interact with the swimmers flow field. The tracer particles are also described

as point particles because for tracers of interest (tracers of size ∼1 µm), the fluid

velocity does not change significantly over their size. Tracer particles can then

be assumed to move at the same velocity as their surrounding fluid. Finally, the
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swimmer’s finite persistence length is described by an infinitely straight trajectory

interspersed with instantaneous tumbling events, randomising the swimmer’s

direction. Pushkin et al. show that these tumbling events can be viewed as

equivalent to reorientation due to rotational diffusion [108].

All of these models capture the short-time superdiffusive behaviour and long-

time enhanced diffusivity and reproduce to reasonable accuracy the constant β

[90, 108–110]. As such, they advocate for the mechanism of enhanced diffusion

due to reorientations of swimmers during a scattering event. These models agree

that β is a strong function of the system’s parameters such as system size,

dipole strength and persistence length. They also find a small contribution to

the diffusion enhancement due to entrainment effects, the process of the tracer

being dragged along with fluid near the swimmer’s surface, leading to large

displacements [90, 110].

Theory and numerical calculations by Kasyap et al. found that enhanced diffusion

is highly dependent on the Brownian diffusivity, i.e. tracer diameter, including the

presence of a peak in the enhanced diffusion [63], which has since been verified by

experiments [99]. These works identified a maximum in the diffusion enhancement

for a given Brownian diffusivity, where the enhancement decays towards zero

for high Brownian diffusivity and decays to a constant value for low Brownian

diffusivity. The peak can be attributed to the tracer’s ability to asymmetrical

probe the swimmer’s flow field resulting in larger net displacements. Whereas,

for high Brownian diffusivities, the tracer freely diffuses through the swimmer’s

flow field and therefore, on average, probes the flow field symmetrically.

For baths of pullers, for example, C. reinhardtii, as opposed to the pushers

described above, entrainment has been observed to be the dominant mechanism

leading to enhanced diffusion [58, 82]. These extreme cases are directly observable

due to the tracer trajectories exhibiting diffusive motion interspersed with

large linear displacements where entrainment events occurred. These large

displacements due to entrainment result in values of β which are ×100 larger

for C. reinhardtii than E. coli.

So far, the primary interest has been in the long-time diffusivity of the tracer

particle. Koumakis et al. measured the mean square displacement of 2 µm

diameter silica particles in a bath of E. coli (WT) at 100 frames-per-second

[66]. To fit the short-time mean square displacements, they modelled the velocity

autocorrelation function as the sum of active and Brownian effects, giving
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〈∆r(t)2〉 = 4D0t+ 4Dact

[
t− tc

(
− e−t/tc

)]
(3.3)

where Dact=βJA, so at long-times (t � tc) the diffusivity is the sum of the

Brownian and activity enhanced diffusivity, D=D0 +Dact or for short times(t�
tc), the diffusivity, D=D0. Their experimental results and fits to equation 3.3

are shown in figure 3.3. This form used by Koumakis et al. is equivalent to that

used by Wu et al. (equation 3.1) for t� tc [164].

Figure 3.3 Taken from [66]. Experimental measurements of the mean square
displacements and fitting to equation 3.3

Within this thesis, we focus on smooth-swimming bacteria, for which it is sug-

gested that enhanced diffusion is reduced (relative to run-and-tumble swimmers)

[59]. The majority of our work is in quasi-two-dimensional systems, where long-

ranged hydrodynamic flows are suppressed [37], thus minimising these long-

ranged interactions [90]. We will however return and question the importance

of bacterial persistence length in the models mentioned above.
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Chapter 4

Activity Enhanced Diffusion in Two

Dimensions

The diffusivity of a colloidal tracer particle is known to be enhanced in an active

bath due to a range of hydrodynamic and steric mechanisms. In this chapter

we investigate how changing the interaction potential between passive and active

particles can affect the enhancement of diffusivity for a quasi-two-dimensional

system.

The model for the average z of tracers was given by W. Poon.

4.1 Methods

In this chapter, we use 1.5 µm diameter silica particles in a phosphate buffer

in a 400 µm high rectangular capillary made of borosilicate glass. The particles

sediment to the surface over 5 minutes upon preparation, where they are observed

to diffuse. To these samples, we will add motile bacteria, smooth swimming E.

coli (AB1157 ∆CheY). We also add a polymer depletant, polystyrene sulphonate

of radius of gyration, rg = 45 nm.

To study the tracer’s dynamics we track each particle’s displacement over time.

We use movies recorded in bright-field for tracking of tracer particles, as this

retained information about the bacteria as well. In bright-field, the tracer

particles appear significantly brighter than the bacteria as they scatter light more
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efficiently, meaning tracers can be detected by brightness alone.

4.1.1 Tracking Corrections and Filtering

This chapter focuses on results from particle tracking, for which there are two

main sources of error. Firstly static error, the error associated with accurately

locating a static particle. For our purposes, static errors are sufficiently minimised

by insuring no pixel-biasing is present, as discussed in section 2.4.3 [120].

Secondarily, there are dynamic errors which arise from the finite exposure time of

each image. These dynamic errors can be thought of as a blurring effect, arising

from the particle moving during the exposure time. Effects of dynamic errors can

be ignored when the exposure time is less than a quarter of the time between

frames [120], therefore, we set the exposure time to 2 ms for imaging at both 100

and 10 frames per second.

Next, there are experimental sources of error. Sample preparation is optimised to

minimise hydrodynamic flows within the capillary by sealing the capillary with a

minimal volume of air remaining, but some flows do remain causing all particles

in the field of view to drift and unintentionally enhance particle motion. These

flows enhance particle diffusion by removing isotropic behaviour. We correct

for these small errors by enforcing the isotropic criteria with corrections to all

particle tracks. From each movie, we extract ∼30 trajectories and ensure that

total average displacements in x and y displacements are zero for each frame in

the video

〈∆x(t)〉 =
∑
i

∆xi(t)

〈∆y(t)〉 =
∑
i

∆yi(t)
(4.1)

Which for particle i on frame t, makes the corrected displacement

xc
i (t) = xi(t)− 〈∆x(t)〉

yc
i (t) = yi(t)− 〈∆y(t)〉

(4.2)

37



So, 〈xc
i (t)〉 = 〈yc

i (t)〉 = 0. These corrected trajectories are then used for analysis.

For our experiments, drift typically accounts for < 2% of a particles displacement.

Throughout this chapter, we will examine samples with sufficient polymer

depletants to cause aggregation of tracer particles. This process dramatically

reduces particle diffusivity and is an effect we do not want to study here. To

minimise the number of interacting particles in the sample the particle area

fraction is kept low, φc = 10−3, and the measurements are completed as fast

as possible after sample preparation, generally taking 15-20 minutes to complete.

Some aggregation is unavoidable however, we identify these trajectories by frame-

to-frame proximity, where if two particle centres are detected within two particle

diameters, the tracks are omitted from the final results.

Further filtering is required because some particles adhere to the surface and

become non-diffusive. These particles can be filtered by fitting individual mean

square displacements, 〈∆r2(τ)〉 ∝ τ k [156]. For each tracer, if the exponent

k < 0.7 , the track is omitted.

To probe short and long time delays we image each sample at 100 and 10 frames

per second, and average over 7 and 5 positions respectively for 1000 frames each.

We reported a combination of these two datasets.

4.1.2 Polymer Concentration

We are interested in how depletion forces between a spherical tracer and

spherocylinderical bacterium effect enhanced diffusion. Here, we control the

force by the addition of polymer depletants. However, as the bacterium is

not radially symmetrical, the overlapping excluded volume is dependant on

orientation. The two extremes of the orientation are depicted in figure 4.1, which

can be approximated as a) two spheres in contact (‘head-on’) and b) a sphere in

contact with a cylinder (‘side-on’).

To simplify the system, we approximate the radius of both the cylinder and sphere

to be equal σc/2 = σs/2, where the potential, U , for the ‘head-on’ orientation

becomes that of two identical spheres [71].

Us−s = −3

2
φfreep kBT

(
1 + ξ

ξ3

)(
r

σ
− 1− ξ

)
(4.3)
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Figure 4.1 Depiction of the overlapping excluded volumes for a spherical
tracer particle and a spherocylinderical bacterium in contact for
two extremes of the orientation. The polymer excluded volume is
depicted as a dotted line and the overlap is labelled in orange for a)
‘head-on’ b) ‘side-on’.

where φfreep is the polymer volume fraction in the available free volume, ξ is the

polymer-colloid size ratio, r is the distance between two particles and σ is the

colloid diameter.

The potential for the ‘side-on’ orientation is that of a sphere and a cylinder [69]

Uc−s = − 3√
2
φfreep kBT

(
1 + ξ

ξ3

)(
r

σ
− 1− ξ

)
(4.4)

The difference between these two limits is a factor of
√

2 for all values of r.

The bacteria and tracer concentrations remain low throughout this work,

therefore we say φfreep ≈ φp, where φp = cp/c
∗
p. We will refer to φp throughout

this chapter as a measure of the interaction potential. The largest polymer

concentration used here, φp = 0.893, corresponds to a contact potential, Ucontact =

18-25 kBT depending on orientation. For these calculations, we used the average

radius between the bacterium and tracer, r = (0.43 + 0.75)/2µm = 0.59µm and

polymer radius of gyration, rg = 44.8 nm.

Finally, as we shall explore in the next section, we also need to be aware of

depletion between the tracers and the wall [71].

Uw−s = −3φfreep kBT

(
1 + ξ

ξ3

)(
r

σ
− 1− ξ

)
(4.5)

39



which again scales linearly with the polymer concentration.

4.2 Brownian Diffusion on a Surface

Figure 4.2 Mean square displacements of monomeric tracer particles for a range
of polymer concentrations, φp. a) Mean square displacement. b)
Mean square displacements are divided by 4τ to give the effective
diffusion constant as a function of the timescale, τ . Both are fitted
with Brownian diffusion models, equation 4.6

To understand how activity alters the diffusive properties of a tracer particle, we
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must first measure the tracer particle’s passive diffusive behaviour. The mean

square displacement, 〈∆r2(τ)〉 of a passive tracer particle on a surface is [104]

〈∆r2(τ)〉 = 〈(r(t+ τ)− r(t))2〉 = 4D0τ (4.6)

where 〈∆r2(τ)〉 is the average over all starting times t, D0 is the diffusion constant

and τ is the delay time

The mean square displacement, 〈∆r2(τ)〉, of passive tracers over a range of

polymer concentrations are plotted in figure 4.2a. Each dataset is comprised of

short-time data recorded at 100 frames per second and long-time data recorded at

10 frames per second. The straight lines are fits to equation 4.6. These datasets

are replotted as 〈∆r2(τ)〉/4τ in figure 4.2b, with corresponding fits to equation

4.6. This plot shows the effective diffusion constant as a function of delay time.

The effective diffusion constants are expected and found to be invariant with

delay time. As polymer concentration is increased, viscosity increases, reducing

the Brownian diffusion constant [104]

DBrownian =
kBT

6πηR
(4.7)

where kB is the Boltzmann constant, T is the temperature, η is the viscosity and

R is the tracer radius. For the tracers used here, DBrownian = 0.30 µm2s−1

The diffusion constants extracted from the fitting in figure 4.2a are plotted as

a function of solution viscosity, η, in figure 4.3 with the polymer concentration,

φp, on the upper x-axis. The measured diffusion constant, D0 is lower than

the theoretical values, DBrownian, because of increased hydrodynamic drag due to

proximity to the capillary surface. This effect can be understood by considering

that fluid at the surface of the particle is dragged along with the particle, called

a no-slip boundary. The surface also a no-slip boundary, so the displacement

of a particle near the surface generates large velocity gradients in the fluid,

obstructing the flow and limiting particle motion [48]. The relationship between

the theoretical and measured values is described by [42]

D0

DBrownian

= α(z) (4.8)
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Figure 4.3 a) The passive diffusion constants of tracer particles on the capillary
surface as a function of solution viscosity, η and polymer volume
fraction φp, on the second x-axis. Our theoretical prediction for D0

which accounts for the proximity of a surface, given by equation
4.14, is plotted as a red line. b) Our prediction of z̄ corresponding
to the theory plotted in a), the dotted line represents the tracer’s
radius, R, closest a particle can get to the surface.

and

α(z) = 1− 9

16

(
R

z

)
+

1

8

(
R

z

)3

− 45

256

(
R

z

)4

− 1

16

(
R

z

)5

(4.9)

where z is the distance from the surface to the particle centre.

The measured diffusivity can then be expressed as

D0 = α(z)
kBT

6πηR
(4.10)

In our experiments, the distribution of particle height, z, is determined by

a gravitational potential and when in proximity, depletion to the wall. The

depletion forces attract particles close to the wall, keeping tracers closer to the

wall as φp increases and therefore reduce the average tracer height. The potential

experienced by a tracer particle is then

Uw
tot(z) =


∞ z ≤ R

Uw
d (z) + Ug(z) R < z < R + 2rg

Ug(z) R > z + 2rg

(4.11)
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where depletion potential to the wall, Uw
d (z), is given by equation 4.5.

The distribution of particles in z is [104]

n(z)

n(0)
= exp

−z +R

z0

(4.12)

Which gives the gravitational potential

Ug(z)

kBT
=
z −R
z0

(4.13)

where the gravitational length, z0 = kBT/∆mg = 0.23 µm,for a buoyant mass,

∆m, and the acceleration due to gravity, g [104]. Note z0 describes the height

of point masses and not particles of radius, R, meaning that the tracers will be

close to the surface due to gravitational forces alone.

We predict a near-wall average diffusivity of

D̄0 =
D
∫∞

0
α(z)e−U

w
tot/kBT dz∫∞

0
e−U

w
tot/kBT dz

× η0

ηp

(4.14)

Results from equation 4.14 are plotted against the experimentally measured

values in figure 4.2a and the corresponding prediction for z̄ is plotted in figure

4.2b. Our prediction of D0 matches experimental measurements. For φp > 0.2,

the average height is constant, z̄−R ≈ 30nm, within depletion range of the wall,

2rg = 89.6 nm. In this constant z̄ regime, the measured diffusivity decreases as

the polymer concentration increases due to increasing viscosity.

For φp < 0.2, the reduction in depletion forces results in an increased sediment

height, for φp = 0.0, z̄ − R = 170 nm, slightly smaller than z0 = 230 nm. Note,

z̄ −R is only a direct measure of z0 in the limit R→ 0.

The variation in z̄ for small φp may introduce a systematic error for our samples

where φp = 0.0. For small increases in the height from the surface, enhanced

diffusion due to hydrodynamics is expected to increase [110], which may cause

enhanced diffusivities to initially decrease with polymer concentration (for φp <

0.2).
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4.3 Activity Enhanced Diffusion

The mean square displacements are measured for tracer particles in an active bath

of surface concentration, cB = 5.7 × 10−3 µm−2 for the same range of attraction

strengths as previously for passive samples. In this section, we reproduce the

derivation for the mean square displacement of activity enhanced tracers [13, 66]

and fit the model to our findings.

To start, we describe the displacement of a tracer particle as the integral of its

velocity in one-dimension

r(t) =

∫ t

0

dt′v(t′) (4.15)

Therefore the mean square displacement is as follows

〈r(t)2〉 =

∫ t

0

dt′
∫ t

0

dt′′〈v(t′)v(t′′)〉 (4.16)

Since this is a stochastic process and independent of starting time, the velocity

correlation function can be rewritten as

〈v(t′) · v(t′′)〉 = 〈v(τ) · v(0)〉 (4.17)

where τ = t′′ − t′ and dτ = −dt′′

To further utilise the time independence, we note that the integral in equation

4.16 is a square defined by t′ and t′′. For half of the integral t′ < t′′ and for the

other half t′′ < t′. It follows then that by integrating from 0 to t′′, equation 4.16

becomes

〈r(t)2〉 = 2

∫ t

0

dt′′
∫ t′′

0

dτ〈v(0)v(τ)〉 (4.18)

which can be integrated without prior knowledge of the velocity autocorrelation

function to yield the general result
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〈r(t)2〉 = 2

∫ t

0

dτ(t− τ)〈v(0)v(τ)〉 (4.19)

To extract a full expression for the mean square displacement we approximate

the form of the velocity autocorrelation function. Particle diffusion is a Gaussian

process for which the correlation of motion can be described by an exponential

decay [145]

〈v(0) · v(τ)〉 = 〈v(0)2〉exp
[
−τ
tD

]
(4.20)

where tD is the correlation timescale of Brownian diffusion.

This description has also been found to describe long-time activity enhanced

diffusion [164], where the timescale becomes an active timescale tc. We suppose

the velocity autocorrelation function is a linear superposition of both the active

and passive effects

〈v(0) · v(τ)〉 = 〈v(0)2〉exp
[
−τ
tc

]
+ A(τ) (4.21)

where A(τ) describes the Brownian contribution.

The timescale of the passive contribution is in general, and here, assumed to tend

to zero, as it is several orders of magnitude faster than the imaging speed used

(> 103) [73]. This means

∫ t

0

dτA(τ) = D0 (4.22)

Substitution of the velocity autocorrelation function, equation 4.21, into equation

4.19, produces

〈∆r(t)2〉 = 2t

∫ t

0

v2e−τ/tc dτ + 2t

∫ t

0

A(τ) dτ

− 2

∫ t

0

τv2e−τ/tc dτ − 2

∫ t

0

τA(τ) dτ (4.23)
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which we integrate and reduce, then convert to a two-dimensional expression by

multiplying by 2 to yield

〈∆r2(τ)〉 = 4D0τ + 4Dact[τ − τc(1− exp−τ/tc)] (4.24)

where D0 remains as the passive diffusivity, Dact is the long-time or active

diffusivity and τc is the correlation time, describing the timescale in which the

diffusivity changes from D0 to Dact. Note, this is the same form used by Koumakis

et al. and Huang et al. [57, 66] for their fitting of activity-enhanced mean square

displacements.

Figure 4.4 a) Velocity autocorrelation function for a series of attraction
strengths, φp. These are fitted with equation 4.20 to extract the
timescale, tc, which is then plotted in b) as a function of φp

Direct fitting of equation 4.24 often yields noisy results due to poor fits of tc. We

opt to first measure tc from the velocity autocorrelation function, equation 4.21,

and later use those values for fitting the mean square displacement, equation 4.24.

The velocity autocorrelation functions are calculated from equation 4.18 for the

range of polymer concentrations and plotted in figure 4.4a. The results fit

the exponential decay assumed by equation 4.20, and the related correlation

times are extracted and plotted in figure 4.4b. The correlation times are found

to continuously increase with polymer concentration, indicating that stronger

depletion attractions increase the persistence of the tracer’s motion. As we

will show later, this increased correlation occurs due to extend tracer-bacteria

interactions.

The average mean square displacements are measured for tracer particles in an
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Figure 4.5 Mean square displacements of monomeric tracer particles in a bath
of motile E. coli at fixed surface concentration cB = 5.7 × 10−3

µm−2 for a range of polymer concentrations, φp. a) Mean square
displacement. b) Mean square displacements are divided by 4τ to
give the effective diffusion constant as a function of the timescale,
τ . Both plots are fitted to equation 4.24, where the timescale, tc, is
not fitted but extracted from the velocity autocorrelation function
below.

active bath of surface concentration, cB = 5.7 × 10−3 µm−2 for the same range

of attraction strengths as previously, plotted in figure 4.5a. The mean square
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displacements are fitted with equation 4.24, where tc was previously determined

from the velocity autocorrelation functions. For short delay times, the tracers

are diffusive, with effective diffusivities close to their previous measured passive

diffusivities, D0. While at intermediate delay times, 〈∆r2(τ)〉 shows super-

diffusive behaviour, where it increases with τx, for 1 < x < 2, the largest power

observed here, x ∼ 1.8 for the largest polymer concentration, φp = 0.893. At long

times, the tracers behave diffusively again, with an enhanced effective diffusion

constant. This is the generic behaviour for activity enhanced diffusion and does

not change with polymer concentration.

Again, we replot the datasets in the form 〈∆r2(τ)〉/4τ , shown in figure 4.5b, to

give the effective diffusivity as a function of delay time. The effective diffusivity

highlights that the addition of polymer decreases the short-time diffusivity and

increases the long-time diffusivity. In the most extreme case, this is polymer-

enhanced and activity-enhanced diffusivity results in a ×30 increase in the long-

time diffusivity. We will review how and why this occurs later in this section and

in further detail within the next section.

Figure 4.6 Experimentally measured diffusion constants from the fitting of the
mean square displacements with equation 4.24. a) The passive
diffusion constant, in red, is plotted against the short-time diffusion
constant for samples in an active bath, in blue, as a function of
polymer concentration, φp. Red data points were extracted from
passive 〈∆r(τ)2〉 fits, figure 4.2 and blue data points from active
〈∆r(τ)2〉 fits, figure 4.5. b) The long-time diffusion constant for
samples in an active bath.

The fitted values of D0 and Dact from the mean square displacements of the

activity enhanced samples are reported in figure 4.6. Figure 4.6a shows the results

fitted values of D0 from samples with bacteria in blue and from samples without
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bacteria in red, from the previous section, which show excellent agreement. The

long-time, activity enhanced diffusion constant, Dact is plotted in figure 4.6b

and is found to increase with increasing attraction strength. Again, φp = 0 is

observed to have a higher diffusivity than expected based on the trends in D0

and Dact. This deviation occurs because, without polymer depletants, the tracers

are located slightly further away from the surface and thus experience less drag.

4.4 Enhanced Diffusion Mechanism

So far we have shown that active baths increase tracer particle’s diffusivity and

the addition of polymer depletants to the active bath yields a further increase

to tracer particle’s enhanced diffusion. Within this section, we will explore the

mechanism by which this occurs.

There are two mechanisms by which enhanced diffusion could occur for this

system, either sticky interactions between bacteria and tracer or long-ranged

hydrodynamic interactions with a bacterium’s flow field. We can determine if

one of these mechanisms dominates by examination of the tracer trajectories due

to overt differences in the actively enhanced displacements. Sticky interactions

are expected to result in a continuous movement of the tracer in the direction

of the bacterium, whereas long-hydrodynamic interactions result in incomplete

loop-like trajectories. Note, the bacterial density is not high enough to induce

collective motion within the bath [80], ruling out that mechanism and we also

do not expect entrainment to be significant for this system as the tracers are too

large [82].

Example tracer trajectories are depicted in figure 4.7 corresponding to samples

with or without bacteria and samples with no polymer depletant or the highest

polymer concentration tested. Samples without bacteria behave diffusively (a and

b). Upon addition of the active bath samples with no polymer show enhanced

displacements (c). In these samples, by eye, we do not observe any noticeable

loop-like trajectories indicative of long-range hydrodynamic interactions with

passing bacteria. For samples containing high concentrations of polymer

depletant and an active bath, we observe highly persistent motion, indicating

prolonged particle-bacteria sticky interactions, where the bacteria pushes or drags

the particles.
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Figure 4.7 Representative trajectories of passive colloids over a 10 s period,
covering the range of the variables investigated here. a) shows
trajectories for the passive colloids in the buffer alone. b) trajectories
for the passive colloid monomers in polymer depletant, where the
polymer volume fraction, φp = 0.893 and the viscosity, η ≈ 2.6
mPa s. c) and d) show trajectories for samples with motile smooth
swimming E. coli (surface concentration = 5.7 × 10−3 µm−2, and
mean speed v = 12 µm s−1), without and with polymer depletant
respectively. The scale bar represents 15 µm.

To further support the sticky interaction mechanism, we show a detailed sticky

interaction between a bacterium and tracer. Figure 4.8, depicts a sequence

of cropped bright-field micrographs, labelled with the tracer’s trajectory from

particle tracking. For the first 1.0 s of the sequence, the tracer does not interact

with any bacteria and undergoes Brownian diffusion. A bacteria approaching

from the left of the image makes contact with the tracer at 1.0 s. While interacting
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Figure 4.8 Sequence of bright-field micrographs depicting the interaction
between a particle tracer and bacterium for φp = 0.639. The
images are overlaid with the tracked particle trajectory. A scale bar
depicting 3 µm is located on the first image and the timestamps are
indicated in the bottom left of each image. The bacteria approaches
from the left and makes contact with the tracer at 1.0 s and then
pushes the tracer until ≈ 2.2 s.

with the bacterium, the tracer moves with enhanced speed and in a persistent

manner, in the same direction as the bacterium. After a short period of ∼ 1.2

s, the bacterium slides past the tracer, and then the tracer returns to diffusing

in a Brownian manner. Note the flagella bundle often does not align with the

cell bodies central axis, which here gives the appearance that the cell is sliding

sideways.

4.5 Active Flux Normalisation

The degree of activity enhanced diffusion is well known to be dependant on the

active particle’s speed and density, where the activity enhanced component of the

diffusion constant [88]

Dact = βJA (4.25)

where the active flux, JA = vcB and v is the speed of the bacteria and cB is

bacterial surface concentration. The constant β is dependant on the bacteria-

tracer interactions and changes based on system parameters, for example,

chamber height [88] or tracer diameter [99].

The addition of polymers to solutions of bacteria can alter the active flux and

therefore also Dact [81, 99]. To account for a changing active flux, we measure

and normalise our values by the flux and therefore isolate the role of changing

bacteria-tracer interactions on Dact.
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Figure 4.9 Measurements of how the active bath is influenced by the increasing
presence of polymer, which is expressed in attraction strength, φp.
a) Average speed, measured by DDM 100 µm above the sample
surface. b) The average surface concentration of motile bacteria cB,
measured by tracking and counting the number of ballistic bacteria.
These samples were prepared at an optical density, OD = 0.3, a
bacterial concentration 3 times higher than the other samples within
this chapter. This was changed as the higher density is the standard
bacterial density for population studies.

The measurements of active flux are reported in figure 4.9. We find the speed of

bacteria increases with polymer concentration, up to ∼ 20 % higher as measured

by bulk DDM measurements, figure 4.9a. Also, we observe no change in surface

density with increasing polymer concentration within experimental fluctuation,

measured by tracking and filtering out non-swimmers, figure 4.9b. This results in

an active flux which increases by ∼20% over the polymer concentration range

tested, figure 4.10a, where the bacterial concentration was assumed to be a

constant value across all measurements, cB = 0.017 µm−2

To remove the effect of increasing active flux from D, we plot the β = Dact/JA,

where JA is the active flux, plotted in figure 4.10b (note, in two-dimensions, β is

expressed in units of µm3). The values for JA at φp = 0.255, 0.510 and 0.766 were

estimated by linear interpolation. These results show that changes in the active

flux do not account for the increase in active diffusivity observed and that the

addition of polymer depletants increases the effect of activity enhancement on a

per bacteria-tracer interaction. Again, there is still a slight anomaly for φp = 0.0

due to a decreased hydrodynamic drag on the tracers for those samples.

Mino et al. also measured β for 1 and 2 µm diameter tracers, also in baths of

E. coli [87], where the tracers were, on average, located ∼ 1 µm from the surface
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and obtained β(3D) = 5 µm4. To compare results, we can convert our values of β

to β(3D) if we estimate the image’s depth of field and thus calculate the volume

density of bacteria. The image’s depth of field, DOF = ±λ
√
n2 −NA2/2NA2,

where λ is the wavelength of light, n is the refractive index of the medium and

NA is the numerical aperture of the objective, giving a DOF ∼ 1 µm. So for φp

= 0.0, this gives β(3D) ∼ 5 µm4, matching that of Mino et al..

Figure 4.10 Accounting for a changing active flux, JA. a) Active flux as a
function of attraction strength φp, assuming a constant density, cB
= 5.7 × 10−3 µm−2. b) Values of the β coefficient, calculated by
dividing measured activity enhancement of the diffusion constant,
Dact, by the active flux. JA.

4.6 Theory

For this two-dimensional system, the enhanced diffusion mechanism presented

within this chapter is that tracers undergo Brownian motion interspersed with

ballistic jumps due to sticky tracer-swimmer interactions. To further validate this

model, in this chapter we will predict values for the enhanced diffusion constant,

Dact, with an entrainment jump-diffusion model using data from additional

experimental measurements.

Several models for enhanced diffusion have been developed over the last decade to

describe a range of tracer-swimmer interactions. Instead of developing our own

model, we take the framework for a jump-diffusion process which was initially

used to describe enhanced diffusion of tracers by entrainment to fast and large

swimming algae [58, 82], which is reproduced below.
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The total diffusivity, Deff , is described as a diffusive process from Brownian

motion, D0, and long-ranged hydrodynamic interactions with cells, DFF, which is

interspersed with ballistic jumps due to entrainment with motile cells, described

by a diffusivity, Dentr. This two-dimensional continuum model is based on the idea

that the tracer is either behaving diffusively or is undergoing an entrained jump.

The tracers swap between these two states at separate and constant transition

rates. In the limit that the switching rate from ballistic to diffusive motion is

much larger than the reverse, which is true for low bacteria concentrations and

therefore low frequency of tracer-bacterium interactions, the total diffusivity is

described by

Deff = D0 +DFF +Dentr (4.26)

and the diffusivity due to entrainment events is

Dentr =
〈L〉2

2
γvcB (4.27)

Where L is the length that a tracer is entrained from an interaction with a

bacterium, v is the speed the tracer moves while entrained and cB is the bacterial

surface concentration. The final term, γ, can be considered a cross-sectional

length, for which there is a probability that a tracer will be dragged by a swimmer

if it is found within this length of the swimmer.

To model our system, we first ignore the hydrodynamic component, DFF as

previous publications suggest it is less significant for modelling enhanced diffusion

in two dimensions [88, 90]. Secondly, we convert Dentr to Dact, by describing the

cross-sectional length proportional as the length scale in which depletion forces

act on a tracer as a swimmer undergoes a close approach.

To estimate Dact, the only new value we need to determine is the average

length tracers are dragged per sticky interactions, L. For our results, it did

not prove possible to extract L from direct analysis of the tracks, for example

by determining prolonged correlated motion or changes to instantaneous speeds

as described in the aforementioned algae experiments [58]. Instead, we calculate

the instantaneous velocity of the tracers, v, over a timescale, τ � tc, allowing

for the estimation of the dragged length as the tracer’s velocity multiplied by

it’s correlation time, L = vtc. The distributions of instantaneous velocities for
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Figure 4.11 Distributions of instantaneous velocities, P (v), over timescale, τ =
0.03 s for a) φp = 0.0 and b) φp = 0.893. Distributions for passive
samples are plotted in red, active in black and active minus passive
in green. Note the change in the x-axis scale between the figures.

samples where φp = 0.0 and 0.893 are plotted in figure 4.11 a and b respectively.

To estimate the displacements due to sticky tracer-swimmer interactions we again

assume the tracers are either diffusing or are stuck to a swimmer, and therefore the

diffusive velocities can be subtracted from the active velocity distributions. Note,

the subtraction of passive from active velocities is a zeroth order approximation

and accurate quantification of the instantaneous velocities would require thorough

deconvolution of the data. The passive velocity distributions are plotted in red in

figure 4.11, as measured from samples without bacteria, and the residual (active-

passive) is plotted in green.

Figure 4.12 a) The dragged length, L as a function of attraction strength φp.
b) Estimations of active diffusivities from equation 4.27, assuming
Dact = Dentr, as a function of φp, plotted in red and measured
values of Dact in blue, reprint from section 4.3.
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The dragged length, L, is plotted as a function of attraction strength φp in figure

4.12a. For φp ≤ 0.383, L approximates the tracer’s radius and might be better

attributed to a bacterium pushing a tracer out of its path, rather than sticky

tracer-swimmer interactions. For φp > 0.383 we observe an increase in the

dragged length, where stronger depletion forces allow the tracer to dragged further

for each encounter with a bacterium. We previously presented a sequence of

micrographs, figure 4.8, depicting the dragging of a tracer for φp=0.639 for ∼3.5

µm, very close to our average estimated value L = 4.5 µm

Finally, to estimate Dact, we need to define the constants in equation 4.27. We

will assume the tracers move at the same speed as the free-swimming bacteria

v(φp) = 9-11 µms−1, the bacterial concentration, cB = 5.7 × 10−3 µm−2 and we

approximate the cross-sectional collision length scale, γ = σbac + σtracer = 2.3

µm.

The estimated values of Dact are plotted as a function of φp in figure 4.12b

in red and measured values from fitting the mean square displacements are

plotted in blue. We find good agreement between the measured values and

the theoretical values obtained within this chapter. The theoretical values are

generally lower than the measured ones, as expected, due to the omission of long-

ranged hydrodynamic interactions increasing tracer diffusivity. This modelling

shows that the enhancement of Dact with increasing depletion attractions is due

to enhancement of sticky tracer-swimmer interactions. Note the scaling of our

theoretical predictions are sensitive to the constants used, and therefore the

quantitative result should be taken with reservations.

The application of this jump-diffusion model to our experiments validates our

observations that, for high φp, sticky interactions are the main contribution to

the diffusivity enhancement. The difference between theory and experiments at

low φp may be due to long-ranged hydrodynamic interactions (DFF), which were

omitted from our calculations.

4.7 Conclusion

In this chapter, we developed a two-dimensional system of silica tracer particles in

a bath of motile smooth swimming E. coli, which we use to study how the addition

of polymer-induced depletion attractions modify the enhanced diffusivity effect.
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We started by measuring the passive diffusivity of tracer particles. On initial

sample preparation, the tracers quickly sediment to the bottom surface of

the capillary where they undergo diffusion. To measure the tracer diffusivity,

individual tracers were tracked and the mean square displacements calculated,

from which we fitted a Brownian diffusion constant, D0. Due to the proximity to

a surface, the diffusivity is lower than the theoretical Brownian diffusivity. The

ratio of the theoretical to measured diffusivities allowed for approximations of

the, Z, between the particle surface and the capillary surface of ∼ 30 nm. This

distance is observed to be slightly higher for samples without polymer depletants,

∼ 170 nm, which introduces some anomalous results where φp = 0. The difference

in Z between samples with and without polymer is due to the strong depletion

attractions between a wall and sphere, which keeps the tracers close to the wall

while still maintaining a finite gap, preserving the no-slip boundary.

Upon addition of motile bacteria, at short times the tracers maintain their passive

diffusivity and at long times are observed to have an enhanced diffusivity, as

observed in previous work [66]. We fit the mean square displacement with

an additional Brownian diffusion term which is omitted in some studies of

activity enhanced diffusion [99, 164], this simplification is possible when short-

time behaviour is not examined.

For φp = 0.0, the enhancement in diffusivity comes from a mixture of interactions

between the tracer and a bacterium, where tracers are pushed out of the

bacterium’s path or alternatively the bacteria’s hydrodynamic flow field pushing

the tracer. As attraction strength is increased, for φp > 0.383, the close approach

of a bacterium allows for tracers to momentarily stick and be dragged for short

distances, which increase with further increases to attraction strength. This then

can be described as a jump-diffusion mechanism, where tracers swap between

diffusion and ballistic jumps.

We verify the jump-diffusion model with theoretical predictions, adapted from

theory for enhanced diffusion by entrainment processes [58]. To estimate

values of the enhanced diffusion constant we measured a dragged length from

the distribution of tracer displacement by linearly accounting for Brownian

displacements. These theoretical estimates well approximate experimental

results, and validate the jump-diffusion model.

We note that some of the enhanced diffusion effect, from added polymers, is due

to a small increase in the active flux but this is insignificant compared to sticky
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tracer-swimmer interaction effects.
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Chapter 5

Activity Enhanced Diffusion in

Three Dimensions

In this chapter, we re-examine tracer-swimmer interactions but for a three-

dimensional system. We study how tracer-swimmer polymer induced depletion

attractions effect diffusivity enhancement by using fluorescence DDM to probe

tracer dynamics and phase-contrast to study bacteria dynamics. Due to

unexpectedly large diffusivity enhancements by smooth swimmers, we also review

the effect of tumbling for the system without polymer depletants.

5.1 Methods

5.1.1 Materials

Within this chapter, we change both the strain of E. coli and the buffer used

to alter the tumbling rate. Unless otherwise stated we use our standard smooth

swimmer, AB1157 ∆CheY in a phosphate buffer (6.2 mM K2HPO4, 3.8 mM

KH2PO4, 0.1 mM EDTA at pH ∼ 7.5 with 0.3 wt% TWEEN20). We also use

AB1157 wild-type (WT) which undergoes run-and-tumble motion in the same

phosphate buffer (which has a low tumbling rate) or in the phosphate buffer with

an additional 67 mM NaCl (high tumbling rate). The tracer used is a fluorescent

1.8 µm diameter polystyrene bead at a volume fraction, φc = 5 × 10−5. The

polymer depletant is still polystyrene sulphonate of radius of gyration, rg = 67
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nm.

The samples are prepared in the same 400 µm high, borosilicate capillaries but

imaged 100 µm from the lower surface.

5.1.2 Cell Density Measurements

To prepare samples of targeted cell densities we use a UV-vis spectrophotometer

which was calibrated by colony-forming unit (CFU) count experiments. A CFU

is a single cell that when left on a surface with sufficient nutrients for growth, will

multiply and form a colony that is visible by eye. The CFU density is measured

by taking a stock of known optical density, OD, and preparing several dilutions

(here the initial stock was diluted 107 − 109 fold). Carefully measured volumes

of each dilution are pipetted onto an individual LB agar plate and the droplet

is spread over the surface by slowly rotating the plate at an angle. Plates were

then left to grow overnight at 37 °C. The number of CFU can then be counted

for the known initial inoculation volume. For the specific setup used in this work

OD600 = 0.6 ∼= 10.2 ±1.3 × 108 mL−1. To calculate the motile cell density, the

CFU density is then multiplied by the motile fraction as measured by DDM for

that specific stock.

As outlined in section 2.4.5, DDM analysis returns the differential image

correlation function,

〈
|FD(q, τ)|2

〉
= A(q)[1− f(q, τ)] +B(q) (5.1)

where A(q) depends on the optical setup and the particle’s shape, density and

arrangement, B(q) also depends on the optical setup and describes camera noise

and f(q, τ) is the intermediate scattering function.

For samples of bacteria in motility buffer, i.e. without polymer depletant or

tracers, sample to sample relative densities can be calculated from A(q) [61]

ρ1

ρ0

=

〈
A1(q)

A0(q)

〉
q

(5.2)

Where the ratio of A(q) is used to remove the strong q-dependence. The
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utilisation of this in situ measurement suggests sample preparation error of cell

density is ∼ 5%. Within this chapter, we use run-and-tumble (WT) and smooth

swimming (∆CheY) E. coli and observe that the ratio of cell densities in the

bulk cWT/c∆CheY ∼ 1.1. Note while these measurements would ideally be used

to calibrate samples containing tracer particles, the strong scattering of the tracer

swamps DDM results from phase-contrast movies, i.e. we cannot probe the

bath properties if the sample contains tracer particles. These in situ density

measurements should also not be used when polymer depletants are present

because any aggregation will alter A(q).

5.2 Fitting Differential Image Correlation

Functions

We measure the diffusivity of passive tracer particles in the bulk using differential

dynamic microscopy (DDM). To probe the dynamical properties of the passive

tracers, separately from the active bath, we use fluorescent tracers and epifluo-

rescent illumination. The samples were illuminated with 450-490 nm light from a

GFP filter cube, where the fluorescence was previously observed to have minimal

impact on the bacteria for low intensities and short exposures by Jepson et al. [59].

Movies were recorded for 40 s at 100 frames per second (512 × 512 pixels) using a

Hamamatsu Orca 4.0 CMOS camera on a Nikon Ti-Eclipse inverted microscope

with a 10×/0.3 NA objective, focused 100 µm from the bottom of the capillary

and imaged at four locations across each sample. To quantify the properties of

the bacterial stock, separate phase-contrast movies are recorded and processed

by DDM in the absence of the tracer particles.

The intermediate scattering function, f(q, τ), describes the system’s dynamics,

for diffusion

f(q, τ) = e−Dq
2τ (5.3)

for diffusivity, D. Jepson et al. observed that equation 5.3 still holds in the case

of enhanced diffusion [59].

Figure 5.1 a and b shows the measured ISFs and corresponding diffusivities from

the fitting of fluorescent tracers in a bath of smooth swimming E. coli. We find
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Figure 5.1 Fluorescence DDM results for passive 1.8 µm diameter polystyrene
tracer particles in a bath of smooth swimming E. coli, JA ∼
13 × 10−3 µm−2s−1. a) and b) show results for a sample without
polymer depletant (φp = 0.0 ), c) and d) show results for a sample
with polymer depletant (φp = 0.639 ). a) and c) depict the
intermediate scattering function, f(q, τ) obtained from DDM and
corresponding fits to a diffusion model equation 5.3, b) and d) show
the corresponding diffusion constant fits.

good fits for 0.5 µm−1 < q < 2.4 µm−1 for which the fitted diffusivities are broadly

invariant in q (note, this q-range is the typical for this setup). We replicate these

plots for samples with polymer depletants, φp = 0.639, figure 5.1 c and d and show

that the tracers still exhibit diffusive behaviour with the same small q-variance.

The active bath is characterised by an active flux, JA ∼ 13 × 10−3 µm−2s−1,

kept approximately constant between samples and we will examine the effects of

varying the flux more closely in the following sections

For enhanced diffusion, measurements of the mean square displacement have

shown superdiffusive behaviour for timescales, tc < 1s, for a range of distances

from the surface [88, 90, 99, 164]. Brownian diffusion has also been observed

even shorter times at the surface [66]. For our DDM results, superdiffusive
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behaviour would correspond to D rapidly decreasing with increasing q. However,

in agreement with previous measurements of enhanced diffusion by DDM,

we find little indication of superdiffusive behaviour [59]. This difference in

observations can be attributed to the large length scales probed by our DDM

setup, 2π/q > 2.73µm. These large length scales correspond to long time scales,

for D < 0.4µm2/s, t = π2/q2D > 5, i.e. the q-range measured is too low to

observe superdiffusive behaviour.

Figure 5.2 Two-dimensional mean square displacements of passive 1.8 µm
diameter polystyrene tracer particles measured in the bulk of a bath
of smooth swimming E. coli, JA ∼ 13 × 10−3 µm−2s−1. a) φp =
0.0 and b) φp = 0.639. Figures show filtered data and insets show
unfiltered (raw) data. The mean square displacement calculated for
each individual trajectory is plotted with low transparency, where
darker regions correspond to a higher density of trajectories. The
average effective diffusivity is plotted in blue.

To extract rough estimates of the superdiffusive timescales present in these

samples, we track the tracers in the same fluorescent movies and calculate

their two-dimensional mean square displacement using the same methods as in

chapter 4. The use of sub-pixel tracking with our low-resolution movies yields

quantitatively inaccurate results due to pixel-biasing with a significant number

of anomalous trajectories showing subdiffusive behaviour at short times. Fitting

each trajectories mean square displacement to D = 〈∆r2(τ)〉/4τ , we filter out

poor trajectories by fitting each track to D = aτ b and discard any trajectory

if b < −0.2. We show the filtered data in figure 5.2 and the unfiltered data as

insets.

The effective diffusivities are shown for φp = 0.0 and 0.639 in figure 5.2a and b

respectively, these measurements are from the same sample as in figure 5.1 but
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here averaged over several areas. Both datasets show a lower diffusivity at short

times and higher diffusivity at longer times with an intermediate superdiffusive

regime. By eye, the crossover timescale τc ≈ 0.2-0.3, suggesting that DDM could

measure D0 in these samples for q ∼ 10 µm−1. Such measurements are likely

to require multiple optical setups to study the appropriate q ranges and may

also require a re-evaluation of the ISF model to account for the intermediate

superdiffusive regime.

5.3 Effect of Polymer Depletion on Enhanced

Diffusion in the Bulk

Figure 5.3 Fluorescence DDM measurements of the enhanced diffusivity,
Dact = Deff − D0, as a function of attraction strength. The flux is
kept approximately constant, JA ∼ 13× 10−3 µm−2s−1. a) Dact, b)
measurements of Deff and D0, c) Deff/D0

The diffusion enhancement is measured as a function of polymer depletant

concentration, where the enhancement is the measured diffusivity less the

diffusivity for the same sample without any bacteria, Dact = Deff − D0. Figure

5.3a shows an initial decrease in Dact as polymer concentration increases, the

raw data showing the contribution of Brownian motion is shown in figure 5.3b.

Increasing φp, increases the viscosity, η, causing a decrease in D0.
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To rationalise the decrease in Dact, with increasing φp, we review how increasing

viscosity changes the swimmer tracer interactions. Here the increasing viscosity

decreases the rotational diffusivity of the swimmer, Drot = kBT/4ηVbac [157],

where Vbac is the volume of a motile bacterium, which, in turn, increases the

persistence length, λ = v/Drot. This increase in persistence length has been

found in a decrease Dact in simulation studies [90, 110].

To compare our decrease in Dact with the previous simulations we estimate the

initial change in λ for φp = 0.0 → 0.256 which corresponds to η ≈ 0.94 →
1.44mPa s. To estimate the rotational diffusivity of a motile cell, it is commonly

modelled as a prolate spheroid of length, 2a = 10µm (body + flagella) and

radius, b = 0.5µm, for Vbac = 4πab2/3, which for v = 12µms−1, λ = v/Drot =

58 → 90µm. Over this range both simulation works predict Dact to decrease by

∼ 15% [90, 110] compared to our decrease of ∼ 40%.

For φp > 0.256 we observe a deviation in behaviour as Dact plateaus. The ratio

Deff/D0 shows this deviation from the viscous dependant decrease more clearly,

figure 5.3c. An increase in Deff/D0 for high φp hints that diffusion enhancement

from sticky tracer-bacterium interactions is present in three-dimensions as well,

as will be shown later in the text, and further that indicates the existence of a

minimum in Dact around φp=0.45.

We are uncertain of how the active flux varies between samples in figure 5.3, as

we are unable to measure the speed and density of swimmers in situ due to the

presence of tracer particles. The diffusivity enhancement, Dact is known to be

proportional to the active flux [59, 87, 90].

Dact = Deff − D0 = βJA (5.4)

Where the active flux, JA = cBv and the constant β is a length scale to the

fourth power which describes the tracer-swimmer interactions [59, 87, 90].

For a more accurate measure of diffusivity enhancement, we measure β for several

values of φp. For each dataset, we measure JA for samples without tracers but

with the corresponding polymer concentrations. For φp = 0.0, 0.320 and 0.639

we found the linear scaling of Dact with JA remains and measured values of β

= 9.7 ± 1.0, 6.9 ± 0.7 and 7.86 ± 0.8 µm4, shown in figure 5.4. These agree

with the previous finding that the addition of polymer, at least initially, reduces

diffusivity enhancement.
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Figure 5.4 Diffusivity enhancement of passive tracer particles, Dact, in a bath
of smooth swimming E. coli of active flux, JA. Three polymer
concentrations are tested, φp = 0.0, 0.320 and 0.639 corresponding
to β = 9.7 ± 1.0, 6.9 ± 0.7 and 7.86 ± 0.8 µm4

Figure 5.5 ‘Cheap tracks’ of fluorescent tracer particles over 40 s for a) samples
without polymer induced attractions, φp = 0.0, and b) samples with
polymer induced attractions φp = 0.639

To examine if sticky tracer-swimmer interactions are present for this three-

dimensional system and thus make contributions to β for large φp, we report

representative trajectories of fluorescent tracer particles. To show tracer
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trajectories, we generate ‘cheap tracks’ using the z-project feature in ImageJ,

which is used to convert a movie into an image where each pixel corresponds

to the maximum value observed for that pixel over the movie length. These

cheap tracks give simplistic trajectories of the tracers, showing how the tracers

move, the resolution here is too low to show loop-like displacements but can show

persistent ballistic motion due to sticky tracer-swimmer interactions.

Cheap tracks are shown in figure 5.5a and b for fluorescence movies of tracers

in a bath of smooth swimmers for φp = 0.0 and 0.639 respectively. Both images

are produced from z-projections of 40 s movies recorded with a 10×/0.3 N.A.

objective with a depth of field ≈ 50 µm, where the brightness of each trajectory

indicates the tracer’s proximity to the focal plane. For φp = 0.0, the tracers appear

diffusive, however, for φp = 0.639, tracers are observed moving ballistically for up

to ∼ 100 µm, where sinusoidal motion is induced due to the processive motion

of the bacteria. Note, for the bacterial concentrations used within this chapter

(cB < 10−3 µm−3), these sticky interactions are rare.

5.4 Effect of Tumbling Rates on β

In the previous section, we reported values of β for tracers in a bath of smooth

swimming E. coli. Work by Jepson et al. on the enhanced diffusion on non-motile

E. coli by a bath of wild-type E. coli (WT) report β = 7.1 µm4 compared to our

value of 9.7 µm4 for samples without polymer. One of the key difference between

these two experiments is the strain of E. coli used for the active bath, our bacteria

are smooth swimmers compared to their run-and-tumblers. It is surprising then

that we obtain larger values of β, as kinetic theoretical results suggest the inverse

to be true [90, 110]. Also, we note that our tracer particles are spherical and

slightly larger than their fluorescent non-motile E. coli tracers. It is an open

issue of how tracer size effects enhanced diffusion [99], but a correction factor

may be required for the change in tracer size and shape [90]. In this section, we

will investigate this conflicting finding in detail. Note, Jepson et al. claim this

dependence of DA on λ to be accurate but to date, no experimental verification

has been published. In this section, we shall take the opportunity to examine

this experimentally.

To study the effect of persistence length we initially aimed to compare smooth

swimmers (AB1157 ∆CheY) whose persistence length is controlled by rotational
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diffusion with run-and-tumblers (AB1157 WT) whose persistence length is

controlled by tumbling rate. Upon initial investigation, we discovered (or perhaps

more appropriately re-discovered, see appendix A) that the tumbling rate of

WT cells could be increased by the addition of NaCl. For the typical salt

concentrations used in literature, [NaCl] = 67 mM, for WT cells we observe,

by eye, the expected tumbling rate of fT ∼ 1 s−1 [12, 123]. However, throughout

this thesis, we use [NaCl] = 0 mM, for which we observe, by eye, a decrease in

tumbling, fT ∼ 0.1 s−1. And, of course, for smooth swimmers, fT ∼ 0 s−1.

Without specialised equipment for tracking cells in three-dimensions, it is difficult

to extract exact tumbling rates for these bacteria in each condition, however, the

trend can be inferred from the q dependence of v obtained from DDM [79, 131].

Theoretically, a swimmer with an infinitely straight trajectory has a speed which

does not vary with length scale, 2π/q. When swimmers deviate from a straight

path they begin to swim further to travel the same length scale, so as reorientation

rate increase, low-q speed decreases. This q-dependence is further affected by the

experimental finite depth-of-field, where swimmers are seen disappearing into the

plane of the movie, resulting in speeds that increase for lower q [79].

We report a qualitative measure of tumbling rates, R, which has previously been

used to measure tumbling rates [131].

R = v(q1)/v(q2) (5.5)

Where here we use q1 = 2.24 µm−1 and q2 = 0.5 µm−1.

The swimming speed, v, as a function of q and corresponding values of R are

reported in figure 5.6a and b respectively for the three separate baths. The R

values qualitative match to direct observations where AB1157 ∆CheY has the

lowest tumbling rate, AB1157 WT in buffer without sodium chloride has a small

but finite tumbling rate and AB1157 WT in buffer with 67 mM sodium chloride

has the highest tumbling rate.

Utilising these three separate active bath conditions, we re-evaluate the constant

β for zero polymer conditions. Figure 5.7 shows diffusivity enhancement with the

active flux and fits to equation 5.4. The fitting gives β = 9.7 ± 1.0, 8.3 ± 0.5

and 9.0 ± 0.2 µm4 for ∆Chey, WT with 0 mM NaCl and WT with 67 mM NaCl

respectively. Despite kinetic theory predictions to the contrary [90, 110], these

results do not show a significant change in β with tumbling rate. These findings
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Figure 5.6 a) Fitted values for the swimming speed as a function of q from
DDM, normalised by the swimming speed at high q. b) A measure
of path straightness R, equation 5.5, where larger values indicate an
increase in tumbling.

corroborate the large β values measured throughout this chapter.

Our measurements tracer diffusivity 100 µm from the capillary surface in a bath

of WT with 67 mM NaCl is the same bath used by Jepson et al.. Despite small

differences between our experiments (tracer shape, our higher frame rates and

longer movies), there is no significant difference between our measured values of

β = 9.0 ± 0.2 µm4 and that of Jepson et al., β = 7.1 ± 0.4 µm4 [59].

5.5 Conclusion

In this chapter, we measured tracer diffusivity in the bulk of an active bath

using differential dynamic microscopy. For the study of enhanced diffusion,

current DDM setups are unable to probe a wide enough range of timescales to

measure both short and long time diffusivities. We measure a single long time

diffusivity for activity enhanced tracers and use separate samples without bacteria

to measure the passive diffusivity for calculation of the diffusivity enhancement.

In a bath of smooth swimming bacteria, we observed the net effect of adding

polymer depletants was to decrease the tracer’s diffusivity enhancement in

opposition to initial expectations. The small changes in viscosity used here

do not significantly alter the speed or flow field of the bacterium and the

changes to the tracer particles are accounted for. A possible explanation is that

69



Figure 5.7 Diffusivity enhancement of passive tracer particles, Dact, in a bath
of motile E. coli of active flux, JA. Each dataset corresponds to a
different tumbling rate fT ∼ 0, 0.1 and 1 s−1 for ∆Chey, WT and
WT + 67 mM NaCl respectively, corresponding to β = 9.7 ± 1.0,
8.3 ± 0.5 and 9.0 ± 0.2 µm4.

viscosity decreases the rotational diffusivity of the swimmers, straightening their

trajectories, which is expected to reduce the net-displacement from a swimmer-

tracer scattering event as tracers motion approaches a closed loop [90, 108, 110].

For our quasi-two-dimensional system (discussed in chapter 4), polymer depletion

increases diffusivity enhancement. This enhancement in two-dimensions occurs

due to sticky tracer-swimmer interactions where the tracer is dragged by the

swimmer for a short period. These sticky interactions are observed in our three-

dimensional system at high polymer concentrations but appear sporadically. This

finding suggests that steric interactions are very infrequent in three-dimensions as

compared to two-dimensions for similar bacterial concentrations and diffusivity

enhancements. This difference is likely influenced by our use of E. coli which

are pushers, their flow field pushes local tracers away, minimising the chance of

both experiencing a short-ranged depletion attraction. It appears that sticky

interactions only make a small contribution to diffusivity enhancement relative

to far-field hydrodynamics. For baths of pullers, where near-field effects dominate

diffusion enhancement [58, 82], sticky tracer-swimmer interactions may result in

significant increases to diffusivity enhancements.
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We measured β = 9.0 ± 0.2 µm4 for WT in motility buffer with 67 mM NaCl,

similar to a value reported by Jepson et al. in the same mixture, β = 7.1 ±
0.4 µm4 [59]. Both of these measurements are similar to theoretical predictions

for enhanced diffusion due to reorientations of the swimmers 7.24 µm4 [90] and

separate predictions for a combination enhanced diffusion due to reorientations

and entrainment 9 µm4 [108]. These theoretical predictions find that β can vary

1-2 µm4 based on small changes in system parameters [90], accounting for the

variation in measurements between us and Jepson et al.

Our findings, that diffusivity enhancement does not change with the tumbling

rate but does decrease with increasing persistence length, appear to conflict. A

possible explanation is the ‘dead in the water’ time that is introduced when

a bacterium tumbles, since in this time no new tracer-swimmer interactions can

occur. This time spent not swimming is zero for smooth swimmers and may reach

∼20% of the total time for the highest tumbling rates used here. Accounting for

dead in the water time suggests that tracer-swimmer scattering events are more

efficient for shorter persistence lengths, but for the case of tumbling, fewer tracer-

swimmer interactions occur, indicating that it is coincidental that no change in

diffusivity enhancement is observed when tumbling is introduced.

This dead in the water time is not accounted for in the above-mentioned

simulation works and may account for the differences of our findings. It is clear

that more work, both experimentally and theoretically, is required on this subject

to explain the differences in observations.
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Chapter 6

Introduction to Activity-Controlled

Phase Behaviour

6.1 Studying Microscopic Behaviour

One of the reasons the study of colloids has been so fruitful is due to the

abundance of information obtained from confocal scanning laser microscopy

used to study bulk behaviour in three-dimensional studies. Confocal microscopy

utilises a pinhole to exclude out of focus light and can thus excite and detect a

single focussed region of a sample. The microscope then scans a three-dimensional

region to build up a picture of the sample from a series of smaller volumes or voxels

[91]. These samples can be > 50% particles by volume if the refractive index of

the solvent and particle are matched [147].

However, the study of active matter with confocal microscopy is significantly

more difficult due to the additional requirements introduced by activity. An

ideal sample would be required to have matched refractive index and density

between the active particle with the media, without disrupting the fuel supply.

The development of such a sample has proved difficult, and thus work on dense

active matter experiments has been mostly limited to two-dimensional studies

[49]. While it is possible to prepare and study 3D dense and active samples,

their study becomes difficult due to the aforementioned optical limitations and

imaging speeds [136]. So our study of passive-active mixtures with attractions at

high passive particle concentrations will be limited to two-dimensions, where the
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entire sample can be observed and imaged.

6.2 Passive Colloidal Phase Behaviour

Figure 6.1 Taken from [34]. a) Schematic representation of the binary hard-
sphere system. Particles are represented as circles with solid borders
and depletion layers as dotted borders, and the wall of the container
is depicted as a solid black line at the bottom, also with a depletion
layer. In this system, the small particles act as depletants and
induce attractions between the larger particles and large particles
and the wall. b) The phase diagram of a binary hard-sphere mixture,
where 1 denotes the large particle species and 2 denotes the smaller,
where the particle size ratio, ξ = 0.15. The dashed lines describe
phase separation at the wall and the continuous lines describe phase
separation in the bulk, and the data points detail experimental
observations and the rest is theoretical predictions.

For all of the extensive work on colloid-polymer mixtures in three-dimensions, it

is surprising that our proposed system of spherical particles interacting on a two-

dimensional plane has received less attention. One reason is that such a system is

unintuitive because such particles are interacting in two-dimensions with three-

dimensional interaction potentials and hydrodynamics whilst simultaneously

experiencing wall effects like adhesion to solid walls [155] and particle drift [29].

Secondarily, when these systems initially started to receive attention, applications

focused on three-dimensional systems and it was possible to acquire results for

such experimental systems with the use of light scattering [106, 149] and confocal
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microscopy [16, 55, 147].

To the writer’s best knowledge, the closest work to colloid-polymer mixtures in 2D

is the study of phase separation at the walls of 3D samples, where both colloid and

polymer are in exchange within the bulk [34]. Such 3D samples have interesting

interactions with walls due to the nature of the depletion induced attractions.

In mixtures of small and large particles, the small particles exert an osmotic

pressure on the larger ones. When two large particles are close enough to exclude

the smaller particles from the interparticle region, the osmotic pressure becomes

anisotropic, resulting in an effective attraction between the large particles called a

depletion attraction [6, 7, 158]. This is discussed in detail was section 1.4.3. These

depletion attractions also occur between the large particles and the container

walls, where the excluded volume and thus the depth of the depletion potential

between a particle touching a wall is approximately twice as deep as that of

two touching particles [62], depicted in figure 6.1a. This attraction to a wall

results in an enhanced particle density at the wall, where the particles are still

free to diffuse and experience depletions attractions to other particles at the wall

or in the bulk. This pinning to a 2D plane and the further increase in density

aids in the nucleation of crystals at lower depletant concentrations than in the

bulk [18, 33, 65], where phase separation does still occur at higher depletant

concentrations.

The observation of phase separation at the wall of the sample, before the bulk,

is also observed for binary hard-sphere mixtures, if the size ratio of the spheres,

ξ = rsmall/rlarge ≤ 0.15 [34, 62, 103]. Here the small spheres act as depletants

due to exclusion of their centres from the volumes around the larger particles and

walls, depicted in figure 6.1a. The phase diagram of such mixtures is shown in

6.1b, reproduced from [34], where φ1 is the larger particles volume fraction and

φ2 is the smaller particles volume fraction. The experimentally observed phase

boundary at the wall is plotted with a dashed line and crosses and the subsequent

bulk transition is marked with a solid line and circles.

6.3 Phase Behaviour of Purely Active Systems

The behaviour of passive systems is controlled by thermal forces from incessant

collisions between solvent molecules and suspended particles. Active systems,
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Figure 6.2 Taken from [24]. a) A sketch detailing the self-trapping mechanism.
To nucleate a stable cluster, a minimum of three active particles are
required to swim into each other. As the particles undergo rotation
diffusion, they can form an unstable structure where a particle points
outwards, freeing it from the cluster. b) Time-lapsed micrographs of
a Janus particle cluster, with propulsion orientations of each particle
marked by a red arrow. The cluster is held together by particles on
the edge, which mostly face inwards. As an edge particle rotates to
point away from the cluster, we observe it swim out of the cluster.

however, consume energy from their environment in the form of a fuel and

undertake non-equilibrium activities, introducing additional forces which can

dramatically alter the system’s behaviour. Novel active behaviours that have

received significant attention range from collective motion [30] to active nematics

[36] and of particular interest to our work is their propensity to cluster and

phase separate. Active or ‘living’ clusters not only show enhanced translational

and rotational motion over their passive counterparts [64, 86, 122], and are also

constantly breaking apart and reforming [47].

The simplest mechanism by which activity induces phase separation is particle

self-trapping. When two active particles collide head-on they slide past each

other due to their persistent motion, however when three particles collide and

are all pointing inwards they are unable to slide past each other due to their

excluded volumes and the active propulsion holds them together in a triplet, as
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shown in figure 6.2a. For 3D systems, four active particles would be required to

form a tetrahedron to initiate clustering. Additional particles can join the cluster

by swimming in to it. All the particles within the cluster undergo rotational

diffusion, and when particles on the cluster’s perimeter point outwards, they

break away from the cluster, as seen in figure 6.2b. As clusters grow, only

the perimeter particles need to pointing inwards, the central particles are then

randomly orientated, which results in an imbalanced directional force and torque

on the cluster induces enhanced translation and rotation [47]. The aggregation

and fragmentation of active clusters result in a finite mean cluster size cluster

or steady state, which increases with particle speed and particle area fraction

[24, 140]. This behaviour was predicted theoretically [137], then observed in

simulations [43] and experiments [24].

Some experimental systems suffer from phoretic attractions, induced by their

propulsion mechanism, an effect most well explored in Janus particle clustering

[74, 75]. An example of a Janus particle is a polystyrene colloidal particle which is

half coated in platinum. When submerged in aqueous solutions containing H2O2,

the platinum face locally catalyses the decomposition to H2O and O2. In the

decomposition of hydrogen peroxide, the reduction and oxidation reaction occur

at different rates across the surface of the particle, producing an ionic current.

The current generates an electric field which acts on ions in the Debye layer that

propels the particle [20, 21]. The phoresis induced chemical gradients can interact

with neighbouring particles and induce particle-particle attractions, where the

strength of the attraction scales with activity [47]. Sufficiently strong attractions

can dominate the clustering behaviour over self-trapping, allowing the perimeter

particles to have random orientations, increasing active clusters translational and

diffusional motion [47].

Striking examples of activity-induced attractions occur in populations of the

fast swimming bacteria species S. marcescens and Thiovulum majus [27, 100].

As these species approach a surface, they can become dynamically bound with

their flagella preferentially pointing normal to the surface due to hydrodynamic

interactions. The hydrodynamic forces also induce long-ranged attractions on

other cells at the surface, resulting in clustering of cells at the surface.

More common methods for bacterial aggregation occur via motility induced

phase separation, where the bacteria slow down as local density increases. Such

density dependence may be a result of increased collision frequency or quorum

sensing, the ability of a bacterial species to communicate by secretion of signalling
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molecules, which can slow bacteria down via biological pathways [45]. Density

dependant speed initiates a positive feedback loop where bacteria slow down

due to accumulation and then further accumulate due to slowing down. At some

critical bacterial density, the speed of bacteria will be suppressed enough to phase

separate [25].

The phase diagram of active systems becomes richer when attractions are

decoupled from activity, for example in the case of motile E. coli interacting

via polymer-induced depletion interactions [121, 122, 124]. Without polymer

depletants, both motile and non-motile E. coli behave as a homogeneous fluid.

As polymer depletants are added, bacteria-bacteria attraction strength increases,

it is observed that non-motile populations undergo phase separation before

motile ones. This occurs because the active forces oppose the attractive forces,

reducing the effective depth and range of the interaction potential, and thus to

overcome this effect, motile populations require stronger attractions to induce

phase separation. At attraction strengths just shy of inducing phase separation,

motile E. coli are observed to form clusters with unidirectional rotation, where

their rotational speed is proportional to the inverse cluster radius. These clusters

form from proto-clusters of non-motile cells, which are then later activated by

motile cells adhering to their surface and inducing unidirectional rotation.

Phase separation of active particles with attractions has been studied thoroughly

by simulations in the Péclet number, Pe and attraction strength U plane [112],

reproduced in figure 6.3. Here, Pe = vσ/D, where v is the particle velocity, σ

is its diameter and D is its Brownian diffusion constant. For low Pe and high

attraction strengths, gel-like phase separation is observed, shown in green, where

the active forces are not sufficient to break the structure but still increase the rate

at which it coarsens. As Pe increases, the gel structure is destroyed resulting in

a fluid phase, shown in red, which requires higher swimming speeds to overcome

stronger attractions. In the high Pe limit, the system undergoes phase separation

again, triggered by self-trapping acting cooperatively with attractions, shown in

blue. This reentrant behaviour, where the system goes from phase-separated to

a homogeneous fluid and back to phase-separated as swimming speed increases,

highlights the range of control afforded to active systems.

The competition between gel-like phase separation and an active fluid is often

described in terms of an effective temperature. Such descriptions are unhelpful

when examining phase separation of active systems because it ignores the

reduction of effective interaction range [105, 122].
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Figure 6.3 Taken from [112]. Phase diagram of active spherical particles
with attractions in the Pe-U plane, describing swimming speed
and attraction strength respectively. They identify three separate
phases, at the top-left of the diagram a kinetically arrested gel,
labelled in green, where activity opposes particle interactions and
the samples slowly coarsens. In the centre, a fluid, labelled
in red, where activity overcomes the particle-particle attractions.
On right, a self-trapped phase-separated state, labelled in blue,
where the activity is high enough to induce an active phase-
separation mechanism. The attractions are modelled as Lennard-
Jones potentials, with a minimum of U in kBT , and the area fraction,
φ = 0.4.

The work discussed so far has been focused on two-dimensional samples. Most

properties appear to be preserved as samples transition to three-dimensions, with

a few exceptions[89, 133]. Phase separation in three-dimensions often occurs from

the nucleation of a single cluster, whereas in two-dimensions nucleation is more

homogeneous which then coarsen into a single cluster. The critical Péclet number

for self-trapping is also higher for three-dimensions. The clusters formed in three-

dimensions are less crystalline. Finally, the long-time aggregation kinetics appear

slightly enhanced for three-dimensions.

Further, the transition from two to three-dimensions corresponds to an increased
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importance of hydrodynamic interactions [37, 42]. For passively aggregating

particles in three-dimensions, the inclusion of hydrodynamics dramatically alters

the local particle structure, forming anisotropic threads of particles instead of

compact clusters [116]. This effect has been noted to suppress motility induce

phase separation in simulations [92]. The fact that hydrodynamic interactions

of aggregating particles are ignored by many of the simulation and theoretical

studies to date make it very important to attempt to replicate any of their findings

qualitatively with experiments.

6.4 Phase Behaviour of Active-Passive Mixtures

Engineering materials using active particles to have desired active properties has

proved difficult [31]. Because active particles are often expensive or difficult

to produce in large quantities, realistic applications would aim to use as small a

concentration as possible. One method to retain active properties at low densities

is to dope active particles into passive systems. The effect of active particles on

passive systems can be varied and depend upon system-specific features.

First, we shall review how activity alters interactions between passive particles.

Work by Angelani et al. on 5 µm silica particles found that the presence of a

bath of motile E. coli pushed the particles together resulting in short-lived spatial

correlations or effective attraction [3].

The presence of activity-induced attractions can be explained by swim pressure,

the concept that an active particle would swim away in space unless confined

by walls and thus applies an active pressure on those walls [126, 138]. Swim

pressure predicts that in the limit of short persistence length, lp < σ, that active

particles can be treated like depletants and thus an activity-induced depletion

force can be derived. These activity-induced attractions have been shown to

induce crystallisation of hard-sphere mixtures [70, 134]. Phase separation of

passive particles also is still observed when the active particles have a density

dependant speed [113, 163, 165]. Further, experiments and simulations have

shown that the presence of active particles within polycrystals dramatically

enhances the annealing process, yielding a fast method to produce near-perfect

crystals [84, 85, 111].

However, in the limit lp > σ, active particles can no longer reorientate quickly
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and will accumulate in funnels [4, 46]. Gaps between aggregated particles can

also act as traps for active particles, producing a pressure upon the aggregate

which effectively weakens passive particle-particle attractions and can result in

aggregate breakup [53, 125].

Figure 6.4 Taken from [97]. The phase diagram of a mixture of passive particles
and active particles interacting via an Akasura-Oosawa depletion
potential with well depth, U= 6 kBT and range 0.12σ. The passive
area fraction is set as φpass = 0.4 and the active fraction is φact
= 0.04. The phase space is explored by changing the dynamics
of the active particles, being the Péclet number, here described
as a swim Péclet number or PeS and its reorientational Péclet
number, PeR = σ/2lp. The separate phases are identified by
their background colour; grey-gel, blue-coarsening gel, red- activity-
induced phase separation and green-fluid. Passive particles are
plotted in blue and active particles in red

Only recently Omar et al. have started to explore how active particles change the
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phase behaviour of passive particles with attractions [97], a system very similar to

the one studied in this chapter. They studied, by Brownian dynamics simulations,

a mixture of passive and active particles interacting via a depletion potential of

depth U = 6 kBT and range 0.12σ, with passive area fraction φpass = 0.4 and

active fraction φact = 0.04. They explored the system’s phase space by changing

the active particle’s swimming speed and reorientation time. The Péclet number

is defined as a ‘swim’ Péclet number, PeS = ζva/kBT , for swimming speed v

and drag coefficient ζ. They also define the reorientation Péclet number as the

ratio of a swimmers size to its persistence length, PeR = a/lp. As both Péclet

numbers are varied, the active particle radius a is kept constant.

The phase diagram by Omar et al. is reproduced in figure 6.4. For slow swimming

speeds, PeS < 100, Omar et al. identified a gel phase, shown in grey and

blue. These gel phases occur when the active particles are not strong enough to

overcome the depletion forces and thus cannot sustainably disrupt the network

of passive particles. For PeS = 10 and PeR ≤ 0.1, shown in blue, there are signs

of the active particles increasing the rate at which the gel structure coarsens, but

note, the boundary between gels and activity coarsened gels will be dependent

on the observation time window.

For strong swimming, PeS ≥ 100, Omar et al. observed two contrasting phases

which are highly sensitive to PeR. For short persistence lengths, PeR ≥ 1, the

active particles can overcome the attractive forces between passive particles and

coarsen the gel network on a timescale several orders faster than for a purely

passive gel. Whereas for long persistence lengths, PeR ≤ 0.1, the active particles

break the majority of passive-passive bonds in the system, destroying the gel

network, yielding a fluid phase.

This behaviour can be described by the effective interaction force between two

passive particles, F dep. In the limit of fast reorientations, PeR → ∞, the active

particles can be treated as depletants. This interaction can be expressed in an

Akasura-Oosawa form, where the contact potential is

F dep/φF swim = −
√

1 + 2β

πPeR
(6.1)

where β is the ratio of passive to active particle sizes and the force is normalised

by the strength of the swimmers and the swimmer area fraction, here described as

φ. Here, the value of F dep is always negative, i.e. the force is attractive. The force
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Figure 6.5 Taken from [97]. Data points show simulation results for passive
particle interactions, scaled by the strength of the active bath
F dep/φF swim, where φ describes the active particle area fraction,
as a function of reorientational Péclet number PeR = σ/2lp. This
is plotted for several ratios of the passive to active particle size, β,
described by the inset. The dotted lines detail a predicted value for
F dep from a treatment of the active particles as depletants, valid in
the limit of fast reorientations, PeR → ∞.

required to hold two hard discs in contact, F dep, was measured from simulations.

Two particles are held in contact in a large active bath, where F dep is the sum of

the collisional forces imparted by the active particles.

Equation 6.1 is plotted in figure 6.5 as dotted lines, along with simulation results

of the interaction force between a pair of passive particles in an active bath,

plotted as data points. These results show that in the limit of ‘hot’ Brownian

particles (i.e. when the persistence is smaller than the particle diameter), you

can indeed treat active particles as depletants. Unlike for depletion in binary

hard-sphere mixtures, depletion still occurs for active depletants when β ≤ 6.6̇,

or using passive nomenclature, ξ ≥ 0.15 [15].

However for PeR < 1, equation 6.1 is no longer valid, and the passive particle-

particle interaction becomes repulsive. This occurs when an active particle

becomes wedged in between the two passive particles. Since both the active

force is stronger than the passive particle-particle interaction, and the active

particle cannot reorient, the active particle swims through the pair pushing them
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apart. This effective repulsion is found to increase as the active particle becomes

smaller, as active particles are more easily trapped in the wedge between the

passive particles [4, 46, 53].

Findings from Omar et al. allow some generic predictions of active-passive

mixtures. Our experimental system is comprised of passive silica particles with a

diameter of 1.5 µm and motile E. coli of width 0.85 µm and therefore β = 1.75.

Taking the persistence length of the bacteria as, lp = vτr ≈ 75 µm [123], where

τr is the reorientation timescale and using the diameter of the bacteria as 1 µm,

we find PeR = σ/2lp ≈ 10−2. The swim Péclet number, PeS = ζva/kBT ≈ 102,

for swimming speed, v = 15 µms−1. This would suggest that the bacteria will

introduce an effective repulsion between the passive particles.

Activity is an effective tool to explore the concept of designer phase behaviour,

however, more experimental work is required to make this a reality. The work

within this chapter aims to verify the ability of activity to control the phase

behaviour of passive attractive systems experimentally and then further expand

our knowledge of the kinetics of such systems.
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Chapter 7

Activity-Induced Microphase

Separation in Colloid-Polymer

Mixtures

In this chapter, an experimental system is developed to study the role of motile E.

coli on a passive phase separating system. A variety of methods are used to track

the onset of phase separation and characterise the resulting microphase. These

findings are then discussed within the framework of a Smoluchowski model.

7.1 Methods

Descriptions of microscope setup, sample preparation, bacteria growth protocols

and particle tracking methods are described in the general methods section,

section 2. Here we describe the experimental methods specific to the work in

this chapter.

7.1.1 Cluster Size Measurements

The cluster size distribution is a key characteristic of a system undergoing

aggregation. In this section, we identify two possible measurements of cluster

sizes, which we will then review later, in section 7.4.

84



First, we review particle tracking and cluster identification by local proximity of

neighbours. The method for identification and tracking of individual particles

is outlined in section 2.4.3, to find cluster sizes we use a custom python script,

which first identifies each particle’s nearest neighbours. As we are dealing with

depletion interactions, we simply define bound neighbours by proximity to particle

i and loop through all particles. The cutoff range for neighbours is set as the

σ+2rg+0.1µm ≈ 1.70µm, where the additional 0.1µm accounts for any particle

polydispersity. We take the lists of nearest neighbours and combine any that

share any particle i. The result is a series of lists each containing a unique

set of particles, representing a cluster. The cluster size distribution is then the

histogram of list lengths.

The weakness of tracking is its small field of view, which not only minimises the

statistical significance of each experiment but also introduces errors from clusters

only being partially within the field of view. So ideally, a measurement of the

cluster size distribution involves sampling the largest individual areas possible.

To increase the field of view we developed an unresolved-particle imaging method,

which estimates cluster size from the area of each cluster.

To image the clusters without resolving individual particles, images were recorded

in bright-field, with a 10×/0.3 NA objective recording at 3.3̇ frames-per-second.

The use of an exposure time of 300 ms and bright-field imaging blurs and obscures

the motile bacteria from the image. A 1 pixel gaussian blur was applied to further

obscure any non-motile bacteria before a threshold was applied to the image to

identify the clusters. Illumination and threshold settings were kept constant

across measurements to minimise experimental variation. From the thresholded

image, each cluster size is taken as being proportional to its area (we will validate

this assumption in section 7.4, by direct comparison to particle resolved tracking).

Unresolved imaging is a faster method because of the larger field of view,

allowing more samples to be run simultaneously. This is particularly beneficial

for our experiments because immediately upon preparation, the swim speed of

our bacteria slowly degrades. Running simultaneous measurements allows us to

use the same bacteria stock across 5-10 samples, reducing the variation in the

bacteria’s swim speed and motile fraction.

Later within this chapter, we study how clusters of particle change in size over

time. We utilise the ‘mark’ and ‘recall’ functions of Micro-Manager with an

automated stage to ensure we study the same areas throughout each experiment.
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7.2 Development of Model Passive System and

Corresponding Measurements in

Two-Dimensions

7.2.1 Attraction Strength

In this chapter, we tune particle-particle attractions of silica particles in quasi-

two-dimensions using polymer depletion. Here, again we use sodium polystyrene

sulphonate, with the radius of gyration, rg = 45 nm and size ratio, ξ = 0.06. To

maintain a healthy osmotic pressure on the bacteria, we use a buffer solution of

6.2 mM K2HPO4, 3.8 mM KH2PO4, 0.1 mM EDTA at pH ∼ 7.5. Further to stop

the bacteria, and later particles, from adhering to the walls of the glass capillary,

we add 0.3 wt% TWEEN20 [123]. The presence of the multivalent ions in the

buffer and the surfactant, TWEEN20, also alter the particle-particle interactions

[11, 125]. Comparison between the experimentally measured interaction potential

and the expected values from the Asakura-Oosawa potential (equation 1.14) will

allow for an estimation of the attractions induced by the salts and TWEEN20.

For low polymer concentrations, φp, and vanishing particle area fraction, ηc we

can calculate the effective interaction potential, U(r), from g(r) [128].

g(r)ηc→0 = exp

[
− U(r)

kBT

]
(7.1)

where g(r) is the radial distribution function, defined as

g(r) =
1

2πNr2ρ

N∑
i=1

ωi(r) (7.2)

ωi(r) is the number of particles found at a radius r, for a total number of particles

N and particle number density ρ.

The radial distribution function describes the probability of finding a particle

centre r away from another particle centre, relative to a random distribution

of points. For an ideal gas, U(r > 1) = 0 and g(r > 1) = 1 because they

cannot overlap and are otherwise randomly distributed. Slight deviations in U(r)
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correspond to slight changes in local density and thus g(r). At low particle

densities, g(r) only probes the interaction behaviour of pairs of particles. As

density increases, g(r) probes the interactions of 3+ particles and no longer

approximates the pair interaction potential.

For a range of low attraction strengths, with ηc ≈ 0.02, U(r) was calculated from

g(r) measurements and is plotted in figure 7.1a. Firstly, there is a significant

attraction at zero polymer concentration. Secondly, these results do not look

like traditional depletion potentials between hard-spheres, this maybe due to the

small degree of polydispersity present in particle and polymer stocks [159]. To

compare these potentials, we utilise the property that short-ranged attractions

of any well shape, can be mapped onto each other if they have the same reduced

second virial coefficient, B∗2 [94].

B∗2 =
24

σ3

∞∫
0

(
1− exp

[
−U(r)

kBT

])
r2dr (7.3)

To account for the finite attraction at zero polymer concentration, we assume

the interaction strength can be defined as ∆U = UAO + U0, where UAO is the

depletion well minimum for the Akasura-Oosawa potential and U0 is the well

minimum from electrostatic attractions mapped onto the same shape potential.

The addition of these two interaction potentials is supported by studies of

the potential of colloids interacting through electrostatic repulsion and polymer

depletion [115]. To determine U0, we minimise the square difference between

our experimental findings and that of an ideal Akasura-Oosawa potential of the

same polymer-colloid size ratio (ξ = 0.06), figure 7.1b. We find U0 = 1.5 kBT ,

which should not effect our findings, but this detailed analysis of particle-particle

interactions will be important for comparison between systems.

7.2.2 Particle Adhesion to the Surface

The disadvantage of our 2D system resting on a glass surface is particle adhesion

to the glass, which can disrupt particle aggregation and phase separation. If a

particle adheres to the surface, it stops diffusing, but can still aggregate with

other diffusive particles. A cluster containing a single stuck particle no longer

diffuse and can only rotate. The adhesion of a second particle stops the cluster

rotating. Our samples contain 0.3 %wt TWEEN20 to minimise adhesion which
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Figure 7.1 Measurements of the attraction strength between passive silica
particles. a) Attractive potentials estimated from g(r) for a series
of polymer concentrations, φp. b) Reduced second virial coefficients
for the potentials in a, where we minimised the square difference to
theory (green) with an initial offset as given by, ∆U = UAO + U0

(remember φp ∝ UAO). Here U0 = 1.5 kBT .

reduces the adhered fraction significantly but does not stop adhesion totally.

Unfortunately, a detailed analysis of this important feature was prevented due

to Covid-19 lab restrictions. However, with data already collected, we can still

estimate the initial adhered fraction. Six capillaries were prepared with ηc = 0.01

(we will call the area fraction of particles, ηc, which is not to be confused with

the polymer volume fraction, φp). The capillaries were allowed to rest on the

microscope stage for 7 minutes to allow all the particles to reach the bottom and

start diffusing, time-lapse images were then recorded in 3 separate locations. Each

particle in the movies was then identified as either diffusive or adhered, giving a

final adhered fraction of 0.05 ± 0.05 (number of adhered particles/total number

of particles), where the variation was observed between capillaries and not across

each sample. This fraction may increase over the duration of the experiment

[156].

7.3 Passive Phase Diagram

The phase behaviour of the passive colloid-polymer system, with a polymer-

colloid size ratio of ξ = 0.06, is plotted in figure 7.2a. Each sample was allowed

to age for ≈ 2 hours, by which time the phase of the system is clear by direct
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Figure 7.2 Phase behaviour of the 2D passive system. Blue circles = fluid, red
crosses = crystal-fluid equilibrium and green squares = crystal. The
dotted lines mark the phase boundary and are there to guide the eye.
The scale bar represents 50 µm and the inset scale bar represents
10 µm.

observation alone, as shown in figure 7.2b-d. At low φp (b), we observe a fluid in

which the particles freely diffuse. As the polymer concentration is increased to

φp = 0.166 (c) we see the emergence of crystalline rafts within the fluid. As φp

is further increased (d), the crystalline fraction increases and the fluid fraction

decreases. The fluid and fluid-crystal coexistence regions of the phase diagram

are labelled as F and F-X respectively.

We find good agreement between the observed phase behaviour of our system

and that of the limited literature for 2D colloid-polymer mixtures [34, 35]. These

experimental and simulations study the onset of fluid-crystal coexistence at

the wall in mixtures of binary hard spheres, where the smaller spheres act as

depletants and the larger ones undergo phase separation. Note, here both types of

particles can diffuse into the bulk. For a system with size ratio, ξ = σS/σL = 0.11,

Dinsmore et al. observe the onset fluid-crystal coexistence at the wall for φL ≈
0.07 and φS ≈ 0.14 [35]. The boundary identified by Dinsmore et al. is close to

ours (albeit slightly lower) and the shape of the boundary agrees well (a slight

decrease with increasing large particle fraction). These literature results informed
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the shapes of the phase boundaries plotted for ηc >0.5, where we have limited

results.

Due to the monodisperse particle stock, the initial aggregation forms crystal

grains. As grains come into contact they aggregate, but often have misaligned

unit cell axes, and thus the final crystalline cluster will contain a grain boundary.

The number of these grain boundaries within a cluster increases with the number

of crystal grains that aggregated to form it, i.e. they become polycrystalline. For

high polymer concentrations, φp > 0.230, and low to moderate area fractions,

ηc < 0.4, the aggregation of several crystalline grains with misaligned axes results

in a macroscopically gel-like structure. Therefore, even though these structures

are technically polycrystalline, it makes more sense to think of them as crystalline

gels.

For this system, there is a finite probability that when a particle reaches the

bottom surface, it will land on top of a pre-formed cluster. Furthermore, as

φp increases, it becomes less likely that these strong tetrahedral clusters can

rearrange into planar clusters. Such events can lead to the formation of a second

layer of particles and the probability that it occurs increases with both ηc and

φp. For high densities, ηc = 0.75 we are able to form reasonable monolayer

polycrystals for a small range of attractions, labelled as X in figure 7.2a. Less

buoyant particles will suppress the formation of a second layer and should expand

the accessible polycrystalline region.

We will focus on experiments at ηc = 0.2 for the remainder of this chapter unless

otherwise specified. At this low particle density, the second layer effects are

minimised, but clusters can grow to reasonable sizes within the experimental

timescale. It is possible to do some basic experiments within the crystalline

phase, which we will review in section 7.11.

7.4 Cluster Size Measurements

Two separate methods for measuring cluster size in real space were outlined in

section 7.1.1, by either tracking all of the particles within an image and building

clusters by local proximity or by careful image processing to measure the area

covered by each cluster in pixels. The analysis of clusters by tracking individual

particles is the more traditional of these approaches but suffers from slower data
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acquisition, larger data volume requirements and longer analysis times than the

image processing method. We will proceed to show that these methods generate

the same results, which will allow us to use the faster data acquisition of the image

processing method to run many samples in parallel with an identical bacteria

stock.

To compare the two methods, we initially perform a direct comparison across

the same experimental field of view. To ensure a fair comparison, we took a

single micrograph for image processing at ×10 magnification, and then rastered

across the same area taking photos for particle tracking ×50 magnification using

the Micro-Manager ‘create grid’ function. For the particle tracking method, this

required stitching these images together in ImageJ. The process of re-imaging

the same area at high magnification takes several minutes, so to ensure a fair

comparison, we prepared a sample which would not significantly change during

the imaging sequence. To suppress clusters evolution, TWEEN20 was removed

from the buffer solution with PSS, φp = 0.326. Upon sedimentation, the silica

particles still diffuse and aggregate normally, but within a few hours, a significant

fraction of the particles adhere to the surface, stopping further cluster evolution.

The results are reported in figure 7.3, and show good agreement for most cluster

sizes. There is a strong disagreement at very small sizes because the tracking

method generates many more false particles, this occurs because we initially

stitched 25 images, resulting in ×25 more dirt in the tracked raw data than for

the processed results. These anomalous data points can be removed in dynamic

particle tracking, as they are observed to not move.

We repeat this cluster size analysis comparison for samples containing motile

bacteria, as these are the samples we are most interested in. To avoid analysing

the bacteria, we need to take care when processing the data. For tracking, this

involves applying a ∼1 pixel blur to the image and followed by a careful choice

of threshold. For the image processing method, we select a large exposure time

of 300 ms, which blurs swimming bacteria over ∼3 body lengths.

Figure 7.4 shows the comparison of cluster size distribution measurement methods

for a sample with parameters, φp = 0.454 and cB = 1.7 × 10−3 µm−2. The

measured number of clusters cn of size n is normalised by the total number of

clusters identified c. The use of lower magnifications allows the image processing

method to sample a significantly larger area of the sample than the particle

tracking, greatly reducing noise from the measurement. For example, in the
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Figure 7.3 Comparison of methods for identifying and measuring cluster size
distribution. a) Micrograph recorded with a ×10 objective, which
was then analysed by the image processing method. b) An enhanced
section of the stitched micrograph recorded with ×50 objective,
which was then analysed by particle tracking c) Comparison of
cluster size distributions from processed images and particle tracked
images.

Figure 7.4 Comparison of methods for identifying and measuring cluster size
distribution for samples containing bacteria. Sample parameters are
φp = 0.454 and cB = 1.7 × 10−3 µm−2.

tracking measurement, noise at large n is seen as a sudden drop in cn around

n = 50, which is amplified by the logarithmic axis. Image processing also has

the advantage of acquisition speed, allowing multiple experiments to be done in

parallel with an identical bacterial stock, as such will be the sole cluster size
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measurement used from here on.

7.5 Suppression of Phase Separation by Smooth

Swimmers

In this section, we will study the effect of motile bacteria on the phase behaviour

of a 2D colloid polymer by direct observation. A range of samples were prepared

and allowed to quench on a microscope stage for ∼ 2 hours, after which they were

imaged with a ×50 magnification objective. Representative cropped images of

each sample is shown in figure 7.5. Focusing on the top row, increasing φp from

left to right reproduces the previously discussed passive phase diagram, with fluid

phases for φp ≤ 0.134, highlighted in red, and crystal-fluid coexistence at φp >

0.166, highlighted in blue. For high polymer concentrations, φp ≥ 0.262, this

equilibrium description is no longer suitable as each cluster starts to appear gel-

like due to the onset of diffusion-limited cluster aggregation (DLCA). Samples

undergoing DLCA will keep aggregating until a system-wide particle network has

formed, and not tend to the equilibrium state of one large crystal in the middle

of the sample in exchange with an almost non-existent gas fraction.

As we transition to the lower panels, we slowly increase the bacterial concen-

tration, cB. The bacteria are visible in these bright-field micrographs as faint

obround shapes. For low polymer concentrations, φp ≤ 0.134, the addition of

bacteria have little noticeable effect on the phase behaviour of the colloids but

do appear to yield a small increase in local colloid density. However for φp =

0.166, the addition of bacteria appears to limit the formation of large crystalline

clusters, and for the largest bacterial concentrations, almost no crystal is present.

As φp → 0.422, the presence of bacteria appears to limit the formation of clusters

by diffusion-limited cluster aggregation and instead yields more round clusters.

The addition of bacteria to mixtures with high attraction strengths also yields

an increase in the concentration of smaller clusters, this becomes increasingly

significant as cB → 5.7 × 10−2 µm−2, where the entire system is unable to

form large crystalline clusters. We will go on to show that these samples are

microphase-separated, highlighted in green.

As shown in figure 7.5, it is clear that the addition of smooth swimming E. coli

results in a suppression of phase separation of the 2D colloid-polymer mixture.
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Figure 7.5 Representative micrographs of the system as polymer concentration,
φp and bacterial concentration cB are varied. We identify 3
separate phases; fluid (red), phase-separated (blue) and microphase-
separated (green), obtained using the particle-resolved imaging.
Imaged after 120 minutes. Scale bar represents 20 µm.

To understand how the bacteria hinder phase separation, we will explore one

representative example of a bacteria breaking a cluster apart. Figure 7.6 shows a

bacterium (highlighted in green) on a collision course with a crystalline colloidal

cluster (φp = 0.422). On collision, the head of the bacterium becomes pinned

between the surface of glass and two particles for ∼0.5 s, while stuck the

precessive motion of the bacterium is still observed. After ∼0.5 s, the bacterium

dislodges several colloidal bonds to cut the cluster along a crystal unit cell axis,

allowing the bacterium to swim through the cluster. The act of a bacterium

swimming through the cluster pushes the two halves the bacterium’s diameter
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Figure 7.6 A series of micrographs over a period of 1.4 s, depicting a bacterium
(manually highlighted in green) colliding with a small crystalline
cluster and breaking it in two, with parameters, φp = 0.422, and cB
= 1.7 × 10−4 µm−2 . The scale bar represents 5 µm

apart, which is out of the range of depletion attraction, stopping the cluster

from immediately reforming. For systems with low polymer concentrations, φp

≤ 0.230, the forces holding clusters together are significantly weaker allowing the

bacteria to immediately break clusters apart.

7.6 System Dynamics

So far within this work, we have observed how motile bacteria can enhance particle

diffusion, which could lead to enhanced cluster aggregation rates and we have

also observed bacteria fragmenting clusters, which suppresses aggregation. It

becomes interesting then to ask, how does the addition of motile bacteria affect

the aggregation rate of passive particles?

For the aggregation of passive, purely attractive colloids clustering by diffusion-

limited cluster aggregation (DLCA), the mean size, n̄, obeys n̄ ∝ tZ for a time t

and exponent Z. For cluster dilute systems, being systems in their stages initial

aggregation or of very low particle fraction (ηc ∼ 0.01), Z ∼ 0.8 [83], and as the

system becomes cluster dense the exponent increases to Z = 1 due to crowding

effects [44, 76, 101]. The process of DLCA will continue until the system only

contains a single cluster.

We examine the aggregation dynamics in detail for samples with φp = 0.326. The

average cluster size, n̄(t), is measured over time for a sample without bacteria,

cB = 0, and plotted in blue in figure 7.7a. The initial exponent Z ∼ 0.6 is lower

than expected for true DLCA and slowly but continuously decreases with time.

There are two key differences between our experiments and the previously

95



Figure 7.7 a) Average cluster size, n̄(t), for systems with various bacteria
concentrations over time, φp = 0.326. The black line has an exponent
of 1. b) Scaling of the average cluster size at steady state, n̄,
with the inverse bacterial concentration, for a series of polymer
concentrations, φp. Error bars depict standard error across samples.

mentioned experiments simulations and theory that account for the difference

in Z [44, 76, 101]. Firstly the start time of the aggregation process is poorly

defined as some particles start on the surface at t = 0 and can immediately start

aggregating, while the rest slowly reach the surface over 5 minutes. The second

problem is that a small fraction of the particles can adhere to the surface and

stop diffusing. If a single particle in a cluster adheres to the surface, that cluster

will no longer be able to diffuse and if a second particle adheres, the cluster will

not be able to rotate either. Even if the number of adhered particles is fixed,

the impact on the aggregation rates increases over time as the number of clusters

decreases as aggregation proceeds, and thus the probability of a cluster partially

adhering to the surface continuously increases. An added complication is that for

colloids on glass surfaces, the fraction of particles adhered to the surface increases

over time [156], which will compound the reduction in the aggregation rates.

Next, we examine how the addition of motile bacteria changes the passive

aggregation dynamics. In figure 7.7a we plot n̄(t) for a range of bacterial

concentrations, cB. All samples show a negligible difference to the passive

sample at short times, but suddenly reach a steady-state value which decreases

with increasing bacterial concentration. The constant values for the average

cluster size over an order of magnitude of time indicate that the sample will

never completely phase separate, and the samples are therefore in a microphase-

separated state. Note, the slight deviations in steady-state value of n̄(t) for 5.7
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× 10−4 and 5.7 × 10−3 µm−2 coincide with deviations in bacterial speed due to

oxygen consumption and later depletion [123].

Taking the steady-state cluster size, n̄, as the average size measured after t =

120 minutes, we investigate the dependence on cB and φp. There appears to be a

power law relationship between cB and n̄, see in figure 7.7b, which is investigated

in detail in section 7.9.

Increasing φp corresponds to an increase in steady-state size for all cB. As noted

by direct observation, the bacteria do not immediately break clusters apart on

contact, they get wedged at the edge of the clusters for a short period of order

0.1 s for φp = 0.326 until the bacteria push into the cluster. This breakup

timescale is well documented for passive colloidal systems, known as the Kramers

escape time [68, 127]. The passive escape time has been adapted for the escape

time of two bacteria swimming in opposing directions, and matches experimental

observations [122], both active and passive models predict an increase in timescale

with attraction strength. While our system is more complex than these theoretical

systems from the literature, we expect an increase in escape time with increasing

φp, which will result in a lower breakup event frequency and thus a larger

average cluster size. This effect also controls the relationship between n̄ and

cB, where higher concentrations of bacteria yield more frequent breakups and

smaller average cluster sizes. For dopant levels of motile bacteria, this simplistic

model would suggest that the breakup rate increases linearly with cB, which will

be reviewed in section 7.9.

These bacteria containing samples are not able to completely phase separate,

i.e. they are microphase-separated. Microphase separation is a well-studied

phenomenon within soft matter, which occurs when two opposing forces are

present on the phase separating material, one force promotes phase separation

while the second suppresses it. While most well studied in block copolymers

[9, 78], microphase separation is also known to occur for colloids with short-ranged

attraction and long-ranged repulsion [115, 135]. Microphase separation has also

been found in systems of active particles with short-ranged attractions [122, 143],

where the active forces act as a repulsion. For our system, microphase separation

occurs due to the competition between the short-ranged depletion attraction and

bacteria-induced breakup of the clusters, which can be considered as an effective

repulsion. This represents a new method to achieve microphase separation due

to the temporal and spatial heterogeneity of the effective repulsion.
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7.7 Analysis of the Phase Boundary

We have observed that motile bacteria can swim through clusters, fragmenting

them and stopping full phase separation. On the other hand, literature reports

that for non-phase separating systems, the addition of motile bacteria can push

colloids together, creating effective attractions between the colloids for the short

time period that the bacteria continue to push them, order of 0.1 s [3]. The

presence of activity-induced attractions between particles may lead to enhanced

phase separation, or at least shift the phase boundary. To help understand these

opposing effects, and resolve whether either lead to a shift in the phase boundary

with increasing activity, we investigate if the addition of motile bacteria changes

the onset of phase separation.

The phase behaviour of passive colloid polymer mixtures is well understood and

was reproduced for our system in section 7.3, where the boundary is marked by a

dramatic shift from small lived clusters of 3-4 particles to stable crystalline rafts

of 100s of particles, which continuously grow. For our samples containing motile

bacteria, such a dramatic shift is not observed.

To develop a robust understanding of the phase transition we shall review

several methods for analysing the same experimental data and compare the

results. We will start with the simplest method, the number of neighbours, N̄j,

where neighbours are defined by proximity. We then proceed with the bond-

orientational order parameter, ψ6, which analyses the bond angles of neighbours

with the aim of identifying crystalline structures. Finally, we will review the

radial distribution function, g(r), which details the relative probability of finding

a particle, at radius r, from an initial particle and averaged over all particles in

the system. We will expand on g(r) analysis by defining a new order parameter,

Λ, extracted from g(r) results, which identifies the formation of a second shell of

crystalline particles.

The average number of neighbours, N̄j, where a nearby particle is defined as a

neighbour if their centre-to-centre distance of less than 1.3 σ. The cut-off limit

is larger than the particle diameter plus the polymer depletant diameter, σ + 2

rg = 1.06 σ, to account for polydispersity effects. If each particle is separated

from every other particle by at least 1.3σ, then N̄j = 0, whereas for a perfect

hexagonal close packing, N̄j = 6. For fluid states, some particles appear in contact

momentarily, giving a non-zero value for N̄j.
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The average number of neighbours is detailed over a range of attraction strengths

in figure 7.8, for a series of bacterial concentrations. For the passive samples

(black), we observe an abrupt increase N̄j around φp = 0.134, representing

the phase transition and N̄j decays fractionally for φp ≥ 0.262, indicating the

transition from round clusters formed by reaction-limited cluster aggregation

(RLCA) to string-like clusters formed by diffusion-limited cluster aggregation

(DLCA).

For the lowest concentration of bacteria (purple), N̄j has similar values to the

passive samples for low and high φp but omits the RLCA peak. Active samples

have been observed to have larger concentrations of smaller clusters and single

particles, which causes N̄j to decrease with increasing bacterial concentration.

The relative trend in N̄j, i.e. at what attraction strength it starts to grow, is the

important feature for samples containing bacteria, for which there is no significant

difference between any of the samples. This suggests that the phase boundary

does not shift with increasing bacterial concentration, but just that within the

phase-separated region, increasing bacterial concentration decreases the degree of

phase separation.

Figure 7.8 The average number of neighbours, N̄j , as a function of attraction
strength over a range of bacterial concentrations

Alternatively, we can use the crystalline microstructure of the phase-separated

sample to study the phase boundary. A popular method for determining the

onset of crystallisation is the bond-orientation order parameter, ψ6 [132, 168].

This method relies on the fact that for a perfect hexagonal close-packed crystal,
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every particle i has 6 neighbours each in contact and evenly spaced 60° apart.

The bond angle, θij, is defined as the angle between particle i and j and an

arbitrary and constant reference axis. For each particle, an order parameter is

calculated

q6(i) ≡ 1

Nj

∑
j∈N (i)

ei6θij (7.4)

with N the total number of particles and Nj the number of neighbours to particle

j, where the definition of a neighbour remains based on proximity alone, i.e.

two particles with a centre-to-centre distance of less than 1.3 σ. Note that the

exponent i in equation 7.4 is the imaginary unit, and does not refer to particle i.

Here we specify Nj for particle i, instead of dividing by 6, otherwise, the results

would be dominated by edge effects.

The value |q6(i)|2 describes the local ordering around particle i, where for perfect

hexagonal close packing, |q6(i)|2 = 1, and for a sample with no crystalline order,

|q6(i)|2 = 0. The bond-orientational order parameter is then defined as the

average over all particles i

ψ6 ≡
〈∣∣∣∣q6(i)

∣∣∣∣2〉 (7.5)

The bond-orientational order parameter is plotted as a function of φp, for a range

of bacterial concentrations, in figure 7.9. For the passive samples, shown in black,

at low attraction strengths, any clusters are non-crystalline resulting in ψ6 = 0.

Above φp = 0.134, clusters enter the RLCA regime and are able to undergo

rearrangements, resulting in a highly crystalline structure. As φp increases

further, rearrangements become significantly slowed as the system crosses into

the DLCA regime, which results in more grain boundaries and importantly

the formation of tetrahedral structures within the 2D crystals. The emergence

of particles on top of the monolayer form tetrahedra, which disrupts particle

tracking, leading to an artificially low value of ψ6. This fluid to RLCA to DLCA

is again represented as a peak in the order parameter as a function of φp.

Upon addition of bacteria, ψ6 still starts to increase around φp = 0.134, but

instead of reaching a peak value, ψ6 reaches a plateau around φp = 0.358. As

bacterial concentration is increased, the sample becomes less crystalline at all
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Figure 7.9 The bond orientational order parameter, ψ6, as a function of
attraction strength over a range of bacterial concentrations

attraction strengths tested.

The final method we will review is the radial distribution function, g(r). As

described earlier, the radial distribution function is defined as

g(r) =
1

2πNr2ρ

N∑
i=1

ωi(r) (7.6)

where ωi(r) is the number of particles found at a radius r, for a total number of

particles N and particle number density ρ.

The radial distribution function, g(r), has previously been shown to be effective

for studying phase transitions in samples undergoing a freezing transition by

observing the splitting of the second peak in monodisperse samples [19, 141] or

the shift of the first minima in polydisperse samples [117]. For passive samples just

above and below the phase transition g(r) is plotted in figure 7.10, as attraction

strength is increased each sample is shifted by 1 for clarity. Due to the highly

monodisperse sample, the phase transition is observed as the formation of a new

peak at
√

3σ, highlighted in yellow (as opposed to the splitting of the 2σ peak).

The peak at
√

3σ is the first peak uniquely associated with the hexagonal close-

packed structure, where the particles are located at the far vertices of a rhombus,
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Figure 7.10 Radial distribution functions, g(r), for passive samples over a range
of attraction strengths, showing the growth of crystalline peaks in
the transition from a fluid (φp = 0.134) to fluid-crystal coexistence
(φp ≥ 0.166). As attraction strength is increased, each subsequent
distributions is offset by +1 for clarity. The inset shows the
crystalline structure which gives rise to the peak at g(r = 1.73σ),
these peaks are highlighted in yellow.

Figure 7.11 Radial distribution functions, g(r), for samples with varying
bacterial concentrations, plotted for a) φp = 0.134 and b) φp =
0.294. The highest bacterial concentrations are plotted at the
bottom and subsequent distributions are offset by +1 for clarity.
The region in yellow highlights the r = 1.73σ peak, the first peak
purely associated with crystalline ordering, see the inset in figure
7.10 for the related structure.

as depicted in the inset of 7.10.

The radial distribution function is also plotted for samples with φp = 0.134 and

0.294 over a range of bacterial concentrations, figure 7.11a and b respectively. The

bacterial concentration is increased going from the blue to the cyan data. For φp
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= 0.134 a slight shoulder emerges at r =
√

3σ for samples containing bacteria,

which indicates that there might be a small shift in the phase transition, but the

difference in behaviour is so small is not particularly significant. Observations

by Angelani et al. [3], that the addition of motile bacteria to a dilute colloidal

suspension induces effective attractions between the colloids may explain this pre-

transition behaviour, i.e a combination of polymer depletion and activity-induced

attractions may allow for the formation of small short-lived clusters.

However, for samples with φp = 0.294, g(r) plots show a suppression of phase

separation with increasing activity, as indicated by the suppression of the peaks

in figure 7.11b. For the highest bacterial concentration tested (cyan), some peaks

are entirely lost due to the decrease in the steady-state cluster size. However,

at the highest bacterial concentration, there is a small broad peak that forms at

r ≈ 1.4 σ, the additional separation of 0.4σ is approximately a bacterium’s width

indicating this new peak is likely caused by frequent fragmentation events. Such

peaks will likely become more prominent as bacterial concentration is increased

beyond a dopant level [3].

It is clear that the g(r) is an effective tool to study the details of this phase

transition, however not to compare a large number of data sets. For the purpose

of comparing many samples we calculate the integral of the peak around
√

3σ,

defined as

Λ√3 =
1

2∆r

∫ r′+∆r

r′−∆r

g(r)dr (7.7)

where r′ =
√

3σ and ∆r = 0.1σ. This value is a measure of the number of

mid-range crystalline neighbours, meaning it is a measure of crystallinity but

also cluster shape. Note for a hard-sphere fluid Λ√3 = 1, and any increase is an

indication of an increase in crystallinity.

The mid-range crystalline order parameter, Λ√3, is plotted as a function of φp

for the same range of bacterial concentrations in figure 7.12. For the passive

sample, we again observe an increase in crystallinity around φp = 0.134, with a

maximum around 0.230, followed by a decrease to an intermediate value. Again,

this is associated with the transition from fluid to RLCA to DLCA and the

corresponding change in cluster shape as well as the addition of some tetrahedral
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structures within the crystal causing tracking errors.

Samples containing bacteria for φp < 0.134 all have slightly higher values of Λ√3

than the passive sample. The increase for low attraction strengths is due to the

emergence of a small peak at r =
√

3σ, as discussed above, this slight increase

in phase separation is due to activity-induced effective attractions [3]. As φp

is increased, we again see the active samples starting to undergo crystallisation

around φp = 0.134. For samples with φp > 0.134, the depletion interactions

become the dominant form of attraction and increasing activity results in cluster

breakup, this causes the degree of phase separation to decrease with increasing

bacterial concentration.

Figure 7.12 Integrated radial distribution peaks around r =
√

3σ as a
function of polymer concentration φp, for a range of bacterial
concentrations, cB. For a detailed description of Λ√3σ see text.

All of the methods used to examine phase separation yield very similar insight

to the underlying processes within the system. At low polymer concentration,

φp < 0.134, all behave fluid-like. For all bacteria concentrations, we observe

the onset of phase separation around φp = 0.134, i.e. the phase boundary

has little to no dependence on activity. However, the bacteria do act to limit

phase separation within the phase-separated region, where increasing bacterial

concentration further suppresses phase separation.

For samples containing bacteria with φp < 0.134, the g(r) results indicate the

presence of small crystalline clusters. A possible explanation can be found by

104



considering previous work by Angelani et al., who found that motile bacteria can

induce effective attractions between colloids in the limit of the well depth, U =

0 kBT [3]. A combination of activity-induced attractions and polymer depletion

may be enough to allow for the formation the short-lived clusters.

Surprisingly, the addition of activity does not significantly shift the phase

boundary for our experiments because activity has previously been found to shift

phase transitions within the literature. For example, Schwarz-Linek et al. found

that for samples of E. coli with a polymer depletant, depletant concentration

required to induce phase separation increased fivefold when motility was switched

on [122]. The key difference between our system and those with an activity-

dependent phase boundary is that here passive-passive interactions dominate

since active-passive interactions are both temporally and spatially heterogeneous.

7.8 Cluster Size Distribution

Next, we will review the cluster size distributions for samples without bacteria

undergoing aggregation and also samples with bacteria while in steady state.

The cluster size distribution, cn(t) is defined as the number of clusters of size n

observed at a time, t, within a given area. The cluster size distribution for DLCA

has been found to follow the scaling form [151]

cn(t) = M1s(t)
−2f(n/s(t)) (7.8)

The moments are defined as Mx =
∑

n n
xcn, M1 is simply the total number

of particles in the system and is time independent and s(t) = M2/M1 and the

function f(n/s(t)) describes the shape of the distribution. This form has been

verified by additional experiments and simulations for DLCA and found to give

poor data collapse for RLCA [50, 54].

The cluster size distribution for a sample with parameters φp = 0.326 and cB

= 0 are plotted for various times in figure 7.13a, the legend details the time in

minutes at which each distribution was measured. The cluster size distribution

is normalised by the total number of clusters, c, so
∑

n cn/c = 1. As the sample

ages, the average cluster size increases and the entire distribution shifts to the

right.
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Figure 7.13 a) Unscaled and b) Scaled forms of cluster size distributions for
passively aggregating clusters. The legend details the time in
minutes of when the measurement was taken and the attraction
strength, φp = 0.326. The scaling of the cluster size distribution is
described by equation 7.8.

Figure 7.14 a) Unscaled cluster size distributions for samples containing motile
bacteria in steady state with parameters φp = 0.326 and bacterial
concentrations detailed in the legend. b) Scaled forms of cluster
size distributions for samples containing motile bacteria in steady
state and varying attraction strength. Circles, triangles and
squares represent φp = 0.326, 0.454 and 0.581 respectively and
bacterial concentrations 1.7×10−4, 1.7×10−4, 5.7×10−3, 5.7×10−3

and 1.7 × 10−2 µm−2 are plotted in cyan, green, yellow, red and
purple. Data within the red box is enlarged in the inset. Again,
the cluster size distributions are scaled according to equation 7.8.

The distributions are scaled replotted in figure 7.13b in accordance with equation

7.8. Overall, the scaling provides good data collapse, with only a small deviation

for the initial distribution at t = 6 minutes, where due to the quenching process,

not all particles will have start undergoing aggregation. The scaled distribution
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agrees well with the unimodal distribution observed in simulations for 2D DLCA

[50], with the exception of our anomalously large concentrations of small clusters

n < 10. We believe this discrepancy to be a result of the small fraction of

particles adhering to the surface, which can limit cluster growth or even their

initial formation.

Next, we review the cluster size distributions for samples with a range of bacterial

concentrations in steady-state conditions, figure 7.14a. The addition of motile

bacteria results in a significant change in the cluster size distributions, going

from unimodal distributions in the passive case to quasi-exponential decays

with bacteria. This change is most likely the result of activity-induced cluster

fragmentation resulting in the increased concentration of smaller cluster sizes.

We scale the cluster size distributions for samples with varying polymer concen-

tration, φp = 0.326 - 0.581 and bacterial concentrations cB = 1.7×10−4 - 1.7×10−2

µm−2, shown in figure 7.14b. We observe that for the active samples, the cluster

size distribution still scales well with equation 7.8. There is a slight exception for

small clusters at the lowest bacterial concentrations, where for decreasing size, we

observe a plateau in cn followed by a sharp increase, which is obscured by this plot,

but is apparent for the unscaled data, figure 7.14a. This deviation from scaling

is apparent for all attraction strengths at the lowest bacterial concentration, cB

= 1.7× 10−4 µm−2.

One would expect that the form of the cluster size distribution, f(n/s), would

transition away from the active form and towards the passive form at some

low bacterial concentration. The slight deviation in f(n/s) at low bacterial

concentration may indicate that we are close to a transition, beyond which the

few bacteria would alter the cluster size distribution. We will review the form of

f(n/s) for the active samples in detail within the next section.

The addition of bacteria results in a significant change in the shape of the

normalised distribution by increasing the concentration of small cluster sizes.

This makes sense in light of the breakup mechanism, where a single bacterium

can break large clusters in to two smaller ones. Interestingly, we observe excellent

scaling across all bacteria concentrations and attraction strengths, suggesting

that the underlying processes do not change with system parameters. We will

introduce a more thorough explanation of the active cluster size distributions

within the next section.
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7.9 Smoluchowski Model for

Aggregation-Fragmentation

The system described within this chapter, is one which constantly undergoes

aggregation and fragmentation. Aggregation-fragmentation is a well-studied

phenomenon and the process is described by the Smoluchowski aggregation-

fragmentation equation, which describes how the concentration of clusters of size

n, cn, changes over time

dcn
dt

=
1

2

∑
i+j=n

A(i, j)cjci−
∞∑
j=1

A(n, j)cncj +
∞∑
j=1

F (n, j)cn+j−
1

2

∑
i+j=n

F (i, j)ci+j ,

(7.9)

where A(i, j) is the aggregation kernel which describes the rate of aggregation of

clusters of i and j. Conversely, F (i, j) is the fragmentation kernel which describes

the rate of fragmentation of clusters of size i+j. This population balance equation

has two aggregation terms due to the creation and loss of clusters of size n by

aggregation, similarly for fragmentation. The factors of a 1/2 are to get rid of

double counting. The kernels are time-independent, and so the rates are only

dependant on cluster concentrations and time-independent geometrical factors.

Note, this is a mean field theory, meaning there are no spatial correlations between

clusters, and therefore the system needs to be sufficiently dilute so the clusters

can aggregate by diffusion

This model is impossible to solve analytically in general because it is an infinite

set of coupled non-linear first-order differential equations. Solutions are known for

simple and generally unrealistic kernels like A(i, j) = c (constant) and A(i, j) =

i + j (additive) [14, 32], or for examples where the differentially equation can

be dramatically simplified like setting j = 1 for the modelling of Janus particle

clustering [47]. Solutions do exist for realistic systems if we are able to make a

few assumptions. Below, we reproduce a general solution to the Smoluchowski

model, initially shown by Family et al. [41] and review the assumptions therein.

There are two key assumptions made in this derivation, the first being that the

kernels are homogeneous functions of their arguments A(xi, xj) = xλA(i, j) and

F (xi, xj) = xαF (i, j), for a multiplicative factor x. The values of the homogeneity

constants, λ and α, simply describe how aggregation and fragmentation scale
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with cluster size respectively, i.e. rates increase with size for positive values, are

independent of size for a value of 0 and decrease with size for negative values.

The homogeneous scaling of the aggregation kernel has been well studied by

experiments, simulations and theory [40, 76, 96, 101, 154], which show that for

ideal reaction-limited cluster aggregation (RLCA) samples possess λ = 1 and

diffusion-limited cluster aggregation (DLCA) λ = 0. For non-ideal samples, for

example, the salt-induced aggregation of an old batch of gold colloids, where

attraction strength can vary across a particle’s surface due to absorption of

impurities, λ = −0.6 has been reported [76, 96].

The second key assumption is that the time dependent cluster size distribution

scales as described by equation 7.8 in section 7.8, reproduced below

cn(t) = M1s(t)
−2f(n/s(t)) (7.10)

Again, the moments are defined as Mx =
∑

n n
xcn, M1 is simply the total number

of particles in the system and is time independent and s(t) = M2/M1. The

function f(n/s(t)) describes the shape of the distribution and is dependent on

the aggregation and fragmentation mechanisms, for λ = α = 0, f(n/s(t)) is an

exponential decay [39, 148].

To find the time derivative of the xth moment of the cluster size distribution,

the Smoluchowski equation is multiplied by (i+ j)x and summed over all (i+ j)

[129]. For x=2, in continuous form, where u and v are cluster sizes

dM2

dt
=

∫ ∞
0

du

∫ ∞
0

dv vu[A(u, v)nunv − F (u, v)nu+v] (7.11)

Substituting equation 7.10 into equation 7.11 and utilising the homogeneous

scaling of the kernels yields

dM2

dt
= M2

1 s
λ

∫ ∞
0

dU

∫ ∞
0

dV UV A(U, V )f(U)f(V )

−M1s
α+2

∫ ∞
0

dU

∫ ∞
0

dV UV F (U, V )f(U + V ) (7.12)

where U = u/s(t) and V = v/s(t).
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Defining the strengths of the kernels as,

A(i, j) = kAΨ(i, j) (7.13)

and,

F (i, j) = kFΦ(i, j) (7.14)

where Ψ(1, 1) = Φ(1, 1) = 1, and kA and kF are the aggregation and

fragmentation rate constants respectively, then equation 7.12 becomes,

dM2

dt
= M2

1 s
λkA

∫ ∞
0

dU

∫ ∞
0

dV UVΨ(U, V )f(U)f(V )

−M1s
α+2kF

∫ ∞
0

dU

∫ ∞
0

dV UV Φ(U, V )f(U + V ) (7.15)

Since M1 is a constant, due to it being the total number of particles in the system,

and ds
dt

= 1
M1

dM2

dt
, leads to the final expression for the time derivative of the size,

ds

dt
= M1akAs

λ − bkF sα+2 (7.16)

where

a =

∫ ∞
0

dU

∫ ∞
0

dV UVΨ(U, V )f(U)f(V ) (7.17)

and

b =

∫ ∞
0

dU

∫ ∞
0

dV UV Φ(U, V )f(U + V ) (7.18)

The values of a and b are not strictly constant [153], but assuming they are results

in minimal error [39], and allows for the prediction of the steady-state average

cluster size.

When ds
dt

= 0, the system has reached steady state. If at steady state we say
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s = s0, equation 7.16 becomes

s0 =

(
M1akA
bkF

)y
(7.19)

where

y = (2− λ+ α)−1 (7.20)

The exponent, y, describes the relationship between aggregation and fragmen-

tation. Stable clusters can only form when y ≥ 0, as dictated by equation

7.16. Systems with y < 0 are dominated by fragmentation, where any cluster

of particles will continuously tend towards a state of individual particles.

We now proceed to test the predicted power-law dependence of s0 vs kA/kF . In

order to do so, we first need to test whether the assumptions made in deriving

this power law are valid. First, we investigate the scaling of the homogeneity

constants. To measure the homogeneity constants experimentally we need to

extract the relative rates that clusters of size i convert to size j after a short

time, τ .

The homogeneity constants are not expected to change with the system parame-

ters cB and φp because within parameter space explore here, aggregation remains

firmly diffusion-limited and the fragmentation mechanism is not observed to vary,

so here we will focus on one sample. The parameters φp = 0.454 and cB = 1.7 ×
10−3 µm−2 were chosen as they are situated at the centre of the phase space of

interest. After the sample was prepared, it was left on a microscope stage for 2

hours and allowed to reach steady state. Several movies were then recorded each

at separate positions throughout the capillary using a 50×/0.8 NA objective at 50

fps with the standard protocol of bright-field illumination and a narrow aperture

to enhance the visibility of the silica particles and obscure the bacteria. The

clusters are tracked, and aggregation and fragmentation events are logged by

custom python scripts detailed in section 7.1.1.

To calculate the relative rates that clusters of all sizes convert to all other sizes,

we start by extracting the number of observed events for clusters of initial size

nt=τ at time, t = τ , changing by aggregation/fragmentation to a cluster of final

size t = τ + δ for δ = 0.4 s. The number of occurrences are normalised by
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Figure 7.15 Analysis of how clusters aggregate and fragment for a sample with
φp = 0.454 and cB = 1.7 × 10−3 µm−2 a) cluster size transition
matrix, a 2D histogram detailing the number of changes from
size n at time τ to the size at τ + δ, for δ = 0.4/, s (the plot
only details clusters which change size in δ = 0.4/, s). These
values are presented as the logarithm of the number of events
with aggregation events normalised by c2

1/(cicj) and fragmentation
by c1/ci+j . Calculation of homogeneity constants by comparing
aggregation and fragmentation kernels for a given multiplier x, b)
aggregation, giving λ = 0.28 and c) fragmentation, giving α =
-0.39.

c2
1/(cicj) for aggregation events and c1/ci+j for fragmentation to yield the relative

rates of aggregation and fragmentation across all observed sizes. The logarithm of

the number of aggregation/fragmentation events is plotted in figure 7.15a, where

aggregation (nt=τ < nt=τ+δ) is plotted in the upper left and fragmentation (nt=τ >

nt=τ+δ) is plotted in the lower right. Due to the nature of quasi-exponential cluster

size distribution (figure 7.14b), we observe many more events in proximity to
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the origin and thus, moving away from the origin, noise in the data becomes

increasingly large.

The only other active system for which an aggregation-fragmentation transition

matrix has been measured for is an experimental mixture of Janus particle

clusters. Clusters of self-propelled Janus particles undergo the processes of

aggregation and fragmentation of single particles with the bulk, yielding a

transition matrix with dramatically larger values along the axes and diagonal

[47]. For our experimental system of passive clusters being fragmented by motile

bacteria, we observe little bias depicting that clusters of any two sizes can

aggregate and a cluster can fragment into any pair of sizes. Even though our

results are only shown up to a cluster size limit, n = 35, we expect clusters of any

possible size to be able to fragment to any other size. Due to the fractal nature

of the clusters formed, branch thickness does not increase as size, therefore very

large clusters are expected to fragment in a similar manner to the smaller ones

observed in this work.

We use the data collected in figure 7.15a to test the assumption of the

homogeneous scaling of the kernels, equations 7.13 and 7.14. The noise in the

data for n > 20 makes it difficult to explore the scaling of A(xi, xj)/A(i, j) and

F (xi, xj)/F (i, j) over even a single order of magnitude of x. We loop through

i < 3 and i < j < 6, for x < 8 and plot the average in figures 7.15 b and c.

We find, within the limited scope of the experiments, good agreement with the

assumption that these kernels scale as power laws, and obtain sensible values

for the homogeneity constants of λ = 0.28 and α = -0.39 for aggregation and

fragmentation respectively, which yields a value for the exponent, y = 0.75.

The measured value of the homogeneity constant is larger than expected for

DLCA (where λ = 0). We have already observed that motile bacteria can

dramatically increase the diffusivity of single particles within this system, as

shown in chapter 4. This enhanced diffusivity will impact the aggregation kinetics

to some degree, but the positive value for λ suggests that bacteria enhance the

aggregation rates of larger clusters more than that of smaller ones. It is unclear if

this is the result of enhanced rotational, translational diffusion or a combination

of the two.

For fragmentation, the measurement of α = -0.39, indicates that larger clusters

fragment slower than smaller ones. To rationalise this, first consider the small

cluster size limit, where a cluster can be treated as a circle, the number of bonds
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required to break to undergo fragmentation increases with size, thus increasing

the difficultly of fragmenting larger clusters.

For the large cluster limit, the fractal nature of the structure means the branch

thickness and thus number of bonds required to break a branch does not vary with

size. However, large clusters are often interconnected and may require the scission

of two or more branches, meaning fragmentation still becomes more difficult as

size increases. The continuous increase in difficultly to fragment larger clusters

results in a negative value of α.

Figure 7.16 Normalised cluster size distributions for samples in steady state.
Circles, triangles and squares represent φp = 0.326, 0454 and 0.581
respectively and bacterial concentrations 1.7 × 10−4, 1.7 × 10−4,
5.7 × 10−3, 5.7 × 10−3 and 1.7 × 10−2 µm−2 are plotted in cyan,
green, yellow, red and purple. Data within the red box is enlarged
in the inset.

The second assumption made in the derivation is that the cluster size distribution

scales, as described by equation 7.10. We observed that both active and passive

cluster size distributions scale well in section 7.8, the scaled active cluster size

distribution is reproduced again in figure 7.16.

The shape of the normalised cluster size distribution reveals the form of the scaling

function, f(n/s(t)). The scaling across all samples implies that the underlying

processes do not significantly change across our samples. We find the scaling

function to be exponential for n/s(t) > 1, but as n/s(t)→ 0 we note an increase in

s2cn away from exponential behaviour. By numerically solving the Smoluchowski
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equation, Elminyawi et al. also found the same deviation for λ > α and further

noted that as λ → α the cluster size distribution tends to an exponential, and

when λ < α, the deviation inverts and a plateau in the cluster size distribution is

observed for n/s(t) > 1 [39]. Note, for the values of a and b (equations 7.17 and

7.18) are truly constant when the cluster size distribution is exponential [153].

We have directly observed that an increase in cB yields an increase in kF , and in

chapter 4, we observed that diffusion was enhanced by an increase in cB, which

will likely result in an increase in kA, so it is not clear what the dependence of

kA/kF is on cB. With the assumptions of this theory validated experimentally,

we can investigate the dependence of cB on kA/kF Equation 7.19 predicts that s0,

the steady-state value of the ratio of the second moment to the first moment of

the cluster size distribution, scales with kA/kF to an exponent y, where we have

determined y = 0.75 by measurement of λ and α.

Experimentally, we have observed that we can increase kA/kF by decreasing the

bacterial concentration cB. To determine the relationship between kA/kF and

cB, we plot s0 as a function of c−1
B , figure 7.17. We define the scaling for the

experimental fitting as s0 ∝ c−WB to avoid confusion between W and the exponent

from the Smoluchowski model, y. We extract values of exponent W = 0.38, 0.38

and 0.48 for φp = 0.326, 0.454 and 0.581 respectively. We do not study enough

separate attraction strengths to know if the increase in the exponent, W , for φp

= 0.581 is a real effect. The idea that W , or in effect y, may depend on φp, is

not supported by scaled cluster size distributions, figure 7.16, i.e. if y changes,

we would not expect to see the observed overlap for all φp. However, W does

change with φp, but we do not have the results to discuss if λ, α or both are

changing. We will proceed by assuming W is constant, and take the mean value

of 0.41, suggesting that s0 ∝ c−0.41
B ∝ (kA/kF )0.75, from which we can estimate

(kA/kF ) ∝ c−0.55
B . The relationship between (kA/kF ) and cB is non-trivial, this

is because both kA and kF depend on cB. As shown throughout this chapter,

the fragmentation rate of clusters increase with bacterial concentration. But

within chapter 4, we explored how the diffusivity of discrete passive particles was

enhanced by cB for the same system. Further interpretation of kA and kF would

require specific models for their dependence on cB. We conclude that providing

(kA/kF ) ∝ c−0.55
B , the Smoluchowski theory accurately describes our experiments.
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Figure 7.17 Scaling of steady-state cluster size, s0 = M2/M1, with bacterial
concentration, cB, over a range of polymer concentration, φp.
The data is replotted from figure 7.7b with fits to equation 7.19.
The exponent from fits for φp 0.326-0.581 are 0.38, 0.38 and 0.48
respectively. Error bars depict standard error across samples.

7.10 In Search on Enhanced Phase Separation

In this chapter so far we have explored how smooth swimming bacteria alter

the phase behaviour of a passive colloid-polymer mixture, and we observed

a suppression of phase separation. These findings agree with findings from

simulations by Omar et al., who also predicts that this behaviour is a sharp

function of the active particle’s persistence length [97], where for very fast

tumbling they observe coarsening of the passive gel structure, instead of cluster

breakup. Here we attempt to verify these findings experimentally by altering the

persistence length of the bacteria.

To describe the persistence of the swimmers, the swim diffusivity Péclet number

is defined as PeR = va/v2τR = a/lp, where v is the particles speed, a is the radius,

τR is the reorientation time scale and lp the persistence length. For PeR ≤ 1,

Omar et al. observed significant coarsening of the passive particle network into

large rafts after 100 τB, after quenching from a monodisperse system.

To replicate these parameters for the active particle experimental we used

AB1157 ∆CheZ, which does not bundle their flagella and thus undergoes constant
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tumbling [56]. Unfortunately, we find the use of glucose to extend the swim time

also induces bundling of the flagella and loss of their desired constant tumbling

behaviour. To match the time limit of the experiment to 100 τB = 25 minutes,

limits the maximum usable bacterial concentration, due to oxygen depletion of

approximately, so we use cB =1.7 × 10−2 µm−2 or equivalently ηbac ∼ 0.02, which

is half of that used by Omar et al.. For consistency within our own work, we

continue to use a particle area fraction, ηc = 0.2, with is also half of that used by

Omar et al.. Finally, we matched their attraction strength, well depth U = 6.5

kBT using a polymer concentration, φp = 0.262.

Within these scoping experiments, we observed no enhancement of phase

separation with the addition of AB1157 ∆CheZ. From observation of the sample,

it appears that the bacteria struggle to approach the clusters, and thus would

not be able to initiate any particle rearrangements. In the experiments, the

unbundled flagella are likely inducing some steric hindrance here and stopping

close approach of bacteria and clusters. Therefore the lack of enhanced phase

separation may just be a system-specific property.

7.11 Role of Activity at Very High Density

With the experimental system developed within this chapter, it would be remiss

to not explore what happens when bacteria are added to dense polycrystalline

samples. To date, there have been a few experimental and simulation studies of

passive polycrystalline samples doped with active particles of the same size and

short persistence length. It has been observed that active particles migrate to

the grain boundaries and slowly disturb particle bonds there, which results in the

shrinkage of small grains and growth of the large ones eventually resulting in a

homogeneous crystal [70, 84, 85].

For our passive system, only a small fraction of the crystal phase is accessible due

to the preferential formation of a second layer of particles. For low polymer

concentrations, φp < 0.166, particle rearrangement occurs within minutes as

clusters are not strong enough to hold the weight of the particles on top of them.

The quality of the formed monolayer is very sensitive to silica particle density

and will never realistically be perfect. A sample with parameters φp = 0.134,

ηc ≈ 0.75 and cB = 1.1 × 10−3 µm−2 was prepared and allowed to age for 20

minutes. The sample is observed by bright-field microscopy and a characteristic
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Figure 7.18 Series of cropped micrographs depicting the movement of a
bacterium through a polycrystalline sample, at timestamps of 0,
2 ,4, 6, 8, 10 and 30 s. Sample parameters φp = 0.134 and ηc ≈
0.75. The bacterium is not visible due to lensing by neighbouring
particles. Scale bar represents 10 µm.

interaction between a bacterium and the polycrystalline particles is detailed in

figure 7.18.
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As with the experiments at low particle density, the bacteria can enter and leave

the surface. In these experiments we are unable to resolve individual bacteria due

to lensing effects of neighbouring particles, however, we can infer their positions

from videos due to the characteristic jiggling they exert on neighbouring particles.

A bacterium initially inserts into the polycrystal towards the top right corner of

the micrograph of 7.18, the subsequent images detail the sample position over

time. The bacterium takes a second to orientate and then proceeds to swim

along a grains unit cell axis, the majority of the colloids in the path are pushed

out of the plane and start to form a second layer. When the bacteria reaches a

grain boundary it immediately stops and attempts to reorientate, when aligned

with one of the new grains unit cell axes it starts moving again until the next grain

boundary. This process repeats until the bacterium escapes the surface. Most of

the particles displaced by the bacterium’s movement return to the surface within

a minute, but a scar is left as the particles rarely reform the perfect crystal

structure. Over the course of a 30 minute experiment, the average grain size was

observed to decrease, but the long term trends in grain size were not studied.

The difference between the observations reported here and that for previous Janus

particle studies [70, 84, 85] is the dynamics and shape of the active particle. Work

by Brown et al. has already compared Janus particle’s and E. coli’s motion

through uniform crystalline samples [23], where they also found that E. coli

swim along unit cell axes, whereas Janus particles orbit a particle and jump

stochastically. The reason that E. coli swim along the unit cell axes is that steric

hindrance of the flagella limits their ability to turn sharply enough to change

direction. The bacteria are still able to make sharp turns in our experiment, but

only when they move from one grain to another, where they will get momentarily

stuck until they can reorient towards a new unit cell axis. Brown et al. also

noted that bacteria with shorter flagella may find it easier to reorient within the

crystal [23], while this may hold true for our samples, our experiments allow for

the flagella bundle to be oriented slightly out of the plane which will reduce steric

hindrance and may allow for some of the tight reorientations observed.

Simulations of polycrystals compromised of passive particles have found that the

added Janus particles will accumulate at grain boundaries and slowly coarsen the

crystal domains, removing the grain boundaries [84, 85]. For our experiments with

smooth swimming E. coli, it appears that the high aspect ratio of the bacteria

plus bundled flagella stop the bacteria reorientating easily within the polycrystal,

and therefore do not accumulate at grain boundaries and instead swim through

119



the crystal grains. As E. coli swim through the crystals, they can push particles

out of the plane, as the particles return to the surface the chance that reform

a perfect crystal again appears low, and instead favour the formation of new

grain boundaries. Further study on these samples is warranted to measure the

average crystal grain size over time, to more carefully detail the effects of smooth

swimming E. coli of these samples.

7.12 Conclusion

In this chapter, we developed a model two-dimensional system comprising of silica

particles, polymer depletion induced attractions, which we dope with smooth

swimming E. coli. At sufficiently high attraction strength, the particles phase

separate in to gel-like polycrystals that undergo constant aggregation. Smooth

swimming bacteria within such mixtures act to sterically break the clusters apart

by swimming through them, primarily along a crystal grain’s unit cell axis.

The passive aggregation and counter-acting active breakup results in microphase

separation, where the mean cluster size increases with increasing attraction

strength and decreasing bacterial concentration. In this description, we can

consider the bacteria to induce a repulsion between the particles. This system

presents an unusual method to achieve microphase separation due to the temporal

and spatial heterogeneity of the effective repulsion.

The choice to develop this 2D system on a glass surface has had advantages and

disadvantages over more common methods for studying Brownian particles in 2D,

e.g. a soap film. One of the main advantages is the in-depth understanding of

how E. coli behave in such an environment, which removes any confusion as to

how they might interact with silica particles. A second being the removal of all

turbulent airflow, removing any inconsistent or anomalous diffusion behaviour.

However, the adhesion of particles and bacteria to the surface introduced errors

in to the aggregation behaviour of the particles, for which we were unable to

account for. The quenching method, where all the particles needed to sediment

to the surface to start aggregation, also introduced problems due to some particles

becoming stuck on a second layer, causing tracking problems. The formation of a

double layer could be easily minimised in future work by the use of less buoyant

particles.

We reviewed the phase transition of the system in detail. Within the fluid
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region, we expected that activity-induced passive-passive attractions may enhance

clustering [3], however, there was little evidence to support enhanced clustering

at low attraction strength and there was no scaling with bacterial concentration.

On the other hand, studies of purely active systems with attractions have found

that activity suppresses phase separation [112, 122, 143]. Surprisingly, we found

no suppression of phase separation either, i.e. the phase boundary shows no

significant change with activity. We understand this behaviour is due to the

phase transition being dominated by passive-passive interactions, as the active-

passive interactions are heterogeneous, meaning that activity cannot effectively

stop on the initial onset of phase separation and thus the transition has activity

dependence.

An unexpected negative result was that bacterial concentration does not sig-

nificantly alter the initial aggregation rate. Due to the enhanced diffusion of

passive particles in an active bath we might expect to observe an increase in

initial aggregation rate, while the cluster sizes are small and breakup events are

negligible, however, we observed no change.

Our findings that active particles with strong swimming speeds and long

persistence lengths can break apart clusters compromised of attractive passive

particles has been replicated by recent simulations by Omar et al. [97]. The

agreement between our initial findings inspired us to investigate whether we

could find experimental evidence for activity-induced coarsening of the crystalline

clusters. We were not able to coarsen our samples with constantly tumbling

bacteria, however, this may have been due to the bacteria’s flagella hindering

their ability to approach clusters.

The Smoluchowski aggregation-fragmentation model provided a framework to

study the underlying processes causing microphase separation with the system.

The model allows for the separation of aggregation and fragmentation rates within

the system. Both are found to increase with bacterial concentration, but favouring

fragmentation. Further study of this model and its application to experimental

systems would aid in the development of designer phase behaviour.

We can compare this microphase-separated behaviour to that of non-driven

systems by recognising that the act of bacteria breaking up clusters resembles

a repulsive force. Studies of colloidal mixtures with short-ranged attraction

and long-ranged repulsion (SALR) are known to also form microphase-separated

states at low densities. Interestingly, as density increases in SALR systems, gels
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can form [119]. Therefore, one would expect that at higher densities our system of

attractive particles with activity-induced repulsions would also form a gel. Such

a gel would likely be living, undergoing constant aggregation and scission, much

like what is observed for purely active gel systems [112, 143].

In summary, the new experimental system developed and studied within this

chapter is completely different to any published experimental work and only very

recent simulations have started to examine a similar system [97]. This work

highlights new experimental methods for controlling passive matter with small

concentrations of active particles.
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Chapter 8

Future Work

In this chapter, we will introduce a new system containing bacteria (without

added passive particles), which we developed here, but requires further study. We

combine two separate works from here at the University of Edinburgh. Firstly,

the depletion forces required to induce phase separation in mixtures of E. coli

increase when activity is introduced [121, 122, 124]. Secondly, the development

of a strain of E. coli, AD10, whose motility can be induced by green light (in

the absence of any other source of inducing motility, such as oxygen or glucose)

[5] and further how spatially and temporal variations in light intensity can be

used to control local density [61, 67]. We will show how the careful combination

of AD10 and polymer depletants allows for spatial and temporal control of the

systems phase behaviour and begin to explore the designer structures possible

with this system.

In this chapter, we use a custom optical setup which that developed by J.

Arlt. This work was further inspired by unpublished work by A. Brown on the

sedimentation of AD10 gels.

8.1 Optical Setup

To perform the necessary experiments on AD10, the setup needs to be able to

image the entire field of view while inducing swimming within sub-regions. We

utilise red light to image the sample, which does not induce swimming [5] and

we then illuminate the sample, from a second source, with a spatially modulated
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green light.

The setup revolves around the integration of a digital micromirror device (DMD)

into the optical axis of an inverted microscope. The DMD (DLP6500, Texas

Instruments) is a 1920×1080 array of micromirrors, where each mirror can be

individually switched between an angle of 12° and -12°, used to reflect light

towards or away from a desired target. The DMD can be programmed to reflect

spatially and temporally evolving patterns.

Figure 8.1 Schematic diagram showing the phase contrast imaging in red light
with a digital mirror device in tandem.

A diagram detailing the integration of the DMD with an inverted phase-contrast

microscope (Nikon TE2000) is depicted in figure 8.1. A red filter (RG360 Schott

Glass) is placed in front of the microscope’s light source, ensuring the light used

for imaging the sample does not activate the proteorhodopsin in AD10 and induce

swimming. The red light is passed through a Ph1 phase ring, focused onto the

sample and through a 10×/0.3 NA Ph1 objective before being captured by a

CMOS MC1462 Mikrotron camera. A LED filtered to green wavelengths 510-
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560nm is used to illuminate the DMD, which depending on mirror orientation,

either deflects the light away from the microscope or transmits it to the first

dichroic mirror through relay optics, positioned above the sample. The relay

optics demagnify the image from the DMD and project it on to the sample. The

projected image can be up to ∼ 5 mm circle, significantly larger the field of view,

1.5 × 1.5 mm2. The image from the DMD is collected by the objective but

deflected away from the camera by an epi-fluorescence filter cube (Nikon G-2A).

The DMD can apply a wide range of 2D images onto the sample, here we will

report on a single static image which has a series of illuminated rectangles of

width ranging 25 to 225 µm spaced by 50 µm, figure 8.2. The pattern shown has

been cropped to correspond to microscope images. Here, by increasing the size of

the illuminated region, we increase the number of bacteria collected in the dark

region, increasing the cell density strengthening the gel structure formed [167].

8.2 Spatially Controlled Phase Behaviour

Here we report on a sample with a carefully chosen polymer concentration,

sufficient to induce aggregation between non-motile cells but not swimmers. This

activity dependant phase behaviour has already been thoroughly reviewed by

Schwarz-Linek et al. [121, 122, 124]. This is then combined with the light-induced

activity of AD10 to make a sample whose phase behaviour can be controlled

locally by illumination.

Figure 8.3 depicts a sample containing cB = 6.0 × 109 mL−1 and φp = 0.57 (PSS,

rg = 45 nm) in motility buffer, sealed in a 100 µm high capillary.

To induce light activation, we allow the bacteria to exhaust the oxygen supply,

by leaving the sealed sample for 30 minutes, leaving the sample without any fuel

present. After oxygen depletion, activity is induced by illumination with green

light. For an initially uniform sample, the lines pattern is projected for 5 minutes

and the sample is continuously imaged for a further 1000 minutes, figure 8.3. The

bacteria quickly swim out of the illuminated regions and aggregate in the dark,

while non-motile cells remain with the illuminated region. After the pattern is

switched off, we observe no significant motion of the bacteria aggregates.

Without the polymer present, this structure retention does not occur [5], instead

the structure decays due to the diffusion of the bacteria. While not shown (due to
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Figure 8.2 The image applied to the sample by the digital mirror device
comprising of a series of dark bars of width ∼ 50 µm spaced by
a range of illuminated bars of widths ranging from 25 to 225 µm,
where the entire image is 1.10 × 0.93 mm2. The patterns shown
correspond to the field of view.

a lack of images), our long-lasting structures can be broken down by illumination

of a large region surrounding them. Note, due to the limitation of diffusion in

this system, to re-create a perfectly uniform structure the entire sample must be

illuminated, so no dark-light boundary is present for accumulation to occur at.

8.3 Further Development

We have shown that spatial control of the phase behaviour is possible for light-

activated bacteria at depletant concentrations which induce aggregation between

non-swimmers but not swimmers. We did not review the composition of the

sample in detail and there likely remains room for optimisation. A question
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Figure 8.3 Micrographs showing the time evolution of a representative sample
with polymer depletant. The sample is illuminated with the lines
pattern for 5 minutes, it is then switched off and while imaging
continues up to 1000 minutes. The sample is composed of cB = 6.0
× 109 mL−1 and cp = 0.25 %wt (PSS, rg = 45 nm) in phosphate
buffer. The sample is sealed in a 100 µm high capillary and imaged
at the bottom surface.
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remains, is this spatial control still possible when you dope increasing levels of

passive colloids into the sample?

A possible extension of our work would be to create three-dimensional structures.

To create such structures, the optics would have to be redeveloped to allow

three-dimensional patterns. Clever use of optics may yield cones or square-based

pyramids, however, more complex structures will require the use of holographic

projections. To create three-dimensional structures, one will need to work around

the sedimentation of the structure. There exists several tried and tested methods

for limiting sedimentation of colloidal gels which may help here, including

strengthening the gel by increasing bacteria concentration, attraction strength or

by reducing stress on the structure by density matching the solvent and bacteria

[8, 167]

Another possible development for this system is to use the designer structure as

a template for a silica structure. Based on the experiments that use E. coli as

scaffolding for colloidal spherocylinders made of silica using the Stöber process

[93], long silanization processes will yield blocks of silica around the templated E.

coli structures. This is not a trivial reaction to apply here as water is the initiator

in the Stöber process and therefore the dispersion medium needs to be exchanged

to another media, generally ethanol. We propose that to successfully exchange

the medium, the bacteria should first be covalently cross-linked either directly or

by attaching a cross-linking agent to the polymer depletant. The development of

such designer silica structures may be of use in the creation of microchips.

Further, work by A. Brown on AD10 depletion induced gels, suggests that at

high attraction strength, where swimmers can no longer escape the depletion well,

activity can agitate the gel and cause enhanced sedimentation. Systematic studies

of enhanced sedimentation have not yet been completed and the underlying

process remains unconfirmed.
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Chapter 9

Concluding Remarks

9.1 Conclusion

In this thesis, we report on experiments that used polymer depletion to alter

interactions between motile E. coli and passive colloids. By adding active-passive

attractions we observe a dramatic change behaviour which further increases the

wide array of non-equilibrium behaviour accessible to active systems.

In chapters 4 and 5 we measured how the activity enhanced diffusion of passive

particles is altered by depletion attractions. The main conclusion from this work is

that, for E. coli, short-ranged attraction increases diffusion enhancement in quasi-

two-dimensions, but this effect is significantly diminished in three-dimensions.

Strong depletion forces allow passive tracers to stick onto passing swimmers

which allow for diffusion enhancement beyond that of hydrodynamic interactions.

These sticky interactions are observed in both two and three-dimensions by

the presence of large jumps in the otherwise diffusive movement of the passive

tracer. The frequency of these interactions and subsequent diffusion enhancement

is dependant on the dimensionality. Currently, we assume that close range

interactions are more frequent in quasi-two-dimensions due to the presence of a

surface, where the surface suppresses the long-range hydrodynamic flows induced

by swimming allowing for particles to get closer to an approaching swimmer.

In chapter 7 we observed how the phase behaviour of passive particles with

depletion attractions changed when doped with motile E. coli. We found that

activity limited the degree of phase separation, known as microphase separation,
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where the size of the polycrystalline clusters was found to depend on the

attraction strength and the E. coli surface density. Surprisingly, we noted that

activity did not significantly alter the short-time aggregation kinetics. We also

showed that our findings are well characterised by the Smoluchowski aggregation-

fragmentation model

Finally, in chapter 8, we built upon recent advances in controlling the spatial

distribution and phase behaviour of E. coli to show that we can spatially control

phase behaviour and use this to build gel-like structures that last at least several

hours without signs of decay. This behaviour requires careful control of attraction

strength, where the aim is to induce aggregation in non-motile cells while allowing

the motile cells to swim free.

9.2 Outlook

For our work on diffusion enhancement (chapters 4 and 5), further work will likely

require the use of simulations. Using simulations would allow for the interactions

between passive and active particles to be more extensively tuned and which may

produce further support for the sticking mechanism further increasing enhanced

diffusion. Further, simulations would allow hydrodynamics to be switched on and

off, which would allow testing of our current understanding, that hydrodynamic

interactions control the frequency of sticking interactions.

For our work on micro-phase separation (chapter 7), again simulations would

be very helpful in extending the experimental findings. It would be of

particular interest to use simulations to further explore aggregation-fragmentation

dynamics. Due to the limited scope of our current experiment results, the

aggregation and fragmentation homogeneity constants, λ and α, have only been

measured for one sample over small changes in cluster size. Simulations can help

validate if aggregation and fragmentation homogeneity constants hold for larger

clusters, i.e. review A(xi, xj)/A(i, j) = xλ and F (xi, xj)/F (i, j) = xα for x →
100. Also, simulations can be used to test whether the homogeneity constants

vary with system parameters like cB or φp.

Experimentally, now that we have a good understanding of the phase behaviour

active-passive mixtures with attractions, it follows to review this behaviour in

three-dimensions. For our current system, while possible to directly observe
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samples by confocal microscopy, these measurements would be limited by the

difficulty in index-matching the solvent, while retaining an environment that

promotes motility in E. coli. Alternatively, the system could be studied by

rheology, where the mechanical difference between gels and microphase separated

states can be measured directly.
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Appendix A

Changing in Motility with Buffer

Strengths

E. coli is perhaps the most studied active colloid [123] and yet in the completion

of this work we identified some unexpected responses of E. coli to the presence

of salt. Here we will present a couple of results, the explanation for which will be

due to complex biophysics out of the scope of the work presented in this thesis.

Figure A.1 The full set of results, initially presented in figure 5.6. The effect of
salt concentration on the tumbling rates of AB1157 WT as inferred
by the q dependence of the velocity from DDM.

The first set of results is an expansion of the results presented in chapter 5.4.

We studied the tumbling rates of WT E. coli in motility buffer with varying

concentrations of NaCl, by observing the q dependence of the speed as measured

by DDM. As a populations tumbling rate increases, it takes longer for a cell to
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swim long length scales i.e. low q, meaning that as tumbling rate increases the

low-q velocity decreases. The relative tumbling rate can be quantified by

R = v(q = 2.24µm−1)/v(q = 0.5µm−1) (A.1)

As NaCl increases, we observe an increase in tumbling rate, shown in figure A.1.

It is standard to use [NaCl]= 67 mM [123]. To the author’s best knowledge, the

first use of NaCl in the buffer appears within the seminal work of Berg where

tumbling rates were initially measured by single cell tracking [12], so it is unlikely

that these findings are new to Biologists.

Figure A.2 DDM measurements of the velocity of smooth swimming E. coli as
buffer strength is decreased.

The second set of results observes how salt concentration changes oxygen

consumption. When a carbon fuel source is present in abundance, here glucose,

in a sealed environment, E. coli consume all oxygen before depleting the carbon

source. As oxygen concentration drops, E. coli is observed to increase swimming

speed, which then quickly drops to a plateau value after oxygen depletion [123].

We tested how buffer strength effected the velocity of E. coli over time. Here,

we refer to a relative buffer strength, where 100 % refers to our standard motility

buffer of 6.2 mM K2HPO4, 3.8 mM KH2PO4, 0.1 mM EDTA at pH ∼ 7.5 and 0
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% is deionised water. We use a stock of AB1157 ∆CheY, cB = 108 mL−1 with

an excessive glucose concentration of 3 mM and report the average velocity over

time as measured by DDM, figure A.2. The measurements were performed in

parallel on the same batch of cells.

We find that as the buffer is weakened the velocity peak is lowered and shifted

to longer times. The shifting of velocity drop indicates that oxygen consumption

slows as the buffer strength decreases. These initial results also suggest that after

oxygen depletion, the buffer strength does not change the swimming velocity.
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[30] Czirók, A., H. E. Stanley, and T. Vicsek. “Spontaneously ordered motion of
self-propelled particles.” Journal of Physics A: Mathematical and General
30, 5: (1997) 1375.

[31] Das, M., C. F. Schmidt, and M. Murrell. “Introduction to Active Matter.”
Soft Matter 16, 31: (2020) 7185–7190.
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[131] Spöring, I., V. A. Martinez, C. Hotz, J. Schwarz-Linek, K. L. Grady,
J. M. Nava-Sedeño, T. Vissers, H. M. Singer, M. Rohde, C. Bourquin,
H. Hatzikirou, W. C. K. Poon, Y. S. Dufour, and M. Erhardt. “Hook
length of the bacterial flagellum is optimized for maximal stability of the
flagellar bundle.” PLOS Biology 16, 9: (2018) 1–19.

[132] Steinhardt, P. J., D. R. Nelson, and M. Ronchetti. “Bond-orientational
order in liquids and glasses.” Physical Review B 28, 2: (1983) 784.

144



[133] Stenhammar, J., D. Marenduzzo, R. J. Allen, and M. E. Cates. “Phase
behaviour of active Brownian particles: the role of dimensionality.” Soft
Matter 10, 10: (2014) 1489–1499.

[134] Stenhammar, J., R. Wittkowski, D. Marenduzzo, and M. E. Cates.
“Activity-induced phase separation and self-assembly in mixtures of active
and passive particles.” Physical review letters 114, 1: (2015) 018,301.

[135] Stradner, A., H. Sedgwick, F. Cardinaux, W. C. Poon, S. U. Egelhaaf, and
P. Schurtenberger. “Equilibrium cluster formation in concentrated protein
solutions and colloids.” Nature 432, 7016: (2004) 492.

[136] Szakasits, M. E., W. Zhang, and M. J. Solomon. “Dynamics of fractal
cluster gels with embedded active colloids.” Physical review letters 119, 5:
(2017) 058,001.

[137] Tailleur, J., and M. E. Cates. “Statistical Mechanics of Interacting Run-
and-Tumble Bacteria.” Phys. Rev. Lett. 100: (2008) 218,103.

[138] Takatori, S. C., W. Yan, and J. F. Brady. “Swim pressure: stress generation
in active matter.” Physical review letters 113, 2: (2014) 028,103.

[139] Taylor, G. I. http://web.mit.edu/hml/ncfmf.html, 1967. See ‘low
Reynolds number flow’.

[140] Theurkauff, I., C. Cottin-Bizonne, J. Palacci, C. Ybert, and L. Bocquet.
“Dynamic clustering in active colloidal suspensions with chemical
signaling.” Phys. Rev. Lett. 108: (2012) 268,303.

[141] Truskett, T. M., S. Torquato, S. Sastry, P. G. Debenedetti, and F. H.
Stillinger. “Structural precursor to freezing in the hard-disk and hard-
sphere systems.” Physical review E 58, 3: (1998) 3083.

[142] Tuinier, R., J. Rieger, and C. De Kruif. “Depletion-induced phase
separation in colloid–polymer mixtures.” Advances in colloid and interface
science 103, 1: (2003) 1–31.

[143] Tung, C., J. Harder, C. Valeriani, and A. Cacciuto. “Micro-phase separation
in two dimensional suspensions of self-propelled spheres and dumbbells.”
Soft Matter 12, 2: (2016) 555–561.

[144] Turner, L., W. S. Ryu, and H. C. Berg. “Real-time imaging of fluorescent
flagellar filaments.” Journal of bacteriology 182, 10: (2000) 2793–2801.

[145] Uhlenbeck, G. E., and L. S. Ornstein. “On the theory of the Brownian
motion.” Physical review 36, 5: (1930) 823.

[146] Valeriani, C., M. Li, J. Novosel, J. Arlt, and D. Marenduzzo. “Colloids in
a bacterial bath: simulations and experiments.” Soft Matter 7, 11: (2011)
5228–5238.

145



[147] Van Blaaderen, A., A. Imhof, W. Hage, and A. Vrij. “Three-dimensional
imaging of submicrometer colloidal particles in concentrated suspensions
using confocal scanning laser microscopy.” Langmuir 8, 6: (1992) 1514–
1517.

[148] Van Dongen, P., and M. Ernst. “Dynamic scaling in the kinetics of
clustering.” Physical review letters 54, 13: (1985) 1396.

[149] Van Megen, W., P. Pusey, and P. Bartlett. “Phase behavior of dispersions
of hard spherical particles.” Phase Transitions: A Multinational Journal
21, 2-4: (1990) 207–227.
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