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Abstract 

Human lifespan is determined by a complex interplay of genetics, environment, 

lifestyle and chance. In the UK, life expectancy has increased by roughly three 

years every decade, but despite longer lives, individuals also spend more years 

living with chronic disease. With populations greying and periods of morbidity 

becoming more prolonged, the burden of ageing and age-related disease is set to 

become a major healthcare challenge. Understanding the factors underlying 

trends in human lifespan could guide policy interventions to mitigate the burden 

of disease, while an understanding of the genetics of lifespan could provide 

insight into the ageing process. The latter could in turn reveal potential 

therapeutic targets to delay age-related disease and inform which individuals to 

target based on their genetic risk.  

In this thesis, I explore human lifespan from these two perspectives. First, I 

examined trends in mortality and morbidity in two million Scots using hospital 

admission and death records and found recent improvements in lifespan could be 

largely explained by improvements in the incidence and survival after 

hospitalisation of cancers and heart disease. However, I also found recent 

deteriorations in infectious disease, especially for individuals from lower 

socioeconomic classes, suggesting a need for a renewed public health focus in this 

area. Next, I performed a genome-wide association study (GWAS) to find genetic 

determinants of lifespan using DNA from 27 European cohorts and the lifespans 

of their parents (one million total). I identified 12 genomic regions affecting 

survival and found genetic variants across the genome, when aggregated into 

polygenic scores, could distinguish up to five years of survival between score 

deciles. Combining the lifespan GWAS with two other GWAS of lifespan-related 

traits, I identified 78 genes—some of which delay ageing in model organisms—

which putatively influence both human lifespan and healthy years of life and 

which are enriched for haem metabolism. These findings present the most 

promising targets for therapeutic interventions to date, which may help delay the 

onset of age-related disease and extend the healthy years of life for all.
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Lay Summary 

People around the world are living longer, but for many older individuals the end 

of life is still marked by a long period of illness. With both the number of people 

over 65 and the number of years they spend in ill health on the rise, the healthcare 

system is put under increasing stress. As such, there is a pressing need to 

understand what is driving the changes in life expectancy and what can be done 

to extend the healthy years of life for everyone.  

Lifespan is complex and can be influenced by many factors. Some of these factors 

change over time, like healthcare and public policy, while others don’t change 

over time but do differ between people, like DNA. My work was focused on 

understanding lifespan from these two angles. I first studied the hospital and 

death records of all adults in Scotland and found that the greatest number of lives 

were saved because the number of new hospital admissions for heart conditions 

and cancers went down, as well as the likelihood of dying after being hospitalised 

(especially for cancers). In contrast, the largest increase in deaths was because of 

a rise in the number of new hospital admissions for infections and a rise in the 

likelihood of dying afterwards, especially for people from more deprived areas. 

These trends suggest public healthcare should renew their focus on combatting 

infectious disease.  

I next studied the DNA of 500,000 Europeans and asked them about their parents: 

how old they were and whether they were still alive. Using this information, I 

found 12 regions in their DNA that often varied between individuals with shorter- 

and longer-lived parents. I then made a survival score for each individual, 

summing up the effects of all variations in the genome, and found that when we 

divided participants into ten groups based on this score, the top group lived an 

average of 5 years longer than the bottom. Lastly, combining this study with 

similar ones, I linked 78 genes to both lifespan and healthy years of life, with many 

of them being involved in processing iron. Some of the same genes have already 

been shown to extend lifespan in worms and mice, making them promising 

targets for development of drugs that could delay age-related disease and make 

people live healthier for longer.
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Chapter 1: Introduction 

1.1 Ageing and age-related disease are an increasing burden 

to society 

 

The populations of the United Kingdom and many developed regions are greying. 

Fertility and mortality rates are declining while life expectancy is on the rise[1,2]. 

The result is an increasing number of elderly people working longer with 

pensions being supported by fewer working adults[3], mounting pressure on 

healthcare services that struggle to cope with the chronic diseases of old age[4], 

and a pressing need for ways to improve the health and well-being of the 

elderly[5].  

 

These demographic shifts can be illustrated by nationwide statistics across the 

UK, a country which has seen the average births per woman decline from 2.2 only 

50 years ago to 1.8 today, while the median population age increased from 35.1 

years to 40.5 years. In the same period, life expectancy at birth rose by more than 

10 years, with newborns in 1960 expected to survive on average until 70.6 years 

and newborns in 2020 expected to live on average until 81.8 [2]. In line with these 

trends, the Office for National Statistics projects that within the next 50 years, the 

number of people in the UK who are aged 65 years and above will increase by 8.6 

million individuals, and make up 26.5% of the total population (up from 18.0% 

currently)[6] (Figure 1). 
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Figure 1: The past, present, and projected demographics of the UK population shows the 

proportion of elderly individuals is growing rapidly. Darker bars show individuals who are 

65 years and older. Demographics for the year 2066 are projected assuming current trends 

in migration and mortality continue. Data from the UK Office for National Statistics[6]. 

 

While these improvements in life expectancy are clearly a positive trend, living 

longer does not necessarily imply enjoying an active and healthy life, free of 

disease. Individuals over 65 years of age can expect to live another 10 to 11 years 

on average, but they will spend only just over half of these years in good health, 

both in terms of self-rated well-being and disability-free life[7]. The other half of 

their remaining years of life is marked by chronic disease and functional 

impairment, requiring long periods of healthcare and disease management. A 

Lancet study by Guzman-Castillo et al. (which uses a more severe definition of 

disability) finds increases in disability-free life may be lagging behind increases 

in life expectancy[8]. If current trends continue, elderly individuals could end up 

spending more years living with severe disease than the elderly of the previous 

decade (Figure 2). 
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Figure 2. UK individuals aged 65 and above may spend more years living with severe 

disabilities in the future. Disabilities here include cardiovascular disorders, cognitive 

impairment, and moderate-to-severe loss of function. Depicted is the remaining life 

expectancy for individuals aged 65 in 2015 vs. 2025 (projected), with the number of years 

spent living with severe disability on the left and without severe disability on the right. Error 

bars represent 95% confidence intervals. Data from Table 4 from Guzman-Castillo et al. [8]. 

 

Notwithstanding the personal cost of extended periods of chronic disease, it is 

likely the greying population will exacerbate the pressures on the UK medical 

system, which already struggles to meet waiting time quotas and provide access 

to treatment[9]. Overall healthcare requirements and costs increase gradually 

with age, but after age 65 these costs start to increase exponentially. For example, 

2013 data from the National Health Service on the costs of general and acute care 

shows the service spends an average of £278 per person per year on adult 

patients aged 25 to 45, and £568 on those aged 45 to 65. These costs increase to 

£1,362 and £2,179 per patient per year for those aged 65 to 85, and 85 and above, 

respectively[6]. 

 

Thus, greying populations and their associated increase in the burden of age-

related disease are set to become one of the largest health challenges in the UK 

With disability Without disability

2015 2025 2015 2025

0

5

10

15

Y
e

a
rs

Life expectancy at age 65



 

Introduction 4 
 

and beyond. However, healthcare systems around the world are currently set up 

to treat individual diseases and manage age-related morbidities for as long as 

possible[10], with no clear holistic way to handle an increasingly elderly 

population. Similarly, much research funding has been allocated to the treatment 

of one age-related disease at a time rather than to the study and prevention of 

many[11,12]. It is clear a new approach is needed to understand the complex 

landscape of age-related diseases on a population level and identify and (pre-

emptively) treat the individuals at most risk of morbidity and mortality. At the 

same time, improvements in age-related disease will not accelerate without 

advances in our understanding of the ageing process itself. 

 

 

1.2 How to study ageing 

1.2.1 Measuring a life 

Human lifespan is defined as the length of time between birth and death. On a 

population level, this can be measured in terms of the average life expectancy at 

birth, and is calculated in two main ways: cohort and period life expectancy.  

 

Cohort life expectancy is simply the average lifespan of the cohort, which is 

known exactly when the last individual of the cohort has died. It can also be 

estimated when some individuals are still alive by predicting future mortality 

rates of these remaining individuals. More specifically, cohort life expectancy is 

calculated as the sum of the probability an individual will be alive every year, 

based on that year’s age-specific mortality (known or predicted)[13]. For 

example, the cohort life expectancy at birth in 1950 is the sum of the survival 

probability of a newborn in 1950, a 1-year-old in 1951, a 2-year-old in 1952, etc. 

Cohort life expectancy is the most accurate estimate of life expectancy for an age 

group, but it can have wide confidence margins when calculating life expectancy 

for more recent cohorts, as there is a high degree of uncertainty in projected 

mortality rates.  
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Conversely, period life expectancy refers to remaining life expectancy based on 

observed mortality rates of the current period, which is usually calculated from 

one or a small number of consecutive years. In contrast to cohort life expectancy, 

period life expectancy assumes future mortality rates are the same as the 

mortality rates from the period under study[13]. Thus, the remaining life 

expectancy ‘LE’ for individuals currently aged ‘n’ can be written as: 

 

𝐿𝐸 𝑛 = ∑ (1 − 𝜆(𝑖))105
𝑖 = 𝑛                 (1) 

 

Where λ(i) is the yearly mortality rate of individuals aged ‘i’. These age-specific 

mortality rates are calculated from the observed deaths in the population, usually 

captured through nationwide death records gathered by governmental 

organisations such as the National Records of Scotland[14] and the UK Office for 

National Statistics[15]. It is known period life expectancies tend to underestimate 

individuals’ lifespan—as mortality rates decrease over time[13]—but they can be 

calculated without relying on projections and the life expectancy estimates they 

provide (life tables) can be easily compared between countries and time periods. 

 

While population life expectancy estimates are useful to draw comparisons 

between countries and socioeconomic groups, they provide limited information 

about the underlying factors that determine the quality and length of life. On an 

individual level, lifespan can be influenced by a complex interplay of genetics, 

lifestyle, environmental exposures and pure chance. Humans, like most 

organisms, experience a progressive decline in the ability to maintain and repair 

their tissues after reaching adulthood, leading to a loss of function. This decline 

eventually manifests itself as age-related disease and ultimately results in 

death[16].  

 

The dynamics of individual mortality have been described mathematically as 

early as the 19th century[17] and can be thought of as a combination of two types 

of hazards: an age-independent component (e.g. mortality due to external causes) 

and a component which increases exponentially with age (e.g. mortality due to 
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accumulation of molecular damage). Nowadays, there are a variety of models in 

use when studying survival, differing by their assumptions regarding the shape 

of the hazard function. On the one hand is the Kaplan-Meier model, which does 

not make any assumptions about the hazard but is limited to categorical 

covariates. On the other hand are Gompertz and Weibull models, which easily 

incorporate quantitative covariates but completely specify the shape of the 

hazard and are therefore susceptible to model misspecification[18]. A middle 

ground is the Cox Proportional Hazards model, which allows for multiple 

predictors without making any assumptions about the baseline hazard:  

 

𝜆(𝑡) = 𝜆0(𝑡)𝑒𝛽1𝑿𝟏+𝛽2𝑿𝟐+ … +𝛽𝑛𝑿𝒏               (2) 

 

Here, λ(t) is the hazard function: the probability of an individual dying at time ‘t’, 

given they have been alive until time ‘t’. This function is dependent on two 

components, the baseline hazard λ0(t) at time ‘t’, and an exponential component, 

which is modified by a number of covariates X1–Xn varying by individual, with 

their associated effects β1– βn. The Cox model only examines the ratio of hazards 

between individuals, allowing the baseline hazard λ0(t) to cancel out (and remain 

unspecified), under the assumption that the effects of covariates on this hazard 

are proportional (i.e. do not vary over time). 

 

The Cox proportional hazards model can be applied to any time-to-event data, 

making it a useful statistical tool to study both the incidence of disease and the 

incidence of death. Moreover, the variety of covariates the model can 

accommodate allows us to estimate the effect of a disease on mortality while 

accounting for differences in sex and socioeconomic status, or analogously, the 

effect of genetic variants on lifespan while correcting for covariates and 

population structure.   
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1.2.2 The genetic component of lifespan 

Identifying genes which extend lifespan has the potential to reveal biological 

processes underlying the ageing process. Research into the genetics of lifespan 

started in earnest in the late 20th century with studies on model organisms rather 

than humans. In 1983, a set of long-lived Caenorhabditis elegans nematode 

worms were discovered after exposing them to the DNA-mutating compound 

ethylmethanesulfonate, demonstrating for the first time that certain genetic 

mutations could extend survival[19]. Since then, numerous researchers have 

studied C. elegans in an attempt to find longevity genes. Five years after the 

discovery of the first long-lived mutants, Friedman and Johnson[20] mapped the 

mutations in these worms to a region on chromosome 2 called age-1, which was 

later discovered to be homologous to the phosphoinositide 3-kinase catalytic 

subunits in mammals[21]. Another five years after the discovery of age-1, 

researchers found mutations in the daf-2 region which could double nematode 

lifespan[22], as long as the activity of another region called daf-16 was not 

disrupted. Homologues of these regions were later identified in humans as the 

IGFR1 (insulin-like growth factor 1 receptor) gene and FOXO (Forkhead box O) 

transcription factor family[23,24], and highlighted the importance of the insulin 

signalling pathway in nematode longevity. 

 

Similar mutation experiments were performed in a variety of organisms, 

including yeast[25], flies[26], and mice[27]. These revealed the longevity genes 

and pathways discovered in C. elegans were also important in regulating the 

survival of other eukaryotes. In 2013, a landmark paper put forward nine 

interconnected hallmarks of ageing, which summarised the common ageing 

pathways discovered in model organisms[16]. These hallmarks include three 

directly related to genetic information and gene expression: genomic instability, 

involving damage and repair of the nuclear and mitochondrial genomes; telomere 

attrition, the loss of the protective ends of chromosomes and subsequent cell 

death or cellular senescence; and epigenetic alterations, involving the 

redistribution of chromatin and methylation which in turn alters gene 

expression[16]. The remaining six hallmarks describe the age-related decline of 
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larger organelles—such as protein homeostasis machinery and mitochondria—

and the decline of cells themselves. Thus far, advances in our understanding of 

the determinants of lifespan have been limited to model organisms, and whether 

these findings will translate well to humans remains unanswered.   

 

The study of human genetics is different from model organisms in that 

experimental perturbations of genes are unethical and impractical, and 

researchers can therefore only study the effects of genetic variation occurring 

naturally within the population. It has long been observed that characteristics of 

long life and prolonged good health run in families[28,29]. However, the sharing 

of these traits within families could be due to similarities in lifestyle and 

environment, not just shared genetic factors.  

 

More generally, heritability (h2) is used as a measure to capture the relationship 

between genetic factors and variation in a trait. It estimates the amount of 

variation in a phenotype (VP) that can be attributed to the additive effects of 

genetic variation (VA), rather than the environment or chance: 

 

ℎ2 = 𝑉𝐴/𝑉𝑃        (3) 

 

One approach to determine the heritability of a trait is to compare the correlation 

in the trait between sets of identical and non-identical twins[30]. When assuming 

no dominance or epistatic effects, this can be calculated as: 

 

𝑉𝐴 = 2(COV𝑀𝑍
 − COV𝐷𝑍)         (4) 

 

Where COVMZ is the covariance between the trait for monozygotic twins, and 

COVDZ the covariance between dizygotic (DZ) twins. This equation estimates the 

additive genetic variance under the assumptions that the shared environments 

between MZ and DZ twin pairs are the same, that the genetic similarity between 

DZ twins is on average 50% (which is not the case under assortative mating or 

inbreeding), and that there are no gene-environment interactions. In practice, the 
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heritability is often modelled using structural equations allowing for dominance 

effects and covariates to be taken into account. 

 

For lifespan, studies on Danish and Swedish twins estimated the heritability of 

age at death to be upwards of 25% (Table 1)[31,32], and these estimates have 

since been cited in hundreds of studies on human survival. However, there is 

debate whether twin studies systematically overestimate the amount of 

heritability, especially for traits relating to behaviour, as the environment shared 

between MZ twins may be more similar than that of DZ twins[33–35].  

 

Study Year h2
 Data N 

Herskind et al. [31] 1996 26% Danish twins 2,872 pairs 

Skytthe et al. [32] 2003 27% European twins 4,667 pairs 

Mitchell et al. [36] 2001 25% Amish community 1,655 

Gögele et al. [37] 2011 15% Alpine community 8,277 

Gavrilova et al. [38] 1998 18% European royal families 12,150 offspring 

Joshi[39] 2015 <17% Scottish families 4,642 offspring 

Kaplanis et al. [40] 2018 15-16% Geni online pedigree ~3,000,000 

Ruby et al. [41] 2018 <10% Ancestry online pedigree ~439,000,000 

 

Table 1. Lifespan heritability estimates from twin, cohort, and online genealogy studies 

 

As an alternative to twin studies, parent-offspring sets within population cohorts 

have also been used to estimate heritability. One study on the relationship 

between the age at death of Scottish individuals and their parents found each 10-

year increase in the lifespan of one parent associated with around a 10-month 

increase in offspring lifespan, indicating the heritability of lifespan in Scotland 

was around 17% (95% CI 13%–21%). While this estimate is lower than twin 

studies, the same study also found correlations in age at death between spouses, 

suggesting the heritability estimate from parent-offspring duos could still be 

inflated due to shared environment factors and/or assortative mating and should 

be regarded as an upper limit[39] (Figure 3).  
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Figure 3. Parent-offspring regression in Scotland estimates lifespan heritability in Scotland 

to be <17%. The left graph shows the age at death of the subject (stratified by sex) as a 

function of the mean age at death of their parents. The right graph shows the regression of 

father age at death against mother age at death. Data from ORCADES and EASTER cohorts (N 

= 4,642) from Joshi[39]. 

 

Similar to parent-offspring research, there have been population studies which 

have attempted to estimate the heritability of lifespan using more distantly 

related individuals using the correlations between individuals as a function of 

their relatedness. Here, a genetic relationship matrix (calculated based on 

pedigrees or SNPs across the genome) is fitted as a random effect within a linear 

mixed model: 

 

𝒚 = 𝜇 + 𝛽𝑿 + 𝒈 + 𝜖          (5) 

𝒈 ~ ℳ𝒱𝒩(0, 𝑲𝑉𝐴) 

 

Where y is an (n×1) vector of trait values for n individuals; μ is the intercept; X is 

an (n×p) matrix of p covariates with the associated vector β of (p×1) fixed 

effects; g is a vector of Gaussian random effects, drawn from a multivariate normal 

distribution with mean zero and variance KVA; ε is an (n×1) vector of residuals; 

K is the (n×n) genomic relationship matrix; and VA is the additive genetic 
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variance. KVA is thus the covariance matrix between individuals’ genetic effects. 

Maximising the likelihood of this function provides an estimate of the additive 

genetic variance, which can be used together with the phenotypic variance to 

calculate the heritability (Equation 3). Population cohort estimates of the 

heritability of lifespan are in the range of 15–25%[36,38,42].  

 

During the course of this PhD, the question of lifespan heritability was revisited 

by other authors. The popularisation of online genealogy websites led to the 

construction of family trees of millions of individuals, providing huge resources 

which allowed for more accurate inference of the genetic component to lifespan. 

First, a 2018 study of 3 million genealogy profiles estimated the additive 

heritability of lifespan to be 15-16%[40], although they assumed limited effects 

of shared family environment, despite substantial correlations in lifespan 

between spouses. More recently still, Ruby et al.[41] analysed their own 

genealogy pedigree of 439 million profiles using structural equation models 

which took into account non-genetic inherited factors, such as assortative mating, 

cultural influences, and socioeconomic status. Their model suggests less than 

10% of lifespan is determined by genetics and this more modest estimate appears 

to be the most robust available to date.  

 

The discrepancy in heritability estimates between Ruby et al.[41] (less than 10%) 

and the next largest study—Kaplanis et al.[40]—(around 15%) can be explained 

by the latter taking into account only inbreeding and shared family environment, 

which do not fully account for the effects of assortative mating. Indeed, Ruby et 

al.[41] show correlations in lifespan can be seen among siblings-in-law and even 

cousins-in-law, suggesting there are traits which influence lifespan which are 

commonly selected for in partners. For example, socioeconomic factors such as 

wealth and education, both subject to strong assortative mating[43] and linked to 

longer life[44], could inflate lifespan heritability estimates if their inheritance is 

considered to be completely genetic. Given assortative mating on such 

sociocultural factors is common across populations[45], heritability estimates 
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derived from the smaller population-based studies—none of which fully account 

for this source of phenotypic correlation—are likely inflated as well. 

 

In contrast, twin studies rely on the comparison of monozygotic and dizygotic 

twins, which should have inherited largely identical sociocultural factors and are 

therefore expected to be less susceptible to inflation due to assortative mating. 

However, Ruby et al.[41] argue these studies generally recruit small numbers of 

individuals from limited geographical areas, and therefore could lack much of the 

variation found in large-scale population studies. Lower environmental variation 

reduces total variation in lifespan, and as a result increases the proportion 

explained by genetics (i.e. increasing the heritability estimate). At the same time, 

some argue the environment shared by monozygotic twins during embryonic 

development could lead to higher phenotypic similarities, which will also inflate 

heritability estimates if wrongly attributed to genetics[46]. 

 

However, regardless of the true heritability of lifespan, a number of geneticists 

argue estimation of the heritable component of a trait in human populations has 

limited value. While heritability describes the statistical properties of trait 

variation in a population, Rose argues it cannot describe the degree to which 

genetics act to determine any individual phenotype, and heritability estimates do 

not reveal which genes or how many are involved[47]. Similarly, Gamma and 

Liebrenz provide the example of phenylketonuria—a disease caused by a 

monogenic mutation which can be completely mitigated with a diet lacking 

phenylalanine—to argue that heritability also does not describe the degree to 

which a trait can be altered by the environment[48]. Lastly, Burt and Simons go 

one step further and argue that for complex traits, the genetic and environmental 

components are completely interdependent and trying to separate them is 

illogical[49]. For the purposes of this thesis, these limitations mean lifespan 

heritability estimates may not be able to describe the degree to which genes 

determine individual survival very well. However, as a statistical property, a low 

heritability estimate suggests large sample sizes may be needed to successfully 

study the genetic determinants of human lifespan. 
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1.2.3 Genome-wide association of lifespan 

Although human lifespan only has a modest genetic component, it might still be 

possible to identify this component and study its function. Linking variation in a 

trait to specific regions in the genome is more generally referred to as quantitative 

trait locus mapping, and has historically been done using linkage analysis[50], 

which uses the segregation of genetic markers (variable DNA segments of which 

the physical location is known) with traits of interest to narrow down the region 

of the genome influencing the trait. Linkage analysis is performed using family 

pedigrees, with mapping resolution depending on the number of meiosis and 

recombination events. Herein lies the limitation of these studies as well: large 

family-based cohorts spanning multiple generations are needed to detect linkage 

of genetic markers and map them to a small region of the genome.  

 

Due to this disadvantage, linkage analysis has provided limited insights into the 

genetics of quantitative traits[51], especially those determined by many variants 

of small effects. For lifespan, only a single genomic locus has been discovered by 

linkage analysis: a region within the 4q25 cytogenetic band, associated to 

exceptional survival[52] and survival free of major disease[53]. However, even 

when regions are mapped by linkage studies, identification of a causal variant is 

not straightforward. The human genome contains close to 650 million 

documented variations, with roughly 11 million of these occurring commonly 

(MAF > 5%) (dbSNP[54] build 153). Observing an association between a 

quantitative trait and a genomic locus suggests one or more genetic variants 

inherited together with the marker may influence the trait, but depending on the 

size of the region, hundreds to thousands of variants could be tagged with no clear 

indication of which one is causal (that is, if the signal is not chance or confounding 

to begin with).  

 

Two technical innovations caused a breakthrough in human genetic mapping. The 

first was the development of DNA microarray technology, which were chips 

dotted with thousands of oligonucleotide sequences that could hybridise with 

specific DNA segments to create a signal due to their fluorescent tags[55]. The 
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second was the completion of the Human Genome Project[56], which gave 

researchers a comprehensive reference of the human genome for the first time 

and in turn accelerated the discovery of first hundreds of thousands and then 

millions of single nucleotide polymorphisms (SNPs). Together, these 

advancements led to the creation of genotyping arrays: DNA microarrays 

designed to capture hundreds of thousands of SNPs across the genome[55]. While 

these still did not capture all variation, many genetic variations are in physical 

proximity to each other and inherited together in large blocks, resulting in 

regions of linkage disequilibrium (LD). Therefore, SNPs captured by genotyping 

arrays could be used to inform allelic status of known but untyped variants in LD 

as well—a process called imputation—resulting in a genome-wide coverage of 

most of the commonly carried genetic variants[57].  

 

More recently, SNP genotyping arrays have evolved to capture over 1 million SNPs 

as well as copy number variations, at an accuracy of over 99.5%[58]. Such arrays 

are also now used to calculate genetic relationships between individuals, 

reducing the need for population-wide pedigrees to account for relatedness[59]. 

Meanwhile, advances in DNA sequencing technology led to the generation of a 

larger variety of reference genomes, which facilitated the creation of larger 

reference panels (e.g. 1000 Genomes, Haplotype Reference Consortium)[60,61]. 

In turn, these reference panels allowed for more accurate imputation and greater 

coverage of the genome, with studies using state-of-the-art imputation panels 

now able to examine hundreds of millions of variants[62]. These cost-efficient 

and high-resolution genotyping methods provided a step change in our ability to 

study the genetics of quantitative traits compared to linkage analysis, with new, 

genome-wide association studies (GWAS) becoming the preferred method to map 

quantitative trait loci. 

 

At its core, a GWAS of a quantitative trait employs a linear regression 

methodology, regressing trait values against allelic dosage for each individual 

while taking into account covariates like relatedness and population genetic 
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structure. The model is identical to the one described in Equation 5, with the 

addition of the SNP of interest (SNP): 

 

𝒚 = 𝜇 + 𝛽𝑿 + 𝒈 + 𝑆𝑁𝑃 + 𝜖          (6) 

 

Where SNP is coded as 0, 1, or 2 to reflect the number of effect alleles compared 

to the reference (e.g. TT, TC, CC, with reference to T), and as before, X is a matrix 

of fixed covariates and g is a vector of random effects based on genomic 

relationships. When using imputed data, the allelic dosage can take an 

intermediate value to take into account the uncertainty in the imputation. In 

practice, fitting all SNPs at once within this model is computationally intractable, 

so instead the regression is repeated separately for every single SNP to be 

tested[63]. 

 

While many of the tools developed to perform this association are designed to fit 

the fixed covariates and random components for every SNP[63–65], alternative 

methods have been developed to split the analysis into two steps to reduce the 

computational burden[66,67]. These methods first run the model without any 

SNPs, and then regress the residuals of the model—which are thus corrected for 

covariates and population structure—against SNP dosages, one at a time. 

Residualising the trait is not a trivial step: random-effects residuals must be 

scaled appropriately to maintain power and prevent bias[66,68]. In the context of 

lifespan, the Cox model (Equation 2) can be residualised using martingale-based 

residuals[69], which, assuming no time-dependent covariates, can be written as: 

 

�̂�𝑖 = 𝛿𝑖 − 𝛬0(𝜏𝑖)𝑒�̂�1𝑿𝟏+�̂�2𝑿𝟐+ … + �̂�𝑛𝑿𝒏  (7) 

 

Where the martingale residual �̂� for individual ‘i' is calculated as the difference 

between the observed status 𝛿 of the individual (0 = alive; 1 = dead) and the 

cumulative baseline hazard 𝛬0 up until time 𝜏, as modified by the vectors of 

covariates X1–Xn and their estimated effects �̂�1-�̂�𝑛. Dividing martingale residuals 
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by the proportion of events in the population approximates them to log hazard 

ratio units[70], and allows them to be regressed against SNP dosages in a linear 

regression framework. 

 

GWAS have been very successful in their discovery of genetic associations with 

traits of interest. As of 2020, around 160,000 trait-variant associations from more 

than 3,000 studies have been documented in the GWAS catalog[71], an online 

repository of GWAS results (Figure 4). However, prior to 2016, there had been 

exceedingly few discoveries for lifespan traits, with only two genomic regions 

near APOE and CHRNA3/5 being discovered and replicated. This is likely because 

in comparison to other traits, lifespan is challenging to study genetically because 

the collection of genetic information is generally done on living individuals, who 

take a long time to die.  

 

 

Figure 4. The growing list of studies and associations catalogued in the GWAS catalog. The 

bars show the cumulative number of genome-wide association studies (left axis) with at least 

one genome-wide significant association (P < 5x10–8) recorded within the GWAS catalog, 

while the line shows the total number of genome-wide significant associations (right axis). 

Data from GWAS catalog[71], accessed February 2020. 

 

One line of lifespan research has attempted to address this problem by gathering 

cohorts of extremely long-lived individuals (commonly referred to as individuals 

reaching ‘longevity’), under the assumption that the genetics of longevity cases 
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can be compared to a control cohort who will likely die before reaching the same 

age (or have already died at a younger age)[72]. Longevity research is supported 

by observations that the trait of reaching exceptionally old age runs in families 

and these long-lived families are generally healthy for longer[73–75]. In addition, 

there is some evidence suggesting the inherited component to lifespan may be 

larger at advanced age[38,76]. However, the study of exceptional individuals is, 

by definition, limited to only a small percentage of a population and therefore 

suffers from recruitment challenges[77,78]. In addition, there is some question 

regarding the trustworthiness of longevity outliers (particularly 

supercentenarians)[79] with evidence of fraud despite valid documents[80], 

although less extreme longevity cases are more likely to be valid. Even if most 

records are accurate, differences in environmental exposures experienced by the 

extremely old generation compared to control individuals can complicate 

results[81]. 

 

Nonetheless, longevity has been studied using a case-control framework, initially 

in linkage studies[52], and later using GWAS[82–84]. These first GWAS were 

performed on samples from the US and Europe containing up to 4,149 longevity 

cases, with each study finding or confirming only a single locus on chromosome 

19 associating with longevity, near APOE. Despite the considerable resources 

invested in collecting and characterising these exceptional individuals, GWAS of 

longevity have yielded very few results compared to GWAS performed at the same 

time on less extreme phenotypes, such as a 2008 study on the height of ~25,000 

individuals which discovered 10 loci[85]. The paucity of longevity results seems 

likely to stem from the modest heritability and high polygenicity of the trait: there 

may be many genetic variants with small effect sizes which are simply not 

detectable with current sample sizes. In addition, there has been considerable 

debate regarding the appropriate cut-off to use for defining longevity[81], calling 

for population- and sex-specific longevity thresholds to homogenise phenotypes.  

Recently, this was done for the largest longevity GWAS to date; however, despite 

a gain in power, this study only provided putative evidence for one new locus[72]. 
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The alternative to recruitment of longevity cohorts is to study lifespan as a 

quantitative trait in more general population cohorts. While these cohorts tend 

to be much larger, almost all individuals will be alive at time of recruitment. 

Depending on the average age of the cohort, it may take 30 to 50 years before 

enough individuals have died to perform a lifespan study. For example, the UK and 

Estonian Biobank population cohorts were established more than 10 years ago 

but fewer than 5% of the genotyped individuals in each cohort have died thus 

far[86,87] (Table 2). Recently, a new approach has been put forward to deal with 

the low number of deaths in genotyped population cohorts: study of the lives of 

parents instead[39]. Parents and their children share half their DNA, meaning 

lifespans of parents can be tested against the alleles of genotyped cohorts, 

although the effective sample size will only be 1/4th of the original sample for each 

parent[88]. While this means larger sample sizes are necessary to identify 

variants affecting lifespan, there is no requirement for exceptional cases of 

survival, and almost all individuals within population cohorts can contribute 

information to the study, as long as they report the age and survival status of their 

biological father and/or mother. The power of this method was demonstrated in 

two studies published in 2016, showing parental age at death in a linear 

regression model[89] and parental survival in a Cox proportional hazards 

model[90] could be studied effectively in large population cohorts. 

 

Despite the advantages of ease of recruitment and increases in death counts, 

there are also multiple drawbacks to using parental information. Without full 

knowledge of parental genotypes, it is impossible to construct an accurate kinship 

matrix for the parental generation, and as a result, genetic studies into parental 

lifespan cannot properly account for relatedness[88]. The easiest solution to this 

problem is to exclude related individuals, assuring their parents are unrelated as 

well, but this does result in a lower sample size. On a phenotypic level, the 

drawback of studying parents is that their survival reflects the causes of death in 

the parental generation and, given that these causes have changed over time[91], 

parental risk factors may not accurately translate to the current generation. 

Moreover, important lifespan-related covariates, such as smoking status and use 
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of medications, may not be readily available for the parental generation and can 

therefore not always be adjusted for.  

 

Lastly, by definition, a parental analysis is limited to individuals who have 

survived until adulthood and who have been able or willing to conceive at least 

once. Developmental and fertility traits are heritable to some extent[92] and 

conditioning on them through sample selection can introduce collider 

bias[93,94]. That is, genotypes causing developmental and fertility traits may 

falsely appear to be associated with parental survival or have upwardly biased 

effect size estimates. However, unless genotype effects on colliders are very large 

or the correlation between fertility and parental lifespan is large, this bias may 

not have a material effect on genotype-phenotype associations[93]. 

 

1.2.4 Datasets large enough to study lifespan 

Large population cohorts have been instrumental in driving modern discoveries, 

both in terms of traditional and genetic epidemiology. Recently, the linkage of 

nation-wide databases such as electronic health records and death records have 

created rich datasets of hundreds of thousands to millions of individuals. Scotland 

is unique in this regard as its government specifically set forth strategies and 

action plans in 2012 to link up nationwide datasets and make them accessible to 

researchers to use in the public’s interest[39]. According to the National Data 

Catalogue, around 100 datasets have been catalogued, spanning everything from 

A&E visits to cancer treatment waiting lists to GP prescriptions to postcodes[95]. 

Where available, these datasets have been linked using Community Health Index 

(CHI) identifiers, although many of those without explicit CHI numbers can be 

linked by the electronic Data Research and Innovation Service upon request[95]. 

This means medical and demographic data spanning multiple decades is available 

to eligible researchers on the whole population of Scotland—over 5 million 

individuals[96]. 
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In the context of lifespan, linkage of data such as dates of birth and death (if 

deceased), measures of deprivation, and dates and diagnoses of hospital visits 

(coded through international classification of disease formats ICD9 and ICD10) is 

especially relevant. For instance, nationwide death records are available for 

almost 1.5 million individuals since 1990 (Table 2) and can be used to infer long-

term trends in mortality. Linkage of those records with hospital admissions data 

then allows mortality trends to be linked to trends in disease. While the 

sensitivity of the data requires additional security measures to maintain the 

privacy of the individuals involved, the scale and scope of data permit researchers 

to investigate the diseases determining lifespan and their trends with 

unprecedented precision. 

 

In terms of genetic epidemiology, a number of cohorts with genetic data have 

recently gained global prominence and have allowed for detailed study of the 

genetics of lifespan. One such cohort is UK Biobank, a nationwide, prospective 

cohort study of around half a million individuals. These individuals were aged 40 

to 69 and were recruited between 2006 and 2010 across 22 assessment centres 

in Scotland, Wales, and England[87]. Individuals were characterised using a 

combination of verbal interviews, questionnaires, and medical assessments. They 

also donated biological samples and a subset of individuals has since been imaged 

using magnetic resonance imaging or dual-energy X-ray absorptiometry. While 

individuals themselves have been anonymised, all individuals consented to have 

their UK Biobank record linked to NHS medical records and death records. Death 

records show that from the time of recruitment until 2019, only 4.1% of UK 

Biobank individuals died (N = 20,442; Table 2). However, at recruitment, 

individuals also reported the survival of their parents via touchscreen 

questionnaire, which showed around 78.8% of parental generation was deceased 

(Nfather = 433,444; Nmother = 345,644).  

 

In terms of genetics, the UK Biobank individuals were genotyped on two custom-

built, largely identical (95% similarity), genotyping arrays. The arrays contained 

around 800,000 markers designed to provide good coverage of the genome for 
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imputation purposes, as well as a number of specific markers previously linked 

to phenotypic variation or known to be missense or protein-truncating 

variants[97]. Imputation was performed using both low-coverage UK-specific 

haplotype references (UK10K) and haplotypes from the 1000 Genomes 

Project[98]. Genotypic information was released to the scientific community in 

two phases, with array and imputed genotypes for the first 150,000 subjects 

being released in May 2015 and the remainder following in July 2017[87]. 

 

 

Cohort 
Dates 

(recruitment) 
Age N Deaths Genotyped Reference 

National Records 

of Scotland 

(Deaths) 

1990–2016 35+ 1,477,796 1,477,796 No 
Timmers et 

al. [91] 

UK Biobank 2006–2010 40–69 502,506 20,442 Yes 
UKB Data 

Showcase[99]  

Estonian Biobank 
1999 

(ongoing) 
18+ 50,916 2,333 Yes 

Leitsalu et al. 

[86] 

 

Table 2. Characteristics of population cohorts used in this body of work. 

 

Another dataset of importance is the Estonian Biobank, a longitudinal, 

prospective study of over 50,000 individuals resident in Estonia, equating to 5% 

of the adult population[86]. Unlike individuals in UK Biobank, the minimum age 

for individuals to participation in the Estonian Biobank was 18, with no maximum 

age. Individuals were recruited in private practices, hospitals, and recruitment 

offices across all 15 Estonian counties[86], which administered baseline 

questionnaires and anthropometric/blood tests. Similar to UK Biobank, the 

Estonian cohort benefits from record linkage to national databases, including the 

Population Register, the Estonian Causes of Death Registry, and Estonian 

Tuberculosis Registry, and health insurance/medical records, which are all 

updated semi-annually.  

 



 

Introduction 22 
 

In terms of genetics, Estonian individuals’ DNA was read using four different 

methods. Whole genome sequencing was performed on a subsample of around 

2,500 participants, which were subsequently used to create a population-specific 

haplotype reference[100]. Around 8,000 individuals were genotyped using the 

HumanOmniExpress beadchip and the remainder of the cohort was or is being 

genotyped using the Global Screening Array from Illumnia[101]. The cohort is 

currently still expanding, set to reach a total sample of 150,000 genotyped 

individuals by 2020. As of 2015, around 4.6% of the cohort was deceased (N = 

2,333; Table 2), while 38.9% of their parents were reported as dead at time of 

recruitment. 

 

 

1.3 How precision medicine and therapeutic discovery will 

affect ageing 

 

It is likely that large population datasets will transform our understanding of 

diseases and the ageing process, but questions remain on how this knowledge 

should be implemented in clinical settings and the effect it will have on 

healthcare.  

 

Understanding which diseases are responsible for the most deaths and predicting 

which ones will be important in the future will have the most immediate benefit. 

Healthcare policy can be directed to improve treatment and prevention of the 

most common diseases with the highest mortality. Additionally, this research 

allows diseases with the largest socioeconomic disparity to be highlighted and 

addressed. At the same time, monitoring which disease categories show 

increasing mortality rates over time and taking preventative action to mitigate 

these trends can halt slowdowns or reversals in population life expectancy.  

 

Investigating the genetics of lifespan has more long-term benefits on healthcare, 

as genetic screening of individuals for risk of disease prior to its occurrence has 
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thus far been limited to congenital disorders, such as phenylketonuria and 

congenital hypothyroidism[102], and to high-penetrance variants, such BRCA1 

and BRCA2 for breast and ovarian cancer[103], and HTT polyglutamine 

expansion for Huntington’s disease[104]. However, with the advent of GWAS and 

large datasets, it has now become possible to calculate individuals’ genetic risk 

for more complex diseases, such as myocardial infarction and diabetes[105], 

using many variants spread across the genome. Summing the effects of tens to 

millions of variants creates an overall score for each individual, known as a 

polygenic risk score: 

 

𝑃𝑅𝑆𝑖 = ∑ 𝑔𝑖𝑗𝛽𝑗  (8) 

 

Where PRSi is the polygenic risk score for the ith individual, calculated as the sum 

of j effect alleles 𝑔 (denoted 0, 1, or 2) times its associated effect 𝛽.  

 

There is debate regarding which variants to include in the risk score, with one 

side advocating a sparse model of only the most informative SNPs, and the other 

side suggesting the inclusion of all SNPs while accounting for the correlation 

amongst them[106,107]. From a bioinformatics perspective, it makes sense to 

include as many SNPs as are available to improve the predictive performance of 

the score, as long as the information they contribute outweighs the noise. Effect 

size estimates become noisier with more weakly associated variants, but 

Bayesian priors can be applied to shrink the weights of uncertain variants, as is 

done in LDpred[107]. However, from a clinical point of view, the small 

improvements gained from including genome-wide information may not 

outweigh the downsides. For one, robustly replicated, genome-wide significant 

SNPs are more likely to have a biologically plausible pathway to the phenotype, 

which should increase their predictive power in populations other than the 

training set. This is especially important when predicting phenotypes in a 

population with a different ancestry from the original study, where differences in 

LD and allele frequencies can lead to misestimation of scores[108]. A third 

method is to start from genome-wide significant SNPs and sequentially add more 
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putative SNPs into the model, up to a level of uncertainty that balances both 

prediction and transferability. PRSice[109] strikes this middle ground by testing 

a multitude of SNP cut-offs to identify the list of SNPs that is optimal at predicting 

the phenotype in a validation sample (rather than the training sample).  

 

Once polygenic risk scores have been calculated for individuals in a population, 

individuals can be stratified into groups and tested for their susceptibility to 

disease. For example, a study creating polygenic risk scores for cardiovascular 

disease found that  individuals with extreme scores were much more likely to be 

diagnosed with the disease[105]. As GWAS sample sizes have grown, these scores 

have become more informative, reaching a point where the combined risk from 

common variants can match or exceed the disease risk associated with routinely 

tested monogenic mutations[105]. 

 

One application of polygenic risk scores is their use in disease screening and 

preventative care for at-risk individuals. For example, one study found individuals 

with higher polygenic risk scores for atherosclerosis were more likely to get the 

disease but also benefitted the most from statin therapy in preventing an 

ischaemic heart attack[110]. Another study found a polygenic risk score using 

several hundred breast cancer SNPs could be used to calculate breast cancer risk 

by age and use this to make group-specific recommendations for age of first 

breast cancer screening[111] (Figure 5). Similarly, polygenic risk scores for 

lifespan may prove to be useful in stratifying individuals in terms of their 

likelihood of disease and death, and inform those who are at the highest risk to 

take preventative measures. On the other hand, individuals with positive scores 

for lifespan could be more resilient and may be able to withstand more aggressive 

treatment. 

 

Secondly, knowledge of the genetics of lifespan may be used to inform therapeutic 

drug development to mitigate the burden of age-related disease. Discovery of new 

drugs and their development into effective and safe treatments has high failure 

rates, with only around 1 in 9 compounds entering clinical trials being ultimately 
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approved[112]. However, it is estimated that incorporating genetic information 

into the drug development process could double the success rate, as the genes 

targeted by approved drugs tend to be enriched for GWAS signals[113]. These 

enrichments appear to be most significant for genes related to musculoskeletal, 

metabolic, and blood phenotypes. 

 

 

Figure 5. Breast cancer risk as a function of age and polygenic risk score percentage. Solid 

lines show the absolute 10-year risk of developing breast cancer for individuals with varying 

levels of polygenic risk based on 313 breast cancer SNPs. Dotted line represents the average 

10-year risk of breast cancer for all 47-year-old women (i.e. when they first become eligible 

for screening in the UK) (2.6%). Individuals in the highest score decile will reach this level of 

risk by age 35, while individuals in the lowest decile will never reach this level of risk. Data 

from Mavaddat, N. et al. [111] 

 

However, while this retrospective evidence for the utility of GWAS in drug 

discovery is promising, it is unclear whether the success rate of drug development 

would shift if more compounds were submitted to clinical trials based on GWAS 

signals. This is because interpretation of GWAS signals is very difficult: many 

GWAS hits are located in intergenic regions and could affect anything from the 

splicing or expression of a gene to the stability of messenger RNA or protein[114]. 

 

Given the modest heritability of human lifespan, it may be possible that no single 

longevity gene can be found and targeted to delay ageing and age-related disease 
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using human genetic studies alone. Nonetheless, the genetics of lifespan can 

highlight which biological pathways are important in the human ageing process 

and provide insight into the differences and similarities with model organisms. 

Several therapeutics are in development to target known hallmarks of ageing, 

including metformin[115], rapamycin[116], and nicotinamide[117], which have 

shown to extend healthy life in model organisms. Whether these drugs will be 

successful in humans will depend largely whether the pathways they target are 

relevant to human survival as well. Analogously, knowledge of the biology of 

human ageing can inform which targets to examine in model organisms. 

 

 

1.4 Conclusions 

 

Greying populations and their associated burden of chronic disease are set to 

become one of the greatest global challenges. There is a pressing need to 

understand how disease affects lifespan on a population level, and genes and 

biological pathways affect lifespan on an individual level. Applying statistical 

survival modelling to some of the largest datasets to date has made it possible to 

address these challenges, with an improved understanding of diseases limiting 

lifespan leading to new policy, and an improved understanding of the genes 

influencing lifespan leading to personalised, preventative treatment and novel 

therapeutics.  

 

In order to address the challenges of an ageing population, in this body of work, I 

use hospital and death records across Scotland to investigate how morbidities 

influence lifespan, highlighting the diseases responsible for the greatest burden 

of mortality, and how they have changed over time. I then use genetic data on 

individuals from the UK and Europe to identify and quantify the genetic 

component to lifespan, examining the role of genes and pathways on disease and 

death. Finally, I meta-analyse large-scale genetic studies on ageing-related 

phenotypes to shed light on the processes underlying healthy ageing in humans.  
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Chapter 2: Trends in disease incidence and survival 

and their effect on mortality in Scotland 

2.1 Introduction 

2.1.1 Context 

Risk of disease and death increase exponentially with age, making ageing and age-

related morbidity the strongest determinants of human lifespan[118]. However, 

morbidities have varied over time; therefore, an analysis of morbidity trends may 

give insight into changes in the determinants of lifespan. The aim of the following 

study was to explain the observed trends in mortality through trends in 

morbidities.  

 

It is well-known that life expectancy in high-income countries such as the UK has 

increased by roughly three years every decade[119]. So far, studies into the 

determinants of this trend have been limited to changes in cause of death[120], 

which are often poorly recorded and of which the quality can vary between sex 

and socioeconomic deprivation. In addition, the retrospective nature of a causes 

of death study is unable to assess changes in the incidence of disease nor the 

likelihood of death following disease. 

 

In this Chapter, I sought to study how changes in disease incidence and survival 

have influenced human lifespan between 2001 and 2016. Examining the effect of 

diseases on mortality and tracking how the incidence and survival rates of these 

diseases have changed allows us to model future changes in the determinants of 

lifespan and predict mortality. Having examined the influence of recent disease 

trends on human lifespan, the following chapters go on to examine how—at a 

single point in time—genetic factors can also influence the incidence of disease 

and death, ultimately determining one’s length and quality of life. 
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2.1.2 Contributions 

The idea for the prediction of mortality through morbidities was first put forward 

by Craig Butler and Stuart McDonald (Lloyds Banking Group), who approached 

and later funded Peter Joshi and Colin Fischbacher to perform such a study in 

Scotland. After a basic project plan was formed, Jan Kerssens (electronic Data 

Research and Innovation Service) performed the linkage of raw healthcare and 

death records and made these available in the Scottish National Safe Haven. Peter 

then performed preliminary quality checks and data analysis in the Safe Haven, 

which included writing scripts to test if data could be accessed and cox survival 

models could be constructed. 

 

I picked up the work from here, refining these basic scripts into a pipeline that 

could run the analysis for a subset of diseases and stratify analyses by sex and 

socioeconomic status. I was also responsible for strengthening the preliminary 

data quality control, which involved applying additional exclusions criteria, 

producing data descriptives, and creating figures to visualise the exclusions. I 

then performed dozens of runs to generate disease-specific results and wrote the 

scripts to combine these into overall measures of morbidity, format the results for 

publication, and draw all the figures.  

 

The electronic Data Research and Innovation Service checked the results for any 

potentially identifiable information before extracting them from the Safe Haven. I 

wrote the draft manuscript with help from Peter and Jan. Specifically, Peter wrote 

the ethical approval section and contributed substantially to the discussion of the 

study limitations, while Jan contributed the section on data linkage. All co-authors 

provided useful comments and feedback on the initial draft, which included 

requests for rephrasing (especially to distinguish “disease survival” from “all-

cause mortality after hospitalisation for a disease”) and providing relevant 

references.  
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Finally, I would also like to acknowledge comments from four named BMJ Open 

reviewers, David Roder (University of South Australia, Australia), Yuling Hong 

(Centers for Disease Control and Prevention, USA), Qingfeng Li (Johns Hopkins 

University, USA), and Rosie Cornish (University of Bristol, UK), which improved 

the manuscript prior to publication. 

 

 

2.2 Manuscript accepted for publication 

 

This manuscript was submitted to the journal BMJ Open and went through formal 

peer review. It was accepted for publication on 24 February 2020. A copy of the 

Author Accepted Manuscript prior to proofing is included below, provided under 

the terms of the Creative Commons Attribution License CC BY 4.0. 
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Abstract 

Objectives: Identify causes and future trends underpinning Scottish mortality 

improvements and quantify the relative contributions of disease incidence and 

survival. 

 

Design: Population-based study. 

 

Setting: Linked secondary care and mortality records across Scotland. 

 

Participants: 1,967,130 individuals born 1905–1965 and resident in Scotland 

2001–2016. 

 

Main outcome measures: Hospital admission rates and survival within five years 

post-admission for 28 diseases, stratified by sex and socioeconomic status. 

 

Results: “Influenza and pneumonia”, “Symptoms and signs involving circulatory 

and respiratory systems”, and “Malignant neoplasm of respiratory and 

intrathoracic organs” were the hospital diagnosis groupings associated with most 

excess deaths, being both common and linked to high post-admission mortality. 

Using disease trends, we modelled a mean mortality hazard ratio of 0.737 (95% 

CI 0.730–0.745) from one decade of birth to the next, equivalent to a life extension 

of ~3 years per decade. This improvement was 61% (30%–93%) accounted for 

by improved disease survival after hospitalisation (principally cancer) with the 

remainder accounted for by lowered hospitalisation incidence (principally heart 

disease and cancer). In contrast, deteriorations in infectious disease incidence 

and survival increased mortality by 9% (~3.3 months per decade). Disease-

driven mortality improvements were slightly greater for men than women (due 

to greater falls in disease incidence), and generally similar across socioeconomic 

deciles. We project mortality improvements will continue over the next decade 

but slow by 21% because much progress in disease survival has already been 

achieved. 
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Conclusion: Morbidity improvements broadly explain observed mortality 

improvements, with progress on prevention and treatment of heart disease and 

cancer contributing most. The male-female health gaps are closing, but those 

between socioeconomic groups are not. Slowing improvements in morbidity may 

explain recent stalling in improvements of UK period life expectancies. However, 

these could be offset if we accelerate improvements in the diseases accounting for 

most deaths and counteract recent deteriorations in infectious disease. 

 

 

Strengths and limitations of this study 

• The individual-level linkage of hospital and death records in this population-

wide dataset allows for direct modelling of improvements in 28 disease 

categories in terms of improvements in disease incidence and subsequent 

survival, stratified by sex and socioeconomic status. 

 

• Exclusion of migrating individuals means changes in disease are unaffected by 

population shifts, and allow for diseases to be compared with each other and 

summarised into trends in mortality based on morbidity. 

 

• Hospital admission diagnosis and subsequent survival avoid issues with cause 

of death recording; however, they do not provide evidence of the causal effect 

of disease on mortality and may in some cases track changes in underlying 

frailty. 

 

• This study is limited to the assessment of diseases which result in a hospital 

admission prior to death.  
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Introduction 

In recent decades, there has been a substantial improvement in life expectancies 

at birth in the UK[121]. More recently, several studies have suggested that there 

has been slowdown in improvements in the USA, UK, France, Germany, Sweden, 

the Netherlands and other Organisation for Economic Co-operation and 

Development countries; however, the causes are less clear, with speculation that 

they may arise from slowing improvements in cardiovascular disease, increased 

influenza mortality and/or pressure on health and social care services[121–128]. 

Understanding trends in disease incidence and subsequent survival could 

illuminate such trends in mortality, and disentangling how and how much 

different diseases contribute has the potential to reveal whether investment in 

healthcare and research is directed at the most urgent diseases and most affected 

individuals. 

 

Through its electronic Data Research and Innovation Service (eDRIS), Scotland 

has linkage of historical individual death and electronic health records in a 

controlled environment, with specific study approvals by the Public Benefit and 

Privacy Panel. This allows direct modelling at an individual level of the incidence 

of disease and subsequent death or survival of subjects. Furthermore, because 

historic records are available and the whole population is covered, a retrospective 

cohort study can be constructed (with inherent representativeness of the initial 

sample, with very complete levels of follow-up, and without survivor bias). 

 

Here, we use population-wide data between 2001 and 2016 on residents of 

Scotland born before 1966 to explore how trends in longevity were driven by 

different trends in broad classes of disease incidence or survival, and highlight 

diseases which have shown more or less improvement in their contribution to 

overall mortality. We partition overall mortality by sex and socioeconomic status 

and, assuming past disease improvements continue to the same extent in the 

future, use these results to project future improvements in mortality and their 

changing sources.   
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Methods 

All methods and results are reported in line with RECORD guidelines[129].  

 

Data sources 

We received ethical approval to access administration and care records from NHS 

National Services Scotland (NSS) from 2001 up to 2016. The final study 

population included all 1,967,130 individuals born between 1905 and 1965 who 

registered with the NSS, were resident in Scotland during the study period, and 

had complete and reliable records on their date of birth, socioeconomic status, 

and death (if applicable). Linkage and quality control of the data are described 

below. 

 

Community Health Index dataset 

Records were extracted from the historical and current Community Health Index 

(CHI) dataset. This is a register of all patients in NHS Scotland and is fed by eight 

regional databases (e.g, GP database, cancer screening). The register is 

considered complete from 2001 onwards. The CHI number, contained in the 

dataset, is effectively a patient identifier and added to other health datasets to 

make linkage possible, for instance between hospital admissions, death records 

and the Scottish cancer registry[130]. Our extract consisted of 2,691,304 de-

identified records, constituting the identified population of Scotland in 2001 who 

had been born between 1905 and 1965. The Scottish Index of Multiple 

Deprivation (SIMD)[131] was used to quantify socioeconomic status, determined 

by individuals’ full postcode, and subsequently converted into deciles. The 

dataset we received contained only records with district-level postcodes and 

SIMD deciles, of which we excluded individuals with district codes with less than 

5,000 individuals (thereby excluding anomalous postcodes, often with special 

meanings, such as “marketing campaign”; N = 11,564). We also excluded 

individuals missing from the CHI database in 2016, but not recorded as dead (and 

therefore likely transferred out of Scotland; N = 573,711), individuals with record 

discrepancies between the CHI and National Records of Scotland databases (N = 
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79,131), and individuals with records outside of the study dates or missing 

information on socioeconomic class (N = 59,767), giving 1,967,130 individuals 

for analysis after quality control (Supplementary file 1). Characteristics of the 

excluded individuals were similar to the rest of the population, except for 

postcode exclusions and database transfers, which were missing socioeconomic 

information and death records, respectively, as expected (Supplementary file 2).  

 

National Registry of Scotland death records 

We received 1,477,796 death records from the National Registry of Scotland 

(NRS) of all deaths occurring between 1990 and 2016, of which 699,093 could be 

matched to the CHI database before quality control. Unmatched records were 

usually for deaths occurring prior to the study start (2001). Of the matched 

records, 176,197 belonged to individuals that were excluded during CHI quality 

control, leaving 602,506 total deaths for analysis (Table 1). 

 

Acute hospital admission 

Health records were also linked to 30,054,191 acute hospital admissions, of 

which 17,264,379 were dated between 2001 and 2016 and could be matched 

(Supplementary file 3 & 4). 

 

Disease classification 

The main diagnosis of acute hospital admission records, excluding any secondary 

diagnoses, was used to classify records into disease categories, which 

corresponded to disease blocks as described in the chapters of the ICD10[132]. 

In order to model the effect of disease incidence and avoid double counting of 

chronic conditions, we used only the first admission of a disease category for each 

individual, excluding subsequent visits to the hospital for diseases within the 

same category. The term “incidence” is used throughout this study to refer to the 

first recorded hospital admission of any disease within the disease category 

during the study period. 
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Design 

Mortality trends were modelled using morbidity trends: we first determined the 

major disease categories (ICD10 blocks) associated with the most lives lost by 

taking into account the frequency of the disease (as measured by hospitalisation) 

and its effect on survival (as measured by the subsequent all-cause mortality of 

patients admitted for the disease compared to the mortality of everyone else). 

The effect of disease incidence has previously been  modelled based on one-, five-, 

or ten-year mortality[133]; we chose five years as this captured the great part of 

excess mortality attributable to the incidence, rather than common underlying 

factors, although this does vary by disease (area under graphs in Supplementary 

file 5, in excess of asymptotic rates) while leaving a range of 10 years in our study 

to examine trends over time. We combined disease frequency and 5-year excess 

age-adjusted death rates to calculate a burden of death weighting for each disease 

block. We then looked at how the age-adjusted trends in hospitalisation rates (as 

a proxy for incidence) changed for each disease, by decade of birth, projecting 

that if incidence of a disease fell by a given percentage, its contribution to 

mortality would fall similarly. The use of a cohort model for the incidence of 

disease was driven by empirical investigation. Specifically, the distinctions we 

found by decade of birth in cancers, especially “Malignant neoplasm of 

respiratory and intrathoracic organs” (C30-C39) in Supplementary file 6 & 7, 

show a clear cohort effect. However, it should be recognised that the cohorts have 

only been observed over the study period (2001-2016). After calculating 

hospitalisation rates between decades of birth, we calculated their weighted 

average, reflecting the expected effect of all measured disease incidence changes 

on mortality rates, driven by decade of birth. Similarly, we looked at how the (age-

adjusted) 5-year survival rates following first hospitalisation changed by year of 

hospitalisation. For each block this again gives a contribution towards reduced 

mortality, and the weighted average, the expected effect of changes in survival of 

the combined diseases on overall mortality. Adding these effects (and noting we 

assessed changes in survival from incidences over one decade), gives the 

expected effect on overall mortality from decade of birth to subsequent decade of 

birth from the effect of changes in disease incidence and survival, under the 
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(necessarily simplified) model that incidence is a function of birth cohort and 

survival post incidence is a function of year of incidence. 

 

Statistical analysis 

Mortality 

A Cox proportional hazards model using NRS mortality data – fitting sex, decade 

of birth, and deprivation – was used to quantify mortality in the Scottish 

population during the study period. The same analysis was run stratified by sex 

and deprivation. Unless otherwise stated, (for example median age differences in 

Kaplan-Meier curves), years of life of a hazard effect have been calculated by 

multiplying the loge hazard ratio (lnHR) by 10 [70]. Only individuals with 

complete records were included in the analysis. 

 

Morbidity 

We grouped the main diagnoses of each NSS hospital admission into categories, 

as laid out by the ICD10 Chapters, and included only the first instance of 

admission for a category per individual (discarding subsequent repeat visits to 

hospital for a disease within the same disease category). Analysis was restricted 

to more common disease blocks. Visual inspection suggested a pragmatic 

threshold of at least 15,000 first-time admissions (see Supplementary file 8 for 

all disease categories meeting this threshold). 

 

Effects on the incidence of hospitalisation for the more common disease blocks 

was quantified using Cox proportional hazard models based on age, with events 

defined as the first incidence of hospitalisation. We fitted sex, deprivation, and 

decade of birth as covariates. Again, the same analyses were performed stratifying 

by sex and deprivation. 

 

In order to quantify all-cause mortality in the five years following hospitalisation, 

person-time of individuals was divided into phases, corresponding to the study 

start until hospitalisation, the first five years after hospitalisation, and the 
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remaining time in the study. For example, an individual admitted to hospital in 

2004 for ischaemic heart disease I20-25 (IHD)  and surviving until 2010 would 

contribute three phases to the model: one for the period until hospitalisation (no 

event), one for the first 5 years after hospitalisation (no event), and one >5 years 

after hospitalisation (event after 1 year). The status of each phase was fitted as a 

covariate in a Cox proportional hazards model[134] with death as the event, 

adjusting for sex and deprivation: 

 

ℎ(𝑥) = ℎ0(𝑥) 𝑒𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4  (1) 

 

Where h0 is the baseline hazard, x the patient age, and X1-X4 the covariates sex, 

deprivation, and logically coded phase status (0-5 years True/False and >5 years 

True/False), with corresponding effect sizes 𝛽1-𝛽4. This yielded estimates of the 

proportional hazard of status (0-5 and >5 years) after hospitalisation compared 

to pre-hospitalisation mortality. Thus, the baseline hazard is a function of age and 

the hazard ratios reflected the effects of the other covariates. The same model was 

run, stratified by sex and deprivation. 

 

Burden 

For disease blocks with at least 15,000 first admissions during the study period, 

the relative mortality burden of each disease block was calculated as the excess 

mortality in the 5 years after hospital admission (Equation 1) multiplied by the 

number of first-time admissions for the disease block, as follows: 

 

𝑁𝑓𝑖𝑟𝑠𝑡𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑜𝑛/𝑁𝑡𝑜𝑡𝑎𝑙  ∗  ℎ(0,5) (2) 

 

Where Nfirstadmission is the total number of first hospital admissions of the disease 

category during the study period, Ntotal is the total number of individuals in the 

study, and h(0,5) is the mortality of individuals in the first five years following 

hospitalisation compared to individuals who were never hospitalised for the 

disease category, measured in loge hazard ratios. The resulting value was then 

scaled to total 1 and provides a relative measure of the number of lives lost due 
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to the diseases within the category, with higher values indicating a disease 

category with more common diseases or diseases associated with higher 

subsequent mortality, and lower values indicating a disease category with rare 

diseases or diseases associated with lower subsequent mortality. Whilst this 

measure may in principle be affected by differing age patterns on incidence, it was 

judged sufficient for our purpose – to establish broad relative weightings of the 

importance of each disease category. 

 

To maintain a feasible computational burden within the national safe haven, 

subsequent analysis was restricted to the 25 blocks with the highest burden of 

death on the population (Table 2). We added C50-C50 malignant neoplasm of the 

breast, C60-C63, malignant neoplasms of male genital organs, and G30-G32 other 

diseases of the nervous system to this list, out of specific interest: in the sex-

specific effects and awareness of the limitations of our method for Alzheimer’s 

disease (see discussion). All further analyses were performed on these top 28 

blocks (T-28). The use of (first) hospitalisation for a disease as our definition of 

incidence is imperfect (e.g. for Alzheimer’s disease where hospitalisation 

following incidence is rare or delayed, and even first diagnosis in the community 

will often be preceded by a long latent period)[135]. 

 

Disease survival 

Improvements in disease outcomes by ICD10 block were calculated by comparing 

5-year all-cause mortality (Equation 1) following hospitalisation in 2001 with 5-

year all-cause mortality following hospitalisation in 2011. As 5-year mortality 

estimates in 2011 had more uncertainty (due to fewer deaths in 2011–2016), we 

also calculated 5-year mortality following first-time hospitalisation for every year 

between 2001 and 2011 (i.e. mortality of patients admitted in those years), and 

used the trend in mortality over time to inform the 2011 estimate. To do so, we 

regressed the yearly mortality estimates against year of hospital admission, 

fitting a 3rd order polynomial to allow for non-linear relationships, and weighted 

the estimates by the inverse of their variances to account for uncertainty:  
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𝑦 = 𝛽1𝑥 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝜖 (3) 

 

Where y is the 5-year mortality hazard after hospital admission in year x, and 

𝛽1, 𝛽2, 𝛽3 are the coefficients describing the relationship between y and x. We then 

used the value and standard error predicted for 2011 by the model as our 

estimate for 5-year all-cause mortality for hospitalisation in 2011. 

 

Mortality estimates from morbidity 

Estimates of the improvement in incidence of hospitalisation between decades of 

birth was combined into an overall improvement by performing a weighted sum 

of all diseases, with weights derived from the relative burden of death of each 

disease (see above).  

 

These ten year improvements (I) due to incidence were added to the ten year 

improvements due to post incidence survival (S) to give a total improvement due 

to all morbidities, and proportions due to incidence/survival were calculated as 

the S or I / (I+S). 

 

 

Ethical approval 

This study was approved by the Public Benefit and Privacy Panel for Health and 

Social Care under application number 1617-0255/Joshi. As clinical records are 

provided without explicit patient consent, the panel requires the public benefit of 

the research to clearly outweigh any impact on individual patient privacy, and 

appropriate safeguards and security to be in place to protect patients. The panel 

granted access to de-identified patient data, accessible only through the National 

Safe Haven and only by University of Edinburgh researchers with data 

safeguarding qualifications. In addition, all results were reviewed by eDRIS before 

extraction from the safe haven to ensure no potentially identifiable information 

was made public. 
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Patient and public involvement 

Patients and the public were not involved in the study or its design, beyond their 

contribution of health records. Due to the retrospective study design and 

anonymised nature of the records, it was not feasible to contact individual 

patients nor involve them in the dissemination of results. 

 

Summary of outcomes 

Mortality improvements 

Age-adjusted falling mortality rates observed directly from NRS death records. 

 

Disease burden of death 

Prevalence of a disease category (total number of individuals admitted at least 

once 2001–2016), multiplied by the age-adjusted all-cause mortality within five 

years (in lnHR) after the first diagnosis of the disease category.  

 

Disease weight 

Disease burden of death, scaled 0-1, denoting the relative importance of a disease 

category. 

 

Disease incidence improvement 

Age-adjusted hazard of being admitted to hospital for a disease category 

(excluding subsequent hospital visits for the same disease category) from one 

decade of birth to the next. 

 

Disease survival improvement 

Age-adjusted hazard of dying within five years after the first hospital admission 

for a disease category in 2011 compared to having the first hospital admission in 

2001. 

 

Disease improvements 

Linear combination of the disease survival and disease incidence (averaged 

across decades of birth) in units of lnHR. 
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Morbidity-driven mortality 

The change in mortality rates expected from the improvements in morbidity (i.e. 

weighted sum of disease survival and incidence for all 28 diseases). 

 

All model coefficients used in the results can be found in Supplementary file 9.  
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Results 

Mortality  

The population consisted of 1,967,130 Scottish individuals aged 35 years or older 

at the start of the study period (1 December 2000). 53.3% were female, 78.5% 

had been admitted to hospital at least once within the study period, and 30.6% 

died over the course of the study (31 January 2016). See Table 1 for detailed 

population characteristics. 

   N  Age Entry  Age Exit  Hospital Visits 

Sex Dead 
 
Individuals Admitted Hos. Visits 

 
Mean Median SD 

 
Mean Median SD 

 
Mean Median SD 

Male FALSE 
 

633,953 429,659 2,315,915 
 

50.9 49.4 10.3 
 

65.6 64.3 9.8 
 

3.7 2.0 6.8 

Male TRUE 
 

283,835 283,835 2,742,686 
 

68.0 69.3 11.7 
 

75.6 77.1 11.4 
 

9.7 7.0 11.4 

Female FALSE 
 

730,671 511,632 2,764,040 
 

52.7 51.1 11.6 
 

67.4 66.1 10.8 
 

3.8 2.0 7.0 

Female TRUE 
 

318,671 318,671 2,895,443 
 

72.1 73.8 12.0 
 

79.7 81.7 11.5 
 

9.1 6.0 11.0 

Both FALSE 
 
1,364,624 941,291 5,079,955 

 
51.9 50.3 11.1 

 
66.6 65.3 10.4 

 
3.7 2.0 6.9 

Both TRUE 
 

602,506 602,506 5,638,129 
 

70.1 71.7 12.0 
 

77.8 79.5 11.6 
 

9.4 6.0 11.2 

Both ALL 
 
1,967,130 1,543,797 10,718,084 

 
57.5 55.4 14.1 

 
70.0 69.2 11.9 

 
5.4 3.0 8.8 

 

Table 1: Description of the data. The population included almost 2 million individuals (one-

third of whom died during the study). See Supplementary file 3 for descriptives by 

deprivation including ICD10 codes. N – Number of records; Admitted – Individuals admitted 

to hospital at least once; Hos. Visits – All records of visiting the hospital; Age Entry – Age at 

the start of the study period (1 December 2000); Age Exit – Age at the end of the study period 

(31 January 2016) or at the end of life. 

 

Quantifying mortality effects using Cox proportional hazard models, we observed 

statistically significant associations (P < 1x10-26) between mortality and sex, 

deprivation and decade of birth (Supplementary file 10). Women showed lower 

overall age-adjusted mortality rates compared to men (hazard ratio 0.71; 95% CI 

0.70–0.71), corresponding to an expectation of life of 3.5 years longer than their 

male counterparts, whilst individuals from the most deprived areas (top decile) 

suffered mortality rates more than twice as severe (2.07; 95% CI 2.04–2.09) as 

those from the least deprived areas (bottom decile), corresponding to a difference 

in around 7 years of life. Median survival of men and women in the most deprived 

areas was 71.1 and 76.6 years, respectively, compared to 82.2 and 85.2 in the least 
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deprived areas (Supplementary file 11). A wide gap between the most deprived 

decile and the adjacent one for men is apparent visually: the difference in median 

survival between deprivation deciles 1 to 9 is roughly constant (0.82/1.05 years 

per decile for women/men), but moving from the 9th to 10th deprivation decile 

has a greater effect, especially for men (1.99/2.67 years for women/men). Lastly, 

individuals born in the decade commencing 1935 had age-adjusted mortality 

rates 2.45 (95% CI 2.39–2.51) times those born three decades later, 

corresponding to a difference in life expectancy of around 9 years of life. 

 

Morbidities and consequent mortality 

Multiplying total number of hospitalisations during the study period (as a proxy 

for disease prevalence) by 5-year mortality after hospital admission (as a proxy 

for disease severity) provided a weight for the death burden of hospitalisation of 

each ICD10 block. We restricted our analyses to 28 of the top disease blocks for 

burden of death (T-28, see methods). Among the T-28, total cases of disease 

incidence (i.e. first-time admissions) during the study period ranged from 33,613 

(A30-A49, “Other bacterial disease”) to 225,504 (R00-R09, “Symptoms and signs 

involving the circulatory and respiratory systems”) (Table 2). Per-person total 

cases of disease incidence (not age-adjusted) were 68.0% higher for the most 

deprived decile (188,905 individuals with 331,701 first-time admissions) 

compared to the least deprived decile (187,193 individuals with 195,617 first-

time admissions). Between sexes, per-person incidence was 2.2% higher for men 

(917,788 individuals with 1,257,417 first-time admissions) compared to women 

(1,049,342 individuals with 1,407,223 first-time admissions) (Supplementary 

file 12).  

 

In the first five years, the highest all-cause mortality rate was for patients 

admitted for C76-C80 (“Malignant neoplasms of ill defined, secondary and 

unspecified sites”; hazard ratio 26.1) compared to all-cause mortality rates for 

those not admitted for C76-C80. The lowest 5-year all-cause mortality rate was 

for those admitted for K20-K31 (“Diseases of oesophagus, stomach and 

duodenum”; hazard ratio 1.8) compared to mortality rates for those not admitted 
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for K20-K31. Ordering diseases by their burden of death weights, we found 

“Influenza and pneumonia” (J09-J18), “Symptoms and signs involving circulatory 

and respiratory systems” (R00-R09), and “Malignant neoplasm of respiratory and 

intrathoracic organs” (C30-C39) were the disease categories responsible for the 

most death (Table 2), together accounting for 19% of the total death burden of 

the T-28 diseases. 

 

Apart from sex-specific cancers, we observe significant differences in burden of 

death between men and women for injuries to the hip and thigh (S70-S79) and 

head (S00-S09), with the former having a higher burden in women due to more 

female cases and the latter having a higher burden in men due to more male cases. 

For both disease blocks, the effect of hospitalisation on subsequent mortality is 

greater in men than women (S70-S79 hazard ratio men: 3.19, women: 2.44; S00-

S09 hazard ratio men: 2.32, women: 1.88). Strikingly, 5-year mortality after 

hospital admission for IHD is higher for women (hazard ratio 2.01/1.70 

women/men), but this is offset by the lower prevalence of hospitalisation in 

women (Supplementary file 12).  
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  Disease Importance  Average 10-year improvements HR (95%CI)   

ICD10  Disease grouping 
Total hospital 

visits 

5-year 
mortality 

(HR) 

Relative 
weight 

  Incidence Survival Combined   
Survival to 
Incidence 
Ratio (SE) 

J09-J18 Influenza and pneumonia 110,985 5.28 0.068 
 

1.19 (1.11-1.27) 0.86 (0.80-0.92) 1.02 (0.92-1.12) 
 

0.47 (0.13) 
R00-R09 Symptoms and signs involving the circulatory and respiratory systems 225,504 2.08 0.061 

 
0.88 (0.85-0.92) 0.79 (0.73-0.86) 0.70 (0.64-0.76) 

 
0.65 (0.14) 

C30-C39 Malignant neoplasm of respiratory and intrathoracic organs 54,178 21.12 0.061 
 

0.83 (0.75-0.91) 0.81 (0.74-0.89) 0.67 (0.59-0.77) 
 

0.52 (0.15) 
R10-R19 Symptoms and signs involving the digestive system and abdomen 174,055 2.56 0.060 

 
0.87 (0.83-0.91) 0.89 (0.82-0.97) 0.77 (0.70-0.85) 

 
0.45 (0.19) 

R50-R69 General symptoms and signs 157,357 2.67 0.057 
 

0.90 (0.85-0.94) 0.97 (0.93-1.02) 0.87 (0.81-0.94) 
 

0.19 (0.19) 
C15-C26 Malignant neoplasms of digestive organs 71,981 8.13 0.056 

 
0.79 (0.73-0.85) 0.67 (0.63-0.72) 0.53 (0.48-0.59) 

 
0.63 (0.08) 

I30-I52 Other forms of heart disease 142,898 2.70 0.052 
 

0.78 (0.74-0.83) 0.84 (0.80-0.87) 0.66 (0.61-0.70) 
 

0.43 (0.06) 
C76-C80 Malignant neoplasms of ill defined, secondary and unspecified sites 39,339 26.13 0.047 

 
0.84 (0.76-0.93) 0.69 (0.61-0.79) 0.58 (0.49-0.69) 

 
0.68 (0.16) 

Z40-Z54 Persons encountering health services for specific procedures & care 157,841 2.15 0.044 
 

1.00 (0.95-1.05) 0.74 (0.69-0.80) 0.74 (0.68-0.81) 
 

1.00 (0.19) 
I60-I69 Cerebrovascular diseases 100,907 3.06 0.042 

 
0.79 (0.74-0.85) 0.82 (0.76-0.87) 0.65 (0.59-0.71) 

 
0.46 (0.09) 

K55-K63 Other diseases of intestines 206,178 1.72 0.041 
 

0.94 (0.91-0.98) 0.80 (0.77-0.84) 0.76 (0.71-0.80) 
 

0.80 (0.12) 
J40-J47 Chronic lower respiratory diseases 78,467 3.99 0.040 

 
0.78 (0.73-0.84) 0.79 (0.72-0.86) 0.62 (0.55-0.69) 

 
0.49 (0.11) 

I20-I25 Ischaemic heart diseases 175,605 1.83 0.039 
 

0.65 (0.63-0.68) 0.77 (0.72-0.82) 0.50 (0.46-0.55) 
 

0.38 (0.05) 
N30-N39 Other diseases of the urinary system 126,329 2.31 0.039 

 
1.04 (0.99-1.10) 1.24 (1.15-1.34) 1.29 (1.17-1.42) 

 
0.84 (0.22) 

K20-K31 Diseases of oesophagus, stomach and duodenum 172,206 1.83 0.038 
 

0.72 (0.69-0.75) 0.88 (0.79-0.96) 0.63 (0.56-0.70) 
 

0.29 (0.11) 
J20-J22 Other acute lower respiratory infections 77,520 3.57 0.036 

 
1.11 (1.03-1.20) 1.11 (1.06-1.17) 1.24 (1.13-1.36) 

 
0.50 (0.15) 

S70-S79 Injuries to the hip and thigh 78,231 2.64 0.028 
 

0.87 (0.78-0.96) 1.02 (0.98-1.06) 0.89 (0.79-0.99) 
 

0.12 (0.14) 
A30-A49 Other bacterial diseases 33,613 6.60 0.023 

 
1.56 (1.39-1.74) 0.94 (0.77-1.15) 1.46 (1.16-1.84) 

 
0.13 (0.21) 

T80-T88 Complications of surgical and medical care, not elsewhere classified 75,217 2.32 0.023 
 

1.04 (0.97-1.11) 0.83 (0.74-0.94) 0.86 (0.75-0.99) 
 

0.84 (0.40) 
N17-N19 Renal failure 37,213 5.14 0.022 

 
1.02 (0.91-1.15) 0.82 (0.73-0.91) 0.83 (0.71-0.98) 

 
0.90 (0.42) 

I80-I89 Diseases of veins, lymphatic vessels and nodes, not elsewhere classified 84,073 1.94 0.021 
 

0.80 (0.75-0.85) 0.79 (0.72-0.86) 0.63 (0.56-0.71) 
 

0.52 (0.12) 
K90-K93 Other diseases of the digestive system 47,091 2.98 0.019 

 
0.98 (0.90-1.07) 0.83 (0.72-0.95) 0.82 (0.69-0.96) 

 
0.91 (0.50) 

I70-I79 Diseases of arteries, arterioles and capillaries 47,410 2.95 0.019 
 

0.67 (0.61-0.74) 0.91 (0.85-0.99) 0.61 (0.54-0.69) 
 

0.19 (0.08) 
K50-K52 Non infective enteritis and colitis 59,183 2.27 0.018 

 
0.73 (0.68-0.79) 0.89 (0.84-0.95) 0.65 (0.59-0.72) 

 
0.27 (0.08) 

S00-S09 Injuries to the head 64,925 2.09 0.018 
 

0.95 (0.88-1.02) 0.98 (0.90-1.08) 0.93 (0.82-1.05) 
 

0.22 (0.72) 
C50-C50 Malignant neoplasm of breast 39,358 3.21 0.017 

 
0.81 (0.74-0.89) 0.31 (0.27-0.36) 0.25 (0.21-0.30) 

 
0.85 (0.07) 

C60-C63 Malignant neoplasms of male genital organs 22,312 3.23 0.010 
 

0.91 (0.79-1.05) 0.50 (0.44-0.57) 0.45 (0.37-0.55) 
 

0.88 (0.14) 
G30-G32 Other degenerative diseases of the central nervous system 4,655 3.29 0.002 

 
0.75 (0.51-1.10) 0.96 (0.73-1.28) 0.78 (0.49-1.24) 

 
0.11 (0.44) 

TOTAL 
 

2,664,631 2.77 1.000 
 

0.89 (0.88-0.90) 0.83 (0.76-0.90) 0.74 (0.72-0.75) 
 

0.61 (0.16) 

 

Table 2: Relative mortality burden of hospital admission by disease grouping and improvements in hospitalisation incidence and survival. ICD10 – Diseases contained within the disease grouping, coded by 

International Classification of Disease Codes, Tenth Revision. See Supplementary file 4 for counts of 3-letter ICD10 records within each ICD10 block. Total hospital visits – Number of first-time admissions 

with main diagnosis falling within the disease block. 5-year mortality – Mortality within the first five years after admission compared to individuals who had not yet or ever been admitted for the disease 

group. Relative weight – Relative burden of death as a function of hospital admissions and 5-year mortality, scaled to [0-1]. Incidence – Average hazard ratio of being admitted to hospital for each subsequent 

decade of birth. Survival – All-cause mortality hazard ratio after being admitted for the disease in 2011 compared to 2001. Combined – linear combination of changes in disease incidence and survival. 95% 

confidence intervals are listed in parentheses. Ratio – the ratio of changes in disease survival to incidence of hospital admission. Standard error is listed in parentheses. See Supplementary file 12 for these 

data by sex and deprivation. See Supplementary file 8 for the relative burdens of all disease groupings with more than 15,000 first-time hospital admissions.
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Trends in disease 

To understand changes in disease survival rates, we next modelled the effects of 

a disease on all-cause mortality by year of hospital admission for admissions 

between 2001 and 2011 and 5-year survival subsequent to admission. We find an 

overall improvement over time in patient survival following hospitalisation, with 

a median decline between 2001 and 2011 in the 5-year hazard ratio of 16.8% for 

admitted cases across the T-28 diseases. The biggest improvements were for 

malignant neoplasms of the breast (C50) and male genital organs (C60-C63), 

which have seen 68.7% (95% CI 64.1%–72.7%) and 50.2% (95% CI 42.9%–

56.6%) declines in the 5-year hazard ratio between 2001 and 2011 mortality, 

respectively. On the other hand, “Other acute lower respiratory infections” (J20-

J22) and “Other diseases of the urinary system” (N30-N39) have seen increases 

in mortality hazard of 11.3% (95% CI 7.0%–15.7%) and 24.0% (95% CI 14.6%–

34.1%), respectively (Table 2; Supplementary file 13 & 14).  

 

We next modelled age-adjusted incidence of hospitalisation for a disease by birth 

decade, under the simplified model that incidence is a cohort rather than period 

effect – essentially modelling that current incidence is the effect of (previous) 

lifetime exposures, rather than current exposures. We find disease incidence has 

fallen decade on decade of birth for cancers, cardiovascular, and intestinal 

diseases, but this improvement appears to have slowed down in the last decade 

of birth (1955-1965) considered. Age-adjusted incidence of “Influenza and 

pneumonia” (J09-J18) and “Other bacterial diseases” (A30-A49) has worsened by 

decade on decade of birth, over the whole range of births considered 

(Supplementary file 6 & 7). 

 

When taking both trends in incidence and survival into account – adding 1) the 

average age-adjusted incidence rate reductions between decade on decade of 

birth to 2) the 2001-2011 reductions in 5-year disease mortality (Supplementary 

file 15 & 16) – we observe the death burden of cancers is declining most (Figure 

1). Notably, breast and prostate cancers have seen the largest improvement of all 
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disease categories in the last decade. “Other diseases of the urinary system” (N30-

N39), “Other bacterial diseases” (A30-A49), “Other acute lower respiratory 

infections” (J20-J22), and “Influenza and pneumonia” (J09-J18) have all seen 

increases in their effect on age-adjusted all-cause mortality.  

 

 

 

Figure 1: Modelled decade-of-birth upon previous decade-of-birth hospitalisations and 

survival show large improvements in cancer survival and heart disease incidence but 

deteriorations in infectious disease. Bars represent the mean improvements in hospital 

admission rate across decades of birth (darker bars), added to changes from 2001 to 2011 in 

5-year survival rates following hospital admission (lighter bars). Both measures are 

expressed in age-adjusted. For definitions of each ICD10 block, see Table 2. Width of the bars 

represents the relative burden of death of each disease based on total first-time hospital 

admissions and 5-year mortality; as such, the total area of each bar represents the relative 

contribution to improvements – or deteriorations – in population mortality. Error bars are 

standard errors of the Cox model coefficient. G30–G32 had too few hospital admissions to 

accurately model improvements (Survival: lnHR 0.04, SE 0.14; Hospital admission lnHR 0.29, 

SE 0.20). Z40-Z54 only showed improvements in survival. 
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Overall, we see broad consistency in the scale of improvements across decades of 

birth, except for “Malignant neoplasms of respiratory and thoracic organs” (C30-

C39), where we see greater decade-on-decade improvements amongst later 

decades (Figure 2). Averaging these individual disease effects on death, using 

burden of death weightings, we can then compare the modelled death rates with 

those observed, and see broad correspondence, with the 1935 and 1945 decades, 

showing the greatest improvements. Overall, our morbidity model suggests 

individuals from each successive decade of birth experience an average mortality 

rate of 0.74 (gaining ~3 years of life) compared to the previous decade of birth 

(Table 2). 

 

The shape of these disease-modelled mortality improvements by decade of birth 

broadly track the observed changes (Figure 2). This is especially apparent when 

stratifying the improvements by sex: Supplementary file 17 shows a reasonable 

relationship between the projected morbidity driven mortality and observed 

mortality (i.e. mortality trends in the study can largely be explained by trends in 

disease incidence and survival). Across sex and deprivation strata, taking into 

account disease survival improvements between 2001 and 2011 and all 

improvements in disease incidence between decades of birth, we find the largest 

reductions in death are due to improvements in “Ischaemic heart diseases” (I20-

I25), “Malignant neoplasms of digestive organs” (C15-C26), and “Malignant 

neoplasm of respiratory and intrathoracic organs” (C30-C39), while the largest 

increases in death are due to “Other bacterial diseases” (A30-A49) and “Influenza 

and pneumonia” (J09-J18) (Supplementary file 18). In addition, the deterioration 

in “Other diseases of the urinary system” (N30-N39) morbidity shows a 

consistent increase with deprivation, while “Other diseases of the digestive 

system” (K90-K93) shows consistently larger improvements in more deprived 

classes (Supplementary file 12 & 19). 
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Figure 2: Modelled decade-of-birth upon previous decade-of-birth mortality reductions due 

to morbidity changes broadly track observed trends in mortality. Panels represent the 

combined improvements in hospital admission rate and 5-year mortality rates following 

hospital admission, expressed in age-adjusted lnHR and split by decade of birth - under the 

model where change in incidence of disease is modelled by decade of birth and added to the 

survival effect is the change in subsequent 5 year survival rates from incidences in 2001 and 

2011. A) Improvements for each ICD10 disease block (for definitions see Table 2). Dots here 

represent the relative contribution of the disease to the overall improvements in morbidity-

driven mortality, with larger dots indicating a greater contribution to morbidity 

improvements. A red circle around the dot indicates a negative contribution (i.e. 

deterioration). B) Modelled trend in deaths based on the weighted morbidities from the 

panels above. Diseases have been ordered by their burden of death (Table 2), so smaller bars 

in early panels may have similar effect on the grey bar average (indicated by the dot size) as 

larger bars in later panels.  C) Observed trend in actual deaths from death records, by decade 

of birth, for comparison. See Supplementary file 18 for this graph stratified by sex and 

deprivation. 
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Overall, we estimate 61.2% (95% CI 29.9%–92.6%) of the improvement in 

mortality rates was due to improvements in survival following hospital 

admission, with the balance arising from reduced (age-adjusted) admission rates 

(Table 2). Improved outcomes for cancers (C) were particularly driven by post-

admission survival, especially C60-C63 (88% of mortality improvement 

attributable to survival rather than incidence), C50 (85%) and C76-80 (68%), 

whereas for cardiovascular diseases (I) the balance was more even, as seen in 

I80-89 (52%), I60-I69 (46%), I30-I32 (43%), I20-I25 (38%). 

 

As previously noted, disease severity was defined as the log hazard ratio for 

subsequent all-cause mortality among those with a previous admission for an 

index group of conditions compared with those with no such admission. We 

regarded the rate of improvement in disease severity over time as being constant 

if there was the same relative fall in log hazard rate over successive time periods 

(so for example we regarded a fall in lnHR from 0.6 to 0.3 as equivalent to a fall 

from 0.3 to 0.15). Assuming the improvements in survival following 

hospitalisation continue for the coming decade, and differences between 

incidence in birth cohorts remains the same, we project a 21% slowing of 

improvements in mortality (-0.242 lnHR c.f. -0.305 lnHR; Table 3). Essentially, at 

least arithmetically, the population mortality benefits from improved cancer 

treatments in 2001-2011 will be hard to repeat as so much benefit has already 

accrued. Admittedly, this is a consequence of our model: essentially judging it 

equally difficult to reduce 50 excess deaths following cancer hospital admission 

associated to 25, as it was to reduce from 100 to 50, and as such should be 

considered speculative.  On the other hand – our model is clearly valid in 

extremis: if all excess cancer deaths were eliminated, no further cancer driven 

improvement in mortality would be possible. 
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Current Improvements 

 
Projected Improvements 

Stratified Group 

Hospital 

Admission 

Rate 

Five Year 

Mortality After 

Admission  Combined  
 

Hospital 

Admission 

Rate 

Five Year 

Mortality After 

Admission  Combined  

None 
 

-0.1182 -0.1866 -0.3047 
 

-0.1182 -0.1235 -0.2418 

Sex M -0.1428 -0.1913 -0.3340 
 

-0.1428 -0.1273 -0.2701 

Sex F -0.0971 -0.1823 -0.2794 
 

-0.0971 -0.1130 -0.2101 

SIMD 1 -0.1154 -0.2204 -0.3360 
 

-0.1154 -0.1280 -0.2433 

SIMD 2 -0.1157 -0.1592 -0.2743 
 

-0.1157 -0.0456 -0.1610 

SIMD 3 -0.1202 -0.1186 -0.2392 
 

-0.1202 -0.0370 -0.1572 

SIMD 4 -0.1418 -0.1759 -0.3201 
 

-0.1418 -0.0541 -0.1982 

SIMD 5 -0.1231 -0.1731 -0.2958 
 

-0.1231 -0.0914 -0.2145 

SIMD 6 -0.1305 -0.1928 -0.3227 
 

-0.1305 -0.0998 -0.2303 

SIMD 7 -0.1233 -0.1787 -0.3044 
 

-0.1233 -0.1109 -0.2343 

SIMD 8 -0.1305 -0.2097 -0.3402 
 

-0.1305 -0.1422 -0.2726 

SIMD 9 -0.0926 -0.1619 -0.2546 
 

-0.0926 -0.1033 -0.1959 

SIMD 10 -0.0950 -0.1970 -0.2920 
 

-0.0950 -0.1092 -0.2043 

 

Table 3: Mean (over birth decades) decade of birth on decade of birth improvements in 

morbidity for the study period, and projections into the subsequent decade by sex and 

deprivation. Mortality improvements were estimated from morbidity records by combining 

the mean improvement in hospitalisation rate across birth cohorts and the improvement in 

disease severity between 2001 and 2011. This was then projected forward assuming 

improvements in age-adjusted hospitalisation rate between birth cohorts remained constant 

and improvements in severity remained proportional to the (now reduced) overall mortality 

of the disease group. Units are in lnHR.  
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Discussion 

In a study of 1,967,120 lives and 10,718,084 hospital admissions, we observed a 

median age at death of 82.2/85.2 for men/women in the highest socioeconomic 

decile, and 11.1/8.6 years less for the lowest decile. Cancers (C), cardiovascular 

disease (I), respiratory diseases (J), and unclassified symptoms and signs (R) 

were the principal ICD10 chapters recurring in the top 28 disease blocks where 

hospital admission was associated with the greatest subsequent all-cause 

mortality, which was a product of the rate of first hospital admission with group 

of conditions and of all-cause mortality in the five years following admission with 

that condition. Specifically, our top five causes of hospitalisations associated with 

subsequent burden of all-cause deaths were, in descending order, ‘Influenza and 

pneumonia’ (more common and with higher subsequent mortality than the 

average T-28 disease), ‘Symptoms and signs involving the circulatory and 

respiratory systems’ (common), ‘Malignant neoplasm of respiratory and 

intrathoracic organs’ (higher mortality) ,’Symptoms and signs involving the 

digestive system and abdomen’ (common), and ‘General symptoms and signs’ 

(common and higher mortality). Whilst the latter might appear a benign 

diagnosis, our results suggest it is a fairly strong and frequent marker of 

subsequent all-cause mortality. 

 

Across decades of birth, we modelled a reduction in mortality hazard of 0.737 

(95% CI 0.730–0.745) due to improvements in morbidity, which broadly tracked 

improvements in observed mortality. The modelled improvement was 61% 

accounted for by reduction in excess mortality subsequent to admission and 39% 

accounted for by a fall in incidences of disease (as measured by hospital 

admission rates). The important (i.e. burden-of-death weighted) improvements 

in incidence were driven by cancers and heart disease, whilst improvement in 

outcomes following admission were mostly driven by cancer, particularly breast 

and prostate cancer. In contrast, we found deteriorations in the incidence of 

bacterial disease and in mortality following admission for respiratory and urinary 

infections. Levels of morbidity and mortality varied strongly across 

socioeconomic groups, but patterns in changes of such were generally less 
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apparent. Men showed greater rates of improvement in mortality and morbidity 

than women, with lung and throat cancers contributing most to male 

improvements and IHD contributing most to female improvements.  

 

In conclusion, we find trends in morbidity appear to partly explain trends in 

mortality. The progress in prevention and cure within oncology and prevention 

of heart disease account for the greatest parts of mortality improvement in 2001-

2016, and our model suggests mortality improvements may slow, simply because 

the absolute effect of progress in treatment of these diseases will be difficult to 

repeat. However, there is scope for further improvements in life expectancy, 

especially if new progress is made in the treatment of other diseases associated 

with death, or if prevention initiatives accelerate. 

 

Strengths and weaknesses of the study 

This study has avoided some of the known issues with cause of death 

recording[136] since it does not use cause-specific mortality and tracks wider 

disease effects and subsequent mortality (such as frailty) beyond direct causes of 

death, by combining hospitalisation and death records. Implicit tracking of 

underlying causes through an associated effect (admission to hospital for a 

disease) may improve estimates of trends in mortality, even if the underlying 

cause is obscure. We are also able to partition trends in deaths due to a disease 

based on trends in prevalence and incidence, which has been done for IHD[137], 

but not simultaneously across diseases in the same dataset. Also, our results are 

unaffected by population shifts as we excluded immigrants into Scotland after 

2001, and instead reflect trends within 1the defined groups. Combined with the 

scale of our data, this consistent tracking has enabled us to make like-for-like 

comparisons of the mortality outcomes of different disease classes across 

socioeconomic groups and their trends over time.  

 

However, this study also has a number of limitations, relating to the population 

under study, the definition of diseases, considerations with hospital admission 
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data, and modelling assumptions. Further discussion of these limitations can be 

found in Supplementary file 20. 

 

In brief, we excluded migrants out of Scotland because their subsequent 

trajectory (especially death) could not be tracked. Migrants may be healthier than 

the average individual and excluding them could therefore overestimate the 

incidence of disease and death in the population we studied. However, our 

observed trends should remain unaffected if migration patterns did not change 

significantly during the study. 

 

Secondly, for practical reasons we grouped the main diagnoses of hospital 

admissions by ICD-10 chapters and excluded any secondary diagnoses. As a 

result, we are not able to comment on the trends of individual diseases within 

chapters (which could offset each other) nor the trends or effects of 

comorbidities. The latter may affect our results if comorbidities have changed 

over time or by socioeconomic status; for example, a decline in lung cancer over 

time as a competing risk for heart disease would inflate the observed 

improvements for heart disease. However, this is likely to be partially mitigated 

by reductions in mortality for individuals not admitted for heart disease. Future 

work may account for comorbidities more explicitly by using competing risk 

regression and site-specific survival. 

 

Thirdly, the first hospital admission on record and its date is only a proxy for 

incidence of severe disease. Excluding subsequent hospital admissions may 

understate the burden of diseases which have recurring episodes (such as 

influenza), although trends in these diseases are unlikely to be affected given our 

definitions remained constant. Conversely, diseases such as dementia and 

multiple sclerosis which are generally managed in the community are unlikely to 

result in an (immediate) admission to hospital and are therefore not captured 

accurately in our study. Examining trends in these chronic diseases through GP 

records was outside the scope of this study, but integration of our results with 

future work on GP records is likely to refine overall morbidity estimates.  
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Another consideration with hospital records is their indirect link to death. This 

relationship can be confounded on the one hand by other health risks and lifestyle 

factors, and on the other hand by coding inaccuracies and changes in admission 

policies and screening. Our stratified analysis by sex and socioeconomic status 

partially mitigates the former, and coding inaccuracies are unlikely to affect 

disease trends if these inaccuracies are stable over time. There is evidence that 

screening policies and hospital usage has changed during the study period, but 

their influence is limited and the opposite effects on disease incidence and 

survival will mostly offset each other when looking at the effect on morbidity (e.g. 

influenza) (Supplementary file 20). However, some caution is needed when 

interpreting the exact split between improvements in disease incidence and 

survival. 

 

Lastly, our model assumed 1) disease incidence is a function of year of birth, 2) 

survival after hospital admission is a function of year of incidence, and 3) these 

hazards are proportionate.  The first two assumptions are a simplification, but 

necessary given year of birth and year of incidence are completely confounded 

for a given age at incidence. As to the third point, while disease status itself is not 

always strictly a proportional hazard, trends in incidence hazard ratios between 

birth decades and survival hazard ratios between years of hospital admission 

should still be captured appropriately (Supplementary file 20).  

 

Strengths and weaknesses in relation to other studies 

There was a degree of correspondence in the principal burdens assessed here and 

a recent study by the Scottish Burden of Disease study (SBD)[120]. This study 

used the same population and the same study period but assessed YLL (weighting 

young deaths more as opposed to our method which counted all deaths equally), 

included individuals younger than 35 years old, and used different disease 

groupings. Their principal burdens were IHD (ranked 13th in our list of burdens), 

tracheal, bronchus and lung cancers (3rd), chronic obstructive pulmonary disease 

(12th), stroke (10th), and Alzheimer’s disease (–). Aside from Alzheimer’s disease, 
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discussed below, much of the distinction appears to arise from our observation of 

an association between death and admissions with indistinct diagnosis (not 

considered a valid specific cause of death by SBD). In the case of influenza and 

pneumonia, differences arise due to our study identifying a marker of frailty as 

well as a direct cause of death, combined with SBD grouping influenza and 

pneumonia under lower respiratory infections. A relative strength of our study 

stems from usage of incident morbidity (as marked by hospitalisation) in advance 

of death, based on recorded diagnosis at the time of hospital visit, thus tracking 

remote effects such as long term frailty rather than cause of death (which has 

known limited accuracy, particularly at older ages[136]). However, the principal 

strength arises from the ability to distinguish trends in incidence of morbidity 

from trends in subsequent survival. On the other hand, a relative weakness is that 

we are reliant on hospital admission as a marker of incidence; therefore, 

diagnosed or latent (presumably milder) cases in the absence of admission are 

not visible to us, leading for example to significant discrepancy with SBD in the 

apparent relative burden of Alzheimer's disease, likely due to an understatement 

of its importance in our results.  

 

The closing gap in mortality between the sexes and its widening across social 

classes observed in our study is consistent with recent findings from the Office of 

National Statistics, summarised by Torjesen[138], which looked at socioeconomic 

deprivation in England and Wales. Similarly, a recent study of health inequality in 

England found rising levels of lifespan inequality across socioeconomic groupings 

arising from increasing inequalities across a broad span of causes of death[139]. 

These studies had the advantage of a larger sample size (~7.5 million deaths cf. 

600,000 in our study) and could therefore track trends in mortality and cause of 

death between stratified groups more accurately. However, Scotland’s unique 

linkage of death records and electronic health records through eDRIS allowed us 

to directly model changes disease mortality at an individual level (avoiding issues 

with cause of death recordings and shifts in population demographics). Our study 

has the advantage of partly explaining these trends in mortality inequality 

through changes in disease incidence and survival: men experienced greater 
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improvements in incidence of lung cancer and survival following heart disease 

hospitalisation compared to women, while more socially deprived individuals 

(men and women combined) suffered worse deteriorations in infectious disease, 

especially for the incidence and survival of hospitalisation for urinary tract 

infections. However, in contrast to Bennet et al.[139], we do not find a clear 

pattern in overall morbidity improvements across socioeconomic deciles in 

Scotland, and we do not observe a widening inequality in cancer, respiratory and 

Alzheimer’s disease morbidity within our study population, although we are 

underpowered to detect the latter and our disease groupings were not identical.  

 

Lastly, a recent study of coronary heart disease mortality in Scotland, using a 

sophisticated model to apportion improvement between prevention and 

treatment, found improvements for coronary heart disease between 2001-2010 

were similar across social classes, and reported 33%–61% of these 

improvements could be attributed to advances in treatment[137]. Given the very 

different methods, albeit studying the same population, there is reasonable 

concordance with our own study: we find roughly equal improvements in heart 

disease across social classes and estimate 38% (95% CI 28%–48%) of these 

improvements stem from increased survival after hospitalisation for ischaemic 

heart disease. Hotchkiss et al.[137] are able to further partition improvements by 

uptake of primary and secondary prevention drugs and treatments. Such detailed 

analysis of specific diseases has been beyond the scope of our study. 

 

Implications for clinicians and policymakers 

Much of the improvements in mortality observed in Scotland between 2001–

2016 can be attributed to reductions in morbidity, as captured by hospital 

admissions. While this study examined mortality and morbidity in the Scottish 

population only, there is a substantial concordance in mortality trends across 

high-income countries[127], as well as similarities in disease-related mortality 

trends between Scotland and the rest of the UK[126], warranting similar studies 

to be performed in other high-income countries. It is a testament to healthcare 

services that the majority of mortality improvements appear to stem from 
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advances in disease survival post-admission. Observed improvements in cancer 

incidence and survival – especially breast and prostate – coincide with a 

continued effort within Scotland[140], the UK[141], and other high-income 

nations[142] to improve prevention and care of these diseases. However, the 

rapid advances in survival of both heart disease and cancer modelled by our study 

between 2001 and 2011 will be hard to continue to the same extent, as so much 

progress has already been made. At the same time, the observed deteriorations 

in infectious disease coincide with global increases in antimicrobial 

resistance[143] and emphasise the need to prioritise research in this area: 

infectious disease will become a larger contributor to mortality and may 

contribute to a widening of health inequalities between socioeconomic classes. If 

these current trends in morbidity continue, we expect morbidity-driven 

improvements in mortality to slow down. However, the life expectancy gap 

between Scotland and other high-income countries[144] suggests further 

mortality improvements are possible. The rate of this improvement will hinge 

upon whether advances in all major diseases categories – especially infectious 

disease – can catch up with the progress we have recently seen on heart disease 

and cancer, and whether preventable deaths from external causes (such as 

suicide and drug-related deaths), which cannot be accurately tracked using 

hospital admissions, decrease rather than rise. 
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2.3 Conclusion 

 

Studying hospital records and death records from 2 million adults residing in 

Scotland, we found substantial differences in age-adjusted mortality between 

men and women, between individuals from different socioeconomic 

backgrounds, and between individuals born in different decades of birth. The 

latter shows population mortality has fallen over time, with individuals born in 

1965 living on average 3 years longer than those born a decade earlier, who in 

turn live an average of 3 years longer than individuals born the decade before. 

Regardless of their year of birth, Scottish women lived on average 3.5 years longer 

than men, and individuals from the least deprived areas lived on average 7 years 

longer than those from the most deprived areas. As such, decade of birth, 

socioeconomic status, and sex can be considered major determinants of human 

lifespan. 

 

We were able to explain the differences in survival in part by examining the 

diseases responsible for the most deaths: infections, CVD, cancers, hip/neck 

injuries, and disorders involving the lungs, digestive tract, and kidneys. For 

example, the higher mortality in men compared to women coincided with a 

higher incidence of most of these deadly diseases in men. Similarly, individuals 

from more socioeconomically deprived areas had a far greater incidence of 

disease, although their survival after hospital admission was not substantially 

different from individuals from less socioeconomically deprived areas. When 

looking at the effect of trends in disease on trends in mortality over time, we 

found the greatest gains in mortality improvements were achieved by lowering 

the incidence of CVD and cancers, as well as improving the survival of patients 

after a cancer diagnosis (especially for breast and prostate cancers). For men, 

improvements in CVD incidence were greater than women, coinciding with a 

narrowing of the life expectancy gap between men and women in the UK. We did 

not see a clear pattern in changing disease trends between socioeconomic strata 

from their different initial levels, even though data from the UK National Office 
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for Statistics suggested the discrepancies in life expectancy between 

socioeconomic strata are increasing. 

 

Improvements in non-communicable diseases were contrasted by a deterioration 

in viral and bacterial infections, across sex and socioeconomic strata. For urinary 

infections, the deterioration was more pronounced for more socioeconomically 

deprived individuals. While we could not capture Alzheimer’s disease through 

hospital admission records, related studies highlight it as a growing contributor 

to population mortality. Extrapolating current trends forwards, we estimated a 

21% slowdown in morbidity improvements in the next decade, as we have 

already made significant advances towards preventing CVD and cancer-related 

deaths.  

 

Related work on life expectancy in Scotland has highlighted the steady three year 

per decade growth in lifespan has slowed since 2011. We did not observe a 

slowing trend in 5-year mortality during our study period, but this could be 

because we lacked the data to reliably estimate mortality rates after 2011. 

However, our results do predict a slowdown in morbidity improvements should 

current trends continue. If they do, it is likely the rate of mortality improvements 

will decline in response. Mitigating this slowdown in mortality improvements 

and preventing deteriorations in life expectancy in the future can be achieved if 

the focus of public health policy is renewed towards preventing and treating 

infectious disease, taking note of the recent rise of antibacterial resistance and 

the greater burden of these infectious disease in the elderly. In addition, we 

recommend further efforts towards improving the diseases we have highlighted 

in this study: despite recent improvements, CVD and cancers remain some the 

largest contributors to mortality and addressing them has the greatest potential 

to extend healthy lives. 

 

Finally, it is clear the importance of diseases in determining lifespan has shifted 

as preventative measures and treatment have reduced disease incidence and 

increased survival after diagnosis. However, it is less clear whether the 
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improvements in disease-driven mortality are due to a delay in the ageing process 

itself, or if patients have simply exchanged acute and deadly diseases for chronic 

and progressive diseases. This distinction is crucial, as the former indicates the 

period of morbidity is being delayed further towards the end of life, while the 

latter indicates a trend of extended age-related morbidity and disability. While 

our study can only comment on 28 disease categories, the advances in age-

adjusted incidence we observed for most of these diseases suggest that, at a 

minimum, the (age-standardised) health of individuals has improved compared 

to previous decades. Future studies may stratify trends in disease by age to more 

explicitly test the hypothesis of a delay in the ageing process.  

 

The nature of the ageing process and ways to slow it down is under active 

discussion in the field of biogerontology[145]. While researchers agree that 

ageing involves a progressive loss of functionality resulting in disease and 

eventually death, the origin of this decline is under debate. It is generally accepted 

that organisms are increasingly likely to die of predation or external causes with 

age (thus no longer contributing to the gene pool), which results in strong natural 

selection during development and a progressive decline in the strength of 

selection in later age[146]. 

 

Among the leading theories of ageing is the mutation accumulation theory[147], 

which proposes that the declining strength of natural selection implies mutations 

which are harmful later in life are not effectively eliminated. The antagonistic 

pleiotropy theory extends this idea to suggest mutations that lead to faster 

growth and higher fertility early in life will be selected for, even if these same 

mutations are detrimental to late life survival[146]. These theories suggest the 

ageing process is a stochastic accumulation of damage stemming from late-acting, 

harmful mutations and implies that improving cellular repair mechanisms to 

counteract the accumulation of damage could slow down ageing and prevent age-

related disease. 
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In contrast to these so-called error theories is the hyperfunction theory of 

ageing[148], which proposes that ageing is programmed to some extent. 

Experiments on model organisms have found that developmental pathways, such 

as yolk production, continue to be active in late life[149,150]. The theory 

proposes that the declining strength of natural selection provides an evolutionary 

drive for effective development but no such drive to switch these pathways off 

after completion, when they actively start to damage the organism. By extension, 

this implies age-related damage and disease can be prevented by switching off or 

decreasing the activity of developmental pathways at the appropriate time. In the 

following Chapters, I explore the human ageing process further by examining the 

link between lifespan and genetics. 

  





 

Genome-wide association of lifespan in UK Biobank and LifeGen 67 
 

Chapter 3: Genome-wide association of lifespan in UK 

Biobank and LifeGen 

3.1 Introduction 

3.1.1 Context 

The existence of a heritable component to human lifespan, albeit small, suggests 

there may be genetic variants which play a role in determining lifespan. 

Identifying these variants and characterising exactly how they influence survival 

has the potential to improve our understanding of the interplay between 

morbidities and mortality on a biological level, which the epidemiological work 

on Scottish patients in Chapter 2 did not reveal. Knowledge of the genetic 

determinants of lifespan could also uncover targets for clinical or pharmaceutical 

intervention, such as genes and pathways, capable of preventing the slowdown in 

mortality improvements and accelerating prevention of age-related disease. 

 

After a decade of limited success trying to study cases of exceptional longevity, 

advances in genetic discovery for human survival were recently made by using a 

kin-cohort study design in which the genotypes of subjects were tested against a 

parental lifespan phenotype[89,90]. Less than a year later, a large consortium was 

established to study parental lifespan in 24 cohorts averaging 14,000 lifespans 

each (LifeGen). Together with the first release of UK Biobank, this increased the 

total sample to 600,000 and doubled the number of loci that could be shown to 

determine lifespan in multiple populations from two to four[70].  

 

The full release of the genetic information of UK Biobank individuals in July 2017 

brought with it the opportunity to expand previous analyses, both in terms of 

sample size and scope. In this Chapter, I use UK Biobank and LifeGen data to reveal 

new genetic variants, genes, and pathways important in determining lifespan, and 

compare the genetics of age-related disease to mortality.  
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The results from this Chapter are also used in the next Chapter, where I combine 

our findings with recent work on other ageing-related traits to more closely 

examine how lifespan genetics relates to human ageing. 

 

 

3.1.2 Contributions 

The idea of studying parental lifespan using cox survival models was originally 

conceived by Peter Joshi and made possible through the use of Martingale 

residuals (suggested by Krista Fischer)[90]. David Clark downloaded and 

decrypted the raw UK Biobank phenotypic and genotypic data for the study. 

 

Prior to the public release of this data, David, Andrew Bretherick, Peter, and I 

developed a pipeline to perform the genome-wide association study. The initial 

framework of the pipeline was composed of scripts by David and Peter from 

previous GWAS they performed and included scripts to perform quality control 

on UK Biobank lifespan data. I optimised the pipeline to overcome the technical 

hurdles associated with the scale of the full UK Biobank phenotypic and genotypic 

datasets. Specifically, I wrote adaptive functions that would read in only the 

phenotypes necessary for the GWAS using superior data reading software and 

split the genotypic data into chunks that could be analysed in parallel.  

 

This pipeline performed the quality control steps and regression analyses of the 

study, including the GWAS and age- and sex-specific analysis. The multivariate 

analysis between mother and father lifespans was performed by Xia Shen. The 

iGWAS analysis, DEPICT and PASCAL pathway analyses, and the age-related QTL 

enrichment analysis were performed by Ninon Mounier and Zoltán Kutalik, with 

the eQTL data originating from the eQTLgen consortium. The longevity 

replication and polygenic risk score associations with lifespan were done by 

Peter. The SMR-HEIDI eQTL/mQTL prioritisation and SOJO fine-mapping were 

done by Zheng Ning and Xiao Feng. The replication of polygenic risk scores in the 

Estonian Biobank were performed by Kristi Läll and Krista Fischer. Each co-
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author also contributed by writing up the details of their analysis in the method 

section.  

 

I performed all other analyses, which included writing scripts to perform quality 

control on the input data, reformatting data if using existing software 

(VEGAS2Pathay, Stratified LDSC, PRSice), checking results and compiling them 

for publication, and drawing figures.  

 

For clarity, I was responsible for the following Results sections of the article:  

 

• Genome-wide association analysis (excluding SSE) 

• Sex and age-specific effects 

• Disease and lifespan 

• Cell type and pathway enrichment (excluding DEPICT, PASCAL, and 

eQTLs) 

• Out-of-sample lifespan PRS associations (excluding results described in 

first three paragraphs) 

 

I compiled the results provided by co-authors, creating all tables and figures 

(except Figure 8). I also drafted the majority of the manuscript, excluding sections 

by co-authors described above. Peter wrote the eLife digest and made significant 

contributions to the Discussion regarding assortative mating, differences in 

lifespan and longevity, transcriptomic age, actuarial use of polygenic risk scores, 

and the considerations of a linear mixed model in the context of a kin-cohort 

study. All co-authors provided feedback on the draft manuscript, especially Peter, 

Jim Wilson, and Zoltán Kutalik.  

 

Lastly, I would also like to acknowledge the comments from unnamed reviewers 

from Nature Communications and eLife, whose feedback prompted a large 

restructuring of the article which ultimately made the results much clearer and 

easier to follow. 
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3.2 Published article 

 

This work was published as an article in the journal eLife on 15 January 2019 

after completing formal peer review. A copy of the Author Accepted Manuscript 

prior to proofing is included below, provided under the terms of the Creative 

Commons Attribution License CC BY 4.0. 
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h) MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of 
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Abstract 

We use a genome-wide association of 1 million parental lifespans of genotyped 

subjects and data on mortality risk factors to validate previously unreplicated 

findings near CDKN2B-AS1, ATXN2/BRAP, FURIN/FES, ZW10, PSORS1C3, and 

13q21.31, and identify and replicate novel findings near ABO, ZC3HC1, and 

IGF2R. We also validate previous findings near 5q33.3/EBF1 and FOXO3, whilst 

finding contradictory evidence at other loci. Gene set and cell-specific analyses 

show that expression in foetal brain cells and adult dorsolateral prefrontal cortex 

is enriched for lifespan variation, as are gene pathways involving lipid proteins 

and homeostasis, vesicle-mediated transport, and synaptic function. Individual 

genetic variants that increase dementia, cardiovascular disease, and lung cancer 

– but not other cancers – explain the most variance. Resulting polygenic scores 

show a mean lifespan difference of around five years of life across the deciles.   
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Introduction  

Human lifespan is a highly complex trait, the product of myriad factors involving 

health, lifestyle, genetics, environment, and chance. The extent of the role of 

genetic variation in human lifespan has been widely debated[151], with 

estimates of broad sense heritability ranging from around 25% based on twin 

studies[31,152,153] (perhaps over-estimated[154]) to around 16.1%, (narrow 

sense 12.2%) based on large-scale population data[40]. One very recent study 

suggests it is much lower still (<7%)[41], pointing to assortative mating as the 

source of resemblance amongst kin. 

 

Despite this modest heritability, extensive research has gone into genome-wide 

association studies (GWAS) finding genetic variants influencing human survival, 

using a variety of trait definitions and study designs[83,89,90,155–159]. GWAS 

have primarily focused on extreme cases of long-livedness (longevity) – 

individuals surviving past a certain age threshold – and scanning for differences 

in genetic variation from controls. While this case-control design has the 

advantage of focusing on highly statistically-informative individuals, who also 

often exhibit extreme healthspan and have potentially unique genetic 

attributes[29,160], the exceptional nature of the phenotype precludes collection 

of large samples, and differences in definitions of longevity complicate meta-

analysis. As a result, only two robustly replicated, genome-wide significant 

associations (near APOE and FOXO3) have been made to date[157,161]. 

 

An alternative approach is to study lifespan as a quantitative trait in the general 

population and use survival models (such as Cox proportional hazards[134]) to 

allow long-lived survivors to inform analysis. However, given the incidence of 

mortality in middle-aged subjects is low, studies have shifted to the use of 

parental lifespans with subject genotypes (an instance of Wacholder’s kin-cohort 

method[162]), circumventing the long wait associated with studying age at death 

in a prospective study[89,90]. In addition, the recent increase in genotyped 

population cohorts around the world, and in particular the creation of UK 

Biobank[163], has raised GWAS sample sizes to hundreds of thousands of 
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individuals, providing the statistical power necessary to detect genetic effects on 

mortality. 

 

A third approach is to gather previously published GWAS on risk factors thought 

to possibly affect lifespan, such as smoking behaviour and cardiovascular disease 

(CVD), and estimate their actual independent, causal effects on mortality using 

Mendelian Randomisation. These causal estimates can then be used in a Bayesian 

framework to inform previously observed SNP associations with lifespan[164].  

 

Here, we blend these three approaches to studying lifespan and perform the 

largest GWAS on human lifespan to date. First, we leverage data from UK Biobank 

and 26 independent European-heritage population cohorts[70] to carry out a 

GWAS of parental survival, quantified using Cox models. We then supplement this 

with data from 58 GWAS on mortality risk factors to conduct a Bayesian prior-

informed GWAS (iGWAS). Finally, we use publicly available case-control longevity 

GWAS statistics to compare the genetics of lifespan and longevity and provide 

collective replication of our lifespan GWAS results.  

 

We also examine the diseases associated with lifespan-altering variants and the 

effect of known disease variants on lifespan, to provide insight into the interplay 

between lifespan and disease. Finally, we use our GWAS results to implicate 

specific genes, biological pathways, and cell types, and use our findings to create 

and test whole-genome polygenic scores for survival.  
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Results 

Genome-wide association analysis 

We carried out GWAS of survival in a sample of 1,012,240 parents (60% 

deceased) of European ancestry from UK Biobank and a previously published 

meta-analysis of 26 additional population cohorts (LifeGen[70]; Table 1—source 

data 1). We performed a sex-stratified analysis and then combined the allelic 

effects in fathers and mothers into a single parental survival association in two 

ways. First, we assumed genetic variants with common effect sizes (CES) for both 

parents, maximising power if the effect is indeed the same. Second, we allowed 

for sex-specific effect sizes (SSE), maximising power to detect sexually dimorphic 

variants, including those only affecting one sex. The latter encompasses a 

conventional sex-stratified analysis, but uses only one statistical test for the much 

more general alternative hypothesis that there is an effect in at least one sex.  

 

We find 12 genomic regions with SNPs passing genome-wide significance for one 

or both analyses (P < 2.5x10–8, accounting for the two tests CES/SSE) (Figure 1; 

Table 1). Among these are 5 loci discovered here for the first time, at or near 

MAGI3, KCNK3, HTT, HP, and LDLR. Carrying one copy of a life-extending allele is 

associated with an increase in lifespan between 0.23 and 1.07 years (around 3 to 

13 months). Despite our sample size exceeding 1 million phenotypes, a variant 

had to have a minor allele frequency exceeding 5% and an effect size of 0.35 years 

of life or more per allele for our study to detect it with 80% power. 

 

We also attempted to validate novel lifespan SNPs discovered by Pilling et al. in 

UK Biobank at an individual level[159] by using the LifeGen meta-analysis as 

independent replication sample. Testing 20 candidate SNPs for which we had data 

available, we find directionally consistent, nominally significant associations for 

6 loci (P < 0.05, one-sided test), of which 3 have sex-specific effects. We also 

provide evidence against 3 putative loci but lack statistical power to assess the 

remaining 11 (Figure 2—source data 1). 
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Figure 1: SNP associations with lifespan across both parents under the assumption of 

common and sex-specific effect sizes. Miami plot of genetic associations with joint parental 

survival. In purple are the associations under the assumption of common SNP effect sizes 

across sexes (CES); in green are the associations under the assumption of sex-specific effect 

sizes (SSE). P refers to the two-sided P values for association of allelic dosage on survival 

under the residualised Cox model. The red line represents our multiple testing-adjusted 

genome-wide significance threshold (P = 2.5 x 10-8). Annotated are the gene, set of genes, or 

cytogenetic band near the index SNP, marked in red. P values have been capped at –log10(p) 

= 15 to better visualise associations close to genome-wide significance. SNPs with P values 

beyond this cap (near APOE, CHRNA3/5 and LPA) are represented by triangles. 

 

At or near rsID Chr Position A1 Freq1 Years1 SE CES P PDES P Disease 
MAGI3 rs1230666 1 114173410 G 0.85 0.3224 0.0555 6.4E-09 6.1E-08 Autoimmune 
KCNK3 rs1275922 2 26932887 G 0.74 0.2579 0.0443 6.0E-09 2.7E-07 Cardiometabolic 

HTT rs61348208 4 3089564 T 0.39 0.2299 0.0395 5.8E-09 1.2E-07 - 
HLA-DQA1 rs34967069 6 32591248 T 0.07 0.5613 0.0956 4.3E-09 3.6E-09 Autoimmune 

LPA rs10455872 6 161010118 A 0.92 0.7639 0.0743 8.5E-25 3.1E-24 Cardiometabolic 
CDKN2B-AS1 rs1556516 9 22100176 G 0.50 0.2510 0.0386 7.5E-11 6.4E-12 Cardiometabolic 
ATXN2/BRAP rs11065979 12 112059557 C 0.56 0.2798 0.0393 1.0E-12 6.2E-13 Autoimmune 

Cardiometabolic 
CHRNA3/5 rs8042849 15 78817929 T 0.65 0.4368 0.0410 1.6E-26 1.9E-30 Smoking-related 
FURIN/FES rs6224 15 91423543 G 0.52 0.2507 0.0390 1.3E-10 1.8E-09 Cardiometabolic 

HP rs12924886 16 72075593 A 0.80 0.2798 0.0493 1.4E-08 9.1E-08 Cardiometabolic 
LDLR rs142158911 19 11190534 A 0.12 0.3550 0.0616 8.1E-09 3.3E-08 Cardiometabolic 
APOE rs429358 19 45411941 T 0.85 1.0561 0.0546 3.1E-83 1.8E-85 Cardiometabolic 

Neurophsychiatric 

 

Table 1: Twelve genome-wide significant associations with lifespan using UK Biobank and 

LifeGen. Parental phenotypes from UK Biobank and LifeGen meta-analysis, described in Table 

1—source data 1, were tested for association with subject genotype. See Table 1—source 

data 2 for LD Score regression intercept of each cohort separately and combined. Displayed 

here are loci associating with lifespan at genome-wide significance (P < 2.5x10-8). At or near 

– Gene, set of genes, or cytogenetic band nearest to the index SNP; rsID – The index SNP with 

the lowest P value in the standard or sex-specific effect (SSE) analysis. Chr – Chromosome; 
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Position – Base-pair position on chromosome (GRCh37); A1 – the effect allele, increasing 

lifespan; Freq1 – Frequency of the A1 allele; Years1 – Years of life gained for carrying one copy 

of the A1 allele; SE – Standard Error; P – the P value for the Wald test of association between 

imputed dosage and cox model residual; Disease – Category of disease for known 

associations with SNP or close proxies (r2>0.6), see Table 1—source data 3 for details and 

references. Despite the well-known function of the HTT gene in Huntington’s disease, SNPs 

within the identified locus near this gene have not been associated with the disease at 

genome-wide significance. 

 

We then used our full sample to test 6 candidate SNPs previously associated with 

longevity[158,161,165,166] for association with lifespan, and find directionally 

consistent evidence for SNPs near FOXO3 and EBF1. The remaining SNPs did not 

associate with lifespan despite apparently adequate power to detect any effect 

similar to that originally reported (Figure 2—source data 1; Figure 2). 

 

Finally, we tested a deletion, d3-GHR, reported to affect male lifespan by 10 years 

when homozygous[167] by converting its effect size to one we expect to observe 

when fitting an additive model. We used a SNP tagging the deletion and estimated 

the expected effect size in a linear regression for the (postulated) recessive effect 

across the three genotypes, given their frequency (see Methods). While this 

additive model reduces power relative to the correct model, our large sample size 

is more than able to offset the loss of power, and we find evidence d3-GHR does 

not associate with lifespan with any (recessive or additive) effect similar to that 

originally reported (Figure 2—source data 1; Figure 2). 
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Figure 2: Validation of SNPs identified in other studies using independent samples of 

European descent. Discovery – Candidate SNPs or proxies (r2 > 0.95) associated with lifespan 

(top panels, stratified by sex) and longevity (bottom panel) by previous studies14,15,18,24–26. 

Effect sizes have been rescaled to years of life to make direct comparisons between studies 

(see Methods and Figure 2—figure supplement 1). Replication – Independent samples, either 

the LifeGen meta-analysis to replicate Pilling et al.15, or the full dataset including UK Biobank. 

Gene names are as reported by discovery and have been coloured based on overlap between 

confidence intervals (CIs) of effect estimates. Dark blue – Nominal replication (P<0.05, one-

sided test). Light blue – CIs overlap (Phet > 0.05) and cover zero, but replication estimate is 

closer to discovery than zero. Yellow – CIs overlap (Phet > 0.05) and cover zero, and 

replication estimate is closer to zero than discovery. Red – CIs do not overlap (Phet < 0.05) 

and replication estimate covers zero. Black – no replication data. 
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Mortality risk factor-informed GWAS (iGWAS) 

We integrated 58 publicly available GWAS on mortality risk factors with our CES 

lifespan GWAS, creating Bayesian priors for each SNP effect based on causal effect 

estimates of 16 independent risk factors on lifespan. These included body mass 

index, blood biochemistry, CVD, type 2 diabetes, schizophrenia, multiple sclerosis, 

education levels, and smoking traits.  

 

The integrated analysis reveals an additional seven genome-wide significant 

associations with lifespan (Bayes Factor permutation P < 2.5 x 10–8), of which 

SNPs near TMEM18, GBX2/ASB18, IGF2R, POM12C, ZC3HC1, and ABO are 

reported at genome-wide significance for the first time (Figure 3; Table 2). A total 

of 82 independent SNPs associate with lifespan when allowing for a 1% false 

discovery rate (FDR) (Table 2—source data 2). 

 

 

Figure 3: SNP associations with lifespan across both parents when taking into account prior 

information on mortality risk factors. Bayesian iGWAS was performed using observed 

associations from the lifespan GWAS and priors based on 16 traits selected by an AIC-based 

stepwise model. As the P values were assigned empirically using a permutation approach, the 

minimum P value is limited by the number of permutations; SNPs reaching this limit are 

represented by triangles. Annotated are the gene, cluster of genes, or cytogenetic band in 

close proximity to the top SNP. The red line represents the genome-wide significance 

threshold (P = 2.5 x 10-8). The blue line represents the 1% FDR threshold. Figure 3—figure 

supplement 1 shows the associations of each genome-wide significant SNP with the 16 risk 

factors. 
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At or near rsID Chr Position A1 Freq1 Years1 SE CES P Risk BF P 

CELSR2/PSRC1 rs4970836 1 109821797 G 0.23 0.2234 0.0463 1.4E-06 LDL 
HDL 
CAD 

1.6E-09 

TMEM18 rs6744653 2 628524 A 0.17 0.2772 0.0511 5.8E-08 BMI 7.0E-10 

GBX2/ASB18 rs10211471 2 237081854 C 0.80 0.2401 0.0493 1.1E-06 Education 2.3E-08 

IGF2R rs111333005 6 160487196 G 0.98 0.8665 0.1577 3.9E-08 LDL 
CAD 

6.6E-09 

POM121C rs113160991 7 75094329 G 0.78 0.2541 0.0495 2.8E-07 BMI 
Insulin 

7.5E-09 

ZC3HC1 rs56179563 7 129685597 A 0.39 0.2107 0.0406 2.1E-07 CAD 5.6E-09 

ABO rs2519093 9 136141870 C 0.81 0.2244 0.0497 6.3E-06 LDL 
CAD 

1.9E-08 

 

Table 2: Bayesian GWAS using mortality risk factors reveals seven additional genome-wide 

significant variants. At or near – Gene or set of genes nearest to the index SNP; rsID – The 

index SNP with the lowest P value in the risk factor-informed analysis. Chr – Chromosome; 

Position – Base-pair position on chromosome (GRCh37); A1 – the effect allele, increasing 

lifespan; Freq1 – Frequency of the A1 allele; Years1 – Years of life gained for carrying one copy 

of the A1 allele; SE – Standard Error; CES P – the P value for the Wald test of association 

between imputed dosage and cox model residual, under the assumption of common effects 

between sexes. Risk – mortality risk factors associated with the variant (P < 3.81x10-5, 

accounting for 82 independent SNPs and 16 independent factors). BF P – Empirical P value 

derived from permutating Bayes Factors. See Table 2—source data 1 for the causal estimate 

of each risk factor. See Table 2—source data 2 for all SNPs significant at FDR < 1%. 

 

As has become increasingly common[159], we attempted to replicate our 

genome-wide significant findings collectively, rather than individually. This is 

usually done by constructing polygenic risk scores from genotypic information in 

an independent cohort and testing for association with the trait of interest 

subject-by-subject. We used publicly available summary statistics on extreme 

longevity as an independent replication dataset[157,161], but lacking individual 

data from such studies, we calculated the collective effect of lifespan SNPs on 

longevity using the same method as inverse-variance meta-analysis two-sample 

Mendelian randomisation (MR) using summary statistics[168], which gives 

equivalent results. Prior to doing this, all effects observed in the external 

longevity studies were converted to hazard ratios using the APOE variant effect 

size as an empirical conversion factor, to allow the longevity studies to be meta-

analysed despite their different study designs (and to be adjusted for sample 

overlap; see Methods). 
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Although the focus is on collective replication, our method has the advantage of 

transparency at an individual variant level, which is of particular importance for 

researchers seeking to follow-up individual loci. Remarkably, all lead lifespan 

variants show directional consistency with the independent longevity sample, 

and 4 SNPs or close proxies (r2 > 0.8) reach nominal replication (P < 0.05, one-

sided test) (Figure 4—source data 1). Of these, SNPs near ABO, ZC3HC1, and 

IGF2R are replicated for the first time, and thus appear to affect overall survival 

and survival to extreme age. The overall ratio of replication effect sizes to 

discovery effect sizes – excluding APOE – is 0.42 (95% CI 0.23–0.61; P = 1.35x10–

5). The fact this ratio is significantly greater than zero indicates most lifespan 

SNPs are indeed longevity SNPs. However, the fact most SNPs have a ratio smaller 

than one indicates they may affect early mortality more than survival to extreme 

age, relative to APOE (which itself has a greater effect on late-life mortality than 

early mortality; Figure 4). 
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Figure 4: Collective replication of individual lifespan SNPs using GWAMAs for extreme long-

livedness shows directional consistency in all cases. Forest plot of effect size ratios between 

genome-wide significant lifespan variants from our study and external longevity studies11,18, 

having converted longevity effect sizes to our scale using APOE as benchmark (see Methods 

and Figure 4—source data 1). Alpha – ratio of replication to discovery effect sizes on the 

common scale and 95% CI (reflecting uncertainty in the numerator and denominator; P 

values are for one-sided test). A true (rather than estimated) ratio of 1 indicates the 

relationship between SNP effect on lifetime hazard and extreme longevity is the same as that 

of APOE, while a ratio of zero suggests no effect on longevity. A true ratio between 0 and 1 

suggests a stronger effect on lifetime hazard than longevity relative to APOE. SNPs 

overlapping both 0 and 1 are individually underpowered. The inverse variance meta-analysis 

of alpha over all SNPs, excluding APOE, is 0.42 (95% 0.23 to 0.61; P = 1.35x10–5) for H0 alpha 

= 0.  

 

−1 0 1 2 3

APOE (rs6857)

MAGI3 (rs1230666)

CHRNA3/5 (rs8031948)

HTT (rs2285086)

ATXN2/BRAP (rs11065987)

FURIN/FES (rs17514846)

KCNK3 (rs11126666)

HP (rs2000999)

CDKN2B−AS1 (rs1556516)

LDLR (rs6511720)

HLA−DQA1 (rs3129720)

LPA (rs10455872)

GBX2/ASB18 (rs6757542)

TMEM18 (rs6744653)

CELSR2/PSRC1 (rs602633)

POM121C (rs6944634)

IGF2R (rs3903279)

ZC3HC1 (rs11556924)

ABO (rs651007)

Summary

Alpha

Analysis

GWAS

iGWAS



 

Genome-wide association of lifespan in UK Biobank and LifeGen 82 
 

Sex- and age-specific effects 

We stratified our UK Biobank sample (for which we had individual level data) by 

sex and age bands to identify age- and sex-specific effects for survival SNPs 

discovered and/or replicated in this study. Although power was limited, as we 

sought contrasts in small effect sizes, we find 5 SNPs with differential effects on 

lifespan when stratified (FDR 5% across the 24 variants considered).  

 

The effect of the APOE variant increases with age: the ε4 log hazard ratio on 

individuals older than 70 years is around 3 times greater than those between ages 

40–70. In contrast, the effect of lead variants near CHRNA3/5, CDKN2B-AS1, and 

ABO tends to decline after age 60, at least when expressed as hazard ratios 

(Figure 5A). 

 

Independent of age, lead variants near APOE and PSORS1C3 also show an effect 

around 3.6% greater in women (95% CI 1.3%–5.9%; 1.9%–5.6%, respectively), 

compared to men (Figure 5B). Notably, the SNP near ZW10, which was identified 

by Pilling et al.[159] in fathers, and which replicated in LifeGen fathers, may affect 

men and women equally (95% CI years gained per effect allele, men 0.17–0.42, 

women 0.04–0.31), as measured in our meta-analysis of UK Biobank and LifeGen. 
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Figure 5: Age and sex specific effects on parent survival for 5 variants showing 5% FDR age- 

or sex-specificity of effect size from 23 lifespan-increasing variants. A) Variants showing age-

specific effects; B) Variants showing sex-specific effects. Panel titles show the gene, cluster of 

genes, or cytogenetic band in close proximity to the lead lifespan variant, with this variant 

and lifespan-increasing allele in parentheses. Beta – loge(protection ratio) for one copy of 

effect allele in self in the age band (i.e. 2x observed due to 50% kinship). Note the varying 

scale of y-axis across panels. Age range: the range of ages over which beta was estimated. Sex 

p – nominal P value for association of effect size with sex. Age p – nominal P value for 

association of effect size with age. 
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Causal genes and methylation sites 

We used SMR-HEIDI to look for causal effects of gene expression or changes in 

methylation on lifespan within the 24 loci discovered or replicated in our study. 

Using blood eQTL summary statistics from two studies[169,170], we suggest 

causal roles for expression of PSRC1, SESN1, SH2B3, PSMA4, FURIN, FES, and 

KANK2 at 5% FDR (Supplementary file 1). GTEx tissue-wide expression data 

suggests further roles for 16 genes across 24 tissues, especially FES (9 tissues), 

PMS2P3 (6 tissues) and PSORS1C1 (4 tissues). Methylation data reveals roles for 

44 CpG sites near 9 loci, especially near the PSORS1C3 locus (21 sites), APOE 

locus (9 sites), and HLA-DQA1 locus (4 sites) (Supplementary file 2). 

 

We next used SOJO to perform conditional analysis on the same loci to find 

additional independent variants associated with lifespan. We find substantial 

allelic heterogeneity in several association intervals and identify an additional 

335 variants, which increase out-of-sample explained variance from 0.095% to 

0.169% (78% increase). CELSR2/PSRC1, KCNK3, HLA-DQA1, LPA, ZW10, 

FURIN/FES, and APOE are amongst the most heterogeneous loci with at least 25 

variants per locus showing independent effects (Supplementary file 3).  
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Disease and lifespan 

We next sought to understand the link between our lifespan variants and disease. 

We looked up known associations with our top hits and proxies (r2 > 0.6) in the 

GWAS catalog[171] and PhenoScanner[172], excluding loci identified in iGWAS as 

these used disease associations to build the effect priors. We also excluded trait 

associations discovered solely in UK Biobank, as the overlap with our sample 

could result in spurious association due to correlations between morbidity and 

mortality. Under these restrictions, we find alleles which increase lifespan 

associate with a reduction in cardiometabolic, autoimmune, smoking-related, and 

neuropsychiatric disease and their disease risk factors (Table 1; Table 1—source 

data 3). None of the loci show any association with cancer other than lung cancer.  

We then looked up associations of the 81 iGWAS SNPs (1% FDR) with the risk 

factor GWAMAs used to inform the prior. While associations are a priori limited 

to the risk factors included in the iGWAS, the pattern of association is still of 

interest. We find loci show strong clustering in either blood lipids or CVD, show 

moderate clustering of metabolic and neurological traits, and show weak but 

highly pleiotropic clustering amongst most of the remaining traits (see Figure 3—

figure supplement 1 for clustering of genome-wide significant SNPs).  

 

In order to study the relative contribution of diseases to lifespan, we approached 

the question from the other end and looked up known associations for disease 

categories (CVD, type 2 diabetes, neurological disease, smoking-related traits, 

and cancers) in large numbers (>20 associations in each category) from the 

GWAS catalog[171] and used our GWAS to see if the disease loci associate with 

lifespan. Our measure was lifespan variance explained (LVE, years2) by the locus, 

which balances effect size against frequency, and is proportional to selection 

response and the GWAS test statistic and thus monotonic for risk of false positive 

lifespan associations. Taking each independent disease variant, we ordered them 

by LVE, excluding any secondary disease where the locus was pleiotropic.  

 

The Alzheimer’s disease locus APOE shows the largest LVE (0.23 years2), 

consistent with its most frequent discovery as a lifespan SNP in 
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GWAS[90,159,161,173]. Of the 20 largest LVE SNPs, 12 and 4 associate with CVD 

and smoking/lung cancer, respectively, while only 2 associate with other cancers 

(near ZW10 and NRG1; neither in the top 15 LVE SNPs). Cumulatively, the top 

20/45 LVE SNPs explain 0.33/0.43 years2 through CVD, 0.13/0.15 years2 through 

smoking and lung cancer, and 0.03/0.11 years2 through other cancers (Figure 6). 

 

 

Figure 6: Disease loci explaining the most lifespan variance are protective for neurological 

disease, cardiovascular disease, and lung cancer. SNPs reported as genome-wide significant 

for disease in European population studies, ordered by their lifespan variance explained 

(LVE), show the cumulative effect of disease SNPs on variation in lifespan. An FDR cut-off of 

1.55% is applied simultaneously across all diseases, allowing for 1 false positive association 

with lifespan among the 45 independent loci. Note the log scale on the X axis. Cardiovascular 

disease – SNPs associated with cardiovascular disease or myocardial infarction. Alzheimer's 

/ Parkinson's – SNPs associated with Alzheimer’s disease or Parkinson’s disease. Smoking / 

lung cancer – SNPs associated with smoking behaviour, chronic obstructive pulmonary 

disease and lung adenocarcinomas. Other cancers – SNPs associated with cancers other than 

lung cancer (see Figure 7—source data 1 for a full list). Type 2 diabetes – SNPs associated 

with type 2 diabetes. 
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Strikingly, two of the three largest LVE loci for non-lung cancers (at or near 

ATXN2/BRAP and CDKN2B-AS1), show increased cancer protection associating 

with decreased lifespan (due to antagonistic pleiotropy with CVD), while the 

third (at or near MAGI3) also shows evidence of pleiotropy, having an association 

with CVD three times as strong as breast cancer, and in the same direction. In 

addition, 6 out of the 11 remaining cancer-protective loci which increase lifespan 

and pass FDR (near ZW10, NRG1, C6orf106, HNF1A, C20orf187, and ABO) also 

show significant associations with CVD but could not be tested for pleiotropy as 

we did not have data on the relative strength of association of every type of cancer 

against CVD, and thus (conservatively from the point of view of our conclusion) 

remain counted as cancer SNPs (Figure 7; Figure 7—source data 1). Visual 

inspection also reveals an interesting pattern in the SNPs that did not pass FDR 

correction for affecting lifespan: cardio-protective variants associate almost 

exclusively with increased lifespan, while cancer-protective variants appear to 

associate with lifespan in either direction (grey dots often appear below the x-

axis for other cancers). 

 

Together, the disease loci included in our study with significant effects on lifespan 

explain 0.95 years2, or less than 1% of the phenotypic variance of lifespan of 

European parents in UK Biobank (123 years2), and around 5% of the heritability. 

 



 

Genome-wide association of lifespan in UK Biobank and LifeGen 88 
 

 

 

Figure 1: Lifespan variance explained by individual genome-wide significant disease SNPs 

within disease categories. Genome-wide significant disease SNPs from the GWAS catalog are 

plotted against the amount of lifespan variance explained (LVE), with disease-protective 

alleles signed positively when increasing lifespan and signed negatively when decreasing 

lifespan. SNPs with limited evidence of an effect on lifespan are greyed out: an FDR cut-off of 

1.55% is applied simultaneously across all diseases, allowing for 1 false positive among all 

significant SNPs. Secondary pleiotropic SNPs (i.e. those associating more strongly with 

another one of the diseases, as assessed by PheWAS in UK Biobank) are coloured to indicate 

the main effect on increased lifespan seems to arise elsewhere. Of these, turquoise SNPs show 

one or more alternative disease associations in the same direction and at least twice as strong 

(double Z statistic – see Detailed Methods) as the principal disease, while brown SNPs show 

one or more significant associations with alternative disease in the opposite direction that 

explains the negative association of the disease-protective SNP with lifespan. The variance 

explained by all SNPs in black is summed (∑LVE) by disease. Annotated are the gene, cluster 

of genes, or cytogenetic band near the lead SNPs. The Y axis has been capped to aid legibility 

of SNPs with smaller LVE: SNPs near APOE pass this cap and are represented by triangles. See 

Figure 7—source data 1 for the full list of disease SNP associations. 
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Cell type and pathway enrichment 

We used stratified LD-score regression to assess whether cell type-specific 

regions of the genome are enriched for lifespan variants. As this method derives 

its power from SNP heritability, we limited the analysis to genomically British 

individuals in UK Biobank, which showed the lowest heterogeneity and the 

highest SNP heritability. At an FDR < 5%, we find enrichment in SNP heritability 

in five categories: two histone and two chromatin marks linked to male and 

female foetal brain cells, and one histone mark linked to the dorsolateral 

prefrontal cortex (DLPC) of the brain. Despite testing other cell types, such as 

heart, liver, and immune cells, no other categories are statistically significant after 

multiple testing correction (Supplementary file 4). 

 

We also determined which biological pathways could explain the associations 

between our genetic variants and lifespan using three different methods, VEGAS, 

PASCAL, and DEPICT. VEGAS highlights 33 gene sets at an FDR < 5%, but neither 

PASCAL nor DEPICT (with SNP thresholds at P < 5 x 10–8 and P < 1 x 10–5) identify 

any gene sets passing multiple testing correction. The 33 gene sets highlighted by 

VEGAS are principally for blood lipid metabolism (21), with the majority 

involving lipoproteins (14) or homeostasis (4). Other noteworthy gene sets are 

neurological structure and function (5) and vesicle-mediated transport (3). 

Enrichment was also found for organic hydroxy compound transport, 

macromolecular complex remodelling, signalling events mediated by stem cell 

factor receptor (c-kit), and regulation of amyloid precursor protein catabolism 

(Supplementary file 5). 

 

Finally, we performed an analysis to assess whether genes that have been shown 

to change their expression with age[174] are likely to have a causal effect on 

lifespan itself. Starting with a set of independent SNPs affecting gene expression 

(eQTLs), we created categories based on whether gene expression was age-

dependent and whether the SNP was associated with lifespan in our study (at 

varying levels of significance). We find eQTLs associated with lifespan are 1.69 to 
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3.39 times more likely to have age-dependent gene expression, depending on the 

P value threshold used to define the set of lifespan SNPs (Supplementary file 6). 

 

Out-of-sample lifespan PRS associations. 

We calculated polygenic risk scores (PRS) for lifespan for two subsamples of UK 

Biobank (Scottish individuals and a random selection of English/Welsh 

individuals), and one sample from the Estonian Biobank. The PRS were based on 

(recalculated) lifespan GWAS summary statistics that excluded these samples to 

ensure independence between training and testing datasets. 

 

When including all independent markers, we find an increase of one standard 

deviation in PRS increases lifespan by 0.8 to 1.1 years, after doubling observed 

parent effect sizes to compensate for the imputation of their genotypes (see Table 

3—source data 1 for a comparison of performance of different PRS thresholds). 

Correspondingly – again after doubling for parental imputation – we find a 

difference in median survival for the top and bottom deciles of PRS of 5.6/5.6 

years for Scottish fathers/mothers, 6.4/4.8 for English & Welsh fathers/mothers 

and 3.0/2.8 for Estonian fathers/mothers. In the Estonian Biobank, where data is 

available for a wider range of subject ages (i.e. beyond median survival age) we 

find a contrast of 3.5/2.7 years in survival for male/female subjects, across the 

PRS tenth to first deciles (Table 3; Figure 8). 
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Sample Descriptives  Effect of polygenic score  Contrast age at death 

Population Kin N Deaths   Beta SE Years P   Men Women 

Scotland Parents 46,936 33,196  0.107 0.011 1.07 4.2E-22  5.6 5.6 

Scotland Subjects 24,059 941  0.085 0.033 0.85 1.0E-02  - - 

E&W Parents 58,070 39,347  0.133 0.010 1.33 7.3E-39  6.4 4.8 

E&W Subjects 29,815 760  0.098 0.037 0.98 7.1E-03  - - 

Estonia  Parents 61,728 29,660  0.099 0.012 0.99 2.5E-17  3.0 2.8 

Estonia  Subjects 24,800 2,894  0.087 0.019 0.87 2.6E-06  3.5 2.7 

  Per standard deviation  Top vs. bottom 10% 

 

Table 3: Polygenic scores for lifespan associate with out-of-sample parent and subject 

lifespans. A polygenic risk score (PRS) was made for each subject using GWAS results that did 

not include the subject sets under consideration. Subject or parent survival information (age 

entry, age exit, age of death, if applicable) was used to test the association between polygenic 

risk score and survival as (a) a continuous score and (b) by dichotomising the top and bottom 

decile scores. Population – Population sample of test dataset, where E&W is England and 

Wales; Kin – Individuals tested for association with polygenic score; N – Number of lives used 

for analysis; Deaths – Number of deaths; Beta – Effect size per PRS standard deviation, in 

loge(protection ratio), doubled in parents to reflect the expected effect in cohort subjects. SE 

– Standard error, doubled in parents to reflect the expected error in cohort subjects; Years – 

Estimated years of life gained per PRS standard deviation; P – P value of two-sided test of 

association; Contrast age at death – difference between the median lifespan of individuals in 

the top and bottom deciles of the score in year of life (observed parent contrast is again 

doubled to account for imputation of their genotypes). 
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Figure 8: Survival curves for highest and lowest deciles of lifespan polygenic risk score. A 

polygenic risk score was made for each subject using GWAS results that did not include the 

subject sets under consideration. Subject or parent survival information (age entry, age exit, 

age of death (if applicable) was used to create Kaplan-Meier curves for the top and bottom 

deciles of score. In this figure (only) no adjustment has been made for the dilution of 

observed effects due to parent imputation from cohort subjects. Effect sizes in parent, if 

parent genotypes had been used, are expected to be twice that shown. E&W – England and 

Wales; PRS – polygenic risk score. 
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Finally, as we did for individual variants, we looked at the age- and sex-specific 

nature of the PRS on parental lifespan and then tested for associations with (self-

reported) age-related diseases in subjects and their kin. We find a high PRS has a 

larger protective effect on lifespan for mothers than fathers in UK Biobank 

subsamples (P = 0.0071), and has a larger protective effect on lifespan in younger 

age bands (P = 0.0001) (Figure 9), although in both cases, it should be borne in 

mind that women and younger people have a lower baseline hazard, so a greater 

improvement in hazard ratio does not necessarily mean a larger absolute 

protection. 

 

 

 

Figure 9: Sex and age specific effects of polygenic survival score (PRS) on parental lifespan in 

UK Biobank. The effect of out-of-sample PRS on parental lifespan stratified by sex and age 

was estimated for Scottish and English/Welsh subsamples individually (see Figure 9—figure 

supplement 1) and subsequently meta-analysed. The estimate for the PRS on father lifespan 

in the highest age range has very wide confidence intervals (CI) due to the limited number of 

fathers surviving past 90 years of age. The beta 95% CI for this estimate is –0.15 to 0.57. Beta 

– loge(protection ratio) for 1 standard deviation of PRS for increased lifespan in self in the 

age band (i.e. 2 x observed due to 50% kinship), bounds shown are 95% CI; Age range – the 

range of ages over which beta was estimated; sex p – P value for association of effect size with 

sex; age p – P value for association of effect size with age. 
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We find that overall, higher PRS scores (i.e. genetically longer life) are associated 

with less heart disease, diabetes, hypertension, respiratory disease and lung 

cancer, but increased prevalence of Alzheimer’s disease, Parkinson’s disease, 

prostate cancer and breast cancer, the last three primarily in parents. We find no 

association between the score and prevalence of cancer in subjects (Figure 10). 

 

 

Figure 10: Associations between polygenic lifespan score and diseases of UK Biobank 

subjects and their kin. Logistic regression was performed on standardised polygenic survival 

score (all variants) and 21 disease traits reported by 24,059 Scottish and 29,815 

English/Welsh out-of-sample individuals about themselves and their kin. For grouping of UK 

Biobank disease codes, see Figure 10—source data 1. Displayed here are inverse-variance 

meta-analysed estimates of the diseases for which multiple sources of data were available 

(i.e. parents and/or siblings; see Figure 10—figure supplement 1 for all associations). 

“Cancer” is only in subjects, whilst the specific subtypes are analysed for kin. The left panel 

shows disease estimates for each kin separately; the right panel shows the combined 

estimate, with standard errors adjusted for correlation between family members. Diseases 

have been ordered by magnitude of effect size (combined estimate). Beta – log odds 

reduction ratio of disease per standard deviation of polygenic survival score, where a 

negative beta indicates a deleterious effect of score on disease prevalence (lifetime so far), 

and positive beta indicates a protective effect on disease. Effect sizes for first degree relative 

have been doubled. Cancer – Binary cancer phenotype (any cancer, yes / no).  
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Discussion 

Applying the kin-cohort method in a GWAS and mortality risk factor iGWAS across 

UK Biobank and the LifeGen meta-analysis, we identified 11 novel genome-wide 

significant associations with lifespan and replicated 6 previously discovered loci. 

We also replicated long-standing longevity SNPs near APOE, FOXO3, and 

5q33.3/EBF1 – albeit with smaller effect sizes in the latter two cases – but found 

evidence of no association (at effect sizes originally published) with lifespan for 

more recently published longevity SNPs near IL6, ANKRD20A9P, USP42, and 

TMTC2. Conversely, all individual variants identified in our analyses showed 

directionally consistent effects in a meta-analysis of two European-ancestry 

studies of extreme longevity, and a test of association of a polygenic risk score of 

the variants was highly significant in the longevity dataset (P < 1.5x10-5). 

 

Our findings validate the results of a previous Bayesian analysis performed on a 

subset (N = 116,279) of the present study’s discovery sample[164], which 

highlighted two loci which are now genome-wide significant in conventional 

GWAS in the present study’s larger sample. iGWAS thus appears to be an effective 

method able to identify lifespan-associated variants in smaller samples than 

standard GWAS, albeit relying on known biology. 

 

With the curious exception of a locus near HTT (the Huntington's disease gene), 

all lead SNPs are known to associate with autoimmune, cardiometabolic, 

neuropsychiatric, or smoking-related disease, and it is plausible these are the 

major pathways through which the variants affect lifespan. Whole-genome 

polygenic risk scores showed similar associations with disease, excluding late-

onset disorders such as Alzheimer’s and Parkinson’s, where polygenic risk scores 

for extended lifespan increased risk (of survival to age at onset) of the disease. 

 

Genetic variants affecting lifespan were enriched for pathways involving the 

transport, homeostasis and metabolism of lipoprotein particles, validating 

previous reports[164]. We also identified new pathways including vesicle 

transport, metabolism of acylglycerol and sterols, and synaptic and dendritic 
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function. We discovered genomic regions with epigenetic marks determining cell 

differentiation into foetal brain and DLPC cells were enriched for genetic variants 

affecting lifespan. Finally, we showed that we can use our GWAS results to 

construct a polygenic risk score, which makes 3 to 5 year distinctions in life 

expectancy at birth between individuals from the score’s top and bottom deciles. 

 

Despite studying over 1 million lives, our standard GWAS only identified 12 

variants influencing lifespan at genome-wide significance. This contrasts with 

height (another highly polygenic trait) where a study of around 250,000 

individuals by Wood et al.[175] found 423 loci. This difference can partly be 

explained by the much lower heritability of lifespan (0.12)[40] (cf. 0.8 for 

height[175]), consistent with evolution having a stronger influence on the total 

heritability of traits more closely related to fitness and limiting effect sizes. In 

addition, the use of indirect genotypes (the kin-cohort method) reduces the 

effective sample size to 1/4 for the parent-offspring design.  

 

When considering these limitations, we calculate our study was equal in power 

to a height study of only around 23,224 individuals, were lifespan to have a similar 

genetic architecture to height (see Methods). Under this assumption, we would 

require a sample size of around 10 million parents (or equivalently 445,000 

nonagenarian cases, with even more controls) to detect a similar number of loci 

as Wood et al. At the same time, our inability to replicate several previous 

borderline significant longevity and lifespan findings suggests research into 

survival in general requires substantial increases in power to robustly identify 

loci. 

 

Meta-analysis of mothers and fathers, permitting common or sex-specific effect 

sizes, of course, doubled effective sample size, with slight attenuation to reflect 

the observed correlation (~10%) between father and mother traits (consistent 

with previous studies[40]). This correlation indicates the presence of assortative 

mating on traits which correlate with lifespan (as lifespan itself is of course not 

observed until later), or post-pairing environmental convergence. We note that in 
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principle, assortative mating could lead to allelic correlations at causal loci for the 

contributing traits, causing departures from Hardy-Weinberg equilibrium, and 

increasing the genotypic variance and thus power to detect association. However, 

in practice, at least for lifespan, the effects are too small for the effect to be 

material. 

 

The association of lifespan variants with well-known, life-shortening diseases 

(cardiovascular, autoimmune, smoking-related diseases and lung cancer)[176] is 

not surprising, but the paucity of associations with other forms of cancer – 

without pleiotropic effects on CVD – is. This paucity suggests cancer deaths may 

often be due to (perhaps many) rarer variants or environmental exposures, 

although effect sizes might simply be slightly below our cut-off threshold to 

detect. Disappointingly, the variants and pathways we identified do not appear to 

underpin a generalised form of ageing independent of disease. 

 

Our finding that lifespan genetics are enriched for lipid metabolism genes is in 

line with expectations, given lipid metabolites – especially cholesterol 

metabolites – have well-established effects on atherosclerosis, type-2-diabetes, 

Alzheimer’s disease, osteoporosis, and age-related cancers[177]. Pilling et 

al.[159] implicated nicotinic acetylcholine receptor pathways in human lifespan, 

which we detected at nominal significance (P = 2x10-4) but not at 5% FDR 

correction (q = 0.0556). Instead we highlighted more general synapse and 

dendrite pathways and identified foetal brain and DLPC cells as important in 

ageing. The DLPC is involved in smoking addiction[178], dietary self-

control[179], and is susceptible to neurodegeneration[180], which could explain 

why genetic variation for lifespan is specifically enriched in these cells, mediated 

through smoking-related, cardiometabolic, and neuropsychiatric disease. 

 

Much work has been done implicating FOXO3 as an ageing gene in model 

organisms[22,181], however we found the association in humans at that locus 

may be driven by expression of SESN1 (admittedly a finding restricted to 

peripheral blood tissue). SESN1 is a gene connected to the FOXO3 promoter via 
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chromatin interactions and is involved in the response to reactive oxygen species 

and mTORC1 inhibition[182]. While fine-mapping studies have specifically found 

genetic variation within the locus causes differential expression of FOXO3 

itself[183,184], this does not rule out co-expression of SESN1 effects. More 

powered tissue-specific expression data and experimental work on SESN1 vs 

FOX03A could elucidate. In the meantime the model organism results seem to 

leave the preponderance of evidence for FOX3A . 

 

Our results suggest disease-associated lifespan variants reduce the chances of 

extreme long-livedness, but remain agnostic as to the more interesting two-part 

question: are there longevity variants that have little effect on lifespan in the 

normal range[160], and if so, do they control underlying ageing processes? We 

note, the genetic overlap between lifespan and extreme long-livedness is high 

(0.73), but not complete[164]. Regardless of this, only a small part of the 

heritability of both lifespan and longevity has thus far been explained by GWAS. 

It thus remains plausible that an enlarged long-livedness or lifespan study will 

find variants controlling the rate of ageing and associated pathways. Curiously, 

we find little evidence of SNPs of large deleterious effect on lifespan acting with 

antagonistic pleiotropy on other fitness and developmental component traits, 

despite long-standing theoretical suggestions to the contrary[185]. However, we 

did not examine mortality before the age of 40, or mortality of individuals without 

offspring (by definition as we were examining parental lifespans), which may 

exhibit this phenomenon. For the time being, our findings that the improved 

polygenic risk score for lifespan was associated with an increased prevalence of 

Alzheimer's disease, Parkinson's disease, and prostate and breast cancer, means 

we appear to be predominantly measuring a propensity for longer life through 

avoidance of early disease-induced mortality, rather than healthy ageing or 

fertility costs. 

 

Whilst it has previously been shown that transcriptomic age calculated based on 

age-related genes is meaningful in the sense that its deviation from the 

chronological age is associated with biological features linked to ageing[174], the 
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role of these genes in ageing was unclear. A gene might change expression with 

age because (i) it is a biological clock (higher expression tracking biological 

ageing, but not influencing ageing or disease); (ii) it is a response to the 

consequences of ageing (e.g. a protective response to CVD); (iii) it is an indicator 

of selection bias: if low expression is life-shortening, older people with low 

expression tend to be eliminated from the study, hence the average expression 

level of older age groups is higher. However, our results now show that the 

differential expression of many of the age-related genes discovered by Peters et 

al.[174] are not only biomarkers of ageing, but are also enriched for direct effects 

on lifespan. 

 

There is increasing interest in polygenic risk scores, and their potential clinical 

utility for some diseases appears to be similar to some Mendelian mutations 

(albeit such monogenic tests are usually only applied in the context of family 

history)[105]. At first sight, the magnitude of the distinctions in our genetic 

lifespan score (5 years of life between top and bottom deciles, for both the parent 

and subject generations) are quite small compared with variability in individual 

lifespans. However, these distinctions are potentially material at a group level, for 

example, actuarially. The implied distinction in price (14%; Methods) is greater 

than some recently reported annuity profit margins (8.9%)[186]. In our view, the 

legal and ethical frameworks (at least in the UK[187]) are presently under-

developed for genome-wide scores, whether for disease or lifespan and this needs 

to be urgently addressed. At the same time, although material in isolation, our 

lifespan associations may only have practical utility in many applications if they 

provide additional information than that provided by conventional clinical risk 

measures (e.g. the Framingham score[188]). Such an assessment has been 

beyond the scope of this work, in part as such risk measures are not readily 

available for the parents (rather than subjects) studied. 
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One limitation of our study was the power reduction caused by the exclusion of 

relatives in our study, rather than linear mixed modelling (LMM) with a term for 

kinship as measured by the genomic relationship matrix (GRM) [159,189]. 

However, as the correct adjustment is not derivable under the kin-cohort method, 

we felt this was the best approach. To see that the normal adjustment is not 

correct, consider two siblings. The phenotypes under study are of course identical 

(as the parents are the same), but the expected correlation under the mixed 

model would only be 50% of the heritability. Simply excluding siblings, however, 

is not sufficient. For example, consider two offspring subjects who are first 

cousins descended from two full brothers. The GRM entry in this situation is 

12.5% whilst the appropriate relatedness factor for the father trait is 50% and 

the mother 0%. Exclusion of relatives thus appears the most straightforward 

solution, although if a pedigree were available, not just a GRM, accurate LMM 

might have been feasible. 

 

The analysis of parent lifespans has enabled us to probe mortality for a generation 

whose lives are mostly complete and attain increased power in a survival GWAS. 

However, changes in the environment (and thus the relative importance of each 

genetic susceptibility, for example following the smoking ban) inevitably mean 

we have less certainty about associations with prospective lifespans for the 

present generation of middle-aged people, or a different population (with 

perhaps different relative importance of disease or even overall heritability of 

lifespan). The 21% reduction in the effect size of the association between our PRS 

for the UK offspring generation supports this idea, although the estimated 

contrast in hazard ratios across the deciles was not reduced, which may be a 

statistical artefact or due to the different periods of life probed. The lower 

explanatory power of the PRS in Estonia may reflect the differing alleles and LD 

patterns between the UK training data and the Estonian test data, but also the 

different environments, in particular the sources of mortality in that country in 

the Soviet, and early post-Soviet era. 
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In conclusion, recent genomic susceptibility to death in the normal age range 

seems rooted in modern diseases: Alzheimer’s, CVD and lung cancer; in turn 

arising from our modern – long-lived, obesogenic and tobacco-laden – 

environment, however the keys to the distinct traits of ageing and extreme 

longevity remain elusive. At the same time, genomic information alone can now 

make material distinctions at a group level in variations in expected length of life, 

although the limited individual accuracy of these distinctions is far from reaching 

genetic determinism of that most (self-) interesting of traits – your lifespan.  
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Methods  

GWAS 

For genetically British ancestry (as identified by UK Biobank using genomic PCA) 

and each self-reported European ethnicity in UK Biobank (including self-declared 

British but not genetically British ancestry), independent association analyses 

were performed between unrelated subjects’ genotypes (MAF > 0.005; HRC 

imputed SNPs only; ~9 million markers) and parent survival using age and 

alive/dead status in residualised Cox models, as described in Joshi et al.[70]. To 

account for parental genotype imputation, effect sizes were doubled, yielding log 

hazard ratios for the allele in carriers themselves. These values were negated to 

obtain a measure of log protection ratio, where higher values indicate longer life. 

While methods exist to account for related individuals using linear mixed models, 

such as BOLT-LMM[189] , these are not accurate when trying to account for 

relatedness between parents (See Detailed Methods). 

 

Mother and father survival information was combined in two separate ways, 

essentially assuming the effects were the same in men and women, or allowing 

for sex-specific effect sizes (SSE), with appropriate allowance for the covariance 

amongst the traits. For the first analysis we summed parental survival residuals; 

for the second analysis we used MANOVA, implemented in MultiABEL[190]. 

 

For LifeGen, where individual-level data was not available, parent survival 

summary statistics were combined using conventional fixed-effects meta-

analysis, adjusted to account for the correlation between survival traits 

(estimated from summary-level data). For SSE, the same procedure was followed 

as for the UK Biobank samples, with correlation between traits again estimated 

from summary-level data. The GWAS statistics showed acceptable inflation, as 

measured by their LD-score regression intercept (<1.06, Table 1—source data 

2). 
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Candidate SNP replication 

Effect sizes from longevity studies were converted to our scale using an empirical 

conversion factor, based on the observed relationships between longevity and 

hazard ratio at the most significant variant at or near APOE, observed in the 

candidate SNPs study and our data[70]. These studies were then meta-analysed 

using inverse variance weighting and standard errors were inflated to account for 

sample overlap (see Detailed Methods) 

 

Estimates reported in Pilling et al.[159] were based on rank-normalized 

Martingale residuals, unadjusted for the proportion dead, which – for individual 

parents – could be converted to our scale by multiplying by sqrt(c)/c, where c is 

the proportion dead in the original study (see Detailed Methods for derivation). 

Combined parent estimates were converted using the same method as the one 

used for longevity studies.  

 

The deletion reported by Ben-Avrahim et al.[167] is perfectly tagged by a SNP that 

we used to assess replication. Assuming a recessive effect and parental 

imputation, we derived the expected additive effect to be �̂�𝐶 = �̂�𝐶𝐶
𝑞2

𝑞2+2𝑝𝑞
, where 

�̂�𝐶 is the effect we expect to observe under our additive model, �̂�𝐶𝐶  is the 

homozygous effect reported in the original study, 𝑞 is the C allele frequency, and 

𝑝 is 1 − 𝑞. (see Detailed Methods for derivation) 

 

iGWAS 

58 GWAS on mortality risk factors were used to create Bayesian priors for the SNP 

effects observed in the CES study, as described in McDaid et al.[164]. Mendelian 

randomisation was used to estimate causal effects of independent risk factors on 

lifespan, and these estimates were combined with the risk factor GWAS to 

calculate priors for each SNP. Priors were multiplied with observed Z statistics 

and used to generate Bayes factors. Observed Z statistics were then permuted, 
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leading to 7.2 billion null Bayes factors (using the same priors), which were used 

to assess significance. 

 

Sex and age stratified analysis 

Cox survival models, adjusting for the same covariates as the standard GWAS, 

were used to test SNP dosage against survival of UK Biobank genomically British 

fathers and mothers, separately. The analysis was split into age bands, where any 

parent who died at an age younger than the age band was excluded and any 

parent who died beyond the age band was treated as alive. Using the R package 

“metafor", moderator effects of sex and age on hazard ratio could be estimated 

while taking into account the estimate uncertainty (see Detailed Methods for 

formula). 

 

Causal genes and methylation sites 

SMR-HEIDI[191] tests were performed on CES statistics to implicate causal genes 

and methylation sites. Summary-level data from two studies on gene expression 

in blood[169,170] and data on gene expression in 48 tissues from the GTEx 

consortium[192] were tested to find causal links between gene expression and 

lifespan. Similarly, data from a genome-wide methylation study[193] was used to 

find causal links between CpG sites and lifespan. All results from the SMR test 

passing a 5% FDR threshold where the HEIDI test P > 0.05 were reported. 

 

Conditional analysis 

SOJO[194] was used to fine-map the genetic signals in 1 Mb regions around lead 

SNPs reaching genome-wide significance and candidate SNPs reaching nominal 

significance in our study. The analysis was based on CES statistics from UK 

Biobank genomically British individuals, using the LifeGen meta-analysis results 

to optimise the LASSO regression tuning parameters. For each parameter, a 

polygenic score was built and the proportion of predictable variance from the 

regional polygenic score in the validation sample was calculated. 
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Disease association analysis 

The GWAS catalog[171] and PhenoScanner[172] were checked for known 

genome-wide significant associations with our GWAS hits and proxies (r2 > 0.6) 

in European samples. Associations discovered in UK Biobank by Neale et al.[195] 

were omitted from the PhenoScanner database as the findings have not been 

replicated, and the large sample overlap with our own study could result in false 

positive associations, due to phenotypic correlations between morbidity and 

mortality. Triallelic SNPs and associations without effect sizes were excluded 

before near-identical traits were grouped together, discarding all but the 

strongest association and keeping the shortest trait name. For example, “Lung 

cancer”, “Familial lung cancer”, and “Small cell lung cancer” were grouped and 

renamed to “Lung cancer”. The remaining associations were classified into 

disease categories based on keywords and subsequent manual curation.  

 

Lifespan variance explained by disease SNPs 

The GWAS catalog[171] was checked for disease associations discovered in 

European ancestry studies, which were grouped into broad disease categories 

based on keywords and manual curation (see Figure 7—source data 1 and 

Detailed Methods). Associations were pruned by distance (500kb) and LD (r2 < 

0.1), keeping the SNP most strongly associated with lifespan in the CES GWAS. 

Where possible this SNP was tested against diseases in UK Biobank subjects and 

their family to test for pleiotropy (see Detailed Methods). Significance of 

associations with lifespan was determined by setting an FDR threshold that 

allowed for 1 false positive among all independent SNPs tested (q ≤ 0.022). 

Lifespan variance explained (LVE) was calculated as 2pqa2, where p and q are the 

frequencies of the effect and reference alleles in our lifespan GWAS, and a is the 

SNP effect size in years of life[196]. 

 

Cell type enrichment 

Stratified LD-score regression[197] was used to test for cell type-specific 

enrichment in lifespan heritability. As the power of this method depends on SNP 

heritability, standard LD-score regression[198] was first used to check which of 
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our samples (UK Biobank, LifeGen, or the combined cohort) had the highest SNP 

heritability. Lifespan summary statistics from UK Biobank genomically British 

individuals were then analysed using the procedure described in Finucane et 

al.[197], and P values were adjusted for multiple testing using the Benjamin-

Hochberg procedure. 

 

Pathway enrichment 

VEGAS2 v2.01.17[199] was used to calculate gene scores using SNPs genotyped 

in UK Biobank, based on summary statistics from the full CES cohort and the 

default software settings. VEGAS2Pathway was then used to check for pathway 

enrichment using those gene scores and the default list of gene sets[200]. 

 

DEPICT[201] was also used to map genes to lifespan loci and check for pathway 

enrichment in the combined cohort CES GWAS. Default analysis was run for 

regions with genome-wide significant (P < 5e-8) variants in the first analysis, and 

genome-wide suggestive (P<1e-5) variants in the second analysis, excluding the 

MHC in both cases. 

 

PASCAL[202] was used with the same summary statistics and gene sets as 

DEPICT, except the gene probabilities within the sets were dichotomized (Z>3) 

as described in Marouli et al.[203]. For each software independently, pathway 

enrichment was adjusted for multiple testing using the Benjamin-Hochberg 

procedure. 

 

Age-related eQTL enrichment 

Combined cohort CES lifespan statistics were matched to eQTLs associated with 

the expression of at least one gene (P<10–3) in a dataset from the eQTLGen 

Consortium (31,684 individuals)[204]. Data on age-related expression[174] 

allowed eQTLs to be divided into 4 categories based on association with age 

and/or lifespan. Fisher's exact test was used check if age-related eQTLs were 

enriched for associations with lifespan. 
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Polygenic score analysis 

Polygenic risk scores (PRS) for lifespan were calculated for two subsamples of UK 

Biobank (24,059 Scottish individuals and a random 29,815 English/Welsh 

individuals), and 36,499 individuals from the Estonian Biobank, using combined 

cohort CES lifespan summary statistics that excluded these samples. PRSice 

2.0.14.beta[109] was used to construct the scores from genotyped SNPs in UK 

Biobank and imputed data from the Estonian Biobank, pruned by LD (r2 = 0.1) 

and distance (250kb). Polygenic scores were Z standardised. 

 

Cox proportional hazard models were used to fit parental survival against 

polygenic score, adjusted for subject sex; assessment centre; genotyping batch 

and array; and 10 principal components. Parental hazard ratios were converted 

into subject years of life as described in the GWAS method section.  

 

Logistic regression models were used to fit polygenic score against the same self-

reported UK Biobank disease categories used for individual SNPs. Effect 

estimates of first-degree relatives were doubled to account for imputation of 

genotypes and then meta-analysed using inverse variance weighting, adjusting 

for trait correlations between family members. 

 

Postulation of equivalent sample size in height GWAS 

The use of parent imputation, low trait heritability, and incomplete proportion 

dead all reduce the power to detect effect sizes. The equivalent sample size in a 

hypothetical, completely heritable trait with otherwise identical genetic 

architecture would be the original sample size, diluted (i.e. multiplied) by the 

heritability (0.122)[40], the r2 of offspring genotype on parent genotype (0.250) 

and the proportion dead (0.602). This gives an equivalent sample size of 18,579 

from the 1,012,240 parent lifespans. We then calculated sample size for height 

that would have the same properties, accounting for the heritability of height 

(0.8)[175]: 23,224 (i.e. 18,579/0.8). We next calculated the P value that would 

have been reported by Wood et al's 250,000 sample size height GWAMA[175] for 

a SNP that was just significant in a hypothetical 23,224 sample height GWAMA: P 



 

Genome-wide association of lifespan in UK Biobank and LifeGen 108 
 

< 1.8x10-72. Six distinct loci passed this significance threshold in Wood et al's 

results. 

 

With 17,893 nonagenarians, Deelen et al[161] attained a P value of 2.33x10-26 at 

rs4420638. With 1.012m parents we attained a P value of 1.75x10-64. Other things 

being equal a nonagenarian sample size of 44,500 thus appears to be equally 

powered to one million parents. 

 

Data availability 

The results that support our findings, in particular, the GWAS summary statistics 

for >1 million parental lifespans in this study are at 

http://dx.doi.org/10.7488/ds/2463. Gene expression data is being made 

available by the eQTLGen Consortium[204]. 

 

URLs 

MultiABEL: https://github.com/xiashen/MultiABEL/  

LDSC: https://github.com/bulik/ldsc  
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3.3 Conclusion 

 

Genetic variants are involved in determining lifespan: this study highlighted 12 

regions in the genome which strongly influence survival and confirmed an 

additional five candidate regions from previous studies. The concordance of 

effects of these regions between multiple studies, including lifespan-related traits 

such as longevity and cardiovascular disease, suggests the findings are robust. In 

contrast to our own discoveries, eight candidate loci highlighted in previous 

studies failed to replicate despite adequate power to detect an effect, while 

another 12 loci remain uncertain due to a lack of statistical power or data. These 

findings suggest there is a need for even larger studies on lifespan to detect effects 

with confidence. The majority of lifespan loci we have robust evidence for affect 

males and females equally, with regions near APOE and PSORS1C3 being the only 

exceptions. Since we did not have data on sex chromosomes, we cannot exclude 

the possibility that there are variants with strong sex-specific effects which affect 

the discrepancy in male and female lifespan observed in Chapter 2. 

 

Although each individual locus may only change an individual’s lifespan by a 

couple of months, the polygenic survival scores created from SNPs across the 

genome can make meaningful distinctions—up to 5 years—between individuals 

in the top and bottom survival score deciles. The slight attenuation of the 

association of this score with survival in UK Biobank subjects and in Estonian 

subjects and their parents indicates there may be some population and 

generation-specific risk factors in UK Biobank parents which reduce predictive 

power in these other cohorts. Supporting this, we found higher scores were 

associated with lower levels of morbidity in subjects and parents, but the 

reductions in the odds of CVD and diabetes were greater for subjects. However, 

higher scores were also associated with increased odds of neurodegenerative 

disease and breast/prostate cancer suggesting the score is predicting early 

mortality rather than delayed ageing. While a study of the association of polygenic 
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survival score with the incidence of disease could show whether higher polygenic 

scores delay disease onset, UK Biobank individuals did not report the date of 

incidence of parental diseases, and very few individuals themselves have 

experienced late onset disease such as Alzheimer’s disease and prostate cancer, 

which precluded such an analysis. For now, the main use of these polygenic 

survival scores will be stratifying individuals based on their risk of death within 

actuarial and healthcare settings. Within the former, they can be used to inform 

annuity pricing, while in the latter, they can be used to inform decisions to offset 

risk of early death in patients.  

 

We also found common genetic variation influencing cancer susceptibility 

(unrelated to smoking) does not appear to have large effects on lifespan, 

contrasting with cancer mortality as shown in Chapter 2. In fact, we observed 

cancer-protective SNPs often shorten lifespan due to antagonistic pleiotropic 

effects on CVD. Whether these findings reflect true antagonistic effects or are 

artefacts of tissue-specific roles for these variants is unclear. Even if the 

antagonistic effects are real, this study is unable to determine whether they 

represent a biological trade-off, or are the result of the removal of one cause of 

death making the next cause of death more likely. Regardless, these contrasting 

effects complicate the search for therapeutic targets that could delay ageing and 

age-related disease, as lifespan genes with antagonistic or tissue-specific effects 

are poor drug targets due to their higher likelihood of side-effects, where 

knockdown of a gene or inactivation its gene product could decrease 

susceptibility to one disease but increase susceptibility to another. The next 

Chapter addresses this problem by searching for variants and genes with 

concordant effects on disease susceptibility and lifespan to identify better targets. 

 

Lastly, this study linked the expression of 23 genes and the methylation of 44 CpG 

sites to parental survival and found enrichment of genetic signals in gene sets for 

lipid processing and synaptic signalling. When examining these results in the 

context of the strong links between lifespan variants and CVD and smoking-

related disease, it is likely these genes and pathways capture the biological 
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processes underlying early mortality risk factors, such as obesity and smoking, 

rather than putative ageing processes, such as cellular maintenance and stress 

resistance. In conclusion, this study has shown survival can be predicted to some 

extent from DNA alone, but it appears the strongest genetic determinants of 

lifespan modify susceptibility to risk factors for early mortality, rather than the 

ageing process itself. Variants affecting the rate of ageing may require larger and 

more diverse samples to be detected and may require more health-related 

measures to be differentiated from mortality risk factors. In the next Chapter, I 

extend the current study with additional ageing-related GWAS to further explore 

this complexity. 
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Chapter 4: Genome-wide multivariate association of 

healthspan, lifespan, and longevity 

4.1 Introduction 

4.1.1 Context 

In the previous Chapter, we performed a genome-wide association of parental 

lifespan and highlighted smoking-related disease and CVD pathways as important 

in determining lifespan, aligning closely with diseases highlighted in Chapter 2. 

However, there was a notable lack of cancer variants (other than lung cancer) 

influencing survival, raising the possibility that the genetic signals we identified 

were related to modern exposures influencing lifespan (e.g. smoking and obesity) 

rather than intrinsic ageing processes. These considerations do not necessarily 

invalidate the parental lifespan study: the polygenic survival scores demonstrate 

lifespan variants remain relevant in determining survival for individuals alive 

today. However, the biological pathways they implicate may not all be related to 

ageing but could rather reflect early, cause-specific mortality, and as such be 

better addressed by lifestyle changes and preventative healthcare.  

 

On the other hand, knowledge of ageing pathways underlying multiple, if not all, 

age-related diseases would allow for interventions to be designed that could 

delay the burden of chronic disease and compress morbidity towards the end of 

life. The aim of the study in this Chapter was therefore to separate extrinsic 

determinants of lifespan (such as lifestyle and healthcare) from innate 

determinants of lifespan (such as molecular repair and homeostatic pathways). 

One way to achieve this is to study large populations with different behavioural 

and environmental exposures, and focus on genetic variants which determine 

health and lifespan regardless of external factors.  

 

Fortunately, sharing of results of large genetic studies is becoming more 

common[71], allowing researchers to build on existing data. In addition to our 

own study of parental lifespan in UK Biobank and LifeGen, two other large studies 
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were recently performed on ageing-related phenotypes: a study on the 

healthspan of UK Biobank individuals[206], and a case-control study on the 

oldest old in Europe and the US[72]. Together, these studies span multiple 

generations and populations, examining different phenotypes using different 

methodologies. However, as I will show, despite the heterogeneity in cohort and 

study designs, there is a significant overlap in the genetics of these traits, wherein 

we can find the common mechanisms determining both age-related disease and 

lifespan. 

 

4.1.2 Contributions 

Peter Joshi conceived the idea of meta-analysing parental lifespan and 

exceptional longevity in a multivariate framework by using MultiABEL software 

developed by Xia Shen, which was also used in the parental lifespan analysis. Xia 

confirmed the software could combine GWAS of case-control and quantitative 

traits but was otherwise not involved in this study. 

 

I built on the original idea, expanding the original multivariate analysis to include 

healthspan, and designing the downstream analyses. Peter Joshi and Joris Deelen 

provided feedback on the study design. Joris suggested expanding the gene 

prioritisation analysis to include tissue-specific GTEx data. All the data used in 

the study—summary statistics for healthspan, parental lifespan, longevity, and 

disease traits; eQTL data; and gene sets—were publicly available. 

 

I retrieved the necessary data, performed all the analyses, compiled the results, 

and drew the figures. Joris wrote the first draft of the introduction and wrote the 

description of the longevity study. I wrote all other sections of the manuscript. All 

co-authors provided feedback on the draft manuscript.  
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4.2 Manuscript submitted to journal 

 

What follows is a manuscript submitted to the journal Nature Communications 

on 6 January 2020, which is currently under review but has not yet been 

published. A copy of the manuscript as submitted to the journal is included below, 

with permission from the co-authors. Supplementary Figures can be found in the 

Appendix. Supplementary Tables are available as Excel Documents on request. 
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and identifies haem metabolism as a human ageing pathway 
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Abstract 

Ageing phenotypes, such as years lived in good health (healthspan), total years 

lived (lifespan), and survival until an exceptional old age (longevity), are of 

interest to us all but require exceptionally large sample sizes to study genetically. 

By combining existing genome-wide association summary statistics for 

healthspan, lifespan, and longevity in a multivariate framework, we increased 

statistical power and showed that the traits share more than 50% of their 

underlying genetics. We identified 10 genomic loci which influence all three 

phenotypes, of which five (near FOXO3, SLC4A7, LINC01259, ZW10, and FGD6) 

are reported for the first time at genome-wide significance. The majority of these 

loci are associated with cardiovascular disease and several show signs of 
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antagonistic pleiotropy. Using gene expression data, we implicated the expression 

of 59 genes and found this set of genes to be enriched for ageing pathways 

previously highlighted in model organisms, such as the response to DNA damage, 

apoptosis, and homeostasis. Finally, we identify a new pathway worthy of further 

study: haem metabolism. 

 

Introduction 

Human ageing is characterised by a progressive decline in the ability to maintain 

homeostasis, leading to the onset of age-related diseases and eventually death. 

However, there is much variation between individuals, with some experiencing 

chronic disease early on and dying before age 60, while others are able to reach 

an exceptional old age, often free of disease until the last few years of life [207]. A 

long and healthy life is determined by many different factors, including lifestyle, 

environment, genetics, and pure chance. Recent estimates suggest the genetic 

component of both human lifespan (i.e. the number of years lived) and 

healthspan (the number of years lived in good health free of morbidities) is only 

around 10% [41,206], which makes genetic studies of these traits challenging, as 

noise tends to obscure effects unless sample sizes are large. 

 

However, with sufficiently large samples, genome-wide association studies 

(GWAS) of lifespan traits have the potential to identify genes and pathways 

involved in the human ageing process. GWAS have attempted to identify loci and 

pathways related to healthspan [206,208], (parental) lifespan [70,88,209] and 

survival to exceptional old age (often called longevity) [72,166], with some 

overlap between findings. Multivariate analyses of correlated traits offers the 

prospect of increased power [210], especially where samples do not overlap, and 

offers the prospect of identifying variants influencing a common underlying 

ageing process. 

 

Here, we assess the degree of genetic overlap between published GWAS of three 

different kinds of ageing phenotypes—healthspan, parental lifespan, and 

longevity (defined as survival to an age above the 90th percentile)—and perform 
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a multivariate meta-analysis to identify genetic variants related to healthy ageing. 

We subsequently characterise the sex- and age-specific effects of loci which affect 

all three lifespan traits and look up reported associations with age-related 

phenotypes and diseases. Finally, we link the observed signal in these loci to the 

expression of specific genes, including some that are currently studied in model 

organisms, and identify new pathways involved in healthy ageing.  

 

Methods 

We downloaded three publicly available sets of summary statistics on healthspan 

(Zenin et al. 2019; http://doi.org/10.5281/zenodo.1302861), parental lifespan 

(Timmers et al. 2019; http://dx.doi.org/10.7488/ds/2463), and longevity 

(Deelen et al. 2019; https://www.longevitygenomics.org/downloads), whose 

derivation is briefly described here. 

 

The Healthspan GWAS consists of 300,477 unrelated, British-ancestry individuals 

from UK Biobank. The statistics were calculated by fitting Cox-Gompertz survival 

models with events defined as the first incidence of one of seven diseases (any 

cancer, diabetes, myocardial infarction, stroke, chronic obstructive pulmonary 

disease, dementia, and congestive heart failure) or death itself. Martingale 

residuals from this model were then regressed against HRC-imputed dosages. Of 

the 84,949 individuals who had experienced an event (and thus had complete 

healthspans), 51.3% experienced a cancer event, 18.0% a diagnosis of diabetes 

and 17.1% a myocardial event. Less than 5% of the individuals experienced their 

first event due to one of the remaining diseases. See Zenin et al. [206] for details. 

After removing single nucleotide polymorphisms (SNPs) with duplicate rsIDs (N 

= 19,386) summary statistics were available for 5,429,268 common (MAF ≥ 

0.05) and 5,860,562 rare (MAF < 0.05) SNPs.  

 

The Parental Lifespan GWAS consists of unrelated, European-ancestry individuals 

reporting a total of 512,047 mother and 500,193 father lifespans, of which 60% 

were complete. The statistics for each participating cohort were calculated by 

fitting Cox survival models to father and mother survival separately, adjusted for 
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subject sex, at least 10 principal components, and study-specific covariates such 

as genotyping batch and array. Martingale residuals of the survival models were 

regressed against subject dosages (HRC-imputed). Father and mother results 

were combined into two separate ways: father and mother residuals from UK 

Biobank were combined before regression, while father and mother summary 

statistics from other cohorts were meta-analysed, adjusting for the phenotypic 

correlation between parents. See Timmers et al. [88] for details. Summary 

statistics were available for 5,526,246 common (MAF ≥ 0.05) and 3,559,402 rare 

(MAF < 0.05) SNPs. 

 

The Longevity GWAS consist of unrelated, European-ancestry individuals who 

lived to an age above the 90th survival percentile (Ncases = 11,262) or whose age 

at the last follow-up visit (or age at death) was at or before the 60th percentile 

age (Ncontrols = 25,483). The statistics for each of the participating cohorts were 

calculated using logistic regression and 1000G Phase 1 version 3-imputed 

dosages, adjusted for clinical site, known family relationships, and/or the first 

four principal components (if applicable) and subsequently combined using a 

fixed-effect meta-analysis. See Deelen et al. [72] for details. After removing SNPs 

with duplicate IDs (N = 17,152), summary statistics were available for 6,657,238 

common (MAF ≥ 0.05) and 2,181,962 rare (MAF < 0.05) SNPs. 

 

We carried out a series of new, age-stratified GWAS using a sample of 325,614 

unrelated, British-ancestry individuals from UK Biobank (as determined by 

genomic PCA and 3rd degree kinship or closer) [87], in order to calculate age 

band-specific effects of SNPs on lifespan. These individuals answered questions 

regarding their family history via touchscreen questionnaire, including their 

adoption status and parental age or age at death if deceased. Quality control was 

performed as in Timmers et al. [88], starting with 409,692 British-ancestry 

individuals and excluding subjects who were adopted, had two parents who died 

before age 40, or who did not provide information on parental age (N = 12,406; 

3.0%). Additionally, we excluded individuals who had withdrawn their consent to 

participate as of 16 October 2018 and all but one of each related set of individuals 
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(N = 71,672; 17.5%). Related individuals were excluded as mixed modelling is 

not well understood in the context of the kin-cohort method [88]. The remaining 

325,614 individuals reported 312,088 and 322,672 father and mother lifespans, 

respectively, of which 67.7% were complete. Parent lifespans were then split into 

three age bands, 40–60, 60–80, and 80–120, excluding parents who died before 

the start of the age band and treating any parent who survived at least until the 

end of the age band as alive (i.e. right-censored). Cox proportional hazard models 

were fitted separately to each father and mother age band—six combinations in 

total—adjusted for subject sex, genotyping batch and array, and the first 40 

genetic principal components.  

 

ℎ(𝑥) = ℎ0(𝑥)𝑒𝛽1𝑋1+𝛽2𝑋2+...+𝛽𝑛𝑋𝑛 

 

Where h(x) is the hazard of the parent at age x, h0 the baseline hazard, and β1,2,...,n 

the effect sizes (natural log of the hazard ratio) associated with the covariates 

X1,2,...,n. Martingale residuals of these models were taken [69], divided by the 

proportion dead to scale effects to hazard ratios and doubled to account for 

parental genotype imputation [70], and then regressed against subject allelic 

dosage in an additive model using RegScan [211]. Individual parental lifespan 

statistics were combined using inverse-variance meta-analysis, inflating standard 

errors by √1 + 𝑟𝑝 to take into account the correlation between the parental 

phenotypes (rp). 

 

LD-score regression [198] was used to calculate genetic correlations between 

ageing trait GWAS, age-stratified parental lifespan (described above) and 27 

European-ancestry GWAS of developmental, behavioural, and disease traits 

(Table S1). In line with recommendations [197], imperfectly imputed (INFO < 

0.9) and low frequency (MAF < 0.05) SNPs, as well as those located in the Major 

Histocompatibility Complex, were discarded before merging the summary 

statistics with a HapMap3 reference panel to reduce statistical noise. An average 

of 1,086,952 SNPs (range 866,405–1,181,238) were used to calculate genetic 



 

Genome-wide multivariate association of healthspan, lifespan, and 
longevity 

120 
 

correlations per set of summary statistics, based on LD-score regression weights 

derived from European individuals. 

 

Healthspan, parental lifespan, and longevity summary statistics were meta-

analysed using MANOVA, while accounting for correlations between studies due 

to (limited) sample overlap and correlation amongst the traits, as implemented 

in MultiABEL v1.1-6 [210]. Correlations were calculated from summary statistics 

by taking the correlation in effect estimates from independent SNPs between 

studies (60,338 default SNPs provided by MultiABEL and shared between 

studies). These correlation estimates ranged from 0.013 between healthspan and 

longevity to 0.094 between healthspan and parental lifespan, reflecting a small 

degree of sample overlap and/or phenotypic correlation. Summary association 

statistics were calculated for the 7,320,282 SNPs shared between studies, of 

which 5,278,109 were common (MAF ≥ 0.05) and 2,042,173 were rare (MAF < 

0.05). These statistics represent the significance of each SNP affecting one or 

more of the traits, giving a P value against the null hypothesis that effect sizes are 

zero in all studies. The method does not provide a combined effect size. 

Loci were defined as 500 kb regions flanking the lead genome-wide significant 

SNP in linkage equilibrium (r2 < 0.1) with other lead SNPs. LD-score regression 

was used to assess inflation of the GWAS statistics, using 1,138,687 SNPs from the 

MANOVA and LD weights from European samples from the 1000 Genomes 

project. Loci with lead SNPs showing a nominally significant effect (P < 0.05) in 

all three datasets were considered more likely to capture intrinsic ageing 

pathways. We refer to them as “loci of interest” throughout this study. 

 

Lead SNPs of loci of interest were looked up in individual father and mother 

survival statistics from Timmers et al. [88]. Differences in the parental effect sizes 

were tested using (β1–β2)/sqrt(σ12 + σ22) which follows a Z distribution, 

assuming effects are independent. 

 

Age-specific survival statistics were retrieved for the same loci from our age-

stratified parental lifespan GWAS in UK Biobank. In order to standardise effects 
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for each locus, we expressed the age-specific effect as a fold change from the 

unstratified effect in UK Biobank, inflating standard errors using the Taylor series 

expansion to account for the uncertainty in the denominator:  

𝛼 =
𝛽𝑏𝑎𝑛𝑑

𝛽𝑎𝑙𝑙
− 1 

 

𝑆𝐸𝛼 = √
𝑆𝐸2

𝑏𝑎𝑛𝑑

𝛽2
𝑎𝑙𝑙

+
𝛽2

𝑏𝑎𝑛𝑑
𝑆𝐸2

𝑎𝑙𝑙

(𝑆𝐸2
𝑎𝑙𝑙)

2
 

 

Where α is the fold change in effect, βband is the effect estimate of the age-specific 

band, βall is the unstratified effect estimate, and SE is the standard error of the 

respective effects.  

 

This provided a relative change in effect size per parental age band. We then 

calculated the median survival from Kaplan-Meier survival curves of each age 

band, allowing us to place the effects on a years-of-life scale. For each locus 

individually, effect sizes of age bands were regressed against median survival of 

the age band, inversely weighted by the variance of the effect estimate. 

Coefficients of the loci underpowered to detect a trend individually (P > 0.05) 

were meta-analysed, again weighted by the inverse of their variance, to provide a 

collective estimate. A sensitivity analysis examining the collective trend estimate 

using all loci of interest (instead of only underpowered loci) was performed using 

the “meta” R package and found substantial heterogeneity (I2 > 89%) driven by 

APOE, which represented almost 70% of the regression weights. 

 

Lead SNPs from the multivariate GWAS and close proxies (r2
EUR > 0.6) were 

looked up in the GWAS catalog (Buniello et al. 2019; 14 October 2019) and 

PhenoScanner [212]. All genome-wide associations were included except 

triallelic SNPs, associations without effect sizes, and associations with 

healthspan, lifespan, longevity, or medications. Similar traits were then grouped 

together using approximate string matching—verified manually—keeping only 

the strongest association and the shortest trait name. For example, “Body mass 
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index”, “Body mass index in smokers”, and “Body mass index in females greater 

than 50 years of age” were grouped and renamed to “Body mass index”. 

Associations were then categorised into seven disease phenotypes based on 

keywords and manual curation: Cardiovascular, Metabolic, Neuropsychiatric, 

Immune-related, Smoking-related, Cancer, and Age-related. Cardiovascular 

phenotypes included lipid levels, vascular traits, and diseases concerning the 

heart; Metabolic phenotypes included body (fat) mass and glycaemic traits; 

Neuropsychiatric phenotypes included neurodegenerative diseases and 

disorders of brain signalling such as restless leg syndrome and epilepsy; Immune-

related phenotypes included measures of immune cells, and inflammatory and 

autoimmune disorders; Smoking-related phenotypes included smoking and lung 

function-related traits; Cancer included all neoplasms and carcinomas; Age-

related phenotypes included traits typically associated with advancing age, such 

as age at menopause, male pattern baldness, age-related macular degeneration, 

hearing loss, and frailty. See Table S2 for a list of all phenotypes within each 

category. 

 

For each locus of interest, gene expression was tested for colocalisation with SNP 

effects within 500 kb of the lead SNP using SMR-HEIDI [191,213]. The gene 

expression studies included Westra (cis-eQTL), CAGE (cis-eQTL), Vosa (cis- and 

trans-eQTL), and GTEx v7 [169,192,204,214], the latter with eQTL P < 10–5 only. 

Estimates of SNP effects are needed for SMR but are not directly provided by the 

multivariate analysis. Instead, we derived Z scores from multivariate P values and 

signed these based on the sign of the sum of underlying healthspan, parental 

lifespan, and longevity Z scores. The HEIDI statistic is dependent on the 

heterogeneity between effect estimates. We therefore recalculated standard 

errors and effect sizes based on allele frequency and sample size, using formula 6 

from Zhu et al. [191]. For sample size, we used the sum of individual studies’ 

effective samples (N = 709,709) and performed a sensitivity test using the sum 

of all samples (regardless of their contribution to study power; N = 1,349,432). 

Differences in PHEIDI between analyses were <0.0006, i.e. had no practical effect 

on results. A Benjamini-Hochberg multiple testing correction was applied 
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separately to each eQTL dataset to account for the number of genes tested. 

Determining an optimal threshold for heterogeneity pruning is less 

straightforward: Wu et al. [213] consider 5% to be too conservative, especially 

when using summary-level data and SNPs with different sample sizes, and set a 

1% threshold to correct for three colocalisation tests. We apply the same 

threshold, which may still be conservative in our study as we test many (albeit 

partially overlapping) tissues and we expect additional heterogeneity due to 

inferred Z scores (see Discussion). 

 

Genes colocalising with loci of interest in cis or trans at FDR < 5% were tested for 

enrichment in 50 GO hallmark and 7350 biological process gene sets from the 

Molecular Signatures Database [215], using a procedure analogous to Gene2Func 

in FUMA [216]. First, we translated all unique gene symbols from the eQTL 

datasets to Entrez IDs (N = 24,670), and subsetted hallmark and GO biological 

process gene sets to only include genes for which eQTL were available. We then 

used a hypergeometric test to assess whether our genes were overrepresented in 

each pathway compared to all genes with eQTL. A minimum of three genes had to 

be present in a gene set for it to be tested for enrichment. Seven hallmark gene 

sets and 383 biological process gene sets met this requirement. Bonferroni 

correction was applied to account for multiple testing, separately for hallmark 

and biological process sets. Gene sets with Pbonferroni < 5% are reported.  
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Results 

Genetic correlations between survival traits 

We explored three public, European-ancestry GWAS of overlapping ageing traits: 

healthspan (N = 300,477 individuals, 28.3% no longer healthy), parental lifespan 

(N = 1,012,240 parents, 60% deceased), and longevity (Ncases = 11,262; Ncontrols 

= 25,483). The traits show substantial genetic correlations (P < 5x10–8) despite 

differences in age demographic, trait definition, and study design. Parental 

lifespan correlates strongly with both healthspan (rg = 0.70; SE = 0.04) and 

longevity (rg = 0.81; SE = 0.08), while healthspan and longevity show a weaker 

correlation with each other (rg = 0.51; SE = 0.09) (Figure 1a). We performed an 

age-stratified GWAS of parental lifespan in UK Biobank to assess whether the 

genetic correlations between the traits are age-dependent, but our results 

showed no clear trend in the correlations between healthspan/longevity and age-

stratified lifespan bands (Figure 1b). 

 

Figure 1: Healthspan, lifespan, and longevity are highly genetically correlated. a) Pairwise 

correlation between human ageing studies. b) Genetic correlations of age-stratified parental 

lifespan against healthspan and longevity. c) Genetic correlations of survival traits with traits 

related to development, behaviour, and disease. In bold are traits with heterogeneous correlations 

(Phet < 0.05). Displayed here are 17 traits which have at least one significant (FDR < 5%) genetic 
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correlation with healthspan, lifespan, or longevity, out of the 27 traits tested. See Table S3 for a 

full list of correlations. Blank squares represent correlations which did not pass multiple testing 

correction. Error bars represent 95% confidence intervals. COPD—Chronic Obstructive 

Pulmonary Disease. 

 

We next tested whether differences in survival trait genetics could be explained 

by differences in genetic correlations with 27 other traits. We find all three 

survival traits show similar correlations (P < 0.05/81; Phet > 0.05) with coronary 

artery disease (range healthspan rg –0.69; SE = 0.07 to lifespan rg  –0.49; SE = 

0.10), stroke (range lifespan rg = –0.56; SE = 0.11 to healthspan rg = –0.47; SE = 

0.06), chronic obstructive pulmonary disease (range healthspan rg = –0.45; SE = 

0.04 to lifespan rg = –0.26; SE = 0.07), and years of schooling (range longevity rg 

= 0.24; SE = 0.04 to healthspan rg = 0.34; SE = 0.03). However, we also find 

evidence for differences in correlations across the traits (Phet < 0.05): healthspan 

correlated more strongly with metabolic traits (such as type 2 diabetes) than the 

other studies, and showed negative genetic correlations with depression and 

cancers, especially melanoma (rg = –0.25; SE = 0.05), which were not observed 

in the other datasets. Conversely, parental lifespan correlated uniquely with 

alcohol intake (rg = –0.18; SE = 0.06) and longevity showed a unique correlation 

with Alzheimer’s disease (rg = –0.43; SE = 0.11). (Figure 1c; Table S3). 

 

Genome-wide multivariate meta-analysis 

Given the correlations amongst the traits, a combined MANOVA offered the 

prospect of increased power. We therefore performed a meta-analysis of GWAS of 

healthspan, parental lifespan, and longevity, which identified 24 loci at genome-

wide significance (P < 5 x 10-8) (Figure 2; Table S4). The combined statistics had 

an LD-score regression intercept of 1.064 (SE 0.009), suggesting limited inflation 

due to population stratification or relatedness. The APOE locus contained the 

most significant multivariate SNP (P < 1x10–126), associated with an average 

increase in lifespan of 12.7 months per allele (95% CI 11.4–14.0) and an 

increased odds ratio of reaching longevity of 1.66 (1.56–1.77). However, noting 

that <2% of the healthspan study sample experienced Alzheimer’s disease, the 
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same allele was associated with an average healthspan increase of only around 

50 days (2–98). 

 

Figure 2: Twenty-four multivariate loci identified at genome-wide significance. Manhattan plot 

showing the strength of association –log10(P value) on the y-axis against the chromosomal 

position of SNPs on the x-axis, where the null hypothesis is no association with healthspan, 

parental lifespan, and longevity. The red line represents the genome-wide significance threshold 

(5x10–8). Annotated are the nearest gene(s) to the lead SNP (in red) of each locus. The y-axis has 

been capped at 5x10–30 to aid legibility; SNPs passing this cap are represented as triangles: LPA 

P=3.8x10–30, APOE P=9.6x10–127. 

 

Twenty-one of the 24 multivariate GWAS loci reaching genome-wide significance 

had directionally consistent effects in the three studied datasets and 18 were 

nominally significant (P < 0.05) in two or more datasets (Figure S1). A look-up of 

the lead SNPs and close proxies in the GWAS catalog and PhenoScanner showed 

that healthspan-specific loci (i.e. P < 0.05 only in the healthspan dataset) were 

mostly associated with skin cancers and metabolic traits, while lifespan-specific 

loci were associated with smoking and risk taking (Table S5). Associations with 

these phenotypes suggests these variants influence (behaviours leading to) 

environmental exposures and thus likely capture extrinsic ageing processes. As 

we were primarily interested in genetic variation influencing the intrinsic ageing 

process, we focused the remainder of this study on genetic variants reaching 

nominal significance in all three datasets, which are less likely to be associated to 

study- or population-specific exposures. 
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Ten loci reached nominal significance (P < 0.05) in all ageing studies (Table 1). 

Five of these are of particular interest as they contain no genome-wide significant 

SNPs in any individual dataset. The lead multivariate SNP of these loci include 

rs2643826 (nearest gene SLC4A7), rs17499404 (LINC01259), rs1159806 

(FOXO3), rs61905747 (ZW10), and rs12830425 (FGD6) (Figure S2-S6). The lead 

SNP near FOXO3 is in moderate linkage disequilibrium (LD) (r2 > 0.4) with 

rs2802292, a well-known candidate SNP from longevity studies [217]. 

 

 

 

Table 1: Ten loci act across all three ageing traits, reaching nominal significance in each dataset. 

Nearest gene—Gene closest to the index SNP; rsID—The SNP with the lowest P value in the 

multivariate analysis. Chr—Chromosome; Position—Base-pair position on chromosome 

(GRCh37); A1—the effect allele, increasing healthspan, lifespan, and odds to become long-lived; 

Freq1—Frequency of the A1 allele. Beta1—Effect size of the A1 allele, for healthspan and lifespan 

this is the negative log of the hazard ratio, for longevity this is the log odds of reaching an 

exceptional old age (90th percentile). SE—Standard error of the effect estimate. P—P value of the 

trait association. MANOVA P—P value against the null hypothesis of association with neither 

healthspan, lifespan, nor longevity. Novel loci contain SNPs that are not reported at genome-wide 

significance in any individual dataset. Known loci contain one or more genome-wide significant 

SNPs within 500 kb of the lead SNP in one of the individual datasets (Table S6). 

 

Links with sex, age and age-related disease 

We next tested whether loci of interest displayed varying effects on lifespan by 

sex, using sex-specific parental GWAS summary statistics from Timmers et al. 

[88]. We find evidence of sexual dimorphism for the ApoE ε4 allele (βfathers= 0.08, 

βmothers= 0.13, Pdiff < 1.5x10–6) and evidence of no sexual dimorphism for lead 

SNPs near LINC01259, SLC4A7, LPA, TOX3, and FOXO3 (<20% difference or Pdiff 

> 0.50). For the remaining loci near CDKN2B-AS1, ZW10, FGD6 and LDLR, effect 

Nearest Gene rsID Chr Position A1 Freq1 Beta1 SE P Beta1 SE P Beta1 SE P MANOVA P

Novel

SLC4A7 rs2643826 3 27562988 C 0.55 0.0210 4.9E-03 1.7E-05 0.0166 3.9E-03 2.2E-05 0.0451 0.0204 2.7E-02 3.95E-08

LINC02513 rs17499404 4 38385479 A 0.54 0.0165 4.9E-03 7.3E-04 0.0122 0.0039 1.6E-03 0.0837 1.9E-02 1.3E-05 3.94E-08

FOXO3 rs1159806 6 109006838 T 0.35 0.0144 0.0052 5.5E-03 0.0151 4.1E-03 2.2E-04 0.0953 2.0E-02 2.6E-06 9.83E-09

ZW10 rs61905747 11 113639842 A 0.82 0.0294 6.2E-03 2.0E-06 0.0237 4.9E-03 1.7E-06 0.0661 0.0259 1.1E-02 3.59E-10

FGD6 rs12830425 12 95580818 G 0.07 0.0436 9.3E-03 2.8E-06 0.0318 7.4E-03 1.8E-05 0.0774 0.0360 3.1E-02 7.85E-09

Known

LPA rs10455872 6 161010118 A 0.93 0.0574 9.0E-03 1.4E-10 0.0764 7.4E-03 8.5E-25 0.1236 0.0454 6.5E-03 3.80E-30

CDKN2B-AS1 rs7859727 9 22102165 C 0.51 0.0307 4.9E-03 2.6E-10 0.0250 3.9E-03 9.8E-11 0.0660 1.9E-02 5.8E-04 3.65E-18

TOX3 rs4783780 16 52571436 A 0.53 0.0233 4.9E-03 1.7E-06 0.0139 3.9E-03 3.0E-04 0.0524 0.0191 5.9E-03 1.33E-08

LDLR rs6511720 19 11202306 T 0.12 0.0153 0.0075 4.0E-02 0.0339 6.0E-03 1.8E-08 0.0930 0.0301 2.0E-03 3.71E-09

APOE rs429358 19 45411941 T 0.85 0.0137 0.0067 4.1E-02 0.1056 5.5E-03 3.1E-83 0.5098 3.2E-02 1.3E-56 9.61E-127

Healthspan Lifespan Longevity
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size point estimates may differ by more than 20%, but we would need a larger 

sample size to be able to detect this difference with confidence (Figure S7). 

 

Looking up the same SNPs in our age-stratified parental lifespan GWAS, we find 

that all loci, except APOE and SLC4A7, show a downward trend in effect size with 

parental age. This trend is highly significant for the APOE locus (P = 8x10–4), with 

the effect of the ε4 allele increasing by 32% (25%–39%) for every 10-year 

increase in parental survival. Conversely, the lead SNPs near FOXO3 and CDKN2B-

AS1 show a nominally significant (P < 0.05) decrease in effect with age: for every 

10-year increase in parental survival, SNP effects shrink by 38% (17%–60%) and 

50% (19%–81%), respectively. While we are underpowered to confirm the 

trends for the remaining loci, we find that, collectively, the average effect of the 

protective alleles of these seven loci decreases by 14% (1%–27%; P < 0.05) for 

every 10-year increase in parental survival. (Figure S8). 

 

We also found loci of interest had previously been associated at a genome-wide 

significant level with several age-related diseases and/or phenotypes. The life-

extending allele of the majority of loci is associated with a reduction in 

cardiovascular disease phenotypes, including SNPs near the newly discovered 

ageing loci SLC4A7, FGD6, and LINC01259. Interestingly, protective variants near 

FOXO3 are associated with a reduction in metabolic syndrome but also a 

reduction in cognitive ability. Life-extending SNPs near APOE, FOXO3 and FGD6 

are all associated with increased measures of macular degeneration (Figure S9; 

Table S5). 

 

Ageing genes and pathways 

Assessing the loci of interest for colocalisation with gene expression signals 

(eQTL), we find strong evidence (FDRSMR < 5%; PHEIDI > 1%; see Methods) of cis-

acting eQTL colocalisation for eight out of 10 loci. In total, we highlight 28 unique 

genes acting across 32 tissues, especially whole blood (12 genes) and the tibial 

nerve (7 genes) (Table S7). In blood, higher expression levels of BCL3 and CKM 

(near APOE); CTC-510F12.2, ILF3, KANK2 and PDE4A (near LDLR); USP28 and 
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ANKK1 (near ZW10); and CDKN2B are linked to an increase in multivariate 

lifespan traits, while the opposite is true for EXOC3L2 (near APOE), TTC12 (near 

ZW10), and FOXO3. For the multivariate signal near SLC4A7 we find 

colocalisation of NEK10 (liver); for the signal near LPA we find SLC22A1/A3 

(multiple tissues) and MAP3K4 (pituitary); and for the signal near FGD6 we find 

FGD6 itself (adipose/arterial). Including trans-acting eQTL from blood while 

keeping the same thresholds for colocalisation, we additionally discover higher 

expression levels of FOXO3B colocalises with the life-extending signal near 

FOXO3. When we include genes which could not be tested for heterogeneity 

(NeQTL < 3), we identify one additional cis-acting and 49 additional trans-acting 

genes (of which 10 colocalise with the signal near LINC02513) (Table 2; Table 

S7). 

 

 

 

Table 2: eQTL for 78 genes colocalise with the GWAS signal at 9 out of 10 loci of interest. Genes 

which showed a significant effect (FDR < 5%) of gene expression on ageing traits are displayed 

here. Locus—Nearest gene to lead variant in the multivariate analysis. Chr—Chromosome. 

Position—Base-pair position of lead variant (GRCh37). Cis-Genes—Genes in physical proximity 

(<500 kb) to the lead variant of the locus which colocalise with the multivariate signal. Trans-

Genes—Genes located more than 500 kb from the lead variant of the locus. Gene names are 

annotated with the direction of effect, where “+” and “-” indicate whether the life-extending 

association of the locus is linked with higher or lower gene expression, respectively. 

 

 

 

Locus Chr Position Cis-Genes Trans-Genes

SLC4A7 3 27562988 NEK10-

LINC02513 4 38385479 EDAR+, MAL+, NOSIP+, CCR7+, ABLIM1+, KRT72+, FHIT+, 

MMP28+, EPHX2+, LEF1+

FOXO3 6 109006838 LINC00222-, FOXO3- FOXO3B+, MEGF6+, CALCOCO1+, CYBRD1+, IGF1R+, 

PHF21A+, NDRG1+, KIAA1324-, FCHO2+, CNNM3+

LPA 6 161010118 SLC22A1+, SLC22A3-, AL591069.1-, MAP3K4-

CDKN2B-AS1 9 22102165 CDKN2B+

ZW10 11 113639842 USP28+, ANKK1+, TTC12-, RP11-159N11.4-, ANKK1-

FGD6 12 95580818 RP11-256L6.3+, FGD6-

LDLR 19 11202306 CTC-510F12.2+, KANK2+, SPC24+, SLC44A2+, ILF3+, ILF3-AS1-, 

DOCK6-, SMARCA4-, PDE4A+

AHSP-, SELENBP1-, EPB42-, SLC4A1-, HBD-, CA1-, FAM46C-, 

BLVRB-, TMOD1-, GYPB-, UBE2O-, BPGM-, TRIM58-, SNCA-, 

IFIT1B-, FECH-, GMPR-, EPB49-, RBM38-, TNS1-, MICAL2-, 

DCAF12-, RAB3IL1-, PDZK1IP1-, HBM-, BCL2L1-, PLEK2-, E2F2-, 

TGM2-

APOE 19 45411941 EXOC3L2-, AC006126.4+, CKM+, BCL3+, PVRL2+ LDLR-
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Finally, testing this list of cis- and trans-acting genes for gene set enrichment in 

50 hallmark and 7350 biological process pathways, we find significant 

enrichment (Padjusted < 0.05) in seven hallmark gene sets and 32 biological 

processes. The hallmark gene sets with the strongest enrichment include haem 

metabolism, hypoxia, and early oestrogen response (Figure 3). Enriched 

biological pathways cluster into categories involving apoptotic signalling, 

chemical homeostasis, and development of erythrocytes and myeloid cells, 

among others (Figure S10; Table S8). 

 

 

 

Figure 3: Seven hallmark gene pathways are enriched for ageing-related genes. N—number of 

genes of interest vs. total number of genes in the gene set for which eQTL are available. P—P value 

of the hypergeometric test for enrichment (against 24,670 background genes). Pbonf—Bonferroni-

corrected P value for testing seven hallmark pathways (containing at least 3 genes). The figure 

shows individual genes on the x-axis and hallmark pathways on the y-axis, matching the order of 

the table. Squares represent the presence of a gene in the gene set. 

 

Discussion 

Genetic correlations between publicly available healthspan, parental lifespan, and 

longevity GWAS reveal these traits share 50% or more of their underlying 

genetics. Performing a multivariate meta-analysis on the GWAS summary 

statistics, we highlight 24 genomic regions influencing one or more of the traits. 

Ten regions are of particular interest as they associate with all three ageing traits 

and are as such likely candidates to capture intrinsic ageing processes, rather 

than extrinsic sources of ageing. Five of the loci of interest are not associated at a 
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genome-wide significant level in any individual dataset, including the region near 

FOXO3 which has thus far only been highlighted in candidate gene association 

studies (reviewed in Sanese et al. 2019) and never at genome-wide significance. 

The effects of loci of interest on male and female lifespan are largely the same, 

although their effect on survival may be slightly stronger in middle age (40–60) 

compared to old age (80+). The ApoE ε4 allele is exceptional in this regard as its 

effect is stronger in females and increases with age, likely due to its well-known 

link to Alzheimer’s disease [219]. Lastly, we find our loci of interest colocalise 

with the expression of 28 cis-genes and 50 trans-genes, which are enriched for 

seven hallmark gene sets (particularly haem metabolism) and 32 largely 

overlapping biological pathways (including apoptosis and homeostasis). 

The antagonistic pleiotropy and hyperfunction theories of ageing predict the 

presence of genetic variants important for growth and development in early life 

with deleterious effects towards the end of the reproductive window [220,221]. 

While we are unable to directly capture the genetic effects on individuals before 

age 40 due to the study design of our datasets, we found the life-extending variant 

near FOXO3 is associated with a delay in the age at menarche and a decrease in 

intracranial volume and cognitive abilities. Similarly, the lead life-extending SNP 

near ZW10 shows an association with increased age at menarche, although not at 

a genome-wide significant level (P = 6x10–4) [222]. As such, it is clear that loci 

exhibiting antagonistic pleiotropy exist in humans. However, almost all loci of 

interest associate strongly with cardiovascular and blood cell phenotypes, 

without apparent antagonistic effects, in line with established knowledge that 

cardiovascular disease is a leading cause of mortality and morbidity worldwide 

[223].  

 

The genes we identify are enriched for many pathways previously related to 

ageing in eukaryotic model organisms, including genomic stability, cellular 

senescence, and nutrient sensing [16]. For example, FOXO3 and IGF1R are well-

known players modulating survival in response to dietary restriction [224], but 

we also highlight many genes involved in the response to DNA damage and 

apoptosis, such as CDKN2B, USP28, E2F2, and BCL3. In addition to hallmarks 
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discovered in model organisms, we highlight the haem metabolism gene set as 

important in human ageing. This pathway includes genes involved in processing 

haem and differentiation of erythroblasts [215]. Although the enrichment is 

largely driven by genes linked to the LDLR locus, genes linked to other loci of 

interest (such as FOXO3, CDKN2B, LINC02513) are involved in similar biological 

pathways: myeloid differentiation, erythrocyte homeostasis, and chemical 

homeostasis. 

 

Haem synthesis declines with age and its deficiency leads to iron accumulation, 

oxidative stress, and mitochondrial dysfunction [225]. In the brain, abnormal iron 

homeostasis is commonly seen in neurodegenerative diseases such as 

Alzheimer’s, Parkinson’s and multiple sclerosis [226]. Plasma ferritin 

concentration, a proxy for iron accumulation, has been associated with 

premature mortality in observational studies [227], and has been linked to liver 

disease, osteoarthritis, and systemic inflammation in Mendelian Randomisation 

studies [228,229]. 

 

A particular strength of this study is the ability to identify loci shared by multiple 

traits, without the need for additional sample collection. Comparing the strength 

of the multivariate association at our 10 loci of interest with the strength of 

association within each individual GWAS, we estimate the combined statistics are 

equivalent to a median sample size increase of 127% (95% CI 52%–728%; 

~380,876 individuals) for the healthspan study, 76% (23%–146%; ~768,578 

parents) for the parental lifespan study, and 415% (59%–620%; ~64,810 cases) 

for the longevity study. This gain in power is particularly important for the latter 

since the sample size of GWAS for longevity will likely not improve in the near 

future due to limited availability of data on long-lived people. Having 

demonstrated the advantages of jointly studying three ageing traits, we 

encourage future studies to incorporate additional large-scale age-related trait 

GWAS, such as a recent study on frailty in UK Biobank [230], to further improve 

power. 
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It is clear from the association of age-related diseases and the well-known ageing 

loci APOE and FOXO3 that we are capturing the human ageing process to some 

extent; however, some judgment is involved in definitions. For one, there are 

currently no widely accepted standards for measuring healthspan [231]. Zenin et 

al. [206] define healthspan based on the incidence of the eight most common 

diseases increasing exponentially in incidence with age in their sample. As such, 

their trait is highly dependent on the characteristics of the UK Biobank cohort, 

who were aged 40–69 years when they were recruited in 2006–2010 and of 

which two-thirds have yet to experience an age-related disease. Therefore, loci 

with effects on diseases of middle age (cancer and heart disease) are likely 

overrepresented in our analysis. The lack of Alzheimer’s disease in the UK 

Biobank sample also explains the limited association of APOE in the healthspan 

GWAS, compared to the other ageing traits. 

 

Multivariate analysis of traits does not provide a natural combined effect size or 

direction of effect. Colocalisation of eQTL with loci of interest requires effect 

directions to test for heterogeneity of instruments. As such, we used the direction 

of the sum of the Z scores of the underlying traits to assign a direction to Z scores 

derived from MANOVA P values. This works well for SNPs with concordant effects 

on ageing traits but is less accurate when SNPs have heterogeneous or 

antagonistic effects. For example, a SNP associated with an increase in healthspan 

and an equal decrease in lifespan—while likely rare—will have a large Z score in 

the MANOVA, but no clear direction of effect. This limitation will introduce some 

heterogeneity in the colocalisation analysis, and as a result inflate the HEIDI 

statistic. Furthermore, gene expression colocalisation is limited by the number of 

tissue eQTL (with some tissues being underpowered) and does not capture the 

effect of coding variation. There may be additional genes with highly tissue-

specific effects or effects dependent on structure or splicing isoforms, which we 

are unable to detect. 

 

The pathways we have highlighted are mostly biological processes for chemical 

and cellular homeostasis and are therefore likely to be generalisable across 
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populations; however, it is important to note that all GWAS summary statistics 

used in our study were derived from individuals from European ancestries and 

more follow-up work is necessary to validate our findings in individuals from 

other ethnic backgrounds. For example, certain population characteristics, such 

as levels of obesity and meat intake can affect the bioavailability of iron [232] and 

thus the relative importance of haem metabolism in ageing. 

 

Importantly, the genes we have highlighted show natural variation in the human 

population and are therefore more likely candidates for therapeutic intervention. 

However, colocalisation of gene expression could be due to pleiotropy rather than 

causality, and there is a need to validate the effects of genetic variants in 

experimental models to confirm their role in disease aetiology. For example, we 

have found life-extending variants colocalise with decreased expression of FOXO3 

in blood, which aligns with previous work by Peters et al. [174] showing FOXO3 

expression increases with age, but experiments suggest the gene has many 

protective functions including detoxification of reactive oxygen species and DNA 

damage repair [218]. The observed inverse relationship between healthy life and 

FOXO3 expression may reflect healthy individuals have less oxidative damage and 

require less FOXO3 to mitigate this damage. 

 

In conclusion, the challenge of studying ageing genetics in humans—low 

heritability and limited samples—can be overcome to some extent by combining 

large studies of closely related phenotypes that capture elements of ageing 

process. Focusing on the overlap between different populations and age-related 

traits has revealed that several ageing pathways discovered in model organisms 

also apply to humans, and has highlighted new pathways in humans which can 

now be further tested in model organisms. This study, and follow-up work on the 

genes we have highlighted, will eventually lead to new therapeutic targets that 

can reduce the burden of age-related diseases, extend the healthy years of life, 

and increase the chances of becoming long-lived without long periods of 

morbidity. 
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4.3 Conclusion 

Joint modelling of the genetics of healthspan, lifespan, and longevity has revealed 

the presence of genomic regions determining both the length and quality of life. 

We identified 24 loci affecting one or more ageing phenotypes, of which 10 had a 

significant effect on all three traits. Comparing the results with Chapter 3, we 

found 10 out of the 12 genomic regions highlighted for their role in determining 

parental lifespan also showed nominal evidence (P < 0.05) of a directionally 

concordant effect on healthspan or longevity. The exceptions were the regions 

near CHRNA3/5 and FURIN/FES, which were associated with parental lifespan at 

genome-wide significance but showed evidence of no effect in the healthspan 

study and showed evidence of a directionally concordant albeit underpowered 

effect in the longevity study. As before, we tried looking for sex- and age-specific 

effects on parental lifespan, but did not find strong evidence for this beyond the 

APOE locus, which had a greater effect on older mothers. In the future, sex-

specific data for healthspan and longevity may refine our estimate of the sex-

specific effects we were underpowered to detect. 

 

Loci significantly affecting one ageing trait but not the others appeared to 

associate with trait- and/or population-specific risk factors, such as obesity, skin 

cancer, smoking, and risk taking. Conversely, most of the loci significant for all 

three traits associated with CVD, once again highlighting the role of this disease 

in determining the end of (healthy) life. However, despite the overlap with 

Chapter 3 in CVD associations, the gene sets with evidence for enrichment in this 

study were quite different: the former mainly highlighted lipid-metabolism-

related pathways, while this study highlighted pathways related to haem 

metabolism, apoptosis, and (intra-)cellular homeostasis. These findings are not 

necessarily contradictory, however, as lipid and iron levels are involved in CVD 

progression (which I discuss further in the next Chapter).  
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This study identified five genomic loci which had thus far not been discovered at 

genome-wide significance. While their role in health and survival is supported by 

associations with life-limiting diseases in independent studies, additional work is 

necessary to formally replicate our findings. The exception is the FOXO3 locus, 

which has been highlighted as a candidate region numerous times but had never 

been discovered at genome-wide significance before. The statistical power of our 

multivariate analysis allowed us to perform a colocalisation analysis between our 

GWAS signal and gene expression signals in the region. This analysis confirmed 

roles for FOXO3 and IGF1R expression, matching experimental work that initially 

highlighted the role of these genes in determining the lifespan of model 

organisms. Genes which associate with ageing traits in human studies and 

causally affect survival in model organisms have some of the most robust 

evidence for being biological determinants of human lifespan and represent the 

most promising targets for pharmaceutical intervention to date. 

 

Finally, the discovery of haem metabolism as a putative pathway in human ageing 

highlights the importance of human-oriented genetic research on lifespan 

determinants. Whether hallmarks of ageing identified in model organisms apply 

equally to humans is hard to confirm without studies on humans, and there is no 

guarantee that interventions which extend model organism lifespan will have any 

effect on human survival. However, if biological pathways discovered in humans, 

such as haem metabolism, can be confirmed by follow-up work in model 

organisms, this would advance our understanding of which ageing processes are 

most relevant to our own lifespan, and how we can design interventions—be it 

dietary, lifestyle, medical, or otherwise—to affect these processes and reduce the 

burden of ageing and age-related disease. 
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Chapter 5: Discussion 

 

I set out to investigate the determinants of human lifespan, both in terms of how 

trends in diseases have influenced population mortality rates, and in terms of 

how genetics can make certain individuals more susceptible to disease and death 

than others. In doing so, I hoped to deepen our understanding of the ageing 

process in humans and create new opportunities to address the growing burden 

of ageing and age-related disease in society.  

 

5.1 Trends in disease and their effect on mortality 

 

In order to understand determinants of population life expectancy, I first 

performed a survival analysis of almost the entire adult Scottish population in 

collaboration with National Health Service Scotland and University of Edinburgh 

researchers. We showed life expectancy has increased by 3.5 years for every 

decade of birth, matching a steady trend that started in the 1950s[233] and 

appears to be slowing down more recently[124]. Perhaps unsurprisingly, a large 

amount of the gains in life expectancy can be attributed to a reduction in the 

incidence of major diseases and improved recovery after diagnosis[91].  

 

Cardiovascular disease (CVD) and cancer are the most common causes of death 

in high-income countries[234], and our study found the majority of 

improvements in mortality in Scotland could be attributed to improvements in 

diseases belonging to these categories, including ischaemic heart disease, 

respiratory organ cancers, and digestive organ cancers. For both CVD and cancers, 

we found a substantial decline in disease incidence (as measured by the incidence 

of hospital admission) whilst for cancer, we also observed substantial 

improvements in survival after disease hospitalisation. Across the 28 diseases we 

studied, we estimated around 60% of the total improvements in life expectancy 
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could be accounted for by improvements in survival after hospital admission, 

with the remainder attributable to falls in disease incidence.  

 

In terms of disease incidence, the observed decrease in incidence of 

hospitalisation for CVD does not provide direct evidence of improved prevention 

or lifestyle intervention. However, it is likely the discovery and introduction of 

preventative CVD medication, such as antihypertensive drugs in 1967[235] and 

cholesterol-lowering medication in 1987[236] have decreased CVD incidence 

over time. Indeed, since the expiry of the simvastatin patent in the early 2000s, 

prescription of these preventative drugs continues to increase in Scotland[237], 

and average levels of total cholesterol and blood pressure continue to decline in 

the population[137]. Analogously, the incidence of cancers, especially lung cancer, 

could be falling in Scotland due to a decreasing prevalence of smokers and 

exposure to cigarettes (which is simultaneously linked to fewer CVD 

deaths[137,238]. This decline follows a 2005 ban on indoor smoking in public 

spaces[239], as well as a more recent strategic campaign aiming to shift attitudes 

towards smoking (with some success in younger individuals[238]), reduce 

exposure to tobacco advertising, and raise awareness of the harms of second-

hand smoke[240]. 

 

Among improvements in disease survival, we saw particularly large advances in 

survival post-admission for breast and prostate cancers. Indeed, cancer 

treatments have undergone progressive improvements over time, from the rise 

of chemotherapy in the 1960s[241] to more recent use of combination therapies 

which include cancer-specific monoclonal antibodies[242]. At the same time, 

more timely diagnoses due to nationwide screening of breast[243] and bowel 

cancer[244], and earlier provision of end-of-life care[245] have prolonged cancer 

survival post-diagnosis. However, compared to other developed nations, such as 

Canada, Australia and Norway, UK cancer survival rates are still lagging 

behind[246].  
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The use of hospital admission records in our study means our analysis works best 

for diseases with a close link between hospital admission and disease incidence. 

Other studies have found recent increases in Alzheimer’s disease and drug use 

disorders contributing to mortality in Scotland[120], diseases which are not 

accurately captured through hospital admissions and may be important 

determinants of lifespan for older and younger individuals, respectively. However, 

our study also identified worsening trends in infectious disease, independent 

from the population age, with influenza and pneumonia already accounting for 

the most disease-related deaths in Scotland, and should these trends continue, it 

is likely infectious disease will become an even larger contributor to mortality in 

the future. As infectious diseases are both more common and deadly in elderly 

individuals[247], it is likely this burden will become even more severe as 

population demographics shift to have more elderly individuals. As such, our 

study supports an increase in emphasis on infectious disease prevention and 

antibiotic resistance research in public health policy of high-income countries, a 

direction the UK recently started to take[248]. 

 

In all, our results are suggestive that the Scottish population has become more 

resilient over time, both with respect to the incidence of disease and to recovery 

after hospital admission. Whether improvements in lifestyle, environmental 

exposures, and preventative care have slowed down the rate of ageing and the 

associated incidence of age-related disease, or instead a plethora of changes each 

relating to a specific disease have collectively decreased the incidence of disease 

is hard for us to discern from the data. In all likelihood, the observed decline in 

disease incidence is a combination of both. Regardless, improvements in public 

health and disease survival have driven the remarkable improvements in life 

expectancy in early 21st century Scotland, but whether life expectancy will 

continue to rise in the future will depend on our ability to overcome slowdowns 

in the rate of improvement in CVD and cancers, and our ability to tackle the 

growing challenge of infectious disease. 
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5.2 The role of genetic factors on human lifespan 

 

As recognised in the introduction, the heritability of lifespan is low but not 

immaterial. With exceptionally large samples, it is possible to detect genomic 

regions influencing survival. In an international collaboration with three other 

groups, I investigated the genetics of 1 million lifespans in the UK and Europe. We 

identified 12 genomic regions associated with lifespan in a univariate framework 

and 7 more when taking into account mortality risk factors. These loci influenced 

susceptibility to Alzheimer’s disease, cardiovascular disease (CVD), and smoking-

related disease. Comparing evidence between our study and previously published 

work, we raised the total number of lifespan loci with robust evidence for 

replication from four in 2017 (ref. [70]) to 14 at time of publishing[88]. Since 

then, another large GWAS of parental lifespan has been performed, this one using 

genotypes from the direct-to-consumer AncestryDNA cohort[249]. This study has 

provided additional evidence of replication for seven loci and identified another 

locus that could be confirmed by our own study. As a result, the growing body of 

literature regarding the genetic determinants of human survival now includes 22 

genome-wide significant loci with robust evidence for replication (Table 3).  
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Locus rsID A1 Beta1 Phenotype Disease Discovery Replication 

APOE rs429358 T 1.06 Longevity 
Cardiometabolic 

Neuropsychiatric 

Deelen et al. 

[250] 
Joshi et al. [90] 

FOXO3 rs3800231 A 0.17 Longevity 
Cardiometabolic 

Neuropsychiatric 

Flachsbart et al. 

[165] 
Joshi et al. [70] 

5q33.3/EBF1 rs2149954 T 0.09 Longevity Cardiometabolic 
Deelen et al. 

[250] 

Timmers et al. 

[88] 

LPA rs10455872 A 0.76 Lifespan Cardiometabolic Joshi et al. [70] Joshi et al. [70] 

HLA-DQA1 rs34967069 T 0.56 Lifespan Immune-related Joshi et al. [70] Joshi et al. [70] 

CHRNA3/5 rs8042849 T 0.44 Lifespan Smoking-related Joshi et al. [90] Joshi et al. [90] 

LDLR rs142158911 A 0.36 Lifespan Cardiometabolic 
Timmers et al. 

[88] 

Wright et al. 

[249] 

SH2B3/ATXN2 rs11065979 C 0.28 Lifespan 
Immune-related 

Cardiometabolic 

Pilling et al. 

[209]  

Timmers et al. 

[88] 

CDKN2B-AS1 rs1556516 G 0.25 Lifespan Cardiometabolic 
Pilling et al. 

[209]  

Timmers et al. 

[88] 

FURIN/FES rs6224 G 0.25 Lifespan Cardiometabolic 
Pilling et al. 

[209]  

Timmers et al. 

[88] 

ABO rs651007 C 0.21 Lifespan Cardiometabolic 
Timmers et al. 

[88] 

Timmers et al. 

[88] 

ZC3HC1 rs11556924 T 0.20 Lifespan Cardiometabolic 
Timmers et al. 

[88] 

Timmers et al. 

[88] 

MIR129-2 rs4755202 A 0.13 Lifespan Cardiometabolic 
Wright et al. 

[249] 

Timmers et al. 

[88] 

13q21.31 rs61949650 C 0.53 
Lifespan 

(Female) 
Cancer 

Pilling et al. 

[209]  

Timmers et al. 

[88] 

PSORS1C3 rs3130507 G 0.33 
Lifespan 

(Female) 
Immune-related 

Pilling et al. 

[209]  

Timmers et al. 

[88] 

IP6K1 rs9872864 G 0.25 
Lifespan 

(Female) 
Cardiometabolic 

Pilling et al. 

[209]  

Wright et al. 

[249] 

SEMA6D rs4774495 G 0.31 
Lifespan 

(Male) 
Smoking-related 

Pilling et al. 

[209]  

Wright et al. 

[249] 

EPHX2 rs7844965 G 0.30 
Lifespan 

(Male) 
Smoking-related 

Pilling et al. 

[209]  

Wright et al. 

[249] 

ZW10 rs61905747 A 0.30 
Lifespan 

(Male) 
- 

Pilling et al. 

[209]  

Timmers et al. 

[88] 

CELSR2/PSRC1 rs599839 G 0.29 
Lifespan 

(Male) 
Cardiometabolic 

Pilling et al. 

[209]  

Wright et al. 

[249] 

MICA/B rs3131621 G 0.22 
Lifespan 

(Male) 
Immune-related 

Pilling et al. 

[209]  

Wright et al. 

[249] 

LPL rs15285 G 0.23 
Lifespan 

(Male) 
Cardiometabolic 

Pilling et al. 

[209]  

Wright et al. 

[249] 

 

Table 3: Overview of genomic regions robustly associated with human survival.  These 

regions have been associated with either longevity or (parental) lifespan at genome-wide 
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significance and have been replicated in at least one other study at nominal significance. 

Locus—Nearest gene or cytogenetic band; rsID—Lead variant in the region; A1—Effect 

allele, increasing survival; Beta1—Average years of life gained per effect allele (from 

Timmers et al. [88]); Phenotype—Survival phenotype for which the locus was originally 

discovered, where longevity refers to a case-control study and lifespan refers to a quantitative 

study of (parental) lifespan (phenotypes may differ between discovery and replication 

studies); Disease—Disease categories associated with the region; Discovery—Study which 

discovered the region at genome-wide significance; Replication—One of the studies which 

replicated the original association. 

 

Empirical evidence from GWAS suggest the number of hits increases roughly 

proportionally to increases in the population sample size (i.e. double the sample, 

double the hits), after studies have reached a sample size able to detect genome-

wide associations[251]. With the advent of sample sizes of hundreds of thousands 

to millions of individuals, it appears discovery of hits may even accelerate once 

sample sizes reach a critical threshold[252]. This accelerating discovery of hits 

appears to hold true for parental lifespan as well, where a sample of ~135,000 

individuals (272,081 parents) detected two hits[90], a sample of ~300,000 

individuals (606,059 parents) detected four hits[70], and a sample of ~500,000 

individuals (1,012,240 parents) has now detected 12 hits[88].  Given the highly 

polygenic nature of lifespan, it is likely that hundreds of regions will eventually 

associate with the trait as sample sizes continue to increase and overcome 

statistical noise (as has been the case for height[253]). In fact, it is conceivable 

almost all genes will affect lifespan to some extent if disrupted[254]. However, 

similar to genetic studies of height, if hundreds of lifespan loci are discovered 

across the genome, these can still elucidate which pathways and cell types are 

central to the determining variation in the trait, and could improve the prediction 

accuracy of polygenic scores[255]. 

 

However, while GWAS have an outstanding track record of generating replicable 

findings[256], many findings from GWAS of lifespan-related traits have not stood 

the test of time, and as such any discoveries should be thoroughly evaluated 

before being accepted as real. For example, an early case-control GWAS of over 
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1,000 centenarians claimed to have found 70 hits[257], but was retracted after 

concerns over the genotyping array came to light[258] and it was discovered the 

hits were all false positives[259]. Similarly, GWAS of parental lifespan in 

LifeGen[70] has provided evidence against 8 candidate variants from previously 

published studies, and we drew another 8 candidate variants into question using 

the UK Biobank and LifeGen meta-analysis[88]. With the exception of APOE, 

common variants with large effects on lifespan or longevity have either been 

refuted[88], as was the case for the d3-GHR deletion predicted to increase male 

lifespan by 10 years[167], or were found to be replicable but at a much smaller 

effect sizes than originally estimated[70].  

 

Despite these concerns, the variants discovered in our own lifespan GWAS can be 

considered reliable because they are supported by multiple lines of evidence. 

First, we observed directional concordance with results from a longevity GWAS 

performed in an independent population for each individual hit, and we were able 

to provide collective replication (even when excluding APOE) when considering 

the effect of all variants at once. Secondly, every single hit (except rs61348208 

near HTT) had also been associated with one or more lifespan-limiting diseases 

in previous, unrelated studies. While the region near HTT did not show any 

association with disease under our strict inclusion criteria, SNPs within the 

region actually do associate strongly with Huntington’s disease (P = 4x10–16) but 

were missed as no effect size was reported in the original disease study[260]. 

Lastly, the AncestryDNA parental lifespan study (N ~ 482,000 parents) did not 

directly compare their results with our study, but within the limited summary 

statistics they shared, we found independent evidence for known loci (APOE, 

CHRNA3/5, LPA, SH2B3/ATXN2, CDKN2B-AS1) as well as the newly discovered 

LDLR locus[249]. 

 

At first sight it is disappointing to find each of these variants has only a small 

effect on survival, from a month to a year at most. However, this does not preclude 

GWAS of lifespan-related traits from being useful. For one, it appears magnitude 

of the effects of genetic variants is independent from their ability to provide 
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biological insights or predict viable drug targets[261]. So far, lifespan and 

longevity GWAS have consistently highlighted the role of lipid 

metabolism[88,164,209], suggesting genetic differences in the way individuals 

process lipids—whether from their diet or endogenous sources—could 

contribute to differences in survival. Well-established causal relationships 

between lipid metabolism and high-mortality age-related diseases such as 

Alzheimer’s[262] and CVD[263] provide further evidence for the link between 

lipids and longevity. It remains difficult to discern whether this association is 

mediated only through deadly disease, or if the lipid pathway also influences the 

rate of the ageing process itself as well as disease-specific mortality.  

 

Another way lifespan variants can be useful (despite their small effects) is 

demonstrated by their ability to predict differences in survival between 

individuals when aggregated into polygenic survival scores. While the score 

derived from UK Biobank and LifeGen parents is the first of its kind, the score 

already shows a strong association with all-cause mortality in both the UK and 

Estonia, and it will undoubtedly be further refined by larger and more diverse 

samples in the future. Currently, only genetic tests for single, high-penetrance 

mutations are used to inform decisions in the clinic[264], but there is evidence 

that polygenic risk scores using common genetic variants may prove to be equally 

if not more informative for certain diseases[105]. Indeed, the NHS has expressed 

an interest in incorporating genomic information in its services to provide 

personalised care[265]. 

 

Genetic tests for progressive, incurable diseases are also currently performed, 

including a number of neurodegenerative diseases[266]. An accurate diagnosis 

explaining worrying symptoms can provide some relief[267], while also allowing 

individuals to take into account their condition while planning for the future. 

Similarly, a score for all-cause mortality could be useful in preparing individuals 

to mitigate their increased risk for multiple age-related diseases (in terms of 

lifestyle intervention or preventative medication), especially if interventions can 

be tailored. Genetic scores could also be used to make decisions regarding 
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pensions and life insurance. In an actuarial context, the possibility of adverse 

selection due to genetic risk is already recognised[268], and there are ethical 

considerations to be made whether polygenic survival scores should or should 

not be used to discriminate in such financial services[187]. However, a detailed 

review of the ethical and financial implications of genomic scores is beyond the 

scope of this work. From a clinical standpoint, I believe polygenic scores for 

specific diseases and cause-specific mortality will have more immediate benefits 

than a score for all-cause mortality. Nonetheless, future, well-powered polygenic 

survival scores may be used in clinical risk assessments, where they could 

identify resilient individuals, more likely to withstand adverse medical 

procedures such as surgery or chemotherapy. 

 

 

5.3 Insights into the ageing process 

 

I next analysed the genetics of healthspan (the number of years lived free from 

severe disease), lifespan (the total number of years lived), and longevity (being 

amongst the oldest 10%) with support from a researcher from the Max Planck 

Institute for Biology of Ageing. Together, we revealed these three ageing-related 

traits overlapped substantially in their genetics and we identified 24 genomic loci 

associating with one or more of the phenotypes. However, only 10 of these loci 

appeared to influence all three traits, and a number of loci associated exclusively 

with one trait but not the others. In theory, genes able to extend healthspan 

without affecting lifespan are of immense medical interest, as they could reveal 

biological pathways able to compress the period of morbidity, reducing the 

number of years lived in poor health. However, our observed trait-specific 

associations are likely the result of extrinsic risk factors unique to the populations 

under study, rather than molecular mechanisms compressing morbidity. For 

example, we found genomic loci associated with healthspan (but not lifespan or 

longevity) were strongly associated with tanning, sunburn, and skin cancers, 
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while genomic loci unique to lifespan were associated with smoking and risk 

taking[Chapter 4].  

 

Ageing-related traits can be highly variable phenotypes, sensitive to the 

characteristics of the populations in which they are measured, as differences in 

common diseases and causes of death can influence which genetic variants have 

large effects. While the healthspan and lifespan GWAS we included in our study 

both relied on data from UK Biobank, the former studied the current 

generation[206] and the latter studied the parental generation[88]. Shifts in 

mortality and morbidity between generations could therefore have influenced 

the relative importance of genomic loci.  

 

Two major changes between generations have been the fall in age-standardised 

incidence of lung cancer for UK men, which decreased 30% between 1980 and 

2010, and the rise of age-standardised incidence of malignant melanoma, which 

tripled in the same period[269]. For women, lung cancer incidence remained 

comparatively low, but malignant melanoma incidence has also increased. Our 

own work on Scottish individuals supports an accelerating decrease in lung 

cancer incidence between decades of birth and suggests the contribution of lung 

cancer to mortality has fallen over time[91]. Therefore, it is highly plausible that 

smoking-related cancers and deaths played a much larger role in the parental 

generation and by extension the lifespan GWAS. In contrast, the contribution of 

skin cancer to death was less important in the parental generation, but its 

increasing incidence in the current generation has made it a common healthspan-

ending event, and by extension an important factor in the healthspan GWAS. 

Smoking and sun exposure are population-specific, extrinsic risk factors. As such, 

genomic loci associating with these risk factors are less likely to provide insight 

into ageing mechanisms. 

 

Analogously, genomic loci which affect multiple ageing traits at once, especially if 

these traits have been measured in multiple populations, are more likely to 

capture intrinsic features of the ageing process. In the context of our multivariate 
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analysis, we discovered that almost all genomic regions which were associated 

with an increase in healthspan, lifespan, and longevity also associated with 

decreased CVD or CVD risk factors, much like the loci discovered in previous 

studies on individual age-related traits[70,88,209]. However, unlike previous 

studies, the genes and pathways identified in this analysis aligned more closely 

with haem homeostasis and apoptosis rather than lipid metabolism. Indeed, not 

only do haem and iron play a role in vascular injury[270], chronic heart 

failure[271], and atherosclerosis[272], dysregulation of iron levels is also linked 

to other disease of old age, such as bacterial[273] and viral infections[274], 

cancer[275], type 2 diabetes[276], neurodegeneration[277], sarcopenia, chronic 

pain, and frailty[278].  

 

Interestingly, two of the most promising longevity drug candidates, metformin 

and rapamycin, have each been implicated in iron metabolism. Metformin is an 

anti-diabetic drug currently being investigated for its effect on human lifespan in 

clinical trials[279] following promising work in model organisms showing both 

extended healthspan and lifespan, despite researchers not yet fully 

understanding its mechanism of action[115]. However, there is evidence which 

suggests metformin reduces serum iron levels[280] and influences intracellular 

iron levels by reducing the level of protein-bound iron, which can induce an iron 

deficiency-like stress response[281]. Similarly, rapamycin is an 

immunosuppressive drug shown to extend mouse lifespan[116] and improve 

human skin ageing at low doses[282], which has recently led to a clinical trial for 

lifespan in dogs[283]. Rapamycin use in humans has been linked to reduced 

serum iron levels[284,285] and has been shown to prevent iron accumulation in 

senescent cells[286].  

 

Despite the multitude of studies suggesting a relationship between haem 

metabolism and the diseases of old age (and longevity drugs), some caution is 

needed in interpreting the link as causal. It is possible loss of iron homeostasis is 

a symptom of the progressive deterioration associated with ageing rather than a 

driving force. In the context of our multivariate study of ageing traits, observing 
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an enrichment in haem-related genes only confirms individuals carrying 

protective genetic variants have altered levels of haem-related gene expression, 

and does not reveal whether this expression causes their health- and/or life-

extension. However, experimental perturbation of a number of genes highlighted 

in our study has already been shown to influence model organism lifespan, 

including decreased expression of the orthologues of APOE, IGF1R, and MAP4K3  

in mice[287–289], and the increased expression of the FOXO3 orthologue in 

worms and flies[290]. Similar knockout or overexpression experiments using 

short-lived models may clarify the causal direction of the remaining genes. Genes 

which reliably extend model organism lifespan, rather than abrogate it, are of 

specific interest as these are the most likely to yield useful drug targets[19,291]. 

 

 

5.4 Sex and socioeconomic determinants of lifespan 

 

While not the main factors investigated in this body of work, the role of sex and 

socioeconomic status on lifespan must be acknowledged. We found a difference 

of 3.5 years in mean life expectancy between Scottish men and women while 

accounting for socioeconomic differences[91]. This is very similar to the decade-

on-decade improvements we observed in life expectancy and is comparable in 

magnitude to the difference in survival between top and bottom deciles of 

polygenic survival scores in Estonian individuals[88]. In other words, life 

expectancy for men in Scotland today is similar to that of women ten years ago, 

and women carrying mostly deleterious lifespan SNPs will have a similar life 

expectancy to men carrying mostly protective SNPs. Long-term records for the UK 

show the male-female mortality gap was smallest in the early 19th century (~2 

years), increased sharply until it peaked around 1970 (~6 years), and has since 

started to diminish again[292]. The exact reasons for the existence and closure of 

the lifespan gap are not completely known, although they likely involve sex-

specific behaviour, biology, and environmental exposures[293]. 
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The prevalence of smoking in the UK has historically been much higher in men, 

bringing with it a larger burden of lung cancer mortality[294]. From around 1950 

onwards, public health campaigns started to decrease the number of male 

smokers, although they continue to outnumber women[295]. Using Scottish 

hospital admissions, we observed both lung cancers and CVD resulted in greater 

burden of mortality for men than women, but we also found recent improvements 

in the incidence of these diseases were greater for men, which could explain the 

closing gap[91]. Similarly, Sundberg et al.[296] observed recent improvements in 

male lung cancer and CVD deaths in Swedish cause-of-death data, while female 

deaths from smoking and Alzheimer’s disease continued to increase[296].  

 

In terms of biology, differences in male and female lifespan could be partly driven 

by differences in sex chromosomes. There is evidence across species for a shorter 

lifespan in the heterogametic sex (e.g. XY in humans, ZW in birds), in line with the 

hypothesis that recessive deleterious mutations are more likely to be expressed 

in the heterogametic sex without a second copy of the same chromosome to mask 

the mutation[297]. Additionally, both X and Y chromosomes experience mosaic 

structural abnormalities over time, although the rate of mosaicism is higher for 

the Y chromosome and there is an association between the amount of Y 

mosaicism and early mortality[298–300]. In women, mosaic structural 

abnormalities occur more commonly in the inactivated X chromosome, likely 

masking some of the deleterious effects[299]. Thus far, studies of ageing-related 

traits have only examined autosomal chromosomes, where there is limited 

evidence for sex-specific effects of genetic variants affecting survival[Chapter 4]. 

Future genetic studies including sex chromosomes may be able to more 

accurately quantify the contribution of biological differences to the gender gap in 

lifespan.  

 

Compared to the effect of sex and common genetic variants, socioeconomic status 

has a relatively large influence on lifespan. Scottish death records showed 

differences in median life expectancy of almost 10 years between the top and 

bottom decile of the Scottish Index of Multiple Deprivation (SIMD)[91], and the 
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Office for National Statistics found similar differences in England and Wales using 

a similar measure of deprivation[301]. While age-adjusted mortality in the most 

socially deprived individuals is higher, their relative mortality following hospital 

admission is similar to individuals from less deprived areas, suggesting 

differences in life expectancy in the UK is not due to differences in quality of 

treatment or end-of-life care[91]. Instead, our research shows almost all diseases 

with a high mortality burden (in terms of prevalence and deadliness) have a 

higher incidence in individuals from more deprived areas.  

 

Deprivation is linked to lower levels of education[302], which itself results in 

lower awareness of mortality risk factors[303]. Indeed, rates of smoking and 

alcohol intake are higher and quality of sleep and physical activity are lower in 

more socioeconomically deprived individuals[304]. However, not only are these 

individuals more likely to have unhealthy lifestyles, the same lifestyle factors are 

associated with greater harm (in terms of CVD and mortality) in more deprived 

individuals[304]. This may be in part because long-term adversity, especially 

during childhood, can accelerate ageing and reduce resilience to harmful lifestyle 

factors in middle age[305]. With disparities in healthspan and lifespan between 

socioeconomic groups appearing to increase over time[301], improved health 

education and governmental support may be needed to reduce the burden of 

disease and death equally for everyone. 

 

 

5.5 Future work 

5.5.1 Lifespan or longevity? 

Sample sizes will continue to increase for both epidemiological and genetic 

studies into human survival. Given multiple strategies have now been tried to 

identify ageing genes and pathways in genetic studies, we are able to assess their 

performance and make recommendations for future research. 
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The study of exceptional longevity has been the most widely used strategy to 

investigate the genetics of human ageing, with at least ten longevity GWAS being 

performed in the last decade[72,82–84,158,166,217,250,306,307]. However, 

these studies remain limited by their sample sizes. The largest study on longevity 

to date has collected an impressive 13,617 cases[72] after pooling together 

participants from 19 cohorts, some of which started their recruitment of elderly 

individuals almost 30 years ago[308,309]. However, the largest longevity sample 

is dwarfed by contemporary case-control samples for other diseases, many of 

which are arguably easier to study due to higher heritability and lower 

polygenicity. For example, a 2018 study into type 2 diabetes had over 62,000 

cases and identified 143 independent loci[310]. In comparison, identification of 

new longevity loci has remained extremely challenging, with most GWAS unable 

to detect any loci at genome-wide significance beyond the well-known APOE 

locus. In addition, robust evidence of replication has thus far relied on parental 

lifespan GWAS in population cohorts, as most of the longevity sample is needed 

for the discovery phase[72,88]. 

 

Our own work suggests parental lifespan largely captures the same genetics as 

longevity, with genetic correlations between the traits exceeding 80% (95% CI 

65%–97%)[Chapter 4]. However, unlike longevity cohorts, the study of parental 

lifespan has been possible in large population cohorts, which are easy to recruit 

across the world and are rapidly expanding[311]. Despite reductions in effective 

sample sizes due to parental genotype imputation and exclusion of related 

individuals, our analysis of 1 million parents was roughly equal in power to a 

longevity case-control study of 44,500 nonagenarians[88]. Future studies may 

take into account related individuals to improve precision of parental genotype 

imputation, as was recently suggested by Hwang et al.[312], which could mitigate 

some of the loss in effective sample size. Larger sample sizes and ease of 

recruitment indicate the study of the genetics of human ageing is most effectively 

done using the parental lifespan phenotype. Existing longevity data is useful for 

replication[88] and can increase power when combined with parental lifespan 

studies[Chapter 4], but without substantial increases in sample sizes, new 
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longevity studies are unlikely to yield significant advances in the discovery of 

common genetic variants determining lifespan. Similarly, whether these studies 

are able to detect rare genetic mutations with large effects on late-life survival 

(analogous to early-acting Mendelian disease mutations), may remain unknown 

for decades until enough individuals have outlived their birth cohorts to become 

centenarians. 

 

However, the study of parental lifespan has a number of downsides as well, such 

as the lack of parental covariates and generational differences in disease and 

death. Our study of Scottish morbidities has shown large effects of socioeconomic 

status and smoking-related behaviour on mortality[91], which usually cannot be 

accounted for in parental lifespan studies due to lack of available data. As a result, 

there is a risk of finding genetic variants which affect lifespan through pathways 

unrelated to the ageing process. One example is the CHRNA3/5 locus, which has 

one of the largest effects on mortality, but this is likely mediated through its effect 

on smoking behaviour and lung cancer[313]. Similarly, the effects of genetic 

variants in the parental generation may not translate perfectly to the current 

generation, as is demonstrated by the attenuated effect of polygenic survival 

scores—generated from parental survival statistics—on genotyped subjects 

themselves.  

 

In the near future, these discrepancies may diminish when lifespan GWAS start to 

include deceased participants rather than parents from large genotyped cohorts, 

which have now reached sample sizes of thousands in some cohorts, including 

~20,000 deaths in UK Biobank[99], ~30,000 deaths in Biobank Japan[314], and 

~12,000 deaths in the Norwegian HUNT cohort[315]. These cohorts may also be 

able to quantify the bias introduced in the parental lifespan studies when unable 

to account for environmental mortality risk factors and allow gene-environment 

interactions for existing parental lifespan loci to be quantified. In this regard, 

future GWAS of subject lifespan, while significantly less powered than parental 

lifespan, will lead to more reliable and relevant biological findings and polygenic 

survival scores. 
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5.5.2 Trans-ethnic studies of survival 

Research into the genetic determinants of human lifespan has largely been 

limited to samples of European ancestries, the exception being GWAS performed 

on (the same) Han Chinese centenarian sample[72,158,307], and one analysis of 

the parental lifespans of African ancestry individuals resident in the UK[70]. Due 

to the low heritability and high polygenicity of lifespan as a trait, very large 

sample sizes are required to detect the small effects of longevity variants, and 

non-European ancestry cohorts have thus far not reached sizes large enough to 

discover new genetic variants which could be replicated in other studies[70,88]. 

 

However, there are numerous advantages to the inclusion of individuals from 

multiple ancestries in GWAS, as long as analyses are stratified by ethnicity or can 

be adjusted for admixture to avoid false positives[316]. The most straightforward 

advantage is an increase in power to detect true associations with the trait of 

interest, as genetic effects across ethnicities tend to be directionally consistent, 

although estimates of their magnitude can vary[317]. This consideration can be 

extended to polygenic risk scores, which are most accurate in predicting traits in 

individuals from the same population they were generated from, but often have 

poor predictive power in other populations if they do not contain information 

from more diverse cohorts[318]. Furthermore, differences in ancestry result in 

differences in LD structure which allows genomic loci to be mapped more 

precisely: trans-ethnic analyses can narrow down the number of candidate causal 

variants in an LD block, yielding a clearer idea of the functional consequences of 

the causal variant(s)[319]. 

 

Despite these advantages, power to detect associations is not always increased 

when including more diverse cohorts. Differences in population risk factors for a 

disease, such as diet, lifestyle, and environmental exposures, or even differences 

in the prevalence and treatment of a disease can introduce heterogeneity in effect 
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size estimates for genetic variants[320]. For lifespan, heterogeneity in mortality 

risk factors between populations may actually be useful to differentiate genetic 

variants which associate with early death due to external, population-specific 

causes from variants associating with extended longevity due to slowdown of 

common ageing processes (if the two can be separated). However, differences in 

allele frequencies between populations—or at its extreme, monomorphism—can 

also result in bona fide genetic variants being missed in one population but not 

the other[321], although tools have been developed to take into account these 

forms of heterogeneity with a minimal loss of power, allowing trans-ethnic 

association analyses to be performed as long as sample sizes are large 

enough[322,323].  

 

Indeed, the advent of population-specific genotyping arrays and multi-ancestry 

imputation reference panels such as TOPmed[324] has led to a rapid increase in 

the number and size of cohorts with individuals from non-European ancestries 

(for examples, see China Kadoorie Biobank[325], US Million Veterans 

Program[326], and Biobank Japan[327]. GWAS combining samples from multiple 

ancestries have already been performed on thousands of non-European 

individuals for traits like blood pressure[328], asthma[329] and haematological 

traits[62]. In the future, any cohort with information on mortality, be it individual 

or parental, could be included in work on lifespan to accelerate genetic 

discoveries, with trans-ethnic analysis being both more likely to fine-map causal 

variants and highlight pathways which affect ageing in all humans, not just 

Europeans. 

 

 

5.5.3 Rare and recessive variants 

Evolutionary theory predicts mutation-selection balance will eliminate genetic 

variants with large deleterious effects on survival, causing any such variants in 

the population to be rare and/or recessive[330]. Additionally, if the antagonistic 

pleiotropy theory of ageing holds, we expect variants with large positive effects 
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on survival (instead of negative) to be selected against as well, as they may reduce 

other elements of reproductive fitness[220]. Empirical evidence from a large 

study on human autozygosity supports a role for recessive variants in ageing, 

finding individuals with higher autozygosity (thus expressing more recessive 

variant effects) were more likely to display signs of ageing such as lower self-

reported health, grip strength, and walking pace, and higher measures of facial 

ageing and hearing/vision loss[331]. Quantifying the contribution of recessive 

effects on lifespan, heritability studies suggest the additional variation in lifespan 

explained by dominance is smaller than the variation explained by additive 

genetic effects, but not insignificant (~4%)[40].  

 

However, thus far genome-wide scans for lifespan variants have focused on 

identifying common, additive genetic effects[88]. Examining recessive variants 

requires larger sample sizes when the recessive allele is the minor allele in the 

population (as will likely be the case for most recessive lifespan variants), 

because of the low number of homozygous carriers. For a trait such as lifespan, 

the analysis is further complicated when regressing parental phenotypes against 

subject genotypes: observed effect sizes are halved in an additive model but are 

divided by twice the recessive allele frequency in a dominance model. To 

illustrate, detection of an additive genetic effect using parental phenotypes 

requires four times the subject sample, but detection of a recessive effect of a 

common variant with an allele frequency of 20% would require 100 times the 

sample. However, as discussed above, incorporating population allele frequencies 

and relatedness to improve parental genotype imputation would greatly reduce 

this burden[312], and the rapidly increasing number of cohorts with subject and 

parent mortality data may make a genome-wide analysis of recessive variants 

soon a possibility. 

 

Rare variants may also harbour large effects on lifespan without suffering from 

the same parental imputation drawback as recessive variants. There is evidence 

for a number of polygenic traits that much of the heritability missed by common 

genetic variation may be hidden in rare variants of large effects[332]. Recently, 
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advances in next generation sequencing have facilitated the collection of high-

quality exome and whole-genome data on large samples, soon including the 

whole of UK Biobank[333]. Rare variants pose additional problems as they 

require stringent quality control[334,335], may violate statistical 

approximations which rely on large samples to hold[336], and suffer from a larger 

multiple testing burden[337]. However, increasingly tools are being developed to 

address these statistical problems, such as aggregation tests which take into 

account multiple rare variants at once[338], and comparative and functional 

genomics which can focus analyses on deleterious variants[339]. It is clear whole-

exome and -genome analyses are set to become widely used and more 

sophisticated over time, as has been the case for GWAS of common genetic 

variants[340]. With larger samples and better tools come opportunities to find 

the large effect genes which have been absent from human lifespan GWAS thus 

far, which will improve lifespan prediction and may provide additional insight 

into the ageing process. 

 

 

5.5.4 Biomarkers of lifespan 

One avenue of research which has become possible due to the advancements in 

understanding the underlying determinants of human lifespan is the 

identification and modification of ageing biomarkers. Multiple studies have 

looked for predictors of biological age, from blood-based markers[341–343] to 

epigenetic clocks[344,345], to indicators of frailty[346], which show higher rates 

of mortality and disease in individuals with higher predicted biological ages. 

While the prediction of disease and death using relatively inexpensive assays or 

measurements has obvious clinical benefits (see PRS discussion above for genetic 

markers), it also has the additional advantage of quantifying improvements from 

ageing interventions. For example, a recent study was able to measure—albeit in 

a small and uncontrolled, all-male sample—the effect of metformin, growth 

hormone, and dehydroepiandrosterone treatment on human ageing without 

having to wait for individuals to die or to rely on proxy measures such as blood 
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pressure or BMI[347]. However, current research on ageing biomarkers provides 

limited information on the causality of these markers. In order to identify causal 

targets, future work could apply a Mendelian randomisation (MR) framework to 

the latest lifespan GWAS results. 

 

MR uses a genetic instrumental variable to establish a causal pathway between 

an exposure, such as LDL cholesterol, and an outcome, such as death. Its ability to 

establish causality relies on several crucial assumptions: 1) the instrumental 

variable must be robustly associated with the exposure, 2) the instrumental 

variable must affect the outcome only through the exposure (i.e. no horizontal 

pleiotropy), and 3) the instrumental variable must not associate with any 

confounding variables. A 2017 study used MR to investigate the causal effect of 

diseases and risk factors on mortality in LifeGen[70]. Unsurprisingly, it showed 

diseases such as Alzheimer’s disease, CVD, type 2 diabetes, and lung/breast 

cancer shortened lifespan, but also provided causal estimates for clinical 

measures, including deleterious effects of LDL cholesterol, total cholesterol, 

triglycerides, fasting insulin, apolipoprotein B, and blood pressure on lifespan; 

and a protective effect of C-reactive protein and HDL cholesterol[70]. Our own 

risk factor-informed iGWAS of parental lifespan of the LifeGen and UK Biobank 

meta-analysis also used MR to estimate causal effects of mortality risk factors on 

lifespan and found these were highly concordant with the LifeGen results 

(although this is expected to some extent as the samples overlap)[88].  

 

Genetic variants make for great instrumental variables when the exposure is a 

simple biomarker such as gene expression, as there is usually a single pathway 

from the variant to the exposure (e.g. alternative allele  transcription factor 

binding affinity  gene expression) and from there, the outcome. However, when 

there are many more biological steps between the genetic variant and the 

exposure (e.g. alternative allele  …  type 2 diabetes), the likelihood increases 

that the variant affects the outcome through pathways other than the exposure, 

thus violating the second assumption. For example, both Joshi et al.[70] and our 

own study[88] observe a positive causal effect between education and lifespan, 
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but it is impossible to exclude the possibility that the instrumental variables affect 

lifespan through other pathways than education. Nonetheless, increasingly MR 

methods are being developed to mitigate[348] or even exploit[349] violations of 

these assumptions. Also, the success of MR in predicting which lipid metabolites 

would be effective targets in CVD drug trials raises the possibility the method will 

be successful for lifespan biomarkers as well[350]. 

 

Now, with the advent of large studies mapping the genetics of hundreds of 

biological markers, from transcriptomics[204] to proteomics[351] to 

metabolomics[352], it has even become possible to perform hypothesis-free MR 

analyses. Whereas previously only the suspected effects of a handful of exposures 

on an outcome were tested, large biomarker GWAS now allow for phenome-wide 

MR studies of biomarkers on an outcome. Combined with highly powered 

genetics of the outcome, such as our parental lifespan GWAS of over 1 million 

individuals or our ageing GWAS meta-analysis, the search for targetable 

biomarkers is set to begin in earnest. For one, an MR analysis of haem-related 

phenotypes could test to what extent iron levels determine lifespan, while a multi-

omics MR study of lifespan could identify new biological targets against which to 

develop therapeutics which delay the onset of age-related disease and decrease 

the burden of ageing. 

 

 

5.7 Conclusion 

 

It is clear human lifespan has been increasing in developed countries, bringing 

with it longer lives but also longer periods of age-related disease and disability. 

We discovered the steady increases in life expectancy—3.5 years per decade in 

Scotland—can be attributed mainly to reductions in mortality associated with 

cancers and CVD. Related studies showed these reductions are concurrent with a 

rise in Alzheimer’s disease in the community. We predicted from our hospital 

admission data that, should current trends continue, infectious disease will also 
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become a major public health challenge in the near future, especially as these 

diseases disproportionally affect the elderly and individuals from more 

socioeconomically deprived backgrounds. Together, our findings suggest a need 

for healthcare policy to focus on preventing infectious diseases in those 

vulnerable groups while accelerating care in other high-mortality diseases, like 

Alzheimer’s disease, CVD, and cancers, in order to have the greatest impact on 

future lifespan improvements. 

 

Looking at differences in lifespan between people rather than over time, we found 

the largest differences in survival can be explained by an individual’s sex (+3.5 

years for females) and socioeconomic deprivation (–1 year per decile), largely 

reflecting lifestyle differences which influence disease incidence, such as 

smoking-related behaviour. Common genetic variation can also explain 

differences in survival, with individuals scoring in the top decile of polygenic 

score for survival living three to five years longer than those scoring in the bottom 

decile. These extra years of life are likely gained due to a reduction in disease, as 

high-scoring individuals have a lower incidence of Alzheimer’s disease, CVD, and 

smoking-related cancer, although their likelihood of other cancers appears 

unaffected. The study of genetic variation using parental lifespans has been much 

more informative than the study of exceptionally old individuals due to small 

sample sizes in the latter. As population cohorts expand both in size and diversity, 

polygenic survival scores are set to become increasingly predictive—especially 

when incorporating rare variants—and may be used in the future to inform both 

clinical and financial decisions. 

 

Examining the genetics of lifespan also has the potential to reveal new insights 

into the biology of ageing and identify therapeutics that could mitigate the 

increasing disease risk associated with advancing age. We and others have 

highlighted lipid metabolism as a key pathway in determining lifespan, but our 

comprehensive analysis comparing the genetics of different ageing-related traits 

additionally revealed the importance of haem metabolism in ageing. The 

implication of haem and iron homeostasis in myriad age-related diseases and 
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their link to the most promising longevity therapeutics to date provides 

encouraging evidence that haem metabolism is a pathway that can be targeted to 

extend healthy life. Additionally, information about the genetics of ageing-related 

traits can be used in the future to identify biomarkers with causal effects on 

survival, both yielding new targets for intervention as well as excellent markers 

to track the biological age and mortality risk of individuals over time. These 

markers are set to transform clinical trials on ageing interventions, where trials 

that would have taken a lifetime to complete in the past could be performed in 

months to a few years by monitoring changes in causal mortality markers. 

 

Across the decades, human lifespan has progressed through multiple stages—

from rapid growth due to vaccination and antibiotics, to steady growth due to CVD 

and cancer treatments, and now slowing growth due to the rise of Alzheimer’s 

disease and infections. I predict the next stage is on the horizon. Health 

inequalities are worsening, and our medical system is struggling under an ageing 

population. However, my work has shown that our understanding of the 

determinants of lifespan has advanced to a point where we have the tools and 

data necessary to direct healthcare policy, and where we can start to develop the 

pharmaceutical interventions needed to dramatically reduce the burden of ageing 

and improve the lives of all. 
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Appendix 

 

Supplementary Figure 1: Association of lead multivariate SNPs with ageing 

traits. Bars on the right represent the number of lead SNPs reaching nominal 

significance (P < 0.05) in each individual dataset, while bars on top represent the 

number of SNPs reaching nominal significance across datasets. 
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Supplementary Figure 2: LocusZoom plots of rs2643826 near SLC4A7. The x-axis 

shows the base-pair position of SNPs on chromosome 3 (GRCh37). The y-axis shows 

the strength of the MANOVA association. SNPs are coloured by their degree of linkage 

disequilibrium with the lead SNP, based on 1000 Genomes European ancestry 

individuals. 
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Supplementary Figure 3: LocusZoom plots of rs17499404 near LINC02513. The 

x-axis shows the base-pair position of SNPs on chromosome 4 (GRCh37). The y-axis 

shows the strength of the MANOVA association. SNPs are coloured by their degree of 

linkage disequilibrium with the lead SNP, based on 1000 Genomes European ancestry 

individuals. 
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Supplementary Figure 4: LocusZoom plots of rs1159806 near FOXO3. The x-axis 

shows the base-pair position of SNPs on chromosome 6 (GRCh37). The y-axis shows 

the strength of the MANOVA association. SNPs are coloured by their degree of linkage 

disequilibrium with the lead SNP, based on 1000 Genomes European ancestry 

individuals.  
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Supplementary Figure 5: LocusZoom plots of rs61905747 near ZW10. The x-axis 

shows the base-pair position of SNPs on chromosome 11 (GRCh37). The y-axis shows 

the strength of the MANOVA association. SNPs are coloured by their degree of linkage 

disequilibrium with the lead SNP, based on 1000 Genomes European ancestry 

individuals.  
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Supplementary Figure 6: LocusZoom plots of rs12830425 near FGD6. The x-axis 

shows the base-pair position of SNPs on chromosome 12 (GRCh37). The y-axis shows 

the strength of the MANOVA association. SNPs are coloured by their degree of linkage 

disequilibrium with the lead SNP, based on 1000 Genomes European ancestry 

individuals. 
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Supplementary Figure 7: Apart from APOE, loci of interest show limited evidence 

of sex specificity. Mother and father lifespan effect estimates from Timmers et al. [88] 

for each locus are shown in red and blue, respectively. Annotated are the nearest gene, 

index SNP and lifespan-increasing allele. Lines represent 95% confidence intervals.  
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Supplementary Figure 8: Apart from APOE, most loci of interest tend to decrease 

in effect with age. Each panel contains the age-stratified estimates on parental survival 

the lead SNP in each locus of interest, annotated with the nearest gene, lead SNP ID 

and its protective allele. The y-axis shows the effect sizes of age-stratified analyses 

(parents survival 40-60, 60-80, and 80+) relative to the unstratified analysis, for 

mothers and fathers separately. Lines represent 95% confidence intervals. The x-axis 

shows the median survival of each parental age band, calculated from Kaplan-Meier 

curves. Grey ribbons indicate the regression of father and mother estimates against 

median survival, weighted by the inverse variance of each estimate. The annotated Page 

value is the significance of the coefficient of median survival in this regression. 
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Supplementary Figure 9: Loci of interest have previously been linked to 

cardiovascular traits. This heatmap shows the number of genome-wide significant 

associations reported in the GWAS catalog and PhenoScanner for lead SNPs and close 

proxies (r2EUR > 0.6) of each locus of interest. Loci annotated with green bars are novel; 

those annotated with grey bars are known. 
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Supplementary Figure 10: Genes of interest are enriched (Pbonferroni < 0.05) for 

biological processes related to apoptosis and chemical homeostasis. Genes 

colocalizing with loci of interest in cis or trans are listed on the x-axis; GO biological 

processes gene sets from the Molecular Signatures Database, grouped into 8 broad 

categories using k-means clustering, are listed on the y-axis. See Supplementary 

Table 8 for the full list of 32 biological process pathways with P < 0.05/383, where 

383 is the number of gene sets passing the inclusion criteria. Squares represent the 

presence of a gene within one or more gene sets contained in the broad category. 

Squares are coloured based on their colocalisation with loci of interest. 
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