
Towards Larger Scale Collective Operations in

the Message Passing Interface

Martin Rüfenacht
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute of Computing Systems Architecture

School of Informatics

University of Edinburgh

2020

Abstract

Supercomputers continue to expand both in size and complexity as we reach the be-

ginning of the exascale era. Networks have evolved, from simple mechanisms which

transport data to subsystems of computers which fulfil a significant fraction of the

workload that computers are tasked with. Inevitably with this change, assumptions

which were made at the beginning of the last major shift in computing are becoming

outdated.

We introduce a new latency-bandwidth model which captures the characteristics of

sending multiple small messages in quick succession on modern networks. Contrary

to other models representing the same effects, the pipelining latency-bandwidth model

is simple and physically based. In addition, we develop a discrete-event simulation,

Fennel, to capture non-analytical effects of communication within models.

AllReduce operations with small messages are common throughout supercomput-

ing, particularly for iterative methods. The performance of network operations are

crucial to the overall time-to-solution of an application as a whole. The Message Pass-

ing Interface standard was introduced to abstract complex communications from ap-

plication level development. The underlying algorithms used for the implementation

to achieve the specified behaviour, such as the recursive doubling algorithm for AllRe-

duce, have to evolve with the computers on which they are used.

We introduce the recursive multiplying algorithm as a generalisation of recursive

doubling. By utilising the pipelining nature of modern networks, we lower the latency

of AllReduce operations and enable greater choice of schedule. A heuristic is used to

quickly generate a near-optimal schedule, by using the pipelining latency-bandwidth

model.

Alongside recursive multiplying, the endpoints of collective operations must be

able to handle larger numbers of incoming messages. Typically this is done by du-

plicating receive queues for remote peers, but this requires a linear amount of mem-

ory space for the size of the application. We introduce a single-consumer multiple-

producer queue which is designed to be used with MPI as a protocol to insert messages

remotely, with minimal contention for shared receive queues.

iii

Lay Summary

My research asks whether any approaches exist to enable larger scale communication

within modern supercomputers, which are built out of large numbers of smaller com-

puters connected with a network. While current algorithms are suitable for the size

of supercomputers designed two decades ago, newer methods need to be developed to

take advantage of modern networks.

I develop a simple mathematical representation of the behaviour for small messages

on these modern networks, which is used to create a new algorithm to efficiently com-

pute sums of numbers spread across an entire supercomputer. The key feature of the

modern networks which we exploit is that sending two messages, one after another, re-

quires less time than sending two single messages. We also develop a new algorithm to

reduce congestion, allowing for many peers to communicate with less memory usage.

I show the new summation algorithm is faster than previous algorithms for small

messages, which allows large simulations to complete in less time. This helps all

sciences which use simulation as a core component of their work, ranging across a

wide variety of topics including weather forecasting, inexpensive safety testing, and

designing efficient aircraft.

iv

Acknowledgements

First, I want to thank Dr Stephen Booth. He provided guidance and understanding

when needed and always enthusiastically discussed ideas with me. Providing freedom

to explore my curiosity has been an invaluable gift. To Dr Mark Bull, thank you for ev-

erything. From the methodology to the proof-reading this thesis would not have come

together if it were not for your efforts and support. I am grateful to Dr James Cheney

and Dr Daniel Holmes for always providing outside counsel and encouragement to

continue with my research.

I am fortunate to have been a member of the Centre for Doctoral Training in Per-

vasive Parallelism, especially with Professor Murray Cole involved in its organisation.

Another important thanks is to Professor Anthony Skjellum who gave me the chance

to explore research outside the PhD, which reinvigorated my interest in it. A special

thanks belongs to my parents, Claudine and Peter Rüfenacht for always supporting me

throughout my time at the University of Edinburgh. Finally, I want to thank all my

friends for always being willing for a coffee, a distraction or a board game when it was

needed or not.

v

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Martin Rüfenacht)

vi

Table of Contents

List of Figures xi

List of Tables xv

Acronyms xvii

1 Introduction 1

1.1 Structure . 3

1.2 Publications . 4

2 History of High Performance Computing 5

2.1 Introduction . 5

2.2 Beginning of Computing . 6

2.3 Early High Performance Computing 7

2.4 Recent History of Supercomputing 9

2.4.1 Message Passing Interface 12

2.4.2 PGAS Interfaces . 14

2.5 Today . 15

3 Experimental Setup 19

3.1 Introduction . 19

3.2 Hardware . 20

3.2.1 Aries Network Interface Controller 21

3.3 Software . 23

3.3.1 Cray Shared Memory . 23

3.3.2 Cray Distributed Memory Applications 24

3.3.3 Cray user-level Generic Network Interface 26

3.3.4 Cray MPI . 26

vii

4 Performance Modelling 29

4.1 Introduction . 30

4.1.1 Contributions . 30

4.1.2 Overview . 31

4.2 Prior Performance Models . 31

4.2.1 Bulk Synchronous Parallel 31

4.2.2 Latency-Bandwidth Model Family 33

4.2.3 LogP Model Family . 34

4.2.4 LoP . 35

4.2.5 LogfP . 36

4.3 Pipelining Latency-Bandwidth Model 36

4.3.1 Validation . 42

4.3.2 Larger Message Sizes . 42

4.3.3 Model Comparison . 44

4.4 Fennel Model Simulator . 48

4.4.1 Background . 49

4.4.1.1 ROSS . 50

4.4.1.2 Parsim . 50

4.4.1.3 SST . 51

4.4.1.4 LogGOPSim . 51

4.4.2 Program Representation . 52

4.4.3 Simulator Architecture . 54

4.4.4 Capabilities . 55

4.4.5 Validation . 58

5 Recursive Multiplying 59

5.1 Introduction . 60

5.1.1 Overview . 60

5.1.2 Contributions . 60

5.2 Background . 61

5.2.1 MPI Allreduce Definition 61

5.2.2 Algorithms . 62

5.2.2.1 Fan-In/Fan-Out 63

5.2.2.2 Recursive Doubling 63

5.2.2.3 Composite Algorithms 64

viii

5.2.2.4 Elimination . 67

5.3 Related work . 68

5.4 Recursive Multiplying Algorithm . 69

5.4.1 Derivation . 69

5.4.2 Values Outside The Domain 76

5.4.3 Implementation . 80

5.4.4 Heuristic Schedules . 84

5.4.5 Large Messages . 87

5.5 Experimental Results . 89

5.5.1 Environment . 89

5.5.2 AllReduce Benchmark . 90

5.5.3 AllReduce Schedule Comparison 90

5.5.4 Message Size Scalability . 94

5.5.5 AllReduce Model Comparison 96

5.5.6 Block-size Systematic Error Analysis 98

5.5.7 Experimental-Model Correlation 98

5.5.8 Cray MPI Comparison . 100

5.6 Simulator Exploration . 100

5.6.1 Factored Schedules . 100

5.6.2 Splitting & Merging . 103

5.6.3 3-2 & 2-1 Elimination . 105

6 Two-sided MPI Receive Queue 109

6.1 Introduction . 110

6.1.1 Contributions . 111

6.1.2 Overview . 111

6.2 Prior Work . 111

6.2.1 Cray MPI . 111

6.2.2 EMPI4Re . 113

6.2.3 Related Work . 115

6.3 SCMP Algorithm . 115

6.4 Experiments . 119

6.4.1 Environment . 119

6.4.2 Latency . 120

6.4.3 Memory Scaling . 121

ix

6.4.4 Temporal Scaling . 124

7 Conclusion 127
7.1 Summary . 127

7.2 Further Work . 129

7.2.1 Performance Modelling . 129

7.2.2 Recursive Multiplying . 129

7.2.3 Receive Queue Mechanism 130

Bibliography 131

x

List of Figures

1.1 Increasing Node Count . 2

2.1 Human Computers . 6

2.2 Flynn’s Taxonomy . 8

2.3 4D Hypercube Topology . 10

2.4 Butterfly Topology . 10

2.5 3D Torus Topology . 11

2.6 Comparing Point-to-Point And Collective Communications 14

2.7 Fat-Tree Topology . 17

3.1 Cray XC30 Blade Structure . 20

3.2 Cray XC30 Rank-1 and Rank-2 Topology 21

3.3 Cray XC30 Rank-3 Topology . 22

3.4 Cray XC30 Software Stack . 24

3.5 MPICH2 Layer Diagram . 27

4.1 BSP Model . 32

4.2 LogP Model . 34

4.3 LoP Model . 36

4.4 LogfP Model . 37

4.5 Pipelining Latency-Bandwidth Model 37

4.6 Pipelining Latency-Bandwidth Data 39

4.7 Pipelining Latency-Bandwidth Regression 40

4.8 Message Size Pipelining Capability 43

4.9 LogfP Round Trip Time . 46

4.10 ARCHER Round Trip Time . 46

4.11 tds Round Trip Time . 47

4.12 PingPong Fennel Representation . 52

xi

4.13 Recursive Doubling Program Representation 53

4.14 Fennel Simulator UML . 56

4.15 Fennel PingPong Simulation . 57

4.16 Fennel Recursive Doubling Simulation 57

5.1 MPI Allreduce Operation . 61

5.2 Binomial Tree AllReduce . 62

5.3 Recursive Doubling AllReduce . 64

5.4 Composite AllReduce . 66

5.5 Binary Block AllReduce . 68

5.6 Recursive Multiplying Surface Plot 70

5.7 Machine Parameter Ratio Comparison 71

5.8 bopt Function Plot . 74

5.9 bupper Function Plot . 75

5.10 AllReduce Using Recursive Multiplying 75

5.11 Collapse/Expand Method Illustration 77

5.12 Hypercuboid Illustration of AllReduce 78

5.13 Hypercuboid View of Prime Merging 78

5.14 Hypercuboid View of Prime Merging Multiple Processes 79

5.15 Schedule Count Plot . 85

5.16 Heuristic Efficiency Plot . 88

5.17 Experimental Comparison of Recursive Doubling and Recursive Mul-

tiplying . 92

5.18 Experimental Message Size Schedule Comparison for 8 processes. . . 95

5.19 Experimental Message Size Schedule Comparison for 64 Processes . 95

5.20 Recursive Multiplying Model Comparison 96

5.21 Experimental Block-size Analysis 99

5.22 Correlation Plot of Model and Experimental Minimums 101

5.23 Correlation Plot of Model and Experimental Medians 101

5.24 Experimental MPI Overhead Comparison 102

5.25 Fennel Program Representation . 103

5.26 Simulation of Recursive Doubling for Power of Two Processes 104

5.27 Simulation of Recursive Multiplying 104

5.28 Simulation of Collapse/Expand Recursive Doubling 105

5.29 Simulation of Prime Merging Showing Minimal Skew 106

xii

5.30 Simulation of Prime Merging with Skew 106

5.31 Simulation of 3-2 Elimination . 107

6.1 SMSG Queue Mechanism . 112

6.2 Remote Lock Protocol Queue Mechanism 113

6.3 Lock Bit-wise Encoding . 114

6.4 SCMP Queue Mechanism . 116

6.5 SCMP Bit-wise Encoding . 117

6.6 Experimental Queue Mechanism Latency Comparison 120

6.7 Virtual Memory Usage by Queue Mechanism 122

6.8 Total Memory Usage Illustration . 123

6.9 Locked Queue Mechanism Insertion Time 125

6.10 SCMP Queue Mechanism Insertion Time 125

6.11 smsg Queue Mechanism Insertion Time 126

6.12 msgq Queue Mechanism Insertion Time 126

xiii

List of Tables

4.1 Model Data Fit by Message Size . 44

5.1 Possible Factorisations of Recursive Multiplying 76

5.2 Heuristically Generated Schedules 87

5.3 Recursive Doubling and Recursive Multiplying Comparison 91

xv

Acronyms

AMO Atomic Memory Operation.

APGAS Asynchronous Partitioned Global Address Space.

API Application Programming Interface.

BSP Bulk Synchronous Parallel.

BTE Block Transfer Engine.

CPU Central Processing Unit.

DAG Directed Acyclic Graph.

ENIAC Electronic Numerical Integrator and Computer.

EPCC Edinburgh Parallel Computing Centre.

FFTW Fastest Fourier Transform in the West.

FMA Fast Memory Access.

GASPI Global Address Space Programming Interface.

GPU Graphics Processing Unit.

HPC High Performance Computing.

IBM International Business Machines Corporation.

IOMMU Input Output Memory Management Unit.

MIMD Multiple-Instruction Multiple-Data.

xvii

MPI Message Passing Interface.

MPI Message Passing Interface.

NIC Network Interface Controller.

PE Processing Element.

PGAS Partitioned Global Address Space.

PMI Process Management Interface.

PRAM Parallel Random Access Machine.

RAM Random Access Machine.

RDMA Remote Direct Memory Access.

RMA Remote Memory Access.

SOC System On a Chip.

SPMD Single-Program Multiple-Data.

TLB Translation Look-aside Buffer.

uGNI user-level Generic Network Interface.

xviii

Chapter 1

Introduction

Supercomputers in use today are primarily used for scientific simulations which re-

quire tremendous amounts of computational power. These machines are more difficult

to program correctly, compared to desktop computers, due to the inherent parallelism

built into the architecture. Machines today are built for software to use multiple Graph-

ics Processing Units (GPUs) and multiple Central Processing Units (CPUs) per node.

In addition, node parallelism is present, using multiple nodes to achieve a solution co-

operatively. Node counts have increased by approximately two orders of magnitude

since distributed memory supercomputers were first introduced as seen on Figure 1.1.

By abstracting various tasks required through libraries such as Message Passing

Interface (MPI) it is possible to simplify the work done by application developers for

inter-node communication. By using MPI the application developers need to only

know the interface given, without knowing the underlying complexity of the network-

ing algorithms. This is particularly true for collective operations provided by MPI.

Collective operations are used throughout scientific computing due to their intrin-

sic mapping to the concept of global data transformations. The most used collective

operation is AllReduce[65, 71, 94, 105]. AllReduce is a reduction operation, such as

a summation, which also places the result into the memory of all participating pro-

cesses. This thesis works towards addressing the scalability and latency of AllReduce

for larger scale supercomputers.

Scalability is an important aspect of an algorithm, because it determines how effi-

ciently an operation is performed. When strong scaling is applied, keeping the prob-

lem size constant while increasing the computational resources, the scaling behaviour

of collectives dominants the computation. Most operations can be performed in a time

with a lower limit of O(log2N), with N being the number of processes. Therefore

1

2 Chapter 1. Introduction

1996 2000 2004 2008 2012 2016 2020
Top500 Listing

10
2

10
3

10
4

10
5

10
6

10
7

10
8

C
ou

nt

Nodes trendline
Cores trendline
Nodes
Cores

Figure 1.1: This plot shows node and core counts for all machines from the Top500[30]

top ranked machine from June 1993 to November 2020.

1.1. Structure 3

optimizing collective operations, such as AllReduce, is paramount.

The parallel efficiency often tends to reduce with strong scaling. With weak scal-

ing, scaling the problem size to the computational resources, collectives are less impor-

tant since the computational requirements are also increased. Weak scaling attempts

to keep the parallel efficiency constant, but the communication cost grows logarith-

mically which dominates the calculation cost while keeping the computational cost

constant.

1.1 Structure

This section provides an overview of the thesis by giving the reader a short description

of what is discussed within each chapter.

Chapter 2 describes some historical aspects of High Performance Computing (HPC)

and the architectures of today’s supercomputers. The chapter finishes with the current

status of HPC and illustrates how the field has arrived at this point.

Chapter 3 gives a brief overview of the Cray XC30 supercomputer, ARCHER,

which is used throughout this thesis for experimental and theoretical work. It discusses

the capabilities of, and interfaces present on, all modern supercomputers.

Chapter 4 introduces our novel model, the pipelining latency-bandwidth model,

suited for modelling of small-message operations on ARCHER. In addition, it intro-

duces the Fennel simulator to analyse algorithms and models in a more fine-grained

manner than is possible through a purely analytical approach.

Chapter 5 introduces the recursive multiplying algorithm for AllReduce operations

based on the pipelining latency-bandwidth model. An extensive analytical analysis

is given to explore the recursive multiplying algorithm. Experimental results are pre-

sented, illustrating the improvement in performance compared to prior methods. Fi-

nally, a heuristic method is introduced to determine a suitable higher performance

schedule quickly.

Chapter 6 introduces a remote queue algorithm for a memory limited environment

for the point-to-point operations internal to an MPI library. Experimental results are

given to show that the scalability of the method is similar to situations where memory

is not limited.

Chapter 7 summarises the thesis and discusses various future paths forward for

many of the topics of the thesis. Primarily, extensions to the recursive multiplying

algorithm are discussed due to its vast potential to extend to other collective operations.

4 Chapter 1. Introduction

1.2 Publications

During the research of this thesis the following publications were published in various

conferences and journals:

Generalisation of Recursive Doubling for AllReduce[98]. In Proceedings of the

23rd European MPI Users’ Group Meeting (EuroMPI16). Martin Ruefenacht, Mark

Bull, Stephen Booth.

Generalisation of Recursive Doubling for AllReduce: Now with simulation[99].

In Parallel Computing. Martin Ruefenacht, Mark Bull, Stephen Booth.

A Large-Scale Study of MPI Usage in Open-Source HPC Applications[71]. In

Proceedings of the International Conference for High Performance Computing (SC19).

Ignacio Laguna, Ryan Marshall, Kathryn Mohror, Martin Ruefenacht, Anthony Skjel-

lum, Nawrin Sultana.

Understanding the use of MPI in Exascale Proxy Applications[105]. In Concur-

rency and Computation: Practice and Experience. Nawrin Sultana, Martin Rüfenacht,

Anthony Skjellum, Purushotham Bangalore, Ignacio Laguna, Kathryn Mohror.

Chapter 2

History of High Performance

Computing

2.1 Introduction

This chapter intends to guide the reader through the history of computing relevant to

HPC. In doing so we explore the applications of the computers from the around the

Second World War to the current era, in which scientific computing is the driving

force behind development for HPC. Throughout the history of HPC software has been

written to optimize for the underlying hardware at the time. We show the progression

of hardware and software concepts as a linear evolution through this time.

To understand the history of the architectures and reasons for the designs, we need

to understand the design decisions which have been factored into the development of

computers from the beginning. The current state of architectures is one of many inter-

mediate points in design where history could have progressed to. Understanding the

different paths that could have been taken is important in understanding the theoretical

models for supercomputers and potential future directions.

The goal of this chapter is to understand why current supercomputers, as of the

Cray XC30 from 2012, are designed the way they are. We discuss several early super-

computers which have influenced the design of modern supercomputers.

Section 2.2 will introduce the earliest era of HPC and the need for it. Section 2.3

will show the progression of HPC towards the architectures of today. Section 2.4

discusses the introduction of the hardware and software which is present in modern

supercomputing. Section 2.5 illustrates some of the current trends of hardware and

software.

5

6 Chapter 2. History of High Performance Computing

Figure 2.1: Women employed by NASA as human computers responsible for calculating

launch windows, fuel consumption, and trajectories.[88]

2.2 Beginning of Computing

The advent of computing on a large scale occurred during the Second World War due

to the need for tasks which could not be done analytically[66]. This was the first

time that mathematics in this form was required, because of the need for cryptography

and the breaking of the given cryptographic algorithms of rivals. Many attempts at

the Enigma machine were attempted which were analytical, and while these attacks

yielded success the difficulty of decryption on a large scale was still present with many

cipher keys being used.

Until the Second World War computers were humans who performed large sets of

mathematics in order to calculate a specific function, Figure 2.1 shows this at NASA.

This became a bottleneck, because of the sheer number of calculations that any specific

person would have to perform. A late example of this was the early space projects by

the United States of America in which human computers were used to analyse test data

and calculate trajectories.

When cryptography became popular prior to the Second World War, human com-

puters were the only way to compute large scale mathematical problems. The use of

humans for this task was, however, not very scalable and the need for a reliable and

faster machine was apparent[40].

2.3. Early High Performance Computing 7

The first task specific machines were the Bomba[119] machines developed by Mar-

ian Regewski, a Polish cryptologist. The design of these machines were later given to

the British Government Code and Cypher School to be used to decrypt German ra-

dio traffic at Bletchley Park[55]. The Manhattan Project, the development of the first

nuclear weapon, also required computation done by human computers.

The concept of software as it is known today did not exist for these earliest ma-

chines. The machines were purpose built and served only that specific function. The

hardware as designed did have configurable components to adjust to the requirements,

but these were only similar to program parameters. The modern instruction set and

instruction data functionality were not present in old machines. If the functionality

had to be changed the entire machine had to be rebuilt.

Among the first general purpose computers was Electronic Numerical Integrator

and Computer (ENIAC), commissioned at the end of the Second World War[111]. It

was used for artillery trajectory calculations and weather simulations. The ENIAC

computer was initially similar to the older machines which were purpose built, but in

1947 it was re-engineered to allow for program storage. This enabled it as one of the

first general purpose machines to be programmed with the modern form of software,

which is stored in memory alongside program data. The first program run on ENIAC

was a simulation of atomic fission by the Los Alamos National Laboratory[79].

From the time when ENIAC was developed many larger general-purpose comput-

ers were developed throughout the 1940s and 1950s. All general-purpose computers

developed until 1957 were only capable of being programmed with low-level assem-

bly software. International Business Machines Corporation (IBM) released the first

version of Fortran[64] with the IBM 704 in 1957. This was the introduction of the

first high-level language in which concepts did not have to be expressed in a machine-

readable format. This lead the creation of many programming languages and much of

computer science as it is known today.

2.3 Early High Performance Computing

After the Second World War computers, both analog and digital, had been established

as the effective computational resources instead of human computers. These early

computers were typically large, of the size of rooms or warehouses, and were mostly

used by universities or national laboratories.

The replacement of vacuum tubes with transistors in the 1950s yielded smaller and

8 Chapter 2. History of High Performance Computing

SIMD

vector-processors

SISD

single-core processors

MIMD

multi-core processors

MISD

systolic processors

Instruction Stream

MultipleSingle

D
at

a
St

re
am

Si
ng

le
M

ul
tip

le

Figure 2.2: Illustration of Flynn’s Taxonomy with examples for each class.

therefore more powerful computers. In the late 1950s the first MOSFET was invented

at Bell Telephone Laboratories. This resulted in high density integrated circuits being

used for computer construction from then onward. In 1965 Gordon Moore postulated

the growth rate of integrated circuits, now known are Moore’s Law[83]. This density

increase was the main driving force behind performance increases for several decades

alongside Dennard scaling[28].

Computers up until this point operated in a single-instruction single-data fashion,

according to Flynn’s Taxonomy[36]. They typically consisted of a memory storage

system and a processing unit. This is known as the Von Neumann architecture[118].

Flynn’s Taxonomy came about when vector processing was invented. Figure 2.2 illus-

trates the taxonomy and shows typical implementations of each category.

Vector processors were conceived in the early 1960s: these allowed mathemati-

cal operations to be performed on a vector of data instead of a single item of data.

Early versions of this technology had potential, but the first widely accepted high

performance computing machine released was the Cray-1[23] in 1977. Vector pro-

cessing was routinely implemented as a pipelining processing unit, which effectively

processed a vector of data instead of replicating multiple floating point units. Many

vector processing capable supercomputers were designed and implemented up until

2.4. Recent History of Supercomputing 9

the late 1980s.

Until this time, computers were designed as shared memory processing machines

which were typically multiple processing units connected to several banks of memory

with an internal interconnect. This allowed for global access to memory from each

processing unit. These individual processors consisted of several sub-processing units,

such as a floating point units or vector units, and typically involved more complex

architecture such as pipelining.

The first generation of distributed memory computers designed were the Transputer

machines in the 1980s. These featured dedicated memory per microprocessor with se-

rial communication links connecting multiple microprocessors together. An early ex-

ample of a Transputer was the Meiko Computing Surface[80]. Individual Transputers

were single-instruction single-data (SISD), but were designed as a building block of

larger scale MIMD computers and included dedicated communication hardware and

instructions, as well as hardware thread scheduling. Transputers were widely seen as

the next generation of supercomputer, but in the early 1990s massively parallel pro-

cessing supercomputers were introduced.

Transputers were quickly eclipsed by higher performing general purpose micropro-

cessors. Increased performance and support for more traditional programming models

outweighed the advantages of the transputer. Later parallel systems made greater use

of mainstream microprocessors and networking hardware, though some systems con-

tinued to use transputers as part of the networking layer for some time.

2.4 Recent History of Supercomputing

With the emergence of massively parallel computing machines came the introduction

of networks within a single computer. Early examples of such computers were the

Intel iPSC/1[63] and the nCUBE 10[49]. Both of these machines had networks with

the hypercube topology as illustrated in Figure 2.3.

Hyper-cube topologies are best suited for small to medium sized networks, which

is likely the reason they were chosen as early candidates[75]. The topology is limited

to a power of two count of nodes, which becomes a disadvantage when larger ma-

chines are involved. Additionally, many algorithms which involve pairwise exchange

of information map easily to a hyper-cube given the n-dimensional peer linking. An

example of this is discussed in Chapter 5. The routing within a hyper-cube is an at-

tractive feature, since finding a path between nodes is a series of xor-operations, which

10 Chapter 2. History of High Performance Computing

Figure 2.3: Hypercube topology of sixteen nodes. The degree of each node is log2 N

in a hypercube topology which makes it infeasible to use for large systems.

Figure 2.4: An example of a butterfly topology with eight nodes. The grey vertices

represent the same switch position in a wrapped butterfly topology.

lends itself to hardware implementation.

Another example of an early network topology used was the butterfly topology,

illustrated in Figure 2.4. This topology was never a popular choice and few computers

were designed to take advantage of it. The advantages of the butterfly topology are

a lower diameter than most topologies, matching hyper-cubes, and a high bisection

bandwidth. Despite these benefits the complexity of the butterfly topology is the main

restriction in its use.

The Cray T3D marked the first massively parallel distributed memory architecture

from Cray using an interconnect and up to 2048 processing elements[1]. The intercon-

nect was a three dimensional torus topology as shown in Figure 2.5. The Cray T3D

2.4. Recent History of Supercomputing 11

Figure 2.5: An illustration of a three dimensional periodic torus topology with twenty four

nodes. The n-dimensional analogue extends each edge node with an additional edge

to the corresponding periodic peer node. The periodic edges show the connectivity of

edge nodes. The degree of all nodes is equal across all nodes to twice the dimension.

12 Chapter 2. History of High Performance Computing

bundled two processing elements together to form a node. A 6-way switch per node

facilitated the network topology.

Each Processing Element (PE) consisted of a single CPU and attached memory.

The network interconnect presented as non cache-coherent shared memory in that a

PE was able to map the memory of any other PE into its own address space and

read/write data using normal read/write instructions. This was an early example of

Remote Direct Memory Access (RDMA). Unfortunately, the lack of cache coherency

and the significant additional memory latency (especially for read operations which

required a network round-trip for each instruction) meant that normal shared memory

programming techniques could not be used. Instead, these systems were programmed

using message passing or early Partitioned Global Address Space (PGAS) program-

ming models that were largely developed in response to the T3D architecture. With

PGAS the explicit synchronisation steps in these models could include cache flushes

to work around the lack of cache coherency.

The Cray T3D follow-on system, the Cray T3E, also provided RDMA communica-

tion, though via memory mapped hardware rather than direct CPU read/write instruc-

tions as this allowed greater latency hiding.

The torus topology is beneficial for the Cray T3D, because it allows a larger node

count than either butterfly or hypercube topologies. Another advantage is the ease of

expanding, since one does not need to reconfigure the entire topology. However, com-

pared to butterfly or hypercube networks, the number of hops is increased on average.

In addition, the cost of the wiring of a torus increases compared to earlier topologies.

At the beginning of the 1990s software was typically written to be platform spe-

cific. Porting software to multiple platforms, which is intrinsically a beneficial property

of software, was difficult and expensive due to varying exposed capabilities of those

platforms. At this point it became much less common for application codes to to take

account of specific details of the network hardware or topology. These became the

concern of the MPI library developers, while applications were written assuming any

process could communicate with any other in a symmetric fashion.

2.4.1 Message Passing Interface

MPI is the de facto specification of the message passing parallel programming model

which is present in modern high performance computing. The message-passing pro-

gramming model is defined by multiple processes cooperating in parallel without shared

2.4. Recent History of Supercomputing 13

access to each other’s memory spaces, but being able to communicate and synchronise

by sending messages. The MPI 1.0 specification[85] was introduced in 1993 by a

panel of computing centers and industry partners. MPI founded a unified approach to

message passing. Previously several standards were present, implementing message

passing on separate platforms.

Examples of these were Intel NX, PARMACS[14], Zipcode[104], PVM[42] and

IBM EUI/CCL. These included most functionality present in the early specification of

MPI, such as two-sided message passing and collective operations. These libraries did

not provide all functionality, which therefore triggered the creation of MPI. Further

development was required to produce a cross platform application, due to the non-

overlapping functionality exposed by the libraries. A central theme in MPI is commu-

nicators, introduce in Bruce et al.[12], which act as communications domains which

are entirely separate from other communicators.

Several communication interfaces are available to be used through MPI. The point-

to-point functionality introduced in MPI 1.0 provides simple peer to peer commu-

nication through several interfaces, providing blocking, non-blocking and persistent

operations. By allowing the user to select between standard, buffered, ready-send and

synchronous modes it was possible to optimize for all platforms of the time. In addi-

tion, non-blocking forms of these functions were provided to allow for computation-

communication overlap. Figure 2.6a shows an illustration of a group of processes

communicating via point-to-point operations within a communicator.

The collective operations in the MPI specification are more independent of the user

than the point-to-point operations. Collectives are operations which are executed by a

group of MPI processes which coordinate the entirety of the operation. MPI collec-

tives include data movement operations, reductions and synchronization. As collective

operations are high level, they provide the library developer with an opportunity to op-

timise for specific network hardware or topology without requiring any changes to the

higher level application code. Figure 2.6b shows a broadcast within a communicator

in which all processes participate.

MPI exposes a third set of communication routines under the category of one-

sided operations named MPI RMA. This functionality was added to MPI-2.0 due to the

popularity of RDMA networks and the ubiquity of MPI usage. The Remote Memory

Access (RMA) functions provide an interface similar to what would be found in a

PGAS model implementation. Functions for data movement are exposed as PUT and

GET operations. In addition a reduction operation and synchronization is present, but

14 Chapter 2. History of High Performance Computing

(a) MPI Point to Point (b) MPI Broadcast Collective

Figure 2.6: An illustration of the difference between point-to-point communication and

collective communication. Collective communication allows regular patterns to be de-

scribed as part of the communication task; whereas point-to-point communication nar-

rowly defines where and how data is moved.

no other collective operations. Access is handled by using epochs, which are periods

of time of access to windows of memory which are exposed by peers.

Aside from explicit communication mechanisms, MPI implements higher-level ab-

stractions which allow the programmer to program an abstract model of processes in-

stead of a specific machine. MPI Datatypes are used to represent structures or data

patterns in arrays. In addition Datatypes allow the MPI library flexibility in transmis-

sion of data across processes instead of having an explicit set of instructions from the

programmer. The organization inside a communicator is a simple list of processes, but

the programmer can specify a topology which can be used to decompose the problem

and map it to the topology.

2.4.2 PGAS Interfaces

MPI is a well established standard which has extensive support and is used on all mod-

ern supercomputers. The PGAS programming model has not had as much time to be

accepted, due to the relatively new hardware capability. PGAS is defined by expos-

ing a global address space accessible by all participating processes with the concept

of locality of memory to each process, and thereby also implies cost, in time, of ac-

cessing remote memory. Many different forms of languages and libraries exist which

implement parts or all of the PGAS programming model.

2.5. Today 15

Using language implementations of a programming model can have advantages

over using a library implementation, because more information is able to be passed

along to the compiler. The disadvantage of using a language and compiler infrastruc-

ture is the need to implement and support that infrastructure which is a significant cost.

Usually these PGAS languages take the form of language extensions, such as Uni-

fied Parallel C [17] or Co-Array Fortran [89]. Both of these languages implement a

pure PGAS model on top of RDMA hardware which can be found in supercomputers.

Asynchronous Partitioned Global Address Space (APGAS) is an extension of PGAS,

in which process spawning functionality is part of the model. Examples of APGAS are

Chapel [19] and X10 [31].

While languages are good for capturing additional information which can be ex-

ploited by compilers, the problem is that usually compilers are not capable of this. In

addition, libraries allow more fine grained control, which can be advantageous. Since

PGAS is not a well defined concept, libraries contain their own approach. OpenSH-

MEM and Cray DMAPP, discussed in Section 3.3, are PGAS implementing libraries.

In addition the MPI RMA operations in MPI-2.0 are also a PGAS approach. Finally

a dedicated PGAS programming model specification exists which is called the Global

Address Space Programming Interface (GASPI)[41].

GASPI contains the standard functionality expected from a PGAS implementation.

In addition, the specification also provides groupings similar to MPI communicators

which are used for collective operations. GASPI also provides, like Cray DMAPP, a

put and notify functionality which allows combining two ordered put operations into a

single compound operation. By using GASPI, the hope is to allow for more scalable

applications on large scale machines.

2.5 Today

MPI has evolved alongside the hardware since the first massively parallel supercom-

puters were introduced. Several major shifts in the hardware have taken place since

then. The first is the decline of Dennard Scaling.

Dennard scaling, which was responsible for much of the growth in computational

capability in the past as discussed in Section 2.3, started to fail in the early years of the

twenty first century. With the loss of Dennard scaling the inherent increase in clock

frequency of processing units disappeared and performance improvements had to be

gained by other means. This was particularly evident when Intel decided to focus on

16 Chapter 2. History of High Performance Computing

multi-core processors in 2004, with the Pentium 4 marking the last fully single-core

processors developed by the company.

By utilizing greater miniaturization of integrated circuits provided by Moore’s law,

CPUs were able to be created which contained multiple processing cores, linked with

an internal interconnect. In addition, much of the memory management and expansion

bus were moved onto the CPU.

While Moore’s law has been said to be declining for several years, this has not yet

happened in a material way. Hardware architectures are facing new challenges which

will have to be overcome with a combined strategy of both software and hardware.

The software must be adjusted to take greater advantage of the hardware and utilize it

more effectively.

The current goal of the high performance computing community is to reach the

Exascale computing era. Current supercomputer architectures tend to be built using

large nodes with a modern interconnect to support inter-node communication. The

large nodes consist of multiple CPUs which are multi-core up to the tens of cores. In

addition to general purpose processing, heterogeneous processing utilizing GPUs or

other accelerators has become the dominant strategy.

Modern networks support many programming models, but many operate on a RDMA

basis in the hardware. This facilitates discrete distributed memory machines which can

be programmed with a variety of network abstractions, such as MPI or PGAS frame-

works. The number of nodes in modern massively parallel computers has grown to be

approximately one order of magnitude greater than the first massively parallel com-

puters, from the hundreds to thousands of nodes. The large increase in computing

performance is achieved mostly by utilizing the accelerators and/or multi-core proces-

sors.

High performance computers were always shared resources, even during the early

phase of computing (discussed in Section 2.2). Initially they were time shared ma-

chines which would be used sequentially by different users or programs. Eventually,

this included splitting the machine into chunks, which resulted in a complex scheduling

task for the job scheduling systems. Another effect of this splitting was that topology

awareness became less important compared to the early massively parallel computing

machines. An allocation given to a job run of an application is typically not regular

and jobs rarely require an entire supercomputer to run.

In effect this made the topologies irrelevant by giving each application instance

a unique and complex communication graph within which it must optimize its own

2.5. Today 17

Figure 2.7: A fat-tree topology of eight leaf nodes. The thickness of the connections

between nodes represents the relative bandwidth of that connection.

computation. With this shift in the networking infrastructure, hardware vendors moved

towards more intelligent interconnects which handle congestion and perform adaptive

routing of traffic within the topology accordingly. This isolates the complexity of net-

works and allows applications to view a network as a flat all-to-all topology ideally.

The toroidal network topology introduced in the early era of massively parallel su-

percomputers has faded and been replaced by either the fat-tree topology[76] or the

dragonfly topology[69] discussed in Chapter 3. Figure 2.7 illustrates the fat-tree topol-

ogy.

Due to the abstraction of the network, topologies are no longer as prominent as

they once were. Modern interconnect technologies utilizing these topologies delegate

much of the network complexity onto the Network Interface Controller (NIC), or into

the network, while only providing high-level access to a user-level library or applica-

tion. Another feature of modern networks is the use of multi-rail NICs, which provide

multiple routes into the network. The multi-rail aspect can give additional benefits for

algorithms which execute network operations.

Similar to the hardware complexity, software complexity has also increased since

the early days of computing. Applications were written close to the metal early on,

but, when portability was prioritized, abstraction layers had to be introduced. MPI is

one of these layers, however both above and below MPI many additional layers exist.

Above MPI, libraries exist such as HDF5[37] which is a commonly used hierarchi-

cal data format that operates across nodes, using MPI File IO as a provider of network

communications. The Fastest Fourier Transform in the West (FFTW)[39] library is an-

other example of a abstracted library. It provides the Fast Fourier Transform algorithm

as a library which, for distributed memory architectures, uses MPI extensively. With

many applications, developers write internal abstraction layers to allow for encapsu-

18 Chapter 2. History of High Performance Computing

lation within the software. Finally Charm++[67] is a programming language which is

used to write several applications, but can be implemented on top of MPI.

Below MPI, typical implementations directly access the hardware Application Pro-

gramming Interface (API), but in recent years this has changed as well. Much of the

hardware has internal software layers which execute without the direct awareness of

MPI. In addition, UCX[102] and Libfabric[48] have been introduced to create a uni-

form interface to target from the MPI layer.

In summary, we can see that MPI plays an important role in the software stack

present on modern supercomputers. MPI fulfills a middle-ware role by providing a

long accepted interface and certain convenience functionality for higher level opera-

tions such as collective operations, file input/output and other higher-level functional-

ity. Other libraries which require communication are built on top of the MPI to enable

portability.

Chapter 3

Experimental Setup

3.1 Introduction

To discuss collective operation algorithms we need to have a good understanding of

the underlying hardware. By understanding the hardware on which we operate we can

explore the space of possible solutions. In addition, an understanding of the abstraction

layer, MPI in our case, is also required since the goal of this work is to fulfill the

requirements for the algorithms to be used by an MPI implementation.

This chapter will discusses the hardware and software on which experiments have

been performed throughout this work, except where mentioned. The aim of this chapter

is to inform the reader about the capability and accessibility of compute and commu-

nications hardware.

In this work we focus on the Cray XC Series, but the methods and algorithms

described are equally applicable to modern Infiniband networks. This is shown by

recent work performed by End et al.[34] which makes use of network pipelining ef-

fects as well. In addition, future networks such as HPE Cray Slingshot[26] show little

improvement in latency, but significant improvements in bisection bandwidth and in-

jection bandwidth. Combined with the capability of having multiple NICs per node

future networks are not expected to perform less overall message pipelining.

Section 3.2 discusses the Cray XC30 computer hardware and specifically Sec-

tion 3.2.1 goes into detail about the Aries NIC. Section 3.3 introduces the available

APIs of the given hardware for communication; the discussion focuses on DMAPP

due to the work performed with this particular library.

19

20 Chapter 3. Experimental Setup

Figure 3.1: Illustration of a blade within a Cray XC30 system.

3.2 Hardware

Modern supercomputers such as the Cray XC30 are very large and extremely parallel

machines. While supercomputers were always parallel to a degree, since Dennard

scaling[28] has broken down, industry has been focusing on multi-core processors.

This has lead to a large increase in parallelism in all computers from desktop machines

to supercomputers. As an example, the maximum size of the Cray XC30 is 92544

nodes, which would allow in the order of one hundred peta-FLOPS. Currently the

largest Cray XC30 supercomputer is Piz Daint with 5272 computer nodes using Tesla

K20X accelerators. Piz Daint delivers a theoretical 7.79 peta-FLOPS[106].

The Cray XC30 using Intel CPUs is organized in a hierarchical fashion. The small-

est unit of computing hardware is the node, which consists of two sockets connected

by the Intel Quick Path Interconnect. Both sockets allow for a multi-core CPU. Each

node also has either 64GB or 128GB of shared local random access memory accessible

by the processors. Each node is organized in the next smallest compute unit, the blade.

A blade consists of four nodes which are connected to an Aries System On a Chip

(SOC). The Aries SOC consists of four network interface controllers for the nodes, a

tiled router and a multiplexer node. Figure 3.1 illustrates the structure of a compute

blade with relative bandwidths illustrated between separate components.

Many blades form the Dragonfly topology, with three separate layers of organiza-

tion. A set of sixteen blades are organized into a chassis, with all blades being con-

nected to each other over an electrical back-plane in an all-to-all pattern. The chassis

connectivity in the Cray XC30 is considered the rank-1 network. The rank-2 network

is the set of connections which is referred to as cascade. The cascade pattern con-

nects six chassis to form a group. The cascade pattern connects three links from every

blade in a chassis to a corresponding blade in one of the other five chassis. This also

3.2. Hardware 21

Figure 3.2: Cray XC30 rank 1 and rank 2 connectivity illustration.[3]

forms an all-to-all topology between the chassis in a group as illustrated in Figure 3.2.

The final rank-3 level of the Dragonfly topology is an all-to-all pattern between groups

using global optical connections, as illustrated in Figure 3.3. Utilizing this topology,

the minimal path for a packet crossing the entire machine is at most five hops. How-

ever, in a live machine this is likely to be shifted upwards due to adaptive routing and

congestion.

The Cray XC30 operated by the Edinburgh Parallel Computing Centre (EPCC),

named ARCHER, was used exclusively for this work. ARCHER at node level uses

two 2.7Ghz, 12-core Intel Ivy Bridge E5-2697 v2 central processing units with either

64GB or 128GB of random access memory: other memory configurations are possible

for XC30 machines. In total ARCHER consists of 4920 compute nodes connected in

13 groups in a Dragonfly topology. No accelerators, such as graphics processing units

or Intel Xeon Phis, are present on the ARCHER platform.

3.2.1 Aries Network Interface Controller

The Aries SOC consists of several parts. However, the NIC is of primary interest

when concerned with functionality usable by an application. The routing is entirely

transparent to the programmer, but the user can choose between four routing modes.

The Aries NIC has several functional units which allow the Cray XC30 to perform low

22 Chapter 3. Experimental Setup

Figure 3.3: Cray XC30 groups all-to-all connectivity illustration.[3]

latency and high bandwidth operations on large systems.

The Fast Memory Access (FMA) mechanism, which allows for small sized, low

latency access of remote memory, is exposed through an API. In addition the Block

Transfer Engine (BTE) is provided for large memory copies. The BTE can execute

entirely asynchronously to the host processor, unlike the FMA unit. Both of these

units provide the RDMA functionality which enables access to remote memory with-

out interfering with the remote host processor. Both the FMA and BTE unit utilize

the completion queue system present in the NIC to inform either the remote or local

processor of operation completion.

The FMA mechanism allows for direct memory access through PUT and GET

operations. Aside from memory access, the FMA mechanism also provides Atomic

Memory Operations (AMOs). There are a total of 96 AMOs provided by the Aries

NIC: these include bit-wise operations, integer operations and floating point opera-

tions, with both fetching and non-fetching semantics. In addition the Aries NIC has

a small 64-entry AMO cache which caches a local copy of a memory location. The

cache is primarily used to reduce the host memory usage when the automatic write

back functionality is deactivated.

Due to the use of virtual memory address space on modern supercomputers, the

3.3. Software 23

Aries NIC is also required to deal with virtual to physical memory address translation.

This is done similarly to a processor using an Input Output Memory Management Unit

(IOMMU). The IOMMU uses a table of registered pages saved in memory and caches

these in a page table cache. This unit functions equivalently to a CPU Translation

Look-aside Buffer (TLB). Multiple page sizes are supported from 4KB up to 64GB,

but 4KB pages are supported via two-level translation, while larger page sizes are

single-level translation. The usage of huge pages is encouraged, due to the large cost

of a cache miss. The cache size is 128 entries, each containing eight page blocks, using

a four-way set associative caching strategy.

The BTE unit is explicitly put in place to allow for offloading the transferring of

data from one node to another. The BTE is used for large messages exclusively by

default above four kilobytes. The FMA transport mechanism is specifically designed

for short messages and therefore does not provide any exposed pipelining capability.

Through Cray DMAPP, discussed in Section 3.3.2, it is possible to send small messages

using an implicit synchronization mode which allows overlapping of small messages

as well. This mechanism is further discussed in Chapter 4 and used in Chapter 5.

3.3 Software

The Cray XC30 provides several user-level libraries or languages to interface directly

with the low-level network Aries-based network. As seen in Figure 3.4, the user-

level libraries mostly bypass the kernel-level complexity to ensure high performance,

interfacing instead directly with the hardware abstraction layer. Several programming

languages are presented in Figure 3.4, such as UPC (which will not be discussed further

here).

3.3.1 Cray Shared Memory

CraySHMEM is a one-sided memory access library, developed originally internal to

Cray in 1993. Historically it was first used to program the Cray T3D, and later adapted

for use as a programming model for distributed memory clusters as a low-level in-

terface for languages. OpenSHMEM[90], which is an open standard, has now super-

seded CraySHMEM. OpenSHMEM provides a more diverse set of functionality, such

as atomic operations and collective operations in addition to the low level memory

operations.

24 Chapter 3. Experimental Setup

Figure 3.4: Software stack present for the Cray XC systems[3].

3.3.2 Cray Distributed Memory Applications

Two main parallel programming models are used to program large distributed systems

such as the Cray XC30. The PGAS model is newer, and used less frequently, com-

pared to message passing. The PGAS model, when implemented through languages,

depends strongly on having a good compiler which can interpret the communication

performed through memory transactions and translate them to instructions which can

take advantage of the underlying hardware. Cray DMAPP is the low-level networking

library which is used on Cray hardware for this task. DMAPP is specifically designed

to deal with the PGAS model. It provides functionality which supersedes CraySH-

MEM (presented in Section 3.3.1) and therefore one could view it as a successor.

Cray DMAPP is designed in such a way that multiple processes run on separate

nodes executing the same program concurrently in a Single-Program Multiple-Data

(SPMD) fashion. All processes have their own address space, as full operating system

processes, but it is possible to publish access to memory segments from the private ad-

dress space. This is achieved through memory registration, a major feature not present

in SHMEM, where all memory is public at all times. In addition, DMAPP allows ac-

cess to the hardware features provided by the Aries NIC to communicate on a low-level

3.3. Software 25

over the network. Only simple abstraction is present, which hides some of the diffi-

culties of using hardware directly, such as the completion queues discussed in Section

3.2.1.

The functionality provided by DMAPP is similar to SHMEM as a one-sided mem-

ory operations library. This include PUT and GET RMA operations, AMO operations

(with a limited set of AMOs exposed to the programmer), and collective operations

which make use of the Aries NIC collective engine. In addition, DMAPP provides

a symmetric heap at initialization which allows SHMEM-like operations to be per-

formed. The symmetric heap must be used to establish any communication, since

asymmetric memory cannot be accessed without the segment information received

from DMAPP when registering. A unique addition to DMAPP is a queue subsystem

which allocates a queue at initialization and allows a user to attach a callback function

to process an incoming message from a remote process. These queues are dynamically

allocated with a fixed size in symmetric memory, which allows the parameters to be

used to control the size of the queue.

Cray DMAPP is a low-level API and therefore does not provide the level of func-

tionality that MPI does. The most simple synchronisation possible on a Cray machine

is to use a global barrier provided by Process Management Interface (PMI), a low-

level process management library. The global barrier is usually useful for the initiation

procedure, however it would rarely be used within the execution flow of an application.

Since Cray DMAPP is a single-sided interface for communication, there are two

different aspects to synchronisation. On the sender-side the API provides blocking,

non-blocking explicit, and non-blocking implicit versions for most communication

functionality. The blocking calls result in a safe transaction without any concern about

memory reuse. Non-blocking functionality requires waiting for completion. This is

very similar to the MPI notion of blocking and non-blocking. There is no equivalent

persistent operation mode. The explicit non-blocking mechanism allows the user to

hold individual handles to synchronisation identifiers, which allows the user to com-

plete separate communications individually. The implicit non-blocking mechanism

delegates this to Cray DMAPP, which then waits for all the implicit handles with a

single waiting operation.

For the receiver-side synchronization, three potential methods are present depend-

ing on the requirements. The first is using a put and flag operation which completes

the put operation and then sets a flag on the remote side, which serves as a signal to

the receiver-side that a message has been placed into its buffer. A more explicit syn-

26 Chapter 3. Experimental Setup

chronisation mechanism can be created using a variety of atomic memory operations:

the most common for such a case is the compare and swap operation. Finally, Cray

DMAPP supports creating process sets, akin to communicators within MPI, which can

be operated on by collective operations. The collective operation primitives given in

the API are barrier and AllReduce.

The above discussed mechanisms are the lowest-level synchronization methods in

place within Cray DMAPP. Two additional higher-level mechanisms are implemented:

the first is the explicit lock system. The lock system allows a calling thread to lock one

of the many available receiver-side locks in order to have exclusive access to a memory

segment. The second is a high-level single-consumer multi-producer (SCMP) queue

implementation. The queue mechanism requires a user provided callback function

which handles the incoming messages. It also allows either a separate asynchronous

progress thread or for the user to call the progress function.

3.3.3 Cray user-level Generic Network Interface

The user-level Generic Network Interface (uGNI) shown in Figure 3.4 is the lowest

level API which Cray presents to a third party programmer. It is designed to com-

plement the Cray DMAPP implementation by providing functionality which is more

relevant to message passing than utilizing the RDMA functionality of the Cray Aries

network. It is primarily used for implementing MPI, which is discussed in Section

3.3.4. In addition to facilitating access to the Aries NIC, it also exposes datagrams,

which are the lowest level communications path present through uGNI, but not through

DMAPP.

3.3.4 Cray MPI

The Cray MPI library is provided with all Cray hardware through the Cray Mes-

sage Passing Toolkit. The Cray MPI implementation is known to be based on the

MPICH2[47] library implementation of MPI[91]. Many vendors implement deriva-

tive libraries from either MPICH2 or OpenMPI[45] for their hardware and dedicated

support versions of MPI due to the cost and time requirements of implementing a full

native version, which is prohibitive. MPICH2 is a descendant of the reference im-

plementation of the previously discussed MPI Standard in Section 2.4.1. The only

publicly documented addition to the reference MPICH2 implementation is the Neme-

sis network module, however it is likely that changes have been made to several parts

3.3. Software 27

Figure 3.5: The MPICH2 layer diagram showing the internal layering of the channel

interfaces[92].

of the implementation.

Figure 3.5 illustrates the structure of the MPICH2 library. The library provides

the entire MPI specification functionality, but implements it through various internal

abstraction layers. Within the core layer of MPICH2 implementations for collectives,

matching algorithms and other top-level functionality is contained. The network inter-

action is delegated further downward to devices which represent the underlying hard-

ware.

The Nemesis[13] communication subsystem implements the CH3 interface to com-

municate upwards through the CH3 device. It implements lock-free queues, to allow

for low latency small message operations with high bandwidth for large messages. The

authors focus on reducing the instructions required to perform intra-node and inter-

node communications. The additional abstraction below the Nemesis module is the

Netmod interface with which the underlying hardware APIs are accessed. The Net-

mod for the Cray hardware utilizes the uGNI interface, discussed in Section 3.3.3.

Within the Cray Netmod, most facilities provided by uGNI are used. Connec-

tion setup uses connection-less datagrams between endpoints to facilitate the construc-

28 Chapter 3. Experimental Setup

tion of endpoint connections which are used by the SMSG and MSGQ channels. The

SMSG channel is used to send small eager messages directly to a process’ memory.

The memory size of the SMSG mailbox depends on the size of the job. The MSGQ

channel is an optimization for memory usage which utilizes a mailbox per node instead

of per process. This significantly reduces the memory requirements of large jobs.

The E0 eager protocol is used when the entire message fits into a single mailbox

of either the SMSG or MSGQ. For larger messages up to the eager size limit, the E1

protocol is used which consists of an E0 channel interaction and a FMA or BTE oper-

ation from the receiver to fetch a message into an MPI internal buffer. For messages

above the eager message limit, the R0 and R1 paths are used through the Nemesis long

message transfer path. The R0 protocol is equivalent to the E1 protocol except that

the message is fetched directly into a user buffer. Finally, the R1 protocol is a PUT

operation by the sending side directly to the final user space buffer.

The Netmod utilizes the uDREG library, which provides a memory registration

cache, for the large message transfer path. If an application is also using DMAPP

directly, or through CraySHMEM, UPC or Coarray Fortran, then the Netmod will use

DMAPP to register memory regions. This allows DMAPP and uGNI to share memory

registration resources.

Chapter 4

Performance Modelling

Performance modelling is a core aspect of algorithm design: it functions as a proxy of a

real-world machine and simplifies the characteristic dependencies. Many performance

models exist, but few attempt to represent all aspects of a supercomputer. We introduce

the pipelining latency-bandwidth model to represent the small message pipelining ca-

pability of modern supercomputers, showing a higher accuracy from this model than

from the latency-bandwidth model. In addition, we implement a discrete-event simu-

lator to capture effects which are not analytically available.

29

30 Chapter 4. Performance Modelling

4.1 Introduction

This chapter will discuss the various forms of modelling present in modern computer

science. It presents the relevant historical and currently competing models, and will

introduce our own model and simulation.

Theoretical models serve several purposes in computer science. Historically they

formed the most fundamental understanding of the target with which software was

written. Models can range from mathematical guides, to simplified representations of

hardware, to a common design target between different layers.

The goal of models is to simplify and distill the essential characteristics of a com-

puter, which are relevant to the specific topic that one is approaching. By using a

model, a researcher can make abstract many details which are not critical to their spe-

cific component. This removes the clutter which would be present if all components

had to persistently be taken into account: this would yield a far more complex forward

path and therefore less productivity.

The first models used were the sequential machine models which gave algorithm

designers an abstract view of the underlying hardware. The Random Access Machine

(RAM)[21] model was an example of this, and continues to be used to this day. The

RAM model is part of the bigger register machine family of models. The goal of these

models is to form a common understanding and interface, such that both hardware and

software can communicate through this abstract layer.

The Parallel Random Access Machine (PRAM) model[38] is an extension of the

RAM model into the domain of parallel computation. The PRAM model is well suited

for shared-memory machines, but networked communications were not well repre-

sented, due to assumption that all communication is transparent. It is important to

note that models are typically closely related and any extensions introduce only minor

changes in order to achieve representation of a specific feature.

4.1.1 Contributions

This chapter makes the following contributions:

• The pipelining latency-bandwidth model is introduced to represent small-message

pipelining on modern supercomputers.

• The Fennel simulator is introduced, a discrete event simulator, focused on mod-

els and algorithms.

4.2. Prior Performance Models 31

4.1.2 Overview

This chapter contains a discussion of relevant performance models in Section 4.2. We

introduce our novel pipelining latency-bandwidth model in Section 4.3. Finally, we

introduce the Fennel model simulator in Section 4.4, which is based on prior work

simulates our pipelining latency-bandwidth model with novel contributions.

4.2 Prior Performance Models

This section discusses parallel computation models which are deemed to be of interest

to the discussion in this thesis. Importantly, this is not an exhaustive discussion of

computational models, either sequential or parallel. Maggs et al.[78] and Zhang et

al.[120] survey existing models of parallel computation.

4.2.1 Bulk Synchronous Parallel

The Bulk Synchronous Parallel (BSP) model was used in the 1980s by Valiant et

al[114]. The BSP model was the first parallel computation model which did not as-

sume communication was free, unlike the PRAM model. In addition to the model, it

introduced a category of applications, the bulk synchronous applications.

Flynn’s Taxonomy, introduced in Section 2.3, in which the Multiple-Instruction

Multiple-Data (MIMD) category encompasses most of modern computing was ex-

tended by the late 1980s to encompass the concept of programs instead of only in-

structions: the single-program multiple-data and multiple-program multiple-data cate-

gories were introduced[25]. The bulk synchronous parallel model similarly moves the

modelling aspect from conceptually dealing with instructions to programs.

Bulk synchronous applications have an iterative behaviour which results in the

series of global supersteps model of BSP. An application would perform a concur-

rent computation phase and then would perform a concurrent communication phase to

communicate beyond the local memory space into the distributed memory of the other

participating processes. Finally, an optional barrier synchronization is performed to

finish the superstep.

Figure 4.1 illustrates such a superstep of an application with a varying computa-

tional phase, a communication phase and finally a barrier, given the communication

is done over one-sided operations. The fundamental difference between BSP and pre-

vious models is that the communication phase is no longer transparent and has an

32 Chapter 4. Performance Modelling

...

...

su
pe

rs
te

p
su

pe
rs

te
p

co
m

pu
te

co
m

m
s

co
m

pu
te

co
m

m
s

barrier

barrier

Ti
m

e

Figure 4.1: Two supersteps illustrated in the BSP model. The computational steps vary

in time while the communication steps are always equal.

inherent cost correlating with the amount of communication performed.

Equation 4.1 is used to calculate the duration in the BSP model for an application

with S supersteps, p processors, and a barrier cost of l. The variables used are ωi

representing the computational time of a single process within a single superstep, hi

representing the number of messages sent by a process, and ḡ which represents the

asymptotic throughput.

TBSP = maxp
i=1(ωi)+maxp

i=1(ḡhi)+ l (4.1)

The communication cost within the BSP model is defined as a latency and a cost

proportional to the total amount of data a process receives, the bandwidth term. They

target their model at optimal simulations and choose to ignore the latency cost, assert-

ing that the bandwidth term is at least as large as the latency. The underlying topology

is ignored within the BSP model.

Since the initial publication of the BSP model, many extensions have been per-

formed due to increased interest from large companies in addition to scientific high

performance computing[9, 113]. Examples of implementations of the BSP model are

4.2. Prior Performance Models 33

BSPlib[116] and MapReduce[27].

4.2.2 Latency-Bandwidth Model Family

The latency-bandwidth model family is characterized by the Equation 4.2, in which the

parameter α represents the start up cost of a communication and β represents the time

cost per byte sent. The message size to be transmitted is represented by n. The TLB

time duration starts when sending the message until the receive is complete. The model

assumes that the sender is not able to continue until the receive completes. Importantly,

this neglects any acknowledge messages which are sent to a sender from the receiver

on modern interconnects.

TLB = α+nβ (4.2)

Typically these models also have associated rules such as invariance to topology,

bidirectional linking, network conflict handling, and many other properties[6, 7, 20,

52, 53, 54, 82, 103, 109, 110]. These models have been used since at least 1977.

In addition to the basic latency-bandwidth model, if required, a compute com-

ponent γ is added which represents the cost of computation time per byte as shown in

Equation 4.3. In which case, the TLBC represents the duration of a stage of an algorithm

similar to the BSP model discussed in Section 4.2.1, since it includes communication

and computation within the model.

TLBC = α+n(β+ γ) (4.3)

One commonality of this family is that communication and computation cannot

overlap, because the CPU and NIC are treated as a single unit. When a communication

operation is in progress, no computation can occur and vice versa. This lack of overlap

led to the introduction of the LogP model, which we will discuss in Section 4.2.3.

In literature, the Postal model[5] is sometimes mistakenly associated with latency-

bandwidth models. However the Postal model is more similar to the LogP models

discussed in Section 4.2.3. The main motivation for the Postal model is to move away

from telephone modelled communication to packet-switching with large messages be-

ing broken up into multiple smaller messages.

34 Chapter 4. Performance Modelling

Time

Host

Network

o o
g g

L

Figure 4.2: An illustration of the LogP model showing the transmission and reception of

a message. The illustration is intended to show the path through the LogP model of a

single message; therefore two hosts are drawn on the same host level, but are entirely

separate physically.

4.2.3 LogP Model Family

The LogP model[24] was introduced as a convergence of computer architectures was

observed in the early 1990s. Algorithms developed with prior models were routinely

exploited analytically, in a fashion which was not grounded in reality. The LogP model

sought to discourage such behaviour from researchers. The authors based the LogP

model on the BSP model discussed in Section 4.2.1, but extend it to be asynchronous

and to consider the network in more detail. They intend the model to be targeted at

an intermediate level of complexity for distributed memory, compared to simplistic

models such as PRAM, or overly complex machine specific models.

An illustration of the LogP model is shown in Figure 4.2. The model does not take

into account the topology of the network. Instead, it simply uses abstract parameters

to model the typical conditions on the network. The following parameters are used

within the model:

• L — latency — the upper bound of the latency incurred for a small message (one

word) between any two processors

• o — overhead — the delay incurred by a processor during which time it is occu-

pied with sending or receiving a message

• g — gap — the time between consecutive message transmissions or receptions

• P — processors — the number of processors within the network available to the

program

4.2. Prior Performance Models 35

The model also includes the assumption of the network capacity being finite, such

that at most dL
ge messages can be in transit. The reciprocal of the gap parameter is

the per-processor communication bandwidth. The computational aspect of the model

is not explicitly stated, but typically it is modeled by a constant parameter as in Equa-

tion 4.3.

The LogP model has become the de facto parallel distributed memory performance

model and has been extended in many forms, despite the original authors’ intention to

be more abstract.

The LogGP model[2] introduced in 1995 extends the LogP model with a G pa-

rameter. The G parameter is a measure of the communication gap per byte sent or

received. This extension targets applications which require the transmission of large

messages, not only word sized messages supported in the LogP model. The authors of

the LogP model addressed long messages by proposing using two processors per node,

but this was not widely adopted. Many other extensions have also been made to the

LogP model which will not be further discussed here[15, 59, 62, 68, 77, 84].

4.2.4 LoP

The LoP model[58] was introduced by Hoefler et al., to address the introduction of

Infiniband[61] compatible networks in the early 2000s. Infiniband networks introduce

the concept of hardware parallelism or pipelining of messages, which cannot be repre-

sented well with the linear LogP model, given the single gap parameter.

The LoP model splits the overhead parameter from the LogP model into send-side

and receive-side overheads. In addition, it introduces the two h parameters, also one

for the send-side and one for the receive-side. The h parameters represent the amount

of time required by the NIC to process the message. Finally, the g parameter of the

LogP model is discarded. Figure 4.3 illustrates the LoP model.

A model for round trip time is the basis of the LoP model, which gives a highly

accurate fit to observed data. The round trip time is calculated as a sum of pipelining,

processing and saturation, as a function of the communication peers. This results in

an expression for the round trip time with six parameters and ensures that latency of a

message is dependent on the number of messages issued. The complexity of this model

stems from the number of parameters, in addition to the non-linearity of the model.

36 Chapter 4. Performance Modelling

Figure 4.3: An illustration of the LoP model showing the transmission and receiving of a

small message from [58]. The illustration is intended to show the path through the LoP

model of a single message; therefore two hosts are drawn on the same levels, but are

entirely separate physically.

4.2.5 LogfP

The LogfP model[57] is introduced to address the complexity of the LoP model. In-

stead of a complex model taking into account pipelining, processing and saturation,

the model introduces the f parameter to the LogP model.

The f parameter represents the number of small messages for which the gap pa-

rameter does not apply. This suitably extends the LogP model to capture the effect of

processing multiple small messages within the networking hardware. The LogfP also

extends the overhead parameter o to be a function of the number of messages being

sent.

Figure 4.4 illustrates the LogfP model sending four messages. As shown after f

messages are sent the g parameter forces a delay sending further messages.

4.3 Pipelining Latency-Bandwidth Model

We introduce the pipelining latency-bandwidth model[98, 99] to address observed

behaviour on the Cray XC30 discussed in Section 3.2.1. We wanted a model that

could capture the behaviour of important collective communication operations such

as AllReduce. In this case, the message sizes are usually small, so the time spent

traversing the various network layers can be significantly longer than the time taken

4.3. Pipelining Latency-Bandwidth Model 37

Time

Host

Network

o o o o
g g

L L L L

Figure 4.4: An illustration of the LogfP model using an f parameter of two. For the first

two short messages the g parameter is not accounted for according to the model, but for

successive short messages the g parameter applies. For simplicity the receiving-side

is not illustrated.

Time

Host

Network

αr αr αr

TS

αp αp αp

TR TR TR

Figure 4.5: An illustration of the pipelining latency-bandwidth model setting the b pa-

rameter to three. A non-blocking multicast returns control to the host at time TS, while

a blocking multicast would return control after the last time TR.

to process the message by either the CPU or the NIC at either end. In addition, we

wanted to capture this behaviour with a small number of model parameters allowing

us to fit our model to the observed behaviour of the Cray XC30.

The pipelining model splits the existing α parameter into the αp and αr parameters.

The pipelining latency term αp is able to overlap with other network operations, while

the required latency term αr is the equivalent of the o parameter of the LogP model:

the time for which the host is blocked from doing any other work. Figure 4.5 illustrates

the overlapping of messages being sent from a single host. One additional parameter b

is introduced which specifies the number of messages which are sent.

Models presented in prior sections typically model either very abstractly, such as

the BSP model, or they specify details about the underlying mechanisms with which

38 Chapter 4. Performance Modelling

time is spent, such as the LogP model. Our model is introduced as an extension of the

latency-bandwidth model, because it is sufficiently abstract to capture all point-to-point

network operations without over specifying how time is spent.

The pipelining latency-bandwidth model uses two equations to represent commu-

nication time of a message. Equation 4.4 is used to calculate the time for which the

sender is blocked when sending b messages in a non-blocking fashion. The duration

for the message to traverse the network is given by Equation 4.5. If messages are sent

with a blocking operation then the sender is blocked until TLBP R for the last message in

the multicast. Since αp includes any acknowledge messages this ensures that it is safe

to reuse a buffer in memory by the sender. Using this methodology we overestimate

the time at which the sender is able to resume.

TLBP S = bαr (4.4)

TLBP R = αp +αr (4.5)

The α parameters are measured directly from a host without abstract interpretation.

With this approach the pipelining latency-bandwidth model represents what the host

sees(i.e. the software interface) in local time instead of global time (which is not a

physically possible thing to know[74]). The model is intended for small messages

only, and is used as such in Chapter 5, but the model can be used with the bandwidth

and computational terms included from Equation 4.3.

The representation of the software interface is a departure from what a model is

traditionally used for. Traditional models attempt to represent the underlying hardware

in as few parameters as possible to capture what is required, but the pipelining latency-

bandwidth model purposefully forgoes this understanding to enable modelling of the

software interface. Modelling the software interface allows capturing all hardware

and software effects below a certain API instead of selectively treating each individual

effect. In addition, it allows simpler measuring in local time since it is not reliant on

global information.

The pipelining latency-bandwidth model follows closely the model presented in

Chan et al[20] with similar assumptions about the properties of the abstract machine.

We discard the receive conflict which disallows hosts to receive more than a single

message at any given time. In addition, we ignore network conflicts, since the host has

no control over these effects: they merely give a distribution to the given parameters.

4.3. Pipelining Latency-Bandwidth Model 39

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Processes

0

5

10

15

20

25

30

Ti
m

e
(

s)

blocking put
non-blocking put

Figure 4.6: The plot shows the timing data of a sequential put operation to multiple

target processes with either blocking or non-blocking semantics sending messages of

eight bytes. All data was collected from ARCHER[32].

40 Chapter 4. Performance Modelling

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Processes

0

5

10

15

20

25

Ti
m

e
(

s)

b r fit

p + b r fit
blocking put minimum
non-blocking put minimum

Figure 4.7: The plot shows the minimums of the timing data presented in Figure 4.6.

The regressions shown fit the latency-bandwidth and pipelining latency-bandwidth

model to the given data. All data was collected from ARCHER[32].

4.3. Pipelining Latency-Bandwidth Model 41

When data is transmitted through a one-sided operation, either a flag must be set

on the receiving side, or the original value in the given memory location must be a

sentinel value which can be identified as an unfinished operation. In Figure 4.6 we

show a multicast operation with both blocking (dmapp put flag) and non-blocking

(dmapp put flag nbi). The non-blocking variant allows for implicit local synchro-

nization to finalize all operations compared to the individual synchronization with the

blocking version.

The motivation for the pipelining latency-bandwidth model comes from the ob-

served data presented in Figure 4.6. The core observation from Figure 4.6 is that we

are able to perform a pipelined message send, in effect constructing a multicast, which

consumes less time than is required to send an equivalent number of messages using

the blocking put operation.

Figure 4.6 plots the blocking and non-blocking put operations of eight bytes to a

number of processes as a set of boxplots of raw data. Figure 4.7 shows regression

lines overlaid on the minimum values for both the latency-bandwidth model and the

pipelining latency-bandwidth model. The values of the αp, αr, and their ratio for the

non-blocking case are presented in Table 4.1 by the first row with the message size

being eight bytes. It should be noted, the absolute values of αp and αr are not relevant,

only their ratio, since they do not represent a specific hardware feature. In other words,

they only have meaning within the mathematical model of the message operation.

Figure 4.7 uses two regression lines to show effectiveness of the pipelining latency-

bandwidth model. The pipelining latency-bandwidth model is also applied to the

blocking data, which is a purely mathematical interpretation. The fit values are αp =

1.50 and αr = −0.72. Both of these values must be positive, therefore the negative

αr value is not physical. The non-physical aspect of the αr value provides no further

understanding of the underlying mechanisms.

The original latency-bandwidth model is unable to represent this behaviour. This

can be seen by the regressions presented of the bαr fit using the minimums of both

sets of data. As shown the regression does not fit the non-blocking put timing data

well, however when Equation 4.6 function is used the non-blocking timing data can be

approximated well.

TLBP MULTI = αp +bαr (4.6)

42 Chapter 4. Performance Modelling

4.3.1 Validation

The shortcomings of the pipelining latency-bandwidth model, and in effect all models,

is clear from Figure 4.6. Real world machines have noise which causes a distribution

for each parameter. Typically the minimum is used as a representative theoretical value

since it is the closest empirical value to the theoretical models.

If we want to account for the observed noise of the measurements, more complex

and fine-grained models would need to be used, such as the LoP model discussed in

Section 4.2.4. Another approach to noise from a machine is to use a stochastic model

which takes into account the distributions of parameters.

4.3.2 Larger Message Sizes

We purposefully disregard message size for the pipelining-latency model and therefore

arrive at the model presented in Section 4.3. A cursory exploration of larger messages

sizes is presented in this section. We show the declining ability of the underlying

hardware to pipeline messages and therefore the lack of need for a pipelining model

for large messages.

Figure 4.8 presents data collected in the same manner as in Figure 4.6. We measure

each multicast operation individually using the dmapp put flag nbi API and find the

minimum time for the collected timings. This is done for each of the message sizes

shown. The element size is set as a quad-word, eight bytes. The minimum timings

for each message size are used to fit Equation 4.6. For each message size dataset

the timings are normalized by dividing the dataset by the Processes = 1 value. The

unnormalized αp, αr and the ratio of these is shown in Table 4.1 for each message

size.

Comparing the fit values in Table 4.1, it is clear that the pipelining ability is reduced

as message size is increased. We observe that the ratio tends to zero with increasing

message size. This indicates that the pipelining capability of the network decreases

with message size.

This is likely due to some resources available in the hardware being increasingly

heavily consumed as the message size increases. Examples of these resources are the

available injection bandwidth, the inherent pipelined processing within the NIC or in-

network buffering.

As mentioned above, it is important to note that the pipelining latency-bandwidth

model does not focus on any specific resource from the hardware, but intrinsically

4.3. Pipelining Latency-Bandwidth Model 43

0 2 4 6 8 10 12 14 16
Processes

0

2

4

6

8

10

12

14

16

N
or

m
al

iz
ed

 T
im

e

Number of Elements (8B)
16
64
256
1024
4096
16384
65536

Figure 4.8: The plot shows the timing data of a sequential put operation to multiple

targets with varying message size. The timing data is normalized for each message

size to the Processes = 1. The regression lines show the difference in αp and αr for the

message sizes.

44 Chapter 4. Performance Modelling

Number of Elements Message Size αp (µs) αr (µs) αp
αr

1 8 B 0.88 0.38 2.3

8 64 B 0.89 0.38 2.4

16 128 B 0.91 0.38 2.4

64 512 B 0.96 0.46 2.1

256 2 KB 0.96 0.79 1.2

1024 8 KB 0.86 2.17 0.4

4096 32 KB 0.68 7.75 0.088

16384 128 KB -0.12 30.1 -0.004

65536 512 KB -1.7 119.3 -0.014

Table 4.1: The fitted αp and αr data from Figure 4.8 is shown with respect to the

message size.

considers the entirety of the machine. As such, the pipelining aspect is a function of

the interface to the hardware instead of a specific aspect of it. This means that the αp

and αr parameters, fit in Table 4.1, do not carry a hardware specific meaning only an

abstract meaning with a unit of time. The parameters fit the provided interface not the

provided hardware given our definition in Section 4.3.

One would expect the round trip time to increase as the message size increases,

but this is not the case given the values presented in Table 4.1. We suspect the non-

blocking put operation only returns control to the host process after the last packet has

been sent. This means that the αp value represents the time between the last packet

being sent and the last returned acknowledgement message being received. This value

does not depend on the message size. However, this understanding of the mechanism

causes αr to grow with the message size.

In summary, the above finding indicates the inability of the pipelining latency-

bandwidth model to represent large message pipelining. The model would need to be

modified to enable the machine parameters to vary with large messages and reinforces

the notion of modelling the interface and not the underlying hardware.

4.3.3 Model Comparison

In this section we compare the pipelining latency-bandwidth model to the LoP, LogfP,

and LogP models to evaluate usability and accuracy. The LogP family of models is

considered as the state-of-the-art modelling of networks and therefore is most modified

4.3. Pipelining Latency-Bandwidth Model 45

to capture various effects as shown in surveys[78, 120]. We show we capture all effects

with a simpler set of parameters in the pipelining latency-bandwidth model.

Both the LoP and LogfP models attempt to capture the known hardware pipelining

inside the NIC which occurs for small messages. The initial model, LoP, captures

this accurately, but is too complex to be used as a tool for algorithm design. The

model consists of six parameters which are fit to the experimental data, but several

of the parameters do not have a physical meaning. The LogfP model is introduced

to represent the same effect accurately, but create a suitably simple model to work

with analytically. As Hoefler et al. [57] stated, “Thus, the [LoP] model is practically

unusable.”. Therefore, we dismiss the LoP model from the comparison since it is

superseded by the LogfP model.

Figure 4.9 shows a plot from Hoefler et al. [57] showing their finding of a pipelin-

ing, processing, and saturation of the network component on an Infiniband cluster. As

seen, the experimental data follows closely the LogfP prediction. The LogP model

prediction is shown to be not applicable on the given hardware. Figure 4.10 and

Figure 4.11 show the equivalent metric of total round trip time per process for the

ARCHER and tds platform.

The end round trip time is taken as the reception of the acknowledge message

which is returned to the sending process from the receiving NIC such that the buffer

can be reused. These figures are using the same experimental data from Figure 4.7

for ARCHER. We can see that the LogfP prediction is not accurate to the modern

hardware experiment. The LogfP prediction includes a global minimum of round trip

time (shown in Figure 4.9 near eight processes) which does not occur in Figure 4.10

or Figure 4.11. Given this finding we dismiss the LogfP model, because it captures an

effect which we did not find on ARCHER.

Due to the above finding we can equate terms in the LogP and pipelining bandwidth

model as follows:

αr = o

αp = 2L+o

The gap parameter, g, is not included in the expressions above, because the LogP

model allows disregarding the parameter in situations in which it is not observed. The

reasoning for this is that the inverse of the per-peer communication bandwidth, inter-

46 Chapter 4. Performance Modelling

Figure 4.9: The plot shows the round trip time per process for the LogfP model on an

Infiniband cluster, in addition to the LogP model prediction. The plot is copied from

Hoefler et al. [57].

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Processes

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ti
m

e
(

s)
 /

P
ro

ce
ss

es

LogP prediction
non-blocking put minimum

Figure 4.10: The plot shows the round trip time per remote process for the ARCHER

platform.

4.3. Pipelining Latency-Bandwidth Model 47

0 5 10 15 20 25 30 35 40 45
Processes

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e
(

s)
 /

P
ro

ce
ss

es

LogP prediction
non-blocking put minimum

Figure 4.11: The plot shows the round trip time per remote process for the tds platform.

preted as the injection bandwidth in modern terms, is significantly below the overhead

of issuing a message sending. The value for the injection bandwidth given in Alverson

et al. [3] is 10.2 GB/s this results in g = 6ns which is well below the αr value of 380ns.

In addition, we set the b parameter of the pipelining latency-bandwidth model to one,

since the LogP model intrinsically handles a single message.

Through the construction of the pipelining latency-bandwidth model we show an

equivalence to the LogP model with intrinsic support for multicast with the b parameter

(the number of messages to send). In addition, our model uses only locally knowable

quantities such as the local overhead (αr) and the round trip time (αp). The round

trip time encapsulates all underlying effects of the hardware instead of assuming the

underlying hardware mechanisms.

However, the pipelining latency-bandwidth model has the disadvantage that all in-

formation of underlying processes is lost. From the model parameters the abstract

multicast operation is well defined, but what steps needs to be executed in hardware

is opaque. Additionally, changes to the software interface necessitate changes to the

model entirely, but it is not obvious how the software interface would change in fu-

ture. Finally, the pipelining latency-bandwidth model does not give a global time of

arrival on the receiver-side of the communication. The conservative estimate of TLBP R

48 Chapter 4. Performance Modelling

(Equation 4.5) is used to ensure arrival and the safe modification of the send buffer.

4.4 Fennel Model Simulator

The Fennel simulator[99] was introduced to analyse algorithms in a more fine-grained

approach, compared to mathematically modelling. The intention of the simulator is

to bridge the gap between our theoretical understanding and real-world results. The

design of the simulator is heavily based on that of LogGOPSim[59] which is further

discussed in Section 4.4.1.

For this purpose the simulator had to be simple, flexible and moderately perfor-

mant. However, the performance was not the priority, since only short executions of

the algorithms would be simulated, not entire simulations of applications. The simu-

lator is written using modern Python[117] due to the language’s flexibility and ease of

prototyping. In addition, the simulator had to be structured in such a way to support

many parallel computational models and applications.

Many simulators exist in literature some of which will be discussed in Section 4.4.1.

While these simulators could be used for our purposes they would require significant

modification or significant amount of effort in modelling to use in the fashion we in-

tended. This additional effort required in combination with not fulfilling all require-

ments directly convinced us to implement Fennel.

The primary reason we did not use LogGOPSim directly, which Fennel is directly

based on, was that the simulator is written in the C language and therefore is time

consuming to modify. In addition, the language does not provide object oriented fa-

cilities which are critical to a simple and understandable application. We sacrifice the

performance which was targeted by LogGOPSim for the ease of modification.

The Fennel simulator provides a theoretical (based in reality) approach to evaluate

communication patterns. With the simulator we are able to analyse aspects of an al-

gorithm which cannot be captured with a purely mathematical model, because these

do not treat processes individually. In addition, simulation allows us to experiment

with modifications to models, such as machine noise, which is not easily done with a

mathematical model and requires a model for the noise itself. Finally, we are able to

draw simulations easily and are able to illustrate important effects visually.

The Fennel simulator is available as open source software1, available to be ex-

tended. The source code consists of approximately 3000 lines of code, including tests

1https://github.com/martinruefenacht/fennel

4.4. Fennel Model Simulator 49

and documentation. The simulator itself is not very complicated, being based on the

LogGOPSim structure and priority queue implementation. However, the complexity is

introduced by the visualization and program generation packages. The overall design

of Fennel, aiming to support many different aspects of machines and algorithms, also

adds complexity. This is further illustrated in Section 4.4.3.

4.4.1 Background

Several different approaches have been used to simulate the characteristics of computer

networks. On the analytic end of the spectrum is queuing theory which can be used to

express overall dynamics of a computer network in mathematical terms. However sim-

ulators used in HPC are developed using a more practical approach using time-stepping

methods or discrete event simulation, because networks being simulated are typically

too complicated and cannot be easily represented by a closed form expression.

With Fennel we seek to simulate many algorithms through a variety of machine

models and thereby gain an understanding of the characteristics of the specific algo-

rithm, not the model of the machine. This leads to insights which are not able to

be gained with purely analytic methods. In addition, it allows us to use Fennel as a

research vehicle which is allowed to diverge from reality.

Many simulators have been developed in the past to address a variety of require-

ments. One approach of such simulators[4, 51, 121] is to fully emulate an execution

environment, such that the application does not know that the execution is happening

virtually. Another approach in literature has been to use trace-based execution which

allows a recorded trace to be executed with a simulator[18, 97, 101, 112]. The ben-

efit of this approach is that the trace represents exactly what the application is doing

without the overhead of virtual computation.

In addition to the method of simulation, time-stepping or discrete events, simula-

tors also capture different levels of abstraction. Some simulators choose to be cycle

accurate, which means that the hardware is simulated entirely from the CPU. While

other simulators use models at various levels of abstract to represent individual com-

ponents. The accuracy of the models to reality determines the predictive capability

of reality by the simulator. These components can also be linked together in a vari-

ety of ways to construct simulators which attempt to represent a CPU as accurately as

possible while representing network communications with an abstract model.

At first glance cycle-accurate simulators are ideal since they would capture all ef-

50 Chapter 4. Performance Modelling

fects one would observe in reality, but the complexity and computational cost quickly

becomes unsustainable for the HPC environment. To simulate a full size supercom-

puter a larger supercomputer would be required, therefore cycle accurate simulators

are typically used for cases such as CPU design. Network simulations on the other

hand are often performed using a discrete event simulation with an underlying cost

model.

4.4.1.1 ROSS

The Rensselaer’s Optimistic Simulation System (ROSS)[86] is a general purpose dis-

crete event simulator which allows modelling of any system not just supercomputers.

The simulator uses logical processes to represent state of the modelled system while

events are used to affect the state. Multiple events can be used in a causally linked way

to affect multiple logical processes.

The goal of ROSS is to provide a simulation system which can be run on distributed

machines. This is done by handling the temporally forward event handling on multiple

processes and handling a situation in which an overtaking event occurs by unrolling

the simulation instead of check pointing. This necessitates the model developer to im-

plement both forward and backward event handling. Given ROSS is a general purpose

simulator anything can be modelled, but it also does not provide specific aids for mod-

elling computers of any form. Therefore the amount of work required by the model

developer is quite large compared to using a task specific simulator.

4.4.1.2 Parsim

The message PAssing computeR SIMulator (Parsim)[107, 108] attempts to simulate

a message passing multiprocessor to enable prediction of algorithm performance on

new platforms. Parsim is a task specific distributed memory computer simulator which

cannot be used for any other simulations. It supports modelling of topologies through

the forced InterConnection Network component. Hosts are modelled through a state

machine per host.

The InterConnection Network uses a non-overlapping latency-bandwidth model

for the communication cost. The computational aspect of the processing is represented

a constant time per data unit per process.

Semantically Parsim is similar to Fennel, it simulates the computation and commu-

nication using abstract models from an abstract description of the algorithm. However

4.4. Fennel Model Simulator 51

it does not explicitly use a discrete event simulation, but uses phases of computational

and communication similar to an analytic model.

4.4.1.3 SST

The Structural Simulation Toolkit (SST)[87, 96] was developed to address the need to

explore novel systems which interact with modern programming models. It is intended

to be an open framework which uses both time-stepping and discrete event simulation

on a per component basis to enable various levels of abstraction. The key contribution

of SST is being able to explore the entire machine, the combination of microarchitec-

ture and network, in combination with a programming model.

Conceptually SST is separated into the frontend, which handles the program and

instruction interpretation and the backend, which handles the instruction and microar-

chitectural timing. The frontend supports both program traces and emulating compiled

executables. The goal is to be able to swap various components transparently to other

layers to allow for a variety of abstraction levels inside the simulation.

A key motivation to SST is to explore the usability of different programming mod-

els. This is done by exposing backend features such as multithreading or offloading to

the frontend to be used by a program. In addition, this allows MPI or OpenMP to be

supported directly without abstraction.

4.4.1.4 LogGOPSim

The LogGOPSim simulator[59] was developed to study parallel applications and algo-

rithm behaviour in various network and system models. The simulator implements the

LogGOPS model, which they introduced, as an extension of the LogGPS model. It im-

plements a trace-based ingestion of the program which is used to capture the behaviour

of large scale applications.

Fennel is largely based on the contributions which LogGOPSim made. The ar-

chitecture of the simulator is similar and the discrete event simulation is performed

using the same approach with a priority queue for temporal ordering of events. Un-

like Fennel LogGOPSim also implements the MPI point-to-point semantics using a

unexpected message queue and receive queue, which aids simulating applications. In

addition, later versions include a network simulation which is intended to allow for

experimentation with congestion in the network.

52 Chapter 4. Performance Modelling

S0 S1

P0

P1

P2

P3

X0 X1

Figure 4.12: PingPong Program Representation

4.4.2 Program Representation

Applications are represented abstractly to capture the communication and computation

dependencies within the Fennel simulator. This achieves the desired goal of simulating

the overall communication behaviour and not to be overly complicated and therefore

performance intensive.

The applications are encoded as a Directed Acyclic Graph (DAG) which at each

node has a task associated as metadata. This allows the model implementation of

the machine to walk the graph and thereby execute the control flow. The tasks are

generic operations which are provided on typical hardware. In addition, helper tasks

are implemented which allow easier construction of the DAGs by automated means,

for example initialization tasks and proxy tasks.

Figure 4.12 shows the DAG for a PingPong application and Figure 4.13 shows an

AllReduce operation. The task at each node contains the parameters of each task and

the node on which it is supposed to be executed. Tasks are scheduled for execution

once all dependencies are fulfilled. The task types are as follows:

StartTask The StartTask task type is a helper task for the simulator to easily find

entrant nodes in the program graph. This also allows for simple representation

and segmentation between separate executions within the same model instance.

The task type when encountered in the simulator does not require any simulation

time to execute.

ProxyTask The ProxyTask task type is similar to the StartTask type, because it does

4.4. Fennel Model Simulator 53

S0 S1 S2 S3

P0 P1 P2 P3

C0 C1 C2 C3

C0 C1 C2 C3

P0 P1 P2 P3

X0 X1 X2 X3

Figure 4.13: Recursive doubling algorithm AllReduce program representation.

not require any simulation time to execute. It acts as a link between actual simu-

lation task types. This allows for simplified algorithmic generation of the sched-

ules through the program generator.

SleepTask The SleepTask is provided as a way to block a process in the model from

executing until a certain time is elapsed. This can be used to probe skew in

program execution.

ComputeTask The ComputeTask task type is given to simulate a given local com-

putation, such as a compute phase in an application. The ComputeTask is the

same as the SleepTask since it blocks the process for a certain amount of time,

however it is helpful to be able to label tasks.

PutTask The PutTask task type is the most important task as it describes the abstract

operation of a put communication between processes. The specific network op-

erations which can be encapsulated in this task are defined and implemented by

the given model.

GetTask The GetTask task type is an encoding of a Get communication operation. As

with the PutTask, the GetTask is implemented by the model.

54 Chapter 4. Performance Modelling

In addition to the task information, each vertex of the DAG also contains a concur-

rency flag and an any integer parameter. By default, all vertex dependencies need to be

fulfilled in order for a task to be scheduled for execution. However, the any parameter

allows the execution to be triggered with only a subset of the incoming edges being

fulfilled.

Creation of these application DAGs can be performed in multiple ways. The

method chosen by LogGOPSim is to generate a trace of an MPI application and then

using the GOAL[60] language to encode the communication pattern. We opted to gen-

erate the DAGs from the intended algorithm. To this end multiple generator functions

have been implemented in order to replicate the communication and computational

patterns for important algorithms.

Both the LogGOPSim and Fennel can use DAG programs generated by either the

trace or the generation method. With Fennel we chose the direction generation from

algorithms due to the interest in algorithmic effects instead of application level effects.

Using a generation method from an analytic algorithm enables use of simple message

structures, e.g. uniform size. Application traces would typically be more complex

with varying message sizes, while these could be represented in Fennel this was left

as a future task. In addition, application traces are less constrained than analytically

generated programs.

4.4.3 Simulator Architecture

The structure of the Fennel simulator is shown in Figure 4.14. Compared to other

simulators which are purposed to simulate entire MPI applications and therefore need

to focus on performance, our architecture reflects the goal of flexibility and exploration.

The Machine object is the core of the Fennel simulator. A discrete event simulation

engine is implemented using the next-event time progression. In our case, the event

progression mechanism is implemented using a priority queue. With this choice of

architecture, the assumption is made that the system does not change except when an

event happens.

In addition to the event engine, the Machine object is composed of a compute

model and a network model. This architecture is beneficial compared to a direct inher-

itance, because it allows flexibility without having to re-implement a combinatorially

large number of models which serve a near identical purpose. This design ensures,

with respect to models, the class explosion problem is avoided. The compute model

4.4. Fennel Model Simulator 55

and network model are interfaces which facilitate the processing of their specific task

types.

In addition to the models, the Machine contains instruments which serve as a

method to capture information which is otherwise lost during the run-time of the Ma-

chine. The instruments are implemented using the observer pattern: they are registered

for events which occur during program execution.

4.4.4 Capabilities

The Fennel simulator is able to execute any program which can be constructed from

the given tasks in Section 4.4.2. The simulator is capable of executing programs in

two modes. The first is drawing the simulation as seen in Figure 4.15 and Figure 4.16,

which are respectively the execution of the programs shown in Figure 4.12 and Fig-

ure 4.13. Complex models with stochastic effects can be drawn, but due to their nature

they evaluate to different results during each execution, which makes drawing less

useful except for illustrative purposes.

The second mode of the Fennel simulator is the measurement mode. This mode

is intended to be used with complex models which include stochastic effects, such

as noisy networks, and therefore go beyond simple mathematical models. The in-

struments, which can be registered with a machine, become useful in this instance to

evaluate the properties of the execution.

As shown in Figure 4.14 five models are currently implemented which are either

implementations of the compute or network model. In addition, noisy versions of these

exist through inheritance and allow for stochastic measurements. The stochastic nature

of these models will be further discussed in Section 4.4.5. The goal of the Fennel

simulator was to implement a simulator which does not replicate experimental results,

but allows exploration of algorithms on a variety of models, which match reality to

varying degrees.

Currently two instruments are implemented: the first is a recorder instrument which

records all timing information about tasks, and the second is the bandwidth instrument

which serves as a bandwidth measurement tool. The bandwidth is determined by a

model: however, when a non-deterministic model is used an experiment bandwidth

value can be derived.

56 Chapter 4. Performance Modelling

0..*

Machine

Task
Compute

Model
Network
Model

Program

Instrument

LBModel

LBPModel

Fixed
Model

Gamma
Model

1 1

StartTask

ProxyTask

SleepTask

ComputeTask

PutTaskGetTask

Recorder
Instrument

Bandwidth
Instrument

1..*

2..*

LogGOPS

Program
Visualizer

Machine
Visualizer

P2P
Generator

AllReduce
Generator

AllGather
Generator

ReduceScatter
Generator

Figure 4.14: Fennel Simulator UML

4.4. Fennel Model Simulator 57

0 500 1000
nanoseconds

Figure 4.15: PingPong simulation

0 500 1000
nanoseconds

Figure 4.16: recursive doubling simulation

58 Chapter 4. Performance Modelling

4.4.5 Validation

Validation of the simulator has to be done using a variety of testing methods. The

models themselves need to be verified and tuned to represent the underlying physical

machine, as shown in Section 4.3. This implies the model needs to be able to represent

reality. In other words simple models cannot represent reality due to the innate lack of

variables, but more complex stochastic models could.

The pipelining latency-bandwidth model uses direct measurements (using the mini-

mum found) for the variables which allows absolute certainty that the model accurately

represents the given interface, but factors such as the probability distributions of those

variables is not currently accounted for, as seen in Figure 4.6 and Figure 4.7.

Validation of the general simulation is done through a test suite which contains

both unit tests and integration tests. The unit tests verify the components, such as the

task implementations or the program representation. Complex entities, such as the core

Machine object, are verified using the integration level testing.

Integration tests are performed by generating programs and executing these pro-

grams with known deterministic models. This verifies that the common processing

which takes place for all models correctly executes and is consistent and correct. This

is done by measuring the total execution time after executing a program on a ma-

chine and verifying by comparing to an analytically calculated reference value. The

integration tests include common patterns such as ping-pong, multicast, and recursive

doubling. In addition, the visual output is verified by comparing to manually verified

visualizations.

Chapter 5

Recursive Multiplying

The performance of AllReduce is crucial at scale. The current defacto AllReduce al-

gorithm, recursive doubling with pairwise exchange, theoretically achieves O(log2 N)

scaling for short messages with N peers, but is limited by improvements in network

latency. A multi-way exchange can be implemented using message pipelining, which

is easier to improve than latency. Using our method, recursive multiplying, we show

reductions in execution time of between 8% and 40% for AllReduce on a Cray XC30

over recursive doubling. Using a custom simulator we further explore the dynamics of

recursive multiplying.

59

60 Chapter 5. Recursive Multiplying

5.1 Introduction

5.1.1 Overview

This chapter discusses our implementation of the AllReduce operation. It contains

a discussion of the requirements by Message Passing Interface (MPI) for AllReduce

operations and some prior algorithms used to implement the operation in Section 5.2.

A discussion of directly related methods is given in Section 5.3.

We introduce the recursive multiplying algorithm in Section 5.4 with an analytical

derivation from the pipelining latency-bandwidth model in Section 5.4.1. The imple-

mentation of recursive multiplying is presented in Section 5.4.3. In Section 5.4.4, we

introduce a heuristic method by which a suitable schedule can be found.

Experimental results are presented in Section 5.5 and simulations using the Fennel

simulator are presented in Section 5.6.

5.1.2 Contributions

This chapter makes the following contributions:

• A generalisation of recursive doubling, recursive multiplying, is introduced to

implement MPI Allreduce.

• It is shown that the recursive multiplying method allows for lower latency than

previously seen for AllReduce.

• The prime merging method is introduced to handle non-power-of-two process

counts, which supersedes the collapse and expand method in most situations.

• A heuristic method is given to determine a near optimal schedule for an AllRe-

duce operation using recursive multiplying and prime merging.

The work presented in this chapter is based on the published conference article[98]

and the extended journal version of the article [99]. In addition to the two articles, the

chapter contains evaluations and explorations which have not been published.

5.2. Background 61

Ti
m

e

MPI Allreduce

©
©
©

©
©
©

©
©
©

©
©
©

Figure 5.1: An illustration of an MPI Allreduce operation which shows the ordering re-

quirements and contributions of each participating process. The order shown in the

resulting processes illustrates the order of operations.

5.2 Background

5.2.1 MPI Allreduce Definition

The MPI specification defines the MPI Allreduce interface which performs the AllRe-

duce operation across a communicator with a specific operator. Importantly, the speci-

fication requires identical results on all participating processes, spatial consistency, and

an advice to implementors note suggests consistency for when the function is called

multiple times with the same arguments, temporal consistency. Ignoring the tem-

poral consistency when implementing or designing an algorithm for MPI Allreduce

could result in an extremely difficult to diagnose anomalous behaviour. The MPI Stan-

dard determines the canonical order of operations by the ranks of the processes in the

group[85].

Figure 5.1 illustrates the MPI Allreduce functionality. Each colored portion of data

needs to be appropriately exchanged in order to achieve the AllReduce operation.

The operation performed when combining intermediary results is assumed by MPI

to always be associative. User defined operations are able to be declared to not be

commutative, but MPI standard operations are also assumed to be commutative. Due

to this, the order of operations is important when using a user defined operation. For

example, integer arithmetic is both associative and commutative, while floating point

operations are commutative, but they are not associative. Within MPI, floating point

non-associativity is acknowledged to contradict the assumption of associativity, but is

accepted as an allowable optimisation for implementations. A user defined operation

62 Chapter 5. Recursive Multiplying

Ti
m

e

Figure 5.2: Illustration of an AllReduce operation utilizing binomial tree for a reduce and

a broadcast.

such as matrix multiplication is associative, but would be labelled as non-commutative

and therefore needs special treatment.

5.2.2 Algorithms

This section will discuss algorithms present in literature which fulfil the requirements

set out in Section 5.2.1. This is not an exhaustive listing of all known algorithms.

Topology-aware algorithms are specifically not discussed, because our contribution

presented in Section 5.4 is not topology-aware.

Algorithms of interest are constructed from point-to-point operations and are used

as such within MPI implementations. Early algorithms are basic patterns which are

used for many implementations of operations: these typically are used to implement

low latency collective operations.

To achieve low bandwidth usage, simple patterns are combined to construct com-

posite algorithms. The choice between which algorithm is used for a specific instance

of a collective operation is usually determined by the message size of the collective.

5.2. Background 63

5.2.2.1 Fan-In/Fan-Out

A common approach to implement AllReduce in early versions[6, 110] of MPI li-

braries was to use a fan-in/fan-out pattern. This consists of reducing the vector to the

root, typically the zeroth rank, using a minimum spanning tree and then broadcasting

the resulting reduced vector to all ranks, using the same spanning tree.

Figure 5.2 illustrates the communication pattern using binomial trees. This method

of implementing an AllReduce operation is not efficient, because both the computa-

tional units and communication network are underutilized. For Figure 5.2 and further

diagrams the order of operations is assumed to be correct. The visualizations of the

processes are partially filled to illustrate partial reductions and colors are used to show

process origin when larger vectors are involved.

The complexity of this method using the standard latency-bandwidth model, dis-

cussed in Chapter 4 is presented in Equation 5.1. The process count is given as N. If

N is not a power of two then the tree used must be adjusted for the specific value in

order to perform the correct communication pattern considering consistency discussed

in Section 5.2.1. The n parameter is the number of bytes to be reduced per process.

TTREE = 2dlog2 Ne(α+nβ+nγ) (5.1)

The main disadvantage of this method is the factor of two which is always present,

because the method is performing two separate tree operations sequentially. The us-

age of binomial trees, for a topology unaware method, allows for a minimum latency

operation, but other trees such as binary or Fibonacci may also be used which support

better optimization for larger messages or specific process counts.

5.2.2.2 Recursive Doubling

The recursive doubling method for AllReduce is a straightforward extension of the us-

age of trees[6, 20, 109]. Instead of performing a single send and then inactivating a

process, the process is kept active and the peer sends its contribution. This method is

illustrated in Figure 5.3. By doing this the broadcast communication is interlaced with

the reduction operation and thereby prevents idle time while communicating. Recur-

sive doubling does introduce redundant computation on all participating nodes, which

depending on the machine properties may not be ideal. The method is also only appli-

cable to process counts which are a power of two. The algorithm can also be seen as a

dimension by dimension reduction over a binary hypercube.

64 Chapter 5. Recursive Multiplying

Ti
m

e

Figure 5.3: An illustration of recursive doubling for a power-of-two number of processes.

Equation 5.2 calculates the total time for the recursive doubling method using the

standard latency-bandwidth model. The process count, N, is required to be a power of

two. As previously, n is the vector length for each process.

TRD = log2 N(α+nβ+nγ) | N = 2k,k ∈ N∗ (5.2)

The recursive doubling method is ideal for small process counts, because it cal-

culates along the minimum spanning tree, which is half of the fan-in/fan-out method.

While the method is applicable to a smaller number of process counts it outperforms

the fan-in/fan-out method by a factor of two. For non-power-of-two process counts a

collapse and expand method can be used to ensure a reasonable process count is used.

This method adds an additional stage at the beginning and at the end of the recursive

doubling stages, resulting in Equation 5.3.

TRD-NP2 = (log2 N +2)(α+nβ+nγ) | N 6= 2k,k ∈ N∗ (5.3)

Algorithm 1 presents the pseudocode for the recursive doubling method in addition

to the collapse/expand stages which may be required. The collapse/expand method will

be further discussed in Section 5.4.2.

5.2.2.3 Composite Algorithms

Prior methods of implementation of the AllReduce operation have focused on mini-

mizing the latency component of the algorithm to optimize for small vectors. However

5.2. Background 65

Algorithm 1 Recursive Doubling AllReduce
1: procedure ALLREDUCE(rank,size, local)

2: global← local . initialize variables

3: mask← 1

4: po f 2← 2blog2(size)c . nearest lower power of two

5: rem← N− po f 2 . remainder

6: if rank < 2× rem then . collapse to power of two

7: if rank (mod 2) = 0 then
8: Send global to rank+1

9: myrank←−1 . deactivate

10: else
11: Recv recvbu f from rank−1

12: Reduce global rbu f

13: myrank← rank/2 . change rank

14: else
15: myrank← rank− rem

16: if myrank 6=−1 then . recursive doubling

17: while mask < po f 2 do
18: newdst← myrank⊕mask . find peer

19: if newdst < rem then . virtual to real rank

20: dst← newdst×2+1

21: else
22: dst← newdst + rem

23: Sendrecv sendbu f rbu f from dst

24: Reduce global rbu f

25: mask← mask� 1 . increment stage

26: if rank < 2× rem then . expand to remainder

27: if rank (mod 2) 6= 0 then
28: Send global to rank−1

29: else
30: Recv global from rank+1

31: Return global

66 Chapter 5. Recursive Multiplying

Ti
m

e

R
ed

uc
eS

ca
tte

r
A

llG
at

he
r

Figure 5.4: An illustration of a composite AllReduce operation utilizing a ReduceScatter

(implemented by recursive halving) and AllGather (implemented by recursive doubling)

for large messages.

when performing an AllReduce operation with large vectors the latency is less impor-

tant than the bandwidth requirement of the underlying method. Rabenseifner et al.[95]

introduced a composite method which uses a ReduceScatter operation followed by an

AllGather operation. The work is based on the bandwidth optimal broadcast intro-

duced by Van de Geijn et al.[7, 103]. Van de Geijn et al. improved upon the minimal

spanning tree broadcast for bandwidth-limited use-cases by using a combination of a

Scatter followed by an AllGather collective to reduce the time needed. This method

improves as more processes participate.

Figure 5.4 illustrates the composite method. The presented version uses recursive

halving for the ReduceScatter and recursive doubling for the AllGather. Recursive

halving is analogous to recursive doubling. The method sends half vectors instead

of whole vectors to the peer process while simultaneously halving the distance be-

tween peers instead of doubling. The collective operations which make up the com-

posite method are able to be implemented with multiple underlying methods similar

to AllReduce, therefore the choice of which method to use for these phases influences

the overall effectiveness.

For process counts which are a power of two the complexity using the latency-

5.2. Background 67

bandwidth model of the composite method is:

TRS = 2α log2 N +2
N−1

N
nβ+

N−1
N

nγ (5.4)

To compare the two methods performing an AllReduce operation in the latency-

bandwidth model we take the difference between the two, resulting in Equation 5.5.

With Equation 5.5 we see that the latency term is independent of n and remains con-

stant. With small n the negative latency term dominates, which means the recursive

doubling method is better for small n. For large n the positive bandwidth term domi-

nates and results in a composite method providing a lower total time-to-solution.

TRD−TRS = −α log2 N +n
(

β

(
log2 N +

2
N
−2
)
+ γ

(
log2 N +

1
N
−1
))

(5.5)

5.2.2.4 Elimination

Implementations of AllReduce typically focus on process counts which are a power-

of-two. However as the size of machines increases and more processes are used the

powers of two become more sparse. Therefore, future methods are required to address

non-power-of-two process counts more often.

Rabenseifner et al.[95] introduced a method by which eliminations are used to

allow for better composability of the process counts and thereby address the issue of

non-power-of-two process counts. The two eliminations are the 3-2 elimination and

the 2-1 elimination. The 3-2 elimination is constructed such that two processes absorb

and reduce the vector of the third process. The 2-1 elimination is the same as the

collapse/expand method used in recursive doubling, but instead of being used only at

the beginning and end of the algorithm these eliminations can be used throughout.

The complexity achieved for the AllReduce operation is dlog2 Ne+ 1 for small

sized latency optimized operations of non-power-of-two process counts. Figure 5.5

presents a latency optimized AllReduce operation across seven processes using 3-2

eliminations. The third process is eliminated using the first 3-2 elimination, after which

only six processes are active. Using two groups of three the six processes are reduced

and finally an expansion has to be performed to move the final result to all processes.

68 Chapter 5. Recursive Multiplying

Ti
m

e

Figure 5.5: An illustration of a binary block AllReduce of seven processes. Dashed

and dotted lines are used to highlight the three 3-2 eliminations used in the collective

operation.

5.3 Related work

Motivated by the LoP and LogfP model, Hoefler et al.[56] introduced a barrier oper-

ation based on the f-way dissemination pattern which allows for higher performance.

The f-way dissemination pattern is an extension of the original dissemination pattern

also used for a barrier operation[11, 50]. By allowing a process to send multiple mes-

sages the scaling of the dissemination barrier is improved from O(log2 N) to O(log f N)

with the f-way dissemination barrier.

End et al.[34] introduced the f-way dissemination AllReduce which allows for a

large improvement on InfiniBand. When N 6= (f + 1)k there is potential for duplica-

tion. An adaption is presented which performs a post process when duplication occurs,

based on the data boundary from the previous stage. This allows for the correct re-

sult to be computed. Since butterfly-like patterns require an associative operator, this

algorithm is only suitable for a subset of use cases.

5.4. Recursive Multiplying Algorithm 69

5.4 Recursive Multiplying Algorithm

We introduce the recursive multiplying method as a generalisation of the recursive

doubling method presented in Section 5.2.2.2. Utilizing the insight gained from the

pipelining latency-bandwidth model from Chapter 4, we construct an AllReduce op-

eration. By sending multiple redundant messages over the network, exploiting the

pipelining capability, we succeed in enabling a lower latency AllReduce. Similar to

other collective algorithms, we attempt to maximize the use of the network and com-

putational facilities to perform the AllReduce in minimal time to solution.

5.4.1 Derivation

The generalisation of recursive doubling evolves directly from the pipelining latency-

bandwidth model. The recursive doubling algorithm was developed during an era in

which multiple messages were at best scaling linearly given the latency-bandwidth

model and the present hardware at the time.

Since β << α and γ << α are assumed for the latency-bandwidth models we sim-

plify the equations with n = 0. Since recursive doubling is only intended for small

messages and the composite method by Rabenseifer et al.[93] is ideal for large mes-

sages, this simplification does not skew our results. Capturing recursive doubling in the

pipelining latency-bandwidth model results in Equation 5.6, expressing the total time

for the AllReduce operation using recursive doubling. A brief discussion of larger

message sizes using recursive multiplying is given in Section 5.4.5.

TRD = (αp +αr) log2 N | N = 2k, k ∈ N∗ (5.6)

The pipelining model allows multiple messages to be sent for a slight increase in

time compared to a single message, as demonstrated in Section 4.3.1. Using this in-

sight, we are able to flatten the computational graph of recursive doubling by sending

multiple messages containing the same information to multiple processes. We call

this method recursive multiplying with the total time for an AllReduce given by Equa-

tion 5.7.

TRM = (αp +bαr) logb+1 N | N = (b+1)k, k ∈ N∗, b ∈ N∗ (5.7)

The b variable controls the fan-out of the recursive multiplying method: it is the

number of messages to be sent by each process in a single stage, i.e. the multicast

70 Chapter 5. Recursive Multiplying

b

1 2 4 6 8 10 12 14 16
N

2
16

32
48

64

Ti
m

e
(

s)

2

4

6

8

10

Figure 5.6: The total time for recursive multiplying given the b and N parameters with

measured machine parameters from Chapter 4. This function is not evaluated in integer

space.

width. In the case b = 1 the recursive multiplying method is equivalent to recursive

doubling. It is important to note that both methods have a limited domain and cannot

be applied to all natural numbers N: recursive doubling operates only on powers of

two, while recursive multiplying operates on powers of b+1.

The b parameter of Equation 5.7 is an independent variable: it is free to be chosen

by the user to form any pattern, with a range of [1,N−1]. An optimal value of b exists,

bopt, which is the value at which the overall time spent within the collective operation is

minimal. With TRM defined as the total time to solution of an AllReduce operation, bopt

minimizes the total time with respect to b. The overall program runtime is minimized

if the program is network limited and not computationally limited.

Figure 5.6 shows the total time required by recursive multiplying given by Equa-

tion 5.7 over the given range of the b and N parameters. This figure and equation

5.4. Recursive Multiplying Algorithm 71

0 10 20 30 40
b

0

5

10

15

20

25

30

Ti
m

e
(

s)

Ratio
1
2
3
4
8
16

Figure 5.7: The total time for recursive multiplying with a fixed N = 128 with a variety of

machine parameter ratios αp
αr

. These functions are not evaluated in integer space.

72 Chapter 5. Recursive Multiplying

assume N is factorisable by b+1. This is not true for all values of N, but is useful for

the analysis, therefore we do not restrict b or N to be integers. In reality we will be

required to operate within integer space. In Figure 5.6 a minimum occurs at b≈ 3.258

for the total time of the collective operation.

We derive an expression for bopt from Equation 5.7 ignoring integer requirements.

First, we find the partial derivative with respect to b:

TRM(b,N) = (αp +bαr) logb+1 N

∂T (b,N)

∂b
=

lnN
ln2(b+1)

(
αr lnb+1−

bαr +αp

b+1

)
Second, we find the minimum of Equation 5.7 by setting the derivative to zero.

0 =
lnN

ln2(b+1)

(
αr ln(b+1)−

bαr +αp

b+1

)
0 = αr ln(b+1)−

bαr +αp

b+1
αp

αr
= (b+1) ln(b+1)−b

Finally, we solve for b to find the minimum of Equation 5.7 given by Equation 5.8

using the Lambert W function[72].

bopt = eW0(1
e(

αp
αr −1))+1−1 (5.8)

Interestingly, bopt depends only on the ratio of the two machine parameters, αp and

αr, but not on the value of N. Since each stage of the collective, represented by the

logarithmic term in Equation 5.7, is itself a multicast operation it follows that N does

not influence the bopt value. Equation 5.8 is plotted for a range of ratios of machine

parameters in Figure 5.8.

Figure 5.7 presents plots of Equation 5.7 with fixed N = 128. This shows the

increasing flatness of the curve when the ratio of the machine parameters increases.

The dotted lines show the intersection of the lines from b = 1. The bupper value is the

point after which it is only effective to use b = 1. Therefore, values up to and including

bbuppere for the recursive multiplying algorithm are useful.

With Figure 5.6 and Figure 5.7, which show Equation 5.7, it is difficult to have

an intuitive understanding of the combination of machine parameters and collective

parameters. Equation 5.8 shows the relationship between the machine parameters and

5.4. Recursive Multiplying Algorithm 73

the optimal choice of b, but only the ratio αp
αr

is important and that as this ratio increases

bopt also increases. From Figure 5.8 we can see the relationship of the change is not

linear. In essence, a large machine parameter ratio implies greater pipelining capability,

therefore a schedule generation has access to larger multicasts (i.e. the value of b).

In addition, bupper increases faster than the bopt as the ratio increases, given in

Equation 5.9 and shown in Figure 5.7 as shown by the dotted lines. This means that

as the ratio increases there is a wider range of b values which result in a lower execu-

tion time than recursive doubling (b = 1). This enables greater representation of larger

composite numbers of processes and increases the size of the available space of sched-

ules. Also, as bopt remains significantly lower than bupper the flexibility of the method

increases even though the optimal value is small.

The bupper value is determined as follows:

TRM(bupper) = TRM(1)

(αp +bαr) logb+1 N = (αp +αr) log2 N

(c+b) logb+1 N = (c+1) log2 N | c =
αp

αr

logb+1 2 =
c+1
c+b

Again, using the Lambert W function, we solve for bupper resulting in Equation 5.9.

As shown, bupper is also independent of N. This allows us the flexibility to find factori-

sations of the process count purely dependent on the machine parameters. Equation 5.9

is plotted for a range of ratios of machine parameters in Figure 5.9.

bupper =−
c+1
ln2

W−1

(
− ln2
c+1

2
c−1
c+1

)
−1 | c =

αp

αr
(5.9)

Rounding bopt for a given machine allows the usage for the recursive multiplying

algorithm for AllReduce with a time cost given in Equation 5.10. This requires N to

be power of b+1.

TRM = logbbopte+1 N
(
αp + bbopteαr

)
(5.10)

In reality N will rarely be a power of b+1 since the powers quickly become sparse

on the number line. This is especially true when powers of b� 1 are used.

With the insight of recursive multiplying being a b-ary multicast building block,

applied k-ary times, we can change the value of b in successive stages of the AllRe-

74 Chapter 5. Recursive Multiplying

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
p

r

0

2

4

6

8

10

12
b o

pt

Figure 5.8: Illustration of the bopt for a given ratio of machine parameters.

duce. This is illustrated in Figure 5.10. Being able to change the b parameter yields

the flexibility of recursive multiplying.

Recursive doubling is restricted to the domain of powers of two, but in comparison,

recursive multiplying has a much larger domain which contains the powers of all values

of b+1 in addition to any product of different integer b values.

Through this mechanism we can find a schedule for any process count N by using

the prime factorization of N. An optional improvement is to find a factorization which

includes only numbers close to bopt. Table 5.1 shows the capability of being able to

factor the process count.

Several limitations are still present using the recursive multiplying method. First,

the machine is required to be able to pipeline messages and must have a large enough

injection bandwidth: without this facility the recursive doubling method is the best pos-

sible for small messages. Second, due to the use of a multicast, the receiving processes

are required to provide b receive buffers, which cannot be overlapped since multiple

receives occur per stage. The memory required is reflected in the specific factorization

chosen, which could be used as a determining factor for the choice. Finally, if the

5.4. Recursive Multiplying Algorithm 75

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
p

r

0

20

40

60

80

100

120
b u

pp
er

Figure 5.9: Illustration of the bupper for a given ratio of machine parameters.

Ti
m

e

Figure 5.10: AllReduce operation with six processes using traditional illustration.

76 Chapter 5. Recursive Multiplying

Process Count Factorisations

10 (5, 2)

16
(2, 2, 2, 2)

(4, 4)

36 (4, 3, 3)

48 (4, 4, 3)

60 (5, 4, 3)

80 (5, 4, 4)

1024

(2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

(4, 4, 4, 4, 4)

(8, 8, 8, 2)

Table 5.1: Factorisation usable for the given process counts through the recursive mul-

tiplying method. Factorisations which contain only 2 are able to be used by recursive

doubling. Not all factorisations are given for the respective process counts.

process count is not able to be factorized to suitably small numbers, a large multicast

operation is required to take place, if no other additional method is used. This can

inhibit the performance for recursive multiplying significantly.

5.4.2 Values Outside The Domain

While recursive doubling and recursive multiplying address certain process counts

well, other process counts are not able to be used at all. In practice, the recursive dou-

bling method is combined with a collapse and expand method to address non-powers

of two process counts.

Figure 5.11 illustrates the methodology of the collapse and expand method to en-

able non-powers of two process counts to be handled. As an initial step, before recur-

sive doubling is used, processes send their contributions to the AllReduce to a peer,

such that the resulting active peers are of a power of two count. After recursive dou-

bling is performed, the expansion phase takes place in which the previous peers send

the result of the AllReduce to their respective peers, in order to satisfy the requirement

that the final reduced vector is present on all processes.

5.4. Recursive Multiplying Algorithm 77

Ti
m

e

Figure 5.11: AllReduce operation with six processes using collapse and expand stages

to allow a non-power of two processes AllReduce using recursive doubling.

Recursive multiplying has a much larger domain for process counts since the b

parameter can be chosen at will. In combination with the capability of being able

to switch the b value per stage, this enables a vast majority of process counts to be

covered. However recursive multiplying fails to address prime numbers which are

larger than bupper and therefore would be split across multiple stages if it were possible.

Similar to recursive doubling, the collapse and expand method can be used to fix

such a situation in which a large prime number is a factor of the process count. This

has the same downsides, in that it adds two additional communication stages until the

AllReduce operation is complete.

Using the pipelining latency-bandwidth model, with all implications of the analyt-

ical model, we calculate the collapsing stage to cost αp+αr, since all processes which

become inactive send their buffers to the active processes. The expansion stage is the

more expensive, because a single process needs to perform a multicast. The expansion

stage is of αp +(m−1)αr cost, where m is the collapsing factor. In Figure 5.11 the m

factor is 2.

The fundamental idea of recursive multiplying is to exploit the capability of pipelin-

ing and therefore being able to send multiple messages. This idea can be used further

to address the case of large primes. By viewing the factorization of the process count

78 Chapter 5. Recursive Multiplying

(a) Stage 1 (b) Stage 2 (c) Result

Figure 5.12: Hypercuboid view of recursive multiplying for an AllReduce operation with

six processes.

(a) Stage 1 (b) Stage 2 (c) Result

Figure 5.13: Hypercuboid view of recursive multiplying with prime merging of seven

processes.

as a d-dimensional hyper-cuboid, as shown in Figure 5.12 where each stage is repre-

sented by a dimension, we can formulate the intuitive view of the AllReduce operation.

The recursive doubling algorithm would be a binary hypercube in this illustration.

An alternative approach to handling large primes is to do merging, which does

not require two additional stages. This allows a composite number to be used instead

of a multiple of a base. The first stage is executed performing the first stage of the

factorization, while the exposed remainder processes broadcast their own contribution

to all processes as required. During the final stage all processes of a group send their

final value to the remainder processes which then reduce these independently.

To ensure all processes obtain the same result, every element in the group must

combine the same partial values in the same order. During the last stage, the remainder

processes can also do this as they have the same set of partial results. However, unlike

the processors in the main groups, they do not contribute to the set of partial results in

that stage.

By decomposing the size of the AllReduce operation into two numbers, one of

which is easily factorisable, we can make efficient use of multicast. An important

optimization is to spread the remainder processes across the groups in the final stage,

otherwise a single group will send many more messages and the method incurs a larger

5.4. Recursive Multiplying Algorithm 79

(a) Stage 1 (b) Stage 2 (c) Result

Figure 5.14: Hypercuboid view of recursive multiplying with prime merging of ten pro-

cesses. This merging pattern is purposefully chosen to illustrate the decomposition of

remaining processes over the reduction groups to minimize the number of messages

which are sent. The decomposition choice is crucial for performance of the prime merg-

ing method. For clarity some arrows are omitted.

overall cost. For prime merging to be used, the factorisation must contain at least two

factors: this method cannot be used with a single stage.

In the given example shown in Figure 5.13, only two stages are required to perform

an AllReduce across seven processes. The first stage consists of the first six processes

performing an AllReduce within two groups, while the seventh process broadcasts its

value to an entire group at the same time. This allows all members of that group to

calculate the reduction with the contribution of the seventh process. During the second,

and final, stage three groups of two processes perform a pairwise exchange, while a

single group also sends its partial results to the seventh process to reduce them by

itself. By using prime merging, we enabled the seventh process to receive all required

information within the two stages, instead of the four required by the generalised fix.

Figure 5.14 illustrates a prime merging procedure with a larger number of remain-

ing processes. The distribution of the remaining processes across the reducing groups

is important for performance, otherwise a single group will be required to send many

more messages which will induce a large skew.

TMERGE INV =

αp +αr(b+ r div g) r mod g = 0

αp +αr(b+ r div g+1) otherwise
(5.11)

Viewing the prime merging method with the pipelining latency-bandwidth model,

we can evaluate the cost of the merge phase as αp +αr(b+ 1). The multicast cost

from the remainder processes is always larger than the internal AllReduce multicast.

80 Chapter 5. Recursive Multiplying

For the final stage of the prime merging method the cost is given in Equation 5.11 as

TMERGE INV. The remainder process count is r and the group size is g. The cost is a

summation of the AllReduce performed internally in the core group, and the multicast

to the remainder processes. The piece-wise function is used to denote the division of

remainder processes across the existing internal groups. The additional single αr cost

is due to the maximum between the groups with additional remainder processes than

others, if the remainder processes do not evenly divide.

5.4.3 Implementation

The pseudocode for recursive multiplying is presented in Algorithm 2. The pseu-

docode shows several required generalisations, compared to the recursive doubling,

presented in Section 5.2.2.2. The transformation from stage ranks to global ranks is

done similarly with a branching statement, though the transformation is more complex

than the power-of-two case. In addition, the masking to find the relevant peers for a

stage has changed from an exclusive-or operation to a group and offset calculation.

Finally, the mask incrementing has changed from a left shift operation, to a multiply

by the stage base.

For our prototype, we chose to pass the schedule directly to the AllReduce op-

eration globally and not compute the schedule on the fly. This would enable library

implementors to have control over which schedules are used when. The schedules

consist of instructions which some stages will execute depending on previous stages.

Schedules are a tuple of instructions which execute the correct data movement in

sequence in order to result in an AllReduce operation. An implied reduction phase is

present with each instruction in the schedule. The simplest schedule component is the

all-to-all instruction of form aB. The B parameter is the reduction factor for all groups.

The processes are grouped such that B = N
groups . The schedules as implemented are

an example of possible ways in which to enable the use of recursive multiplying in a

flexible fashion, but MPI library implementors can implement recursive multiplying in

other ways.

The collapse and expand method is implemented using two additional stages at the

beginning and end of the factored schedule. Two variables are used to determine the

behaviour of the collapse. The first is the threshold: this determines which processes

are part of the collapse method, either as receivers or senders. If the rank is below the

threshold, the process determines whether it is a sender or receiver.

5.4. Recursive Multiplying Algorithm 81

Algorithm 2 Recursive Multiplying AllReduce
1: procedure ALLREDUCE(rank, com, schedule)

2: value← com . initialize variables

3: stage mask← 1

4: pthres← 0

5: pbase← 1

6: wid← rank

7: for stage in schedule do
8: if type(stage) is factor then
9: sfactor← factor . recursive multiplying

10: sbase← sfactor × stage mask

11: if wid 6=−1 then
12: for index ∈ [0, sfactor−1) do . find peers

13: mask← (index +1)× stage mask

14: block← b wid
sbasec×sbase

15: offset← (wid + mask) mod sbase

16: peer← block + offset

. stage rank to global rank

17: if rpeer < pthres then
18: rpeer← peer × pbase + pbase −1

19: else
20: rpeer← peer +pthres

pbase × (pbase −1)

21: Send non-blocking value to rpeer

. complete stage

22: for peer ∈ [0, sfactor) do
23: Recv value from peer

24: Reduce value rbuf

25: Wait on sends
26: stage mask← stage mask × sfactor

This is done using the base variable. The threshold must be divisible by the base.

The base is effectively the collapse ratio, which determines how the processes beneath

the threshold are combined. The expansion stage, the final stage, is the inverse opera-

tion of the collapse stage. The processes which are collapsed into other processes are

82 Chapter 5. Recursive Multiplying

Algorithm 3 Recursive Multiplying Collapse
27: else if type(stage) is collapse then
28: pthres, pbase← collapse

29: if rank < pthres then
30: if rank (mod pbase) 6= (base−1) then
31: peer← b rank

pbasec× pbase + pbase −1

32: Send value to peer

33: wid←−1

34: else
35: Recv rbuf from peer

36: Reduce value rbuf

37: wid← b rank
pbasec

38: else
39: wid← rank −pthres

pbase× base −1

Algorithm 4 Recursive Multiplying Expansion
40: else if type(stage) is expand then
41: pthres, pbase← expand

42: if rank < pthres then
43: if rank (mod pbase) = (base−1) then
44: for b do
45: peer← wid × pbase + b

46: Send non-blocking value to peer

47: else
48: Recv value from peer

49: Wait on sends

5.4. Recursive Multiplying Algorithm 83

Algorithm 5 Recursive Multiplying Merge
50: else if type(stage) is merge then
51: remainder, groups, factor← merge

52: group size← f actor× stage mask

53: if rank < remainder then
54: wid←−1− rank

55: group← rank (mod groups)

56: group first← remainder+group×group size

57: for each process in group do
58: peer← group f irst + idx

59: Send non-blocking value to peer

60: else
61: wid← rank− remainder

62: group← b wid
group sizec× group size

63: for each peer in group do
64: Send non-blocking value to peer

65: Wait for all receives
66: Reduce all buffers

67: Wait on sends
68: stage mask← stage mask × factor

Algorithm 6 Recursive Multiplying Inverse Merge
69: else if type(stage) is invmerge then
70: remainder, groups, factor← invmerge

71: groupsize← f actor× stage mask

72: if rank < remainder then
73: Wait for all receives
74: Reduce received buffers

75: else
76: group← b wid

group sizec× group size

77: for each peer in group do
78: Send non-blocking value to peer

79: for each remainder do
80: if remainder (mod groups) = wid (mod groups) then
81: Send non-blocking value to remainder

82: Reduce all buffers

83: Wait for sends
84: Return value

84 Chapter 5. Recursive Multiplying

inactive during the rest of the collective operation, until the expansion stage. The pseu-

docode for the collapse and expand stages is shown in Algorithm 3 and Algorithm 4.

Similar to the collapse and expand method, the merging method is applied at the

beginning and end of a schedule, but it enables additional overlapping of communi-

cation and computation with the remaining processes which are not within the core

processes. The merging method is characterized by three parameters which uniquely

define how the method is applied.

The first variable is the number of processes to be merged into the internal pro-

cesses, called the remainder. This number defines how many processes send their

contribution to the AllReduce to all processes within their group, according to their

rank. The other two parameters are the groups and the factor. These two variable de-

fine the face of the hypercuboid into which the remainder processes are merged. The

pseudocode for the merging method is shown in Algorithm 5 and Algorithm 6.

Since remainder+groups× f actor = N is always true, the groups variable is not

explicitly required and can be calculated on the fly. We chose to label this explicitly,

because it simplifies the inverse merge operation at the end of the stages.

Using the above described schedule components, it is possible to construct a large

number of schedules which will be addressed in Section 5.4.4. We use the collapse and

expand, and merging, stages explicitly at the beginning and end of a factored schedule

which reduces the possible space of schedules. However both the collapse and expand,

and the merging, stages could be used during a schedule as well.

This may be beneficial, because the algorithm would be performed across a smaller

number of cooperating processes in their respective groups, thereby avoiding conges-

tion, which is rarely modelled, but often encountered in real-world applications. Al-

lowing for collapse and expand stages within a schedule will increase the number of

schedules for a given process count vastly.

5.4.4 Heuristic Schedules

Determining the schedule with which a specific AllReduce operation should be exe-

cuted is non-trivial. Due to the vast choice of schedules for anything but the smallest

of process counts, it is difficult to choose a schedule quickly which yields the lowest

latency. Figure 5.15 illustrates the number of possible schedules for the first 1024 pro-

cess counts. The majority of the schedules available for a specific process count are not

efficient, as their execution time will be longer than recursive doubling. In addition,

5.4. Recursive Multiplying Algorithm 85

0 200 400 600 800 1000
Process Count

10
1

10
0

10
1

10
2

10
3

10
4

10
5

N
um

be
r o

f s
ch

ed
ul

es

Total
Factored
Collapsed
Merged

Figure 5.15: Illustration of the number of schedules of three categories available for

the first 1024 process counts. The Factored category is for schedules which are a

factorization of a process count. The Collapsed category is for schedules which utilize

the collapse/expand method and the Merged category is for schedules which utilize the

prime merging method. Permutations of factored schedules within merged schedules

are ignored.

the choice of schedule needs to be performed quickly and effectively.

One way to handle the selection would be to measure all schedules for all possible

process counts and store the best schedule as a lookup table for the implementation to

fetch when required. This has the downside that, for large machines, the amount of

memory required is large. In addition, this memory is required to be accessed by all

participating processes, which can be detrimental to performance.

We have developed a heuristic function, shown in Algorithm 7, which determines

a good schedule to be used for a given process count. The heuristic is based on the

idea that the bopt value is the factor with which we want to factor the process count,

but numbers near bopt are acceptable. Specifically numbers up to bupper are considered,

given the flatness of the functions shown in Figure 5.7, since these perform equally

86 Chapter 5. Recursive Multiplying

Algorithm 7 Heuristic Schedule Generation
function HEURISTIC(αp,αr,count,bupper,merge← 0)

product← 1

divisors← empty list

potential← SORT([2,bupper +1] ascending w.r.t. (αp +bαr) logb+1 count)

for divisor in potential do
while count mod (product×divisor) == 0 do

divisors← divisor

product← product×divisor

if count 6= product then return HEURISTIC(αp,αr,count−1,bupper,merge+1)

return (divisors, merge)

well or better in the model compared to b = 1.

The heuristic is initiated by sorting the range of numbers between 2 and bbupperc+1

according to Equation 5.7 in non-integer space. This prioritizes values of b which are

predicted to have a lower overall time. The heuristic attempts to factor the process

count by the divisor, successively reducing the factor to capture as many factors close

to bopt as possible. Effectively, the heuristic explores the numbers which may be factors

along the dotted lines shown in Figure 5.7 in a prioritized manner.

An alternative to using a sorting algorithm is to iterate the range from bbupperc+1

to 2, inclusive, and use each value as a divisor. This causes schedules to be chosen

which contain factors which are larger than bopt and therefore is less effective, but

avoids the overhead of a sorting implementation.

If the final factor is too large, determined by the bbupperc+ 1 parameter, then the

merging method discussed in Section 5.4.2 is used to reduce the process count and the

heuristic is applied to the N−1 value. A satisfactory factoring and merging combina-

tion is found when all factors are below or equal to the bbupperc+1 limit.

Figure 5.16 shows the efficiency of heuristically chosen schedules compared to the

best possible within the model explored in Chapter 4. The heuristic often chooses the

best schedule as shown by matching the best schedule line. The recursive doubling

schedules are shown as a point of comparison.

For the first 1024 process counts, the recursive doubling method is outperformed

5.4. Recursive Multiplying Algorithm 87

Process Count Heuristic Schedule Efficiency (%) Best Schedule

11 (11) 91.6 (3, 3) + 2

19 (6, 3) + 1 93.3 (4, 4) + 3

22 (11, 2) 88.1 (5, 4) + 2

23 (11, 2) + 1 78.7 (5, 4) + 3

29 (4, 7) + 1 94.1 (5, 5) + 4

33 (3, 11) 94.4 (5, 6) + 3

34 (3, 11) + 1 84.9 (6, 5) + 4

41 (4, 5, 2) + 1 95.1 (6, 6) + 5

43 (6, 7) + 1 99.5 (5, 4, 2) + 3

44 (4, 11) 95.5 (5, 4, 2) + 4

Table 5.2: Generated schedules using the heuristic under N = 50 for which the effi-

ciency is below 100%.

by the heuristically chosen schedule. The heuristic uses the upper = 12 given by Equa-

tion 5.9 and the measured machine parameters from Chapter 4. We use the average of

all the efficiencies for the first 1024 process counts for a given method as a measure

of effectiveness for the method. The recursive doubling method achieves an average

of 72.1% efficiency, while the non-sorted heuristic achieves 92.4%. This is improved

upon by the sorted heuristic approach to 97.1%.

Table 5.2 shows the process counts below N = 50 for which the heuristically gen-

erated schedules are not the best schedules. These are also represented in Figure 5.16

as the first fifty heuristic schedules. The schedules show the slight deficiency of the

heuristic, which is that schedules which are able to be factored from the process count

are always chosen before a merged schedule. This is due to the greedy, breadth first,

approach in exploring the factorization tree.

5.4.5 Large Messages

Similar to Section 4.3.2, this section will discuss larger message AllReduce opera-

tions, but will not fully explore the subject. The Equations 5.7, 5.8, 5.9, and 5.10 do

not apply directly to operations with larger message sizes, since the bandwidth and

computational terms are ignored from the original latency-bandwidth model, but they

are used as an approximation, since the bandwidth and computational terms can be

neglected for less than medium sized messages. For ARCHER, taking into account the

88 Chapter 5. Recursive Multiplying

0 200 400 600 800 1000
Process Count

0

20

40

60

80

100

E
ffi

ci
en

cy
 (%

)

Best Schedule
Recursive Doubling
Heuristic Schedule

Figure 5.16: Efficiency plot of schedules generated using the heuristic compared to

the lowest latency schedules found through exhaustive searching using the theoretical

model. The recursive doubling schedules are shown as a point of comparison. The

machine parameters measured in Chapter 4 were used to calculate the timings for all

schedules.

5.5. Experimental Results 89

results in Table 4.1, we can consider medium sized messages to be above 512 bytes.

The finding from Figure 4.8 is the ratio αp
αr

tends to zero as the message size in-

creases, as also shown in Table 4.1. If we consider Figure 5.8 and Figure 5.9, we can

see that a decreasing ratio causes the range of available b values to be reduced.

The implication of this reduction is not that the larger message sized AllReduce

operations cannot be performed with recursive multiplying, but that there are fewer

available schedules which reduce the execution time compared to recursive doubling.

When the machine parameter ratio is αp
αr

= 0, the only applicable value is b = 1, which

resolves to the recursive doubling method. In other words, recursive doubling is the

most bandwidth optimised schedule possible with recursive multiplying.

5.5 Experimental Results

5.5.1 Environment

All the experiments reported in this Section were run on the ARCHER[32] supercom-

puter, a Cray XC30 machine with 4920 compute nodes, each with two 12-core Intel

E5-2697 v2 CPUs. The interconnect is the Cray Aries in a Dragonfly topology. The

environment used was:

• PrgEnv-cray/5.2.56

• dmapp/7.0.1-1.0502.10246.8.47.ari

• cray-mpich/7.2.6

• pmi/5.0.7-1.0000.10678.155.25.ari

• ugni/6.0-1.0502.10245.9.9.ari

In all cases we used one rank per node, so that all communication is over the

network and not in shared memory on the node. All measurements are performed

using an AllReduce summation operation of a single 8 byte integer.

Applications commonly use a single MPI process per core on a node, flat mode,

which on modern machines would result in tens to hundreds of processes communi-

cating internal to a node. MPI implementations typically use shared memory transport

mechanisms without traversing the network at all for these exchanges. In addition the

MPI libraries would optimize an on-node and off-node algorithm choice for an AllRe-

duce operation: we address only the off-node component.

90 Chapter 5. Recursive Multiplying

5.5.2 AllReduce Benchmark

The benchmark to evaluate the algorithm presented in Section 5.4 is implemented us-

ing the Cray DMAPP library[22], which supports a PGAS-based approach to com-

munication. Although the algorithm presented does not explicitly require single-sided

communication, using Cray DMAPP allows the least amount of time between mes-

sage issues without a large software stack, which enables us to maximize the message

pipelining.

The memory consumption is less efficient than a point-to-point channel implemen-

tation. Both approaches are difficult to quantify: point-to-point channels consume

O(1) memory, but O(log2 N) channels exist in memory. The PGAS-based implemen-

tation utilises a memory array allocated in the data segment of the application, which

stores the addresses to write to for each peer.

The live ARCHER system was used for measurements, therefore noise is present

throughout all results. The experimental setup is to measure all results in blocks of 10

AllReduce operations. The block-size is further explored in Section 5.5.6. This is done

to limit the effects of the resolution of the timing routines and to reduce, or average,

skew effects present in the measurements. The number of blocks is the same for each

node allocation and set at 250. This is to ensure a large number of samples on different

node allocations, but work within budget constraints.

The node allocations given on the live ARCHER system are variable and dependent

on job requirements. Therefore at least forty node allocations were taken, then an

evaluation of the results was performed and more node allocations were measured if

the change in median and mean was not below 5% compared to the prior median and

mean, respectively. This allows measurement of all potential noise sources such as

hardware failures, OS noise, network noise and system load.

5.5.3 AllReduce Schedule Comparison

We compare the performance between an implementation of recursive doubling and

an appropriate schedule for a given collective size. The schedules used to represent

recursive doubling were exactly the behaviour which would be performed in MPICH.

The power-of-two cases were handled by a series of a2 stages. The non-power-of-two

stages were handled by collapse and expand stages with a series of a2 stages between

them.

The results for recursive multiplying used the schedules presented in Table 5.3. Re-

5.5. Experimental Results 91

Process Count Schedule Blocks Min RD/RM (µs) Min % Median RD/RM (µs) Median %

4 a4 10500 2.36 / 1.87 21.1 4.55 / 3.65 19.7

6 a6 10250 4.76 / 2.87 40.0 8.72 / 5.75 34.1

8 a2,a4 10750 4.37 / 3.54 18.9 9.38 / 7.23 23.0

12 a3,a4 10000 7.03 / 4.43 37.0 15.3 / 11.6 24.4

16 a4,a4 12500 6.85 / 4.98 27.3 19.1 / 13.8 27.6

24 a4,a6 13750 9.99 / 6.91 30.8 29.7 / 25.5 14.2

32 a8,a4 10000 12.9 / 8.95 30.8 30.9 / 25.2 18.4

48 a8,a6 10000 19.8 / 13.3 33.2 38.7 / 32.1 17.1

64 a8,a8 10000 24.2 / 16.5 31.9 47.4 / 39.9 15.9

96 a8,a3,a4 12500 25.3 / 20.7 18.1 51.7 / 47.6 7.96

128 a8,a4,a4 10000 25.1 / 17.9 28.9 101.0 / 88.4 12.5

Table 5.3: Percentage decrease in minimum and median execution times from recursive

doubling to recursive multiplying.

sults for both the improvement on the minimum and median are shown, with decreases

in execution time ranging from 8% to maximum improvements of 40%. The number of

blocks measured for each process count is shown. All process counts were measured

with at least 100000 AllReduce operations, due to the large variance on ARCHER. The

jobs were allocated according to machine availability, this includes jobs which were

spread across multiple chassis and groups (which included optical links).

The schedule choice was done experimentally by exhaustively measuring all sched-

ules possible for a given size and then selecting the schedule with the minimal value

of the median execution. This method of choosing which schedule to use is not rep-

resentative of what would be done for each AllReduce execution. In production, the

machine administrator would execute a benchmark which would evaluate all sched-

ules and then statically assign this for a certain size, or utilise a heuristic as outlined

previously.

The process count range was chosen to be within a reasonable experimental budget

due to the large number of samples required on a machine such as ARCHER to find

reliable results. This is not a limitation of the experimental results since in future it

is expected that each node will contain more compute capability either with multiple

GPUs or larger CPUs.

The performance results of the benchmark are presented in Figure 5.17. As can

be seen, the minimum values are significantly less than the median values, with con-

siderable spread of all measurements. Neither the minimum or median results follow

92 Chapter 5. Recursive Multiplying

4 6 8 12 16 24 32 48 64 96 128
Process Count

0

20

40

60

80

100

120

140

160

Ti
m

e
(

s)

doubling
multiplying
tds doubling
tds multiplying

Figure 5.17: Execution times for varying sizes of AllReduce using both recursive dou-

bling and recursive multiplying. The doubling and multiplying datasets were collected

from ARCHER. The tds doubling and multiplying datasets were collected from the tds

platform.

5.5. Experimental Results 93

a logarithmic curve when going to large scales. Comparing recursive doubling to the

best recursive multiplying schedule, there is a significant advantage by using message

pipelining: the median value for recursive multiplying is near the 26th percentile value

for recursive doubling. Important to note is the reduction in improvement as the scale

grows, except for N = 128, for which the gains improve.

The tds results shown in Figure 5.17 are executions of the respective schedules of

on a separate Cray XC30 machine used for testing and development of the ARCHER

supercomputer. We used this cluster to understand what impact the congestion present

on the large computer has on the execution of the algorithm, because we were able to

have exclusive access to this machine. From the results, it can be seen that congestion

is the major contribution to the execution times.

From Figure 5.17 we can see the schedules executed on both machines have sig-

nificantly different results. The minimum and the spread of the time-to-solution for

both the recursive multiplying and recursive doubling schedules are lower on the tds

platform. With the only change between the two experimental job runs being the ma-

chine on which it was executed the conclusion is that the network congestion present

on ARCHER is the source of this difference. Any self-congestion effects would still

be present in the tds experimental results.

The recursive multiplying schedules intrinsically generate more messages per stage

of the schedule compared to the recursive doubling schedule for a given process count.

Using Equation 5.12 we can calculate the number of messages sent with any schedule,

ignoring the collapse/expand and merging method. In the special case when a schedule

consists of the same b values, Equation 5.13 can be used to calculate the number of

messages.

messages(schedule,N) = ∑
f ∈ schedule

N(f −1) (5.12)

messages(f,N) = N(f −1) log f N (5.13)

For example, with the process count N = 64 using the recursive multiplying sched-

ule (4, 4, 4) would result in 576 messages being exchanged. With recursive doubling

using the schedule (2, 2, 2, 2, 2, 2) the number of messages is 384. The recursive

doubling schedule produces the least messages to exchange for all process counts, but

has higher latency as shown in Figure 5.17.

Due to the increased number of messages to be sent by the recursive multiplying

94 Chapter 5. Recursive Multiplying

method which the network needs to handle, congestion increases for the entire system.

This would influence other jobs running nearby the job which is using the recursive

multiplying method by decreasing the overall available bandwidth. More modern sys-

tems which have higher bisection bandwidth and better routing algorithms would be

able to handle this increased demand in bandwidth better than ARCHER.

5.5.4 Message Size Scalability

The recursive multiplying algorithm was designed to improve the latency of small

sized messages. To test how capable the algorithm is of accepting larger messages, we

performed a message size sweep on both 8 and 64 process count executions. A subset

of all possible schedules was chosen to be evaluated, which included the recursive

doubling schedule. The schedules used are shown in the legends of Figure 5.18 and

Figure 5.19 respectively. The message count is the count given if an MPI function call

were executed. All messages are multiples of 8 bytes, so, for example, message count

8 corresponds to 64 bytes.

Figure 5.18 shows an expected behaviour, with a latency bound region and then a

switch into a bandwidth bound region at a message count of approximately 24 to 32.

The (a2,a4) schedule performs surprisingly well, with the minimum execution time

being the best one for the entire sweep and the median being approximately equivalent

to recursive doubling at higher message counts.

Figure 5.19 shows the message size sweep results for N = 64 executions. Due

to running this benchmark later compared to previous results, the environment of the

ARCHER supercomputer (both software versions and usage) has changed enough to

see a strong difference in execution times. However, we are comparing only the data

shown on the plot. As seen at the low end of the message count axis, recursive dou-

bling is likely the best option, but as the message count increases the performance of

recursive doubling is significantly worse than at the low end. At 512 message count

(4096B) the recursive multiplying schedules clearly outperform the recursive doubling

schedule. We cannot explain this result, since recursive multiplying was designed to

perform well with small messages. We suspect that the adaptive network allows more

bandwidth to be used, since the algorithm is sending many more messages for each

stage and therefore puts more network load on surrounding paths.

5.5. Experimental Results 95

1 2 4 6 8 12 16 24 32 48 64 96 128 192 256 384 512
Message Count

0

20

40

60

80

100

Ti
m

e
(

s)

a2,a2,a2,
a2,a4,
a8,

Figure 5.18: Executions times for varying message sizes using eight processes with all

possible schedules for N = 8.

1 2 4 6 8 12 16 24 32 48 64 96 128 192 256 384 512
Message Count

0

200

400

600

800

1000

Ti
m

e
(

s)

a2,a2,a2,a2,a2,a2,
a4,a4,a4,
a8,a8,

Figure 5.19: Executions times for varying message sizes using 64 processes with a

subset of schedules chosen.

96 Chapter 5. Recursive Multiplying

4 6 8 12 16 24 32 48 64 96
Process Count

1

0

1

2

3

4

5

R
el

at
iv

e
D

iff
er

en
ce

 to
 M

od
el

minimum
median
tds minimum

Figure 5.20: Relative difference of experimental minimum and median to prediction from

pipelining latency-bandwidth model. The y-axis value is calculated using Equation 5.14.

5.5.5 AllReduce Model Comparison

The pipelining latency-bandwidth model presented in Chapter 4 can be used to predict

the time required for an AllReduce operation. To measure the accuracy of this ap-

proach, we used the prediction of the model compared to the experimental results given

in Section 5.5.3. Using the values for αp and αr evaluated previously for the median

and minimum experimental distributions, we can use the model to predict the mini-

mum and median values for AllReduce operations. We use the median as being more

representative of the observed results to understand the pipelining latency-bandwidth

model’s predictive ability.

Figure 5.20 shows the relative difference, calculated with Equation 5.14, of the

experimental results to the predictions by the model. As can be seen, the minimum

values follow the model well until 24 nodes is reached. An upwards trend is clear from

there onward for both the minimum and median values. The median values show a

5.5. Experimental Results 97

consistent increase in the difference across all process counts.

relative difference =
experiment−model

model
(5.14)

The model evaluation was performed using Equation 5.7 using the schedule which

gave the shortest execution times in the experimental trials in Section 5.5.3. The ma-

chine parameters for the minimum model are taken from Section 4.3, while the median

model parameters were found using a similar regression fit as Figure 4.7, but the me-

dian values instead of minimum values.

The difference between the theoretical and experimental values is likely due to

skew of process arrival times. The process arrival time is the global entry time of

individual processes to a single collective operation. In a theoretical context this is

typically considered globally uniform, but in practice process start up times, system

noise, network noise and various other factors can affect the skewing of progress within

separate processes and therefore they arrive at the entry point at different global times.

The skew increases as the size of the AllReduce increases, since it is more likely that

any single process is delayed.

To improve the error observed in Figure 5.20 a more accurate model is required.

From the relative errors shown the pipelining latency-bandwidth model clearly does

not capture all underlying effects present in reality. The minimum values are mod-

elled well up to approximately 16 nodes, but also diverge afterwards. One aspect not

modelled, congestion, could be excluded in a tds environment, in which only a single

job is run at any given time. However, modelling congestion would add significant

complexity to the pipelining latency-bandwidth model.

To support the assertion that the pipelining latency-bandwidth model accurately

models the interaction without congestion, Figure 5.20 includes the same minimal fit

relative error using the experimental data from the tds environment. The tds minimum

uses the same minimum fit machine parameters as the minimum which are shown in

Figure 4.7. The assumption is that the minimal values derived from the experimental

put results is the same on both ARCHER and the tds since they are the same hardware

and by taking the minimal values any noise from congestion is filtered out.

The distinction between self-congestion and network congestion is also an impor-

tant one to make. Self-congestion can never be addressed since it is an artefact from

the recursive multiplying method itself, while network congestion can be avoided in

a tds environment in which no other jobs are running. The relative error shown in

Figure 5.20 shown as tds minimum contains effects of self-congestion, but not of net-

98 Chapter 5. Recursive Multiplying

work congestion. When comparing the minimum and tds minimum we can see that

the rising relative error is not present for the tds minimum. The conclusion is that the

network congestion is primarily what is causing the relative error for the ARCHER

environment.

5.5.6 Block-size Systematic Error Analysis

The block size in Section 5.5.2 was chosen such that the noise encountered from the

measurements did not increase the maximum value, but also to mitigate effects of the

finite timer resolution and the timing call overhead itself. Figure 5.21 shows resulting

distributions of a 64 process AllReduce using the best schedule with varying number

of samples per block of measurements. The red lines show the median (upper) and

minimum (lower) of the block size of ten for easier comparison.

As seen in Figure 5.21 the minimums of all measurement block sizes are con-

sistent. Therefore we have confidence the minimums were captured with the results

presented in Figure 5.17. The medians show a slight upward trend correlated with

block size. This causes the median calculated using a block size of ten to overestimate

by approximately ten microseconds compared to the median using a block size of one.

This overestimation is present for both the recursive doubling and the best recursive

multiplying schedules.

5.5.7 Experimental-Model Correlation

As seen in Figure 5.20, the prediction using the model is not reliable for either the min-

imum or the median for the best schedule presented for the process counts. Using the

model for prediction of the best schedule to use is not clear from the analysis. We plot

all evaluated factored schedules in Figure 5.22 and Figure 5.23 using the experimental

runtime value and the model prediction for that schedule. The number of processes is

shown via the color of the points.

As shown in Figure 5.22 the schedule runtimes are not correctly predicted, but the

clustering indicates that schedules are correctly identified as good or bad choices for a

certain AllReduce size. Figure 5.23 shows that the median runtime is also incorrectly

predicted, but a good schedule would also be chosen.

These results show that neither the minimum nor the median are predicted well

by the theoretical model, but that a good schedule would be chosen regardless due

to the clustering. This ill fitting is likely due to the effect that congestion has on the

5.5. Experimental Results 99

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Blocksize

0

50

100

150

200

250

300

Ti
m

e
(µ

s)

Figure 5.21: Distributions using different block sizes for the (a8, a8) schedule with 64

processes. The red lines show the median and minimum of the block size 10 distribution

for comparison.

100 Chapter 5. Recursive Multiplying

experimental results, which, as discussed in Section 5.5.3, is a large factor in the per-

formance of the algorithms. The model does not attempt to include congestion effects

and therefore fails to predict correct times. The model does approximately match the

results shown in Figure 5.17 for the tds system.

5.5.8 Cray MPI Comparison

A direct comparison to the MPICH implementation of AllReduce is not representative

due to the lack of an MPI library above our benchmark, but it is included to illustrate

the benefits. Figure 5.24 shows the MPICH result alongside the recursive doubling and

best recursive multiplying schedule. As shown, the minimums of the best schedule

outperform both MPICH and the recursive doubling schedule as expected. This is true

for the median values also.

From Figure 5.24 we can conclude that the Cray MPI implementation is indeed

using the recursive doubling algorithm discussed in Section 5.2.2.2. In addition, we

can see that the library overhead is negligible compared to the cost of the algorithm

and congestion since the mpich and rd results are mostly identical. Finally, we can say

that the recursive multiplying algorithm definitely outperforms the MPI AllReduce

implementation even if the library overhead is included.

5.6 Simulator Exploration

5.6.1 Factored Schedules

The recursive multiplying algorithm was previously explored both theoretically and

experimentally. However, both failed to give a good representation of the actual exe-

cution. The theoretical diagram compresses the overlapping messages to a stage which

causes skewing to be hidden, while the experimental measurements contain too much

noise.

The examples shown in the following sections use a simulated pipelining latency-

bandwidth model instance with the latency set to 500 nanoseconds, the pipeline latency

to 100 nanoseconds and the bandwidth term set to 0.4 nanoseconds per byte. The com-

pute tasks are set to take ten nanoseconds. The values for these parameters were chosen

to illustrate interesting higher ratio effects, but also to be reasonably close to reality.

Approximately a doubling of the maximal ratio from Table 4.1 was chosen. Since the

local computation is a minor cost, it is not important. The algorithms are represented

5.6. Simulator Exploration 101

0 10 20 30 40 50 60
Model Predictions (µs)

0

10

20

30

40

50

60

Ex
pe

rim
en

ta
l M

in
im

um
s

(µ
s)

10

20

30

40

50

60

70

80

90

Pr
oc

es
s

C
ou

nt

Figure 5.22: Correlation plot for experimental and model results using minimums.

0 10 20 30 40 50 60
Model Predictions (µs)

0

10

20

30

40

50

60

Ex
pe

rim
en

ta
l M

ed
ia

ns
 (µ

s)

10

20

30

40

50

60

70

80

90

Pr
oc

es
s

C
ou

nt

Figure 5.23: Correlation plot for experimental and model results using medians.

102 Chapter 5. Recursive Multiplying

4 6 8 12 16 24 32
Process Count

0

10

20

30

40

50

60

70

80

Ti
m

e
(

s)

mpich
rd
rm

Figure 5.24: Execution times comparing directly the MPICH MPI AllReduce implemen-

tation, the recursive doubling schedule as implemented in our benchmark and the best

recursive multiplying schedule found.

5.6. Simulator Exploration 103

S0 S1 S2 S3 S4 S5

P0

P0

P1

P1

P2

P2

P3

P3

P4

P4

P5

P5

C0 C1 C2 C3 C4 C5

C0 C1 C2 C3 C4 C5

P0 P1 P2 P3 P4 P5

Figure 5.25: Program diagram of 6-way AllReduce using schedule (a3,a2). Start tasks

are labelled with S, Put tasks are labelled with P and Compute tasks are labelled with

C.

using the DAG program representation discussed in Chapter 4: an example is given in

Figure 5.25 for a six-wide AllReduce using a recursive multiplying implementation.

Figure 5.26 shows execution of the recursive doubling schedule. As seen, overlap-

ping is not occurring in this case since each sending process is waiting for the message

to arrive on the receiving process. In comparison, Figure 5.27 shows the extreme case

of all messages pipelining within a single stage. As shown previously, the message

pipelining causes the multicast stage to be executed significantly faster.

5.6.2 Splitting & Merging

The recursive multiplying algorithm can evaluate AllReduce operations across many

process counts. However, similarly to recursive doubling, some process counts are only

possible inefficiently. For recursive multiplying, these are all prime numbers above a

threshold determined by the overlap ratio discussed in Section 5.4.1.

We refer to the generalised collapse and expand method used in MPICH, and pre-

sented in Section 5.2.2.2, as a splitting method. Figure 5.28 shows the splitting method

104 Chapter 5. Recursive Multiplying

nanoseconds

0 500 1000 1500 2000

Figure 5.26: Simulated execution of the (a2, a2, a2) schedule AllReduce across eight

processes. This schedule is the same as the recursive doubling algorithm.

nanoseconds

0 500 1000 1500 2000

Figure 5.27: Simulated execution of the a8 schedule AllReduce operation across eight

processes.

5.6. Simulator Exploration 105

nanoseconds

0 500 1000 1500 2000 2500

Figure 5.28: Simulator timeline of the splitting schedule (c6m2, a2, a2, e6m2) across

seven processes.

applied to a N = 7 AllReduce. The interesting feature seen with the simulator is the

skew which is introduced in an ideal execution of the algorithm. The collapsing pro-

cesses send their data to their respective peers, as required, while the two internal peers

are already executing stage two of the algorithm. This causes a skewed arrival at the

second stage and subsequent stages. As seen, the finishing times for each process vary

by approximately 700 nanoseconds. The specific skew introduced is dependent on the

schedule chosen.

The merging method introduced in Section 5.4.2 is shown in Figures 5.29 and

Figure 5.30. As seen in the figures, the runtime is decreased by approximately one

microsecond (41.8%) compared to the recursive doubling schedule in Figure 5.28.

Similar to the recursive doubling, skew is introduced. However, the skew is within

100 nanoseconds for the first schedule and 200 nanoseconds for the second schedule.

5.6.3 3-2 & 2-1 Elimination

Using the simulator, we are able to simulate not only the recursive multiplying algo-

rithm, but also the 3-2 & 2-1 elimination method discussed by Rabenseifner and Träff

[95]. Figure 5.31 shows an AllReduce operation executed using a 3-2 elimination.

The simulator shows how the 3-2 elimination can overlap with in time with the pair-

wise exchange and thereby allow for the dlog2 Ne bound. An N = 7 AllReduce is not

a good test case for the elimination method, because it cannot be applied with any

decomposition and therefore is nearly equivalent in runtime to recursive doubling in

Figure 5.28.

106 Chapter 5. Recursive Multiplying

nanoseconds

0 500 1000 1500 2000

Figure 5.29: Simulator timeline of the merging schedule (m1g2a3, n1g3a2) across

seven processes.

nanoseconds

0 500 1000 1500 2000

Figure 5.30: Simulator timeline of the merging schedule (m3g2a2, n3g2a2) across

seven processes.

5.6. Simulator Exploration 107

nanoseconds

0 500 1000 1500 2000

Figure 5.31: Simulator timeline of a non-overlapping elimination protocol with six pro-

cesses.

For large non-power of two process counts the overall complexity bound of the

elimination method is O(dlog2 Ne+ 1) for the latency optimized case. This is con-

structed with either the overlapping or non-overlapping method. The overlapping

method uses 3-2 eliminations scheduled throughout the stages to achieve the bound

in combination with the recursive doubling exchanges. The non-overlapping method

eliminates all processes above the nearest power of two in the first stage using 3-2 and

2-1 eliminations (similar to the collapse/expand method), after which recursive dou-

bling is applied. The larger the process count the closer the schedule acts to a normal

recursive doubling schedule.

Chapter 6

Two-sided MPI Receive Queue

Minimising memory usage by MPI libraries, especially at scale, is of increasing con-

cern because the memory per core for exascale supercomputers is predicted to be lower

than for current petascale machines. We address the memory scalability of the soft-

ware receive queue for point-to-point MPI communication by implementing a lockless,

fixed-size, double-buffered queue capable of handling a single-consumer multiple-

producer (scmp) usage pattern. Our new queue achieves constant memory usage for

each MPI process, irrespective of the total number of MPI processes. We demonstrate

improved memory usage for job sizes above 55 MPI processes, relative to the queue

implementations from Cray MPI (a derivative of MPICH). Whilst the point-to-point

latency using the new queue is larger, due to the shared state which requires synchro-

nization, we assert that this will be an acceptable design trade-off at extreme scale. The

scalability improvement gained by using the scmp algorithm is 10× compared to the

previous lock-based implementation.

109

110 Chapter 6. Two-sided MPI Receive Queue

6.1 Introduction

High performance computing machines are growing larger and application sizes are

increasing. To allow for this growth, the algorithms in all layers of the software stack

must adjust to this new challenge. The Message Passing Interface(MPI)[85] contains

point-to-point communication functionality that allows application developers to com-

municate between any pair of processes within a single communicator. Complex pat-

terns of communication are not always easily described or efficiently implemented

using the MPI collective operations, therefore point-to-point is provided as a flexible

tool to permit any arbitrary communication pattern.

The definition of point-to-point operations in MPI requires temporary buffering of

message headers that represent send operations until they are correctly matched with

receive operations: this is done in matching queues. In addition to these, temporary

space is required to receive the messages from the remote processes. This buffering is

commonly implemented in modern MPI libraries using replicated queues, i.e. a set of

queues at each process with one queue per communicating peer.

Historically, this design choice has been acceptable due to the abundance of avail-

able memory per process. However, with system and job sizes increasing towards

exascale supercomputers and beyond, the memory per core is predicted to decrease

significantly, perhaps by orders of magnitude[29, 43]. The memory that is currently

used for queue replication will be required by user applications, instead of the commu-

nications library.

The EMPI4Re[33] MPI library is a research vehicle for investigating and prototyp-

ing new MPI semantics and implementation ideas. The point-to-point implementation

uses a single message buffer queue per process, which aims to achieve a constant

memory footprint implementation of MPI. However, this single queue only supports

single-consumer single-producer usage and therefore does not scale well, due to con-

gestion and synchronisation required by a many-to-one communication pattern. Our

work improves the scalability without losing the constant memory footprint, which

supports operating in a memory-limited environment such as predicted for exascale

supercomputers.

To remedy the scalability issues present in the EMPI4Re library, we introduce

a new queue mechanism based on lockless queues using remote atomic operations

present in the Cray Aries NIC[35]. This allows for a message insertion protocol with

minimal congestion effects. We compare the performance and memory usage to the

6.2. Prior Work 111

Cray MPI implementation, which is the default installed MPI library on Cray plat-

forms.

6.1.1 Contributions

• A shared-memory lockless single-consumer multi-producer queue, intended for

remote queue insertion, is introduced.

• The SCMP queue achieves lower latency and has much better congestion capa-

bilities compared to locked queues for a memory-limited setting.

6.1.2 Overview

Section 6.2 presents the queue methods used originally in EMPI4Re and Cray MPI.

Section 6.3 introduces the lockless single-consumer multiple-producer queue algo-

rithm now used in EMPI4Re. Section 6.4 presents experimental evidence for the via-

bility and performance of the new algorithm.

6.2 Prior Work

6.2.1 Cray MPI

The Cray MPI library is a derivative of the MPICH[47] implementation of the MPI

standard. The MPICH library is widely used as the base for vendor implementations

of MPI. The Netmod interface[91, 92] allows high performance to be achieved on

different network platforms without rewriting the entire library.

The Cray MPI implementation contains two queue implementations that are used

with small messages for eager message and protocol message transmission. These are

the smsg queue and the msgq queue, which can be chosen by using an environment

variable. Both these queues operate in a SCSP – single-consumer single-producer –

fashion. At the time of writing, there are no multi-producer queues in Cray MPI. The

queue memory can be allocated either at startup, or dynamically as processes initially

communicate.

The smsg queue aims at achieving minimal latency between two processes. How-

ever, it requires a mailbox per remote process on every process. The queue is likely

implemented as a circular buffer using two integer fields as pointers into the mailbox

buffer, stored on both the consumer and producer processes. To insert an eager message

112 Chapter 6. Two-sided MPI Receive Queue

without participation from the consumer process only requires two put operations; one

containing both the message header and the message data, and another to update the

value of the tail pointer at the remote process. This operation can be combined into a

single network operation using a put and flag message.

Producer Consumer

0 0 0 0msg put

3 0 0 0announce

3 0

3 0 3 3free

3 3

Figure 6.1: Illustration of the smsg queue mechanism present in Cray MPI.

The smsg queue protocol is illustrated in Figure 6.1. Given a message size below

the eager message threshold, this algorithm is executed by the producer. The producer

can (independently of the consumer) determine if enough space is left in the queue for

the message, due to the mirrored local counters, as shown in Figure 6.1.

When the consumer process removes messages from the queue on the remote side,

it thereby releases memory for more messages to be sent. The consumer is responsible

for updating the head pointer, both locally and in the mirrored counters at the producer

process. This allows for latency hiding and therefore is not on the critical path of the

message insert. Latency hiding could also be achieved by issuing a non-blocking get

operation at the beginning of the protocol from the producer, to fetch the tail counter

value from the consumer.

The msgq queue mechanism reduces the number of queues by sharing each one

between all processes on a single node. This reduces the memory overhead of msgq,

relative to smsg, but slightly increases communication latency. A single process per

node is assigned as the ‘leader’ process. The leader process executes all network com-

munications with the receiving process, using the same circular buffer algorithm as is

used with the smsg queue mechanism. A local sharing mechanism, using shared mem-

ory operations within each node, allows access to the message queues by other local

MPI processes.

6.2. Prior Work 113

Producer Consumer

acquire

lo
ck

ed

msg put

put unlock

Figure 6.2: Illustration of lock-based queue mechanism communications used in

EMPI4Re.

6.2.2 EMPI4Re

The EMPI4Re MPI implementation is largely based on the T3D library[16] designed

for MPI 1.0. The library is entirely based on remote direct memory access opera-

tions, which allow processes to modify each others’ memory. The goal of EMPI4Re

is to permit research and rapid prototyping of novel MPI concepts, semantics, and

implementation choices. Although this work leveraged EMPI4Re for benchmark per-

formance testing, the new scmp queue implementation can be applied to other MPI

libraries.

There are several protocols for point-to-point functionality in the EMPI4Re library.

The ‘T1’ protocol is an eager message protocol aimed at transmitting a small message

as soon as possible. It places a single protocol packet, containing both the message

header and the message data, into the protocol queue at a remote process.

The ‘Tn’ protocol is an eager message protocol for larger messages. It also uses

the protocol queue for both message header and message data, but it transfers several

protocol packets at once. The first of these protocol packets contains the message

header: the others contain the message data.

The ‘RTA’ and ‘RAT’ protocols are rendezvous message protocols aimed at achiev-

ing maximum bandwidth for very large messages, They require a full network round-

trip and multiple protocol packets, which use the protocol queue, to negotiate the trans-

fer of message data directly between the user’s send and receive buffers.

The protocol queue is a lock-based double-buffered queue with fixed-size slots.

This supports the many-to-one communication required for MPI applications. Fig-

114 Chapter 6. Two-sided MPI Receive Queue

Algorithm 8 Producer-side lock-based algorithm.
. acquire lock

1: repeat
2: index← afor lock

3: until lock acquired

. transfer messages and unlock

4: put flag count messages to Q and unlock

Q C C C C C C C C C C C C C C C

Figure 6.3: Illustration of lock encoding using individual bits for the queue and offset

into the queue.

ure 6.2 shows a ‘T1’ protocol message insertion from a producer process to a consumer

process.

The first part of the algorithm is to acquire a remote lock using a remote atomic

operation. The local process can then safely put a message into the queue at the remote

process. The remote queue is then unlocked with a put to the lock memory location on

the remote process. Algorithm 8 shows the pseudocode used by the sending process

for locking the remote queue. Algorithm 9 shows the pseudocode used by the receiving

process to empty the protocol queue and progress the application.

Algorithm 9 Consumer-side lock-based algorithm.
. test for work

1: if Q is non-empty then
. acquire lock

2: repeat
3: index← afor lock

4: until lock acquired

. release other queue

5: put locked swap queue

. process received messages

6: process(Q)

The pseudocode presented in Algorithm 8 and Algorithm 9 uses a bitwise encod-

ing to transmit both the state of the lock and the offset into the queue with a single

network operation. Figure 6.3 shows the bit pattern of the lock variable. Using an afor

6.3. SCMP Algorithm 115

instruction – an atomic fetch and bitwise OR – allows a lock to be set if it is unset on

the most significant bit.

If the lock is already acquired by another process, the atomic OR operation will

not change the state of the lock. The process trying to insert a message will need to

retry until the lock is acquired. When the lock is acquired and the state is returned to

the sending process, the offset can be calculated by using the appropriate mask with a

bitwise and instruction operation.

6.2.3 Related Work

The software queues implemented in Cray MPI and EMPI4Re are well understood

queues for shared memory in a multi-threaded environment. Shared-memory queues

have been a subject of research for a long time [44, 73, 81, 115]. The usage of these

queues in a network context is the differentiating factor for our work, since the network

communication is orders of magnitude longer than any shared-memory transaction.

The avoidance of network communications in addition to congestion effects are vital

for a good implementation in such situations.

An alternative to software receive queues is to use hardware receive queues. The

Cray T3E implemented a queue insert operation in the NIC [10], which allowed atomic

insertion of messages to the remote process instead of a message protocol requiring a

form of locking. A modern usage of more capable hardware is used in Portals 4 [8]

to directly insert messages into the matching queues, instead of using software receive

queues that are then processed into an appropriate data structure.

6.3 SCMP Algorithm

The double-buffered lock-based queue, discussed in Section 6.2.2, has a congestion

problem at the receiving side. The goal of the new queue mechanism is to allow for

a large, many-to-one, insert pattern at the receiver with minimal network communi-

cation. This enables the implementation of single-threaded MPI with a single queue

buffer, instead of duplicating the queue buffer for each remote process, and thereby

allows a constant memory implementation.

The unique characteristic of our method is the use of the afax instruction, available

on the Cray Aries, used to construct a minimally conflicting single-consumer many-

producer queue. This queue mechanism can only be used on networks which support

116 Chapter 6. Two-sided MPI Receive Queue

Producer Consumer
R S F
0 0 0

reserve

3 0 0

ov
er

flo
w msg put

finalize 3 3 0
or

3 0 3

re
tr

y

Figure 6.4: Illustration of the scmp queue mechanism implemented in EMPI4Re.

the afax instruction of which there are no other examples as we know. Libfabric[48]

supports multiple interesting atomic network operations, but the afax instruction in-

struction is not among them. It may be possible to construct a similar locking be-

haviour by use of the mswap operation.

The main concern of the new queue algorithm is a reduction in the impact of the

congestion that is present in a many-to-one pattern. A reduction in the potential for

congestion can be achieved by reducing the amount of time during which multiple

remote processes can interfere with each other. The queue data structure will nonethe-

less require shared state to be retrieved before an insert can be executed. This choice is

made in respect to the memory to latency trade-off. The double-buffered structure has

been carried over, since this reduces the contention between consumer and producers.

In the existing rlock queue algorithm in EMPI4Re, the entire remote queue is

locked during each insertion operation by a remote process. In the new scmp queue

algorithm, only the section of the queue required by the remote process is locked. This

permits greater concurrency because multiple remote processes can safely issue put in-

structions to non-overlapping sections of the queue. Ensuring that attempts to reserve a

subset of the queue are always successful guarantees that remote peers will only busy-

wait over the network if an overflow occurs. In the scmp queue algorithm, a failure to

lock a requested section of the queue can only happen if the queue is temporarily out

of space.

Figure 6.4 shows the communication and control flow executed by a producer to

a consumer process. The get operation, shown as reserve in the diagram, is the only

network operation that can cause congestion with other processes in the system. This

6.3. SCMP Algorithm 117

Q R R R R R R R R R R R

Figure 6.5: Illustration of R counter encoding using individual bits for the queue and

offset into the queue.

operation retrieves the counter state from the consumer. If the counters indicate that an

overflow would occur due to its insert operation, then the producer raises a fatal error.

Otherwise, the producer inserts its messages into the reserved section of the remote

queue (shown as msg put in the diagram). Once the transfer is complete, the producer

informs the consumer that the operation is complete (shown as finalize in the diagram).

If the counters retrieved from the consumer indicate that an overflow would occur,

then the data transfer is skipped but the finalize stage must be executed to invalidate the

reservation and allow the consumer to process the queue. The producer can retry, or

choose a different way of handling the exception. The overflow exception will occur

when the message from the sending process is too large for the remaining space in the

queue.

The R counter is an encoded integer that indicates which of the two parts of the

double-buffered queue to use and the position within the queue. Figure 6.5 shows

an example of the encoding using a 16-bit integer. The leftmost bit of the R counter

determines which half of the queue is currently being used for insertions. A number

of spare bits are left empty and the offset value is stored in the rightmost bits. The S

counter and F counter are the successful and failed slot counters respectively. These

are used by producers to indicate whether their reservations were executed successfully

or failed.

The spare bits allow for an overflow of the offset value without corrupting the queue

bit. The number of spare bits limits the total size of failing reservation requests. When

a producer process requests more space than is currently available, then the offset

value will overflow into the spare bits. Further requests, occurring before that process

releases its failed reservation, will cause the offset value to overflow even more. If

the total size of these failing reservations requests becomes too big, then the leftmost

bit will be corrupted. This is a fatal error for this queuing algorithm. Using a 64-bit

integer allows for a sufficiently large total size of failing reservations.

Using a 64-bit integer, the leftmost bit will be required for the queue index, then a

variable number of spare bits can be allocated while the remaining bits are used as the

offset into the queue. If the queue length required is 106 slots, then only 20 bits are

118 Chapter 6. Two-sided MPI Receive Queue

Algorithm 10 Producer-side scmp queue algorithm.
. reserve remote queue space

1: announce state← afadd count

. select pointers

2: Q, R, S, F← select(announce state)

. check for overflow

3: if R + count > queue size then
. finalize failed transfer

4: F← aadd count

5: else . transfer messages

6: put count messages to Q

. finalize successful transfer

7: S← aadd count

required for the position value. This leaves 43 spare bits which would be practically

impossible to overflow.

Algorithm 10 shows pseudocode for the producer-side of the scmp queue imple-

mentation, shown in Figure 6.4. The afadd instruction is an atomic fetching add,

which allows a one-way reservation to be added to the offset bits within the encoded

R counter. This locks a section of the queue starting at the original offset and of the

right length to insert all the messages from the producer. If the end of the reserved

section is beyond the size of the queue, the queue will overflow with the additional

messages, so the reservation is released immediately, via an aadd instruction operation

using the F counter. Otherwise, the producer writes data into the reserved section of

the remote queue and releases the reservation via an aadd instruction operation using

the S counter.

Algorithm 11 shows pseudocode for the consumer-side of the scmp queue imple-

mentation. The afax instruction instruction swaps the double-buffered queue, by tog-

gling the leftmost bit and setting the rest of the counter to zero. The atomic instruction

also returns the R counter state in a single atomic operation. This instruction is present

on the Cray Aries NIC. Once the correct counters are selected, the consumer waits

until all remote peers have released their reservations. Next, the successfully trans-

ferred messages are removed from the queue and processed according the normal MPI

matching rules. When a slot is emptied, the message header is zeroed. Finally, the S

counter and F counter are reset to zero.

6.4. Experiments 119

Algorithm 11 Consumer-side scmp queue algorithm.
. fetch current state and swap queues

1: announce state← afax queue mask

. select pointers

2: Q, R, S, F← select(announce state)

. wait for remote peers

3: while F+S 6= R do wait

. process received messages

4: process(Q, S)

. reset counters

5: S, F put 0

The afax instruction is a requirement for the consumer-side, because the queue

cannot be locked in a traditional way. The afax instruction is a combined atomic AND

and XOR operation, which we use to zero the offset encoded in the R counter and to

flip the queue bit.

6.4 Experiments

6.4.1 Environment

All experiments presented in this section were run on ARCHER [32], a Cray XC30

machine with 4920 compute nodes, each with two 12-core Intel E5-2697v2 CPUs.

The interconnect is the Cray Aries in a Dragonfly topology. The environment in which

the experiments were executed is, except where mentioned:

• PrgEnv-cray/5.2.56

• craype/2.4.2

• cray-mpich/7.2.6

• dmapp/7.0.1-1.0502.10246.8.47.ari

• pmi/5.0.7-1.0000.10678.155.25.ari

• ugni/6.0-1.0502.10245.9.9.ari

120 Chapter 6. Two-sided MPI Receive Queue

8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

Message Size (B)

0

5

10

15

20

25

Ti
m

e
(

s)
Cray_smsg
Cray_msgq
EMPI4Re_rlock
EMPI4Re_scmp

Figure 6.6: Latency distribution with message size collected using the smsg, msgq and

scmp queue implementations. All message sizes are powers of two, boxplots are offset

for clarity.

The default queue settings were used in all cases for the Cray MPI tests. For the

scmp and rlock algorithms, the queue length was 1024 for each half of the double

buffered queue.

6.4.2 Latency

The latency properties of the queue algorithms are an important aspect of the costs to

consider when determining which to use. Figure 6.6 shows the latencies measured on

ARCHER. The ping pong benchmark used consisted of ten ping pongs in a block, over

which a mean was calculated to reduce the impact of high frequency noise. The ping

pong benchmark was implemented using the MPI Send function with the default envi-

ronment flags for thresholds. The number of samples per queue algorithm was 143000;

this number is large enough to ensure a stable distribution with a live environment.

Figure 6.6 shows the behaviour of all queue algorithms with respect to message

size. The eager message limit for Cray MPI is set at 8KB, therefore the last message

size shown in Figure 6.6 is using a rendezvous message path. Due to a limitation

6.4. Experiments 121

within uGNI [91, 92], msgq uses a different message transfer region for message sizes

at and above 128 bytes. This also causes a rendezvous path to be used for message

transmission, which can be clearly seen as a jump from, approximately, 3 µs to 9 µs.

As can be seen, the scmp protocol length has caused the latency to be about 3.5× the

latency of smsg at 8B.

6.4.3 Memory Scaling

The scmp algorithm was designed to use only a fixed-size buffer for receiving mes-

sages, while the smsg and msgq algorithms both use queue replication. The benchmark

used to measure the scaling behaviour of memory usage was a naive all-to-all commu-

nication pattern. The measurement of memory usage was done through the POSIX

standard getrusage function. To calculate the difference in memory required for the

communication pattern, the memory was read before and after the communications

phase. However, this does not allow us to separate the matching queue memory from

the receive queue memory.

The use of an all-to-all communication pattern is the best case for our scmp queue

mechanism compared to the smsg and msgq mechanisms, which are optimized for

lower number of communication peers. For communication graphs which contain

nodes with lower degrees it may be optimal to use either of the previously implemented

methods. In other words, the scmp method provides greater choice to library imple-

mentors to provide a balance between memory consumption, latency, and bandwidth.

Combining the scmp queue mechanism with hashed receive queues[100] allows for

even more flexibility. The optimization between all queue mechanisms is dependent

on the specific needs of applications and the hardware provided.

Figure 6.7 shows the memory usage for all queue algorithms discussed. The smsg

algorithm clearly uses the most memory: second is the msgq algorithm, which uses

significantly less. The discontinuity seen for both the smsg and msgq are likely due

to a block allocation of more mailboxes for receiving or for the matching queues.

However, this cannot be verified since it is closed source. With scmp and rlock these

are allocations of additional matching queue items. Similarly to smsg queue, the msgq

queue allocates mailboxes in blocks. However, due to the lower rate of usage (per node

rather per process), the allocation of a further block is delayed - until 1024 processes

in this plot.

The rlock and scmp algorithms used in EMPI4Re are the most memory efficient

122 Chapter 6. Two-sided MPI Receive Queue

0 200 400 600 800 1000 1200 1400 1600
Number of Communicating Neighbour Processes

0

1

2

3

4

5

6
M

em
or

y
U

sa
ge

 D
iff

er
en

ce
 fo

r C
om

m
s

Ph
as

e
(M

B)
Cray_smsg
Cray_msgq
EMPI4Re_scmp
EMPI4Re_rlock

Figure 6.7: Maximum virtual RAM usage with all-to-all communication pattern.

algorithms tested, since they do not allocate additional memory for receive queues.

The increase in memory usage for the rlock and scmp algorithms is due to increasing

the size of the PtEvNotice pool, which permits a longer matching list. The difference

in neighbour count at which the jump happens is due to the difference in contention

between the scmp and rlock queue implementations directly affecting the achievable

message matching rate, and therefore the high-water mark match list length required.

Preallocating a greater number of PtEvNotice structures during initialisation removes

the jump, by increasing memory usage for the tests with fewer communicating neigh-

bours.

An analytic plot of memory consumption per process for each queue algorithm is

shown in Figure 6.8. These results are found using the predicted memory consumption

given in Pritchard et al.[91], but they do not account for block allocation of the queues

as implemented in Cray MPI. As seen, the modelled memory usage roughly matches

the experimental results given in Figure 6.7, but without accounting for the matching

queue memory or other preallocated buffers.

For ARCHER, these results show a benefit in memory consumption after 56 pro-

cesses compared to the smsg algorithm and 73 processes compared to the msgq algo-

rithm. These process counts are calculated using Equation 6.1 and Equation 6.2 with

6.4. Experiments 123

0 200 400 600 800 1000 1200 1400 1600
Number of Communicating Neighbour Processes

0

1

2

3

4

5

6

7

M
em

or
y

U
sa

ge
 p

er
 p

ro
ce

ss
 (M

B
)

EMPI4Re_scmp
Cray_smsg
Cray_msgq

Figure 6.8: Analytically modelled total memory usage per process for an all-to-all com-

munication pattern with various queue algorithms. We assume 24 processes per com-

munication node.

the default values for ARCHER. The rlock algorithm is not shown since it is equivalent

in memory consumption to the scmp algorithm. The msgq measurements were com-

pleted with the cray-mpich/7.5.2 module compared to the default environment, due to

a software bug.

thresholdSMSG =
buffer sizeSCMP

usage per processSMSG
(6.1)

thresholdMSGQ =

⌊
buffer sizeSCMP

usage per nodeMSGQ

⌋
×processes per node+1 (6.2)

Equation 6.1 and Equation 6.2 can be used to calculate the threshold process count

after which memory is saved by using the scmp mechanism. The tunable parameters

are not restricted to any specific system or network. These equations only optimize

for memory usage and not for overall performance. Overall performance would be a

function of memory usage, latency requirements and other factors.

124 Chapter 6. Two-sided MPI Receive Queue

6.4.4 Temporal Scaling

The design of the scmp queue algorithm is geared towards allowing many peers to

insert messages without congesting the queue state. Therefore, a simple test using

ping pong is no longer meaningful, because the limiting factor becomes the response

rate of the receiver compared to the receiver’s ability to receive the ping messages.

Since we know that both the MPICH and EMPI4Re libraries will use an eager

message transmission below their respective thresholds, it is possible to force these

libraries to congest at the receiver end. To benchmark temporal scaling of the queue

algorithms, we set up a many-to-one communication pattern in which each peer sends

eight messages below the eager threshold to the receiving root process. This forces all

peers to use the eager queue algorithms and causes a sufficient amount of congestion.

Each queue algorithm was sampled 24500 times; the sample count was chosen such

that the resulting distributions were stable.

Figure 6.9 shows the scaling behaviour of rlock when multiple active peers at-

tempt to write at approximately the same time. Increasing the number of active peers

has a large effect on time of completion of the sender processes. Figure 6.10 shows

the equivalent experiment using the scmp queue algorithm. The impact of congestion

on the performance of the scmp algorithm is significantly less. For comparison, Fig-

ure 6.11 and Figure 6.12 show the smsg and msgq algorithms. Comparing these with

the scmp algorithm, the scmp algorithm performs equivalently in terms of scalability,

but it is worse in terms of absolute latency, as expected due to the critical path length

of the protocol. The scalability is improved by approximately 10× compared to the

previous rlock implementation.

6.4. Experiments 125

2 4 8 16 32 64 128
Active Peers

101

102

103

104

8
M

PI
_S

en
d

Ti
m

e
(

s)

Figure 6.9: Distributions of insertion times using the rlock queue algorithm. The red

line shows the linear regression through the 99 percentile data.

2 4 8 16 32 64 128
Active Peers

101

102

103

104

8
M

PI
_S

en
d

Ti
m

e
(

s)

Figure 6.10: Distributions of insertion times using the scmp queue algorithm. The red

line shows the linear regression through the 99 percentile data.

126 Chapter 6. Two-sided MPI Receive Queue

2 4 8 16 32 64 128
Active Peers

101

102

103

104

8
M

PI
_S

en
d

Ti
m

e
(

s)

Figure 6.11: Distributions of insertion times using the smsg queue algorithm. The red

line shows the linear regression through the 99 percentile data.

2 4 8 16 32 64 128
Active Peers

101

102

103

104

8
M

PI
_S

en
d

Ti
m

e
(

s)

Figure 6.12: Distributions of insertion times using the msgq queue algorithm. The red

line shows the linear regression through the 99 percentile data.

Chapter 7

Conclusion

This chapter will summarize the contributions within the thesis and presents further

possible work.

7.1 Summary

This thesis investigated ways in which the latency and scalability of collective opera-

tions can be improved for modern supercomputers. These aspects of collective opera-

tions are extremely important. Many applications depend on small-message AllReduce

operations, which are latency bound. In combination with the growing size of both

supercomputers and the usage patterns, and the stagnation of improvements to inter-

connect latency this leads to a critical shortcoming in modern high performance com-

puting. This work presents a novel performance model for small messages, introduces

a generalisation of recursive doubling, recursive multiplying, and finally introduces a

new queue mechanism for memory-limited environments.

The MPI Standard provides collective operations as a tool for application devel-

opers to describe the required computation and data movement without specifying the

implementation. This allows the MPI library implementors to use many algorithms to

fulfill the requirements. The recursive doubling algorithm is typically used for a small-

message AllReduce which is bound to log2 N, and is widely considered the theoretical

limit. However, we show that recursive doubling is based on a limited model which

does not account for the features of a modern interconnect.

Interconnects have evolved to standalone entities which act as a significant com-

ponent in the architecture, not simply a mechanism of transport. Congestion avoiding

routing in hardware and low latency have enabled a class of algorithms which would be

127

128 Chapter 7. Conclusion

disadvantageous on early generations, but perform better on modern networks. We in-

troduce the pipelining latency-bandwidth model and the recursive multiplying method

to exploit these advances and perform the top-level operations faster.

The pipelining latency-bandwidth model was introduced to model the interface to

the underlying capabilities more explicitly in the model itself: this is a key difference to

other models which attempt to capture the true underlying behaviour. The model cap-

tures the observation that many modern interconnects are able to send multiple small

messages more efficiently than the traditional latency-bandwidth model can represent.

This allows for a more straightforward derivation of algorithms which can exploit un-

derlying hardware. In addition, we developed the Fennel simulator to explore the space

of potential algorithms.

The recursive multiplying method, based on the pipelining latency-bandwidth model,

shows that the log2 N scalability is not the absolute limit and methods can be developed

which circumvent the limitations of prior algorithms. The implementation presented

in this work is based on the capabilities of the Cray XC30 system, ARCHER, and

developed using the Cray DMAPP RDMA library. With recursive multiplying more

memory is consumed, but it yields significant benefits for latency. For example, we

outperform recursive doubling by 10% on the median for 128 processes. Recursive

doubling is the algorithm used in MPICH, the most popular MPI implementation. The

methodology of recursive multiplying, sending more messages per stage, is the primary

underlying contribution which may yield many future algorithms.

The recursive multiplying method provides more flexibility compared to the re-

cursive doubling method and when modelled using the pipelining latency-bandwidth

model we show that an optimal value can be derived given the machine hardware

parameters. The range of different schedules provided by the recursive multiplying

method gives greater applicability to more situations whereas the recursive doubling

method is limited to power of two and requires additional fixing algorithms to reduce

the process count to the nearest power of two.

The single-consumer multiple-producer mechanism enables lower latency and higher

scalability by reducing the impact of a shared remote receive queue between all pro-

cesses. This is especially relevant to applications of MPI which are used in a memory-

limited environment, such as embedded devices. MPI libraries present on supercom-

puters would only use the scmp method when little memory is available.

Going forward the algorithms introduced in this work are applicable to future net-

works, because we observe similar capabilities in other modern networks and expect

7.2. Further Work 129

the trends of the performance characteristics in future interconnects to remain simi-

lar. With an improvement in the features which the introduced algorithms exploit we

expect an even larger performance benefit.

7.2 Further Work

7.2.1 Performance Modelling

The pipelining latency-bandwidth model presented in Chapter 4 was able to represent

the small-message behaviour very well for multi-casting, as used in Chapter 5. An

extension to the model, hinted at in Section 4.3.2, would be to allow for αr and αp to

be a function of message size. This would yield a better theoretical model on which to

base work which includes varying sizes of messages. Various algorithms as described

in Section 5.2 could thereby be modelled.

In addition to extending the model, the Fennel simulator could be extended to in-

clude more effects only seen in real-world machines. For example topology-based

latency, or probability distributions for the latencies.

7.2.2 Recursive Multiplying

The recursive multiplying method was successful at implementing a small-message

AllReduce. However, further improvements can be made to the algorithm. Currently

the algorithm only supports fixed buffer sizes, but buffer splitting algorithms are com-

mon for large message sizes to achieve information distribution. By implementing

notation similar to the current schedule notation to support buffer splitting, global

AllReduce operations can be represented, acting on partial buffers. This, combined

with the current schedules, would generalise to all currently known recursive doubling

related algorithms. A clear approach to this would be determining schedules using a

group theory approach similar to Kolmakov et al.[70].

The recursive doubling method is used in multiple implementations of MPI op-

erations for small message sizes. Two simple extensions would be to use recursive

multiplying for AllGather and ReduceScatter, with the caveat to only utilize it for ap-

propriate message sizes. Another analogous extension is to implement the multi-way

recursive halving method, which can be used as a building block for ReduceScatter.

The fundamental idea of recursive multiplying stems from the pipelining latency-

bandwidth model, which allows us to send multiple messages cheaply. This idea can

130 Chapter 7. Conclusion

be extended beyond the recursive multiplying implementation of it. Recursive multi-

plying is suited for barrier-type collective operations, within which all processes must

communicate their information with all other processes. Sending multiple messages

with redundant information can be extended to irregular collectives, or partitioned

collectives[46].

7.2.3 Receive Queue Mechanism

The SCMP queue mechanism presented succeeds in reducing congestion for insertion

into the receive queue, but emptying the receive queue is currently only done with a

single thread. A multi-threaded approach to this would be ideal to convert the design

into a remote-local multi-consumer multi-producer queue. Fortunately, this is done

exclusively on the shared-memory of a single node, therefore a typical lock-less ap-

proach can be used to traverse the double buffered queue. The difficulty comes from

synchronizing the switching between the remote and local processes.

Bibliography

[1] Adams, D. A. (1993). CRAY T3D System Architecture Overview Manual.

[2] Alexandrov, A., Ionescu, M. F., Schauser, K. E., and Scheiman, C. (1997). Loggp:

Incorporating long messages into the logp model for parallel computation. Journal

of Parallel and Distributed Computing, 44(1):71 – 79.

[3] Alverson, B., Froese, E., Kaplan, L., and Roweth, D. (2012). Cray XC Series

Network. Technical report, Cray Inc.

[4] Bagrodia, R., Deelman, E., and Phan, T. (2001). Parallel Simulation of Large-Scale

Parallel Applications. The International Journal of High Performance Computing

Applications, 15(1):3–12.

[5] Bar-Noy, A. and Kipnis, S. (1992). Designing broadcasting algorithms in

the postal model for message-passing systems. Mathematical Systems Theory,

27(5):431–452.

[6] Barnett, M., Littlefield, R., Payne, D., and van de Geijn, R. (1993). Global Com-

bine on Mesh Architectures with Wormhole Routing. In Proceedings Seventh In-

ternational Parallel Processing Symposium, pages 156–162.

[7] Barnett, M., Shuler, L., van de Geijn, R., Gupta, S., Payne, D. G., and Watts, J.

(1994). Interprocessor collective communication library (InterCom). In Proceed-

ings of IEEE Scalable High Performance Computing Conference, pages 357–364.

[8] Barrett, B. W., Brightwell, R., Grant, R. E., Hemmert, S., Pedretti, K., Wheeler,

K., Underwood, K., Riesen, R., Maccabe, A. B., and Hudson, T. (2014). The Por-

tals 4.1 Network Programming Interface. Technical Report April, Sandia National

Laboratories.

131

132 Bibliography

[9] Beran, M. (1999). Decomposable Bulk Synchronous Parallel Computers. In Pro-

ceedings of the 26th Conference on Current Trends in Theory and Practice of Infor-

matics, SOFSEM ’99, pages 349–359, Berlin, Heidelberg. Springer-Verlag.

[10] Booth, S. (2001). Optimising the MPI Library for the T3E. In Euro-Par 2001

Parallel Processing, pages 80–83, Berlin, Heidelberg. Springer Berlin Heidelberg.

[11] Brooks, E. D. (1986). The butterfly barrier. International Journal of Parallel

Programming, 15:295–307.

[12] Bruce, R., Chapple, S., MacDonald, N., Trew, A., and Trewin, S. (1995). CHIMP

and PUL: Support for portable parallel computing. Future Generation Computer

Systems, 11(2):211–219. Massive Parallel Computing.

[13] Buntinas, D., Mercier, G., and Gropp, W. (2006). Design and evaluation of

Nemesis, a scalable, low-latency, message-passing communication subsystem. In

Sixth IEEE International Symposium on Cluster Computing and the Grid (CC-

GRID’06), volume 1, pages 521–530.

[14] Calkin, R., Hempel, R., Hoppe, H.-C., and Wypior, P. (1994). Portable program-

ming with the PARMACS message-passing library. Parallel Computing, 20(4):615

– 632. Message Passing Interfaces.

[15] Cameron, K., Ge, R., and Sun, X.-H. (2007). LognP and log3P: Accurate An-

alytical Models of Point-to-Point Communication in Distributed Systems. IEEE

Transactions on Computers - TC, 56:314–327.

[16] Cameron, K. L., Clarke, L., and Gordon, A. D. (1995). CRI/EPCC MPI for

CRAY T3D. In 1st European Cray T3D Workshop.

[17] Carlson, W., Draper, J., Culler, D., Yelick, K., Brooks, E., Warren, K., and Liv-

ermore, L. (1999). Introduction to UPC and Language Specification. Technical

report, Lawrence Livermore National Laboratory.

[18] Casanova, H., Giersch, A., Legrand, A., Quinson, M., and Suter, F. (2014). Versa-

tile, Scalable, and Accurate Simulation of Distributed Applications and Platforms.

Journal of Parallel and Distributed Computing, 74(10):2899–2917.

[19] Chamberlain, B., Callahan, D., and Zima, H. (2007). Parallel Programmability

and the Chapel Language. The International Journal of High Performance Com-

puting Applications, 21(3):291–312.

Bibliography 133

[20] Chan, E., Heimlich, M., Purkayastha, A., and van de Geijn, R. (2007). Collective

communication: theory, practice, and experience. Concurrency and Computation:

Practice and Experience, 19(13):1749–1783.

[21] Cook, S. A. and Reckhow, R. A. (1972). Time-Bounded Random Access Ma-

chines. In Proceedings of the Fourth Annual ACM Symposium on Theory of Com-

puting, STOC ’72, pages 73–80, New York, NY, USA. Association for Computing

Machinery.

[22] Cray DMAPP (2012). Cray XC Series GNI and DMAPP API User Guide. Cray

Inc. Accessed: 2020-09-10.

[23] Cray One (1977). CRAY-1 COMPUTER SYSTEM. Cray Research Inc.

[24] Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser, K. E., Santos, E., Subra-

monian, R., and von Eicken, T. (1993). LogP: towards a realistic model of parallel

computation. Proceedings of the fourth ACM SIGPLAN symposium on Principles

and practice of parallel programming, 28(7):1–12.

[25] Darema, F., George, D., Norton, V., and Pfister, G. (1988). A single-program-

multiple-data computational model for EPEX/FORTRAN. Parallel Computing,

7(1).

[26] De Sensi, D., Di Girolamo, S., McMahon, K. H., Roweth, D., and Hoefler, T.

(2020). An in-depth analysis of the slingshot interconnect. In Proceedings of the

International Conference for High Performance Computing, Networking, Storage

and Analysis, SC ’20. IEEE Press.

[27] Dean, J. and Ghemawat, S. (2008). MapReduce: Simplified Data Processing on

Large Clusters. Commun. ACM, 51(1):107–113.

[28] Dennard, R., Gaensslen, F., Yu, H.-N., Rideovt, V., Bassous, E., and LeBlanc, A.

(2007). Design of Ion-Implanted MOSFET’s with Very Small Physical Dimensions.

Solid-State Circuits Newsletter, IEEE, 12:38 – 50.

[29] Dongarra, J., Beckman, P., Moore, T., Aerts, P., Aloisio, G., Andre, J.-C., Barkai,

D., Berthou, J.-Y., Boku, T., Braunschweig, B., Cappello, F., Chapman, B., Xuebin

Chi, Choudhary, A., Dosanjh, S., Dunning, T., Fiore, S., Geist, A., Gropp, B., Har-

rison, R., Hereld, M., Heroux, M., Hoisie, A., Hotta, K., Zhong Jin, Ishikawa, Y.,

134 Bibliography

Johnson, F., Kale, S., Kenway, R., Keyes, D., Kramer, B., Labarta, J., Lichnewsky,

A., Lippert, T., Lucas, B., Maccabe, B., Matsuoka, S., Messina, P., Michielse, P.,

Mohr, B., Mueller, M. S., Nagel, W. E., Nakashima, H., Papka, M. E., Reed, D.,

Sato, M., Seidel, E., Shalf, J., Skinner, D., Snir, M., Sterling, T., Stevens, R., Stre-

itz, F., Sugar, B., Sumimoto, S., Tang, W., Taylor, J., Thakur, R., Trefethen, A.,

Valero, M., van der Steen, A., Vetter, J., Williams, P., Wisniewski, R., and Yelick,

K. (2011). The International Exascale Software Project roadmap. International

Journal of High Performance Computing Applications, 25(1):3–60.

[30] Dongarra, J. and Luszczek, P. (2011). TOP500, pages 2055–2057. Springer US,

Boston, MA.

[31] Ebcioglu, K. and et al. (2004). X10: Programming for Hierarchical Parallelism

and Non-Uniform Data Access.

[32] Edinburgh Parallel Computing Centre (2013). ARCHER. https://www.

archer.ac.uk. Accessed: 2020-08-27.

[33] EMPI4Re (2017). http://www.epigram-project.eu/empi4re/. Accessed:

2017-04-05.

[34] End, V., Yahyapour, R., Simmendinger, C., and Alrutz, T. (2015). Adaption of

the n-way Dissemination Algorithm for GASPI Split-Phase Allreduce. In The Fifth

International Conference on Advanced Communications and Computation, pages

13–19.

[35] Faanes, G., Bataineh, A., Roweth, D., Court, T., Froese, E., Alverson, B., John-

son, T., Kopnick, J., Higgins, M., and Reinhard, J. (2012). Cray Cascade: A scalable

HPC system based on a Dragonfly network. In 2012 International Conference for

High Performance Computing, Networking, Storage and Analysis, pages 1–9. IEEE

Computer Society Press.

[36] Flynn, M. J. (1972). Some Computer Organizations and Their Effectiveness.

IEEE Transactions on Computers, C-21(9):948–960.

[37] Folk, M., Heber, G., Koziol, Q., Pourmal, E., and Robinson, D. (2011). An

Overview of the HDF5 Technology Suite and Its Applications. In Proceedings of

the EDBT/ICDT 2011 Workshop on Array Databases, AD ’11, page 36–47, New

York, NY, USA. Association for Computing Machinery.

https://www.archer.ac.uk
https://www.archer.ac.uk
http://www.epigram-project.eu/empi4re/

Bibliography 135

[38] Fortune, S. and Wyllie, J. (1978). Parallelism in random access machines. Pro-

ceedings of the Tenth Annual ACM Symposium on Theory of Computing, pages

114–118.

[39] Frigo, M. and Johnson, S. G. (2005). The Design and Implementation of FFTW3.

Proceedings of the IEEE, 93(2):216–231.

[40] Gannon, P. (2006). Colossus: Bletchley Park’s Greatest Secret. Atlantic Books.

[41] GASPI Forum (2013). GASPI: Global Address Space Programming Interface.

Fraunhofer ITWM, 1 edition.

[42] Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., and Sunderam, V.

(1994). PVM: Parallel Virtual Machine. The MIT Press.

[43] Geist, A. and Lucas, R. (2009). Major Computer Science Challenges At Exascale.

International Journal of High Performance Computing Applications, 23(4):427–

436.

[44] Gottlieb, A., Lubachevsky, B. D., and Rudolph, L. (1983). Basic Techniques

for the Efficient Coordination of Very Large Numbers of Cooperating Sequential

Processors. ACM Trans. Program. Lang. Syst., 5(2):164–189.

[45] Graham, R. L., Woodall, T. S., and Squyres, J. M. (2006). Open MPI: A Flex-

ible High Performance MPI. In Wyrzykowski, R., Dongarra, J., Meyer, N., and

Waśniewski, J., editors, Parallel Processing and Applied Mathematics, pages 228–

239, Berlin, Heidelberg. Springer Berlin Heidelberg.

[46] Grant, R. E., Dosanjh, M. G. F., Levenhagen, M. J., Brightwell, R., and Skjellum,

A. (2019). Finepoints: Partitioned Multithreaded MPI Communication. In High

Performance Computing.

[47] Gropp, W. (2002). MPICH2: A New Start for MPI Implementations. In Proceed-

ings of the 9th European PVM/MPI Users’ Group Meeting on Recent Advances

in Parallel Virtual Machine and Message Passing Interface, Berlin, Heidelberg.

Springer-Verlag.

[48] Grun, P., Hefty, S., Sur, S., Goodell, D., Russell, R. D., Pritchard, H., and

Squyres, J. M. (2015). A Brief Introduction to the OpenFabrics Interfaces - A New

Network API for Maximizing High Performance Application Efficiency. In 2015

IEEE 23rd Annual Symposium on High-Performance Interconnects, pages 34–39.

136 Bibliography

[49] Hayes, J. P., Mudge, T., Stout, Q. F., Colley, S., and Palmer, J. (1986). A

Microprocessor-based Hypercube Supercomputer. IEEE Micro.

[50] Hensgen, D., Finkel, R., and Manber, U. (1988). Two Algorithms for Barrier

Synchronization. Int. J. Parallel Program., 17(1):1–17.

[51] Hermanns, M.-A., Geimer, M., Wolf, F., and Wylie, B. (2009). Verifying Causal-

ity between Distant Performance Phenomena in Large-Scale MPI Applications.

In 2009 17th Euromicro International Conference on Parallel, Distributed and

Network-based Processing, pages 78 – 84.

[52] Hockney, R. (1977). Supercomputer architecture.

[53] Hockney, R. and Jesshope, C. (1981). Parallel Computers. Institute of Physics

Publishing.

[54] Hockney, R. W. (1994). The communication challenge for MPP: Intel Paragon

and Meiko CS-2. Parallel Computing, 20(3):389 – 398.

[55] Hodges, A. (1983). Alan Turing: The Enigma. Burnett Books.

[56] Hoefler, T., Mehlan, T., Mietke, F., and Rehm, W. (2006a). Fast barrier syn-

chronization for InfiniBand. 20th International Parallel and Distributed Processing

Symposium, IPDPS 2006, 2006.

[57] Hoefler, T., Mehlan, T., Mietke, F., and Rehm, W. (2006b). LogfP - a model for

small Messages in InfiniBand. Parallel and Distributed Processing Symposium.

[58] Hoefler, T. and Rehm, W. (2005). A Communication Model for Small Messages

with InfiniBand. In PARS Mitteilungen, pages 32–41.

[59] Hoefler, T., Schneider, T., and Lumsdaine, A. (2010). LogGOPSim: simulating

large-scale applications in the LogGOPS model. Proceedings of the 19th ACM

International Symposium on High Performance Distributed Computing, pages 597–

604.

[60] Hoefler, T., Siebert, C., and Lumsdaine, A. (2009). Group Operation Assembly

Language - A Flexible Way to Express Collective Communication. In International

Conference on Parallel Processing, ICPP ’09, USA. IEEE Computer Society.

Bibliography 137

[61] InfiniBand Trade Association (2000). InfiniBand architecture specification: re-

lease 1.0.

[62] Ino, F., Fujimoto, N., and Hagihara, K. (2001). LogGPS: A parallel computa-

tional model for synchronization analysis. ACM SIGPLAN Notices, 36(7):133–142.

[63] Intel Inc (1985). iPSC/1 User Guide.

[64] International Business Machines (1956). The Fortran Automatic Coding System

for the IBM 704.

[65] Jain, N., Leininger, M. L., Bhatele, A., Howell, L. H., Böhme, D., Karlin, I.,

León, E. A., Mubarak, M., Wolfe, N., and Gamblin, T. (2017). Predicting the

performance impact of different fat-tree configurations. In Proceedings of the In-

ternational Conference for High Performance Computing, Networking, Storage and

Analysis on - SC ’17, pages 1–13.

[66] Kahn, D. (1967). The Codebreakers: The Comprehensive History of Secret Com-

munication from Ancient Times to the Internet. Scribner.

[67] Kale, L. V. and Krishnan, S. (1993). CHARM++: A Portable Concurrent Object

Oriented System Based on C++. In Proceedings of the Eighth Annual Conference

on Object-Oriented Programming Systems, Languages, and Applications, OOPSLA

’93, page 91–108, New York, NY, USA. Association for Computing Machinery.

[68] Kielmann, T., Bal, H. E., and Verstoep, K. (2000). Fast Measurement of LogP

Parameters for Message Passing Platforms. Parallel and Distributed Processing,

1800:1176–1183.

[69] Kim, J., Dally, W. J., Scott, S., and Abts, D. (2008). Technology-Driven, Highly-

Scalable Dragonfly Topology. In 2008 International Symposium on Computer Ar-

chitecture.

[70] Kolmakov, D. and Zhang, X. (2020). A Generalization of the Allreduce Opera-

tion. arXiv, 2004.09362.

[71] Laguna, I., Marshall, R., Mohror, K., Ruefenacht, M., Skjellum, A., and Sultana,

N. (2019). A Large-Scale Study of MPI Usage in Open-Source HPC Applications.

In Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis, SC ’19, New York, NY, USA. Association for

Computing Machinery.

138 Bibliography

[72] Lambert, J. (1758). Observationes variae in mathesin puram. Acta Helvetica

Physico-Mathematico-Anatomico-Bota-nico-Medica, 3.

[73] Lamport, L. (1977). Concurrent Reading and Writing. Communications of the

ACM, 20(11):806–811.

[74] Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed

system.

[75] Lee, D. and Kalb, J. (2008). Network Topology Analysis. Technical report,

Sandia National Laboratories.

[76] Leiserson, C. E. (1985). Fat-Trees: Universal Networks for Hardware-Efficient

Supercomputing. IEEE Trans. Comput.

[77] Li, Z., Mills, P., and Reif, J. H. (1995). Models and resource metrics for paral-

lel and distributed computation. Proceedings of the Twenty-Eighth Annual Hawaii

International Conference on System Sciences, 2:51–60.

[78] Maggs, B. M., Matheson, L. R., and Tarjan, R. E. (1995). Models of Parallel

Computation: A Survey and Synthesis. Sciences-New York.

[79] McCartney, S. (1999). ENIAC: The Triumphs and Tragedies of the World’s First

Computer. Walker & Co.

[80] Meiko (1989). In-Sun Computing Surface.

[81] Mellor-Crummey, J. (1987). Concurrent Queues: Practical Fetch-and-Phi Algo-

rithms.

[82] Mitra, P., Payne, D., Shuler, L., van de Geijn, R., and Watts, J. (1995). Fast

Collective Communication Libraries, Please. Technical report, University of Texas

at Austin, USA.

[83] Moore, G. (1965). Cramming more components onto integrated circuits. Elec-

tronics, 38.

[84] Moritz, C. A. and Frank, M. I. (1998). LoGPC: Modeling Network Contention

in Message-Passing Programs. SIGMETRICS Perform. Eval. Rev., 26(1):254–263.

[85] MPI Forum (1993). MPI: A Message Passing Interface. MPI Forum.

Bibliography 139

[86] Mubarak, M., Carothers, C. D., Ross, R. B., and Carns, P. (2017). Enabling

Parallel Simulation of Large-Scale HPC Network Systems. IEEE Transactions on

Parallel and Distributed Systems, 28(1):87–100.

[87] Murphy, R. C., Rodrigues, A., Kogge, P., and Underwood, K. (2004). The struc-

tural simulation toolkit: A tool for bridging the ar chitectural/microarchitectural

evaluation gap. Technical report, Sandia National Laboratories.

[88] National Aeronautics and Space Administration (2016). When computers were

human. https://www.nasa.gov/feature/jpl/when-computers-were-human.

Accessed: 2021-01-22.

[89] Numrich, R. W. and Reid, J. (1998). Co-Array Fortran for Parallel Programming.

SIGPLAN Fortran Forum.

[90] Poole, S. W., Hernandez, O., Kuehn, J. A., Shipman, G. M., Curtis, A., and

Feind, K. (2011). OpenSHMEM - Toward a Unified RMA Model. In Encyclopedia

of Parallel Computing, pages 1379–1391, Boston, MA. Springer US.

[91] Pritchard, H. and Gorodetsky, H. (2011). A uGNI-based MPICH2 nemesis net-

work module for Cray XE computer systems. Cray User Group Meeting, Fairbanks,

Alaska.

[92] Pritchard, H., Gorodetsky, I., and Buntinas, D. (2011). A uGNI-based MPICH2

nemesis network module for the Cray XE. Recent Advances in the Message, pages

110–119.

[93] Rabenseifner, R. (1997). A new optimized MPI reduce algorithm. https://fs.

hlrs.de/projects/par/mpi//myreduce.html. Accessed: 2016-12-05.

[94] Rabenseifner, R. (1999). Automatic Profiling of MPI Applications with Hard-

ware Performance Counters. In Recent Advances in Parallel Virtual Machine and

Message Passing Interface, pages 35–42, Berlin, Heidelberg. Springer Berlin Hei-

delberg.

[95] Rabenseifner, R. and Träff, J. L. (2004). More Efficient Reduction Algorithms

for Non-Power-of-Two Number of Processors in Message-Passing Parallel Sys-

tems. Recent Advances in Parallel Virtual Machine and Message Passing Interface,

3241:36–46.

https://www.nasa.gov/feature/jpl/when-computers-were-human
https://fs.hlrs.de/projects/par/mpi//myreduce.html
https://fs.hlrs.de/projects/par/mpi//myreduce.html

140 Bibliography

[96] Rodrigues, A., Murphy, R., Kogge, P., and Underwood, K. (2007). The struc-

tural simulation toolkit: A tool for exploring parallel architectures and applications.

Technical report, Sandia National Laboratories.

[97] Rodriguez, G., Badia, R. M., and Labarta, J. (2004). Generation of Simple An-

alytical Models for Message Passing Applications. In Danelutto, M., Vanneschi,

M., and Laforenza, D., editors, Euro-Par 2004 Parallel Processing, pages 183–188,

Berlin, Heidelberg. Springer Berlin Heidelberg.

[98] Ruefenacht, M., Bull, M., and Booth, S. (2016). Generalisation of Recursive

Doubling for AllReduce. In Proceedings of the 23rd European MPI Users’ Group

Meeting on - EuroMPI 2016, pages 23–31.

[99] Ruefenacht, M., Bull, M., and Booth, S. (2017). Generalisation of Recursive

Doubling for AllReduce: Now with simulation. Parallel Computing, 69:24–44.

[100] Rüfenacht, M. (2015). Scalable two-sided mpi using rdma hardware. Master’s

thesis, University of Edinburgh.

[101] Rugina, R. and Schauser, K. E. (1998). Predicting the running times of parallel

programs by simulation. In Proceedings of the First Merged International Paral-

lel Processing Symposium and Symposium on Parallel and Distributed Processing,

pages 654–660.

[102] Shamis, P., Venkata, M. G., Lopez, M. G., Baker, M. B., Hernandez, O., Itigin,

Y., Dubman, M., Shainer, G., Graham, R. L., Liss, L., et al. (2015). UCX: an open

source framework for HPC network APIs and beyond. In 2015 IEEE 23rd Annual

Symposium on High-Performance Interconnects, pages 40–43. IEEE.

[103] Shroff, M. and van de Geijn, R. A. (2000). CollMark: MPI Collective Commu-

nication Benchmark. In International Conference on Supercomputing.

[104] Skjellum, A. and Leung, A. P. (1990). A Portable Multicomputer Communica-

tion Library atop the Reactive Kernel. Proceedings of the Fifth Distributed Memory

Computing Conference, 1990., 2:767–776.

[105] Sultana, N., Rüfenacht, M., Skjellum, A., Bangalore, P., Laguna, I., and Mohror,

K. (2020). Understanding the use of message passing interface in exascale proxy

applications. Concurrency and Computation: Practice and Experience.

Bibliography 141

[106] Swiss National Supercomputing Centre (2012). Piz Daint. https://www.

cscs.ch/computers/piz-daint/. Accessed: 2020-08-27.

[107] Symons, A. and Narasimhan, V. L. (1995). Parsim-message passing computer

simulator. In Proceedings 1st International Conference on Algorithms and Archi-

tectures for Parallel Processing, volume 2, pages 621–630 vol.2.

[108] Symons, A. and Narasimhan, V. L. (1997). Design and application of parsim —

a message-passing computer simulator. IEEE Proceedings - Computers and Digital

Techniques, 144:7–14(7).

[109] Thakur, R. and Gropp, W. (2003). Improving the performance of collective

operations in MPICH. Recent Advances in Parallel Virtual Machine and Message

Passing Interface.

[110] Thakur, R., Rabenseifner, R., and Gropp, W. (2005). Optimization of Collective

Communication Operations in MPICH. International Journal of High Performance

Computing Applications, 19(1):49–66.

[111] Thomas Haigh, Mark Priestley, C. R. (2016). ENIAC in Action: Making and

Remaking the Modern Computer. The MIT Press.

[112] Tikir, M. M., Laurenzano, M. A., Carrington, L., and Snavely, A. (2009).

PSINS: An Open Source Event Tracer and Execution Simulator for MPI Appli-

cations. In Sips, H., Epema, D., and Lin, H.-X., editors, Euro-Par 2009 Parallel

Processing, pages 135–148, Berlin, Heidelberg. Springer Berlin Heidelberg.

[113] Valiant, L. (2008). A Bridging Model for Multi-core Computing. Journal of

Computer and System Sciences, 77:154–166.

[114] Valiant, L. G. (1990). A bridging model for parallel computation. Communica-

tions of the ACM, 33(8):103–111.

[115] Valois, J. D. (1994). Implementing lock-free queues. In In Proceedings of the

Seventh International Conference on Parallel and Distributed Computing Systems,

Las Vegas, NV, pages 64–69.

[116] van Duijn, M., Visscher, K., and Visscher, P. (2016). BSPLib: a fast, and easy to

use C++ implementation of the Bulk Synchronous Parallel (BSP) threading model.

http://bsplib.eu/.

https://www.cscs.ch/computers/piz-daint/
https://www.cscs.ch/computers/piz-daint/
http://bsplib.eu/

142 Bibliography

[117] Van Rossum, G. and Drake, F. L. (2009). Python 3 Reference Manual. CreateS-

pace, Scotts Valley, CA.

[118] von Neumann, J. (1945). First Draft of a Report on the EDVAC. Technical

report, Los Alamos National Laboratory.

[119] Welchman, G. (1984). The Hut Six Story. Penguin.

[120] Zhang, Y., Chen, G., Sun, G., and Miao, Q. (2007). Models of parallel com-

putation: A survey and classification. Frontiers of Computer Science in China,

1:156–165.

[121] Zheng, G., Gunavardhan Kakulapati, and Kale, L. V. (2004). BigSim: a parallel

simulator for performance prediction of extremely large parallel machines. In 18th

International Parallel and Distributed Processing Symposium, 2004. Proceedings.

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Structure
	Publications

	History of High Performance Computing
	Introduction
	Beginning of Computing
	Early High Performance Computing
	Recent History of Supercomputing
	Message Passing Interface
	PGAS Interfaces

	Today

	Experimental Setup
	Introduction
	Hardware
	Aries Network Interface Controller

	Software
	Cray Shared Memory
	Cray Distributed Memory Applications
	Cray user-level Generic Network Interface
	Cray MPI

	Performance Modelling
	Introduction
	Contributions
	Overview

	Prior Performance Models
	Bulk Synchronous Parallel
	Latency-Bandwidth Model Family
	LogP Model Family
	LoP
	LogfP

	Pipelining Latency-Bandwidth Model
	Validation
	Larger Message Sizes
	Model Comparison

	Fennel Model Simulator
	Background
	ROSS
	Parsim
	SST
	LogGOPSim

	Program Representation
	Simulator Architecture
	Capabilities
	Validation

	Recursive Multiplying
	Introduction
	Overview
	Contributions

	Background
	MPI_Allreduce Definition
	Algorithms
	Fan-In/Fan-Out
	Recursive Doubling
	Composite Algorithms
	Elimination

	Related work
	Recursive Multiplying Algorithm
	Derivation
	Values Outside The Domain
	Implementation
	Heuristic Schedules
	Large Messages

	Experimental Results
	Environment
	AllReduce Benchmark
	AllReduce Schedule Comparison
	Message Size Scalability
	AllReduce Model Comparison
	Block-size Systematic Error Analysis
	Experimental-Model Correlation
	Cray MPI Comparison

	Simulator Exploration
	Factored Schedules
	Splitting & Merging
	3-2 & 2-1 Elimination

	Two-sided MPI Receive Queue
	Introduction
	Contributions
	Overview

	Prior Work
	Cray MPI
	EMPI4Re
	Related Work

	SCMP Algorithm
	Experiments
	Environment
	Latency
	Memory Scaling
	Temporal Scaling

	Conclusion
	Summary
	Further Work
	Performance Modelling
	Recursive Multiplying
	Receive Queue Mechanism

	Bibliography

