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Abstract           

Lynch Syndrome (LS) confers an inherited cancer predisposition, particularly for 

colorectal cancer, due to germline mutations in one of the DNA mismatch repair (MMR) 

genes, such as MSH2. MMR is a DNA damage repair pathway involved in the removal of 

base mismatches and insertion/deletion loops, caused by several endogenous and 

exogenous factors. Loss of MMR through somatic alteration of the wild-type MMR allele 

in LS results in defective MMR (dMMR). Lifestyle factors can modify cancer risk for LS 

and sporadic patients. Ethanol and its metabolite acetaldehyde, are classified as group 

one carcinogens by the International Agency for Research on Cancer, and are risk factors 

for sporadic cancers of the upper aerodigestive tract, liver, breast and colorectum. 

Acetaldehyde is metabolised to acetate by the Aldh family of enzymes, particularly 

Aldh1b1 in the intestines. Acetaldehyde is very reactive and may cause a range of DNA 

lesions. However, DNA repair pathways responsible for correcting such lesions remain 

unknown. It was hypothesized that MMR plays a role in protecting intestinal cells from 

ethanol/acetaldehyde-induced DNA damage. This study aimed to determine if there is 

a gene/environment interaction between dMMR and ethanol/acetaldehyde that 

accelerates colorectal tumour development and progression. 

A conditional Msh2 knockout (“Msh2-LS”) mouse model with one deleted and one 

conditional knockout Msh2 allele was used, as it mimics the LS patients’ pattern of MMR 

gene inactivation. The Msh2-LS model mice were fed either with 20% ethanol in drinking 

water or normal drinking water. Long-term ethanol consumption led to large intestinal 

mucosal epithelial hyperproliferation and adenoma formation in 65% (15/23) mice and, 

in some cases, invasive adenocarcinoma (5/23 mice, 21.7%) within 6 months (mostly in 

the proximal and mid-colon), compared with 0% (0/23 mice) at 6 months and only one 

colonic tumour after 15 months in the water-treated mice (p<0.0001). No small 

intestinal tumours were observed. Additionally, a conditional Aldh1b1 knockout 

(Aldh1b1flox/flox) Msh2-LS mouse model and a constitutive Aldh1b1 knockout (Aldh1b1-/-) 

Msh2-LS mouse model were generated, in which the lack of Aldh1b1 enzyme caused 

increased acetaldehyde levels and acetaldehyde-induced DNA damage. In these 

Aldh1b1-deficient mice, long-term ethanol consumption led to increased numbers of 

colorectal adenomas per mouse (4.2, 21 neoplasms in 5 tumour-bearing conditional 

Aldh1b1fl/fl Msh2-LS mice; and 4.8, 35 neoplasms in 8 tumour-bearing constitutive 
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Aldh1b1-/- Msh2-LS mice) compared with 2.4 (36 neoplasms in 15 tumour-bearing mice) 

colorectal adenomas per mouse observed in the Msh2-LS mouse model with wild-type 

Aldh1b1 (p=0.0319 and p=0.0103) , but no colonic tumours were observed in water-

treated controls.  

Precursor lesions were observed as dMMR crypts in the murine colon in all of these 

mouse models, and their quantification showed increased numbers of dMMR crypt foci 

in ethanol-treated mice compared with water-treated controls (p=0.0029 in Aldh1b1wt 

Msh2-LS mice, p=0.0006 in Aldh1b1fl/fl  Msh2-LS mice and p<0.0001 in Aldh1b1-/-   Msh2-

LS mice). A significant increase in DNA damage was detected in the large intestinal 

epithelium of ethanol-treated mice of all genotypes compared with the respective 

water-treated controls (p=0.0009 in Aldh1b1wt Msh2-LS mice, p<0.0001 in Aldh1b1fl/fl  

Msh2-LS mice and in Aldh1b1-/-   Msh2-LS mice), along with increased plasma 

acetaldehyde levels in ethanol-treated mice and acetaldehyde levels were higher in the 

plasma of Aldh1b1flox/flox Msh2-LS mice and Aldh1b1-/- Msh2-LS mice than in the plasma 

of Msh2-LS mice.  

In this study, evidence was provided for a role for Msh2 in protecting the MMR-

proficient colonic epithelial cells against ethanol/acetaldehyde-induced DNA damage by 

activating DNA mismatch repair, triggering cell cycle arrest or cell death by apoptosis. A 

key role for Aldh1b1 was confirmed for protecting the large intestines from 

acetaldehyde-induced DNA damage and tumour formation. Long-term 

ethanol/acetaldehyde exposure was shown to accelerate dMMR-driven intestinal 

tumour formation and this is proposed to act via promoting proliferation (mucosal 

epithelial hyperproliferation) and suppressing apoptosis, thus enhancing survival of 

aberrant dMMR intestinal epithelial cells/crypts relative to MMR-proficient intestinal 

epithelial cells/crypts, leading to adenoma development (with microsatellite instability) 

with some progressing to adenocarcinomas.  In conclusion, there is strong evidence for 

a gene/environment interaction between acetaldehyde/dMMR, causing the 

acceleration of dMMR-driven intestinal tumour formation upon ethanol exposure.  
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Lay Summary          

Lynch Syndrome (LS) is an inherited genetic disease that increases a person’s risk of 

developing a range of cancers, especially colorectal cancer. Developing tumours are 

known to acquire mutations occurring within the DNA of cells. To combat the 

accumulation of DNA mutations, cells have several DNA repair pathways that can 

accurately identify and repair DNA damage. One such pathway is termed the DNA 

mismatch repair (MMR) pathway and it is this pathway which is defective in LS patients. 

Alcohol consumption, specifically ethanol (and its toxic breakdown intermediate 

acetaldehyde), is a known risk factor for cancer development, as it can induce various 

types of DNA damage. However, as yet the specific DNA repair pathways responsible for 

correcting such DNA damage remain unknown. It was hypothesized that MMR plays a 

role in protecting cells from alcohol-induced DNA damage. This study aimed to 

determine if there is an interaction between defective MMR and alcohol that 

accelerates colorectal tumour development and progression. 

To investigate this hypothesis, a mouse model of LS was used that was previously 

developed, which allows controllable inactivation of one of the MMR genes (called 

Msh2) similar to that known to occur in human LS patients. Long-term alcohol 

consumption by these mice led to increased cell proliferation in the large intestine, with 

benign and malignant intestinal tumour formation within 6 months, compared with no 

tumours in the same time period (and only one intestinal tumour after 15 months) in 

the same mice given normal drinking water instead of alcohol.  

New mouse models were made that had both controllable inactivation of one of the 

MMR genes and abnormal metabolism of alcohol with accumulation of one of its toxic 

breakdown products (acetaldehyde). These mice were fed alcohol to allow study of the 

effects of alcohol and its toxic breakdown product on the mechanism of alcohol-induced 

intestinal tumours. Abnormal alcohol metabolism led to increased DNA damage. Long-

term consumption of alcohol by these model mice caused increased numbers of large 

intestinal tumours, compared with those found in the first mouse model of LS over the 

same time period. No tumour formation was seen in the model mice given normal 

water. 

The results showed that large intestinal tumours arose from those cells unable to 

activate MMR. In all the mouse models used in this study, a significant increase in DNA 
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damage was observed in the mice that received alcohol compared with the mice that 

received water. A significant increase of the toxic breakdown product (acetaldehyde) of 

alcohol was detected in the blood of alcohol-treated mice compared with water-treated 

mice, in the mouse models unable to normally metabolise alcohol and unable to activate 

MMR compared with the mouse model only unable to activate MMR but able to 

metabolise alcohol normally. The results obtained revealed the importance of DNA 

MMR in protecting intestinal cells from alcohol-induced DNA damage and also the 

importance of normal metabolism of alcohol to help reduce DNA damage.  This 

demonstrated that there is an interaction between alcohol and inactive MMR that 

contributes to accelerated formation of intestinal tumours after exposure to alcohol. 
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Chapter 1: Introduction        

1.1 Lynch Syndrome 

1.1.1 Lynch Syndrome, mismatch repair genes and susceptibility to cancer 

Lynch syndrome (LS), previously called hereditary nonpolyposis colorectal cancer (HNPCC), 

is probably the most common major cause of inherited susceptibility to cancer, with an 

estimated prevalence in the general population of between 1/100 and 1/180 (Frankel et al., 

2019). LS is characterised by predisposition to a range of cancers, involving most frequently 

the colorectum and endometrium, and also many other organ sites including ovary, stomach, 

small intestine, hepatobiliary tract, pancreas, urinary tract, prostate, brain, and sebaceous 

skin tumours (Møller et al., 2017, 2018). LS is caused by constitutional (germline) pathogenic 

variants affecting one of four genes encoding the DNA Mismatch Repair (MMR) system 

components: MLH1, MSH2, MSH6, and PMS2, and hence the current commonly accepted 

diagnostic definition of LS is carrying such a variant (Thompson et al., 2014; Vasen et al., 

2010, 2014, 2013; Frankel et al., 2019; Frayling et al., 2016). However, although it is 

acknowledged that (there is an opinion that) LS can only be diagnosed in such individuals 

once cancer has been diagnosed, this is contrary to the hereditary polyposes, which are 

characterised by the macroscopic syndromic feature of multiple pre-malignant tumours 

(Vasen et al., 2008). Allied to this, a major purpose of diagnosis of a cancer predisposing 

condition is to identify those who would benefit from surveillance and prophylactic surgery 

to prevent cancer (Vasen et al., 2010). Hence, the emerging current view is that it is 

inconsistent to discriminate against LS by expecting such individuals to develop cancer in 

order to be diagnosed with the condition, especially as cancer does not always occur 

(Dominguez-Valentin et al., 2020; Møller et al., 2017, 2018). Hence, it has been proposed 

that the definition of LS should incorporate recently identified specific microscopic and 

molecular pre-malignant syndromic features (Cerretelli et al., 2020; Seth et al., 2018). The 

DNA MMR pathway recognises and repairs both mismatched bases (e.g. C opposite T) and 

insertions or deletions in repetitive sequences. In LS patients, an inherited MMR gene 

constitutional variant/mutation, when combined with an acquired second pathogenic 

variant/mutation due to somatic mutation in the wildtype allele of the same MMR gene, 

results in the complete loss of MMR pathway function in the affected cells. Deficiency of 

MMR (dMMR) leads to hypermutability, resulting in an increase in the mutation rate by 100- 
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to 1000-fold due to uncorrected base mismatches, and to microsatellite instability (MSI) due 

to variation in the lengths of repetitive sequences (e.g. AAAAAAA… or CACACACA…. or 

similar, known as microsatellites) due to uncorrected insertion/deletion loops that are prone 

to occur as DNA replication errors in repetitive sequences (Poulogiannis et al., 2010). 

However, crucially, dMMR does not simply fail to repair mismatches, it elicits a reduced 

susceptibility to apoptosis or cell cycle arrest induced by DNA damage recognised by the 

MMR pathway (Poulogiannis et al., 2010; Toft et al., 1999; Tomlinson & Bodmer, 1999; Zhang 

et al., 1999).  

The International Society for Gastrointestinal Hereditary Cancer (InSiGHT) was the first 

expert group to define pathogenicity of gene variants according to an agreed set of criteria 

based upon Bayesian probability, using the five-tier classification system of Plon et al.  (Plon 

et al., 2008; Thompson et al., 2014) . In this system, Class 5 variants are pathogenic and Class 

4 likely pathogenic, with Class 3 being variants of uncertain significance (VUS), and Classes 2 

and 1 being likely benign and benign respectively. InSiGHT maintains the world reference 

database of variants observed in MMR genes, as Leiden Open Variation Databases (LOVDs), 

which are now linked to ClinVar as part of the ClinVar-ClinGen partnership. Interestingly, 82% 

of the Class 4 and 5 variants of MMR genes listed affect MLH1 and MSH2, with 13% affecting 

MSH6 and 5% PMS2 (Landrum & Kattman, 2018; Rehm et al., 2015). It should be noted that 

these pathogenic variants are mostly from cases ascertained by family history. As more cases 

of LS are ascertained from systematic testing of cancer cases and from gene panel testing, 

more patients may be identified with pathogenic variants in MSH6 and PMS2, and thus the 

proportions due to the different MMR genes may alter (Vasen et al., 2013). All types of 

variants can be pathogenic: nonsense, frameshift, splice-site, missense, insertion–deletion, 

and large deletions/rearrangements, the largest so far being a 10 Mb inversion affecting 

MSH2 and which is visible cytogenetically (Li et al., 2006; Taylor et al., 2003; Wagner et al., 

2002). Approximately 60% of all putative pathogenic missense mutations causing LS actually 

disrupt splicing and are thus, in effect, truncating (Thompson et al., 2015). Up to 3% of LS 

cases are due to variants involving the 3’ end of the EPCAM gene (immediately upstream to 

MSH2), that result in hypermethylation of the MSH2 promoter or partial deletion of MSH2 

(Kempers et al., 2011; Niessen et al., 2009). Another infrequent cause of LS is constitutional 

methylation of the MLH1 promoter, which occurs in 1–2% of cases (Hitchins et al., 2005; 

Hitchins & Ward, 2009; Morak et al., 2018). Hypermethylation of the MLH1 promoter is 

usually sporadic in nature, so it is neither inherited nor heritable, and relatives are therefore 
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not at risk. However, in a small number of patients, the hypermethylation may be secondary 

to a large deletion involving LRRFIP2, the gene upstream of MLH1, and it is the deletion that 

is the heritable pathogenic variant, the methylation is secondary (Morak et al., 2018). Given 

the risks to relatives it is therefore important to distinguish such cases, and this is achieved 

by testing both the tumour and constitutional DNA, and finding MLH1 promoter methylation 

in both, perhaps in the context of an LS family history. It has to be borne in mind that 

approximately 15% of sporadic colonic cancers are also dMMR due to somatic, so acquired, 

epimutation of both MLH1 alleles by promoter hypermethylation (Sinicrope & Sargent, 

2009). This is a function of such tumours arising from right-sided serrated lesions (Noffsinger, 

2009). A higher proportion (25-30%) of sporadic endometrial cancers also have bi-allelic 

hypermethylation of MLH1, and as with colonic cancers a small proportion are due to 

constitutional methylation plus a somatic mutation in the normal MLH1 allele (Esteller et al., 

1998; Hitchins et al., 2005; Hitchins & Ward, 2009; Simpkins et al., 1999). 
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1.1.2 DNA mismatch repair mechanisms 

The MMR pathway is a highly evolutionarily conserved mechanism responsible for the 

correction of base mismatches (e.g. C or G opposite T or A) and insertion/deletion loops 

(occurring in repetitive sequences such as AAAAAA … or CACACACA … due to insertion or 

deletion of a repeat unit during stalled DNA replication of these repetitive sequences). Such 

stalling is probably mostly due to replication-associated errors, but is also caused by DNA 

damage due to oxidative stress, lipid peroxidation, base deamination, methylation, and 

alkylation (Modrich & Lahue, 1996). A base mismatch or single nucleotide insertion/deletion 

error is recognised by the MutSα complex, which is composed of MSH2 and MSH6 proteins. 

Insertion/deletion loops of 2–8 nucleotides are recognised by the alternative complex 

MutSβ, composed of MSH2 and MSH3 proteins. MutSα complex activation is characterized 

by ATPase activity, which is important for the interaction with the mismatched DNA and 

initiation of repair. The binding of MutSα stimulates ATP hydrolysis, leading to a 

conformational change that subsequently triggers the recruitment of a second complex 

MutLα, composed of MLH1 and PMS2 proteins (although there is redundancy with PMS1 and 

MLH3 in this complex). The tetrameric complex, by sliding on the DNA, searches for the single 

strand DNA mismatch on the new strand (daughter strand). This in turn activates 

proliferating cell nuclear antigen (PCNA) and replication factor C (RFC). MutLα possesses an 

intrinsic ATP-stimulated endonuclease activity that requires activation by PCNA in order to 

create an incision in the recently synthesised daughter strand (containing the error). The 

incision step is followed by the recruitment of exonuclease 1 (EXO1) that removes the newly 

synthesised DNA strand up to and beyond the mismatch or loop. DNA polymerase δ 

resynthesises the DNA, whereas ligase 1 seals the remaining nick (Figure 1.1) (Hsieh & 

Yamane, 2008). 

The MMR pathway is involved in a signalling cascade that leads to either cell cycle arrest 

and/or apoptosis, if DNA damage has occurred (Stojic et al., 2004). It has been observed that 

MMR-deficient cells fail to recruit ataxia-telangiectasia mutated (ATM) and ATM and Rad3-

related (ATR) proteins; and this prevents p53 phosphorylation in response to DNA damage 

(Brown et al., 2003; Toft et al., 1999). The underlying mechanisms by which MMR proteins 

promote DNA damage–induced cell cycle arrest and apoptosis have not been fully 

elucidated. Two models have been hypothesised: the futile cycling model and the direct 

damage signalling model. In the futile cycling model, MMR recognises the mismatch 
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triggering the excision of the newly synthesized strand, although the persistent offending 

damage on the template strand cannot be excised. MMR initiates futile repair cycles, 

eventually resulting in the formation of DNA double-strand breaks and thus activating the 

ATM/ATR/p53 signalling pathway to activate cell cycle arrest and/or apoptosis (Stojic et al., 

2004). In the direct damage signalling model, MutSα and MutLα directly recruit ATM/ATR 

and causes cell cycle arrest and/or apoptosis (Yoshioka et al., 2006). A crucial consequence 

of this is that the low background level of DNA damage in normal cells may stimulate MMR 

and thus inhibit the cell cycle, or if severe may stimulate apoptosis, and so net cell turnover 

does not reach its theoretical maximum. However, if MMR deficiency should occur in such 

cells, there is no such limitation by stalling of the cell cycle or activation of apoptosis and net 

cell division increases in an uncontrollable fashion, allied to which as a secondary 

phenomenon the mutation rate increases, which is manifest as MSI and/or abnormal MMR 

immunohistochemistry (IHC). This is very useful diagnostically, but it is important to 

appreciate that it is not the increased mutation rate per se that is driving the carcinogenic 

process, and neither does it make adenomas progress any quicker than usual (Tomlinson & 

Bodmer, 1999). However, because mutations are strongly biased towards repetitive DNA 

sequences in dMMR cells, this has profound consequences for the biology of such tumours 

and patients with LS due to the strong immunological responses this elicits (Llosa et al., 2015; 

Pfuderer et al., 2019) and the critical consequences of this are manifest in how LS tumours 

develop and potentially evade the immune system (see later, section 1.1.7) (Seth et al., 

2018). 
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Figure 1.1: Schematic diagram of the DNA Mismatch repair pathway, which is strand-specific (adapted 

and modified from Hsieh & Yamane, 2008). During DNA synthesis the newly synthesised (daughter) 

strand (which transiently includes nicks before they are sealed by ligases) may include errors, including 

base mismatches, insertions or deletions. The base mismatch or single nucleotide insertion/deletion 

(red square) error is recognized by the complex MutSα composed of MSH2 and MSH6 (whereas 

insertion/deletion loops of 2-8 nucleotides are recognized by the complex MutSβ composed of MSH2 

and MSH3, not shown). The binding of MutSα stimulates ATP-hydrolysis leading to a conformational 

change triggering the recruitment of a second complex MutLα. MutLα, composed of MLH1 and PMS2, 

induces ATP hydrolysis causing the translocation of MutSα along the DNA and generation of a new 

nick of the affected strand. Excision and repair are performed by other factors, including exonuclease 

1 (EXO1) which excises the affected strand between the two nicks, whereas proliferating cell nuclear 

antigen (PCNA), replication factor C (RFC) and DNA polymerase delta (POLδ) repair the strand and this 

is religated by DNA ligase 1. Replication protein A (RPA) binds to single-stranded DNA, preventing it 

from winding back on itself or forming secondary structures, keeping the DNA unwound for the 

polymerase to replicate it. (Image created with BioRender.com). 
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1.1.3 Lynch syndrome databases and cancer risks 

In addition to the MMR gene variant database maintained by InSiGHT (https://www.insight-

group.org/), there are other phenotypic databases aimed at understanding the precise risks 

that LS patients face. Initial estimates were liable to ascertainment bias and thus tended to 

overestimate by being necessarily retrospective. The penetrance and expressivity of MMR 

pathogenic variants differs in LS patients according to the MMR gene, age, sex and 

environmental/lifestyle factors (Diergaarde et al., 2007). Several lifestyle factors, such as 

smoking, alcohol, and obesity, are associated with an increased risk of sporadic cancer and 

have been suggested to have similar effects in LS patients. Therefore, as it is fundamental to 

quantify accurately the risks of developing cancer for LS patients, in order to provide 

adequate data for surveillance and care, as well as understand the underlying biology, the 

Prospective Lynch Syndrome Database (PLSD) was established in 2012 by the Mallorca Group 

of InSiGHT (Dominguez-Valentin, 2020; Møller et al., 2017). The PLSD collects data on LS 

patients from expert centres and registries worldwide; these patients are thus undergoing 

colonoscopic surveillance with polypectomy and may also be having therapeutic or 

prophylactic surgery. It therefore provides information on the natural history of the disease 

course and the effects of interventions and lifestyle risk factors. The PLSD is linked to the 

InSiGHT MMR LOVD: all patients on the PLSD must have a Class 4 or 5 MMR variant, so 

pathogenic or likely pathogenic, according to the InSiGHT classification (InSiGHT, 2020e; 

Thompson et al., 2014). The PLSD includes basic information on pathogenic genetic variants, 

sex, and age, plus information such as cancers or pre-cancers diagnosed, age at diagnoses, 

age at prophylactic surgical removal of organs, and information on pre-cancers. Every patient 

is followed as an individual, as the family history is ignored so as not to introduce bias, and 

the database now has >50,000 patient-years of observations (Dominguez-Valentin et al., 

2020). The PLSD website (http://lscarisk.org/) is public and allows anyone to determine the 

risks to an individual of an LS-associated cancer in an interactive graphical form according to 

their affected gene, age, sex, and whether previously affected by cancer (Dominguez-

Valentin, 2020). Important parallel efforts have been made in defining risks in Lynch 

syndrome by the Colon Cancer Family Registry (CCFR) and the International Mismatch Repair 

Consortium (IMRC) (Jenkins et al., 2018; Jenkins et al., 2018). The CCFR is an international 

consortium of six institutes in the United States, Canada, and Australasia formed as a 

resource to support studies on the aetiology, prevention, and clinical management of 

colorectal cancer, and utilises a form of modified segregation analysis to minimise 
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retrospective ascertainment bias (Dowty et al., 2013; Jenkins et al., 2018). It currently has 

data on >42,500 individuals from >15,000 families on its records and has made significant 

advances in demonstrating how environmental and lifestyle factors affect cancer risks in LS, 

such as smoking, increased body mass index, and alcohol consumption (Pande et al., 2010; 

Win et al., 2011). By contrast, reduced cancer risk is seen with, for example, hormone 

replacement therapy, vitamin and mineral supplements, nonsteroidal anti-inflammatory 

drug (NSAID) use, and parity, but there is no change in risk associated with oral contraceptive 

use (Ait Ouakrim et al., 2015; Chau et al., 2016). The IMRC is a worldwide collaboration of 

more than 115 investigators from 59 centres, with 20,000 individuals with LS from 8800 

families, facilitated by InSiGHT and the Collaborative Group of the Americas on Inherited 

Gastrointestinal Cancer (CGAIGC) (Jenkins et al., 2018). Reduced cancer risk has been 

observed in a series of clinical trials using aspirin (Burn et al., 2011, 2012; Liljegren et al., 

2008). 
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1.1.4 Pathology of Lynch syndrome cancers  

Typical histological features of LS tumours are best exemplified by colorectal cancer (CRC), 

which often shows a combination of the presence of prominent tumour-infiltrating 

lymphocytes, Crohn-like peritumoural lymphoid aggregates, poor differentiation, frequently 

with areas of mucinous and/or signet-ring cell patterns, sometimes with a medullary growth 

pattern (Alexander et al., 2001; Truta et al., 2008). These characteristics can be seen in both 

Lynch syndrome CRC and sporadic dMMR bowel cancers, but are not sufficiently specific to 

distinguish them from MMR-proficient (pMMR) cancers. Fewer data have been published 

about non-colorectal LS-associated cancers. LS associated gastric carcinomas are mostly of 

the intestinal-type with fewer diffuse-type, and rarely of mucinous type, and an associated 

immune gastritis is reported (Aarnio et al., 1997; Adar et al., 2019; Capelle et al., 2010; Gylling 

et al., 2007). LS-associated small intestinal adenocarcinomas often display mucinous, signet-

ring cell, or medullary differentiation, with tumour-infiltrating lymphocytes and Crohn-like 

reactions, as do ampullary adenocarcinomas (Jun et al., 2017). 

 

1.1.5 Testing for Lynch syndrome cancers 

Testing of (usually selected) patients with CRC, endometrial cancer, and/or other types of LS-

associated cancer is recommended by many guidelines and organisations, generally starting 

with testing the tumours for either the presence of MSI or the absence (or abnormal 

expression) of mismatch repair proteins. There is no consensus regarding whether MMR 

immunohistochemistry or MSI testing is the better first test in CRCs as they have similar test 

performance characteristics in detecting LS: sensitivity of MSI testing is 88 - 100% and MMR 

IHC is 73 - 100%, with specificity of MSI testing is 68 - 84% versus MMR IHC specificity of 78 

- 98% (Snowsill et al., 2014, 2017). They may be used serially, or in combination (National 

Institute for Health and Care Excellence, 2017; Sie et al., 2014; Wedden et al., 2019). 

However, evidence is now emerging that IHC may be the preferred option when testing 

endometrial cancers (systematic testing of which has recently been approved by the UK 

National Institute for Health and Care Excellence (NICE), as a recent UK study has shown that 

while MSI and MMR IHC have similar specificity (83.7 versus 81%), MSI has only 56.3% 

sensitivity compared with 100% for MMR IHC in endometrial cancers (Crosbie et al., 2019; 

Ryan et al., 2020). MMR IHC is the better option for small biopsies, cancers with a low tumour 



10 
 

cell proportion, or an intense inflammatory reaction. Subsequent testing for MLH1 promoter 

hypermethylation and somatic (rather than constitutional/germline) mutations can be used 

to clarify the risk of inherited pathogenic variants in suspected LS patients. MLH1 promoter 

hypermethylation testing may be used as an alternative to BRAF V600E mutation analysis in 

colonic cancers (Adar et al., 2017; Bläker et al., 2019; Marks & West, 2020). The use of larger 

targeted gene mutation panels (or whole exome/genome sequencing) that includes MMR 

gene testing with mutation analyses is becoming more widespread (Taylor et al., 2018).  

Immunohistochemical staining for the four major DNA mismatch repair proteins (MLH1, 

MSH2, MSH6, and PMS2) is probably the most common UK test to screen CRCs and other 

tumours for dMMR (Sie et al., 2014; Snowsill et al., 2017; Wedden et al., 2019). The nuclear 

expression of all four MMR proteins suggests mismatch repair proficiency with microsatellite 

stability (Arends et al., 2008; Frayling & Arends, 2015; Mensenkamp et al., 2014). Loss or 

abnormality of nuclear staining for any of the proteins indicates dMMR and suggests the 

most likely MMR gene involved (Frayling & Arends, 2015; Mensenkamp et al., 2014). Loss of 

MSH2 alone, or loss of both MSH2 and MSH6, suggests that a mutation or abnormality in 

MSH2 is most likely. Similarly, loss of MLH1 alone, or loss of both MLH1 and PMS2, suggests 

an underlying mutation, abnormality, or promoter methylation in MLH1. Combined loss of 

both MSH2 and MSH6 (or of both MLH1 and PMS2) reflects the heterodimeric binding of 

MSH2 with MSH6 (or of MLH1 with PMS2) in the mismatch repair complex MutSα (or of 

MutLα), such that loss of the first protein partner generates instability and loss of the second 

(South et al., 2008). Usually, there is nuclear staining in the nuclei of both tumour cells and 

adjacent normal epithelial cells, stromal cells, and lymphocytes. In a dMMR tumour due to 

MSH2 mutation, there is loss of nuclear MSH2 and MSH6 and intact staining for MLH1 and 

PMS2. In a dMMR tumour due to MLH1 mutation, there is loss of nuclear MLH1 and PMS2 

and intact staining for MSH2 and MSH6. This pattern of combined MLH1 and PMS2 loss could 

be seen either in a sporadic tumour (most commonly due to MLH1 promoter methylation) 

or in LS due to constitutional MLH1 mutation. Correct MMR IHC interpretation requires 

adequate internal control staining of the adjacent stromal and lymphoid cells to confirm 

good fixation of the tissue region (Arends et al., 2008; Frayling & Arends, 2015). Patchy intact 

nuclear staining may occur due to variable fixation, tissue hypoxia, or unequal antibody 

diffusion (Chang et al., 2002; Mihaylova et al., 2003). Cytoplasmic staining may occur, but if 

nuclear staining is lost, this is considered abnormal, indicating dMMR (Sekine et al., 2017). 

Weak, patchy nucleolar staining, or sometimes absence of MSH6 has been described in rectal 
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tumours following neoadjuvant treatment without MSI or a mutation confirmed by 

molecular testing (Bao et al., 2010; Radu et al., 2011). Notably, heterogeneous staining or 

loss of MSH6 can be due to secondary (non-germline) acquired somatic mutations in the 

MSH6 coding repetitive mononucleotide tract (Graham et al., 2015; Shia et al., 2013). 

Approximately 3–10% of LS associated dMMR tumours show no abnormality on IHC testing 

(presumably because of variants that disrupt normal MMR protein function but nonetheless 

enable protein detection by IHC) (Bartley et al., 2012). 

Testing DNA extracted from tumours for MSI involves investigating the presence of extra 

alleles (longer or shorter) at a microsatellite locus compared with normal tissue or blood 

from the same individual (Frayling, 1999). Microsatellites vary in their propensity to show 

instability, and thus the frequency with which the same microsatellite is altered varies in 

different tumour types. Instability is more likely to be observed at mononucleotide repeats 

(e.g. AAAAA …) than at dinucleotide repeats (e.g. CACACA …). Microsatellite loci or markers 

used in colonic cancer MSI testing are known to have reduced sensitivity at detecting MSI in 

non-colonic cancers, including endometrial, small intestinal, or gastric cancers; in tumours 

from LS patients with MSH6 or PMS2 mutations; and in colonic adenomas (Hause et al., 

2016). Therefore, a proportion of LS-associated tumours may not appear to have MSI using 

the standard test but might be identified by abnormal MMR immunohistochemistry. The 

efficacy of MMR IHC and MSI testing may be significantly enhanced by testing more than one 

tumour from the same individual or family, particularly if there are tumours that are multiple 

or rarely seen in LS (e.g. colorectal adenomas, small intestinal cancers, hepatobiliary, upper 

urinary tract, and cutaneous sebaceous tumours) (InSiGHT, 2020e; Ju et al., 2018). Consistent 

IHC abnormality of one mismatch repair protein in more than one tumour from an individual 

or family represents very good evidence for variant pathogenicity (InSiGHT, 2020e; Loukola 

et al., 1999). Some CRCs due to MUTYH associated polyposis (MAP) or proofreading 

polymerase-associated polyposis (PPAP) may exhibit MSI and/or abnormal IHC due to 

somatically acquired MMR gene mutations. Approximately 13–15% of sporadic colonic 

cancers have dMMR, usually due to epigenetic silencing of both alleles of MLH1 by promoter 

hypermethylation. Hence, although overall unselected dMMR colonic cancers have a 

relatively poor positive predictive value for LS, because the proportion of colonic cancers 

with MSI due to LS varies with age this can be exploited clinically. In individuals younger than 

the age of 57, more than half of all dMMR colonic cancers will be due to LS, whereas over 

this age less than half will be, although even at age 70 approximately 25% dMMR colonic 
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cancers will be due to LS (Frayling et al., 2016; Mensenkamp et al., 2014; van Lier et al., 2012). 

In contrast, proficient mismatch repair (pMMR) tumours have a good negative predictive 

value for LS. Further tests (BRAF mutation and MLH1 methylation tests) are required for 

MLH1-negative cancers to distinguish between LS and sporadic origin (National Institute for 

Health and Care Excellence, 2017; Snowsill et al., 2014, 2017). Another important practice 

point is that rectal cancers are distinct from colonic cancers in the diagnosis of LS. Because 

sporadic colonic cancers with dMMR arise largely from right-sided serrated lesions, sporadic 

rectal cancers with dMMR are correspondingly rare, if they occur at all, and hence a rectal 

cancer with dMMR at any age are considered to be due to LS until proven otherwise (de Rosa 

et al., 2016; Nilbert et al., 1999). The activating missense variant BRAF p.V600E occurs in 

sporadic colonic cancers with dMMR, but not in those due to LS; therefore, BRAF p.V600E is 

highly predictive of the tumour being of sporadic origin rather than LS (National Institute for 

Health and Care Excellence, 2017; Noffsinger, 2009; Snowsill et al., 2014, 2017; Thiel et al., 

2013). However, sporadic tumours may occasionally occur in patients with LS, so the absence 

of BRAF p.V600E does not definitively diagnose LS but does indicate that LS is more likely. 

Alternatively, detection of MLH1 promoter hypermethylation in a colonic cancer provides 

good, although not unequivocal, evidence that the tumour is sporadic in origin, as occasional 

sporadic tumours do occur in LS and constitutional MLH1 promoter methylation can be 

found in a small proportion of patients with LS (Hitchins & Ward, 2009; Morak et al., 2018). 

Patients with digenic LS, who have inherited pathogenic variants in more than one MMR 

gene, are occasionally seen, but it is unclear if their risks are increased over those patients 

with a pathogenic variant in one MMR gene. It is often useful to have samples from more 

than one individual in the family, because case segregation studies may be required to 

determine pathogenicity or whether an individual is a phenocopy (InSiGHT, 2020e; 

Thompson et al., 2014). If the family shows evidence of hereditary transmission of LS but no 

point mutation is found, tests for large-scale mutations, such as deletion of a whole exon (or 

more), can be performed; 12–40% of pathogenic variants are of this type (InSiGHT, 2020b, 

2020a, 2020c, 2020d; Ligtenberg et al., 2009; Smith et al., 2016; Taylor et al., 2003; Wagner 

et al., 2002). LS-related tumour types that are rare in the general population and thus have 

a high predictive value for LS, such as small intestinal and  hepatobiliary cancer, upper urinary 

tract and bladder (under age 60) transitional cell carcinoma, or skin sebaceous 

adenoma/carcinomas, are therefore worth testing (Jessup et al., 2016). Synchronous or 
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metachronous bowel cancers are also significant, as is the development of any two LS-related 

tumours (e.g. CRC and endometrial cancer), and all such cases warrant testing for LS. 

 

 

1.1.6 Precursors of cancers in Lynch syndrome 

When LS was being defined in the early 1990s, the only known pathway to CRC was based 

on the work of Dukes, Bussey, and Morson on FAP. First was Dukes’ concept of ‘simple 

tumours and cancer’ described in 1925, as part of his system for the staging of rectal cancer 

in FAP, followed by the adenoma to carcinoma pathway published in 1958 (Dukes & Bussey, 

1958; Dukes, 1926; Dukes, 1932). Naturally, the reasonable assumption was that the same 

pathway applied in LS and colonoscopic surveillance to remove premalignant adenomas 

would thus be beneficial in LS. When early data on the efficacy of surveillance in LS showed 

a large number of interval cancers, and, moreover, these cancers occurred despite the 

interval between colonoscopies being steadily reduced to less than 3 years and sometimes 

even less than 1 year, it appeared that LS CRCs may develop much more rapidly than sporadic 

ones, assuming they all arose from adenomas (Vasen et al., 2010, 1995). In addition, because 

of the increased mutation rate observed in LS cancers, allied with the prevailing concept that 

genomic instability characterised all cancer, it was further assumed that this must be what 

was driving a faster adenoma-carcinoma progression (Poulogiannis et al., 2010; Tomlinson & 

Bodmer, 1999; Tomlinson et al., 1996). Furthermore, although dMMR adenomas could be 

found in LS patients, further doubts were raised when aspirin treatment failed to reduce the 

incidence of adenomas (although it later reduced that of CRCs), and results from the PLSD 

became available (Burn et al., 2011; Loukola et al., 1999; Møller et al., 2017; Seppälä et al., 

2017; Seppälä et al., 2019). LS patients on colonoscopic surveillance at various intervals could 

finally be compared (Seppälä et al., 2017). Remarkably, within the limits measurable, 

colonoscopy did not appear to reduce the rate at which CRCs were arising in LS patients, 

despite it being associated with a significant reduction in mortality and, in addition, stage 

was not related to the interval since last colonoscopy—completely the opposite of 

population screening programmes, which are based primarily on adenoma removal (Engel et 

al., 2018; Møller et al., 2017; Seppälä et al., 2017; Seppälä et al., 2019). 
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LS patient survival was shown to be improved by colonoscopic surveillance, enabling earlier 

diagnosis and a degree of downstaging, together this mass of evidence led to the conclusion 

that a pathway independent of adenomas must be occurring, and moreover, a pathway in 

which precursors were less obvious on colonoscopy (Snowsill et al., 2014). At about the same 

time, it was discovered that LS patients harbour an enormous number of dMMR crypts in the 

colorectum (~1/cm2 mucosa, so ~10 000 crypts/ patient), which are not dysplastic, and yet 

LS patients only go on to eventually develop between zero, one, two, or three cancers (Kloor 

et al., 2012; Staffa et al., 2015). It was suggested that these dMMR crypts might lead to 

cancers, perhaps by a route that was not readily visible on colonoscopy and this was 

supported by the finding of flat intramucosal cancers, in which the Wnt pathway was 

activated by mutations not in Adenomatous polyposis coli (APC) as in classical adenomas, but 

via mutations in repetitive coding sequences in the beta-catenin gene, as predicted from 

dMMR  (Ahadova et al., 2016). It is intriguing that subsequent work to sequence LS cancers 

has shown that some 61% of APC mutations are predicted to occur after MMR deficiency 

occurs, as they are found in repetitive sequences, exactly as would be expected in dMMR 

tumours. Hence, a proportion of these beta-catenin–mutant flat lesions acquire secondary 

APC mutations, thence to become polypoid adenomas and subsequently cancers (Ahadova 

et al., 2018; Binder et al., 2017). 

The current model describes at least three pathways to CRCs in LS, not including sporadic 

colonic cancer due to a right-sided sessile lesion, which are occasionally observed (Figure 

1.2). The first pathway is via sporadic adenomas that acquire secondary dMMR. The third 

pathway is via flat cancers within the mucosa that arise directly from dMMR crypts, and the 

second pathway is LS-specific polypoid adenomas that arise from flat dysplastic lesions due 

to secondary APC mutations (Ahadova et al., 2018). Hence, a proportion of LS CRCs arise 

from flat dysplastic / adenomatous lesions, which are inherently more difficult to detect 

endoscopically, let alone remove on colonoscopy, explaining at least in part the apparent 

high rate of interval cancers and the previous suggestion (now regarded as incorrect) of a 

faster progression rate in LS. Building on this, it has been shown that the cancers in patients 

with LS due to PMS2 mutations arise largely along pathway 1 (from sporadic adenomas), 

further explaining why patients with pathogenic PMS2 variants have only a small increased 

risk of CRC (Ten Broeke et al., 2018). It is interesting that very recently it has been found that 

pathway 3 (dMMR crypts evolving into flat cancers) predominates over pathway 2 (polypoid 

adenomas arising from flat dysplastic lesions) in patients with pathogenic MLH1 variants, but 
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pathway 2 predominates over pathway 3 in those with MSH2 pathogenic variants (Engel et 

al., 2020). These fascinating findings have clear implications for future surveillance 

strategies, which may soon also include modalities such as prophylactic aspirin and vaccines, 

to address the inherently limited efficacy of colonoscopy and increased risks of cancers in LS 

at sites other than the large bowel, which are becoming the predominant cause of mortality 

in LS patients under surveillance (Møller et al., 2017, 2018). Observers have recently found 

dMMR glands in morphologically normal endometrium from LS patients, which in turn has 

implications for the understanding of LS carcinogenesis in that tissue (Crosbie et al., 2019). 

 

 

 

 

 

 

 

 

 

 

 

 

 



16 
 

 

Figure 1.2: Pathways to CRC in Lynch syndrome (adapted and modified from Ahadova et al., 2018, 

2016). There are three pathways to dMMR CRCs in LS. Pathway 1: Classic sporadic polypoid adenomas, 

initiated by Wnt pathway activation due to mutations in APC (APCm), acquire dMMR through somatic 

mutation of the remaining normal MMR allele (MLH1m, MSH2m, MSH6m, or PMS2m). This can occur at 

any stage of adenoma progression, from early adenoma through to adenoma-carcinoma transition. 

Pathway 3: Crypts that have acquired dMMR due to somatic mutation of the normal MMR allele are 

not dysplastic, but if they undergo somatic mutation of beta-catenin (CTNNB1m), which activates the 

Wnt pathway, they become flat adenomas/adenocarcinomas that later acquire mutations in TP53 

(TP53m), an otherwise rare event in dMMR CRCs. Pathway 2: A proportion of Pathway 3 lesions acquire 

secondary APC mutations and thus become polypoid adenomas. Because of this unique combination 

of somatic events, these Pathway 2 adenomas are, as far as is known, specific to LS (hence ‘Lynch-

specific dMMR adenomas’). Regarding pathways 2 and 3 in their original proposal, Ahadova and 

colleagues remark: ‘For better visibility, pre-malignant lesions that do not develop into cancer are not 

included in the diagram, because their number greatly exceeds the number of carcinomas’. Pathway 

1 predominates in patients with LS due to PMS2 pathogenic variants, whereas CTNNB1-mutant 

tumours are more likely in MLH1 patients and APC-mutant tumours are more likely in MSH2 and MSH6 

patients. Note that sporadic colonic cancers that arise from serrated lesions with MLH1 deficiency due 

to somatic biallelic hypermethylation of the MLH1 promoter may occur in LS, albeit perhaps less often 

due to the enhanced immunity in LS patients against dMMR cells because of chronic 

autoimmunisation from the novel frameshift peptides generated from dMMR crypts. (Image created 

with BioRender.com) 
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1.1.7 Immune escape by Lynch Syndrome neoplasms 

The early general observations of large local tumours and a lower rate of metastasis, 

together with a strong immune reaction to LS cancers, such as increased tumour infiltrating 

lymphocytes (TIL) and tertiary lymphoid structures (TLS; also termed Crohn-like peritumoural 

lymphoid aggregates or follicles), later backed up by gene expression signatures 

characteristic of immune cell activation, all indicate an important role for the immune system 

in LS (Aaltonen et al., 1994; Llosa et al., 2015; Smyrk et al., 2001). However, in the context of 

the normal immune architecture in the bowel, gut-associated lymphoid tissue (GALT) 

comprises both isolated and aggregated lymphoid follicles in both the small and large 

intestines. Humans have approximately 30,000 isolated lymphoid follicles (ILFs) scattered 

throughout the large and small intestines, but especially in the colon (Sipos & Muezes, 2011). 

ILFs vary in their distribution within the large and small intestines, may be mucosal or sub-

mucosal, and at their simplest may consist of a single follicle, with or without some T cells 

(Agace & McCoy, 2017; Mowat & Agace, 2014). They are considered to be the main source 

of immune priming in the colon and from where Crohn’s disease originates, and they have 

specialised follicle associated epithelium (FAE), which overlies a subepithelial dome 

containing numerous macrophages, dendritic cells, T and B lymphocytes, and special antigen 

sampling microfold/M cells (Colbeck et al., 2017; Stranford & Ruddle, 2012). The FAE has a 

crucial role in the initiation of the mucosal and systemic immune responses (Lorenz & 

Newberry, 2004). However, the relationship between Crohn-like follicles in LS and ILFs in 

normal colon is not completely clear. In LS, the follicles are generally peritumoural and not 

located inside cancers, and although they do not have FAE, they do have T cells, B cells, and 

germinal centres (Bento et al., 2015; Pfuderer et al., 2019). Whether they are induced de 

novo, as in chronic inflammation, or develop from submucosal ILFs remains to be determined 

(Drayton et al., 2006). Crohn-like follicles/TLS are found in CRCs apart from LS; however, the 

frequency/number is highest in LS cancers compared with sporadic dMMR and pMMR CRCs, 

which is not simply related to age (Pfuderer et al., 2019). 

In recent years, there has been a growing interest in TLSs in a variety of cancers including 

CRC, in particular as prognostic indicators of cancer progression and response predictors to 

immunotherapy (Colbeck et al., 2017; Sautès-Fridman et al., 2019). In hepatocellular 

carcinoma, intra-tumoural TLSs correlated with a lower risk of early relapse after surgery 

(Calderaro et al., 2019). In sarcoma, melanoma, and renal cell carcinoma, both intra-
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tumoural location and the presence of B cells (but not T cells), and particularly germinal 

centres, correlate with improved outcomes to checkpoint blockade immunotherapy (Cabrita 

et al., 2020; Helmink et al., 2020; Petitprez et al., 2020). Further studies of the location, 

cellular composition, and presence of germinal centres in TLS in hereditary dMMR may 

therefore shed light on their role in LS.  

In dMMR cells, predictable mutations can and do occur in repetitive protein coding 

sequences and result in frameshift peptides (FSPs) (Saeterdal et al., 2001; Schwitalle et al., 

2004; Woerner et al., 2001). Such FSPs are novel antigenic epitopes and elicit both humoral 

and cellular immune responses, which are seen as TILs around the dMMR crypts in LS 

patients as well as in dMMR cancers, both sporadic and due to LS (Kloor et al., 2012; 

Linnebacher et al., 2001; Reuschenbach et al., 2010; Schwitalle et al., 2004). In the face of 

such responses, how is it possible for tumours, let alone cancers, to develop in LS? The 

answer lies in the proposed three step process of elimination, equilibrium, and escape 

(Figure 1.3) (Dunn et al., 2004; Seth et al., 2018). Cells generating FSPs, present the FSPs on 

their surface by MHC-I, and are subjected to attack by cytotoxic T lymphocytes (CTLs), 

resulting in elimination. However, cells that acquire activating mutations in PDL1 before they 

are eliminated can hold the immune system to a local standstill (activating the PD-1 – PD-L1 

immune checkpoint)—the process of equilibrium. Subsequently, if before being eliminated 

these cells manage to acquire inactivating mutations in MHC-I or MHC-II (HLA classes I & II) 

and related genes, that abrogate presentation of FSPs on their surface, they are then able to 

escape the immune system, at least locally.  

Given the huge number of dMMR crypts in an LS patient, but that the average LS patient 

manifests between zero, one, two, or three CRCs, it is clear that the process of elimination 

must be highly efficient, giving a different perspective on cancer biology (Ahadova et al., 

2018; Møller et al., 2017). A number of different escape mechanisms have been observed. 

The most common, seen in approximately 30% of dMMR CRCs, is mutation of beta-2-

microglobulin (B2M), which prevents MHC-I presentation of FSPs. This was an early 

observation, the full significance of which is only now apparent (Bicknell et al., 1996; Bodmer 

et al., 1993; Clendenning et al., 2018; Kloor et al., 2007, 2010). The outgrowth of such B2M 

mutant clones is a prime example of cancer immunoediting, which has been further related 

to variation in host immune function, for example, mucosal density of FOXP3-positive 

regulatory T cells, indicating that such factors may be additional modifiers of LS (Echterdiek 



19 
 

et al., 2016). It is notable that B2M mutations in dMMR cancers are significantly associated 

with an almost zero rate of metastasis and thus indicate highly favourable prognosis (Koelzer 

et al., 2012; Tikidzhieva et al., 2012). In addition to mutations in B2M, mutations of CIITA or 

RFX5 are seen in approximately 20% of dMMR CRCs and prevent MHC-II antigen 

presentation, whereas approximately 10% of dMMR CRCs have mutations of TAP1 or TAP2, 

which are antigenic peptide transporters contributing to the process of antigen presentation, 

thus also preventing antigen presentation on the cell surface (Kasajima et al., 2010; Michel 

et al., 2010). 

In such ways, tumour cells escape the attention of the host’s immune system, both locally 

and in the circulation, but are in turn liable to attack with help from immunotherapy, such 

as anti-PD-1 or PD-L1 immune checkpoint blockade (Le et al., 2015; Steinert et al., 2014). The 

full variety of mechanisms by which tumours, and dMMR tumours in particular, manage to 

evade the immune system has yet to be determined. Undoubtedly, the colorectal 

microbiome plays an important part in the process of CRC development in LS as well as 

sporadically (Sears & Pardoll, 2018). Intriguingly, the immune response to dMMR CRCs in the 

form of the development of high endothelial venules (HEVs) responsible for trafficking 

lymphocytes into lymphoid follicles/TLS is stronger in LS patients than in sporadic dMMR 

colonic cancers, and especially high HEV densities in B2M mutant tumours support the 

concept of immunoediting during tumour evolution (Pfuderer et al., 2019). Such higher HEV 

densities in B2M-mutant tumours imply that under strong immunoselective pressure created 

by immune cells recruited via HEVs, tumour cells that have lost MHC class I antigens gain 

growth advantage due to immunoediting, thus revealing a major role of HEVs in enhancing 

the immunoselective pressure on highly immunogenic cancers. Taken together with the high 

numbers of dMMR crypts in LS and the low numbers of CRCs that actually manifest, these 

findings all point toward a longer process of immunoediting in LS CRCs, possibly due to the 

pre-existing dMMR crypts immunising LS patients against their own propensity to cancer, 

and explaining the higher proportion of B2M mutations in LS compared to sporadic CRCs 

(Kloor et al., 2012; Pfuderer et al., 2019; Staffa et al., 2015). However, HEVs generally recruit 

naïve lymphocytes from the blood into tissues and HEV-containing Crohn-like aggregates are 

generally seen in a peritumoural location in both pMMR and dMMR cancers, so our 

understanding of HEV and TLS in LS is as yet incomplete (Ager & May, 2015; Bento et al., 

2015; Pfuderer et al., 2019). 
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Figure 1.3: Schematic diagram of the three-step process of elimination, equilibrium, and escape in 

MMR-deficient colorectal neoplasms (adapted and modified from Seth et al., 2018). CRCs in both LS 

and sporadic MSI CRCs elicit a strong immune response and undergo significant immunoediting. 

Cytotoxic T-lymphocytes (CTLs) are able to recognise immunogenic frameshift peptides (FSPs, red 

rectangle) that are synthesised in MMR-deficient cells as a result of unrepaired insertion/deletion 

loops in repetitive coding DNA sequences. CTLs can induce apoptosis of such dMMR cells (Elimination). 

However, tumour cells may evolve mechanisms to prevent immune destruction, including inhibition 

of CTLs by up-regulating expression of immune checkpoint proteins, such as PD-L1 (Equilibrium), or 

through various genetic mutations leading to loss of FSP antigen presentation (mutations to AIM2 or 

B2M for loss of MHC class I antigen presentation; mutations in CIITA or RFX5 for loss of MHC class II 

antigen presentation) (Escape). (Image created with BioRender.com). 
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1.1.8 Lynch Syndrome mouse models 

Mouse models have long been used as an essential tool to study and understand 

tumorigenesis and its mechanisms in a physiological system (Jahid & Lipkin, 2010). The use 

of tumour cell lines to modulate a gene's expression has the advantage of being a simple and 

easy way of performing experiments; however, cell culture does not model the complexity 

of the tumour microenvironment in vivo (McIntyre et al., 2015). The genetic composition of 

the mouse and human genomes has been mostly maintained through evolution, considering 

their developmental gap, and most cancer pathways are operative in both organisms. The 

genomic and transcriptomic landscapes and sequences of inbred laboratory mouse strains 

are well established and mice have been shown to be good models of a variety of diseases 

due to their ease of genetic manipulation, allowing experimental testing of genetic mutations 

in a cost-effective way (McIntyre et al., 2015). 

90% of all LS cases with cancer are caused by mutations in MLH1 and MSH2, whereas 

mutations in other MMR genes are less deleterious (de la Chapelle, 2005). The earliest 

murine models with potential to represent LS were Mlh1 knockout (Mlh1-/-) mice and Msh2 

knockout (Msh2-/-) mice; Msh2-/- mice showed complete loss of MMR pathway function in all 

cells resulting in high mutation rate (small insertions/deletions in mononucleotide and 

dinucleotide repeats) leading to high predisposition to cancer development with the MSI 

phenotype (de Wind et al., 1995; Jahid & Lipkin, 2010). Unfortunately, Msh2-/- mice had a 

short life span caused by the early development of lymphomas (mainly thymic T-cell 

lymphomas) with only a few mice surviving long enough to develop small numbers of 

intestinal adenomas (de Wind et al., 1995; McIntyre et al., 2015; Reitmair et al., 1995). 

Closely similar phenotypes were observed in Mlh1-/- deficient mice (Edelmann & Edelmann, 

2004; Edelmann et al., 1999; Jahid & Lipkin, 2010). Thus, the possible use of these 

constitutive knockout mouse models for the study of LS colorectal tumourigenesis and 

progression is very limited by their early development of lymphoma in around 80% of mice 

(Toft et al, 1999). 

LS mouse models deficient in other MMR genes have also been studied. Msh6-/- and Msh3-/- 

deficient mice showed a mild cancer predisposition characterized by late onset of cancer, 

with Msh6-/- mice developing mostly lymphomas with some epithelial tumours originating 

from the skin and uterus but only rarely from the intestines, whereas Msh3-/- mice either did 

not cause cancer predisposition or did so at a very late age, although combined Msh6-/- and 
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Msh3-/- did produce some late onset intestinal tumours similar to either Msh2-/- or Mlh1-/- 

mice (de Wind et al., 1999; Edelmann et al., 1997, 2000) . Pms2-/- deficient mice showed only 

late onset of lymphomas and sarcomas (Baker et al., 1995; Prolla et al., 1998).  

To restrict gene modifications to a specific tissue or organ of interest, tissue-specific Cre-

recombinase transgenic approaches can be used. Cre is a site-specific recombinase derived 

from the P1 bacteriophage that catalyses recombination between two loxP sites flanking the 

critical region of the gene of interest, resulting in excision of this region (flanking loxP sites 

are commonly termed flox sites) (Nagy, 2000). Tamoxifen-inducible forms of Cre 

recombinase (CreERT2) were developed that are only active in the presence of Tamoxifen, 

and expression of Cre or CreERT2 can be targeted to the intestinal epithelium by driving its 

expression by tissue-specific gene promoters such as either the Villin promoter or the Lgr5 

promoter (both are large and small intestinal specific genes) (Barker et al., 2007; Kucherlapati 

et al., 2010). A Villin-Cre;Msh2loxP/loxP mouse model was generated; these  Villin-

Cre;Msh2loxP/loxP mice showed intestinal tumorigenesis (adenomas and adenocarcinomas), 

but develop few lymphomas (Mcilhatton et al., 2016; McIntyre et al., 2015).  

Recently, Wojciechowicz et al (2014) generated a LS mouse model using the Lgr5 promoter 

to drive Tamoxifen-inducible Cre recombinase, in which loss of Msh2 expression is induced 

only in the murine small and large intestinal crypt base columnar stem cells (CBCs) 

(Wojciechowicz et al., 2014). Wojciechowicz et al generated the Lgr5CreERT2; Msh2flox/- mice 

by intercrossing the Lgr5CreERT2 mouse line (created by Barker et al. (2007) with the Msh2-

null (Msh2-) and Msh2-floxed (Msh2flox) lines (Barker et al., 2007; Claij & te Riele, 2004; de 

Wind et al., 1995). This mouse model is described in detail in Chapter 3. In Lgr5CreERT2; 

Msh2flox/- mice, tumorigenesis can be initiated by somatic loss of the second Msh2 allele in 

scattered foci along the intestines via Tamoxifen-induced activation of Cre expressed from 

the Lgr5CreERT2 transgene, mimicking the situation in LS patients. In Wojciechowicz et al. 

(2014), Lgr5CreERT2; Msh2flox/- mice developed intestinal tumours (adenomas and 

adenocarcinomas) after 19 months (Wojciechowicz et al., 2014). In this project, the 

Lgr5CreERT2; Msh2flox/- (Msh2-LS) mouse model was used to investigate intestinal tumour 

formation and progression with and without ethanol exposure.  
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1.2 Colorectal cancer 

1.2.1 Epidemiology of sporadic colorectal cancer  

CRC is the third most commonly diagnosed cancer worldwide in males and the second in 

females, with more than 1.9 million new cases and approximately 935,000 deaths in 2020 

according to the World Health Organization (Global Cancer Observatory, 2020). In the UK, 

CRC is the 4th most common cancer, accounting for 11% of all new cancer cases in 2017, 

with around 42,300 new CRC cases in the UK every year (2015-2017), and approximately 

16,600 CRC deaths in the UK every year (2016-2018) (Cancer Research UK, 2016b). In the UK, 

44% of CRC cases are in females, and 56% are in males (Cancer Research UK, 2016a). Overall, 

left-sided (descending colon, sigmoid colon, and rectum) CRCs are more common than right-

sided (caecum, ascending colon, and transverse colon) cancers (Hsu et al., 2019). Incidence 

rates vary geographically, with the highest rates in developed countries, such as North 

America, Europe and Australia (Global Cancer Observatory, 2020), although CRC incidence 

rates are increasing in developing countries (Arnold et al., 2017).  

 

1.2.2 Pathogenesis and pathology of sporadic colorectal cancer  

CRCs are malignant neoplasms of the lining mucosal epithelium of the large intestine, 

anywhere from the ileocaecal valve to the rectum.  The large intestine can be divided into 

anatomic right and left sides. The right colon consists of the caecum, ascending colon, 

hepatic flexure and the transverse colon, whereas the left colon includes the descending 

colon, sigmoid colon, recto-sigmoid junction, and rectum (Figure 1.4). During embryogenesis, 

the right side derives from the midgut, whereas the left derives from the hindgut and the 

junction between the two is usually just proximal to the splenic flexure (Glebov et al., 2003).  

The colorectal wall is composed of four layers: serosa, muscularis propria, submucosa and 

mucosa that are very similar in mice and in humans (Treuting et al., 2017a, 2017b). The 

serosa is the outermost layer and has connective tissue and covering mesothelium for those 

parts of the bowel surface in contact with the peritoneal cavity. The muscularis propria is a 

double layer of smooth muscle (inner circular and outer longitudinal muscle fibres), which 

provide peristaltic movement that pushes the contents along the intestines. The connective 

tissue of the submucosa contains adipose cells, fibroblasts, nerves, blood vessels and 

lymphatic vessels. The mucosa is the innermost layer that can be further subdivided into 
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lining columnar epithelium, organised into test-tube shaped crypts, involved in water 

absorption and mucus secretion, lamina propria  (connective tissue supporting the crypts) 

and muscularis mucosae (thin strip of smooth muscle at the base of the mucosa) (Treuting 

et al., 2017b).  

The mucosal crypts contain a variety of specialized differentiated epithelial cells: colonic 

enterocytes that are involved in the absorption of water and some nutrients, 

enteroendocrine cells that produce hormones, goblet cells that secrete mucus and Paneth-

like cells that provide the stem cell niche at the base of the crypts to support the estimated 

2-4 stem cells in each crypt (although the number of stem cells per crypt may fluctuate) 

(Barker et al., 2008; Snippert et al., 2010). Barker et al (2007) identified leucine-rich-repeat-

containing G-protein-coupled receptor 5 (Lgr5), also known as Gpr49, as a characteristic 

epithelial stem cell marker in both the colon and the small intestine in mice and humans, 

although other stem cell markers have been  described (Barker et al., 2007; Barker & Clevers, 

2010).  These stem cells divide to produce one daughter stem cell that remains in the stem 

cell niche and one daughter cell that enters the transit-amplifying pathway to expand into 

more cells to help populate the crypt and eventually differentiate into the different 

specialized cells described above (Barker & Clevers, 2010). Stem cells play a key role in 

maintaining cellular homeostasis of the crypt and table surface epithelium of the large 

intestines which is replaced by new cells every 3 to 5 days (Copstead-Kirkhorn & Banasik, 

2014).  

There is evidence for mutated stem cells being able to replace other stem cells and fill the 

crypt with their daughter cells in a process known as monoclonal crypt conversion, and that 

the life cycle of crypts is linked to stem cell dynamics with crypts able to expand in number 

by the process of crypt fission (Loeffler et al., 1993, 1997; Reizel et al., 2011). Stem cells often 

exhibit the highest levels of Wnt signalling as demonstrated by nuclear B-catenin 

immunstaining; usually there is neutral competition between stem cells in crypts (Lopez-

Garcia et al., 2010; Snippert et al., 2010), however if a stem cell has a selective growth 

advantage, such as that conferred by mutated Apc or Kras, that stem cell can increase in 

number, more rapidly undergo monoclonal crypt conversion with crypt expansion by crypt 

fission, and increase the likelihood of adenoma formation (Huels et al., 2018; Snippert et al., 

2014) 
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Adenocarcinomas are the most common type of CRC (>90%) (Cancer Research UK, 2016b). 

They are epithelial neoplasms derived from glandular epithelial cells that invade through the 

muscularis mucosae into the submucosa (and into or though the muscularis propia in most 

cases).  Precursor lesions are thought to include dysplastic crypt foci that can develop into 

benign adenomas, some of which may subsequently evolve into malignant adenocarcinomas 

(Figure 1.5) (Cheng & Lai, 2003; Dukes, 1934; Dukes, 1956; Fearon & Vogelstein, 1990; 

Fleming et al., 2012).  This neoplastic process involves loss of the normal regulation of growth 

control with sustained proliferative signalling and cumulative acquisition of the hallmarks of 

cancer (Hanahan & Weinberg, 2000; Hanahan & Weinberg, 2011). Underlying these 

neoplastic hallmarks are genome instability, which generates the genetic diversity that 

expedites their acquisition (Hanahan & Weinberg, 2011). 

The stage of advancement of a CRC is most commonly described using the TNM system 

(tumour, node and metastasis) with tumours described according to their degree of 

penetration and spread. T1 cancers are confined to the submucosa, T2 cancers have invaded 

into (but not through) the muscularis propria, T3 cancers have penetrated the outer limit of 

the muscularis propria, whereas T4 cancers have infiltrated through the serosal surface 

and/or grow into other organs and tissues. N0 indicates no metastasis to lymph nodes. 

Cancers that have spread to lymph nodes are further classified as N1 or N2 according to the 

number of involved nodes. M0/M1 describes the absence or presence of metastatic spread 

to distant organs, most commonly the liver (Cancer Research UK, 2019; Loughrey et al., 

2020).  

The Dukes’ staging system is another commonly used system for describing CRC stage, in 

which Dukes’ A cancers have invaded into the submucosa or the muscularis propria, Dukes’ 

B cancers have penetrated through the outer edge of the muscularis propria and invade into 

the serosa, or beyond, but have not spread to lymph nodes or to other organs, and Dukes’ C 

cancers have involved lymph nodes (although a later addition was  Dukes’ stage D cancers 

that have metastasised to distant organs such as the liver) (Cancer Research UK, 2019; Dukes 

& Bussey, 1958). Histological grading of CRCs may provide further prognostically useful 

information (Dukes, 1937; Loughrey et al., 2020). 
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Figure 1.4: Comparison between human and mouse large intestinal tract (adapted and modified from Treuting et al., 2017). In the left panel, the anatomic divisions of 

the human colorectum are based on its configuration and location. The right colon is composed of the appendix, caecum, ascending colon, and transverse colon. The 

left colon includes the descending colon, sigmoid colon, and rectum. The outer longitudinal layer of the muscularis propria proximal to the rectum forms three distinct 

longitudinal bands called taenia coli. The colon becomes sacculated between the taenia, forming the haustra. In the right panel, the mouse large intestinal tract is 

shown. The cecum is a large J-shaped blind sac. The proximal colon exits near the ileocaecal junction. Faecal pellets are formed by consolidation and dehydration in 

the mid and distal colon. (Image created with BioRender.com).  
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Figure 1.5: Representation of large intestinal tumour progression (adapted and modified from Thrumurthy et al., 2016; Vogelstein et al., 2010, and others). The 

adenoma-carcinoma progression sequence has transitions from normal through the earliest stage of microadenoma formation (monocryptal adenoma or oligocryptal 

adenoma) followed by small early adenomas usually with low-grade (LG) dysplasia, then larger late adenomas often with high-grade (HG) dysplasia (yellow clone of 

cells), a proportion of which may progress to form a malignant clone that shows early invasion into the submucosa of the bowel wall, later becoming an established 

adenocarcinoma invading deeper into the muscularis propria and/or serosa. The murine sequence may show mucosal crypt hyperproliferation as a very early change 

before dysplasia is observed, but zones of hyperproliferation are infrequently or rarely seen in human colon. Progression over time is indicated by the horizontal black 

arrow. (Image created with BioRender.com). 
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1.2.3 Genetic and epigenetic changes in sporadic colorectal cancer  

Molecular analysis of CRCs reveals underlying modifications related to three major 

mechanisms of genomic/genetic/epigenetic instability: chromosomal instability (CIN), 

microsatellite instability (MSI), and CpG island methylator phenotype (CIMP). CIN is observed 

in 65-85% of sporadic CRCs, resulting in high levels of DNA somatic copy number alterations 

(SCNAs), with DNA gains/amplifications and DNA losses/deletions that may affect small 

chromosome regions or whole chromosomes, causing aneuploidy and loss of heterozygosity 

that can affect tumour suppressor gene loci (Arends, 2013; Poulogiannis et al., 2010). MSI is 

detected in around 12-15% of sporadic CRC cases and is due to defective DNA mismatch 

repair, with a high mutation rate (hypermutant) affecting a large number of genes. CIMP is 

observed in around 20% of sporadic CRCs and it is characterised by hypermethylation of 

promoter CpG islands of susceptible genes, sometimes resulting in the inactivation of 

multiple tumour suppressor genes (Müller et al., 2016).  

One of the most frequent molecular genetic changes in sporadic CRCs is the disruption of the 

WNT signalling pathway, which occurs in over 90% of sporadic CRCs, (Cancer Genome Atlas, 

2012), mostly due to biallelic inactivation of the APC gene. APC mutations are found in around 

80-85% of both adenomas and carcinomas that occur very early in the pathogenetic 

sequence and appear to initiate adenomagenesis (Arends, 2013). APC is a WNT signalling 

pathway negative regulator and acts as part of the β-CATENIN degradation complex together 

with AXIN, Glycogen synthase kinase 3 (GSK3), and Casein kinase 1 (CK1). These APC 

mutations usually lead to truncation of the APC protein with reduced ability to degrade B-

CATENIN, leading to its accumulation and nuclear translocation, causing abnormal signalling 

through the WNT signalling pathway (Morin et al., 1997; Schatoff et al., 2017). Mutations in 

the β-CATENIN encoding gene CTNNB1, upregulation of the Wnt Frizzled (FZD) receptor, and 

inactivation of DKK-1 also contribute to deregulation of WNT signalling and are observed in 

sporadic CRCs (González-Sancho et al., 2005; Morin et al., 1997; Terasaki et al., 2002).  

Around 40-45% of sporadic CRCs show mutations in the RAS/MAPK pathway. The majority of 

the mutations involve KRAS, with a small proportion affecting NRAS or BRAF, resulting in the 

activation of this pathway. Mutation in any one of these genes, usually at specific sites (such 

as codons 12, 13 or 61 in the RAS gene or codon 600 for the BRAF proto-oncogene) cause the 

constitutive activation of the RAS-RAF-MEK-ERK (MAPkinase) proliferative signalling pathway 

(Müller et al., 2016; Naguib et al., 2010).  
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Mutations in the TP53 tumour suppressor gene are found in around 60% of CRCs and this 

occurs late in sporadic colorectal tumorigenesis (around the transition of adenoma to 

adenocarcinoma) (Vogelstein et al., 2010). The p53 protein has been called the “guardian of 

the genome” as activation of the p53 pathway upon DNA damage detected by DNA damage 

response pathways (or other cellular stresses), leads to cell cycle arrest to allow opportunity 

for DNA repair, although in case of severe DNA damage it induces cell death via apoptosis 

(Kastenhuber & Lowe, 2017).  

Mutations in TGFBR1, ACVR2A, SMAD3 and SMAD4 are also common in sporadic CRCs. These 

genes encode for proteins involved in the transforming growth factor (TGF) β pathway that 

has growth suppressive roles in modulating proliferation, apoptosis, stem cell renewal, 

differentiation and adult tissue homeostasis (Weiss & Attisano, 2013). 

Some sporadic CRCs may evolve from serrated precursors such as hyperplastic polyps, sessile 

serrated lesions, and traditional serrated adenomas and these represent around 10-15% of 

all CRCs. These lesions follow an alternative neoplastic development pathway different to 

conventional adenomas. They are often characterized by more frequent activating mutations 

of BRAF and less frequent KRAS mutations, with greater involvement of the CIMP, in which a 

range of susceptible genes develop epigenetic promoter hypermethylation that silences their 

expression, frequently including MLH1 leading to dMMR and MSI (Kedrin & Gala, 2015; 

Yamane et al., 2014). Although most of the 12-15% dMMR sporadic CRC with 

hypermethylated MLH1 promoters appear to evolve from polypoid adenomas, and these are 

strongly associated with BRAF mutations. 
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1.2.4 Lifestyle and other risk factors for sporadic colorectal cancer 

Several lifestyle factors, such as tobacco smoking, alcohol consumption, diet (with increased 

red and processed meat or insufficient fibre) and increased body mass index (BMI) 

(overweight and obesity) are associated with increased risk of sporadic CRC (Cancer Research 

UK, 2020; IARC, 2010). 

More than 40% of CRC cases are diagnosed in people aged 75 or over in the UK. CRC risk 

increases from 50 years of age reaching the highest incidence after 75 years of age, higher in 

men than in women (Bénard et al., 2018). 

7% of CRCs are linked to smoking in the UK, more for rectal cancer than colonic cancer (Brown 

et al., 2018). However, the relation of smoking with CRC is controversial, some, but not all 

studies include smoking as a risk factor (Lee et al., 2016). The risk of CRC is high in current 

and former smokers (17%-25%) with increasing risk in those who began smoking at a young 

age and the risk increases with the number of cigarettes smoked per day (Hannan et al., 2009; 

Liang et al., 2009).  

6% of CRCs are linked to alcohol consumption in the UK (Brown et al., 2018). In 2010, ethanol 

and its metabolite acetaldehyde were classified as group 1 carcinogens (carcinogenic to 

humans) by the International Agency for Research on Cancer for the locations: upper 

aerodigestive tract, liver, breast and colorectum (IARC, 2010). Moderate and heavy drinking 

(≥50g/day) has been associated with increased risk of CRC of 33% compared with light to 

non-drinkers, with a stronger association in men than in women (Bagnardi et al., 2015). 

13% of CRCs are linked to processed meat consumption in the UK (Brown et al., 2018). In 

2015, processed meat was classified as group 1 carcinogen and red meat was classified as 

group 2A carcinogen (probably carcinogenic to humans) by the World Health Organization 

(WHO) (Bouvard et al., 2015). Several meta-analyses studies, showed that 100g/day of red 

meat and 50g/day of processed meat increases CRC risk by 17-18% (Aune et al., 2013; Chan 

et al., 2011). This is mainly related to the genotoxic compounds generated during the meat 

metabolism that can cause DNA damage (H-nitroso-compounds, heterocyclic aromatic 

amines and polycyclic aromatic hydrocarbons) (Bouvard et al., 2015).  

11% of CRCs are linked to overweight and obesity in the UK (Brown et al., 2018). Meta-

analysis studies showed that a high BMI value can increase CRC risk. In overweight men 

(BMI=25-29), the risk of CRC is 18% higher, while obese men (BMI≥30) have 48% higher risk 

of CRC. In obese women, the risk of CRC is 12% higher (Chen et al., 2015; Xue et al., 2017). 
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The relationship between CRC and increased BMI has been suggested to relate to endocrine 

abnormalities and metabolic changes linked to obesity, such as insulin resistance, chronic 

inflammation and altered adipokine secretion (Martinez-Useros & Garcia‑Foncillas, 2016; 

van Kruijsdijk et al., 2009). Meta-analysis studies have observed an increased CRC risk of 22-

30% in diabetes mellitus (DM) type 2 (Jiang et al., 2011; Luo et al., 2012). This is linked to the 

alteration of insulin levels and insulin-like growth factor (IGF) signalling pathway activity, 

which promotes cell growth and inhibits apoptosis (Schoen et al., 2005). 

Inflammatory bowel diseases (IBD) are an established risk factor for CRC, mainly ulcerative 

colitis (UC) and Crohn’s disease (CD) (Lutgens et al., 2008). The severity and duration of the 

inflammation is associated with the increase in CRC risk. The CRC risk is 70% higher in the IBD 

patients than in non-IBD patients, making IBD one of the highest non-hereditary risk factors 

for CRC (Canavan et al., 2006; Castaño-Milla et al., 2014; Kulaylat & Dayton, 2010). 
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1.3 Ethanol 

1.3.1 Ethanol metabolism 

Alcohol is one of the most used recreational drugs, with 2.3 billion current drinkers in 2018 

(World Health Organization (WHO), 2018). Alcohol consumption is responsible for around 1.8 

million deaths per year (3.2% of all death); worldwide, a total of approximately 389,000 

cancers representing 3.9% of all cancers derive from chronic alcohol consumption (5.2% in 

men and 1.7% in women) (World Health Organization (WHO), 2018)]. Chronic alcohol 

consumption has been associated with cancer development in the upper aerodigestive tract 

(including oesophageal, pharyngeal, head and neck cancers), liver, breast and colorectum 

(IARC, 2010).  

Carcinogenic effects of ethanol are related to its metabolism. Ingested ethanol is readily 

absorbed from the gastrointestinal tract, and about 90% is metabolized by oxidative 

pathways mainly in the liver (Brooks & Zakhari, 2014). Ethanol is oxidized mostly by the 

cytosolic class I alcohol dehydrogenase (ADH) isoenzymes (ADH1A, ADH1B and ADH1C), that 

use nicotinamide adenine dinucleotide (NAD+) to produce acetaldehyde and the reduced 

form of nicotinamide adenine dinucleotide (NADH). The cytochrome P450 (CYP2E1) is also 

involved in the oxidation of ethanol to acetaldehyde in the liver, mostly at elevated alcohol 

concentrations (Figure x), resulting also in the generation of reactive oxygen species (ROS) 

and reactive nitrogen species (RNS) (Pöschl et al., 2004; Seitz & Stickel, 2007).  

Acetaldehyde is considered the important cancer-causing agent in the upper and lower 

gastrointestinal tract, as acetaldehyde concentrations in saliva and the large intestine are 

high enough to enable it to act as carcinogen. Acetaldehyde is a highly reactive small 

molecule able to induce a wide range of DNA damage resulting in tumour development (vide 

infra). Acetaldehyde is metabolized by a large family of mitochondrial aldehyde 

dehydrogenases (ALDHs), with different isoforms expressed in different cell types that use 

NAD+ to convert acetaldehyde to non-toxic acetate, water and NADH (Figure 1.6). 

Acetaldehyde is the major substrate for the mitochondrial ALDH2 (Km=3.2µM) and ALDH1B1 

enzymes (Km= 55µM) (Stagos et al., 2010). ALDH2 is the predominant isoform for 

acetaldehyde detoxification in the liver, whereas ALDH1B1 is highly expressed in the 

gastrointestinal epithelium, particularly in the epithelial stem cells and transit-amplifying 

cells, and studies have shown ALDH1B1 to be involved in acetaldehyde detoxification in the 

intestines (vide infra). Polymorphisms in ADH and ALDH genes cause the levels of production 
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and/or oxidation of acetaldehyde to vary between individuals, leading to an increased cancer 

risk (vide infra) (Marchitti et al., 2008). In the mitochondria, the non-toxic acetate is ligated 

to coenzyme A (CoA) by acetyl-CoA synthetase and acyl-CoA synthetase 2, to form acetyl-

coenzyme A (acetyl-CoA).  Acetyl-CoA plays a key role in many metabolic reactions 

(Pietrocola et al., 2015; Shi & Tu, 2015). 

 

 

 

 

 

 

 

Figure 1.6: Schematic diagram of ethanol metabolism. Ethanol is oxidized to acetaldehyde in a 

reversible reaction catalyzed by the class I ADH isoenzymes and CYP2E1 in the liver. Ethanol oxidation 

is coupled to reduction of the cofactor NAD+.  ALDH enzymes (isozymes ALDH2, ALDH1B1) catalyse 

irreversible oxidation of the acetaldehyde carbonyl to its respective carboxylic acid, acetic 

acid/acetate. Oxidation of acetaldehyde to acetate by both ALDH2 and ALDH1B1 is coupled to 

reduction of the cofactor NAD+. (Image created with BioRender.com). 
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1.3.2 ALDH1B1 function, genetics and polymorphisms 

ALDHs are involved in cell protection against the effects of a wide range of exogenous and 

endogenous aldehydes (Marchitti et al., 2008). The mitochondrial matrix protein ALDH2 is 

the main enzyme involved in acetaldehyde oxidization in the liver during ethanol metabolism, 

showing the lowest Michaelis-Menten constant (Km) for acetaldehyde (Km=3.2µM) of all the 

ALDH isoforms (Stagos et al., 2010). The key role of ALDH2 in acetaldehyde detoxification is 

exemplified by the study of human single nucleotide polymorphisms (SNPs) in the ALDH2 

gene. 40%-50% of Asians are ALDH2*2 carriers, an inactive variant of the normal allele 

ALDH2*1, due to a SNP (single base pair change G/CA/T) in the coding region of the ALDH2 

gene. People heterozygous for ALDH2*2 have reduced metabolism of acetaldehyde, showing 

a 6-fold increase of blood acetaldehyde levels compared with wild-type individuals, whereas 

individuals homozygous for ALDH2*2 have very poor metabolism of acetaldehyde, causing a 

20-fold increase of blood acetaldehyde levels compared with wild-type individuals. This 

results in the alcohol flushing syndrome (Seitz & Stickel, 2010; Yokoyama et al., 1998). This 

SNP has been associated with increased cancer risk for various cancers, including those of 

the upper aerodigestive tract and colorectum, and increased neoplasms have been observed 

in Aldh2-null mice that show markedly increased incidence of leukaemias and other cancers 

(Langevin et al., 2011; Yu et al., 2009).  

The mitochondrial ALDH1B1 (also known as ALDH5 and ALDHX) exhibits a Km= 55µM for 

acetaldehyde, representing the ALDH with the second lowest Michaelis-Menten constant 

involved in acetaldehyde oxidization. The human ALDH1B1 gene is located on chromosome 

9 (in a 5957-base pair region) and it is characterized by an intronless coding region. The 

expressed ALDH1B1 protein shares 75% homology in peptide sequence with ALDH2, it 

contains 517 amino acids with an N-terminal 19-residue mitochondrial lead signal and it 

functions as homotetrameric enzyme (Hsu & Chang, 1991; Stagos et al., 2010). 

Immunohistochemical analyses revealed that human ALDH1B1 is expressed at high levels in 

the small intestine, colon, liver, and pancreas, with the highest protein expression levels in 

colonic epithelial stem cells. This was also observed in mouse tissues (Stagos et al., 2010). 

High expression levels of ALDH1B1 are observed in human colonic adenocarcinomas, 

probably due to the ALDH1B1-positive normal colonic stem cells that act as progenitors for 

progression to malignancy during tumourigenesis, and become cancer stem cells. ALDH1B1 

is considered a potential CRC biomarker (Chen et al., 2011). 
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The human ALDH enzymes share the same protein structure that contains three domains: a 

cofactor-binding domain, a linker domain and a catalytic domain. At the interface of the 

domains lies a hydrophobic tunnel at the base of which resides the enzyme active site, 

opposite the cofactor-binding site. The specificity of the ALDHs towards their substrate is 

determined by the residues from the three domains that line the hydrophobic tunnel of each 

ALDH subunit. NAD+ is the cofactor for ALDH1B1, not NADP+ (Marchitti et al., 2008; Steinmetz 

et al., 1997). The ability of ALDH1B1 (but also ALDH2) to catalyse oxidation is provided by the 

cysteine at position 302 (Cys302), a highly conserved residue in all catalytically active 

members of the ALDH family. The Cys302 is essential for the nucleophilic attack on 

acetaldehyde (Farres et al., 1995; Marchitti et al., 2008).  

ALDH1B1 major substrates are short-chain aldehydes, such as acetaldehyde and 

propionaldehyde. The increasing interest in ALDH1B1 and its role in acetaldehyde 

detoxification emerged following the identification of ALDH1B1 polymorphisms that are 

associated with drinking-behaviour (A69V) and alcohol hypersensitivity (A86V) in Caucasians 

(Husemoen et al., 2008; Linneberg et al., 2009). Jackson et al., 2015, confirmed that 

ALDH1B1*2 (A86V) variant/polymorphism is catalytically inactive due to inability to bind 

NAD+ (Jackson et al., 2015). In a recent study, our research group provided evidence for a 

role of Aldh1b1 in protection of the murine intestines from ethanol-induced DNA damage 

and intestinal tumour formation using Aldh1b1-depleted mice compared with wild-type mice 

under long-term ethanol treatment for up to 12 months (Müller et al., 2016). Ethanol-treated 

Aldh1b1-depleted mice showed increased plasma acetaldehyde levels and increased 

ethanol-induced large intestinal adenomas with occasional adenocarcinomas (Müller et al., 

2016). Our research group also described a role of Aldh1b1 in protection from ethanol-

induced hepatocellular hyperproliferation and liver tumour development in these Aldh1b1-

depleted mice (Müller et al., 2018). However, Aldh1b1 is still a relatively under-investigated 

member of the Aldh family. 
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1.3.3 Ethanol & Acetaldehyde induced DNA damage 

1.3.3.1 Ethanol, CYP2E1 induction and DNA damage 

Chronic alcohol consumption induces CYP2E1 expression by liver cells, resulting in decrease 

of retinol and retinoic acid tissue levels. Retinoic acid has a key role in cellular growth and 

differentiation, activating a signalling cascade through its nuclear retinoic acid receptors, 

resulting in the gene transcription of cell proliferation and migration regulators. The decrease 

in retinoic acid has consequences for cell proliferation, differentiation and malignant 

transformation (Liu et al., 2001). Chronic ethanol treatment in rats showed decreased 

retinoic acid in association with a decrease in mitogen-activated protein kinase (MAPK) and 

an increase phosphorylation of c-Jun N-terminal kinase (JNK), resulting in hepatic cell 

hyperproliferation and reduced apoptosis (Wang et al., 1998). Increased CYP2E1 activity 

results in the activation of the metabolism of certain pro-carcinogens, including 

nitrosamines, polycyclic hydrocarbons and aflatoxins, by alcohol-induced CYP2E1 (Seitz & 

Stickel, 2007). 

Most importantly, ethanol oxidation by CYP2E1 results in the generation of ROS, such as 

superoxide anion and hydrogen peroxide that causes oxidative damages contributing to 

various diseases such as cancer. The CYP2E1-produced ROS can cause the generation of lipid 

peroxidation products such as 4-hydroxynonenal (4-NHE) and malondialdehyde (MDA). 4-

NHE reacts with DNA to form highly mutagenic exocyclic DNA etheno-adducts 1,N6-

ethenodeoxyadenosine (εdA) and 3,N4-ethenodeoxycytidine (εdC) (Figure 1.7) (Vasiliou et 

al., 2015). These DNA adducts can cause mutations in TP53 at codon 249, resulting in 

proliferative advantage and reduced apoptosis (Hu et al., 2002). ROS are usually neutralized 

by the anti-oxidative defence system (AODS), endogenous mechanisms (glutathione 

peroxidase and superoxide dismutase) and exogenous mechanisms (antioxidant nutrients) 

(Seitz & Stickel, 2007). 
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1.3.3.2 Acetaldehyde and DNA damage 

Acetaldehyde can also indirectly induce ROS generation by injuring the mitochondria (Seitz 

& Stickel, 2007). Following increased alcohol intake, ethanol is oxidized in acetaldehyde 

generating large quantities of NADH that is reoxidized to NAD+ in the mitochondria. 

Furthermore, ROS can also be generated by increased electron leakage from the 

mitochondrial respiratory chain associated with the stimulation of NADH in the mitochondria 

(Bailey & Cunningham, 2002). The increased mitochondrial ROS production may also be 

caused by activation of N-acetylsphingosine by tumour necrosis factor-α (TNF-α) that 

increases the levels of ceramide, a mitochondrial electron-transport inhibitor (García‐Ruiz et 

al., 2000). The ROS generated indirectly by acetaldehyde may result in lipid peroxidation 

products that, as explained before, form highly mutagenic exocyclic DNA etheno-adducts 

(Figure 1.7).  

The electrophilic nature of acetaldehyde contributes to its high reactivity and it is provided 

by its carbonyl group (R-CHO) that reacts with nucleophilic sites in DNA and protein 

generating adducts. Acetaldehyde can induce DNA adducts by reacting directly with 

deoxyguanosine (dG) most frequently, followed by deoxyadenosine (dA) and then 

deoxycytosine (dC) (Vasiliou et al., 2015).   

One molecule of acetaldehyde can bind to DNA forming N2-ethylidene-2′-deoxyguanosine 

(N2-EtidG). N2-EtidG requires chemical reduction to become a stable adduct, N2-ethyl-2′-

deoxyguanosine (N2-EtdG). High levels of this DNA adduct were observed in Swedish drinkers 

compared with non-drinkers, and this was observed in ethanol-treated mice (with 10% 

ethanol in drinking water); these N2-EtdG adducts were abundant but not highly mutagenic 

(Brooks & Zakhari, 2014). Two molecules of acetaldehyde can react with DNA to form R- and 

S-α-CH3-γ-OH-1,N2-propano-2’-deoxyguanosine(PdG) adducts, called Cr-PdG because they 

were first observed in DNA treated with crotonaldehyde. The Cr-PdG adducts are less 

abundant compared with EtdG adducts, but more mutagenic. Choudhury et al. (2004) 

showed that nucleotide excision repair (NER) may possibly be involved in the repair of the 

PdG adducts (Choudhury et al., 2004). The Cr-PdG adducts can exist a ring-opened form when 

located in double-stranded DNA, in this way it can react with deoxyguanosine of the opposite 

strand of the DNA forming an interstrand crosslinks (ICLs), but it can also bind proteins 

forming DNA-protein crosslinks. DNA-protein crosslinks are precursor lesions to altered sister 

chromatid exchanges, DNA ICLs and DNA-protein crosslinks, that may lead to the generation 

of chromosomal aberrations (Figure 1.7) (Brooks & Zakhari, 2014; Vasiliou et al., 2015). 
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Chronic alcohol consumption causes hyperproliferation of the upper aerodigestive tract 

mucosa and large intestinal mucosa, due to an acetaldehyde toxic effect. Acetaldehyde is 

highly concentrated in the saliva and colon, where the acetaldehyde generated by the 

mucosal ADHs combines with acetaldehyde generated by the oral or large intestinal 

microbiota. High concentrations of acetaldehyde can promote hyperproliferation and 

generation of Cr-PdG and other DNA adducts in these tissues (Seitz & Stickel, 2007, 2010). 

These reactions are possible thanks to the reactive aldehyde group exposed in the open-ring 

form. Cr-PdG can induce GT transversions, as well as base deletion and insertion 

mutations.  Furthermore, acetaldehyde can cause point mutations in the hypoxanthine 

phosphoribosyltransferase 1 (HPRT1) locus in human lymphocytes, and induce sister 

chromatid exchanges and gross chromosomal aberrations (Seitz & Stickel, 2007). Langevin et 

al (2011) demonstrated that the Fanconi Anaemia (FA) DNA repair pathway plays a crucial 

role in counteracting acetaldehyde induced genotoxicity in mice (Langevin et al., 2011), as 

the FA DNA repair pathway is essential for the repair of DNA ICLs (Kim & D’Andrea, 2012). 

Chronic alcohol consumption can cause deficiencies of folate, vitamin B6 and certain 

lipotropes that are essential cofactors of methyl group transfer. Acetaldehyde seems to alter 

DNA methylation via inhibition of methyl adenosine transferase 1 (MAT 1) causing reduced 

production of S-adenosyl-L-methionine (SAMe, the universal methyl group donor and 

enzyme activator). Acetaldehyde also inhibits DNA methyltransferases (DNMTs) that are 

involved in the methylation of 1% of the DNA, replacing the hydrogen atom attached at the 

C5 of cytosine with a methyl group. So far, this has only been observed in rodent studies 

(Garro et al., 1991; Santamaría et al., 2006). The acetaldehyde hypomethylation effect may 

contribute to epigenetic alterations of genes involved in carcinogenesis (Seitz & Stickel, 2007; 

Vasiliou et al., 2015).   Acetaldehyde is also able to bind glutathione preventing glutathione-

S-transferase activity, a key component of the AODS, which is responsible for the 

detoxification of ROS and RNS (Vasiliou et al., 2015). In 1988, Espina et al. reported 

acetaldehyde as a possible inhibitor of O6-methylguanine methyltransferase (MGMT) activity 

in rat liver extracts (Espina et al., 1988). However, according to other studies, acetaldehyde 

is unable to react with MGMT (Brooks & Zakhari, 2014; Worrall & Thiele, 2001). Furthermore, 

acetaldehyde seems to inhibit DNA repair systems through inhibition of MGMT and 8-oxo-

guanine-DNA glycosylase (Seitz & Stickel, 2007). However, much remains to be investigated 

about ethanol/acetaldehyde-induce DNA damage. 
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Figure 1.7: CYP2E1, acetaldehyde and DNA damage (adapted and modified from Seitz & Stickel, 2007). 

Active CYP2E1 decreases tissue levels of retinol and retinoic acid and increases activation of 

environmental pro-carcinogens. Chronic alcohol consumption induces CYP2E1 leading to reactive 

oxygen species (ROS) generation that mediate lipid peroxidation producing lipid peroxidation products 

such as 4-hydroxynonenal (4-HNE). Lipid peroxidation products can form etheno-DNA adducts, such 

as 1,N6-ethenodeoxyadenosine (εdA) and 3,N4-ethenodeoxycytidine (εdC). Acetaldehyde can also 

increase ROS formation indirectly by injuring mitochondria. Acetaldehyde reacts with DNA directly 

creating DNA-adducts, such as N2-ethyl-2′-deoxyguanosine (N2-EtdG) and R- and S-α-CH3-γ-OH-1,N2-

propano-2’-deoxyguanosine (Cr-PdG), leading to DNA-protein crosslinks and/or DNA interstrand 

crosslinks (ICLs) that are precursor lesions for DNA strand breaks, sister chromatid exchanges and 

chromosomal aberrations. Acetaldehyde can also cause point mutations in the hypoxanthine 

phosphoribosyltransferase 1 (HPRT1) locus in human lymphocytes, and induce sister chromatid 

exchanges and gross chromosomal aberrations. Furthermore, acetaldehyde seems to play a role in 

DNA hypomethylation, inhibition of DNA repair and impairment of anti-oxidative defence systems. 
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1.4 Aim and Objectives 

Lynch Syndrome patients carry an MMR pathogenic mutation that predisposes them to 

increased lifetime risks for several cancers that develop as a result of defective MMR 

following inactivation of the wild-type MMR allele during tumour formation. The variable 

expression of the cancer phenotypes amongst LS patients suggests important effects of allelic 

variation, genetic modifiers, environmental and/or lifestyle factors, together with complex 

genetic and environmental interactions. Therefore, it is important to investigate relevant 

environmental risk factors for developing cancer in LS patients, in order to provide 

appropriate cancer prevention advice, surveillance and care.  

Given the evidence for ethanol consumption being a risk factor for sporadic CRC 

development, it was decided to investigate whether ethanol is a key environmental/lifestyle 

risk factor for CRC in LS patients using a genetically altered animal model that can be exposed 

to ethanol consumption. The overall aim was to determine whether there is a 

gene/environment interaction between defective MMR and ethanol that accelerates 

colorectal tumour development and progression. To investigate this, an appropriate 

experimental mouse model was established, using a modified version of the LS-mouse model 

based around one inherited mutant allele and one inducible mutation of the murine Msh2 

gene that was recently created by Wojeciechowicz et al (2014) (Lgr5CreERT2; Msh2flox/-; 

mTmG). The specific objectives of this project included the following. 

1. To determine whether ethanol and / or its major metabolite acetaldehyde can cause 

acceleration of defective MMR-driven intestinal tumour formation. 

2. To elucidate whether ethanol and / or acetaldehyde can increase the number and size of 

intestinal precursor lesions and their progression to intestinal adenoma or invasive cancer. 

3. To investigate the role of the DNA mismatch repair system in protecting intestinal cells 

from ethanol/acetaldehyde-induced DNA damage. 
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Chapter 2: Materials and Methods      

2.1 Animal work 

2.1.1 Introduction 

In this study, all murine experiments were performed under Professor Mark J Arends’ Home 

Office project licence issued under the United Kingdom Home Office Animals (Scientific 

Procedures) Act 1986, and my Home Office personal licence in accordance with the Animals 

(Scientific Procedures) Act 1986. All experiments received approval by the Named Veterinary 

Surgeons of the University of Edinburgh. Experiments were carried out at the Western 

General Hospital-BRF (University of Edinburgh) animal facility. 

In this study, mice were housed in individually ventilated cages (IVCs) with group sizes and 

enrichment according to Home Office regulations. Cages were one-time use and recyclable. 

Light was provided as 12 hours of light and 12 hours of dark every 24 hour period. The room 

air humidity was kept at 35% and temperature at 21-22°C. The unit had a pathogen health 

status rating of 4, however the mice were kept in IVCs in a clean room to limit the contact 

with animal gastrointestinal and other pathogens that could have altered significantly the 

results in the experiments. Mice were given the RM3 diet (Special Diets Services) in pellet 

form, a high nutrient diet containing fatty acids, with ad libitum access to food and water. 

Cages, bedding, cage enrichment, food and bottled water were autoclaved or irradiated 

before use. 

 

2.1.2 Mouse models 

Mouse models used in this project are shown in table 2.1. Mouse model generation is further 

described in the results chapters (Chapter 3, Figures 3.1-3.3; Chapter 6, Figure 6.1).  
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Table2.1: Mouse models used in this study and how they were created by crossing the described strains, including the source of the strains and the relevant genotypes 

of the models investigated (Barker et al., 2007; Claij & te Riele, 2004; de Wind et al., 1995; Muzumdar et al., 2007; Skarnes et al., 2011). 
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2.1.3 Tamoxifen, Temozolomide and ethanol treatments  

Experimental mice of 7-9 weeks age, received treatments with Tamoxifen, Temozolomide 

and/or ethanol.  Tamoxifen (Sigma-Aldrich, T5648) was dissolved in 10ml of molecular grade 

ethanol and 90ml of sterile corn oil (Sigma-Aldrich, C8267), at a concentration of 10mg/ml. 

Aliquots were prepared and stored at -20°C. Prior to injection, Tamoxifen was incubated for 

10min in a 40°C water bath. Mice were weighed and the correct Tamoxifen dose calculated 

at either 0.15mg/g body-weight (bw) or 0.1mg/g bw (according to the day of treatment). 

Tamoxifen was collected with a sterile syringe and intraperitoneal injections were performed 

with the assistance of an animal technician.  

Temozolomide (TMZ, Cayman, 14163) was dissolved in absolute ethanol and sterile water 

(ratio 1/9) at a concentration of 10mg/mL, sonicated (water bath sonicator; 5 minutes), 

centrifuged (4000g; 5 minutes; room temperature) and the supernatant was filtered through 

a 22um filter. Aliquots were prepared and stored at -80°C. Prior to administration, mice were 

weighed and the correct TMZ dose calculated at 0.1mg/g bw. TMZ was given to animals by 

oral gavage (o.g.) with the assistance of an animal technician. 

Ethanol molecular grade (Sigma Aldrich, E7023) at 20% concentration (v/v) was given in 

drinking water.  

 

 

2.1.4 Mouse models acronyms 

Specific acronyms were created for each mouse model and the relevant treatments they 

underwent during this study (Table 2.2).
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Table 2.2:  Mouse models acronyms according to the relevant set of treatments received.
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2.1.5 Collection of tissues and blood with subsequent processing 

At the end of each individual murine experiment, mice were sacrificed by CO2 asphyxiation 

and cervical dislocation. Blood was collected via cardiac puncture through the diaphragm 

under the rib cage, using a 25 gauge pre-heparinised needle (Sterican, 612-0153) and a 1ml 

syringe. Blood was dispensed in 1.3ml Lithium Heparin Paediatric tubes (Greiner Bio-One Inc, 

459084). Blood was fractionated by centrifugation at 3000 x g per 15 minutes at 4°C. Plasma 

was collected in a 2ml cryo-tube and immediately snap-frozen in liquid nitrogen and stored 

at -80°C.  

Necropsy was performed on the entire cadaver focusing on the gastrointestinal tract, from 

the oesophagus to the anal canal, and other abdominal organs. The small intestines (SI) and 

large intestines (LI) were prepared separately. Stomach, caecum, liver, spleen, thymus and 

any macroscopically abnormal tissues or organs were removed and rinsed with cold PBS prior 

to incubation in 10% neutral buffered formalin (NBF) (Sigma, HT501128) for 24h at RT. After 

NBF incubation, tissues were washed in PBS at RT and stored in 70% ethanol at 4°C.  

The small intestines (SI) and large intestines (LI) were removed and analysed for the presence 

of tumours, as whole mount specimens. The SI and LI were flushed twice in PBS and PBS 

containing Protease Inhibitor (PI, Calbiochem). All possible abnormalities were excised for 

histopathological analysis. The remaining small and large intestines were inverted using a 

30cm long and 3mm diameter bamboo skewer and pre-fixed in 10% NBF: the small intestines 

were fixed for 4 hours at RT and large intestines were fixed for 1 hour at RT.  

After this short-term fixation in NBF, both small and large intestines were opened 

longitudinally along the antimesenteric border and flattened out as whole mount specimens 

on a petri-dish (145x20mm, Greiner Bio-One, 639102) containing cold PBS on ice, to allow 

observation of mucosal surfaces and fluorescent microscopic analysis.  

After microscopic analysis, intestines were rolled-up as Swiss rolls around a toothpick for 

further fixation in 10% NBF over-night. The next day, intestines were washed in PBS at RT and 

stored in 70% ethanol at 4°C. All tissues collected were processed and paraffin-embedded to 

generate formalin-fixed paraffin-embedded (FFPE) blocks using standard histological 

methods by the Pathology laboratory technicians of IGMM, at the University of Edinburgh. 

Sections were cut from these FFPE blocks for histological and immunohistochemical analysis.  
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2.2 Molecular Biology techniques 

2.2.1 Genotyping 

2.2.1.1 DNA extraction from murine tissue 

Ear-notches were taken from mice (for identification of individuals) at 14 days of age by 

animal technicians and stored at -20°C until DNA extraction for genotyping, using the 

GeneElute kit (Sigma, G1N70), following the kit instructions. DNA samples were stored at -

20°C. 

 

2.2.1.2 Genotyping PCR Assays 

Genotyping PCR assays were performed for Msh2-, Msh2flox, Cre, mTmG, Aldh1b1wt 

Aldh1b1flox and Aldh1b1- alleles. Genotyping primer sequences were taken from the relevant 

published manuscripts describing these alleles and are shown in Table 2.3 (Barker et al., 

2007; Claij & te Riele, 2004; de Wind et al., 1995; Muzumdar et al., 2007; Skarnes et al., 2011). 

Genotyping PCR reactions were performed using the GoTaq G2 Hot Start Taq Polymerase Mix 

kit (Promega, M7405) and PCR Nucleotide mix (Promega, C1141) for Msh2wt, Msh2-, Msh2flox, 

mTmG, Aldh1b1wt, Aldh1b1flox and Aldh1b1-. Whereas the REDExtract-N-Amp PCR Ready Mix 

(Sigma-Aldrich, R4775) was used for Cre genotyping, as shown in Table 2.4. DNA was 

amplified using PCR thermocycler programmes detailed in Table 2.5. 
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Table 2.3: Genotyping primer sequences. 
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Table 2.4: Genotyping PCR reaction compositions. (c final= final concentration). 
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Table 2.5: Thermocycler programmes for genotyping PCR assays. (T=temperature; N=numbers; ∞= 

infinite). 
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2.2.1.3 Genotyping PCR products using gel electrophoresis 

Amplified PCR products were separated on gels prepared with agarose (Sigma-Aldrich, 

A9539) in 1XTris/Borate/EDTA (TBE) buffer. PCR products of genotyping assays for Msh2wt, 

Msh2flox, Msh2-, mTmG, Aldh1b1wt and Aldh1b1- alleles were separated on 2%(w/v) 

agarose gels (Sigma-Aldrich, A9539) and the PCR products of genotyping assays for Cre and 

Aldh1b1flox alleles were separated on 1.5% (w/v) agarose gels. The Sub-cell GT (Bio-Rad, 

1704404) buffer tank was filled with 1XTBE and the solidified agarose gel was placed inside 

this tank. Five microlitres of DNA ladder (100bp / 1 kb, New England Biolabs, N3231L) were 

loaded into flanking wells at the edges of the gel. Eight microliters for each genotyping PCR 

product were loaded directly into wells before electrophoretic separation at 140 V in 1XTBE 

buffer for 1 hour. After electrophoretic separation, the gel was washed with distilled water 

and incubated with GelRed Nucleic Acid Gel Stain (Biotium INC., 41003) for 30 min to enable 

DNA visualisation under Ultraviolet (UV) light. The DNA bands within the gel were visualised 

and photographed under UV light using the UVP GelDoc-It (Analytik Jena).  

Representative images of the gel results are shown in Appendix 1 (Supplementary Figure 2.1-

2.4). 
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2.2.2 Microsatellite instability detection 

2.2.2.1 DNA extraction from FFPE 

DNA was extracted from FFPE sections using the DNAstormTM Kit, (Cambridge Biosciences, 

CD502), following the manufacturer’s instructions. Four or five FFPE sections of 8μm thick 

per sample (e.g. from a colonic adenoma), according to the size of the tissue. DNA quality 

and quantity were tested using the Nanodrop system (Thermo Fisher Scientific, 2000C). 

 

2.2.2.2 Microsatellite instability markers and PCR assays 

Microsatellite instability (MSI) detection PCR assays, using PCR primers on either side of 

selected repetitive microsatellite loci, were performed for a specific panel of 5 MSI markers 

(A27, A33, mBat26, mBat37 and mBat59), previously established for use in murine DNA 

(Bacher et al., 2005; Kabbarah et al., 2003), for which primer sequences are shown in Table 

2.6. MSI detection PCR reactions were performed using GoTaq G2 Hot Start Taq Polymerase 

Mix kit (Promega, M7405) and PCR Nucleotide mix (Promega, C1141), as shown in Table 2.7. 

DNA was amplified using the PCR thermocycler programmes detailed in Table 2.8.  

 

 

Table 2.6: Microsatellite instability marker primer sequences and relevant papers. (fwd=forward, 

rev=reverse). 
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Table 2.7: Microsatellite instability detection PCR reaction compositions. (c final= final 

concentration). 
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Table 2.8: Thermocycler programmes for MSI detection PCR assays. (T=temperature; N=numbers; 

∞= infinite). 
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2.2.2.3 Microsatellite instability detection PCR assay products were analysed by 

polyacrylamide gel electrophoresis 

Amplified MSI detection PCR products were separated on 15% polyacrylamide gels. All of the 

solutions used for making the polyacrylamide gels (both stacking and separating components 

of the gels) and the various buffers used for this gel electrophoretic analysis are shown in 

Table 2.9.  Eight microlitres of DNA ladder (100bp /1 kb) were loaded into the first well of 

each gel. Twelve microliters of each PCR product were loaded directly into wells (the loading 

buffer is included in the PCR reagent kit) before electrophoretic separation at 80V for 30 min, 

then run 150V for 1.5hours at room temperature (RT). After electrophoretic separation, the 

gel was washed with distilled water (dH2O) and incubated with GelRed Nucleic Acid Gel Stain 

(Biotium INC., 41003) for 30 min to enable DNA visualisation under Ultraviolet (UV) light. Gels 

were visualised and photographed under UV light using the UVP GelDoc-It (Analytik Jena).  

 

 

Table 2.9: List of buffers used for the separation of MSI detection PCR products separated by 

polyacrylamide gel electrophoresis. 
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2.2.3 Immunohistochemical and histochemical staining of FFPE tissue sections 

The details of the antibodies used for immunohistochemistry (IHC) are shown in Table 2.10 

and buffers used for IHC are shown in Table 2.11.  Slides were rehydrated by incubation in 

xylene for 15 minutes, followed by decreasing concentrations of ethanol (99%, 90%, 70%) for 

10 minutes each at RT. Slides were dipped in dH2O for 5min and blocked using 3% H2O2 ( 30% 

H2O2, Honeywell Fluka, 31642) solution for 20 minutes at RT. Slides were washed with 1XTBS-

Tween for 5 minutes at RT. 

Antigen retrieval was performed with either Tris-EDTA buffer or citrate buffer depending on 

the antibody (Table 2.10). A pressure cooker was filled with 1L of antigen retrieval buffer and 

heated to boiling point before slides were added. Slides were boiled in solution for 10, 12 or 

15 minutes depending on the antibody (Table 2.10). The pressure cooker containing the 

slides was filled with dH2O and the slides were cooled to RT for 1h. Slides were washed for 

10min in dH2O. Slides were permeabilised with 0.5% Triton-X100 (Sigma-Aldrich, X100-

500ML) in 1XTBS-Tween for 20 minutes at RT. Slides were washed  in 1XTBS-Tween  twice for 

5 minutes and  rinsed in 1XTBS. Slides were blocked with 5% goat serum in 1XTBS-Tween for 

1 hour at RT. Primary antibodies at the dilutions shown (Table 2.10) were added to slides in 

blocking buffer and incubated overnight at 4°C. The following day, slides were washed in 

1XTBS-Tween twice for 10 minutes at RT and rinsed in 1XTBS. N-Histofine simple stain mouse 

MAX PO (2B Scientific, 414341F) was used as secondary antibody, a single drop per slide was 

added and incubated for 30min at RT. Slides were washed in 1XTBS-Tween twice for 10 

minutes at RT and rinsed in 1XTBS. 

IHC signal was detected by incubation of the slide with 3,3’-diaminobenzine (DAB) (Liquid 

DAB+, K346811) for 1 or 2 minutes at RT. Slides were washed in dH2O for 10 minutes at RT 

and counterstained in Harris’ haematoxylin (Sigma-Aldrich, HHS32) for 30 seconds. Slides 

were washed under tap water for 5 minutes. Slides were dehydrated in increasing 

concentrations of ethanol (70%, 90% and 100%) for 10 minutes each, followed by xylene for 

15 minutes at RT. Coverslips were applied with mounting medium. The technical controls for 

the antibodies and immunohistochemical staining can be found in the Appendix 

(Supplementary Figure 2.5). 

Immunohistochemistry for infiltrating immune cells was performed by Dr Seth Coffelt’s 

research group from the Beatson Cancer Institute in Glasgow. The panel of immune cell 

antibodies and their IHC details are shown in Table 2.12. 
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Haematoxylin and eosin (H&E) staining was performed by the Pathology laboratory of IGMM, 

the University of Edinburgh. 

 

 

Table2.10: List of antibodies used for immunohistochemistry (vmt=various methods tried). 

 

 

Table 2.11: List of buffers used for immunohistochemistry.
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Table 2.12: Panel of immune cell antibodies used for IHC with relevant IHC details.  

 



58 
 

2.2.4 Acetaldehyde assay 

Plasma acetaldehyde concentrations were determined using an acetaldehyde assay kit 

(Megazyme, K-ACHYD). Samples were assayed and analysed according to the manufacturer’s 

instructions. Plasma samples were analysed in experimental batches on the same day to 

ensure standardised recovery and measurement of acetaldehyde in all samples and to avoid 

unnecessary experimental variations. 50µl of plasma was used for each analysis and these 

were performed in triplicate. 

 

2.2.5 RNA extraction from small and large intestinal cells isolated and sorted from 

the Msh2-LS mouse model 

2.2.5.1 Small and large intestinal epithelial cell isolation from tissues  

Fresh (unfixed) SI and LI were flushed twice in cold PBS and inverted using the 30cm long and 

3mm diameter bamboo skewer to expose the inner mucosal lining. SI and LI were cut in 

segments of 5-10mm long and placed in separate 50ml Falcon tubes containing cold PBS. 

These tissue fragments were washed two times with cold PBS. Samples were incubated with 

25mM EDTA (in 25ml cold PBS) for 30 min on a tube roller at 4 ֯C. The cold PBS-EDTA buffer 

was discarded and the tissue fragments were washed with cold Advanced DMEM/F12 

medium (Thermofisher, 12634028). Cold PBS was added to the tubes containing the samples 

and each tube was strongly shaken to detach the intestinal epithelial cells. The supernatant 

was collected in a clean 50ml Falcon tube and kept on ice. This step was repeated until 30ml 

of supernatant was collected for each sample. Tubes were filled up to 50ml with Advanced 

DMEM/F12 medium and centrifuged at 500 x g for 5 minutes. The resulting pellets were re-

suspended with 1ml of TrypLE Express Enzyme (1X) (Thermofisher, 12604013) each and 

incubated in a waterbath for 15 minutes at 37 ֯C. Advanced DMEM/F12 medium was added 

and samples were filtered using a 70µm strainer (Corning, 15370801) into 50ml Falcon tubes 

and centrifuged at 500x g for 5 minutes. Supernatant was discarded and the pellet was re-

suspended in 5ml of 0.1% BSA in PBS and centrifuged at 500 x g for 5 minutes. Supernatant 

was discarded and the pellet was incubated with EpCAM antibody (or IgG2a isotype control) 

diluted to 1:200 (Table 2.13) in 200-500µl of 0.1% BSA in PBS for 30 minutes at 4֯C. Two 

millilitres of 0.1% BSA in PBS were added and transferred to the FACS tubes (Falcon, 352054). 
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Samples were centrifuged at 500 x g for 5 minutes and re-suspended in 500-1000µl of 0.1% 

BSA in PBS.  

 

 

Table2.13:  FACS antibodies. 

 

2.2.5.2 Fluorescent-Activated Cell Sorting (FACS) of small and large intestinal epithelial 

cells 

The FACS was performed by the flow cytometry facility of the IGMM, University of Edinburgh. 

Lasers were set up to identify EpCAM positive intestinal epithelial cells and FACS was used 

to divide them in 4 sub-populations according to their fluorescence signals (RFP+ only, GFP+ 

only, both RFP+ and GFP+, or no red or green fluorescence).  

 

2.2.5.3 RNA extraction 

Immediately after FACS, RNA was extracted from each of the sorted samples. 1ml TRIZOL 

Reagent (Thermo Fisher Scientific, 15596026) was added to each sample and it was 

repetitively pipetted and left for 5 minutes at RT. 0.2ml chloroform was added and samples 

shaken for 15 seconds and left at RT for 10 minutes. Samples were centrifuged at 12000g for 

15 minutes at RT. The samples showed a gradient separation in three phases. The colourless 

upper aqueous phase was removed and added to a new tube, the white solid and red lower 

aqueous phases were discarded. 0.5ml isopropanol was added and left for 10 minutes at RT. 

Samples were centrifuged at 12000g for 10 minutes at 4°C and the supernatant discarded. 

1ml 75% ethanol was added and samples were mixed by vortexing. Samples were 

centrifuged at 7500g for 5 minutes at 4°C, the supernatant discarded and the pellet air-dried. 

RNA was re-suspended in 30µl dH2O at 57°C, quantified using the Nanodrop system (Thermo 

Fischer Scientific, 2000C), and stored at -80°C. 

 

Antobody Source Manufacturer

EpCAM  Anti-mouse rat, monoclonal BioLegend, 118213

IgG2a Isotype control rat, monoclonal BioLegend, 400511
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2.3 Image analysis 

Histopathological examination was performed by Prof. Mark J Arends using a Leica DMR HC 

microscope (Leica DMR HC 0.7H.21.TL.-.E.16C, 213860) and images were taken from 

selected fields and acquired using a Leica DFC 450-C camera.  

Immunohistochemically stained and histochemically stained FFPE tissue sections were 

scanned using a Nanozoomer (Hamamatsu) slidescanner and analysed with the Hamamatsu 

NDP Viewer software (NDP.view2) at the Pathology laboratory of IGMM, the University of 

Edinburgh. Image analysis software QuPATH v0.2.0 was used to analyse 

immunohistochemically detected Msh2, Ki67, y-H2AX and p53 protein expression.  

Expression of the red and green fluorescent proteins encoded by the mTmG transgene were 

evaluated in whole mount specimens of the small and large intestines using a Leica MZFLIII 

fluorescence stereo microscope with 1x objective and a Nikon A1R point scanning confocal 

microscope (IGMM imaging facility, University of Edinburgh). The obtained images were 

analysed using Fiji (ImageJ)-Trainable WEKA Segmentation software, through which the 

proportion of green areas divided by the total green + red areas (termed the % green area) 

were measured. 

 

2.4 Statistical analysis 

Data were analysed using GraphPad Prism version v7.0 software, which was used for all 

statistical analyses and these are mostly shown as mean with standard deviation (SD) error 

bars. Group data were compared using unpaired, two-tailed Student’s t-test (for normally 

distributed data) or Mann–Whitney U test (for non-parametric data) as appropriate, or two-

way ANOVA with Bonferroni’s multiple comparisons correction test. Association between 

two categories was assessed by two-sided Fisher’s test. Percentage of survival was analysed 

by the Log-rank (Mantel-Cox) test. Differences between groups were considered statistically 

significant if p ≤ 0.05.  
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Chapter 3: Establishment of an Msh2-Lynch Syndrome mouse 

model colony and its characterization 

3.1 Introduction 

In the past, Lynch syndrome mouse models have been important for the study and 

understanding of the disease mechanisms and the roles of the MMR genes. However, none 

of these models fully represented human LS, as described in Chapter 1.1.8. Recently, 

Wojciechowicz et al (2014) generated a novel Msh2-Lynch Syndrome (Msh2-LS) mouse 

model that closely mimics key components of the large intestinal disease characteristics in 

LS patients.  

The Msh2-LS mouse model has one constitutive knockout Msh2 allele (Msh2-) and one 

(floxed) conditional knockout Msh2 allele (Msh2flox). The Msh2- allele was generated by the 

incorporation of a hygromycin (hyg) resistance gene between codons 588 and 589 in exon 

12 of Msh2 (Claij & te Riele, 2004), completely preventing Msh2 protein expression (de Wind 

et al., 1995). The Msh2flox allele was constructed by insertion of a loxP site 53 bp downstream 

of exon 13 and another loxP site 2 kb upstream of exon 12 in the opposite orientation (Figure 

3.1). Cre-mediated recombination between these two loxP sites results in inversion of exons 

12 and 13 (Figure 3.1), abrogating gene activity (Claij & te Riele, 2004). 

To target Msh2 loss of activity to only a limited number of self-renewing intestinal epithelial 

stem cells, the Lgr5CreERT2 transgene was used. The Cre recombinase protein is fused to the 

modified oestrogen receptor ERT2. Only in the presence of tamoxifen metabolites, does the 

CreERT2 protein translocate to the nucleus and become active, where it can execute 

recombination between the loxP sites leading to inactivation of the conditional Msh2 allele. 

As CreERT2 is expressed from the Lgr5 locus, this occurs in Lgr5-expressing intestinal 

epithelial stem cells (Barker et al., 2007) (Figure 3.2). In this Msh2-LS mouse model, scattered 

dMMR stem cells are induced among surrounding MMR-proficient cells in the large and small 

intestinal epithelium (as observed in LS patients). Wojciechowicz et al (2014) demonstrated 

an increased risk of intestinal tumour development in the Msh2-LS model mice.  

In order to visualize those cells that underwent Cre activation, and thus Msh2 inactivation, 

the mTmG transgene was crossed into the mouse model.  The mTmG transgene was 

originally generated by Dr. Lou, Stanford University (Muzumdar et al., 2007). This Cre 

reporter construct confers a red fluorescence to cells of all tissues without Cre activation, 
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due to whole body expression of membrane-targeted modified Tomato red fluorescent 

protein (mT). Upon Cre activation, Cre recombines the two LoxP sites surrounding the floxed 

mT allele and the adjacent polyadenylation site, thus excising this section of DNA, allowing 

expression of a membrane-targeted modified Green Fluorescent Protein or GFP (mG) (Figure 

3.3). 

In this chapter, the aim is to establish an Msh2-LS mouse model colony, provided by Dr Hein 

te Riele (Wojciechowicz et al., 2014), and upgrade it by introducing the mTmG transgene. In 

this chapter, the modification and characterization of the Msh2-LS mouse model are 

described. 

 

 

 

 

 

Figure 3.1: Schematic diagram of the Msh2fl/- alleles before and after Cre activation. Constitutive 

(Msh2-) and conditional (Msh2flox ON) knockout alleles of Msh2 are shown (adapted and modified from 

Wojciechowicz et al., 2014). Cre activation results in inversion of exons 12 and 13 of the conditional 

Msh2 allele (Msh2flox OFF), thus inactivating it. (Image created with BioRender.com). 
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Figure 3.2: Schematic diagram of Tamoxifen metabolite-mediated Cre activation in Lgr5 expressing 

intestinal epithelial stem cells. The Lgr5CreERT2 transgene was inserted into the murine Lgr5 locus, 

ensuring that the CreERT2 protein is only expressed in Lgr5+ intestinal stem cells (green cells at the 

base of the crypt shown on the left). Tamoxifen is converted by cytochrome p450 enzymes into the 

active metabolite 4-Hydroxy-Tamoxifen (4-OHT) that binds to the ERT2 ligand-binding domain of the 

CreERT2 protein, allowing its translocation from the cytoplasm into the nucleus, where the active Cre 

enzymatic function leads to recombination of loxP sites flanking Msh2 exons 12 and 13 (Msh2floxON), 

resulting in the inversion of exons 12 and 13 sequences, thus inducing inactivation of the second Msh2 

allele (Msh2floxOFF) (the first Msh2 allele has been inactivated by insertion of a hygromycin-resistance 

gene (hyg) into exon 12). This abrogates DNA mismatch repair function in that stem cell and in any 

daughter cells formed by that stem cell. (Image created with BioRender.com). 

 

 

Figure 3.3. Schematic diagram of the mTmG coloured fluorescent protein reporter construct before 

(cell expresses mT and appears red) and after (cell expresses mG and appears green). Cre-mediated 

recombination of loxP sites (black triangles) flanking the mT and pA sequences (adapted and modified 

from Muzumdar et al., 2007). (Image created with BioRender.com). 
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3.2 Mouse Model Colony Breeding, Maintenance and Husbandry 

3.2.1 Methods 

Mice were housed in IVCs with group sizes and enrichment according to Home Office 

regulations. Further details on the mice housing conditions and maintenance can be found 

in Chapter 2 (2.1.1). 

 

3.2.2 Results 

3.2.2.1 Establishment of the colony of Msh2-LS mice and cross-breeding with mTmG 

transgene bearing mice  

Msh2-LS mouse model founder mice were received from Professor Hein te Riele’s research 

group at the Netherlands Cancer Institute (Wojciechowicz et al., 2014). 2 male and 2 female 

Msh2flox/flox mice were received, along with 1 male and 2 female Msh2+/-; Lgr5CreERT2+/- mice 

(Lgr5CreERT2- indicates a normal wild-type Lgr5 allele, whereas Lgr5CreERT2+ indicates 

insertion of the CreERT2 transgene into a modified Lgr5 locus).  All animals were of breeding 

age. The Msh2 flox/flox mice were bred with the Msh2+/-; Lgr5CreERT2 +/- mice to obtain the 

Msh2-LS mouse model experimental subjects (Msh2flox/-; Lgr5CreERT2+/-). Homozygous 

Lgr5CreERT2+/+ mice are not viable (due to loss of normal Lgr5 alleles that are required for 

normal development), so only heterozygous Lgr5CreERT2+/- mice were used for breeding 

with Lgr5 wild-type mice (Lgr5CreERT2+/- X Lgr5CreERT2-/-), to generate viable and fertile 

progeny. The genotype frequencies that resulted from this breeding almost perfectly 

reflected the expected Mendelian ratios with around 25% of the progeny having the correct 

genotype for Msh2-LS experimental subject mice (Msh2flox/-; Lgr5CreERT2+/-) (Figure 3.4A). 

Mice with the genotype Msh2flox/-; Lgr5CreERT2+/- were also bred with Msh2flox/-; 

Lgr5CreERT2-/- mice, in order to obtain a higher number of Msh2-LS experimental subject 

mice from each litter. The mice resulting from these matings showed 25% progeny with 

Msh2flox/-; Lgr5CreERT2+/- genotypes and 12.5% progeny with Msh2flox/flox; Lgr5CreERT2+/- 

genotypes (Figure 3.4B). Mice with these genotypes were used as experimental subject mice 

or breeders. Tabular representation of the inter-cross to generate the Msh2-LS mouse model 

experimental subjects is shown in the Appendix (Supplementary Table 3.1). Another 25% 

(12.5% of Msh2-/-; Lgr5CreERT2-/-and 12.5% of Msh2-/-; Lgr5CreERT2+/-) of the mice resulting 

from this breeding showed complete Msh2 deletion (Msh2-/-). Msh2-/- mice have been 



65 
 

reported to develop tumours (mostly early thymic and other lymphomas, with some 

intestinal adenomas in a few surviving mice) that required termination of most of these mice 

starting from around 10 weeks of age (de Wind et al., 1995). Therefore, Msh2-/- pups were 

culled immediately after genotyping.  

In the stage prior to the administration of Tamoxifen, Msh2-LS experimental mice did not 

present altered or harmful phenotypes. Nor did they show increased tumour predisposition 

(without Cre activation) compared with wild-type mice (see data below in Chapters 4.3). 

To introduce the mTmG transgene (Muzumdar et al., 2007), the Msh2flox/-; Lgr5CreERT2+/- 

mice were cross-bred with mTmG+/+ mice, generating Msh2+/-; Lgr5CreERT2+/-; mTmG+/- and 

Msh2flox/+; Lgr5CreERT2+/-; mTmG+/- mice (mTmG-/- indicates a normal wildtype genotype 

without the mTmG construct, whereas mTmG+/+ or mTmG+/- indicates presence of two copies 

or one copy, respectively, of the mTmG construct) (Figure 3.5A). These mice were interbred 

to generate Msh2flox/-; Lgr5CreERT2+/-; mTmG+/- mice and after further breeding Msh2flox/-; 

Lgr5CreERT2+/-; mTmG+/+ mice, which were used as experimental subject mice or breeders 

(Figure 3.5B). Tabular representation of the inter-cross to introduce the mTmG transgene 

into the Msh2-LS mouse model is shown in the Appendix (Supplementary Table 3.2). 
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Figure 3.4: A) Percentage of resulting genotypes from the breeding between Msh2 flox/flox and the 

Msh2+/-; Lgr5CreERT2 +/- mice. B) Percentage of resulting genotypes from the breeding between 

Msh2flox/-; Lgr5CreERT2+/- and Msh2flox/-; Lgr5CreERT2-/- mice. 

 

 
Figure 3.5: A) Percentage of resulting genotypes from the cross-breeding between Msh2flox/-; 

Lgr5CreERT2+/- and mTmG+/+ mice. B) Percentage of resulting genotypes from the cross-breeding 

between Msh2+/-; Lgr5CreERT2+/-; mTmG+/- and Msh2flox/+; Lgr5CreERT2+/-; mTmG+/- mice. 
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3.2.2.2 Comparison of Tamoxifen treatments for Cre recombinase activation  

To verify the efficacy of the mTmG transgene and identify the optimal concentration and 

dosage regime of Tamoxifen for the most appropriate level and pattern of Cre induction 

using the LgrCreERT2 construct, different Tamoxifen treatments were tested using 

Lgr5CreERT2+/-; mTmG+/- mice. The most commonly published Tamoxifen treatment 

regimens for Cre induction were compared in this strain. Mice were treated with either one 

i.p. injection of 3 mg Tamoxifen (0.15mg/g bw) on one single day (Group-A) (Barker et al., 

2007; Zhang et al., 2014), or one i.p. injection of 3 mg Tamoxifen (0.15 mg/g bw) on day 1 

and 2mg Tamoxifen (0.1mg/g bw) on days 2, 3 and 4 (Group-B) (Nandan et al., 2016; 

Veniaminova et al., 2012). Furthermore, a control group (Group-C) received one i.p. injection 

of corn oil (the vehicle for dissolved Tamoxifen) without Tamoxifen per day for 4 consecutive 

days (without i.p. Tamoxifen treatment, Cre recombinase is not activated) (Figure 3.6). Two 

animals were used for each condition. Mice were culled and the small and large intestines 

collected on day 8 (after the start of Tamoxifen or corn oil treatment), allowing time for the 

activated Cre to recombine loxP sites in the stem cells at the bases of the crypts, converting 

mT expression to mG expression. These mG+ intestinal stem cells form daughter cells that 

move up the crypts and on to the villi in the small intestine, or up the crypts in the colonic 

mucosa, thus appearing as green foci surrounded by red background epithelium (when 

viewed by fluorescence stereomicroscopy). The efficiency of the different Tamoxifen 

treatments was evaluated through the detection and quantification of these green foci (mG 

expression), analysing whole mount intestinal tissues (as described in Materials and 

Methods).   

In Group-C, the whole mount intestinal specimens showed only mT protein expression 

conferring red fluorescence to the tissues with no mG expression, as expected. In Group-A 

(only one i.p injection of Tamoxifen), mice showed ~25% foci of positive mG crypts/villi in 

the small intestine and ~10% mG+ crypt foci in the large intestine (Figure 3.7-3.8). In Group-

B (4 i.p. Tamoxifen injections over 4 days), mice showed ~35% foci of positive mG crypts/villi 

in the small intestine and ~15% mG+ crypt foci in the large intestine (Figure 3.7-3.8). No 

major differences were observed between Group-A and Group-B. However, the Group-B 

Tamoxifen protocol appeared to be mildly more efficient, showing a more widely scattered 

distribution of the mG positive crypt foci along both of the small and large intestines, similar 

to the pattern seen in human LS patients with widely scattered dMMR crypt foci in the colon 

(Kloor et al., 2012). Hence, the 4 day Tamoxifen treatment protocol was adopted for all 
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further experiments involving Tamoxifen-induced activation of Cre in this Msh2-LS mouse 

model. 

 

 

 

 

 

 

Figure 3.6: Comparison of experimental Tamoxifen treatment protocols for Group-A (one i.p. injection 

of 3 mg Tamoxifen (0.15mg/g) on one single day), Group-B (one i.p. injection of 3 mg Tamoxifen per 

mouse (0.15 mg/g) on day 1 and 2mg Tamoxifen (0.1mg/g) on days 2, 3 and 4); and Group–C (one i.p. 

injection of 3 mg corn oil per mouse on day 1 and 2mg corn oil on days 2, 3 and 4). (i.p. = 

intraperitoneal).  
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Figure 3.7: Representative fluorescent images of the mT & mG/GFP detection in the colon using the fluorescence stereomicroscope. Pictures acquired from Group-A 

(1 i.p. Tamoxifen injection) (top row), Group-B (4 i.p. Tamoxifen injections) (middle row), and Group-C (4 i.p. corn oil injections, control cohort) (bottom row) mice, 

shown as RFP, GFP and merge (left, middle and right columns respectively). Images taken using the Leica (FLIII) stereomicroscope at 2X magnification/1X objective. 
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Figure 3.8: Representative fluorescent images of the mT & mG/GFP detection in the distal small intestine using the fluorescence stereomicroscope. Pictures acquired 

from Group-A (1 i.p. Tamoxifen injection) (top row), Group-B (4 i.p. Tamoxifen injections) (middle row) and Group-C (4 i.p. corn oil injections, control cohort) (bottom 

row) mice, shown as RFP, GFP and merge (left, middle, and right columns respectively). Images taken using the Leica (FLIII) stereomicroscopeat 5X magnification/1X 

objective. 
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3.2.2.3 Immunohistochemical characterization of positive mG-expressing 

intestinal crypt foci 

To test whether the expression of mG/GFP observed by fluorescence microscopic detection, 

following Cre activation, correlated with the loss of Msh2 expression, immunohistochemical 

(IHC) analyses were performed using anti-Msh2 antibody and anti-GFP antibody on intestinal 

tissue serial sections. Small intestine, caecum and colon serial sections were cut from 

Tamoxifen-induced Msh2flox/-; Lgr5CreERT2+/-; mTmG+/- (Msh2-LS) mice and stained for both 

mG/GFP and Msh2 proteins.  

We used small intestinal tissue samples of Msh2-/- mice as Msh2-null controls and GFP-

negative expression controls; and small intestinal (SI) tissue samples of Tamoxifen-induced 

mTmG+/+ mice as Msh2-positive and GFP-positive expression controls (Figure 3.9). The lack 

of DAB-brown staining for both anti-Msh2 and anti-GFP IHC in the Msh2-/- SI tissues 

confirmed complete loss of Msh2 expression and lack of GFP expression (Figure 3.9 A-B) in 

the Msh2-null negative control tissues. The presence of DAB-brown staining in the mTmG+/+ 

SI tissues confirmed presence of Msh2 expression in all tissue and GFP expression in some 

Cre-activated crypts (Figure 3.9 C-D) in the mTmG+/+ positive control tissues.  

The immunohistochemical analysis of Msh2 in Msh2flox/-; Lgr5CreERT2+/-; mTmG+/- mouse 

intestinal tissue showed lack of DAB-brown staining in some crypts scattered along the 

length of both small intestinal mucosa and large intestinal mucosa (Figure 3.10 A-C). The 

exact same crypts appeared DAB-brown stained after immunohistochemical analysis of GFP 

on the adjacent serial section of the same Msh2flox/-; Lgr5CreERT2+/-; mTmG+/- mouse 

intestinal tissue (Figure 3.10 B-D), confirming that the same small and large intestinal crypts 

had lost Msh2 protein expression and gained GFP expression. 
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Figure 3.9: Immunohistochemical analysis of Msh2 and GFP protein expression in small intestinal mucosal epithelium from a negative-control Msh2-/- mouse (upper 

row), in which the lack of brown staining confirms the absence of Msh2 (A) and GFP (B) expression in the intestinal mucosal epithelium; and from a positive-control 

mTmG+/+ mouse (lower row), in which the brown staining indicates positive Msh2 expression in all crypts (C) and positive GFP expression in some scattered Cre-

activated crypts (D). Images taken using the Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP Viewer software at 5X magnification (bar at lower left 

indicates 500um).  
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Figure 3.10: Representative comparison between Msh2 and mG/GFP immunostaining of adjacent serial sections of caecum of Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-

mice treated with Tamoxifen to activate Cre in scattered crypts. The same dMMR crypt foci (A and C) are negative for Msh2 and positive for mG/GFP (B and D) (red 

ovals). Images taken using the Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP Viewer software at 20X magnification (bar at lower left indicates 

100um). 
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3.3 Discussion 

In this chapter, the mouse breeding programme was described to illustrate the generation 

of the appropriate murine progeny to be used in experiments and for further breeding. The 

mice obtained from Professor Hein te Riele’s research group were acquired to start the 

Msh2-Ls mouse model colony. The matings between the starting mice produced: 25% 

Msh2flox/+; Lgr5CreERT2+/- mice, 25% Msh2flox/+; Lgr5CreERT2-/- mice, 25% Msh2flox/-; 

Lgr5CreERT2-/- mice and 25% of the desired Msh2flox/-; Lgr5CreERT2+/- mice (for use as 

experimental subjects). To establish a bigger Msh2-LS mouse model colony we bred the 

Msh2flox/-; Lgr5CreERT2+/- with Msh2flox/-; Lgr5CreERT2-/-. As explained previously, 

heterozygous Lgr5CreERT2+/- mice can only be bred with Lgr5 wild-type mice (Lgr5CreERT2+/- 

X Lgr5CreERT2-/-) because homozygous Lgr5CreERT2+/+ mice are not viable (due to loss of 

wildtype Lgr5 alleles that are required for normal development), influencing the percentage 

of mice with the correct genotype per litter (only 25% of the progeny).  

The introduction of the mTmG transgene into the Msh2-LS mouse model further decreased 

the percentage of mice with the desired genotype for experimental subjects per litter.     

The introduction of the mTmG transgene was performed through cross-breeding between 

Msh2-LS mice and homozygous mTmG mice (mTmG+/+). The progeny obtained from the first 

breeding showed the following genotypes: 25% Msh2fl/+; Lgr5CreERT2+/-; mTmG+/-, 25% 

Msh2fl/+; Lgr5CreERT2-/-; mTmG+/-, 25% Msh2-/+; Lgr5CreERT2+/-; mTmG+/- and 25% Msh2-/+; 

Lgr5CreERT2-/-; mTmG+/-. To obtain mice with the correct genotypes for use as experimental 

subjects, we used these mice as breeders. The resulting progeny showed only 6.25% of 

Msh2fl/-; Lgr5CreERT2+/-mice; mTmG+/- and 3.13% of Msh2fl/-; Lgr5CreERT2+/-; mTmG+/+ mice.  

We cross-bred the progeny to obtain an appropriate number of Msh2fl/-; Lgr5CreERT2+/-; 

mTmG+/- to use as experimental subjects, which required a high number of breeding rounds 

and time. 

Once the Msh2-LS mouse colony was established, we proceeded with the characterisation 

of the mouse model and identification of the optimal concentration and dosage regime of 

Tamoxifen for the most appropriate level and pattern of Cre induction using the LgrCreERT2 

construct. We divided the mice into three groups which received either 1 i.p Tamoxifen 

injection, or 4 i.p. Tamoxifen injections, or 4 i.p. corn oil injections. The introduction of the 

mTmG transgene was used to identify the best treatment by analysing the numbers and 

patterns of crypts expressing mG/GFP in both the small and large intestines, viewed as 



75 
 

whole-mount specimens using a fluorescent stereomicroscope and counting the numbers of 

mG-expressing foci. This fluorescent reporter transgene enabled visual monitoring of the 

effects of Tamoxifen-induced activation of Cre recombinase to convert expression of red 

fluorescent mT to expression of green fluorescent mG protein in intestinal epithelial Lgr5-

expressing stem cells and the crypts that they form.  

The whole mount intestinal specimens of corn oil-treated control mice appeared completely 

red under the microscope, and no mG expression was observed. This confirmed the lack of 

Cre activation due to the absence of Tamoxifen treatment. By contrast, in both Tamoxifen-

treated groups, positive mG/GFP expressing foci were observed scattered along the whole 

small and large intestines. Mice treated with 1 i.p Tamoxifen injection showed ~25% foci of 

mG+ crypt/villi in the small intestine and ~10% mG+ crypt foci in the large intestine, whereas 

mice treated with 4 i.p. Tamoxifen injections showed ~35% foci of mG+ crypt/villi in the small 

intestine and ~15% mG+ crypt foci in the large intestine. These groups of mice did not show 

major differences in mG+ expression, however we decided to adopt the 4 day Tamoxifen 

treatment protocol for Cre induction on LgrCreERT2 construct. The mice treated with 4 i.p. 

Tamoxifen injections showed a more widely scattered distribution of the mG+ crypt foci 

along both the small and large intestine, similar to the pattern seen in human LS patients’ 

colons with widely scattered dMMR crypt foci.  Hence, in this experiment, we identified the 

correct Tamoxifen protocol and we validated the efficacy of the mTmG transgene.  

In the modified version of the Msh2-LS mouse model, explained in this chapter (Msh2flox/-; 

Lgr5CreERT2+/-; mTmG+/- mouse model), the activation of Cre recombinase by Tamoxifen-

treatment induced recombination between two inverted loxP sites flanking Msh2 exons 12 

and 13 and the loxP sites flanking the mT allele, generating a Msh2 knockout allele 

(Msh2flox/OFF) and converting the same intestinal stem cells to mG expression, generating 

dMMR intestinal stem cells that subsequently form dMMR crypts, which are marked by 

green fluorescent mG expression.  We confirmed this by performing IHC for both Msh2 and 

GFP expression on adjacent serial sections of small intestine, caecum and colon. The results 

showed the colocalization in the same crypts of mG expression and the loss of Msh2 

expression. The detection and quantification of mG+ crypt foci allow evaluation of any 

subsequent changes of dMMR crypts marked in this way, such as changes in crypt focus size 

or number or distribution along the intestinal tract. 
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In conclusion, we generated a modified version of the Msh2-LS mouse model and established 

a colony of this Msh2flox/-; Lgr5CreERT2+/-; mTmG+/- mouse model. The mTmG Cre reporter 

system was validated and the most appropriate Tamoxifen treatment protocol (daily i.p. 

injection over 4 days) was identified and shown to be sufficient to activate Cre recombinase. 

We verified that Cre induced loss of Msh2 and expression of mG/GFP were observed in the 

same crypt foci.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



77 
 

Chapter 4: Investigation of long-term ethanol consumption 

effects on the Msh2-LS mouse model 

4.1 Introduction 

LS is caused by a constitutional (often germline) pathogenic mutation in one of the MMR 

genes (MSH2, MLH1, MSH6, and PMS2). LS patients have a higher lifetime risk for several 

cancer types, mainly in the large bowel and the endometrium, but also in small intestine, 

stomach, and several other organs (Bellizzi & Frankel, 2009; Poulogiannis et al., 2010), as 

previously described in the main introduction, Chapter 1.1. 

Several lifestyle-related factors are associated with an increased risk of certain sporadic 

cancers; these may have similar or enhanced effects in LS patients. Several systematic 

reviews and cohort studies showed evidence that smoking is linked with an increased risk of 

CRC (Hannan et al., 2009; Leufkens et al., 2011). In 2011, the World Cancer Research Fund 

(WCRF)/American Institute for Cancer Research (AICR) published a review providing 

evidence that body fatness or obesity (expressed as BMI of greater than 30 kg/m2), 

abdominal fatness (waist circumference and waist-hip ratio), nutrition and physical activity 

can influence the risk of CRC (Dai, 2007; Ning et al., 2010; van Duijnhoven et al., 2013).  

Worldwide, a total of approximately 389,000 cancers representing 3.9% of all cancers have 

been calculated to derive from chronic alcohol consumption (Rehm et al., 2003). However, 

there are limited studies investigating the effects of alcohol consumption on increased risk 

of CRC in LS patients. Carcinogenic effects of ethanol are related to its metabolism and mainly 

to its metabolite acetaldehyde. Acetaldehyde is a highly reactive molecule able to induce a 

wide range of DNA damage, as described in Chapter 1.3. However, the DNA repair pathways 

responsible for repairing many of these lesions remain unknown.  

The MMR pathway plays an important role in maintaining genomic stability and cellular 

homeostasis. In addition to its post-replicative DNA error repair, MMR is involved in cellular 

responses to DNA damage induced by endogenous chemical carcinogens (Stojic et al., 2004). 

Furthermore, MMR plays a role in the cell’s response to DNA damage through cell cycle 

arrest and/or apoptosis.  

In this chapter, the aim is to test the hypothesis that the DNA MMR system plays a role in 

protecting cells from some types of ethanol/acetaldehyde-induced DNA damage and that 
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there is a gene-environment interaction between ethanol/acetaldehyde and dMMR pathway 

that accelerates colorectal tumour development and progression. Here, using the Msh2-LS 

mouse model, the effects of long-term ethanol treatment on intestinal tumour formation 

and progression are investigated. 

 

 

4.2 Long-term ethanol effects on intestinal tumourigenesis in the 

Msh2-LS mouse model 

4.2.1 Methods 

Groups of 7-9 weeks old Msh2flox/-; Lgr5CreERT2+/- and Msh2flox/-; Lgr5CreERT2+/-; mTmG+/- 

(Msh2-LS) experimental mice were divided into two groups. Group-A mice received 

intraperitoneal (i.p.) injections of 0.15mg Tamoxifen/g bw on day 1 and 0.1mg Tamoxifen/g 

bw on day 2, 3 and 4; on day 5 mice were provided with normal drinking water. By contrast, 

Group-B received i.p. injections of 0.15mg Tamoxifen/g bw on day 1 and 0.1mg Tamoxifen/g 

bw on day 2, 3 and 4; but on day 5 the Group-B mice were provided with 20% ethanol in 

drinking water (as previously validated by our group; (Müller et al., 2016)) (Figure 4.1). 

Animals were culled and tissues collected when either clinical signs of distress were visible 

or they displayed >20% body weight loss compared with the initial weight. The small and 

large intestines, caecum, stomach, liver, spleen, thymus, lymph nodes (if visible) and any 

other organ or tissue showing abnormalities, were collected following schedule 1 culling and 

necropsy dissection. Tissues were fixed in 10% NBF, processed using standard tissue 

processing protocols and were paraffin embedded in preparation for section cutting and 

staining. The acronyms used for the Msh2-LS model mice and their relevant treatments are 

shown in Table 2.2. 
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Figure 4.1: Experimental treatment protocols and timelines for Group-A (water-treated) and -B 

(ethanol-treated) mice, showing 4 days of i.p. injections of Tamoxifen, followed by either 

standard/normal drinking water (Group-A) or drinking or water containing 20% ethanol (Group-B). 

(EtOH = Ethanol). 
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4.2.2 Results 

4.2.2.1 Experimental group organization and observations 

Previous work using Aldh1b1 depleted mice and control mice treated with 20% ethanol 

showed intestinal tumour formation within 1 year in both groups (Müller et al., 2016).  Long-

term ethanol-treatment of Msh2-LS mice followed two different approaches.  First, in this 

tumour watch experiment, the murine subjects included 20 mice in total (12 females and 8 

males) were divided into two groups: Group-A (10 mice: 8 females and 2 males; water-

treated control group) and Group-B (10 mice: 4 females and 6 males; ethanol-treated test 

group). Animals from both groups were culled when either clinical signs of distress indicative 

of intestinal tumour formation were visible or they displayed >20% body weight loss 

compared with the initial weight.  

Second, in this matched control and test subject experiment, 26 mice (10 females and 16 

males) in total were divided into two groups of 13 mice, with 5 females and 8 males in each 

group, and they underwent treatments in drinking water as control Group-A (water) and test 

Group-B (ethanol). In this experiment, a matching control mouse was culled at the same time 

point that an ethanol-treated mouse had to be culled for signs of distress due to intestinal 

tumour formation or >20% loss of body weight.  

During Tamoxifen treatment (daily Tamoxifen i.p injections for 4 consecutive days), body 

weights and health status were recorded. Body weights of the female and male mice didn’t 

significantly differ during the Tamoxifen treatment (Figure 4.2), showing successful drug 

administration and acceptance of the experimental procedures by the mice. Body weights of 

Msh2-LS males (~28.34g) were significantly higher than body weights of Msh2-LS females 

(~21.38g) both before and during the Tamoxifen treatments. After Tamoxifen treatment 

mice received either 20% ethanol in drinking water or normal drinking water regimes and 

the body weights and health status of the mice were recorded twice a week (Figure 4.3). 

Female and male ethanol-treated Msh2-LS mice did not show abnormal behaviour or 

reduced weight indicating good acceptance of the ethanol regime. EtOH_Msh2fl KO mice 

weighed on average 34.3g for the males and 31g for the females, whereas H2O_Msh2fl KO 

weighed on average 36.5g for the males and 29.6g for the females. Significant differences 

were not observed between the body weights of EtOH_Msh2fl KO versus H2O_Msh2fl KO males 

or females.  
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Drinking bottles were changed and bottle weights were recorded once a week. Liquid 

consumption per mouse was estimated by analysing the weights of the drinking bottles (per 

cage) and calculating the average weight of consumed liquid per mouse per day (Figure 4.4). 

An average H2O_Msh2fl KO male mouse consumed around 13.85ml of drinking water per day, 

whereas an average EtOH_Msh2fl KO male mouse consumed around 11.65ml of 20% ethanol 

in drinking water. An average H2O_Msh2fl KO female mouse consumed around 10.33ml of 

water per day, whereas an average EtOH_Msh2fl KO female mouse consumed around 9.65ml 

of 20% ethanol in drinking water per day. No significant differences were observed between 

ethanol- and water-consumption for males or females.  

 

 

 

 

 

Figure 4.2: Body weights during Tamoxifen treatment. Body weights of Msh2-LS males were 

significantly higher than body weights of Msh2-LS females, before and during Tamoxifen treatments. 

2-way-ANOVA test with Bonferroni post-test correction, p<0.0001 on day 1-4 (data shown as mean ± 

SD, n=20 mice in each group, SD too small to show as bars extending beyond square points for 

females). 
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Figure 4.3: Body weights for males and females during 20% ethanol or standard/normal drinking water 

regimes. There were no significant differences between the body weights of ethanol-treated Msh2-LS 

(EtOH_Msh2fl KO) versus water-treated Msh2-LS (H2O_Msh2fl KO) males or females. 2-way-ANOVA with 

Bonferroni post-test correction analysis (data shown as mean±SD).  

 

 

Figure 4.4: Liquid consumption of either 20% ethanol containing drinking water or standard/normal 

water per mouse per day. 2-way-ANOVA with Bonferroni post-test correction analysis (data shown as 

mean±SD). No significant differences were observed for any of the comparisons of ethanol versus 

water treatment or males versus females. 
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4.2.2.2 Tumour development in Msh2-LS mice under long-term ethanol treatment 

The results from both approaches were collected and are presented together. The two 

cohorts of Msh2-LS model mice, Group-A (water-treated, H2O_Msh2fl KO) and Group-B 

(ethanol-treated, EtOH_Msh2fl KO), were monitored for signs of intestinal tumour 

development or other pathological abnormalities, using a clinical scoring system that 

included known clinical signs of distress seen in mice that develop intestinal neoplasms (Foltz 

& Ullman-Cullere, 1999; Burkholder et al., 2012), to determine when the mice should be 

culled for necropsy dissection and tumour analysis (Table 4.1). Most of the mice in Group-B 

(ethanol experimental group) displayed either anal prolapse or >20% reduction in body 

weight as common clinical signs of distress, at varying lengths of time from the start of the 

experimental protocol and were then culled for necropsy dissection. During necropsy 

dissection, naked eye inspection revealed that the majority of the EtOH_Msh2fl KO mice 

showed a thicker colonic wall compared with the colons of the H2O_Msh2fl KO mice, but no 

gross differences were observed in the small intestines. The lengths of the small intestines 

and colons were measured and recorded, but no significant differences in length were 

observed (Figure 4.5). The histopathological analyses of Msh2-LS large intestines and small 

intestines confirmed the macroscopic observations of no significant morphological 

differences between the two groups in the small intestines, but increased colonic wall 

thickness in EtOH_Msh2fl KO mice, due to a widespread increase in the colon crypt length as 

a result of extended zones of crypt epithelial hyperproliferation that were not observed in 

H2O_Msh2fl KO murine colons (Figure 4.6). These extended zones of colonic crypt 

hyperproliferation were seen to affect 50% – 90% of the whole colonic length, usually 

involving parts of the proximal colon and mid colon, in most of the EtOH_Msh2fl KO mice (65%) 

who survived more than 1 month of the ethanol treatment protocol. By contrast, 

histopathological analyses of the small intestines did not show any significant morphological 

differences between the two groups of animals using H&E-stained Swiss rolls of the 

intestines (Figure 4.7).  

In total, 15 out of 23 (65%) EtOH_Msh2fl KO mice demonstrated zones of large intestinal crypt 

epithelial hyperproliferation, with adenoma formation and, in 5 cases, invasive 

adenocarcinoma was present, all within an average of 6 months (minimum 4 weeks and 

maximum 48 weeks) of the start of the experimental protocol compared with only 1 case of 

large intestinal adenoma formation, out of 23 H2O_Msh2fl KO control mice, after 15 months 

(Figure 4.8). 
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All 15 EtOH_Msh2fl KO tumour-bearing mice showed both colonic crypt hyperproliferative 

changes (Figure 4.9) with the adenoma formation mainly in either the proximal colon or the 

mid colon (Figure 4.10). No Msh2-LS mouse showed only colonic hyperproliferation without 

tumour formation, all mice with colonic hyperproliferation also showed adenoma formation. 

Two out of 15 were diagnosed with invasive adenocarcinoma in the proximal colon and 3 out 

of 15 had invasive adenocarcinoma in the mid colon (Figure 4.11-4.12). Colonic invasive 

adenocarcinoma was observed in 21.7% of EtOH_Msh2fl KO mice. In addition, in 6 out of 15 

mice, we found caecal adenomas and in one case there was a caecal invasive 

adenocarcinoma (Figure 4.13). Among these 15 mice only 2 were diagnosed with distal 

colonic adenoma or rectal adenoma respectively. In total, we observed 36 neoplasms 

distributed between both the caecum (19.5%), colon (77.8) and the rectum (2.7%) (Figure 

4.14). Additionally, 2 out of these 15 mice developed cutaneous sebaceous adenoma (a type 

of skin tumour that occurs in LS patients) (Figure 4.15).  

Eight out of 23 EtOH_Msh2fl KO mice did not show any intestinal adenoma formation, but in 

one of these cases there was a uterine endometrial adenocarcinoma (after 12 months of 

ethanol treatment). The Msh2-LS mouse models have one deleted Msh2 allele and one 

functioning Msh2 allele, the same as in human LS patients who have inherited one mutant 

MSH2 allele and one normal MSH2 allele, and thus are susceptible to LS-associated cancers 

due to inactivation of the normal or functioning MSH2 allele, including endometrial 

adenocarcinoma, which is a common cancer in women with LS. 

In Group-A (water-treated control cohort, H2O_Msh2fl KO), only 1 out of 23 mice showed 

intestinal tumour formation in the proximal colon (one adenoma with evolution to an 

invasive adenocarcinoma) and in the caecum (one adenoma) after 15 months. We didn’t find 

any other intestinal abnormality in any of the other 22 H2O_Msh2fl KO mice, however we 

observed uterine endometrial invasive adenocarcinomas in 2 mice (after 12 and 15 months 

of treatment, respectively; Figure 4.16). 

No morphological abnormalities or tumours were observed following necropsy and 

histopathological analysis of the H&E-stained sections of the small intestines, stomach, liver, 

spleen, lymph nodes and thymus, of any of the 23 EtOH_Msh2fl KO or 23 H2O_Msh2fl KO mice. 
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Table 4.1: Clinical scoring system for monitoring mice for signs of intestinal tumour development. 

 

 

Code Clinical evaluation

A no signs of ill health                                                                                      

B

moderate dehydration, scruff test indicates dehydration (when 

picking up the skin over the shoulders, it does not return to its 

original shape quickly)             

C

severe dehydration, symptoms include: mice are weak or appear 

paralysed in their hind legs, eyes appear recessed in the head, facial 

fur appears fuzzier (piloerection), mice might have difficulties 

gripping the cage bars with their forefeet                                      

D Blood in cage or on faecal pellets.                                                                 

E Prolapse of rectum visible at perianal area                                                    

F Visible tumours at perianal area or elsewhere                                                

G Pale paw pads (significant anaemia)           

H
Clear signs of pain or distress or other signs of ill health. Lost >20% 

bodyweight in >48 hours.
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Figure 4.5: Representative macroscopic photographs of the Small Intestine and Large Intestine from an ethanol-treated Msh2-LS mouse (EtOH_Msh2fl KO) (with 

caecum) (A), and a water-treated Msh2-LS mouse (H2O_Msh2fl KO) (without caecum) (B). (C) Photograph of two specimens of colons, one from an EtOH_Msh2 fl KO 

mouse (upper colon specimen) compared with one from an H2O_Msh2fl KO mouse (lower colon specimen, and showing that the upper ethanol-treated colon has a 

thicker wall. (D) Quantification of the Small Intestinal lengths and Large Intestinal lengths. Data shown as mean ± SD, Student’s t-test analysis. No significant 

differences in length were observed. LI: Large Intestine; SI: Small Intestine; LS: Lynch Syndrome. 
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Figure 4.6: Representative H&E stained images of colon Swiss rolls. A) Images of H&E stained LI Swiss rolls from water-treated Msh2-LS (H2O_Msh2fl KO) mice, 

further magnified in image (C). Images taken from scanned slide files with the Hamamatsu Nanozoomer NDP Viewer software at 0.8X and 2.5X objective 

magnification respectively (bar at lower left indicates 2.5mm and 1mm). B) Images of H&E stained LI Swiss rolls from ethanol-treated Msh2-LS (EtOH_Msh2fl KO) 

mice, further magnified in image (D). Images taken from scanned slide files with the Hamamatsu Nanozoomer NDP Viewer software at 0.5X, and 2.5X objective 

magnification respectively (bar at lower left indicates 2.5mm and 1mm). E) Quantification of the colon crypt lengths (in μm) comparing colons from EtOH_Msh2fl 

KO versus H2O_Msh2fl KO mice. Mann-Whitney U test analysis, ****p<0.0001 (data shown as mean ± SD). LI: Large Intestine
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Figure 4.7: Representative H&E stained images of SI Swiss rolls. A) Image of H&E stained SI Swiss roll 

from a water-treated Msh2-LS (H2O_Msh2fl KO) mouse, further magnified in image (C). Images taken 

from scanned slide files with the Hamamatsu Nanozoomer NDP Viewer software at 0.5X and 2.5X 

magnification respectively (bar at lower left indicates 5mm and 1mm). B) Image of H&E stained SI 

Swiss roll from an ethanol-treated Msh2-LS (EtOH_Msh2fl KO) mouse, further magnified in image (D). 

Images taken from scanned slide files with the Hamamatsu Nanozoomer NDP Viewer software at 0.5X 

and 2.5X magnification respectively (bar at lower left indicates 5mm and 1mm).   
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Figure 4.8: A) Bar chart of the number of Msh2-LS mice that developed intestinal tumours (both 
adenomas and adenocarcinomas) after receiving either 20% ethanol in drinking water or regular 
drinking water. 15/23 (65%) ethanol-treated Msh2-LS (EtOH_Msh2fl KO) mice developed large 
intestinal tumours compared with 1/23 (4%) water-treated Msh2-LS (H2O_Msh2fl KO) mice. Fisher’s 
exact test, **** p<0.0001. B) Tumour incidence in Msh2-LS mice treated with either 20% ethanol or 
water. The survival plot shows the significantly earlier development of tumours (both adenomas and 
adenocarcinomas) in the ethanol-treated Msh2-LS (EtOH_Msh2fl KO) group (red) compared with the 
water-treated Msh2-LS (H2O_Msh2fl KO) group (blue). Log-rank (Mantel-Cox) test, ***p=0.0001. 
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Figure 4.9: A and B show representative images of colonic crypt epithelial hyperproliferative changes 
in ethanol-treated Msh2-LS (EtOH_Msh2fl KO) mice, demonstrating the increase in length of the 
affected crypts. Images taken from scanned slide files with the Hamamatsu Nanozoomer NDP Viewer 
software at 5X magnification.  
 

 

 

 

 

Figure 4.10: Representative images of a proximal colon adenoma in ethanol-treated Msh2-LS 

(EtOH_Msh2fl KO) mice. Images taken at 25X (A), 50X (B) and 100X (C and D) magnification taken with 

a Leica DMR HC microscope and Leica DFC 450-C camera.
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Figure 4.11: Representative images of colon invasive adenocarcinoma in ethanol-treated Msh2-LS (EtOH_Msh2fl KO) mice. Images taken at 100X (A), 200X (B), 400X 

(C) and 50X (D) magnification taken with a Leica DMR HC microscope and Leica DFC 450-C camera Further magnified areas are indicated by the red rectangles 

showing regions of invasion .
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Figure 4.12: Representative images of 2 colon invasive adenocarcinomas in ethanol-treated Msh2-LS 

(EtOH_Msh2fl KO) mice. Images taken at 50X (left column A and C) and 100X (right column B and D) 

magnification taken with a Leica DMR HC microscope and Leica DFC 450-C camera. 
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Figure 4.13: Representative images of caecal invasive adenocarcinoma in ethanol-treated Msh2-LS (EtOH_Msh2fl KO) mice. Images taken at 25X (A), 50X (B) and 100X 

(C) magnification taken with a Leica DMR HC microscope and Leica DFC 450-C camera.
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Figure 4.14: Tumour distribution in ethanol-treated Msh2-LS (EtOH_Msh2fl KO) tumour-bearing mice. 

A) Numbers of adenomas and adenocarcinomas found and their locations. In total, 36 neoplasms were 

observed, 7 in the caecum (1/7 was an invasive adenocarcinoma), 12 in the proximal colon (2/12 were 

invasive adenocarcinomas), 15 in the mid-colon (3/15 were invasive adenocarcinomas), 1 adenoma in 

the distal colon and 1 adenoma in the rectum. B) Tumour distribution and number per EtOH_Msh2fl 

KO tumour-bearing mouse. 3/15 tumour-bearing mice showed one caecal adenoma and 2/15 mice 

showed two adenomas in the caecum. 10/15 tumour-bearing mice showed one proximal colonic 

adenoma and 1/15 showed two adenomas in the proximal colon. 7/15 tumour-bearing mice showed 

one mid-colonic adenoma and 4/15 showed 2 adenomas in the mid colon. The remaining two tumour-

bearing mice showed respectively one adenoma in the distal colon and one adenoma in the rectum. 
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Figure 4.15: A and B show images of the two skin sebaceous adenomas in ethanol-treated Msh2-LS 

(EtOH_Msh2fl KO) mice (a partially cystic skin sebaceous adenoma on the left in A). Images taken at 

100X magnification with a Leica DMR HC microscope and Leica DFC 450-C camera. 

 

 

 

 

 

Figure 4.16: Representative images of uterine endometrial invasive adenocarcinoma. Images taken at 

25X (A and B), 100X (C) and 200X (D) magnification with a Leica DMR HC microscope and Leica DFC 

450-C camera. 
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4.3 Long-term ethanol effects in Msh2-LS model control mice and wild-

type mice 

4.3.1 Methods 

Groups of 7-9 weeks old Msh2-LS control mice (Msh2flox/-; Lgr5CreERT2+/- and Msh2flox/-; 

Lgr5CreERT2+/-; mTmG+/-) were divided into two groups (A and B) prior to corn oil (without 

Tamoxifen) treatment.  

Both Group-A and Group-B mice received i.p. injections of corn oil on days 1, 2, 3, and 4 

(equivalent volume of corn oil as previously used). On day 5 Group-A mice were provided 

with normal drinking water and Group-B mice with 20% ethanol in drinking water (Figure 

4.17). 

These control animals were monitored and culled when they reached the same end-time 

point as the matched experimental Tamoxifen-induced mice (following tumour development 

or clinical distress in these experimental subjects), or when the control mice showed either 

clinical signs of distress or they displayed >20% body weight loss compared with the initial 

weight. The small and large intestines, caecum, stomach, liver, spleen, thymus, lymph nodes 

(if visible) and any other organ or tissue showing abnormalities, were collected following 

schedule 1 culling and necropsy dissection. Following standard tissue processing protocols, 

the tissue blocks were paraffin-embedded in preparation for section cutting and staining.  

In previous work, Aldh1b1 depleted mice were used as experimental subjects, along with 

wild-type control mice, under long-term (>1 year) treatment with 20% ethanol in drinking 

water or normal/standard drinking water (Müller et al., 2016). Data related to wild-type mice 

have been collected by Mike Müeller. The data on the ethanol/acetaldehyde effects in 

intestinal tumourigenesis were compared for Tamoxifen-induced Msh2-LS mice, non-

induced Msh2-LS mice and wild-type mice. The acronyms used for the mouse models and 

their relevant treatments are shown in Table 2.2. 
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Figure 4.17: Experimental treatment protocols and timelines for Group-A (water-treated) and Group-

B (ethanol-treated) mice, showing 4 days of intraperitoneal (i.p.) injections of corn oil, followed by 

either standard/normal drinking water (Group-A) or drinking water containing 20% ethanol (Group-

B). (EtOH = Ethanol). 
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4.3.2 Results 

4.3.2.1 Control group organization and observations 

In previous work, 14 WT mice (7 females and 7 males) were provided with 20% ethanol in 

drinking water and 15 WT mice (8 females and 7 males, control group) with standard/normal 

drinking water ad libitum for 1 year (Müller et al., 2016).  

Twenty-four non-induced Msh2-LS control mice were divided into two groups: 12 mice in 

Group-A (6 females and 6 males, water-treated control group) and 12 mice in Group-B (6 

females and 6 males, ethanol-treated group). Non-induced Msh2-LS animals were culled, 

necropsy dissected and tissues were collected when they reached the same end-time point 

as the experimental EtOH_Msh2fl KO mice (Chapter 4.2.2)  

During corn oil administration (daily corn oil i.p injections for 4 consecutive days), body 

weights and health status were recorded. Body weights of the female and male mice did not 

significantly differ during the corn oil treatment (Figure 4.18). The average non-induced 

Msh2-LS male body weight (approx. 33.57g) was significantly higher than the non-induced 

Msh2-LS female average body weight (approx. 24.2g) both before and during the corn oil 

treatment.  

After corn oil treatment, mice received either 20% ethanol in drinking water regime or 

standard/normal drinking water regime and the body weights and health status of the mice 

were monitored and recorded twice a week (Figure 4.19B). The average weight of 

EtOH_Msh2fl mice was 43g for males and 31g for females, and the average weight of 

H2O_Msh2fl mice was 44.3g for males and 37.3g for females. Significant differences were not 

observed between the body weights of EtOH_Msh2fl versus H2O_Msh2fl mice, regardless of 

the sex. The body weights of Tamoxifen-induced Msh2-LS mice, non-induced Msh2-LS mice, 

and WT mice were compared, during either 20% ethanol treatment or normal drinking water 

treatment (Figure 4.19A, B, C). In every study group, both female and male ethanol-treated 

Msh2-LS mice did not show significant differences in body weight, or abnormal behaviour, 

indicating good acceptance of the 20% ethanol treatment regime.  

Drinking bottles were changed and bottle weights were recorded once a week. Liquid 

consumption per mouse was estimated by analysing the weights of the drinking bottles (per 

cage) and calculating the average weight of consumed liquid per mouse per day (Figure 4.20). 

H2O_Msh2fl male mice consumed on average 12.17ml of drinking water per day, compared 
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with 7.2ml of 20% ethanol in drinking water consumed by EtOH_Msh2fl male mice. The 

difference in liquid consumption between EtOH_Msh2fl and H2O_Msh2fl males is statically 

significant (p= 0.0053). Note that, this difference was not observed in the EtOH_Msh2fl and 

H2O_Msh2fl female mice, with both groups consuming (on average) 9.2ml of water per day, 

with no significant differences observed.  

 

 

 

 

 

 

 

 

 

 

Figure 4.18: Body weights during corn oil treatment. Body weights of non-induced (no Tamoxifen) 

Msh2-LS males were significantly higher than body weights of non-induced Msh2-LS females, before 

and during corn oil treatments. 2-way-ANOVA test with Bonferroni post-test correction, p<0.0001 on 

day 1, p=0.0002 on day 2, p=0.0001 on day 3 and p=0.0015 on day 4 (data shown as mean ± SD, n=10 

mice in each group).  
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Figure 4.19: Body weights for males and females during 20% ethanol or standard/normal drinking water regimes. Body weight graphs of non-induced Msh2-LS control 

mice (A), Tamoxifen-induced Msh2-LS experimental subject mice (B), and WT mice (C) during 20% ethanol or standard/normal drinking water regimes. In each group, 

there were no significant differences between the body weights of ethanol-treated versus water-treated groups of mice for either males or females. 2-way-ANOVA 

test with Bonferroni post-test correction analysis (data shown as mean±SD, n= 26, n=14, n=14, SD too small to show as bars in some experiments, particularly towards 

the end of experiments when several mice had been culled leaving too few mice for meaningful calculation of the SD).  
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Figure 4.20: Liquid consumption of either 20% ethanol containing drinking water or standard/normal 

water per mouse per day. 2-way-ANOVA with Bonferroni post-test correction analysis, **p=0.0053 

(data shown as mean±SD).  
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4.3.2.2 Tumour development in control mice exposed to long-term ethanol 

treatment 

The intestines of these mice were analysed and compared to age- and sex-matched induced 

mice in Chapter 4 (4.2). These control mice underwent necropsy dissection and organ/tissue 

collection in the same way as the experimental mice. The histopathological analyses of the 

LI and SI of non-induced Msh2-LS control mice were performed using H&E-stained Swiss rolls. 

In Group-B (ethanol-treated cohort, EtOH_Msh2fl), 3 out of 12 (25%) EtOH_Msh2fl mice 

showed zones of crypt epithelial hyperproliferation involving only the mid colon (after 8, 10 

and 22 weeks of 20% ethanol in drinking water regime, respectively) and 1 (8.4%) showed a 

proximal colon invasive adenocarcinoma (after 28 weeks). Eight out of 12 (66.6%) 

EtOH_Msh2fl mice did not show any abnormality or intestinal adenoma formation. In Group-

A (water-treated cohort, H2O_Msh2fl), only 1 out of 12 (8.4%) H2O_Msh2fl mice showed 

intestinal adenoma formation in the proximal colon (after 22 weeks of treatment). Msh2 

expression by this adenoma was tested by IHC, but no loss of Msh2 expression was observed. 

This tumour was regarded as a sporadic adenoma, with no further tests being performed on 

it. No intestinal abnormality was observed in any of the other 11 (91.6%) H2O_Msh2fl control 

mice (Figure 4.21). The tumour incidence was then compared between Tamoxifen-induced 

Msh2-LS experimental cohort mice and non-induced Msh2-LS control mice (Figure 4.22). 

No morphological abnormalities or tumours were observed following necropsy dissection 

and histopathological analysis of the H&E-stained sections of the caecum, small intestines, 

stomach, anal canal, liver, spleen, lymph nodes and thymus, of any of the 12 EtOH_Msh2fl 

control mice or the 12 H2O_Msh2fl control mice. 

In previous work, 4 out of 14 (28.6%) ethanol-treated WT mice showed proximal colon 

adenoma formation and in one case also formation of one small intestinal adenoma after 

over a year of exposure to the 20% ethanol in drinking water regime. No other intestinal 

abnormality or tumour formation were observed in any of the other 10 out of 14 (71.4%) 

ethanol-treated WT mice. In this current investigation, no abnormalities or tumours were 

observed in either LI or SI in the 15 water-treated WT control mice during the same time 

period. No morphological abnormalities or tumours were observed following necropsy 

dissection and histopathological analysis of the H&E-stained sections of the caecum, 

stomach, liver, spleen, lymph nodes and thymus, of any of the 14 WT ethanol-treated or 15 

WT water-treated mice.  
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We next compared the intestinal tumour formation in the 6 groups of Tamoxifen-induced 

Msh2-LS experimental mice, non-induced Msh2-LS control mice and WT control mice, 

treated with either 20% ethanol in drinking water or normal/standard drinking water (Figure 

4.23). 
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Figure 4.21: A) Bar chart of the number of non-induced Msh2-LS control mice that developed intestinal 

tumours after receiving either 20% ethanol in drinking water or normal/standard drinking water. In 

both groups (water-treated cohort and ethanol-treated cohort) 1/12 (8.4%) non-induced Msh2-LS 

control mice developed large intestinal adenomas (no adenocarcinomas were observed). Fisher’s 

exact test, no significant differences observed. B) Tumour (adenoma) incidence shown as a survival 

plot in non-induced Msh2-LS control mice treated with either 20% ethanol (red) or water (blue). Log-

rank (Mantel-Cox) test, no significant differences observed. 

 

 

Figure 4.22: Tumour incidence, shown as survival plots, in non-induced Msh2-LS control mice both 

water-treated (H2O_Msh2fl) (green) and ethanol-treated (EtOH_Msh2fl) (violet), compared with 

Tamoxifen-induced Msh2-LS experimental mice, both water-treated (H2O_Msh2fl KO) (blue) and 20% 

ethanol-treated (EtOH_Msh2fl KO) (red). Log-rank (Mantel-Cox) test, **p = 0.0060 indicating significant 

differences observed between the EtOH_Msh2fl KO experimental mice and each of the three control 

cohorts. 

 



105 
 

 

Figure 4.23: Bar chart of the numbers of WT control mice, non-induced Msh2-LS control mice, and 

Tamoxifen-induced Msh2-LS experimental mice that developed intestinal tumours after receiving 

either 20% ethanol in drinking water or normal/standard drinking water. Fisher’s exact test was 

carried out to compare the effects of ethanol in the three different pairs of cohorts:  4/14 (28.6%) 

ethanol-treated WT control mice developed large intestinal tumours compared with 0/14 (0%) in 

water-treated WT control mice (*p≤0.05); 1/12 (8.4%) ethanol-treated non-induced Msh2-LS 

(EtOH_Msh2fl) control mice and 1/12 (8.4%) water-treated non-induced Msh2-LS (H2O_Msh2fl) control 

mice each developed a single large intestinal adenoma (no significant differences observed between 

these two groups); and 15/23 (65%) ethanol-treated Msh2-LS (EtOH_Msh2fl KO) experimental mice 

developed large intestinal tumours compared with 1/23 (4%) water-treated Msh2-LS (H2O_Msh2fl KO) 

experimental mice that developed large intestinal tumours, ****p<0.0001. Fisher’s exact test was 

carried out to compare the tumour incidence between ethanol-treated WT control mice and ethanol-

treated non-induced Msh2-LS (EtOH_Msh2fl) control mice (no significant differences observed 

between these two groups); ethanol-treated WT control mice and ethanol treated Msh2-LS 

(EtOH_Msh2fl KO) experimental mice (p≤0.0448) and ethanol-treated Msh2-LS experimental mice and 

ethanol-treated non-induced Msh2-LS control mice (∆∆p≤0.0066). 
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4.4 Immunohistochemical characterization of tumours and tissues from 

the Msh2-LS mouse model with and without ethanol treatment 
 

4.4.1 Methods 

We performed IHC analyses in FFPE colonic and small intestinal tissues from induced 

Lgr5CreERT2; Msh2flox/-; mTmG mice and non-induced control Lgr5CreERT2; Msh2flox/-; mTmG 

mice to verify the expression of various proteins of interest. We performed the same analysis 

on the colonic and SI tissues comparing ethanol-treated mice with water-treated mice. Small 

and large intestinal tissues were harvested, prepared as Swiss-rolls and fixed in 10% NBF (as 

described in Materials and Methods). They were processed using standard tissue processing 

protocols for paraffin wax embedding and microtome sectioning. 

IHC was performed to confirm changes to Msh2 expression (target protein) and other MMR 

proteins (Msh6, Mlh1 and Pms2), the proliferation marker Ki-67, the Wnt pathway marker 

β-Catenin, the DNA damage marker γ-H2AX and DNA damage / tumour suppressor marker 

p53, and cCas-3 a critical executioner of apoptosis. IHC for infiltrating immune cells was 

performed by Dr Seth Coffelt’s research group from the Beatson Cancer Institute in Glasgow 

(the panel of immune cell antibodies is displayed in Materials and Methods, Table 2.12) 

Immunohistochemical staining was performed using the protocols described in Materials 

and Methods (2.2.3). Staining and quantification was performed either by manually scoring 

or using the bioimage analysis software for digital pathology images, QuPath.  
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4.4.2 Results 

4.4.2.1 Mismatch Repair proteins immunostaining of Msh2-LS murine small 

intestinal and colonic tissues 

Normally, Msh2 is highly expressed in crypt stem cells and transit amplifying cells in the small 

intestinal crypts, but fades in the non-dividing differentiated SI villus cells, and similarly fades 

in the differentiated cells of the upper third of the colonic crypts (Tomé et al., 2013). 

Tamoxifen treatment induced the loss of Msh2 expression in Lgr5+ expressing crypt 

epithelial stem cells scattered along the entire small and large intestines. The Lgr5+ 

expressing stem cells, located at the bottom of the crypts, generate daughter cells that can 

expand to fill the entire crypt-villus epithelium in SI or entire crypt in the colon (Barker et al., 

2007; Wojciechowicz et al., 2014). We used colonic tissue samples of Msh2-/- and WT mice 

as Msh2-negative and -positive expression controls respectively (Figure 4.24). The lack of IHC 

DAB-brown staining in all of the SI crypts and villi and in all of the colonic crypts of the Msh2-

/- mice confirmed complete loss of Msh2 expression in the Msh2-null control tissues. In 

contrast, scattered crypts, in both SI and colon, showed Msh2 expression loss in the Msh2-

LS model mice.  

The number of Msh2-negative crypts was higher in the SI than in the colon in Msh2-LS model 

mice, however no tumours were observed in the small intestine. The number of Msh2-

negative crypts in the SI was statistically significantly higher in the EtOH_Msh2fl KO mice 

compared with the H2O_Msh2fl KO mice (Figure 4.25). In EtOH_Msh2fl KO mice, 43% Msh2-

negative small intestinal crypts were observed compared with 25.8% Msh2-negative small 

intestinal crypts found in H2O_Msh2fl KO mice (Figure 4.26).  

IHC analysis of Msh2 expression in the intestinal tissue samples from EtOH_Msh2fl mice and 

H2O_Msh2fl mice showed no Msh2-negative crypts in either small or large intestinal mucosal 

epithelium (Figure 4.27-4.28), consistent with lack of induction of Cre activity with continued 

expression of protein from the floxed Msh2 allele.  

In the colon, the number of Msh2-negative crypts was statistically significantly higher in the 

EtOH_Msh2fl KO mice compared with the H2O_Msh2fl KO mice (Figure 4.29). In EtOH_Msh2fl KO 

mice 11.2% Msh2-negative colonic crypts were observed compared with 5% Msh2-negative 

colonic crypts found in H2O_Msh2fl KO controls (Figure 4.30). EtOH_Msh2fl KO mice formed 
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some large intestinal adenomas that were characterized by Msh2-negative dysplastic glands 

often surrounded by or admixed with Msh2-positive crypts showing reactive or 

hyperproliferative changes (Figure 4.31).  

Furthermore, we performed IHC for Msh6, Mlh1 and Pms2 to investigate expression changes 

in other MMR proteins in the Msh2-LS mouse model.  

In the MMR repair pathway, a base mismatch or single nucleotide insertion/deletion (InDel) 

error is recognised by the MutSα complex, which is composed of Msh2 and Msh6 

heterodimeric proteins. In the absence of Msh2, the heterodimeric MutSα complex cannot 

be formed and Msh6 is rapidly degraded (Poulogiannis et al., 2010). We used colonic tissue 

samples of Msh2-/- and WT mice as Msh6-negative and -positive normal expression controls 

respectively (Figure 4.32). As previously observed for Msh2 IHC results (Figure 4.24), the lack 

of IHC DAB-brown staining in all of the colonic crypts of the Msh2-/- mice confirmed complete 

loss of Msh6 expression, whereas wild-type murine colonic epithelium showed DAB-brown 

staining in all of the colonic crypts, with the typical MMR protein expression gradient of 

staining, with strong MMR staining at the crypt base, with decreased staining towards the 

lumen of the intestine. IHC analysis of Msh6 was performed on large and small intestinal 

tissue from both Tamoxifen-induced Msh2-LS mice and non-induced (no Tamoxifen 

treatment) Msh2-LS mice. These samples showed Msh6-negative crypts scattered along both 

SI and colon of Tamoxifen-induced Msh2-LS mice (Figure 4.33). IHC analysis of Msh6 

expression in the intestinal tissue samples from non-induced Msh2-LS mice showed no 

Msh6-negative crypts in either small or large intestinal mucosal epithelium (Figure 4.33).  

The MutLα complex, composed of Mlh1 and Pms2, is recruited by the binding of MutSα 

(composed by Msh2 and Msh6) to the mismatched or InDel DNA lesion. The absence of Msh2 

does not inhibit or modify the expression of Mlh1 or Pms2 (Poulogiannis et al., 2010). Colonic 

tissue samples of Msh2-/- and WT mice were used as expression controls for Mlh1 (Figure 

4.34). The DAB-brown staining was observed in the typical MMR protein expression pattern 

in all of the colonic crypts of both Msh2-/- and WT murine colonic tissue. We verified Mlh1 

expression in large and small intestinal tissue from both Tamoxifen-induced Msh2-LS mice 

and non-induced Msh2-LS mice. These samples showed normal Mlh1 expression in both 

colonic and small intestinal crypts of Tamoxifen-induced Msh2-LS mice and non-induced 

Msh2-LS mice (Figure 4.35). The immunostaining for Pms2 proved to be technically 
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problematic due to antibody failure and it was not possible to determine the staining pattern 

for Pms2 (Supplementary Figure 4.10).  

 

 

 

 

 

 

Figure 4.24: Immunohistochemical analysis of Msh2 protein expression in large intestinal mucosal 

epithelium from a positive-control WT mouse (A), in which the brown staining indicates positive Msh2 

expression in all crypts (further magnified in the upper right inset red rectangle); and from a negative-

control Msh2-/- mouse (B), in which the lack of brown staining confirms the absence of Msh2 

expression in large intestinal mucosal epithelium (further magnified in the upper right inset red 

rectangle). Images taken from anti-Msh2 IHC stained sections scanned using the Hamamatsu 

Nanozoomer and analysed with the Hamamatsu NDP Viewer software at 10X and 20X magnification 

(bar at lower left indicates 250μm, bar in red rectangle indicates 100μm).  
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Figure 4.25: Immunohistochemical analysis of Msh2 protein expression in small intestinal mucosal epithelium of Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-mice treated with either 20% 

ethanol in drinking water (A) or normal / standard drinking water (B). Msh2-negative crypts (indicated by the red arrows) were manually counted along the entire small intestine 

of treated Msh2-LS mice (C). Paired Students t Test, **p= 0.0044 vs. water (data shown as mean±SD, n=6 mice in each group). Images taken from sections scanned using the 

Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP Viewer software at 10X magnification (bar at lower left indicates 250μm).
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Figure 4.26: Percentage of Msh2 protein-non-expressing crypts in small intestinal mucosa of Msh2flox/-; 

Lgr5CreERT2+/-; mTmG+/-mice treated with either 20% ethanol in drinking water or normal water. Paired 

Students t Test, ****p<0.0001 vs. water (data shown as mean±SD, 300 crypts counted were analysed, n=6 

mice from each group).  

 

 

Figure 4.27: Immunohistochemical analysis of Msh2 protein expression in large intestinal mucosal 

epithelium of non-induced Msh2-LS control mice treated with either 20% of ethanol in drinking water (A) 

or normal / standard water (B). No Msh2-negative crypts were observed along the entire colon of non-

induced Msh2-LS mice (n=6 mice in each group). Images taken from sections scanned using the 

Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP Viewer software at 10X and 20X 

magnification (bar at lower left indicates 250μm, bar in red rectangle indicates 100μm).   
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Figure 4.28: Immunohistochemical analysis of Msh2 protein expression in small intestinal mucosal 

epithelium of non-induced Msh2-LS control mice treated with either 20% ethanol in drinking water (A) or 

normal / standard drinking water (B). No Msh2-negative crypts were observed along the entire small 

intestine of non-induced Msh2-LS mice (n=6 mice in each group). Images taken from sections scanned 

using the Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP Viewer software at 10X 

magnification (bar at lower left indicates 250μm).   
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Figure 4.29: Immunohistochemical analysis of Msh2 protein expression in large intestinal mucosal epithelium of Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-mice treated with either 20% 

ethanol in drinking water (A) or normal/standard water (B). Msh2-negative crypts (indicated by the red square and further magnified in the upper right inset red rectangle in 

Figure panels A and B) were manually counted along the entire colon of treated Msh2-LS mice (C). Mann-Whitney U Test, **p=0.0097 vs. water (data shown as mean±SD, n=6 

mice each group). Images taken from sections scanned using the Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP Viewer software at 10X and 20X magnification 

(bar at lower left indicates 250um, bar in red rectangle indicates 100μm)
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Figure 4.30: Percentage of Msh2 protein-non-expressing crypts in large intestinal mucosa of Msh2flox/-

; Lgr5CreERT2+/-; mTmG+/-mice treated with either 20% ethanol in drinking water or normal/standard 

water. Paired Students t Test, **p=0.0029 vs. water (data shown as mean±SD, 300 crypts counted in 

n=6 mice from each group).  

 

 

 

Figure 4.31: Representative images of Msh2 immunohistochemical staining in two large intestinal 

adenomas from 2 ethanol-treated Msh2flox/-; Lgr5CreERT2+/-; mTmG+/- (EtOH_Msh2fl KO) mice (A & B). 

In both examples, there are Msh2-negative dysplastic or adenomatous glands, either surrounded by 

or admixed with reactive crypts or hyperproliferative crypts that are staining positively for Msh2. 

Images taken from sections scanned using the Hamamatsu Nanozoomer and analysed with the 

Hamamatsu NDP Viewer software at 10X magnification (bar at lower left indicates 250μm). 
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Figure 4.32: Immunohistochemical analysis of Msh6 protein expression in large intestinal mucosal 

epithelium from a positive-control WT mouse (A), in which the brown staining indicates positive Msh6 

expression in all crypts (further magnified in the upper right inset red rectangle); and from a negative-

control Msh2-/- mouse (B), in which the lack of brown staining confirms the absence of Msh6 

expression in large intestinal mucosal epithelium (further magnified in the upper right inset red 

rectangle). Images taken from anti-Msh6 IHC stained sections scanned using the Hamamatsu 

Nanozoomer and analysed with the Hamamatsu NDP Viewer software at 10X and 20X magnification 

(bar at lower left indicates 250μm, bar in red rectangle indicates 100μm).  
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Figure 4.33: Immunohistochemical analysis of Msh6 protein expression in large and small intestinal 

mucosal epithelium of Tamoxifen-induced Msh2flox/-; Lgr5CreERT2+/-; mTmG+/- mice (A and C) and non-

induced Msh2flox/-; Lgr5CreERT2+/-; mTmG+/- (B and D). Tamoxifen-induced Msh2-LS mice showed 

Msh6-negative crypts in colonic intestinal  mucosal epithelium (indicated by the red square and 

further magnified in the upper right inset red rectangle in figure panel A) and small intestinal mucosal 

epithelium (indicated by the red arrows in figure panel C). No Msh6-negative crypts were observed in 

both large and small intestinal mucosal epithelium (B and D respectively) of non-induced Msh2-LS 

mice. Images taken from sections scanned using the Hamamatsu Nanozoomer and analysed with the 

Hamamatsu NDP Viewer software at 10X and 20X magnification (bar at lower left indicates 250μm, 

bar in red rectangle indicates 100μm). 
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Figure 4.34: Immunohistochemical analysis of Mlh1 protein expression in large intestinal mucosal 

epithelium from WT mouse (A) and from Msh2-/- mouse (B), in which the brown staining indicates 

positive Mlh1 expression in all crypts (further magnified in the upper right inset red rectangle in figure 

panels A and B). Images taken sections scanned using the Hamamatsu Nanozoomer and analysed with 

the Hamamatsu NDP Viewer software at 10X and 20X magnification (bar at lower left indicates 250μm, 

bar in red rectangle indicates 100μm).  
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Figure 4.35: Immunohistochemical analysis of Mlh1 protein expression in large and small intestinal 

mucosal epithelium of Tamoxifen-induced Msh2flox/-; Lgr5CreERT2+/-; mTmG+/- mice (A and C) and non-

induced Msh2flox/-; Lgr5CreERT2+/-; mTmG+/- (B and D). Normal Mh1 expression was observed in both 

colonic mucosal epithelium (indicated by the red square and further magnified in the upper right inset 

red rectangle in figure panels A and B) and small intestinal mucosal epithelium (C and D) of both 

Tamoxifen-induced Msh2-LS mice and non-induced Msh2-LS mice. Images taken from sections 

scanned using the Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP Viewer software 

at 10X and 20X magnification (bar at lower left indicates 250μm, bar in red rectangle indicates 100μm). 
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4.4.2.2 Ki-67 immunostaining of Msh2-LS murine small intestinal and colonic 

tissues 

The Ki-67 protein is a cellular marker for proliferation. During active phases of the cell 

cycle (part of G1, S, and G2 phases), the Ki-67 antigen can be detected within the cell 

nucleus, whereas in mitosis (M phase) most of the protein is relocated to the surface of 

the condensed chromosomes (and the nuclear membrane disappears during most of M 

phase). Previous studies have shown that Ki-67 is present in proliferating cells, but it is absent 

in quiescent cells (Gerdes et al., 1984). Detection of Ki-67 by IHC may be performed to 

determine proliferative activity that may be predictive of some tumour behaviour. In normal 

large and small intestinal tissue, Ki-67 is expressed only in the proliferating cells at the base 

of crypts (Johnston et al., 1989). 

IHC analysis of Ki-67 showed large and significant differences in the number of intestinal 

Ki67-positive cells between the EtOH_Msh2fl KO murine colon and the H2O_Msh2fl KO murine 

colon (Figure 4.36). The percentage of Ki-67-positive cells per crypt was significantly higher 

in EtOH_Msh2fl KO mice (75.76%) compared with H2O_Msh2fl KO mice (19.64%) (Figure 4.37). 

This is due to the large regions of mucosal crypt hyperproliferation found in ethanol-treated 

murine colons (Figure 4.6).   

The comparative analysis of SI Ki-67 expression between EtOH_Msh2fl KO and H2O_Msh2fl KO 

mice didn’t show the same large differences. EtOH_Msh2fl KO murine SI showed similar 

numbers of Ki-67-positive cells per crypt when compared with H2O_Msh2fl KO mice SI, with 

no significant differences observed between the two groups (Figure 4.38). The percentage 

of Ki-67-positive cells per crypt was significantly higher in SI of EtOH_Msh2fl KO mice (12.21%) 

compared with H2O_Msh2fl KO mice (8.7%), but with only a small difference between the two 

groups (Figure 4.39).  

 

https://en.wikipedia.org/wiki/Cell_cycle
https://en.wikipedia.org/wiki/Cell_cycle
https://en.wikipedia.org/wiki/Antigen
https://en.wikipedia.org/wiki/Cell_nucleus
https://en.wikipedia.org/wiki/Cell_nucleus
https://en.wikipedia.org/wiki/Mitosis
https://en.wikipedia.org/wiki/Chromosomes
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Figure 4.36: Immunohistochemical analysis of Ki-67 protein expression in large intestinal mucosal epithelium of Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-mice treated with either 20% 

of ethanol in drinking water (A) or normal/standard water (B). Numbers of Ki-67-positive cells per colonic crypt (further magnified in the upper right inset red rectangle in figure 

panels A and B) were counted using QuPath (C). Paired Students t Test, ****p<0.0001 vs. water (data shown as mean±SD, 30 crypts per mouse were analysed, n=6 mice in each 

group). Images taken from sections scanned using the Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP Viewer software at 10X and 20X magnification (bar at 

lower left indicates 250μm, bar in red rectangle indicates 100μm). 
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Figure 4.37: Percentage of Ki-67 protein expressing cells in large intestinal mucosal crypts of Msh2flox/-; 

Lgr5CreERT2+/-; mTmG+/-mice treated with either 20% ethanol in drinking water or normal / standard 

water. Paired Students t Test, ****p<0.0001 vs. water (data shown as mean±SD, 30 crypts per mouse 

counted, n=6 mice from each group). 
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Figure 4.38: Immunohistochemical analysis of Ki-67 protein expression in small intestinal mucosa of Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-mice treated with either 20% ethanol in 

drinking water (A) or normal / standard drinking water (B). Ki-67-positive cells per colonic crypt/villus were counted using QuPath (C). Paired Students t Test, (data shown as 

mean±SD, 30 crypts/villi per mouse were analysed, n=6 mice in each group).No statistical differences were observed. Images taken from sections scanned using the Hamamatsu 

Nanozoomer and analysed with the Hamamatsu NDP Viewer software at 10X magnification (bar at lower left indicates 250μm).  
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Figure 4.39: Percentage of Ki-67 protein expressing cells in small intestinal mucosa of Msh2flox/-; 

Lgr5CreERT2+/-; mTmG+/-mice treated with either 20% ethanol in drinking water or normal / standard 

water. Paired Students t Test, *p=0.0172 vs. water (data shown as mean±SD, 30 crypts per mouse 

counted, n=6 mice from each group).  
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4.4.2.3 Beta-Catenin immunostaining of Msh2-LS murine small intestinal and 

colonic tissues 

β-catenin is the key effector in the intracellular signal transduction of the Wnt signalling 

pathway (Cong et al., 2003). Normal colorectal tissue exhibits membranous and cytoplasmic 

localisation of β-catenin, whereas colorectal adenoma/adenocarcinoma shows nuclear β-

catenin localization and thus β-catenin is regarded as a useful CRC biomarker (Lugli et al., 

2007). 

β-catenin IHC was performed with assistance from Marion Bacou using large intestinal 

samples from Apc Min mice that contained large intestinal adenomas (provided by Vidya 

Rajasekaran), and WT mice as β-catenin-positive and β-catenin-normal expression controls 

respectively (Figure 4.40). Whereas wildtype murine colonic epithelium showed 

membranous and cytoplasmic β-catenin light immunostaining, indicating absent activation 

of the Wnt signalling pathway, the Apc-Min murine adenomas showed increased brown 

nuclear β-catenin immunostaining in variable numbers of adenoma cells in a heterogeneous 

pattern, confirming dysregulation of Wnt signalling in this neoplastic intestinal epithelium. 

The IHC analysis of β-catenin was performed on large intestinal adenomas and caecal 

adenomas from Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-mice. Analysed samples showed a 

heterogeneous pattern with variable numbers of adenoma cells showing positive β-catenin 

nuclear immunostaining due to accumulation and translocation of β-catenin in the nuclei 

(Figure 4.41).  
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Figure 4.40: Immunohistochemical analysis of β-catenin protein expression and localisation in large 

intestinal mucosal adenoma and adjacent normal epithelium from a positive-control Apc Min mouse 

(A), in which the increased brown nuclear β-catenin staining in variable numbers of adenoma cells in 

a heterogeneous pattern confirms dysregulation of Wnt signalling in this neoplastic intestinal 

epithelium (further magnified in the red rectangle); and from a  normal control WT mouse (B), in which 

the membranous and cytoplasmic β-catenin light staining indicates normal large intestinal mucosal 

epithelium without activation of the Wnt signalling pathway (further magnified in the red rectangle). 

Images taken from sections scanned using the Hamamatsu Nanozoomer and analysed with the 

Hamamatsu NDP Viewer software at 10X and 20X magnification (bar at lower left indicates 250μm, 

bar in red rectangle indicates 100μm). 
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Figure 4.41: Representative images of immunohistochemical analysis of β-catenin protein expression and localisation in intestinal adenomas of Msh2flox/-; 

Lgr5CreERT2+/-; mTmG+/-mice treated with 20% ethanol in drinking water. Variable areas of positive β-catenin nuclear immunostaining in adenomatous cells were 

observed in both caecal adenomas (A) and colonic adenomas (B and C), indicated by the red ovals. Selected areas (red ovals) within images in panels A-C are further 

magnified in panels D-F, and clusters of positive β-catenin nuclei are indicated by the red arrows. Images taken from sections scanned using the Hamamatsu 

Nanozoomer and analysed with the Hamamatsu NDP Viewer software at 10X and 40X magnification (bar at lower left indicates 250μm and 50 μm). 
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4.4.2.4 DNA damage response evaluation by immunohistochemistry of Msh2-LS 

murine small intestinal and colonic tissues 

4.4.2.4.1 DNA damage response evaluation by Gamma-H2AX immunostaining of Msh2-LS 

murine small intestinal and colonic tissues 

In order to evaluate the presence and extent of DNA damage, y-H2AX immunostaining was 

used. Y-H2AX is the key player in signalling and activating DNA damage repair pathways and 

for this it is considered a specific molecular marker for monitoring DNA damage (Mah et al., 

2010).  

We used colonic tissue samples from WT mice and TMZ-treated Msh2-LS mice as negative 

and positive y-H2AX expression controls respectively (Figure 4.42). The lack of IHC DAB-

brown staining in all of the colonic crypts of the WT mice confirmed the lack of y-H2AX 

expression. In contrast, the widespread presence of IHC DAB-brown staining in colonic crypts 

of the TMZ-treated Msh2-LS murine colon confirmed positive y-H2AX immunostaining 

technique. 

IHC analysis of y-H2AX showed large and significant differences in the number of intestinal 

y-H2AX-positive cells between the EtOH_Msh2fl KO murine colon and the H2O_Msh2fl KO 

murine colon (Figure 4.43). The percentage of y-H2AX-positive cells per crypt was 

significantly higher in EtOH_Msh2fl KO mice (35%) compared with H2O_Msh2fl KO mice (0.4%) 

(Figure 4.43C), consistent with ethanol/acetaldehyde induced DNA damage. The 

comparative analysis of SI y-H2AX expression between EtOH_Msh2fl KO and H2O_Msh2fl KO 

mice didn’t show any differences, as EtOH_Msh2fl KO and H2O_Msh2fl KO murine SI showed no 

y-H2AX-positive cells (Figure 4.44). EtOH_Msh2fl KO murine large intestinal adenomas showed 

high y-H2AX expression (Figure 4.45). 
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Figure 4.42: Immunohistochemical analysis of y-H2AX protein expression in large intestinal mucosal 

epithelium from a negative-control WT mouse (A), in which the lack of DAB brown staining indicates 

negative y-H2AX expression in all crypts (further magnified in the upper right inset red rectangle); and 

from a positive-control TMZ-treated Msh2-LS mouse (B), in which the brown staining confirms the 

presence of y-H2AX expression in large intestinal mucosal epithelium consistent with TMZ-induced 

widespread DNA damage (further magnified in the upper right inset red rectangle). Images taken from 

sections scanned using the Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP Viewer 

software at 10X and 20X magnification (bar at lower left indicates 250μm, bar in red rectangle 

indicates 100μm).  
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Figure 4.43: Immunohistochemical analysis of y-H2AX protein expression in large intestinal mucosal epithelium of Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-mice treated with 

either 20% ethanol in drinking water (A) or normal/standard water (B). Gamma-H2AX-positive cells in colonic crypts (further magnified in the upper right inset red 

rectangle in figure panel A) were observed in ethanol-treated Msh2-LS (EtOH_Msh2fl KO) mice but not in water-treated Msh2-LS (H2O_Msh2fl KO) mice (further magnified 

in the upper right inset red rectangle in figure panel B). Numbers of y-H2AX-positive cells per colonic crypt were counted using QuPath (C) showing a large and 

statistically significant difference. Paired Students t-Test, ***p<0.0009 vs. water (data shown as mean±SD, 40 crypts per mouse were analysed, n=4 mice in each group). 

Images taken from sections scanned using the Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP Viewer software at 10X and 20X magnification (bar 

at lower left indicates 250μm, bar in red rectangle indicates 100μm). 
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Figure 4.44: Immunohistochemical analysis of y-H2AX protein expression in small intestinal mucosa of 

Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-mice treated with either 20% ethanol in drinking water (A) or 

normal / standard drinking water (B). No y-H2AX-positive cells were observed in either sample. Images 

taken from sections scanned using the Hamamatsu Nanozoomer and analysed with the Hamamatsu 

NDP Viewer software at 10X magnification (bar at lower left indicates 250μm).  

 

 
Figure 4.45: Representative images of y-H2AX immunohistochemical staining in a caecal adenoma (A) 

and a large intestinal adenoma (B) from 2 ethanol-treated Msh2flox/-; Lgr5CreERT2+/-; mTmG+/- mice. In 

both examples, there are numerous y-H2AX-positive cells within the regions of dysplastic cells in the 

adenomas. Images taken from sections scanned using the Hamamatsu Nanozoomer and analysed with 

the Hamamatsu NDP Viewer software at 10X magnification (bar at lower left indicates 250μm). 
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4.4.2.4.2 DNA damage response evaluation by p53 immunostaining of Msh2-LS murine 

small intestinal and colonic tissues 

The presence of DNA damage induces p53 pathway activation, and this is involved in 

maintaining genomic stability following DNA damage (and other stimuli) via transcriptional 

activation of a variety of response pathways, such as apoptosis, cell cycle arrest and DNA 

repair (Levine, 1997; Williams & Schumacher, 2016).  Upon DNA damage, increased p53 

levels are detected in the cell which can be demonstrated immunohistochemically as a 

greater proportion of cells containing moderate to high (but variable) nuclear staining of p53 

in individual cells (referred as p53 “wildtype pattern”) (Köbel et al., 2016; Lakin & Jackson, 

1999). 

We used colonic tissue samples from WT mice and TMZ-treated Msh2-LS mice as p53-normal 

and p53-positive expression (resulting from TMZ-induced DNA damage) controls respectively 

(Figure 4.46). Whereas wildtype murine colonic epithelium showed membranous and 

cytoplasmic p53 light immunostaining, indicating low-level non-induced expression of p53, 

the TMZ-treated Msh2-LS murine colonic epithelium showed moderately to highly increase 

brown nuclear p53 immunostaining in variable numbers of cells, confirming p53-DNA 

damage response activation.   

IHC analysis of p53 showed large and significant differences in the number of intestinal p53-

positive cells between the EtOH_Msh2fl KO murine colon and the H2O_Msh2fl KO murine colon 

(Figure 4.7). The percentage of cells with either moderate or high levels of p53-positive 

nuclear staining per crypt was significantly higher in EtOH_Msh2fl KO mice (41.3%) compared 

with H2O_Msh2fl KO mice (10.8%) (Figure 4.47C), consistent with ethanol/acetaldehyde 

induced DNA damage. 

The percentage of small intestinal p53-positive cells per crypt was higher in EtOH_Msh2fl KO 

mice (15%) compared with H2O_Msh2fl KO mice (5.2%) (Figure 4.48). EtOH_Msh2fl KO murine 

large intestinal adenomas, both colonic and caecal, showed high percentages of p53-positive 

cells, with variably moderate to high nuclear p53 positivity and some negative nuclei in a 

“p53 wildtype” pattern indicative of widespread response to DNA damage, rather than a 

“p53 overexpression” or “p53 null” pattern associated with p53 mutation (Figure 4.49). 
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Figure 4.46: Immunohistochemical analysis of p53 protein expression and localisation in large 

intestinal mucosal normal epithelium from a  normal control WT mouse (A), in which the membranous 

and cytoplasmic p53 light staining indicates normal low-level non-induced p53 expression  (further 

magnified in the red rectangle); and from  a positive-control TMZ-treated Msh2-LS mouse (B), in which 

the increased brown nuclear p53 staining in variable numbers of colonic epithelial cells confirms the 

presence of DNA damage (further magnified in the red rectangle). Images taken from sections scanned 

using the Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP Viewer software at 10X 

and 20X magnification (bar at lower left indicates 250μm, bar in red rectangle indicates 100μm).
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Figure 4.47: Representative images of immunohistochemical analysis of p53 protein expression in large intestinal mucosal epithelium of Msh2flox/-; Lgr5CreERT2+/-; 

mTmG+/-mice treated with either 20% ethanol in drinking water (A) or normal/standard water (B). The percentage of positive p53-positive nuclei in colonic crypts in 

ethanol-treated Msh2-LS (EtOH_Msh2fl KO) mice (further magnified in the upper right inset red rectangle in figure panel A) was higher compared with water-treated 

Msh2-LS (H2O_Msh2fl KO) mice (further magnified in the upper right inset red rectangle in figure panel B). Numbers of cells with positive p53 nuclear staining per colonic 

crypt were counted using QuPath (C), showing a statistically significant difference. Paired Students t-Test, **p<0.0011 vs. water (data shown as mean±SD, 40 crypts 

per mouse were analysed, n=4 mice in each group). Images taken from sections scanned using the Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP 

Viewer software at 10X and 20X magnification (bar at lower left indicates 250μm, bar in red rectangle indicates 100μm). 
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Figure 4.48: Representative images of immunohistochemical analysis of p53 protein expression in small intestinal mucosal epithelium of Msh2flox/-; Lgr5CreERT2+/-; 

mTmG+/-mice treated with either 20% ethanol in drinking water (A) or normal/standard water (B). The percentage of positive p53-nuclear stained cells in small intestinal 

crypts was higher in ethanol-treated Msh2-LS (EtOH_Msh2fl KO) mice compared with water-treated Msh2-LS (H2O_Msh2fl KO) mice. Numbers of cells with positive p53 

nuclear staining per small intestinal crypt were counted using QuPath (C), showing a statistically significant difference. Paired Students t-Test, ***p<0.0008 vs. water 

(data shown as mean±SD, 40 crypts per mouse were analysed, n=4 mice in each group). Images taken from sections scanned using the Hamamatsu Nanozoomer and 

analysed with the Hamamatsu NDP Viewer software at 10X magnification (bar at lower left indicates 250μm).
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Figure 4.49: Representative images of p53 immunohistochemical staining in a colonic adenoma (A) 

and a caecal adenoma (B), from ethanol-treated 2 Msh2flox/-; Lgr5CreERT2+/-; mTmG+/- mice. In both 

examples, there are numerous p53-positive nuclei (variably moderate to high p53 nuclear staining 

with some p53-negative nuclei) within the regions of dysplastic cells in the adenomas. Images are 

further magnified in panels C and D. Images taken from sections scanned using the Hamamatsu 

Nanozoomer and analysed with the Hamamatsu NDP Viewer software at 10X and 40X magnification 

(bar at lower left indicates 250μm and 50 μm). 
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4.4.2.5 Cleaved Caspase-3 immunostaining of Msh2-LS murine small intestinal and 

colonic tissues 

Caspase-3 (Cas3) is a key executive member of the caspase cascade, with cysteine-aspartic 

acid protease activity, that acts as one of the key effectors of cell death by apoptosis. IHC for 

cCas3 was performed to detect the incidence of apoptotic events in tumour and normal 

tissue samples from EtOH_Msh2fl KO mice and H2O_Msh2fl KO mice. Colonic mucosal tissue 

samples from WT mice and TMZ-treated Msh2-LS mice were used as negative and positive 

controls respectively (Figure 4.50). In WT murine colonic mucosal epithelium, almost no 

apoptotic bodies were detected, apart from rare occurrences, indicating rare apoptotic 

events detectable in normal colonic mucosal epithelium. In contrast, the TMZ-treated Msh2-

LS murine colonic mucosal epithelium showed increased easily detectable apoptotic bodies, 

mostly at or around the bases of colonic crypts, confirming that apoptotic events occurred 

in association with TMZ-exposure of the colonic mucosal epithelium. 

IHC analysis of cCas3 with quantification of cCas3-positive apoptotic bodies, showed 

significant differences in the numbers of cCas3-positive apoptotic bodies per 30 colonic 

crypts per mouse between the EtOH_Msh2fl KO murine colonic epithelium and the 

H2O_Msh2fl KO murine colonic epithelium, with significantly higher number of cCas3+ 

apoptotic bodies in EtOH_Msh2fl KO mice compared with no detectable cCas3+ apoptotic 

bodies in H2O_Msh2fl KO mice (Figure 4.51), consistent with increased apoptosis associated 

with colonic epithelial exposure to ethanol/acetaldehyde. EtOH_Msh2fl KO murine large 

intestinal adenomas showed no detectable cCas3+ apoptotic bodies, indicating rare to no 

apoptotic events in dMMR colonic tumours (Figure 4.52). 

IHC analysis of cCas3 of EtOH_Msh2fl KO murine small intestinal epithelium and the 

H2O_Msh2fl KO murine small intestinal epithelium failed on technical grounds.  
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Figure 4.50: Immunohistochemical analysis of cCas3. In a representative WT negative control mouse 

(A), the lack of brown staining indicates absence of cCas3 positivity, reflecting the absence of apoptotic 

bodies in the colonic crypt epithelium analysed here (further magnified in the upper right inset red 

rectangle). In a representative TMZ-treated Msh2-LS positive control mouse (B), in the large intestinal 

mucosal crypt epithelium (mostly in the lower third of the crypt), there are scattered strongly brown 

staining apoptotic bodies with small round condensed chromatin nuclear particles typical of 

apoptosis, that are strongly positive for cCas3, on a background of pale brown non-specific staining of 

cellular cytoplasm (further magnified in the upper right inset red rectangle). Images taken from 

sections scanned using the Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP Viewer 

software at 10X and 20X magnification (bar at lower left indicates 250μm, bar in red rectangle 

indicates 100μm). 
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Figure 4.51: Representative images of immunohistochemical analysis of cCas3 in large intestinal mucosal epithelium of induced Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-mice 

treated with either 20% ethanol in drinking water (A), or normal/standard water (B). The number of apoptotic bodies positive for cCas3 in the colonic crypts of ethanol-

treated Msh2-LS (EtOH_Msh2fl KO) mice (further magnified in the upper right inset red rectangle in figure panel A) was significantly higher compared with that for 

water-treated Msh2-LS (H2O_Msh2fl KO) mice, in which no apoptotic bodies were detected (further magnified in the upper right inset red rectangle in figure panel B). 

Numbers of cCas3-positive apoptotic bodies per colonic crypt were counted manually (C), showing a statistically significant difference. Paired Students t-Test, 

**p=0.0026 vs. water (data shown as mean±SD, 30 crypts per mouse were analysed, n=3 mice in each group). Images taken from sections scanned using the Hamamatsu 

Nanozoomer and analysed with the Hamamatsu NDP Viewer software at 10X and 20X magnification (bar at lower left indicates 250μm, bar in red rectangle indicates 

100μm).
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Figure 4.52: Representative images of immunohistochemical analysis of cCas3 in 2 large intestinal 

adenomas (A and B), from 2 ethanol-treated Msh2flox/-; Lgr5CreERT2+/-; mTmG+/- mice. In both 

examples, there are almost no apoptotic bodies within the regions of dysplastic cells in the adenomas, 

indicating rare apoptotic events detectable in dMMR colonic adenoma. Images are further magnified 

in panels C and D. Images taken from sections scanned using the Hamamatsu Nanozoomer and 

analysed with the Hamamatsu NDP Viewer software at 10X and 40X magnification (bar at lower left 

indicates 250μm and 50 μm). 
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4.4.2.6 Immune cells infiltrating caecal adenomas from the Msh2-LS murine model 

The immune system has an important role in tumour incidence, prognosis and response to 

immunotherapy (Gonzalez et al., 2018). In dMMR cells, predictable mutations can and do 

occur in repetitive protein coding sequences and result in frameshift peptides (FSPs) 

(Sæterdal et al., 2001). Such FSPs are novel antigens and elicit both humoral and cellular 

immune responses, which are seen as tumour-infiltrating lymphocytes (TILs) around the 

dMMR crypts in LS patients as well as in dMMR cancers, both sporadic and due to LS 

(Linnebacher et al., 2001; Reuschenbach et al., 2010; Seth et al., 2018). 

To characterize the immune system response to Msh2-LS murine intestinal dMMR tumours, 

these were studied immunohistochemistry for a range of infiltrating immune cells, in 

collaboration with Dr. Seth Coffelt from the Beatson Cancer Institute, Glasgow. A panel of 

antibodies to B-cell markers, T-cell markers and macrophage markers (listed in Materials and 

Methods, Table 2.12) was selected and used to immunohistochemically investigate well-

fixed caecal adenomas from the Msh2-LS model.  

Pilot immunohistochemistry experiments were performed on EtOH_Msh2fl KO caecal 

adenomas. Positive immunostaining was observed for CD4 (murine T-helper cells), B220 

(murine-specific B cells), CD8 (T-cytotoxic cells), F480 (murine macrophages) and Ly6G 

(murine myeloid cells including monocytes, macrophages, granulocytes, neutrophils) in the 

stroma surrounding the dysplastic crypts in EtOH_Msh2fl KO caecal adenomas. By contrast, 

we detected very few cells or no positive cells by immunostaining for any of the above 

immune cell markers in Msh2-LS murine morphologically normal caecal mucosa or 

surrounding stroma (Figure 4.53). These observations are consistent with an active immune 

response to dMMR adenomatous epithelial glands in this model. These pilot experiments 

were discontinued as a result of the COVID-19 restrictions on wet bench lab work.  
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Figure 4.53: Representative images of immunohistochemical analysis of infiltrating immune cells in 

caecal adenomas and normal caecal mucosa, from ethanol-treated Msh2flox/-; Lgr5CreERT2+/-; mTmG+/- 

mice. The images show DAB-brown staining for CD4, B220, CD8, F4/80 and Ly6G in Msh2-LS caecal 

neoplastic tissue (left column) compared with very few or no positive cells in Msh2-LS caecal normal 

tissue (right column). Images taken from sections scanned using the Hamamatsu Nanozoomer and 

analysed with the Hamamatsu NDP Viewer software at 10X and 40X magnification (bar at lower left 

indicates 250μm and 50 μm). 
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4.5 Plasma acetaldehyde concentrations from the Msh2-LS mouse 

model with and without ethanol treatment. 

 
4.5.1 Methods 

During the dissection procedure, blood was harvested from the Msh2-LS mice by post-

mortem cardiac puncture. Blood was collected in a heparinized tube and centrifuged at 3000 

X g for 15 min at 4֯C to allow blood fractionation. Acetaldehyde is a highly volatile compound, 

classified as a volatile organic compound (VOC) (Missia et al., 2010; Sarigiannis et al., 2011). 

To preserve the acetaldehyde concentration, plasma was collected in cryo-tubes and 

immediately snap-frozen in liquid nitrogen and stored at −80 ֯C until analysis. Plasma samples 

were analysed in a single batch and plasma acetaldehyde concentrations were determined 

using an enzymatic acetaldehyde assay kit (K-ACHYD; Megazyme), as described in Materials 

and Methods.  

 

4.5.2 Results 

Plasma acetaldehyde levels were analysed comparing samples from EtOH_Msh2fl KO mice and 

H2O_Msh2fl KO mice as well as comparing these with EtOH_Msh2fl mice and H2O_Msh2fl mice 

after long term ethanol treatment (experimental mice were treated with ethanol for 

between 8 and 48 weeks prior to sacrifice). 

Plasma acetaldehyde levels were significantly higher in EtOH_Msh2fl KO mice compared with 

H2O_Msh2fl KO mice (p=0.0019) (Figure 4.54). The difference in plasma acetaldehyde levels 

between EtOH_Msh2fl mice and H2O_Msh2fl mice did not show any statistically significant 

difference. This is probably due to the small number of samples (n=4) used in the plasma 

acetaldehyde assay of non-induced Msh2-LS mice. Plasma acetaldehyde levels in 

EtOH_Msh2fl KO mice were slightly higher compared with EtOH_Msh2fl mice, but this 

difference was not statistically significant.  
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Figure 4.54: Plasma acetaldehyde concentrations in ethanol-treated Tamoxifen-induced Msh2-LS 

(EtOH_Msh2fl KO) and water-treated Tamoxifen-induced Msh2-LS (H2O_Msh2fl KO) mice and ethanol-

treated non-induced Msh2-LS (EtOH_Msh2fl) and water-treated non-induced Msh2-LS (H2O_Msh2fl) 

mice, after long-term ethanol or water treatment. Mann-Whitney U-test was carried out to compare 

EtOH_Msh2fl KO and H2O_Msh2fl KO mice (**p=0.0019) (data shown as mean±SD, n=4-6 plasma samples 

per group).  
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4.6 Detection of Microsatellite instability in Msh2-LS mouse model  

4.6.1 Methods 

Deficiency of MMR leads to hypermutability, resulting in an increase in the mutation rate by 

100- to 1000-fold due to uncorrected base mismatches and to MSI detected as variation in 

the lengths of repetitive sequences (e.g. AAAAAAA… or CACACACA…. or similar, known as 

microsatellites) due to uncorrected insertion/deletion loops that are prone to occur as DNA 

replication errors in repetitive sequences (Poulogiannis et al., 2010). Detection of MSI in 

tumours from the Msh2-LS mouse model was performed.  

We selected from the literature a panel of mononucleotide repeat murine microsatellite 

markers (A27, A33, mBat26, mBat37 and mBat59, primers sequences in Materials and 

Methods, Table 2.6) (Bacher et al., 2005; Kabbarah et al., 2003; Zou et al., 2012). In MMR-

deficient mice, mononucleotide repeats showed high sensitivity for detection of MSI and 

MMR-deficient neoplasms exhibit more frequent instability in mononucleotide repeats than 

dinucleotide repeats (Kabbarah et al., 2003).  

Large intestinal adenomas from Msh2flox/-; Lgr5CreERT2+/-; mTmG+/- mice and Msh2-/- mice 

were selected along with normal control tissue from wild-type mice. DNA was extracted from 

FFPE samples. PCR-based amplification of the 5 mononucleotide repeat markers was 

performed and PCR products were separated on 15% polyacrylamide native gels by 

electrophoresis and stained with GelRed (as described in Materials and Methods). 

 

4.6.2 Results 

A large intestinal adenoma from a constitutive Msh2-/- mouse (Msh2 constitutive-knockout, 

Msh2 KO) and normal colonic tissue from a WT mouse were used as MSI-positive and MSI-

negative controls respectively, for testing the 5 mononucleotide repeats markers for MSI 

detection (Figure 4.55). The PCR products analysed by gel electrophoresis showed no 

difference in banding patterns for A27 and mBat37 microsatellite markers between the Msh2-

/- adenoma and WT colonic tissue, indicating that MSI was not detectable at all microsatellite 

markers. However, the PCR products analysed showed differences in banding patterns with 

some extra bands or differences in sizes of bands, indicating the presence of microsatellite 

instability, detected for A33, mBat26 and mBat59 microsatellite markers, between the Msh2-

/- adenoma and WT colonic tissue. Subsequently, in order to detect MSI in adenomas from 

the MSh2-LS mouse model, tumour DNA was extracted from FFPE samples of 4 large 



146 
 

intestinal adenomas / adenocarcinomas from EtOH_Msh2fl KO mice tested for MSI using the 

same panel of microsatellite markers (Figure 4.56). No MSI was detected at A27 and mBat37 

in any of the large intestinal adenomas from EtOH_Msh2fl KO mice, and only one tumour 

sample showed MSI at mBat59. MSI was detected at A33 and mBat26 in all tumour samples 

from Msh2-LS mice. However, the quality of the DNA extracted from FFPE samples was not 

high enough to guarantee accurate results. Furthermore, Msh2-LS large intestinal tumours 

included a mixed cell population of MMR-proficient surrounding and intermingling reactive 

epithelial cells and stromal cells as well as MMR-deficient adenoma cells, complicating the 

interpretation of the results and thus this experimental approach was discontinued. 
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Figure 4.55: Detection of MSI using mononucleotide repeat murine microsatellite markers. A large intestinal adenoma from a constitutive Msh2-/- mouse (Msh2 KO) 

and compared this with normal colonic tissue from a WT mouse. The Msh2 KO adenoma showed MSI at A33, mBat26 and mBat59 confirmed by the differences in 

banding patterns with extra bands, between the Msh2 KO adenoma and the WT colonic tissue. The lack of differences in banding pattern at A27 and mBat37 between 

the Msh2 KO adenoma and WT colonic tissue showed that MSI was not detectable at all markers. (M= marker; Blk=blank).  
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Figure 4.56: Detection of MSI using mononucleotide repeat murine 

microsatellite markers on colonic adenomas from the Msh2-LS mouse 

model. DNA was extracted from 4 large intestinal adenomas/ 

adenocarcinomas from EtOH_Msh2fl KO mice (labelled T1, T2, T3 and T4, 

respectively) and these were compared with normal colonic tissue from 

a WT mouse for MSI detection. All 4 tumours from EtOH_Msh2fl KO 

mouse showed MSI at A33 and mBat26 markers, whereas only one 

adenoma (T2) showed MSI at mBat59. No MSI was observed at A27 and 

mBat37 in all 4 tumours of EtOH_Msh2fl KO mouse. (M= marker; 

Blk=blank).
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4.7 Discussion 

In this chapter, the aim was to test the hypothesis that the DNA MMR system plays a role in 

protecting cells from some types of ethanol/acetaldehyde-induced DNA damage and that 

there is a gene-environment interaction between dMMR pathway and ethanol/acetaldehyde 

exposure that accelerates colorectal tumour development and progression.  

In Müller at al., (2016), we examined intestinal tumorigenesis in WT and Aldh1b1 depleted 

mice after long-term ethanol treatment for one year. Ethanol was shown to initiate intestinal 

tumourigenesis without any additional carcinogen treatment or prior tumour suppressor 

gene inactivation and there was evidence for ethanol/acetaldehyde showing both 

carcinogenic and tumour promoting functions, in the form of increased proliferative activity 

of colonic mucosal epithelium. This was consistent with increased progression of ethanol-

induced adenomas and adenocarcinomas. Moreover, a significant increase in DNA damage 

in the small and large intestinal epithelium of ethanol-treated mice was observed (Müller et 

al., 2016).  

Wojciechowicz et al., (2014), successfully created the Msh2-LS mouse model (without the 

mTmG transgene) and characterized it for the first time. After Tamoxifen injections, Msh2flox/-

; Lgr5CreERT2+/- developed more adenomas and adenocarcinomas than control mice (non-

induced Msh2flox/-; Lgr5CreERT2+/-). Eight out of 20 (40%) Msh2flox/-; Lgr5CreERT2+/- mice 

showed intestinal tumour formation within an average of 19 months. All the tumours were 

located in the small intestine, no tumours were observed in the colon.  

In the current investigation, long-term ethanol in drinking water treatment (compared with 

control water-treatment) was used to study whether ethanol causes acceleration of dMMR 

driven intestinal tumour formation with increased numbers of adenomas and/or 

adenocarcinomas.  

Mice received Tamoxifen treatment by daily i.p. injection for 4 consecutive days, to activate 

Cre-recombinase in a low proportion of Lgr5-expressing intestinal stem cells, as described in 

Chapter 3. Both male and female Msh2-LS mice showed good acceptance of Tamoxifen 

treatment, showing no major alterations in body weights during the treatment duration.  

Msh2-LS male mice showed statistically higher mean body weight compared with Msh2-LS 

female murine mean body weight at the same age (p<0.0001) (as expected due to normal 

sexual dimorphism for body weight observed in rodents). On the fifth day after the last 

Tamoxifen i.p. injection, Msh2-LS mice received 20% ethanol in drinking water or normal 

drinking water. We administrated ethanol in drinking water to mimic human consumption 
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of ethanol intake. In addition, in order to simulate the levels of toxicity and pathological 

effects of high ethanol consumption in humans we used a concentration of 20% ethanol in 

drinking water in mice, previously tested and validated by Müller et al., (2016), because it 

has been shown that ethanol clearance in mice is five times faster than in humans (Dole & 

Gentry, 1984; Holmes et al., 1986). EtOH_Msh2fl KO female and male mice did not show any 

abnormal behaviour or reduction in body weight demonstrating good acceptance of the 

ethanol regime.  

Most of the EtOH_Msh2fl KO mice displayed either anal prolapse or >20% reduction in body 

weight as common clinical sign of distress and were culled for necropsy dissection. Long-

term ethanol treatment of the Msh2-LS mice showed evidence of large intestinal 

hyperproliferation and adenoma formation (with 5 adenocarcinomas) in 65% (15/23 mice) 

of the EtOH_Msh2fl KO mice, for an average of 6 months of ethanol treatment. This is in stark 

contrast to the H2O_Msh2fl KO control mice, none of which developed intestinal tumours over 

the same time period, with only 1 colonic adenoma observed at 15 months (4%, 1/23).  

The EtOH_Msh2fl KO mice showed a pattern of tumour distribution of one or more large 

intestinal tumours mainly in the proximal colon and mid colon. A similar pattern is observed 

in human LS patients, in which colonic tumour formation occurs more in the caecum, 

ascending colon and transverse colon regions (proximal colon), than in the descending colon, 

sigmoid colon and rectum (distal colon), compared with sporadic colorectal tumours that are 

predominantly distal in location. No small intestinal adenomas were seen in the H2O_Msh2fl 

KO or EtOH_Msh2fl KO mice. 

Rijcken et al. (2008), described 50% of colonic adenomas in human LS cases were found in 

the proximal colon, compared with 26% of sporadic adenomas. In addition, proximal LS 

adenomas progressed to high-grade dysplasia more frequently than distal LS adenomas, and 

were also more often highly dysplastic than larger distal adenomas (Rijcken et al., 2008).  

Hence, the Msh2-LS mouse model may be viewed as a good model of human LS in terms of 

the location of both the scattered dMMR crypt foci precursor lesions in the whole of the 

large (and small) intestines, but with colonic only tumour formation (adenomas and 

adenocarcinomas).  

Long-term ethanol-treatment (compared with water-treatment) of the Tamoxifen-induced 

Msh2-LS mice provided evidence of ethanol-induced colonic adenomas that occurred at 

much higher numbers and at an earlier time, consistent with acceleration of dMMR-driven 

large intestinal tumour formation. A range of relevant control animal cohorts were also 
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tested for comparison with tumour formation in this test cohort. Some control animal 

cohorts were subjected to long-term ethanol treatment and some to water-treatment. The 

data on the effects of ethanol on intestinal tumourigenesis were compared for Tamoxifen-

induced Msh2-LS mice, non-induced Msh2-LS mice (no Tamoxifen-treatment, hence no Cre 

activation and no loss of Msh2 protein expression), and WT mice (using data collected during 

previous work by Mike Müller and not repeated here in order to reduce animal numbers 

used for experiments, in line with the 3Rs principle in animal experimentation).  

Non-induced Msh2-LS mice were treated with ethanol as a control group to test whether any 

unknown variables might affect tumour formation in the absence of induction of loss of 

Msh2. Furthermore, this control non-induced cohort would also test whether sporadic 

recombination (in the absence of Tamoxifen) of the Msh2flox/OFF allele occurred to any 

significant extent. 

The EtOH_Msh2fl mice and the ethanol-treated WT mice (Müller et al., 2016) responded well 

to the 20% ethanol in drinking water regime with no abnormal behaviour and no significant 

reduction in body weight. Large intestinal tumour formation was observed in 8.4% (1/12) of 

the EtOH_Msh2fl mice after 28 weeks. In 25% (3/12) EtOH_Msh2fl mice hyperproliferation of 

the colonic crypt epithelium was observed in the mid colon. Large intestinal crypt epithelial 

hyperproliferation had previously been seen and described by our research group after long-

term ethanol-treatment of wild-type mice and Aldh1b1-depleted mice (Müller et al., 2016). 

66.6% (9/12) of the EtOH_Msh2fl control mice did not show any intestinal or other 

abnormality, or formation of intestinal adenomas or adenocarcinomas. In Group-A, 91.6% of 

H2O_Msh2fl control mice showed no intestinal abnormality.  

Long-term ethanol treatment of the cohort of WT mice (Müller et al., 2016) showed large 

intestinal tumour formation (and in one case a small intestinal adenoma formation) in 28.6% 

(4/14 mice) of after 1 year of ethanol-treatment, and 71.4% of the ethanol-treated control 

mice did not show any intestinal abnormality over the same time period. No intestinal 

abnormality was observed in the water-treated WT control mice. Hence, the non-induced 

Msh2-LS mice showed similar levels of colonic tumour formation to the wild-type controls 

with ethanol treatment and this was significantly lower than in the EtOH_Msh2fl mice. 

The tumours and normal tissue samples from Msh2-LS model mice were characterised by 

IHC comparing ethanol-treated and water-treated mice. IHC was used to investigate the 

expression of Msh2 and other MMR proteins in tumours and tissue samples from Tamoxifen-

induced Msh2-LS mice and non-induced Msh2-LS control mice. Tamoxifen treatment 
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induced the loss of Msh2 expression in Lgr5+ expressing crypt epithelial stem cells scattered 

along the entire SI and LI. The Lgr5+ expressing stem cells, located at the bottom of the 

crypts, generate daughter cells that can expand to fill the entire crypt-villus epithelium in SI 

or entire crypt in the colon (Barker et al., 2007; Wojciechowicz et al., 2014). 

EtOH_Msh2fl KO mice showed 43% Msh2-negative small intestinal crypts and 11.2% Msh2-

negative colonic crypts compared with H2O_Msh2fl KO mice that showed 25.8% Msh2-

negative small intestinal crypts and 5% Msh2-negative colonic crypts. The number of Msh2-

negative or dMMR crypts was statistically significantly higher in both SI and colon of 

EtOH_Msh2fl KO mice compared with H2O_Msh2fl KO mice, consistent with ethanol-mediated 

selection for survival of dMMR cells. The number of Msh2-negative crypts was higher in SI 

than in the colon in Msh2-LS mice, however although tumours were observed in the colon, 

no tumours formed in the small intestine. All large intestinal adenomas tested from 

EtOH_Msh2fl KO mice showed Msh2-negative dysplastic glands, often surrounded by or 

admixed with Msh2-positive crypts showing reactive or hyperproliferative changes. This 

confirmed colonic adenomas arose from dMMR (Msh2-negative) crypts. This is consistent 

with observations from human LS patients that the risk of colonic tumour formation 

correlates with the size of the MMR-deficient crypt clusters that grow over time in affected 

patients, in line with what was observed by Wojciechowicz et al, (2014) (Kloor et al., 2012; 

Shia et al., 2015). 

No Msh2-negative crypts were observed in either small or large intestinal mucosal 

epithelium of non-induced Msh2-LS mice, consistent with lack of induction of Cre activity 

resulting in continued expression of protein from the floxed Msh2 allele. In the MMR repair 

pathway, a base mismatch or single nucleotide InDel error is recognised by the MutSα 

complex, which is composed of Msh2 and Msh6 heterodimeric proteins. The MutLα complex, 

composed of Mlh1 and Pms2, is recruited by the binding of MutSα to the mismatched or 

InDel DNA lesion. The loss of either Msh2 or Mlh1 lead to the abrogation of all MMR activity 

(Poulogiannis et al., 2010). In the absence of Msh2, the heterodimeric MutSα complex 

cannot be formed and Msh6 is rapidly degraded. This was confirmed by the presence of 

Msh6-negative crypts (by IHC) scattered along both SI and colon of Tamoxifen-induced 

Msh2-LS mice in a very similar frequency and pattern as Msh2-negative crypts. IHC was used 

to explore whether the absence of Msh2 protein inhibits or modifies the expression of Mlh1 

or Pms2. The IHC analysis of Mlh1 showed normal/positive expression of Mlh1 at the base 

of both colonic and small intestinal crypts of induced Msh2-LS mice, confirming the Msh2 
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absence does not inhibit Mlh1. However, the immunostaining for Pms2 proved to be 

technically problematic due to antibody failure and it was not possible to determine the 

staining pattern for Pms2.  

IHC was performed to investigate Ki-67 expression in intestinal tissue samples from 

Tamoxifen-induced Msh2-LS mice to determine proliferative activity. The percentage of Ki-

67-positive cells per crypt was significantly higher in colon in EtOH_Msh2fl KO mice compared 

with H2O_Msh2fl KO mice, confirming the presence of large regions of mucosal crypt epithelial 

hyperproliferation observed in histological sections EtOH_Msh2fl KO murine colons. The 

percentage of Ki-67-positive cells per crypt in SI of EtOH_Msh2fl KO mice was slightly higher 

than in the SI of H2O_Msh2fl KO mice. These observations confirm the previously reported 

association of long-term ethanol treatment of mice and colonic mucosal epithelial 

hyperproliferation (Müller et al., 2016). 

We investigated the expression of β-catenin protein, an intracellular signal transducer in the 

Wnt signalling pathway (Cong et al., 2003a), on tumours and tissue samples from Tamoxifen-

induced Msh2-LS mice. In the absence of the Wnt signalling, β-catenin is located mostly at 

the inner cell membrane bound to E-Cadherin at adherens junctions, or at very low levels in 

the cytoplasm, where its level is kept low through constant degradation by the β-catenin-

degradation complex that includes Apc and Axin2 proteins. In the presence of Wnt signalling, 

the β-catenin-degradation complex is disrupted and β-catenin accumulates in the cytoplasm 

and translocates into the nucleus, where it binds with transcriptional co-factors and induces 

transcription of Wnt-responsive genes (Chen et al., 2013). Normal colorectal mucosal crypt 

epithelium exhibited moderate membranous and weak cytoplasmic staining for β-catenin, 

but absent nuclear localisation. In contrast, both colorectal adenomas and adenocarcinomas 

from induced Msh2-LS mice showed variably moderately to strongly positive nuclear β-

catenin localisation and thus the immunostaining pattern of β-catenin is consistent with Wnt 

pathway activation, which is why nuclear β-catenin is regarded as a useful CRC biomarker 

(Lugli et al., 2007). In colonic tumours in the EtOH_Msh2fl KO mice, the IHC analysis of β-

catenin showed a heterogeneous pattern with variable numbers of adenoma cells showing 

moderately to strongly positive β-catenin nuclear immunostaining due to accumulation and 

translocation of β-catenin in to the nuclei. This pattern has been observed in human MMR-

deficient CRC (Lugli et al., 2007). 

Ethanol is rapidly absorbed from the gastrointestinal tract (Brooks & Zakhari, 2014). Ethanol 

is metabolized to highly reactive acetaldehyde by ADHs and this is further oxidized to acetate 
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by ALDHs. Aldehydes are very reactive molecules and they can cause a range of DNA 

modifications: DNA adducts, single and double strand breaks, point mutations, increased 

sister chromatid exchanges, DNA-protein crosslinks or DNA ICLs (Seitz & Stickel, 2007). 

Langevin et al (2011) demonstrated that the Fanconi Anaemia (FA) DNA repair pathway has 

a crucial role in counteracting acetaldehyde-induced genotoxicity in mice, as the FA DNA 

repair pathway is essential for the repair of DNA ICLs (Kim & D’Andrea, 2012; Langevin et al., 

2011). Recently, our research group has proposed the hypothesis that the DNA MMR repair 

system plays a role in protecting the cell from some types of ethanol/acetaldehyde induced 

DNA damage. The MMR pathway is involved in the removal of base mismatches and 

insertion/deletion loops caused by oxidative stress, lipid peroxidation, base deamination, 

methylation, certain alkylation changes and replication associated errors. Loss of MMR 

pathway function results in dMMR with hypermutability (increased mutation rate by 100x – 

1000x due to uncorrected mismatches) and MSI (the variation in length of repetitive 

microsatellite sequences due to uncorrected insertion/deletion loops), but more importantly 

dMMR results in reduced susceptibility to either cell cycle arrest or apoptosis induced by 

those types of DNA damage recognised by the MMR pathway (Poulogiannis et al., 2010; Seth 

et al., 2018; Toft et al., 1999). 

MMR is involved in a signalling cascade that leads to cell cycle arrest and/or apoptosis, if 

severe DNA damage has previously occurred. It has been observed that MMR-deficient cells 

fail to recruit ATM and ATR proteins, preventing p53 phosphorylation in response to DNA 

damage. MMR-deficient cells show predisposition to malignancy by failing to repair DNA 

damage (of MMR-recognised type) and failing to engage apoptosis to remove DNA-damaged 

cells (Cerretelli et al., 2020; Toft et al., 1999).  

IHC analysis of y-H2AX and p53 was performed to investigate the DNA damage response in 

tumour and normal tissue samples from EtOH_Msh2fl KO and H2O_Msh2fl KO mice. Upon DNA 

damage, an early response is the phosphorylation of the C-terminal part of the core histone 

protein H2AX (termed gamma-H2AX when phosphorylated) by a complex including ATM, 

ATR and DNA protein kinase catalytic subunit (DNA-PKcs) (Siddiqui, 2015). Y-H2AX is a key 

co-ordinator of signalling and activating DNA damage repair pathways and for this it is 

considered a specific molecular marker for monitoring DNA damage (Mah et al., 2010). At 

the completion of DNA repair, y-H2AX is typically de-activated (Cook et al., 2009). The 

immunohistochemical analysis of y-H2AX showed a higher percentage of y-H2AX positive 

cells in EtOH_Msh2fl KO murine colonic mucosal epithelium (35%) compared with H2O_Msh2fl 
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KO murine colonic epithelium (0.4%). EtOH_Msh2fl KO murine large intestinal adenomas (both 

colonic and caecal) showed high y-H2AX expression. By contrast, very few or no y-H2AX 

positive cells were observed in H2O_Msh2fl KO murine small intestinal mucosa. The high 

expression of y-H2AX in EtOH_Msh2fl KO murine colonic mucosal epithelium is consistent with 

DNA damage induced by ethanol/acetaldehyde suggesting that ethanol exposure has a 

significant mutagenic effect mainly on dMMR colonic mucosal epithelium rather than on 

dMMR small intestinal mucosa. This suggests that Msh2 has a key role in protecting the 

MMR-proficient colonic epithelial cells against this type of DNA damage, but Msh2 may not 

be the sole protective mechanism for small intestinal epithelium cells from 

ethanol/acetaldehyde-induced DNA damage.  

The presence of DNA damage induces p53 pathway activation, and this is involved in 

maintaining genomic stability following DNA damage (and other stimuli) via transcriptional 

activation of a variety of response pathways, such as apoptosis, cell cycle arrest and DNA 

repair (Levine, 1997; Williams & Schumacher, 2016).  Under normal conditions, p53 protein 

levels are kept low by its rapid degradation (maintaining a 20-30 minute short half-life for 

p53 polypeptide) and p53 is in a largely inactive state. DNA damage-mediated activation of 

the p53 pathway involves decreased Mdm2-mediated degradation of the p53 protein and 

thus stabilisation of p53 with increased p53 levels in the cell, which can be demonstrated 

immunohistochemically as a greater proportion of cells containing moderate to high (but 

variable) nuclear staining of p53 in individual cells (“wildtype pattern”, distinguishable from 

mutated p53-associated “overexpression” or “complete absence” patterns seen in some 

neoplasms) (Köbel et al., 2016; Lakin & Jackson, 1999).  

In the IHC analysis of p53, a higher percentage of p53 positive cells with high to moderate 

nuclear staining were observed in EtOH_Msh2fl KO murine colon (41.3%) compared with 

H2O_Msh2fl KO murine colon (10.8%). The percentage of p53-positive cells in small intestinal 

mucosal epithelium was higher in EtOH_Msh2fl KO mice (15%) compared with H2O_Msh2fl KO 

mice (5.2%). In EtOH_Msh2fl KO murine large intestinal adenomas (colonic and caecal) showed 

widespread variably high p53 expression. The variable pattern of p53 nuclear staining 

reflected the “wild-type pattern” in response to ethanol/acetaldehyde-induced genotoxic 

damage and there were no tumours showing either the “overexpression” or “null” patterns 

associated with Tp53 mutation.  

IHC analysis of cCas3 was performed to detect the incidence of apoptotic events in tumour 

and normal tissue samples from in EtOH_Msh2fl KO and H2O_Msh2fl KO mice. Caspase-3 (Cas3) 
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is a key executive member of the caspase cascade, with cysteine-aspartic acid protease 

activity, that acts as one of the key effectors of cell death by apoptosis. It requires proteolytic 

cleavage into 2 subunits that dimerize to create the active form, cCas3 (Talmon et al., 2010, 

Holubec et al., 2005). Once activated, cCas3 is responsible for the cleavage of key target 

proteins essential in cell proliferation and survival, inducing DNA fragmentation, cell 

shrinkage, chromatin and cytoplasmic condensation and formation of apoptotic cells and 

bodies. Apoptotic bodies express ligands for phagocytic cell receptors for recognition by 

phagocytic cells or neighbouring cells (Elmore, 2007).  

Immunohistochemical analysis of cCas3 showed significantly higher number of cCas3+ 

apoptotic bodies in in EtOH_Msh2fl KO mice compared with no detectable cCas3+ apoptotic 

bodies in H2O_Msh2fl KO mice, consistent with increased apoptosis associated with colonic 

epithelial exposure to ethanol/acetaldehyde. EtOH_Msh2fl KO murine large intestinal 

adenomas showed no detectable cCas3+ apoptotic bodies, indicating rare to no apoptotic 

events in dMMR colonic tumours. IHC analysis of cCas3 of EtOH_Msh2fl KO murine small 

intestinal epithelium and the H2O_Msh2fl KO murine small intestinal epithelium failed on 

technical grounds.  

The increased DNA damage observed in EtOH_Msh2fl KO murine large intestinal mucosal 

epithelium is consistent with the high levels of circulating acetaldehyde detected by plasma 

acetaldehyde assay. We found statistically higher plasma acetaldehyde levels in EtOH_Msh2fl 

KO mice compared with H2O_Msh2fl KO mice (p=0.0019).  

Finally, we performed MSI detection using a panel of 5 mononucleotide murine 

microsatellite markers, validated by other studies (Bacher et al., 2005; Kabbarah et al., 2003; 

Zuo et al., 2012). We detected some variations in the banding patterns for three of the 

markers, indicating the presence of MSI in 4 colonic adenomas from EtOH_Msh2fl KO mice, 

although the MSI assay was suboptimal. However, the quality of the DNA extracted from 

FFPE samples was variable and often insufficiently high enough to guarantee reproducible 

results. Furthermore, Msh2-LS large intestinal tumours include a mixed cell population of 

variable ratios of surrounding and intermingling MMR-proficient reactive epithelial cells and 

stromal cells as well as MMR-deficient adenoma cells, complicating the interpretation of the 

MSI detection results and thus this experimental approach was discontinued.  

In conclusion, we further characterised the Msh2-LS mouse model, demonstrating that it 

closely mimics the situation in human LS patients for both precursor dMMR crypt foci and 

tumour development in terms of colonic adenoma and (in a few cases) progression to 
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adenocarcinoma formation. Ethanol-treatment was shown to cause DNA damage and induce 

colonic crypt epithelial hyperproliferation in this Msh2-LS model, confirming similar 

observations made by others and our own research group (Brooks & Zakhari, 2014; Müller 

et al., 2016). We provided evidence that ethanol-treatment can induce regions of 

hyperproliferation of the large intestinal mucosal epithelium (but not the small intestinal 

mucosal epithelium) and this appears to contribute to intestinal adenoma formation by 

acting as a tumour promoter, which occurs mostly in the parts of the colon (proximal and 

mid colon) affected by hyperproliferation in this Msh2-LS mouse model (Msh2flox/-; 

Lgr5CreERT2+/-) following ethanol-treatment, but not water-treatment. EtOH_Msh2fl KO mice 

showed accelerated formation of large intestinal tumours within ~6 months of starting 

ethanol exposure, compared with the control cohorts of H2O_Msh2fl KO mice, EtOH_Msh2fl 

mice and ethanol-treated WT mice, with these control cohorts developing significantly fewer 

large intestinal tumours after 12 months of the ethanol-treatment or water-treatment 

regimes.  

The data shown here are consistent with the hypothesis that in normal pMMR intestinal 

epithelial stem cells, ethanol/acetaldehyde-induced DNA damage results in activation of the 

DNA mismatch repair pathway, inducing either cell cycle arrest in the case of mild DNA 

damage to allow DNA repair, or cell death by apoptosis in the case of more severe DNA 

damage. In this way, tissue homeostasis is maintained. We propose that in dMMR cells, 

modelled in this Msh2-LS mouse model, ethanol/acetaldehyde caused DNA damage that was 

not recognised or repaired by the dMMR intestinal epithelial stem cells (and their daughter 

cells) as they are unable to activate the MMR signalling pathway. Hence, dMMR cells showed 

inappropriate survival of these ethanol-damaged cells, compared with proficient MMR cells. 

These aberrantly surviving DNA-damaged dMMR colonic epithelial cells were stimulated to 

hyperproliferate by ethanol, leading to an increased probability of acquisition and fixation of 

DNA mutations explaining the accelerated colonic adenoma formation.  Hence, there is 

evidence for a selective advantage of the dMMR/ethanol/acetaldehyde interaction, as a 

gene/environment interaction, that explains the acceleration of colonic adenoma 

development and further progression to adenocarcinoma (in some cases) in ethanol-treated 

Msh2-LS (EtOH_Msh2fl OK) mice (Figure 4.57). This process is observed mostly in the proximal 

colon and mid colon, but not in the small intestine, very similar to the anatomical tumour 

distribution seen in human LS patients. 
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Figure 4.57: Schematic diagram of the proposed model of the MMR/ethanol/acetaldehyde 

gene/environment interactions in both MMR-proficient (pMMR) and MMR-deficient (dMMR) 

intestinal epithelial cells. Upon ethanol/acetaldehyde exposure, in some intestinal epithelial stem cells 

there is some DNA base damage that normally would be recognised and repaired by the MMR system, 

or if unrepaired this base damage may induce replication errors, such as base mismatches or InDels, 

during S-phase of the cell cycle. Here, the pMMR cell (red cell membrane) is able to activate DNA 

mismatch repair of the (MMR-recognised) base damage bringing about either cell cycle arrest in the 

case of mild DNA damage to allow DNA repair, or cell death by apoptosis in the case of more severe 

DNA damage. By contrast, the dMMR cell (green cell membrane) is unable to activate the MMR 

signalling pathway and so there is neither cell cycle arrest nor apoptosis, resulting in aberrant survival 

of DNA-damaged cells and their subsequent proliferation. These proliferating dMMR stem cells 

populate the crypt and expand further (by crypt fission) to form dMMR crypt foci. Stimulated by 

ethanol to undergo increased proliferation, these cells form hyperproliferative crypts whilst remaining 

subject to ongoing DNA damage from continued exposure to ethanol/acetaldehyde. Thus, these 

dMMR cells can accumulate mutations reflecting a form of dMMR genomic instability, and are 

consequently at increased risk of tumour formation, thus explaining the acceleration of colonic 

adenoma formation and increased probability of evolution to adenocarcinoma.  
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Chapter 5: Effects of Temozolomide Treatment on the Msh2-

LS Mouse Model  

5.1 Introduction 

The carcinogenic and tumour promoting/hyperproliferative effects of ethanol on the murine 

colon were previously studied by comparing Aldh1b1-depleted mice and WT mice treated 

with 20% ethanol in drinking water (Müller et al., 2016). 27% of ethanol-treated Aldh1b1-

depleted mice showed large intestinal adenomas (with a few adenocarcinomas) after 1 year 

of treatment, compared with 29% of ethanol-treated WT mice that showed large intestinal 

adenomas after 1 year. Ethanol was shown to initiate intestinal tumorigenesis without any 

additional chemical carcinogen treatment or prior tumour suppressor gene inactivation or 

oncogene activation, and there was evidence for both carcinogenic and tumour promoting 

functions of ethanol and its main metabolite acetaldehyde, including increased progression 

of ethanol-induced adenomas to early adenocarcinomas in some cases (Müller et al., 2016).  

In LS patients, dMMR tumours arise from somatic cells that acquire inactivation of the MMR 

gene’s wild-type allele (on the background of inheritance of a mutation in that MMR gene’s 

other allele). It has been observed that the number and size of dMMR crypt foci that 

accumulate in LS patients’ colons over time influences their risk of tumour development 

(Kloor et al., 2012).  

A Msh2-LS mouse model (Msh2flox/-; Lgr5CreERT2+/-) was generated, in which it was observed 

that loss of Msh2 expression occurs in approximately 10% of intestinal crypts after Tamoxifen 

treatment to induce inactivation of the second conditional knockout Msh2 allele in scattered 

intestinal stem cells, leading to intestinal tumour formation in 40% of the mice after 1.5 years 

(Wojciechowicz et al., 2014). To increase the number of dMMR crypts and accelerate the 

tumourigenesis process, a methylating chemotherapy agent, Temozolomide, was used 

because MMR-deficient cells are known to be resistant to killing by methylating agents 

(Karran, 2001). Temozolomide (TMZ) treatments were applied to Msh2-LS mice after 

Tamoxifen treatment, resulting in gastrointestinal intraepithelial neoplasms developing 3 

weeks or more after the last TMZ administration. Intestinal adenomas and/or 

adenocarcinomas were observed between 13 and 19 weeks after TMZ administration. In the 

TMZ-treated tumour-bearing mice, loss of Msh2 expression was observed in approximately 
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32% of intestinal crypts compared with 10% in non-TMZ-treated control mice 

(Wojciechowicz et al., 2014). Data provided were interpreted as showing evidence that TMZ 

confers upon dMMR cells a proliferative advantage over WT cells, resulting in an expansion 

of the pool of dMMR cells, with TMZ inducing increases in both dMMR crypt foci and DNA 

mutation load causing the acceleration of tumourigenesis. 

TMZ is converted (by non-enzymatic chemical conversion) to the active metabolite 5-(3-

methyltriazen-1-yl) imidazole-4-carboxamide (MTIC) which can cause several base 

methylation events, such as at the O6 position of guanine (O6-MeG) (Zhang et al., 2012). In 

normal cells, O6-MeG is directly repaired by the enzyme MGMT that removes the methyl 

adduct. When MGMT fails, the O6-MeG lesions are replicated during DNA synthesis 

generating an aberrant base pair. This stimulates activation of the DNA MMR pathway and 

is processed into a double-stranded DNA break, eventually resulting in apoptosis. MMR-

deficient cells do not detect such alkylation adducts and hence are resistant to TMZ (Thomas 

et al., 2017).   

In this chapter, the aim was to accelerate the process of intestinal tumourigenesis in the 

Msh2-LS mice used in this research work, by combining the effects of TMZ, as described by 

Wojciechowicz et al. (2014), with the effects of long-term 20% ethanol in drinking water, as 

described by Mueller et al., (2016). A new protocol was designed to apply to the Msh2-LS 

mouse model in order to try to accelerate intestinal tumour formation to around 2-4 months, 

in contrast to the 1 year of ethanol treatment required for intestinal adenoma formation in 

WT and Aldh1b1-depeleted mice (Müller et al., 2016) and the 1.5 years for intestinal 

adenoma development in induced conditional Msh2 knockout Msh2-LS model mice without 

any treatments (Wojciechowicz et al., 2014).  
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5.2 Potential Acceleration of the Msh2-LS Mouse Model Using 

Temozolomide treatment 

5.2.1 Methods 

 Experiments were designed firstly to establish the most appropriate TMZ dose and 

treatment regime, and secondly, to observe the effects of TMZ on tumour development in 

the Msh2-LS mice.   

Msh2flox/-; Lgr5CreERT2+/-; mTmG+/- 7-9 weeks old mice were divided into 6 Groups A-F (Figure 

5.1). During the first week of treatment, Group-A mice received an i.p injection of 0.15mg 

Tamoxifen/g bw on day 1 and 0.1mg Tamoxifen/g bw on day 2, from the second week to the 

fourth week these mice were treated with 10 daily doses of 0.1mg TMZ/g bw by oral gavage 

(o.g.), followed by the 20% ethanol in drinking water regime from the 5th week onwards. 

Group-B mice received 2 i.p injections of tamoxifen in the first week (the same as for Group-

A mice), from the second week to the third week these mice were given 5 daily doses of 

0.1mg TMZ/g bw by o.g., followed by the 20% ethanol in drinking water regime from the 3rd 

week onwards (Figure 5.1). The Group-A and -B mice were sacrificed after 4 weeks of the 

ethanol regime to investigate the presence of any intestinal abnormalities or early signs of 

intestinal tumour formation.  

To observe the combined effects of TMZ and long-term ethanol treatment (compared with 

water-treated controls) on the Msh2-LS mice, a further 4 groups were included in the study. 

Group-C to Group-F mice followed the same Tamoxifen treatment protocol as Group-A and 

-B, receiving an i.p injection of 0.15mg Tamoxifen/g bw on day 1 and 0.1mg Tamoxifen/g bw 

on day 2. Group-C and -E mice were treated with 10 daily doses of 0.1mg TMZ/g bw by o.g. 

over 3 weeks (from the second week to the fourth week), followed by either 20% ethanol in 

drinking water regime for Group-C mice or normal / standard drinking water for Group-E 

mice until signs of tumour formation were observed. Group-D and -F mice were given 5 daily 

doses of TMZ by o.g. over 2 weeks from the second week to the third week, followed by 

either 20% ethanol in drinking water regime for Group-D mice or normal / standard drinking 

water for Group-F mice, until signs of tumour formation were observed (Figure 5.1).  

Animals in Group-C to -F were culled and tissues collected when either clinical signs of 

distress were visible or they displayed >20% body weight loss compared with the initial body 

weight. The small and large intestines, caecum, stomach, liver, spleen, thymus, lymph nodes 

(if visible) and any other organ or tissue showing abnormalities, were collected following 
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schedule 1 culling and necropsy dissection (as described in Materials and Methods). Tissues 

were fixed in 10% NBF, processed using standard tissue processing protocols and paraffin 

embedded in preparation for section cutting and staining. The acronyms used for Msh2-LS 

model mice and their relevant treatments are shown in Table 2.2.  
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Figure 5.1: Experimental treatment protocols and timelines for Group-A to -F using Msh2-LS mice. 

Animals in all groups received i.p Tamoxifen injections over two days (0.15mg Tamoxifen/g bw on day 

1 and 0.1mg Tamoxifen/g bw on day 2). Animals in Group-A (10 TMZ doses over 3 weeks, 0.1mg TMZ/g 

bw by o.g) and Group-B (5 TMZ doses over 2 weeks, 0.1mg TMZ/g bw by o.g) were culled after 4 weeks 

of 20% ethanol in drinking water regime. Animals in Group-C and -D followed the same Tamoxifen and 

TMZ treatment protocol as Group-A and -B respectively, but they were kept alive until sign until signs 

of tumour formation were observed. Group-E and -F mice received the same Tamoxifen and TMZ 

treatment protocol as Group-C and -D respectively, but were water-treated controls for Group-C and 

-D respectively. (TMZ = Temozolomide; i.p. = intraperitoneal; EtOH= Ethanol; o.g. = oral gavage). 
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5.2.2 Results 

5.2.2.1 Experimental Group Organization and Comparisons of Body Weight 

Changes. 

The first experiment was designed to determine the most appropriate TMZ dose and 

treatment regime, starting with the protocols set out by Wojciechowicz et al (2014). Six 

experimental subjects (3 females and 3 males) were divided into two groups: Group-A (3 

mice: 2 females and 1 male, receiving 10 TMZ doses over 3 weeks) and Group-B (3 mice: 1 

female and 2 males, receiving 5 TMZ doses over 2 weeks). Animals from Group-A and -B were 

culled 4 weeks after the last TMZ administration. The second experiment was designed to 

include 4 groups to study the combined effects of TMZ and ethanol treatment on the Msh2-

LS mice. Animals were divided into ethanol-treated groups, Group-C (7 mice: 3 females and 

4 males, receiving 10 TMZ doses over 3 weeks), and Group-D (7 mice: 2 females and 5 males, 

receiving 5 TMZ doses over 2 weeks); and water-treated groups, Group-E (4 mice: 3 females 

and 1 male, receiving 10 TMZ doses over 3 weeks) and Group-F (7 mice: 3 females and 4 

males, receiving 5 TMZ doses over 2 weeks).  

During the first week, Msh2-LS mice (Group-A to -F) started the Tamoxifen treatment (daily 

Tamoxifen i.p injections for 2 consecutive days), and body weight and health status were 

recorded. Body weights of the female and male mice didn’t significantly differ during the 

Tamoxifen treatment (Figure 5.2), showing successful drug administration and acceptance of 

the experimental procedures by the mice. Body weights of Msh2-LS males (~28g) were 

significantly higher than body weights of Msh2-LS females (~21g) both before and during the 

Tamoxifen treatments (Figure 5.2), in line with data shown in Chapter 4 (4.2.2.1).  

In the second week, mice started the TMZ treatment with either 5 daily doses of 0.1mg 

TMZ/g bw by o.g. over 2 weeks or 10 daily doses of 0.1mg TMZ/g bw by o.g. over 3 weeks. 

Body weights and health status of the mice were recorded (Figure 5.3). Body weights of the 

female and male mice receiving both treatments (5 or 10 TMZ doses) didn’t significantly 

differ during the TMZ treatment (Figure 5.3). However, 4 mice died (1 female from Group-C, 

one male from Group-D, 1 female from Group-E and 1 female from Group-F ) due to 

gastrointestinal paralysis after the administration of TMZ via oral gavage and these mice 

were excluded from the study. Body weights of Msh2-LS males were significantly higher than 

body weights of Msh2-LS females during both the Tamoxifen and the TMZ treatment as 

expected. 
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After TMZ treatment, animals received either 20% ethanol in drinking water or normal / 

standard drinking water regimes, with continued monitoring of body weights and health 

status twice a week (Figure 5.4). Ethanol-treated Msh2-LS female mice did not show 

abnormal behaviour or reduced body weight compared with the water-treated female mice, 

indicating good acceptance of the ethanol regime. Ethanol-treated Msh2-LS female mice 

weighed on average 23.14g compared with 23.28g of the water-treated Msh2-LS female 

mice (Figure 5.4B).  

By contrast, ethanol-treated and water-treated Msh2-LS male mice, showed statistically 

significant differences between the two groups. Ethanol-treated Msh2-LS male murine body 

weights changed from ~30g to ~25g over 13 weeks of the ethanol treatment regime, whereas 

water-treated Msh2-LS male mice showed a general increase in body weight (to ~34g) over 

the same time with some fluctuation between weeks 15 and 21 of the water treatment 

regime (Figure 5.4A).  

Drinking bottles were changed and bottle weights were recorded once a week to allow 

measurement of liquid consumption. Liquid consumption per mouse was estimated by 

analysing the weights of the drinking bottles (per cage) and calculating the average weight 

of consumed liquid per mouse per day (Figure 5.5). Water-treated and ethanol-treated 

Msh2-LS male mice consumed around the same amount of liquid per day, 13.5 and 13.8 ml 

respectively. On average water-treated Msh2-LS female mice consumed around 8.9ml of 

water per day, whereas on average ethanol-treated Msh2-LS female mice consumed around 

11.2ml of 20% ethanol in drinking water per day. No significant differences were observed 

between ethanol- and water-treated males or females.  
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Figure5.2: Murine body weights during Tamoxifen treatment. Body weights of Msh2-LS males (circles) 

were significantly higher than body weights of Msh2-LS females (squares), before and during 

Tamoxifen treatments, although both showed no significant change over the two days of Tamoxifen 

treatment. 2-way-ANOVA test with Bonferroni post-test correction showed statistically significant 

differences between the two sex cohorts, p<0.0001 on day 1 and day 2 (data shown as mean ± SD, 

n=10 mice in each group). 
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Figure 5.3: Murine body weights during Temozolomide (TMZ) treatment. Body weights of Msh2-LS 

males (circles) and females (squares) that received either 5 TMZ doses (A) or 10 TMZ doses (B). Body 

weights of Msh2-LS males were significantly higher than body weights of Msh2-LS females, although 

all 4 groups of mice showed no significant change over the period of TMZ treatment. 2-way-ANOVA 

test with Bonferroni post-test correction showed statistically significant differences between these 

two sex cohorts, p<0.0001 on days 1 -5 in graph A and on day 1 in graph B, p=0.0004 on days 2-9 in 

graph B and p=0.0025 on day 10 in graph B (data shown as mean ± SD, n=10 mice in each group).  
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Figure 5.4: Murine body weights for males and females during 20% ethanol or standard/normal 

drinking water regimes. A statistically significant difference was observed between the ethanol-

treated Msh2-LS males (red circles) body weights curve and the water-treated Msh2-LS males (blue 

squares) body weights curve, p<0.0001. There were no significant differences between the body 

weights curves of ethanol-treated Msh2-LS females versus water-treated Msh2-LS females. 2-way-

ANOVA with Bonferroni post-test correction analysis (data shown as mean±SD).  
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Figure 5.5: Liquid consumption of either 20% ethanol containing drinking water (black bars) or 

standard/normal water (white bars) per mouse per day for Msh2-LS males and females. No significant 

differences were observed for any of the comparisons of ethanol versus water treatment or males 

versus females. 2-way-ANOVA with Bonferroni post-test correction analysis (data shown as 

mean±SD). 
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5.2.2.2 Tumour Development in the Msh2-LS Mouse Model after Temozolomide 

and Ethanol Treatment 

The ethanol-treated Msh2-LS mice in Group-A (10 TMZ doses over 3 weeks) and in Group-B 

(5 TMZ doses over 2 weeks), were culled after 4-5 weeks of 20% ethanol in drinking water 

regime to investigate the presence of any intestinal abnormalities or early signs of intestinal 

tumour formation. In both Group-A and Group-B mice, no gastrointestinal abnormalities or 

tumours were observed after 4 weeks from the last TMZ administration.  

The other 4 cohorts (C-F) of Msh2-LS mice were monitored every day for signs of intestinal 

tumour development or other pathological abnormalities, using the clinical scoring system 

described in Chapter 4 (Table 4.1). Most of the mice in Group-C to -F displayed irregular 

breathing or >20% reduction in body weight as common clinical signs of distress, at varying 

lengths of time from the start of the experimental protocol and these mice were then culled 

for necropsy dissection.  

During necropsy dissection, the majority of the Msh2-LS mice treated with either 5 TMZ 

doses or 10 TMZ doses, and either water or ethanol, showed an expansion of the thymus 

covering the heart and lungs in the thorax (Figure 5.6). Histopathological analyses revealed 

the presence of thymic lymphomas in these cases, with many showing evidence of 

lymphoma infiltrating into other tissues (mostly liver, spleen and in few cases into the small 

intestinal mucosa and submucosa). The H&E analyses revealed some cases of small and large 

intestinal adenoma formation (Figure 5.7).  

Group-C (10 TMZ doses, ethanol-treated cohort; 10TMZ_EtOH_Msh2fl KO) mice were 

sacrificed after 8-10 weeks of starting the 20% ethanol regime. Four out of 6 

10TMZ_EtOH_Msh2fl KO mice showed primary thymic lymphoma, with lymphoma infiltration 

in liver and spleen, 2 out of 6 showed monocryptal adenomas in the small intestine and in 

one case a caecal adenoma (Figure 5.7). In the corresponding water-treated control group 

(Group-E: 10 TMZ doses, water-treated cohort; 10TMZ_H2O_Msh2fl KO), 2 mice were culled 8 

weeks after the last TMZ dose, in one of which a thymic lymphoma was observed together 

with a few small adenomas in the small intestine, and the other case showed lymphoma 

formation with infiltration into the lamina propria of the mucosa and into the submucosa of 

the small intestine. The remaining mice were sacrificed after 17 weeks from the last TMZ 

dose because of discomfort due to axillary squamous carcinoma. In both 

10TMZ_EtOH_Msh2fl KO mice and 10TMZ_H2O_Msh2fl KO mice, the incidence of lymphomas 

(in the thymus with some showing infiltration into the small intestine) was 66% and the 
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incidence of intestinal tumour formation was 30% (Figure 5.8). In total, there were 3 

intestinal neoplasms and 4 thymic lymphomas in 10TMZ_EtOH_Msh2fl KO mice compared 

with 4 intestinal neoplasms and 1 thymic lymphoma in 10TMZ_H2O_Msh2fl KO mice (Figure 

5.9). 

In Group-D (5 TMZ doses, ethanol-treated cohort; 5TMZ_EtOH_Msh2fl KO), Msh2-LS mice 

were culled between 8 and 12 weeks of the start of the 20% ethanol in drinking water regime. 

Four out of 6 5TMZ_EtOH_Msh2fl KO mice showed primary thymic lymphoma with infiltration 

of lymphoma into liver and spleen, one showed a colonic adenoma, and one showed an 

adenoma in the duodenum and an adenoma in the caecum. In the remaining 2 animals, 

extended colonic mucosal hyperproliferative areas and small adenomas were observed in 

the proximal colon and mid colon. In the corresponding water-treated control group (Group-

F, 5 TMZ doses, water-treated cohort; 5TMZ_H2O_Msh2fl KO), 4 out of 6 mice were culled 

between 10 and 14 weeks after the last TMZ administration because of discomfort or distress 

due to thymic lymphoma with lymphoma infiltration into liver and spleen. In addition, 1 of 

the mice showed a small intestinal adenoma and another one of the mice developed small 

adenomas in the proximal colon and mid colon (with no evidence of colonic mucosal 

hyperproliferation). The remaining 2 5TMZ_H2O_Msh2fl KO mice showed small adenomas in 

the small intestine, colon and caecum after 18 and 15 weeks following the last TMZ dose, 

respectively. In both 5TMZ_EtOH_Msh2fl KO and 5TMZ_H2O_Msh2fl KO mice, the incidence of 

thymic lymphomas was 66%, and the incidence of intestinal tumour formation was 66% 

(Figure 5.10). In total, 4 thymic lymphomas and 10 intestinal neoplasms were observed in 

both 5TMZ_EtOH_Msh2fl KO and 5TMZ_H2O_Msh2fl KO mice (Figure 5.11). 
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Figure 5.6: Representative necropsy images of normal thymus (A, highlighted in the yellow circle) from 

a wildtype mouse and thymus expanded by lymphoma (B, highlighted in the yellow circle) from a TMZ- 

and ethanol-treated Msh2-LS mouse. 
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Figure 5.7: Representative images of histopathological sections of tumours observed in TMZ- and ethanol-treated Msh2-LS mice. In the first row, images are shown 

of H&E stained sections of thymic lymphoma (A), lymphoma infiltrating liver (B), and lymphoma infiltrating spleen (C). In the second row, images are shown of H&E 

stained sections of caecal adenoma (D), small intestinal monocryptal adenoma (red oval) (E), and colonic adenoma (red oval) with surrounding infiltration by 

lymphoma in mucosal and submucosal regions (F). Images taken from stained sections that were subsequently scanned using the Hamamatsu Nanozoomer and 

analysed with photographic image export using the Hamamatsu NDP Viewer software at 5X magnification (bar at lower left indicates 500μm).  
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Figure 5.8: A) Bar chart of the number of Msh2-LS mice in Group-C (ethanol-treated, 

10TMZ_EtOH_Msh2fl KO) and Group-E (water-treated, 10TMZ_H2O_Msh2fl KO) that developed any 

tumours (lymphomas and intestinal adenomas) after receiving 10 TMZ doses and either 20% ethanol 

in drinking water or regular drinking water: 5/6 (83%) 10TMZ_EtOH_Msh2fl KO mice developed 

tumours compared with 3/3 (100%) 10TMZ_H2O_Msh2fl KO mice that developed tumours. Fisher’s 

exact test, no significant differences observed. B) Bar chart of the number of Msh2-LS mice in Group-

C (10TMZ_EtOH_Msh2fl KO) and Group-E (10TMZ_H2O_Msh2fl KO) that developed intestinal tumours 

after receiving 10 TMZ doses and either 20% ethanol in drinking water or regular drinking water: 2/6 

(33%) 10TMZ_EtOH_Msh2fl KO mice developed intestinal tumours compared with 1/3 (33%) 

10TMZ_H2O_Msh2fl KO mice that developed intestinal tumours. Fisher’s exact test, no significant 

differences observed. C) Tumour incidence in Msh2-LS mice in Group-C (10TMZ_EtOH_Msh2fl KO) and 

Group-E (10TMZ_H2O_Msh2fl KO) following 10 TMZ doses and either 20% ethanol or normal drinking 

water. The survival plot shows development of tumours (both lymphomas and intestinal adenomas) 

in the ethanol-treated group (red) compared with the water-treated group (blue), Log-rank (Mantel-

Cox) test showed no significant differences. 
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Figure 5.9: Tumour distribution in Msh2-LS mice in Group-C (ethanol-treated, 10TMZ_EtOH_ Msh2fl KO 

mice, black bars) and Group-E (water-treated, 10TMZ_H2O_ Msh2fl KO mice, white bars) after 10 doses 

of TMZ treatment. In 10TMZ_EtOH_ Msh2fl KO mice (Group-C), 4 thymus lymphomas, 2 small intestinal 

adenomas and 1 caecal adenoma were observed. In 10TMZ_H2O_ Msh2fl KO mice (Group-E), 1 thymus 

lymphoma and 4 small intestinal adenomas were seen.  
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Figure 5.10: A) Bar chart of the number of Msh2-LS mice in Group-D (ethanol-treated, 5TMZ_EtOH_ 

Msh2fl KO) and Group-F (water-treated, 5TMZ_H2O_ Msh2fl KO) that developed tumours (lymphomas 

and intestinal adenomas) after receiving 5 TMZ doses and either 20% ethanol in drinking water or 

regular drinking water: 6/6 (100%) 5TMZ_EtOH_ Msh2fl KO mice and 6/6 (100%) 5TMZ_H2O_ Msh2fl KO 

mice developed tumours. Fisher’s exact test, no significant differences observed. B) Bar chart of the 

number of Msh2-LS mice in Group-D (5TMZ_EtOH_ Msh2fl KO) and Group-F (5TMZ_H2O_ Msh2fl KO) that 

developed intestinal tumours after receiving 5 TMZ doses and either 20% ethanol in drinking water or 

regular drinking water: 4/6 (66%) 5TMZ_EtOH_ Msh2fl KO and 4/6 (66%) 5TMZ_H2O_ Msh2fl KO mice 

developed intestinal tumours. Fisher’s exact test, no significant differences observed. C) Tumour 

incidence in Msh2-LS mice in Group-D (5TMZ_EtOH_ Msh2fl KO) and Group-F (5TMZ_H2O_ Msh2fl KO) 

following 5 TMZ doses and either 20% ethanol or normal drinking water. The survival plot shows 

development of tumours (both lymphomas and intestinal adenomas) in the ethanol-treated group 

(red) compared with the water-treated group (blue). Log-rank (Mantel-Cox) test showed a statistically 

significant difference between the two curves, *p=0.0486.  
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Figure 5.11: Tumour distribution in Msh2-LS mice in Group-D (ethanol-treated, 5TMZ_EtOH_ Msh2fl 

KO mice, black bars) and Group-F (water-treated, 5TMZ_H2O_ Msh2fl KO mice, white bars) after 5 doses 

of TMZ treatment. In 5TMZ_EtOH_ Msh2fl KO mice (Group-D), 4 thymic lymphomas, 1 small intestinal 

adenoma, 8 colonic adenomas and 1 caecal adenoma were observed. In 5TMZ_H2O_ Msh2fl KO mice 

(Group-F), 4 thymic lymphomas, 3 small intestinal adenomas, 5 colonic adenomas and 2 caecal 

adenomas were seen.  
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5.2.2.3 Immunohistochemical characterization of tumours and tissues from the 

Msh2-LS mouse model after Temozolomide and ethanol treatment  

5.2.2.3.1 Msh2 immunostaining of Msh2-LS murine small intestinal and colonic 

tissues 

Msh2 expression was analysed in murine tumour and normal intestinal tissues and other 

tissues in Msh2flox/+; Lgr5CreERT2+/-; mTmG+/-mice following Cre activation by Tamoxifen 

treatment, either 5 or 10 daily TMZ doses, and either ethanol or water treatments. Small and 

large intestinal tissues were harvested, prepared as Swiss-rolls and fixed in 10% NBF (as 

described in Materials and Methods). They were processed using standard tissue processing 

protocols for paraffin wax embedding and microtome sectioning. Immunohistochemical 

staining for Msh2 was performed using protocols described in Materials and Methods (2.2.3) 

followed by manual counting of Msh2-positive and negative crypts. Tamoxifen treatment 

induced the loss of Msh2 expression in Lgr5+ expressing crypt epithelial stem cells scattered 

along the entire intestines, as previously shown in Chapter 4 (4.4.2.1). We used small 

intestinal tissue samples of Msh2-/- and WT mice as Msh2-negative and -positive expression 

controls respectively (Figure 5.12). The lack of IHC DAB-brown staining in the Msh2-/- tissues 

confirmed complete loss of Msh2 expression in the Msh2-null control tissues and similar 

patterns of Msh2 expression loss were observed in the intestinal epithelium in scattered 

crypts of the Msh2-LS mice.  

In the colon, the number of Msh2-negative crypts was slightly higher (but not significantly 

so) in the ethanol-treated mice compared with the water-treated mice in both Msh2-LS mice 

treated with 5 and 10 TMZ doses (Figure 5.13). In 5TMZ_EtOH_Msh2fl KO mice, 23% Msh2-

negative colonic crypts were observed compared with 20% Msh2-negative colonic crypts 

found in 5TMZ_H2O_Msh2fl KO controls. In 10TMZ_EtOH_Msh2fl KO mice, 32% Msh2-negative 

colonic crypts were observed compared with 27% Msh2-negative colonic crypts found in 

10TMZ_H2O_Msh2fl KO controls (Figure 5.14). The number of Msh2-negative crypts was 

higher in the SI than in the colon; the number of Msh2-negative crypts in the SI was slightly 

higher (but not significantly so) in the ethanol-treated mice compared with the water-treated 

mice, in both Msh2-LS mice treated with 5 and 10 TMZ doses (Figure 5.15). In 

5TMZ_EtOH_Msh2fl KO mice, 48% Msh2-negative colonic crypts were observed compared 

with 40% Msh2-negative colonic crypts found in 5TMZ_H2O_Msh2fl KO mice. In 

10TMZ_EtOH_Msh2fl KO, 48% Msh2-negative colonic crypts were observed compared with 
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41% Msh2-negative colonic crypts found in 10TMZ_H2O_Msh2fl KO mice (Figure 5.16). No 

significant differences were observed in any of these comparisons.  

Due to the small size of large intestinal adenomas that were found in these Msh2-LS mice, 

there was insufficient adenoma tissue remaining in the tissue blocks for anti-Msh2 IHC 

analysis. However, some small intestinal adenomas showed Msh2-negative dysplastic glands 

often surrounded by or admixed with Msh2-positive crypts showing reactive or 

hyperproliferative changes (Figure 5.17).  

Msh2 protein expression was examined by IHC in both normal thymus tissue and thymic 

lymphomas in order to investigate whether TMZ treatment can induce loss of the second 

Msh2 allele (Msh2flox/OFF) leading to MMR abrogation in Lgr5- thymus cells in the Msh2-LS 

mouse model, contributing to tumour formation outside of the intestinal Lgr5+ stem cells. 

Thymic lymphoma and normal thymus tissue samples from Msh2-LS model mice were 

investigated and no evidence of loss of Msh2 expression (no lack of brown IHC DAB staining) 

was found in either thymic lymphomas or normal thymus samples from Msh2flox/-; 

Lgr5CreERT2+/-; mTmG+/-mice treated with Tamoxifen and either 5 or 10 TMZ doses, including 

both ethanol-treated and water-treated mice (Figure 5.18).  
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Figure 5.12: Immunohistochemical analysis of Msh2 protein expression in small intestinal mucosal 

epithelium from a positive-control WT mouse (A), in which the brown staining indicates positive Msh2 

expression in all crypts (further magnified in the red rectangle); and from a negative-control Msh2-/- 

mouse (B), in which the lack of brown staining confirms the absence of Msh2 expression in intestinal 

mucosal epithelium (further magnified in the red rectangle). Images taken from anti-Msh2 IHC stained 

sections scanned using the Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP Viewer 

software at 5X and 20X magnification (bar at lower left indicates 500μm, bar in red rectangle indicates 

100μm).  
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Figure 5.13: Immunohistochemical analysis of Msh2 protein expression in large intestinal mucosal epithelium of 5TMZ_EtOH_Msh2fl KO mice (A), compared with 5TMZ_H2O_Msh2fl 

KO mice (B) and 10TMZ_EtOH_Msh2fl KO mice (D), compared with 10TMZ_H2O_Msh2fl KO mice (E). Msh2-negative crypts (indicated by the red arrows and further magnified in the 

red rectangle in figure A) were manually counted along the entire colon for all four of these groups of treated Msh2-LS mice (shown in C and F, respectively). No significant 

differences were observed between ethanol-treated versus water-treated mice following either 5 or 10 doses of TMZ. Mann-Whitney U Test (data shown as mean±SD, n=3 mice 

each group). Images taken from sections scanned using the Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP Viewer software at 10X and 20X magnification (bar 

at lower left indicates 250μm, bar in red rectangle indicates 100μm). 
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Figure 5.14: Percentage of Msh2 protein-non-expressing crypts in large intestinal mucosal epithelium of 

5TMZ_EtOH_Msh2fl KO mice compared with 5TMZ_H2O_Msh2fl KO mice (A), and 10TMZ_EtOH_Msh2fl KO 

compared with 10TMZ_H2O_Msh2fl KO mice (B). No significant differences were observed between 

ethanol-treated versus water-treated mice following either 5 or 10 doses of TMZ. Mann-Whitney U Test 

(data shown as mean±SD, 300 crypts counted in 3 mice from each group). 
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Figure 5.15: Immunohistochemical analysis of Msh2 protein expression in small intestinal mucosal epithelium of 5TMZ_EtOH_Msh2fl KO mice (A), compared with 

5TMZ_H2O_Msh2fl KO mice (B), and 10TMZ_EtOH_Msh2fl KO mice (D), compared with 10TMZ_EtOH_Msh2fl KO mice (E). Msh2-negative crypts were manually counted along the 

entire small intestine for both of these groups of treated Msh2-LS mice (C and F, respectively). No significant differences were observed between ethanol-treated versus water-

treated mice following either 5 or 10 doses of TMZ. Mann-Whitney U Test (data shown as mean±SD, n=3 mice each group). Images taken from sections scanned using the 

Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP Viewer software at 10X magnification (bar at lower left indicates 250μm). 
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Figure 5.16: Percentage of Msh2 protein-non-expressing crypts in small intestinal mucosal epithelium of 

5TMZ_EtOH_Msh2fl KO mice compared with 5TMZ_H2O_Msh2fl KO mice (A), and 10TMZ_EtOH_Msh2fl KO 

mice compared with 10TMZ_H2O_Msh2fl KO mice (B). No significant differences were observed between 

ethanol-treated versus water-treated mice following either 5 or 10 doses of TMZ. Mann-Whitney U Test 

(data shown as mean±SD, 300 crypts counted in 3 mice from each group).  
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Figure 5.17: Representative images of Msh2 immunohistochemical staining for Msh2 in small intestinal 

adenomas from 5TMZ_EtOH_Msh2fl KO mice (A) and from 5TMZ_H2O_Msh2fl KO mice (B). In both examples, 

there are Msh2-negative dysplastic or adenomatous glands, either surrounded by or admixed with 

reactive crypts or hyperproliferative crypts that are staining positively for Msh2. Images taken from 

sections scanned using the Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP Viewer 

software at 10X magnification (bar at lower left indicates 250μm).  
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Figure 5.18: Immunohistochemical analysis of Msh2 protein expression in thymic lymphoma (A), and 

in normal thymus tissue (B), from Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-mice, showing no evidence of 

loss of Msh2 expression in thymic lymphoma or normal thymus.  
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5.2.2.3.2 Ki-67 and Beta-Catenin immunostaining of Msh2-LS murine small 

intestinal and colonic tissues 

Immunohistochemical staining for Ki-67 was performed using protocols described in 

Materials and Methods (2.2.3). This was used to investigate Ki-67 expression in Msh2flox/-; 

Lgr5CreERT2+/-; mTmG+/-mice treated with TMZ and either 20% ethanol in drinking water or 

normal water. This was observed in normal large and small intestinal tissues of Msh2-LS 

mice, indicating absence of aberrant cell proliferation taking place outside the stem cell at 

the base of crypts (Figure 5.19B and C). By contrast, large regions of colonic mucosal crypt 

hyperproliferation and small intestinal adenomas of Msh2-LS mice showed Ki-67-positive 

crypts all along the extended crypts, confirming the presence of neoplastic tissue (Figure 

5.19A and B).  

Immunohistochemical staining for β-catenin was performed using protocols described in 

Materials and Methods (2.2.3). β-catenin is the key signalling intermediate of the Wnt 

pathway and is sometimes used as a CRC biomarker (Lugli et al., 2007), as described in 

Chapter 4 (4.4.2.3). This was used to investigate β-catenin and expression in tumour tissue 

of Msh2flox/-; Lgr5CreERT2+/-; mTmG+/- mice treated with TMZ and either 20% ethanol in 

drinking water or normal water. β-catenin IHC was performed with assistance from Marion 

Bacou using large intestinal samples from Apc Min mice that contained large intestinal 

adenomas (provided by Vidya Rajasekaran), and WT mice as β-catenin-positive and β-

catenin-normal expression controls respectively (Figure 4.41). The immunohistochemical 

analysis of β-catenin was performed on small and large intestinal adenomas from Msh2-LS 

mice. Analysed samples showed a heterogeneous pattern with variable numbers of adenoma 

cells showing positive β-catenin nuclear immunostaining due to accumulation and 

translocation of β-catenin in the nuclei (Figure 5.20).  
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Figure 5.19: Immunohistochemical analysis of Ki-67 protein expression in normal large and small 

intestinal mucosal epithelium of Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-mice treated with TMZ (B and D) 

and neoplastic large and small intestinal mucosal epithelium of Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-

mice treated with TMZ (A and C). Images taken from sections scanned using the Hamamatsu 

Nanozoomer and analysed with the Hamamatsu NDP Viewer software at 10X and 20X magnification 

(bar at lower left indicates 250μm, bar in red rectangle indicates 100μm). 
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Figure 5.20: Representative images of immunohistochemical analysis of β-catenin protein expression 

and localisation in intestinal adenomas of Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-mice treated with TMZ. 

Variable areas of positive β-catenin nuclear immunostaining in adenomatous cells were observed in 

both small intestinal adenomas (A) and colonic adenomas (B), indicated by the red ovals. Images are 

further magnified in panel figures C and D. Images taken from sections scanned using the Hamamatsu 

Nanozoomer and analysed with the Hamamatsu NDP Viewer software at 10X and 40X magnification 

(bar at lower left indicates 250μm and 50 μm).   

 

 

 

 

 

 

 



190 
 

5.3 Discussion 

In this work, the aim was to potentially accelerate dMMR-driven intestinal tumour formation 

in the Msh2-LS mouse model by applying TMZ treatment, as used by Wojciechowicz et al. 

(2014).  

Wojciechowicz et al. (2014) generated the Msh2-LS mouse model in which Tamoxifen-

induced loss of Msh2 expression in approximately 10% of intestinal crypts, without any 

additional carcinogen treatment, and this led to intestinal tumours in 40% of the mice after 

1.5 years. Wojciechowicz et al. (2014) showed that Msh2-LS (Msh2flox/-; Lgr5CreERT2+/- ) mice 

of 6–7 weeks age received either 5 or 10 daily doses of TMZ over three weeks (100mg/kg of 

TMZ) after Tamoxifen treatment, resulting in early gastrointestinal intra-epithelial 

neoplasms and later intestinal adenomas and/or adenocarcinomas, with some thymic 

lymphomas (no quantitative data on lymphomas were provided). It is known that the 

number of dMMR crypt foci influences the risk of tumour development in LS patients. The 

size and growth rate of the dMMR cell pool appears to vary with time (as consequence of an 

increased mutation rate) and with exposure to some environmental factors (Kloor et al., 

2012). TMZ is a methylating agent and MMR-deficient cells are known to be resistant to 

killing by methylating agents. TMZ exposure caused an expansion of pre-existing Msh2-

deficient colonic crypt foci increasing the number of fully Msh2-deficient crypts in a 

statistically significant way (Wojciechowicz et al., 2014). 

In this chapter, a modification of the standard protocol was designed by introducing an 

additional treatment with TMZ with the aim of potentially accelerating intestinal tumour 

formation to around 2-4 months, when combined with ethanol. 

In these preliminary experiments, Tamoxifen treatment was halved from that used in the 

Chapter 4 procedure, to a daily i.p injection for 2 consecutive days, in line with Wojciechowicz 

et al (2014). This change in Tamoxifen treatment was made to reduce the probability of very 

large numbers of tumours arising from widespread dMMR foci induced by Tamoxifen-

mediated Cre activation followed by TMZ treatment. This change also reduced the number 

of procedures applied to the experimental subjects in line with 3Rs. However, it had already 

been demonstrated in Chapter 3 that 2 i.p. Tamoxifen injections were sufficient to activate 

Cre-recombinase in an acceptable number of Lgr5-expressing intestinal stem cells. Both male 

and female Msh2-LS mice showed good acceptance of Tamoxifen treatment, showing stable 

body weights during the treatment duration. Msh2-LS male mice showed statistically higher 
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mean body weight compared with Msh2-LS female mice mean body weight at the same age 

(p<0.0001).  Subsequently, in order to identify the most appropriate TMZ dose and treatment 

regime to induce tumorigenesis in around 2-4 months, animals were divided into groups that 

received either 5 or 10 daily doses of TMZ (100mg/kg) by o.g. over 2 or 3 weeks respectively, 

as described by Wojciechowicz et al. (2014).  

TMZ treatment was commenced the following week to allow time for the activated Cre to 

inactivate the second conditional knockout Msh2 allele. In this way, the dMMR stem cells at 

the crypt bases had time to expand into many dMMR daughter cells passing through the 

transit-amplifying compartment into the differentiation compartment, moving up the crypts 

and on to the table surface of the colonic mucosa or onto the small intestinal villi. Most of 

the mice accepted the TMZ administrations well. During TMZ treatment with either 5 or 10 

TMZ doses treatment, body-weights of Msh2-LS female and male mice did not significantly 

change. Body weights of Msh2-LS males were significantly higher than body weights of Msh2-

LS females (as expected due to normal sexual dimorphism observed in rodents), but no major 

fluctuations in body weights were observed during the treatments. However, a few mice died 

during the treatments likely due to presumed hypersensitivity to the methylating agent, 

which has been reported by others.  

After TMZ, Msh2-LS mice received either 20% ethanol in drinking water or normal drinking 

water. Msh2-LS female and male mice did not show any reduction in body weight during the 

first weeks showing good acceptance of the ethanol regime. Ethanol-treated and water-

treated Msh2-LS female mice showed similar mean body weights (23.14g and 23.28g 

respectively) and no significant differences were observed between these two cohorts. By 

contrast, Msh2-LS ethanol-treated mice showed a decrease of an average of 5g over 13 

weeks (from ~30g to ~25g), whereas the water-treated mice showed a general increase in 

body weight over the same time period. The trend over time of the body weights curves 

between these two cohorts showed a statistically significant difference of p<0.0001. The 

female Msh2-LS mice survived only 13-14 weeks under either liquid regime. Similarly, the 

ethanol-treated male Msh2-LS mice survived 13-14 weeks, whereas water-treated male 

Msh2-LS mice survived until 21-22 weeks. However, the average ml of liquid consumption 

per mouse (13.5ml for water-treated Msh2-LS males, 13.8ml for ethanol-treated Msh2-LS 

males, 8.9ml for water-treated Msh2-LS females, and 11.2ml for ethanol-treated Msh2-LS 

females) did not significantly differ from the data obtained in the previous experiments 

(13.85ml for water-treated Msh2-LS males, 11.65ml for ethanol-treated Msh2-LS males, 
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10.33ml for water-treated Msh2-LS females, and 9.65ml for ethanol-treated Msh2-LS 

females; see Chapter 4; Figure 4.4). 

Msh2-LS mice in this experiment did not survive as long as the mice in the previous 

experiment due to the carcinogenic effects of TMZ treatment. The main reason for early 

death of the mice was that in most cases Msh2-LS mice receiving either 5 or 10 daily TMZ 

doses, and either ethanol or water treatments, needed to be culled because of clinical signs 

relating to thymic lymphoma. Wojciechowicz et al. (2014) treated Msh2-LS mice with TMZ 

and they survived only 19 weeks from the last TMZ administration: 11 out of 13 Msh2-LS 

TMZ-treated mice displayed extended extra-intestinal lymphoid formations or lymphomas 

that were the main cause of death. Only two mice were culled for clinical signs of large 

intestinal neoplasms. In most cases, gastrointestinal abnormalities and neoplasms were only 

discovered during histopathological analysis suggesting secondary relevance.  

In all cohorts, we observed thymic lymphomas in 66% of the cases in each group. By contrast, 

10TMZ_EtOH_Msh2fl KO and 10TMZ_H2O_Msh2fl KO mice showed only 33% intestinal tumour 

incidence, while in 5TMZ_EtOH_Msh2fl KO and 5TMZ_H2O_Msh2fl KO mice showed 66% 

intestinal tumour incidence. When tested for presence or absence of Msh2 protein 

expression by IHC, the thymic lymphomas showed positive expression of Msh2, indicating 

that these tumours had arisen from MMR-proficient cells, most likely as a result of the 

carcinogenic effects of TMZ rather than by selection of dMMR cells for neoplastic growth. 

The results obtained from these experiments were similar to those described by 

Wojciechowicz et al. (2014), suggesting that both the lymphomas and the intestinal tumours 

observed were most likely a consequence of TMZ carcinogenic effects and not related to any 

ethanol effects. The TMZ carcinogenic properties appear to be too potent and mask any 

ethanol tumour-inducing effects. In 5TMZ_EtOH_Msh2fl KO and 5TMZ_H2O_Msh2fl KO mice, 

the intestinal tumour incidence was higher than that in 10TMZ_EtOH_Msh2fl KO and 

10TMZ_H2O_Msh2fl KO mice, demonstrating that the TMZ carcinogenic and toxic properties 

appeared to vary amongst these four groups to an extent that this prevented experimental 

revelation of any tumour-initiating or tumour-promoting ethanol effects on the Msh2-LS 

mice. In 5TMZ_EtOH_Msh2fl KO mice and 5TMZ_H2O_Msh2fl KO mice, the lower dose TMZ 

treatment slightly extended the survival allowing time for the Tamoxifen-induced Msh2-LS 

mice to express in part their intestinal tumour prone phenotype. By contrast, in 

10TMZ_EtOH_Msh2fl KO mice and 10TMZ_H2O_Msh2fl KO mice, we observed a lower number 
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of intestinal tumours largely because these mice died earlier from extra-intestinal tumours 

(thymic lymphomas) induced by the higher dose of carcinogenic TMZ. 

Some environmental factors (such as methylating compounds either naturally produced by 

the intestinal flora or absorbed with food) can promote survival of dMMR intestinal cells and 

their expansion (Stojic et al., 2004). Wojciechowicz et al. (2014) performed anti-Msh2 IHC on 

tumour and normal tissue samples comparing Msh2-LS mice treated with Tamoxifen 

followed by TMZ treatment with Msh2-LS mice treated only with Tamoxifen. They observed 

a higher number of crypts lacking Msh2 staining in the TMZ-treated Msh2-LS mice than in 

the non-TMZ treated Msh2-LS mice. Furthermore, the gastrointestinal intra-epithelial 

neoplasms showed lack of Msh2 expression IHC staining in crypts, thus forming dMMR crypts 

in around 68% around the tumour area. They demonstrated that TMZ treatment conferred 

a proliferative advantage upon dMMR cells over wild-type intestinal epithelial cells, leading 

to expansion of the dMMR crypt compartment.  

We performed anti-Msh2-LS IHC on tumour and tissue samples from the Msh2-LS mice 

treated with TMZ and ethanol. We analysed Msh2 expression in murine small and large 

intestinal samples in Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-mice after either 5 or 10 daily TMZ 

doses, and either ethanol or water treatments. In both colon and SI, we did not observe any 

statistically significant differences in the numbers of Msh2-negative crypts between ethanol-

treated and water-treated mice in Msh2-LS mice treated with either 5 or 10 daily TMZ doses. 

The number of dMMR crypts was higher in the SI than in the colon, as expected from previous 

experiments (see Chapter 4; 4.4.2.1). However, Msh2-LS mice treated with TMZ showed 

higher numbers of Msh2-negative crypt foci compared with those observed in the absence 

of TMZ-treatment in the Msh2-LS mice in the previous experiments (see Chapter 4; Figure 

4.26 and Figure 4.30), suggesting a dominant effect due to selection for survival and 

expansion of dMMR crypt foci by the methylating agent TMZ. 

TMZ is a strongly carcinogenic tumour-inducer and for this reason, the mice died 

prematurely from extra-intestinal tumours, predominantly thymic lymphomas, before 

intestinal tumours had time to develop. Due to the small size of large intestinal adenomas 

that were found in these Msh2-LS mice, there was insufficient adenoma tissue remaining in 

the tissue blocks for anti-Msh2 IHC analysis. However, some small intestinal adenomas 

showed Msh2-negative dysplastic glands often surrounded by or admixed with Msh2-

positive crypts showing reactive or hyperproliferative changes. 
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Msh2 protein expression was examined by IHC in both normal thymus tissue and thymic 

lymphomas in order to investigate whether TMZ treatment can induce loss of the second 

Msh2 allele (Msh2flox/OFF) leading to MMR abrogation in Lgr5- thymus cells in the Msh2-LS 

mouse model, potentially contributing to tumour formation from other sources outside of 

the intestinal Lgr5+ stem cells. The immunostaining for Msh2 proved to be technically 

difficult on thymus tissue, therefore we relied on the samples that showed a reliable result.  

No evidence of loss of Msh2 expression (no lack of brown IHC DAB staining) was found in 

either thymic lymphomas or normal thymus control samples from Msh2flox/-; Lgr5CreERT2+/-; 

mTmG+/-mice treated with either 5 or 10 TMZ doses, including both ethanol-treated and 

water-treated mice, indicating that inactivation of mismatch repair was not involved in this 

pathway of thymic lymphoma formation. 

Immunohistochemistry was performed to investigate Ki-67 expression in intestinal tissue 

samples from Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-mice treated with TMZ and either 20% 

ethanol in drinking water or normal water to determine proliferative activity. In normal large 

and small intestinal tissue, Ki-67 is expressed only in the proliferating cells at the base of 

crypts as previously reported (Johnston et al., 1989). Large regions of colonic mucosal crypt 

hyperproliferation and small intestinal adenomas of Msh2-LS mice showed Ki-67-positive 

crypts all along the extended crypts, confirming the presence of neoplastic tissue.  

We investigated the expression of β-catenin protein, an intracellular signal transducer in the 

Wnt signalling pathway (Cong et al., 2003a), on tumours and tissue samples from Msh2flox/-; 

Lgr5CreERT2+/-; mTmG+/-mice treated with TMZ and either 20% ethanol in drinking water or 

normal water. Normal colorectal tissue exhibits membranous localisation of β catenin 

whereas colorectal adenoma/adenocarcinoma shows nuclear β catenin localization, 

nuclear β-catenin is regarded as a useful CRC biomarker (Lugli et al., 2007). Small intestinal 

and colon adenomas showed a heterogeneous pattern with variable numbers of adenoma 

cells showing positive β-catenin nuclear immunostaining due to accumulation and 

translocation of β-catenin in the nuclei. 

In conclusion, TMZ is a powerful methylating agent and carcinogen that can confer a 

proliferative advantage upon established dMMR crypt foci leading to selection for survival 

and expansion in the Msh2-LS murine intestines that could, potentially, lead to an 

acceleration of intestinal tumorigenesis. However, the carcinogenic properties of TMZ 

appear to be too potent in these experiments, inducing a variety of extra-intestinal tumours 

(independent from dMMR), predominantly thymic lymphomas, that mask any carcinogenic 
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ethanol effects. The data obtained were inconclusive and the use of TMZ was misleading for 

the purpose of exploring the carcinogenic and tumour-promoting effects of ethanol and its 

major metabolite acetaldehyde, particularly in combination with deficient MMR. For this 

reason, it was decided to discontinue the experimental investigation of TMZ in combination 

with ethanol in the Msh2-LS mouse model. 
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Chapter 6:  Investigation of long-term ethanol consumption 

effects on  Aldh1b1 conditional-knockout Msh2-LS mice and 

Aldh1b1 constitutive-knockout Msh2-LS mice  

6.1 Introduction 

The mechanisms of how ethanol induces intestinal carcinogenesis include involvement of its 

metabolite acetaldehyde. Acetaldehyde is a highly reactive molecule able to induce a wide 

range of DNA damage, as described in Chapter 1, 1.3.3.  Evidence of acetaldehyde 

involvement in ethanol-related cancers emerged from the study of human polymorphisms 

in ADH and ALDH enzymes. A polymorphism of ALDH1B1 causes reduced enzyme activity and 

has been associated with altered drinking habits and alcohol sensitivity in Caucasians. 

ALDH1B1 plays a key role in acetaldehyde detoxification in the gastrointestinal epithelium 

(Stagos et al., 2010), as we previously explained in Chapter 1, 1.3.2.  

As already mentioned in Chapter 4, our group demonstrated an important role of murine 

Aldh1b1 in acetaldehyde detoxification in vivo during intestinal tumorigenesis in wildtype 

and Aldh1b1-depleted mice after long-term ethanol treatment for one year (Müller et al., 

2016).  

Aldh1b1-depleted mice were generated using the ‘knockout-first’ Aldh1b1 allele (tm1a) 

(Figure 6.1) (Skarnes et al., 2011). This contains an IRES:lacZ trapping cassette and a floxed 

promoter-driven neo cassette inserted into the intron of Aldh1b1, disrupting gene function. 

Aldh1b1 tm1a was shown previously to be a hypomorph (Müller et al., 2016). The knockout-

first allele can be easily modified in ES cells or in adult murine crosses with transgenic Flp 

and/or Cre transgenic mice. Conditional alleles (Aldh1b1flox/flox) are generated by removal of 

the gene-trap cassette by Flp recombinase, which reverts the mutation to wild type, leaving 

loxP sites on either side of a critical exon creating a conditional allele (tm1c). Subsequent 

exposure to Cre deletes the critical exon to induce an exon deletion knockout mutation 

(tm1d) and this triggers nonsense-mediated decay of the mutant transcript, with production 

of no functional Aldh1b1 protein (Figure 6.1). If whole mouse Cre activation is used, this 

generates a complete knockout in every cell of the mouse (Aldh1b1-/- or constitutive 

knockout). 
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In this chapter, the first aim is to introduce the conditional Aldh1b1 allele (Aldh1b1flox/flox) and 

the constitutive Aldh1b1 knockout allele (Aldh1b1-/-), by cross-breeding of the Msh2-LS 

mouse model in order to establish an Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-; Aldh1b1flox/flox 

colony and an Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-; Aldh1b1-/- colony. In this chapter, the 

generation and characterization of these mouse models are described.  

 

The second aim is to study the combined effects of inactivation of Msh2 and Aldh1b1 in mice 

with long-term ethanol treatment. We hypothesised that loss of Aldh1b1 function increases 

the levels of acetaldehyde in the intestinal epithelial cells, causing more acetaldehyde-

mediated DNA damage that may interact with defective mismatch repair to influence 

intestinal tumour formation in these Msh2-LS mouse models.  

In Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-; Aldh1b1flox/flox mice, the conditional loss of Aldh1b1 

expression is dependent on Tamoxifen-induced Cre recombinase activation and this only 

occurs in Lgr5-expressing small intestinal and large intestinal stem cells along with loss of 

Msh2 expression. We predicted that Lgr5-expressing intestinal cells and their daughter cells 

would acquire a high number of DNA mutations due to the combined lack of MMR pathway 

activity and increased levels of acetaldehyde.  

In contrast, Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-; Aldh1b1-/- constitutive knockout mice are 

characterized by complete loss of Aldh1b1 expression in all cells of the organism (Tamoxifen 

independent). We hypothesised that this would cause a further increase in acetaldehyde 

levels (above that in the conditional model), resulting in more acetaldehyde-mediated DNA 

damage in all cells of the organism, including a higher level of acetaldehyde-induced DNA 

mutations in the MMR-deficient intestinal cells, (loss of Msh2 expression in scattered 

induced-Lgr5-expressing intestinal stem cells) manifested by accelerated or increased 

tumour formation in these cells. 
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Figure 6.1: Schematic representation of the ‘knockout-first’ allele (tm1a) and its modifications. The 

tm1a allele contains an IRES:lacZ trapping cassette and a floxed promoter-driven neo cassette 

inserted into the intron of the target gene, disrupting gene function (in this case, the gene is Aldh1b1). 

Following breeding with an Flp expressing mouse, Flp recombines the two FRT sites and converts the 

‘knockout-first’ allele to a conditional allele (tm1c, Aldh1b1flox/flox), restoring normal gene activity. After 

subsequently breeding with a Cre expressing mouse, Cre recombines the two loxP sites and deletes 

the floxed exon of the tm1c allele to inactivate the gene (tm1d, Aldh1b1-/-), triggering nonsense 

mediated decay of the exon-deleted transcript with complete loss of gene function (adapted and 

modified from Skarnes et al., 2011). 

 

 

 

 

 

 

 

 

 

 



199 
 

6.2 Establishment of the colony of combined Aldh1b1-knockout and 

Msh2-LS model mice 

6.2.1 Methods 

Mice were housed in IVCs with group sizes and enrichment according to Home Office 

regulations. Further details on the mice housing conditions and maintenance can be found 

in Chapter 2, 2.1.1. 

 

6.2.2 Results 

To generate the Aldh1b1 conditional-knockout (Aldh1b1flox/flox) mice, (Zhu & Sadowski, 1995) 

the Aldh1b1 tm1a mice were cross-bred with Flpe mice obtained from Professor Ian Jackson 

(University of Edinburgh, Institute of Genetics & Molecular Medicine) (Zhu & Sadowski, 

1995). Subsequently, the Msh2+/+; Lgr5CreERT2-/-; mTmG-/-; Aldh1b1flox/flox mice were cross-

bred with Msh2flox/-; Lgr5CreERT2+/-; mTmG+/+; Aldh1b1+/+ mice (Figure 6.2). The genotype 

frequencies that resulted from this breeding almost perfectly reflected the expected 

Mendelian ratios (Figure 6.2). Subsequently, the resulting progeny were used as breeders for 

the creation of the correct genotype for Aldh1b1 conditional-knockout Msh2-LS 

experimental subject mice: Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-; Aldh1b1flox/flox. The mice 

resulting from these matings showed 1.5% progeny with Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-

; Aldh1b1flox/flox genotypes and 0.8% progeny with Msh2flox/flox; Lgr5CreERT2+/-; mTmG-/-; 

Aldh1b1flox/flox genotypes (Figure 6.3). Tabular representation of the inter-cross to generate 

the Aldh1b1 conditional-knockout Msh2-LS mouse model experimental subjects is shown in 

the Appendix (Supplementary Table 6.1-6.2). Mice with these genotypes were used as 

experimental subject mice or breeders. Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-; Aldh1b1flox/flox 

mice only show loss of Aldh1b1 activity following Cre recombinase activation and this only 

occurs in the scattered Lgr5-expressing intestinal epithelial stem cells (that go on to form 

crypt foci) along with inactivation of the second allele of Msh2 and conversion to mG 

expression by Cre following Tamoxifen treatment (Figure 6.4). 

To generate the Aldh1b1 constitutive-knockout (Aldh1b1-/-) mice, embryos from the Aldh1b1 

conditional-knockout (Aldh1b1flox/flox) mice were treated with TAT-Cre in vitro and implanted 

into surrogate mothers using standard techniques (performed by Matt Sharp, Ailsa Travers 

and Julie Thomson, Bioresearch & Veterinary Services, Central Transgenic Core, University of 
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Edinburgh) (Ryder et al., 2014). The resulting Aldh1b1-/- mice (with genotype Msh2+/+; 

Lgr5CreERT2-/-; mTmG-/-; Aldh1b1-/-) obtained from the surrogate mothers were cross-bred 

with Msh2flox/-; Lgr5CreERT2+/-; mTmG+/+; Aldh1b1+/+ mice. The genotype frequencies that 

resulted from this breeding almost perfectly reflected the expected Mendelian ratios (Figure 

6.5). Subsequently, the resulting progeny were used as breeders for the generation of the 

correct genotype for Aldh1b1 constitutive-knockout Msh2-LS experimental subject mice with 

the genotype Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-; Aldh1b1-/-. The mice resulting from these 

matings showed 1.5% progeny with Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-; Aldh1b1-/- genotypes 

and 0.8% progeny with Msh2flox/flox; Lgr5CreERT2+/-; mTmG-/-; Aldh1b1-/- genotypes (Figure 

6.6). Tabular representation of the inter-cross to generate the Aldh1b1 constitutive-

knockout Msh2-LS mouse model experimental subjects is shown in the Appendix 

(Supplementary Table 6.3-6.4). Mice with these genotypes were used as experimental 

subject mice or breeders. Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-; Aldh1b1-/- mice have complete 

loss of Aldh1b1 in all cells (Figure 6.7). 
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Figure 6.2: Percentage of resulting genotypes from the breeding between the Msh2+/+; Lgr5CreERT2-/-

; mTmG-/-; Aldh1b1flox/flox with Msh2flox/-; Lgr5CreERT2+/-; mTmG+/+; Aldh1b1+/+ mice 

 

  

Figure 6.3: Percentage of resulting genotypes from the breeding between the Msh2+/-; Lgr5CreERT2-/-

; mTmG+/-; Aldh1b1flox/+ with Msh2flox/+; Lgr5CreERT2+/-; mTmG+/-; Aldh1b1flox/+ mice.
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Figure 6.4: Schematic diagram of the Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-; Aldh1b1flox/flox genotype before and after Cre activation. On the left, the schematic diagram of 

the Msh2fl/- alleles before and after Cre activation, showing constitutive inactivation (Msh2-) and conditional knockout (before: Msh2 flox ON and after: Msh2 flox OFF) 

alleles of Msh2 (adapted and modified from Wojciechowicz et al., 2014). In the middle, the schematic diagram of the mTmG coloured fluorescent protein reporter 

construct shows the status before (cell expresses mT and appears red) and after (cell expresses mG and appears green) Cre-mediated recombination (adapted and 

modified from Muzumdar et al., 2007). On the right, the schematic diagram of the Aldh1b1flox/flox alleles before and after Cre activation: Cre-mediated recombination 

of the loxP sites flanking the critical exon induces loss of Aldh1b1 expression only in Lgr5-driven Cre-expressing intestinal epithelial stem cells (adapted and modified 

from Skarnes et al., 2011). 
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Figure 6.5: Percentage of resulting genotypes from the breeding between the Msh2+/+; Lgr5CreERT2-/-

; mTmG-/-; Aldh1b1-/- with Msh2flox/-; Lgr5CreERT2+/-; mTmG+/+; Aldh1b1+/+ mice.  

 

 

Figure 6.6: Percentage of resulting genotypes from the breeding between the Msh2+/-; Lgr5CreERT2-/-

; mTmG+/-; Aldh1b1+/- with Msh2flox/+; Lgr5CreERT2+/-; mTmG+/-; Aldh1b1+/- mice.  
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Figure 6.7: Schematic diagram of the Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-; Aldh1b1-/- genotype before and after Cre activation. On the left, the schematic diagram of the 

Msh2fl/- alleles before and after Cre activation: constitutive-knockout (Msh2-) and conditional-knockout (before: Msh2 flox ON; and after: Msh2 flox OFF) alleles of Msh2 

(adapted and modified from Wojciechowicz et al., 2014). In the middle, the schematic diagram of the mTmG coloured fluorescent protein reporter construct before 

(cell expresses mT and appears red) and after (cell expresses mG and appears green) Cre-mediated recombination (adapted and modified from Muzumdar et al., 2007). 

On the right, the schematic diagram of the Aldh1b1-/- alleles. In Aldh1b1 constitutive-knockout mice, all cells have complete loss of Aldh1b1.
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6.3 Long-term ethanol effects on intestinal tumourigenesis in the 

combined Aldh1b1-knockout and Msh2-LS mouse model 

6.3.1 Methods 

Groups of 7-9 weeks old mice with either Aldh1b1 conditional-knockout or Aldh1b1 

constitutive-knockout alleles were used in combination with the Msh2-LS mice. The 

combined Aldh1b1 conditional-knockout and Msh2-LS experimental mice had the genotypes 

Msh2flox/-; Lgr5CreERT2+/-; Aldh1b1flox/flox or Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-; Aldh1b1flox/flox. 

Whereas, the combined Aldh1b1 constitutive-knockout and Msh2-LS experimental mice had 

the genotypes Msh2flox/-; Lgr5CreERT2+/-; Aldh1b1-/- or Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-; 

Aldh1b1-/-. All experiments involved these mice being divided into two groups for treatment 

with either standard / conventional drinking water (Group-A) or 20% ethanol in drinking 

water (Group-B). Group-A mice received i.p. injections of 0.15mg Tamoxifen/g bw on day 1 

and 0.1mg Tamoxifen/g bw on days 2, 3 and 4; on day 5 mice were provided with 

standard/normal drinking water. By contrast, Group-B received i.p. injections of 0.15mg 

Tamoxifen/g bw on day 1 and 0.1mg Tamoxifen/g bw on days 2, 3 and 4; but on day 5 the 

Group-B mice were provided with 20% ethanol in drinking water (as previously validated by 

our group; (Müller et al., 2016)) (Figure 6.8). Animals were culled and tissues collected when 

either clinical signs of distress were visible or they displayed >20% body weight loss 

compared with the initial weight. The small and large intestines, caecum, stomach, liver, 

spleen, thymus, lymph nodes (if visible) and any other organ or tissue showing abnormalities, 

were collected following schedule 1 culling and necropsy dissection. Tissues were fixed in 

10% NBF, processed using standard tissue processing protocols and paraffin embedded in 

preparation for section cutting and staining. The acronyms used for the Msh2-LS model mice 

and their relevant treatments are shown in Table 2.2. 
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Figure 6.8: Experimental treatment protocols and timelines for Group-A (water-treated) and -B 

(ethanol-treated) mice, showing 4 days of i.p. injections of Tamoxifen, followed by either standard / 

normal drinking water (Group-A) or drinking water containing 20% ethanol (Group-B). (EtOH = 

Ethanol). 
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6.3.2 Results 

6.3.2.1 Experimental group organization and observations 

Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-; Aldh1b1flox/flox experimental subjects (18 females and 6 

males) were divided into two groups: Group-A (12 mice: 9 females and 3 males; water-

treated control group) and Group-B (12 mice: 9 females and 3 males; ethanol-treated test 

group).  

Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-; Aldh1b1-/- experimental subjects (8 females and 16 

males) were divided into in two groups: Group-A (12 mice: 4 females and 8 males; water-

treated control group) and Group-B (12 mice: 4 females and 8 males; ethanol-treated test 

group).  

Ethanol-treated animals from both groups were culled when either clinical signs of distress 

were visible or they displayed >20% body weight loss compared with the initial weight, 

whereas water-treated mice (pair matched for age and sex) were culled at the same 

timepoints as ethanol-treated mice. During Tamoxifen treatment (daily Tamoxifen i.p 

injections for 4 consecutive days), body weights and health status were recorded. In both 

Aldh1b1 conditional-knockout Msh2-LS mice and Aldh1b1 constitutive-knockout Msh2-LS 

mice, body weights of the female and male mice didn’t significantly differ during the 

Tamoxifen treatment (Figure 6.9), showing successful drug administration and acceptance of 

the experimental procedures by the mice.  

In Aldh1b1flox/flox Msh2-LS mice, body weights of males (~25g) were significantly higher than 

body weights of females (~21g) both before and during the Tamoxifen treatments (Figure 

6.9A). In Aldh1b1-/- Msh2-LS mice, body weights of males (~26.4g) were significantly higher 

than body weights of females (~22g), both before and during the Tamoxifen treatments 

(Figure 6.9B).  

After Tamoxifen treatment mice received either 20% ethanol in drinking water or normal 

drinking water regimes and the body weights and health status of the mice were recorded 

twice a week (Figure 6.10-6.11).  

EtOH_Aldh1b1fl/fl_Msh2fl KO female mice did not show abnormal behaviour or reduced weight 

compared with H2O_Aldh1b1fl/fl_Msh2fl KO female mice, indicating good acceptance of the 

ethanol regime (Figure 6.10A). In EtOH_Aldh1b1fl/fl_Msh2fl KO and H2O_Aldh1b1fl/fl_Msh2fl KO 

male mice showed some variation in body weight most likely reflecting the low number of 

male experimental mice in this experiment (Figure 6.10B). EtOH_Aldh1b1fl/fl_Msh2fl KO mice 

weighed on average 31g for the males and 31g for the females, whereas 
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H2O_Aldh1b1fl/fl_Msh2fl KO mice weighed on average 34g for the males and 33g for the 

females (Figure 6.10). 

EtOH_Aldh1b1-/-_Msh2fl KO female and male mice did not show abnormal behaviour or 

reduced body weight compared with H2O_Aldh1b1-/-_Msh2fl KO female and male mice, 

indicating good acceptance of the ethanol regime (Figure 6.11). EtOH_Aldh1b1-/-_ Msh2fl KO 

mice weighed on average 36g for the males and 27g for the females, whereas H2O_Aldh1b1-

/-_Msh2fl KO mice weighed on average 39g for the males and 30g for the females (Figure 6.11).  

Drinking bottles were changed and bottle weights were recorded once a week. Liquid 

consumption per mouse was estimated by analysing the weights of the drinking bottles (per 

cage) and calculating the average weight of consumed liquid per mouse per day (Figure 6.12-

6.13). In Aldh1b1flox/flox Msh2-LS mice, an average H2O_Aldh1b1fl/fl_Msh2fl KO male mouse 

consumed around 12.83ml of drinking water per day, whereas an average 

EtOH_Aldh1b1fl/fl_Msh2fl KO male mouse consumed around 13.4ml of 20% ethanol in drinking 

water. In Aldh1b1flox/flox Msh2-LS mice, an average H2O_Aldh1b1fl/fl_Msh2fl KO female mouse 

consumed around 12.87ml of water per day, whereas an average EtOH_Aldh1b1fl/fl_Msh2fl 

KO female mouse consumed around 9ml of 20% ethanol in drinking water per day (Figure 

6.12). In Aldh1b1-/- Msh2-LS mice, an average H2O_Aldh1b1-/-_Msh2fl KO male mouse 

consumed around 10.4ml of drinking water per day, whereas an average EtOH_Aldh1b1-/-

_Msh2fl KO male mouse consumed around 10.5ml of 20% ethanol in drinking water. In 

Aldh1b1-/- Msh2-LS mice, an average H2O_Aldh1b1-/-_Msh2fl KO female mouse consumed 

around 10.2ml of water per day, whereas an average EtOH_Aldh1b1-/-_Msh2fl KO female 

mouse consumed around 11.5ml of 20% ethanol in drinking water per day (Figure 6.13). In 

both experiments, no significant differences were observed between any of the comparisons 

of ethanol-treated versus water-treated males or females.  
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Figure 6.9: Body weights during Tamoxifen treatment. A) Body weights of Aldh1b1flox/flox Msh2-LS 

males were significantly higher than body weights of females, before and during Tamoxifen 

treatments. 2-way-ANOVA test with Bonferroni post-test correction, p=0.0005 on days 1 and 2, 

p<0.0001 on days 3 and 4 (data shown as mean ± SD, n=6 mice in each group). B) Body weights of 

Aldh1b1-/- Msh2-LS males were significantly higher than body weights of females, before and during 

Tamoxifen treatments. 2-way-ANOVA test with Bonferroni post-test correction, p=0.0014 on day 1, 

p=0.0169 on day 2, p=0.0066 on day 3, and p=0.0027 on day 4 (data shown as mean ± SD, n=6 mice in 

each group). 
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Figure 6.10: Body weights for Aldh1b1flox/flox Msh2-LS males and females during 20% ethanol or 

standard/normal drinking water regimes. The data distribution for the body weight curves for the 

Aldh1b1flox/flox Msh2-LS male mice were influenced by the low number of male animals used in the 

experiment. There were no significant differences between the body weights of Aldh1b1flox/flox Msh2-

LS ethanol-treated (EtOH_Aldh1b1fl/fl_Msh2fl KO) males (or females) versus Aldh1b1flox/flox Msh2-LS 

water-treated (H2O_Aldh1b1fl/fl_Msh2fl KO) males (or females). 2-way-ANOVA with Bonferroni post-

test correction analysis (data shown as mean±SD, n=6 mice each group).  
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Figure 6.11: Body weights for Aldh1b1-/- Msh2-LS males and females during 20% ethanol or standard 

/ normal drinking water regimes. There were no significant differences between the body weights of 

Aldh1b1-/- Msh2-LS ethanol-treated (EtOH_Aldh1b1-/-_Msh2fl KO) males (or females) versus Aldh1b1-/- 

Msh2-LS water-treated (H2O_Aldh1b1-/-_Msh2fl KO) males (or females). 2-way-ANOVA with Bonferroni 

post-test correction analysis (data shown as mean±SD, n=6 mice each group).  
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Figure 6.12: Liquid consumption of Aldh1b1flox/flox Msh2-LS males and females treated with either 20% 

ethanol in drinking water or standard / normal water per mouse per day. 2-way-ANOVA with 

Bonferroni post-test correction analysis (data shown as mean±SD, n=6 mice in each group). No 

significant differences were observed for any of the comparisons of ethanol versus water treatment, 

or males versus females. 

 

 

Figure 6.13: Liquid consumption of Aldh1b1-/- Msh2-LS males and females treated with either 20% 

ethanol in drinking water or standard / normal water per mouse per day. 2-way-ANOVA with 

Bonferroni post-test correction analysis (data shown as mean±SD, n=6 mice in each group). No 

significant differences were observed for any of the comparisons of ethanol versus water treatment, 

or males versus females. 
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6.3.2.2 Tumour development in Aldh1b1 conditional-knockout Msh2-LS mice 

under long-term ethanol treatment 

The two cohorts of Aldh1b1flox/flox Msh2-LS model mice, Group-A (water-treated, 

H2O_Aldh1b1fl.fl_Msh2fl KO) and Group-B (ethanol-treated, EtOH_Aldh1b1fl.fl_Msh2fl KO), were 

monitored for up to 12 months for signs of intestinal tumour development or other 

pathological abnormalities, using a clinical scoring system that included known clinical signs 

of distress seen in mice that develop intestinal neoplasms, to determine when the mice 

should be culled for necropsy dissection and tumour analysis (Table 4.1). Most of the mice 

in Group-B (ethanol experimental group) displayed either anal prolapse or >20% reduction 

in body weight as common clinical signs of distress, at varying lengths of time from the start 

of the experimental protocol and were then culled for necropsy dissection. During necropsy 

dissection, naked eye inspection revealed that the majority of the EtOH_Aldh1b1fl.fl_Msh2fl 

KO mice showed a thicker colonic wall compared with the colonic walls of the 

H2O_Aldh1b1fl.fl_Msh2fl KO mice, but no gross morphological differences were observed in the 

small intestines. The lengths of the small intestines and colons were measured and recorded, 

but no significant differences in length were observed between the ethanol-treated and the 

water-treated groups. 

 

The histopathological analyses of Aldh1b1flox/flox Msh2-LS large intestines and small intestines 

confirmed the macroscopic observations of no significant morphological differences 

between the two groups in the small intestines, but increased colonic wall thickness in 

EtOH_Aldh1b1fl.fl_Msh2fl KO mice, due to a widespread increase in the colon crypt length as a 

result of extended zones of crypt epithelial hyperproliferation that were not observed in 

H2O_Aldh1b1fl.fl_Msh2fl KO murine colons (Figure 6.14). These extended zones of colonic crypt 

hyperproliferation were seen to affect 50% – 90% of the whole colonic length, usually 

involving proximal colon and mid colon more than distal colon and rectum, in most of the 

EtOH_Aldh1b1fl.fl_Msh2fl KO mice who survived more than 3 months of the ethanol treatment 

protocol. By contrast, histopathological analyses of the small intestines did not show any 

significant morphological differences between the two groups of animals using H&E-stained 

Swiss rolls of the intestines (Figure 6.15).  

 

In total, 5 out of 12 EtOH_Aldh1b1fl.fl_Msh2fl KO mice demonstrated zones of large intestinal 

crypt epithelial hyperproliferation, with adenoma formation and, in 1 case, invasive 
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adenocarcinoma was present, forming within an average of 4.5 months (minimum 13 weeks 

and maximum 39 weeks) of the start of the experimental protocol, compared with no cases 

of large intestinal adenoma formation in the 12 H2O_Aldh1b1fl.fl_Msh2fl KO control mice, in 

the same time-period (Figure 6.16). 

Almost all 5 EtOH_Aldh1b1fl.fl_Msh2fl KO adenoma-bearing mice showed colonic crypt 

hyperproliferative changes along the whole colon. Only one Aldh1b1flox/flox Msh2-LS mouse 

showed only colonic hyperproliferation without tumour formation (after 35 weeks of ethanol 

treatment). One out of these 5 EtOH_Aldh1b1fl.fl_Msh2fl KO adenoma-bearing mice was 

diagnosed with invasive adenocarcinoma in the proximal colon. In addition, in 2 out of these 

5 mice, caecal adenomas were found. Among these 5 EtOH_Aldh1b1fl.fl_Msh2fl KO mice, 2 

were diagnosed with rectal adenoma. In total, we observed 21 neoplasms distributed across 

the caecum, colon and rectum (Figure 6.17). Additionally, 1 out of these 5 mice developed a 

cutaneous sebaceous adenoma (a type of skin tumour that occurs in LS patients).  

Seven out of 12 EtOH_Aldh1b1fl.fl_Msh2fl KO mice did not show any intestinal adenoma 

formation, but in one of these cases there was a uterine endometrial adenocarcinoma (after 

13 weeks of ethanol treatment). Endometrial adenocarcinoma was also observed in 

EtOH_Msh2fl and H2O_Msh2fl mice, after 12 and 15 months, under 20% ethanol in drinking 

water and normal water treatment respectively (Chapter 4, 4.2.2.2).   

In Group-A (water-treated control cohort, H2O_Aldh1b1fl.fl_Msh2fl KO), no abnormalities or 

tumours were found in the large intestines in any of the 12 H2O_Aldh1b1fl.fl_Msh2fl KO mice. 

No morphological abnormalities or tumours were observed following necropsy and 

histopathological analysis of the H&E-stained sections of the small intestines, stomach, liver, 

spleen, lymph nodes and thymus, of any of the 12 EtOH_Aldh1b1fl.fl_Msh2fl KO mice or 12 

H2O_Aldh1b1fl.fl_Msh2fl KO mice. 
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Figure 6.14: Representative images of H&E stained colon Swiss rolls. A) Images of H&E stained LI Swiss 

rolls from water-treated Aldh1b1flox/flox Msh2-LS (H2O_Aldh1b1fl.fl_Msh2fl KO) mice, further magnified in 

image (C) showing normal large intestinal mucosal appearances. Images taken from scanned slide files 

with the Hamamatsu Nanozoomer NDP Viewer software at 0.7X and 2.5X magnification respectively (bar 

at lower left indicates 2.5mm and 1mm). B) Images of H&E stained LI Swiss rolls from ethanol-treated 

Aldh1b1flox/flox Msh2-LS (EtOH_Aldh1b1fl.fl_Msh2fl KO) mice, further magnified in image (D) showing 

widespread hyperproliferation of the elongated colonic crypts. Images taken from scanned slide files with 

the Hamamatsu Nanozoomer NDP Viewer software at 0.6X and 2.5X magnification respectively (bar at 

lower left indicates 2.5mm and 1mm).  
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Figure 6.15: Representative images of H&E stained SI Swiss rolls. A) Image of H&E stained SI Swiss roll 

from a water-treated Aldh1b1flox/flox Msh2-LS (H2O_Aldh1b1fl.fl_Msh2fl KO) mouse, further magnified in 

image (C). Images taken from scanned slide files with the Hamamatsu Nanozoomer NDP Viewer 

software at 0.7X and 2.5X magnification respectively. B) Image of H&E stained small intestine Swiss 

roll from an ethanol-treated Aldh1b1flox/flox Msh2-LS (EtOH_Aldh1b1fl.fl_Msh2fl KO) mouse, further 

magnified in image (D). Images taken from scanned slide files with the Hamamatsu Nanozoomer NDP 

Viewer software at 0.7X and 2.5X magnification respectively (bar at lower left indicates 2.5mm and 

1mm). All images show normal small intestinal mucosal appearances.  SI: Small Intestine. 

 



217 
 

 

Figure 6.16: A) Bar chart of the number of Aldh1b1flox/flox Msh2-LS mice that developed intestinal 

tumours (both adenomas and adenocarcinomas) after receiving either 20% ethanol in drinking water 

or normal/regular drinking water. 5/12 (41.7%) Aldh1b1flox/flox Msh2-LS ethanol-treated 

(EtOH_Aldh1b1fl.fl_Msh2fl KO) mice developed large intestinal tumours compared with 0/12 (0%) 

Aldh1b1flox/flox Msh2-LS water-treated (H2O_Aldh1b1fl.fl_Msh2fl KO) mice that developed large intestinal 

tumours. Fisher’s exact test, *p=0.0373. B) Survival chart showing tumour incidence in Aldh1b1flox/flox 

Msh2-LS mice treated with either 20% ethanol or water. The survival plot shows the development of 

tumours (both adenomas and adenocarcinomas) in the Aldh1b1flox/flox Msh2-LS ethanol-treated 

(EtOH_Aldh1b1fl.fl_Msh2fl KO) group (red) compared with the lack of intestinal tumours over the same 

time period in the Aldh1b1flox/flox Msh2-LS water-treated (H2O_Aldh1b1fl.fl_Msh2fl KO) group (blue). Log-

rank (Mantel-Cox) test, *p=0.0241. 
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Figure 6.17: Tumour distribution in ethanol-treated Aldh1b1flox/flox Msh2-LS (EtOH_Aldh1b1fl.fl_Msh2fl 

KO) tumour-bearing mice. A) Numbers of adenomas and adenocarcinomas found and their locations. 

In total, 21 neoplasms were observed: 3 adenomas in the caecum; 8 adenomas in the proximal colon 

(1/8 was an invasive adenocarcinomas); 5 adenomas in the mid-colon; 3 adenomas in the distal colon; 

and 2 adenomas in the rectum. B) Tumour distribution and number per EtOH_Aldh1b1fl.fl_Msh2fl KO 

tumour-bearing mouse: 1/5 tumour-bearing mice showed one caecal adenoma and 1/5 mice showed 

two adenomas in the caecum; 1/5 tumour-bearing mice showed one proximal colonic adenoma; 2/5 

showed two adenomas and 1/5 showed three adenomas in the proximal colon; 5/5 tumour-bearing 

mice showed one mid-colonic adenoma; 1/5 tumour-bearing mice showed 2 distal colonic adenomas 

and 1/5 showed one adenoma in the distal colon; 2/5 tumour-bearing mice showed one rectal 

adenoma.  
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6.3.2.3 Tumour development in Aldh1b1 constitutive-knockout Msh2-LS mice 

under long-term ethanol treatment 

The two cohorts of Aldh1b1-/- Msh2-LS model mice, Group-A (water-treated, H2O_Aldh1b1-/-

_Msh2fl KO) and Group-B (ethanol-treated, EtOH_Aldh1b1-/-_Msh2fl KO), were monitored for 

up to 12 months for signs of intestinal tumour development or other pathological 

abnormalities, using a clinical scoring system that included known clinical signs of distress 

seen in mice that develop intestinal neoplasms, to determine when the mice should be culled 

for necropsy dissection and tumour analysis (Table 4.1). Most of the mice in Group-B 

(ethanol-treated experimental group) displayed either anal prolapse or >20% reduction in 

body weight as common clinical signs of distress, at varying lengths of time from the start of 

the experimental protocol and were then culled for necropsy dissection. During necropsy 

dissection, naked eye inspection revealed that the majority of the EtOH_Aldh1b1-/-_Msh2fl KO 

mice showed a thicker colonic wall compared with the normal colonic walls of the 

H2O_Aldh1b1-/-_Msh2fl KO mice, but no gross morphological differences were observed in the 

small intestines. The lengths of the small intestines and colons were measured and recorded, 

but no significant differences in length were observed between the ethanol-treated mice and 

the water-treated mice. 

 

The histopathological analyses of Aldh1b1-/- Msh2-LS large intestines and small intestines 

confirmed the macroscopic observations of no significant morphological differences 

between the two groups in the small intestines, but increased colonic wall thickness in 

EtOH_Aldh1b1-/-_Msh2fl KO mice, due to a widespread increase in the colonic crypt length as 

a result of extended zones of crypt epithelial hyperproliferation that were not observed in 

H2O_Aldh1b1-/-_Msh2fl KO murine colons (Figure 6.18). These extended zones of colonic crypt 

hyperproliferation were seen to affect 50% – 90% of the whole colonic length, usually 

involving proximal colon and mid colon, more than distal colon and rectum, in most of the 

EtOH_Aldh1b1-/-_Msh2fl KO mice who survived more than 2 months of the ethanol treatment 

protocol. By contrast, histopathological analyses of the small intestines showed normal 

mucosal appearances with no significant morphological differences between the two groups 

of animals using H&E-stained Swiss rolls of the small intestines (Figure 6.19).  

 

In total, 8 out of 12 EtOH_Aldh1b1-/-_Msh2fl KO mice demonstrated zones of large intestinal 

crypt elongation with epithelial hyperproliferation, and with adenoma formation, all within 
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an average of 6 months (minimum 9 weeks and maximum 42 weeks) of the start of the 

experimental protocol, compared with no cases of either colonic crypt hyperproliferation or 

large intestinal adenoma formation in the 12 H2O_Aldh1b1-/-_Msh2fl KO control mice, over the 

same time-period (Figure 6.20). 

Almost all of the 8 EtOH_Aldh1b1-/-_Msh2fl KO tumour-bearing mice showed colonic crypt 

hyperproliferative changes along the whole colon. No Aldh1b1-/- Msh2-LS mice showed only 

colonic hyperproliferation without tumour formation. In addition, in 4 out of 8 

EtOH_Aldh1b1-/-_Msh2fl KO mice, caecal adenomas were found. Among these 8 

EtOH_Aldh1b1-/-_Msh2fl KO mice, 5 were diagnosed with rectal adenoma. In total, 35 

neoplasms were observed, distributed between both the caecum and the colon (Figure 6.21).  

Four out of 12 EtOH_Aldh1b1-/-_Msh2fl KO mice did not show any intestinal adenoma 

formation or extra-intestinal abnormality or tumour.  

In Group-A (water-treated control cohort), no abnormalities or tumours in the large 

intestines were found in any of the 12 H2O_Aldh1b1-/-_Msh2fl KO mice. 

No morphological abnormalities or tumours were observed following necropsy and 

histopathological analysis of the H&E-stained sections of the small intestines, stomach, liver, 

spleen, lymph nodes and thymus, in any of the 12 EtOH_Aldh1b1-/-_Msh2fl KO mice or in any 

of the 12 H2O_Aldh1b1-/-_Msh2fl KO mice. 
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Figure 6.18: Representative images of H&E stained colon Swiss rolls. A) Images of H&E stained LI Swiss 

rolls from water-treated Aldh1b1-/- Msh2-LS (H2O_Aldh1b1-/-_Msh2fl KO) mice, further magnified in 

image (C) showing normal large intestinal mucosal appearances. Images taken from scanned slide files 

with the Hamamatsu Nanozoomer NDP Viewer software at 0.7X and 2.5X magnification respectively. 

B) Images of H&E stained LI Swiss rolls from ethanol-treated Aldh1b1-/- Msh2-LS (EtOH_Aldh1b1-/-

_Msh2fl KO) mice, further magnified in image (D) showing widespread hyperproliferative changes with 

colonic crypt elongation. Images taken from scanned slide files with the Hamamatsu Nanozoomer NDP 

Viewer software at 0.5X and 2.5X magnification respectively (bar at lower left indicates 5mm and 

1mm).  
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Figure 6.19: Representative images of H&E stained SI Swiss rolls. A) Image of H&E stained SI Swiss roll 

from a water-treated Aldh1b1-/- Msh2-LS (H2O_Aldh1b1-/-_Msh2fl KO) mouse, further magnified in 

image (C). Images taken from scanned slide files with the Hamamatsu Nanozoomer NDP Viewer 

software at 0.7X and 2.5X magnification respectively. B) Image of H&E stained small intestine Swiss 

roll from an ethanol-treated Aldh1b1-/- Msh2-LS (EtOH_Aldh1b1-/-_Msh2fl KO) mouse, further magnified 

in image (D). Images taken from scanned slide files with the Hamamatsu Nanozoomer NDP Viewer 

software at 0.5X and 2.5X magnification respectively magnification (bar at lower left indicates 5mm 

and 1mm).  All images show normal small intestinal mucosal appearances.SI: Small Intestine. 
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Figure 6.20: A) Bar chart of the number of Aldh1b1-/- Msh2-LS mice that developed intestinal tumours 

after receiving either 20% ethanol in drinking water or normal/regular drinking water. 8/12 (66.7%) 

ethanol-treated Aldh1b1-/- Msh2-LS (EtOH_Aldh1b1-/-_Msh2fl KO) mice developed large intestinal 

tumours compared with 0/12 (0%) water-treated Aldh1b1-/- Msh2-LS (H2O_Aldh1b1-/-_Msh2fl KO) mice. 

Fisher’s exact test, **p=0.0013. 

B) Survival chart showing tumour incidence in Aldh1b1-/- Msh2-LS mice treated with either 20% 

ethanol or water. The survival plot shows the development of tumours (both adenomas and 

adenocarcinomas) in the ethanol-treated Aldh1b1-/- Msh2-LS (EtOH_Aldh1b1-/-_Msh2fl KO) group (red) 

compared with the lack of intestinal tumours over the same time period in the water-treated Aldh1b1-

/- Msh2-LS (H2O_Aldh1b1-/-_Msh2fl KO) group (blue). Log-rank (Mantel-Cox) test, **p=0.0047. 
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Figure 6.21: Tumour distribution in ethanol-treated Aldh1b1-/- Msh2-LS (EtOH_Aldh1b1-/-_Msh2fl KO) 

tumour-bearing mice. A) Numbers of adenomas (no adenocarcinomas observed in this group) found 

and their locations. In total, 35 neoplasms were observed: 8 adenomas in the caecum; 14 adenomas 

in the proximal colon; 8 adenomas in the mid-colon; 0 adenomas in the distal colon; and 5 adenomas 

in the rectum. B) Tumour distribution and number per EtOH_Aldh1b1-/-_Msh2fl KO tumour-bearing 

mouse: 2/8 tumour-bearing mice showed one caecal adenoma, 1/8 mice showed two caecal 

adenomas and 1/8 showed 4 adenomas in the caecum; 1/8 tumour-bearing mice showed one 

proximal colonic adenoma, 2/8 showed two adenomas and 3/8 showed three adenomas in the 

proximal colon; 2/8 tumour-bearing mice showed one mid-colonic adenoma and 3/8 showed 2 

adenomas in the mid-colon. No EtOH_Aldh1b1-/-_Msh2fl KO mice showed adenoma formation in the 

distal colon. However, 5/8 tumour-bearing mice showed one rectal adenoma. 
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6.3.2.4 Comparative analysis of tumour development between in Aldh1b1 

conditional-knockout Msh2-LS mice, Aldh1b1 constitutive-knockout Msh2-LS mice 

and Aldh1b1 wild-type Msh2-LS mice under long-term ethanol treatment 

In Aldh1b1flox/flox Msh2-LS subjects, 41.7% (5/12 mice) of  EtOH_Aldh1b1fl/fl_Msh2fl KO mice 

demonstrated adenoma formation (with 1 case of invasive adenocarcinoma), forming within 

an average of 4.5 months (minimum 13 weeks and maximum 39 weeks), compared with 

Aldh1b1 wild-type (Aldh1b1wt) Msh2-LS in which 65% (15/23) of EtOH_Msh2fl KO mice showed 

adenoma formation (5 cases of  invasive adenocarcinoma), all within an average of 6 months 

(minimum 4 weeks and maximum 48 weeks) (Figure 6.22). EtOH_Aldh1b1fl/fl_Msh2fl KOmice 

showed tumour formation slightly earlier than EtOH_Msh2fl KO mice, but no statistically 

significant difference was observed. However, tumour-bearing EtOH_Aldh1b1fl/fl_Msh2fl KO 

mice showed statistically significantly higher numbers of tumour per mouse (21 neoplasms 

were observed in 5 tumour-bearing mice) compared with tumour-bearing e EtOH_Msh2fl KO 

mice (36 neoplasms were observed in 15 tumour-bearing mice) (Figure 6.23).  

 

In Aldh1b1-/- Msh2-LS subjects, 66.7% (8/12 mice) of  EtOH_Aldh1b1-/-_Msh2fl KO mice 

demonstrated adenoma formation (no adenocarcinomas observed in this group), forming 

within an average of 6 months (minimum 9 weeks and maximum 42 weeks), compared with 

Aldh1b1wt Msh2-LS in which 65% (15/23) of EtOH_Msh2fl KO mice showed adenoma formation 

(5 cases of  invasive adenocarcinoma), all within an average of 6 months (minimum 4 weeks 

and maximum 48 weeks) (Figure 6.24). Tumour-bearing EtOH_Aldh1b1-/-_Msh2fl KO mice 

showed statistically higher numbers of tumours per mouse (35 neoplasms were observed in 

8 tumour-bearing mice) compared with tumour-bearing EtOH_Msh2fl KO mice (36 neoplasms 

were observed in 15 tumour-bearing mice) (Figure 6.25).  

We performed the same comparative analyses of tumour development between 

EtOH_Aldh1b1fl/fl_Msh2fl KO and EtOH_Aldh1b1-/-_Msh2fl KO mice, but no statistically 

significant differences were found between these two cohorts (Figure 6.27-6.28). 
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Figure 6.22: A) Bar chart of the number of ethanol-treated Aldh1b1wt Msh2-LS (EtOH_Msh2fl KO) 

tumour-bearing mice (15/23, 65%) compared with ethanol-treated Aldh1b1flox/flox Msh2-LS 

(EtOH_Aldh1b1fl/fl_Msh2fl KO) tumour-bearing mice (5/12, 41.7%). No significant differences were 

observed between these groups. B) Survival chart showing tumour incidence in ethanol-treated 

Aldh1b1wt Msh2-LS (EtOH_Msh2fl KO) mice compared with ethanol-treated Aldh1b1flox/flox Msh2-LS 

(EtOH_Aldh1b1fl/fl_Msh2fl KO) mice. The survival plot shows the development of tumours (both 

adenomas and adenocarcinomas) in both EtOH_Msh2fl KO mice (blue) and EtOH_Aldh1b1fl/fl_Msh2fl KO 

mice (red). No statistically significant differences were observed between these groups.  
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Figure 6.23: Number of tumours per mouse in ethanol-treated Aldh1b1wt Msh2-LS (EtOH_Msh2fl KO) 

tumour-bearing mice compared with ethanol-treated Aldh1b1flox/flox Msh2-LS 

(EtOH_Aldh1b1fl/fl_Msh2fl KO) tumour-bearing mice. EtOH_Msh2fl KO tumour-bearing mice showed an 

average of 2.4 tumours per mouse compared with EtOH_Aldh1b1fl/fl_Msh2fl KO tumour-bearing mice 

with an average 4.2 tumours per mouse. Student t test, *p=0.0319. 
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Figure 6.24: A) Bar chart of the number of ethanol-treated Aldh1b1wt Msh2-LS (EtOH_Msh2fl KO) 

tumour-bearing mice (15/23, 65%) compared with ethanol-treated Aldh1b1-/- Msh2-LS 

(EtOH_Aldh1b1-/-_Msh2fl KO) tumour-bearing mice (8/12, 66.7%). No statistically significant differences 

were observed between these groups. B) Survival chart showing tumour incidence in ethanol-treated 

Aldh1b1wt Msh2-LS (EtOH_Msh2fl KO) mice compared with ethanol-treated Aldh1b1-/- Msh2-LS 

(EtOH_Aldh1b1-/-_Msh2fl KO) mice. The survival plot shows the development of tumours (both 

adenomas and adenocarcinomas) in both EtOH_Msh2fl KO mice (blue) and EtOH_Aldh1b1-/-_Msh2fl KO 

(red). No statistically significant differences were observed between these groups.  
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Figure 6.25: Number of tumours per mouse in ethanol-treated Aldh1b1wt Msh2-LS (EtOH_Msh2fl KO) 

tumour-bearing mice compared with ethanol-treated Aldh1b1-/- Msh2-LS (EtOH_Aldh1b1-/-_Msh2fl KO) 

tumour-bearing mice. EtOH_Msh2fl KO tumour-bearing mice showed on average 2.4 tumours per 

mouse compared with EtOH_Aldh1b1-/-_Msh2fl KO tumour-bearing mice with an average of 4.8 

tumours per mouse. Student t test, *p=0.0103. 
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Figure 6.26: A) Bar chart of the number of ethanol-treated Aldh1b1flo/flox Msh2-LS 

(EtOH_Aldh1b1fl/fl_Msh2fl KO) tumour-bearing mice (5/12, 41.7%) compared with ethanol-treated 

Aldh1b1-/- Msh2-LS (EtOH_Aldh1b1-/-_Msh2fl KO) tumour-bearing mice (8/12, 66.7%). No statistically 

significant differences were observed between these groups. B) Survival chart showing tumour 

incidence in ethanol-treated Aldh1b1flox/flox Msh2-LS (EtOH_Aldh1b1fl/fl_Msh2fl KO) mice compared with 

ethanol-treated Aldh1b1-/- Msh2-LS (EtOH_Aldh1b1-/-_Msh2fl KO) mice. The survival plot shows the 

development of tumours (both adenomas and adenocarcinomas) in both EtOH_Aldh1b1fl/fl_Msh2fl KO 

mice (blue) and EtOH_Aldh1b1-/-_Msh2fl KO (red). No statistically significant differences were observed 

between these groups.  
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Figure 6.27: Number of tumours per mouse in ethanol-treated Aldh1b1flox/flox Msh2-LS 

(EtOH_Aldh1b1fl/fl_Msh2fl KO) tumour-bearing mice compared with ethanol-treated Aldh1b1-/- Msh2-

LS (EtOH_Aldh1b1-/-_Msh2fl KO) tumour-bearing mice. EtOH_Aldh1b1fl/fl_Msh2fl KO tumour-bearing 

mice showed an average of 4.2 tumours per mouse compared with EtOH_Aldh1b1-/-_Msh2fl KO tumour-

bearing mice with an average of 4.8 tumours. No statistically significant difference was observed 

between these groups. 
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6.4 Long-term ethanol effects in Aldh1b1-knockout Msh2-LS mouse 

model control mice. 

6.4.1 Methods 

We introduced negative control experimental groups to study the ethanol effect in Msh2-LS 

mice without treating them with Tamoxifen.  

Groups of 7-9 weeks old Aldh1b1flox/flox Msh2-LS control mice (Msh2flox/-; Lgr5CreERT2+/-; 

Aldh1b1flox/flox or Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-; Aldh1b1flox/flox) and Aldh1b1-/- Msh2-LS 

control mice (Msh2flox/-; Lgr5CreERT2+/-; Aldh1b1-/- or Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-; 

Aldh1b1-/) were divided into two groups (A and B) prior to treatment with corn oil (without 

Tamoxifen).  

Both Group-A and Group-B mice received i.p. injections of corn oil on days 1, 2, 3, and 4 

(using the same volume of corn oil as used in treatments of the experimental subjects). On 

day 5 Group-A mice were provided with normal drinking water and Group-B mice with 20% 

ethanol in drinking water (Figure 6.28). 

These control animals were culled when they reached the same end-timepoint as the age- 

and sex-matched experimental Tamoxifen-induced mice (following tumour development or 

clinical distress in these experimental subjects), or when the control mice showed either 

clinical signs of distress or they displayed >20% body weight loss compared with the initial 

weight. Following schedule 1 culling and necropsy dissection of the control mice, tissues 

were collected and fixed in 10% NBF (as described in Materials and Methods). Following 

standard tissue processing protocols, the tissue blocks were paraffin-embedded in 

preparation for section cutting and staining. 

In previous work, Aldh1b1-depleted mice were used as experimental subjects, along with 

wild-type control mice, under long-term (>1 year) treatment with 20% ethanol in drinking 

water or normal/standard drinking water (Müller et al., 2016). The data related to wild-type 

control mice have already been discussed in Chapter 4 (4.3.2.1). Here, the data are shown 

for the ethanol/acetaldehyde effects on intestinal tumourigenesis, comparing both Aldh1b1 

conditional-knockout Tamoxifen-induced Msh2-LS mice and Aldh1b1 constitutive-knockout 

Tamoxifen-induced Msh2-LS mice with Aldh1b1 conditional-knockout non-induced Msh2-LS 

mice and Aldh1b1 constitutive-knockout non-induced Msh2-LS mice. The acronyms used for 

the Msh2-LS model mice and their relevant treatments are shown in Table 2.2. 
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Figure 6.28: Experimental treatment protocols and timelines for Group-A (water-treated) and -B 

ethanol-treated) mice, showing 4 days of i.p. injections of corn oil (without Tamoxifen), followed by 

either standard/normal drinking water (Group-A) or drinking water containing 20% ethanol (Group-

B). (EtOH = Ethanol). 
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6.4.2 Results 

6.4.2.1 Control group organization and observations. 

We studied the effects of ethanol/acetaldehyde (compared with water-treatment) on 

intestinal tumour formation in Aldh1b1 conditional-knockout non-induced Msh2-LS mice 

and Aldh1b1 constitutive-knockout non-induced Msh2-LS mice.  

Fourteen non-induced Aldh1b1flox/flox Msh2-LS control mice were divided into two groups: 7 

mice in Group-A (4 females and 3 males, water-treated control group) and 7 mice in Group-

B (4 females and 3 males, ethanol-treated group).  

Twelve non-induced Aldh1b1-/- Msh2-LS control mice were divided into two groups: 6 mice 

in Group-A (2 females and 4 males, water-treated control group) and 6 mice in Group-B (2 

females and 4 males, ethanol-treated group).  

Animals were culled, necropsy dissected and tissues were collected when they reached the 

same end-timepoint as the age- and sex-matched experimental Tamoxifen-induced ethanol-

treated Aldh1b1 conditional- or constitutive-knockout Msh2-LS mice.  

During corn oil administration (daily corn oil i.p injections for 4 consecutive days), body 

weights and health status were recorded. In both Aldh1b1 conditional-knockout Msh2-LS 

mice and Aldh1b1 constitutive-knockout Msh2-LS mice, body weights of the female and male 

mice didn’t significantly differ during the corn oil treatment (Figure 6.29), showing successful 

drug administration and acceptance of the experimental procedures by the mice. In non-

induced Aldh1b1flox/flox Msh2-LS mice, body weights of males (~22.5g) were significantly 

higher than body weights of females (~18.9g) both before and during the corn oil treatments 

(Figure 6.29A). In non-induced Aldh1b1-/- Msh2-LS mice, body weights of males (~22.2g) were 

slightly lower than body weights of females (~22.8g), both before and during the corn oil 

treatments (Figure 6.29B).  

After corn oil treatment, mice received either 20% ethanol in drinking water regime or 

standard/normal drinking water regime and the body weights and health status of the mice 

were monitored and recorded twice per week. 

EtOH_Aldh1b1fl/fl_Msh2fl female and male mice did not show abnormal behaviour or reduced 

weight compared with H2O_Aldh1b1fl/fl_Msh2fl female and male mice, indicating good 

acceptance of the ethanol regime (Figure 6.30A). The EtOH_Aldh1b1fl/fl_Msh2fl and 

H2O_Aldh1b1fl/fl_Msh2fl male mice showed some variation in body weight within the groups, 

most likely reflecting the use of small numbers of mice from different litters starting at 
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different times (Figure 6.31B). EtOH_Aldh1b1fl/fl_Msh2fl mice weighed on average 32.4g for 

the males and 27g for the females, whereas H2O_Aldh1b1fl/fl_Msh2fl mice weighed on 

average 29.5g for the males and 23g for the females (Figure 6.30). 

EtOH_Aldh1b1-/-_Msh2fl female and male mice did not show abnormal behaviour or reduced 

body weight compared with H2O_Aldh1b1-/-_Msh2fl female and male mice, indicating good 

acceptance of the ethanol regime (Figure 6.31). The EtOH_Aldh1b1-/-_Msh2fl and 

H2O_Aldh1b1-/-_Msh2fl female and male mice showed some variation in body weight within 

the groups, most likely reflecting the use of small numbers of mice from different litters 

starting at different times. EtOH_Aldh1b1-/-_Msh2fl mice weighed on average 30g for the 

males and 31g for the females, whereas H2O_Aldh1b1-/-_Msh2fl mice weighed on average 

30.3g for the males and 26.3g for the females (Figure 6.31).  

The body weights of both Tamoxifen-induced Aldh1b1 conditional-knockout and Aldh1b1 

constitutive-knockout Msh2-LS mice, were compared with both non-induced Aldh1b1 

conditional-knockout and Aldh1b1 constitutive-knockout Msh2-LS mice, during either 20% 

ethanol treatment or normal drinking water treatment (Figure 6.32-6.33). In every study 

group, ethanol-treated Msh2-LS female and male mice did not show significant differences 

in body weight, or abnormal behaviour, indicating good acceptance of the 20% ethanol 

treatment regime.  

Drinking bottles were changed and bottle weights were recorded once a week. Liquid 

consumption per mouse was estimated by analysing the weights of the drinking bottles (per 

cage) and calculating the average weight of consumed liquid per mouse per day (Figure 6.34). 

H2O_Aldh1b1fl/fl_Msh2fl female mice consumed on average 12ml of drinking water per day, 

compared with 7.7ml of 20% ethanol in drinking water consumed by 

EtOH_Aldh1b1fl/fl_Msh2fl female mice. The difference in liquid consumption between 

EtOH_Aldh1b1fl/fl_Msh2fl and H2O_Aldh1b1fl/fl_Msh2fl females is statistically significant (p = 

0.0018). H2O_Aldh1b1fl/fl_Msh2fl male mice consumed on average 12.7ml of drinking water 

per day, compared with 11.2ml of 20% ethanol in drinking water consumed by 

EtOH_Aldh1b1fl/fl_Msh2fl male mice, with no significant differences observed (Figure 6.34A). 

In non-induced Aldh1b1-/- Msh2-LS mice, an average H2O_Aldh1b1-/-_Msh2fl male mouse 

consumed around 11.3ml of drinking water per day, whereas an average EtOH_Aldh1b1-/-

_Msh2fl male mouse consumed around 13ml of 20% ethanol in drinking water. In Aldh1b1-/- 

Msh2-LS mice, an average H2O_Aldh1b1-/-_Msh2fl female mouse consumed around 11.5ml of 
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water per day, whereas an average EtOH_Aldh1b1-/-_Msh2fl female mouse consumed around 

7ml of 20% ethanol in drinking water per day (Figure 6.34B). No significant differences were 

observed between any of the comparisons of EtOH_Aldh1b1-/-_Msh2fl versus H2O_Aldh1b1-

/-_Msh2fl males or females.  

 

 

 

.  

 

Figure 6.29: Body weights during corn oil treatment. A) Body weights of non-induced (no Tamoxifen) 

Aldh1b1flox/flox Msh2-LS males were significantly higher than body weights of non-induced 

Aldh1b1flox/flox Msh2-LS females, before and during corn oil treatments. 2-way-ANOVA test with 

Bonferroni post-test correction, p=0.0145 on day 1 and p<0.0001 on days 2-4 (data shown as mean ± 

SD, n=6 mice in each group).  B) Body weights of non-induced Aldh1b1-/- Msh2-LS males were similar 

to body weights of females, before and during corn oil treatments. 2-way-ANOVA test with Bonferroni 

post-test correction, no significant differences observed (data shown as mean ± SD, n=6 mice in each 

group). 
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Figure 6.30: Body weights for non-induced Aldh1b1flox/flox Msh2-LS males and females during 20% 

ethanol or standard/normal drinking water regimes. The data distribution for the body weight curves 

of the Aldh1b1flox/flox Msh2-LS mice were influenced by the small numbers of mice coming from 

different litters and starting at different time points. There were no significant differences between 

the body weights of non-induced ethanol-treated Aldh1b1flox/flox Msh2-LS (EtOH_Aldh1b1fl/fl_Msh2fl) 

males (or females) versus non-induced water-treated Aldh1b1flox/flox Msh2-LS (H2O_Aldh1b1fl/fl_Msh2fl) 

males (or females). 2-way-ANOVA with Bonferroni post-test correction analysis (data shown as 

mean±SD, n=4 mice each group for the females and n=3 each group for the males).  
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Figure 6.31: Body weights for non-induced Aldh1b1-/- Msh2-LS males and females during 20% ethanol 

or standard/normal drinking water regimes. The data distribution for the body weight curves for the 

Aldh1b1-/- Msh2-LS mice were influenced by the small numbers of mice coming from different litters 

and starting at different time points. There were no significant differences between the body weights 

of non-induced ethanol-treated Aldh1b1-/- Msh2-LS (EtOH_Aldh1b1-/-_Msh2fl) males (or females) 

versus non-induced water-treated Aldh1b1-/- Msh2-LS (H2O_Aldh1b1-/-_Msh2fl) males (or females). 2-

way-ANOVA with Bonferroni post-test correction analysis (data shown as mean±SD, n=2 mice each 

group for the females and n=4 each group for the males). 
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Figure 6.32: Body weights for males and females during 20% ethanol or standard/normal drinking water regimes. Body weight graphs of Tamoxifen-induced 

Aldh1b1flox/flox Msh2-LS experimental subject mice (A), non-induced Aldh1b1flox/flox Msh2-LS control mice (B), during 20% ethanol or standard/normal drinking water 

regimes. In each group, there were no significant differences between the body weights of ethanol-treated versus water-treated groups of mice for either males or 

females. 2-way-ANOVA test with Bonferroni post-test correction analysis (data shown as mean±SD, n=6, n=3-4; SD too small to show as bars in some experiments).  
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Figure 6.33: Body weights for males and females during 20% ethanol or standard/normal drinking water regimes. Body weight graphs of Tamoxifen-induced Aldh1b1-

/- Msh2-LS experimental subject mice (A), non-induced Aldh1b1-/- Msh2-LS control mice (B), during 20% ethanol or standard/normal drinking water regimes. In each 

group, there were no significant differences between the body weights of ethanol-treated versus water-treated groups of mice for either males or females. 2-way-

ANOVA test with Bonferroni post-test correction analysis (data shown as mean±SD, n=6, n=2-4; SD too small to show as bars in some experiments).  
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Figure 6.34: Liquid consumption of either 20% ethanol containing drinking water or standard/normal 

water per mouse per day of non-induced Aldh1b1flox/flox Msh2-LS control mice (A), and non-induced 

Aldh1b1-/- Msh2-LS control mice (B). 2-way-ANOVA with Bonferroni post-test correction analysis, 

**p=0.0018 (data shown as mean±SD).
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6.4.2.2 Tumour development in control mice exposed to long-term ethanol 

treatment 

Both non-induced Aldh1b1 conditional-knockout and Aldh1b1 constitutive-knockout Msh2-

LS control mice treated with either ethanol or water, were culled when they reached the 

same end-timepoint as age- and sex-matched Tamoxifen-induced ethanol-treated Aldh1b1 

conditional-knockout and Aldh1b1 constitutive-knockout Msh2-LS experimental mice.  

These control mice underwent necropsy dissection and organ/tissue collection in the same 

way as the experimental mice.  

In non-induced Aldh1b1flox/flox Msh2-LS control mice, Group-B (ethanol-treated cohort, 

EtOH_Aldh1b1fl/fl_Msh2fl), 3 out of 7 (43%) mice showed zones of colonic crypt epithelial 

hyperproliferation involving mainly the proximal and mid colon (after 13, 15 and 39 weeks 

of 20% ethanol in drinking water regime, respectively). None of the EtOH_Aldh1b1fl/fl_Msh2fl 

control mice showed intestinal adenoma formation. In Group-A (water-treated control 

cohort, H2O_Aldh1b1fl/fl_Msh2fl), no intestinal hyperproliferation, adenoma or other 

abnormality was observed in any of the 7 H2O_Aldh1b1fl/fl_Msh2fl control mice (Figure 6.35). 

The tumour incidence was compared between Tamoxifen-induced Aldh1b1flox/flox Msh2-LS 

experimental cohort mice and non-induced Aldh1b1flox/flox Msh2-LS control mice (Figure 

6.36). 

In non-induced Aldh1b1-/- Msh2-LS control mice, Group-B (ethanol-treated cohort, 

EtOH_Aldh1b1-/-_Msh2fl), 2 out of 6 (33.4%) mice showed zones of colonic crypt epithelial 

hyperproliferation involving mainly the mid colon (after 14 and 22 weeks of 20% ethanol in 

drinking water regime, respectively). None of the EtOH_Aldh1b1-/-_Msh2fl control mice 

showed intestinal adenoma formation. In Group-A (water-treated control cohort, 

H2O_Aldh1b1-/-_Msh2fl), no intestinal hyperproliferation, adenoma or other abnormality was 

observed in any of the 6 H2O_Aldh1b1-/-_Msh2fl control mice (Figure 6.36). The tumour 

incidence was compared between Tamoxifen-induced Aldh1b1-/- Msh2-LS experimental 

cohort mice and non-induced Aldh1b1-/- Msh2-LS control mice (Figure 6.37). 

No morphological abnormalities or tumours were observed following necropsy dissection 

and histopathological analysis of the H&E-stained sections of the caecum, small intestines, 

stomach, anal canal, liver, spleen, lymph nodes and thymus, of any of the 14 

EtOH_Aldh1b1fl/fl_Msh2fl or H2O_Aldh1b1fl/fl_Msh2fl mice, and of any of the 12 

EtOH_Aldh1b1-/-_Msh2fl or H2O_Aldh1b1fl/fl_Msh2fl mice. The intestinal tumour formation in 

the Tamoxifen-induced Aldh1b1flox/flox MSh2-LS experimental mice was compared with that 
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for non-induced Aldh1b1flox/flox Msh2-LS control mice, treated with either 20% ethanol in 

drinking water or normal/standard drinking water (Figure 6.38). The intestinal tumour 

formation in the Tamoxifen-induced Aldh1b1-/- MSh2-LS experimental mice was compared 

with that for the non-induced Aldh1b1-/- Msh2-LS control mice (Figure 6.39).   

 

 

 

Figure 6.35: A) Bar chart of the number of non-induced Aldh1b1flox/flox Msh2-LS control mice that 

developed intestinal tumours (adenomas or adenocarcinomas) after receiving either 20% ethanol in 

drinking water or normal/standard drinking water. In both groups (water-treated cohort and ethanol-

treated cohort) 0/7 non-induced Aldh1b1flox/flox Msh2-LS control mice developed large intestinal 

adenomas. Fisher’s exact test showed no significant differences were observed. B) Tumour incidence 

shown as a survival plot in non-induced Aldh1b1flox/flox Msh2-LS control mice treated with either 20% 

ethanol (red) or water (blue). The blue curve (water-treated control mice) completely overlaps the 

red curve (ethanol-treated control mice) such that it can’t be seen in the graph.  Log-rank (Mantel-

Cox) test, no significant differences observed. 
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Figure 6.36: Tumour incidence, shown as survival plots, in non-induced Aldh1b1flox/flox Msh2-LS control 

mice both water-treated (H2O_Aldh1b1fl/fl_Msh2fl) (green) and ethanol-treated 

(EtOH_Aldh1b1fl/fl_Msh2fl) (violet), compared with Tamoxifen-induced Aldh1b1flox/flox Msh2-LS 

experimental mice, both water-treated (H2O_Aldh1b1fl/fl_Msh2fl KO) (blue) and 20% ethanol-treated 

(EtOH_Aldh1b1fl/fl_Msh2fl KO) (red). The green curve completely overlaps both violet and blue curves, 

such that these curves can’t be seen in the graph. Log-rank (Mantel-Cox) test, p = 0.0018 indicating 

significant differences observed between the ethanol-treated Tamoxifen-induced Aldh1b1flox/flox 

Msh2-LS (EtOH_Aldh1b1fl/fl_Msh2fl KO) experimental mice and each of the three control cohorts. 

 
 
 
 
 



245 
 

 

Figure 6.37: A) Bar chart of the number of non-induced Aldh1b1-/- Msh2-LS control mice that 

developed intestinal tumours (adenomas or adenocarcinomas) after receiving either 20% ethanol in 

drinking water or normal/standard drinking water. In both groups (water-treated cohort and ethanol-

treated cohort) 0/6 non-induced Aldh1b1-/- Msh2-LS control mice developed large intestinal 

adenomas. Fisher’s exact test, no significant differences observed. B) Tumour incidence shown as a 

survival plot in non-induced Aldh1b1-/- Msh2-LS control mice treated with either 20% ethanol (red) or 

water (blue). The blue curve (water-treated control mice) completely overlaps the red curve (ethanol-

treated control mice) such that it can’t be seen in the graph.  Log-rank (Mantel-Cox) test, no significant 

differences observed. 
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Figure 6.38: Tumour incidence, shown as survival plots, in non-induced Aldh1b1-/- Msh2-LS control 

mice both water-treated (H2O_Aldh1b1-/-_Msh2fl) (green) and ethanol-treated (EtOH_Aldh1b1-/-

_Msh2fl) (violet), compared with Tamoxifen-induced Aldh1b1-/- Msh2-LS experimental mice, both 

water-treated (H2O_Aldh1b1-/-_Msh2fl KO) (blue) and 20% ethanol-treated (EtOH_Aldh1b1-/-_Msh2fl KO) 

(red). The green curve completely overlaps both violet and blue curves, such that these curves can’t 

be seen in the graph. Log-rank (Mantel-Cox) test, p = 0.0039 indicating significant differences observed 

between the ethanol-treated Tamoxifen-induced Aldh1b1-/- Msh2-LS (EtOH_Aldh1b1-/-_Msh2fl KO) 

experimental mice and each of the three control cohorts. 

 
 

 

 

Figure 6.39: Bar chart of the numbers of non-induced Aldh1b1flox/flox Msh2-LS control mice, and 

Tamoxifen-induced Aldh1b1flox/flox Msh2-LS experimental mice that developed intestinal tumours after 

receiving either 20% ethanol in drinking water or normal/standard drinking water. Fisher’s exact test 

was carried out to compare the effects of ethanol in the three different pairs of cohorts: 5/12 (41.7%) 

ethanol-treated Tamoxifen-induced Aldh1b1flox/flox Msh2-LS (EtOH_Aldh1b1fl/fl_Msh2fl KO) mice 

developed large intestinal tumours compared with 0/12 (0%) water-treated Aldh1b1flox/flox Msh2-LS 

(H2O_Aldh1b1fl/fl_Msh2fl KO) mice (Fisher’s exact test, *p=0.0373), 0/7 (0%) ethanol-treated non-

induced Aldh1b1flox/flox Msh2-LS (EtOH_Aldh1b1fl/fl_Msh2fl) mice, and 0/7 (0%) water-treated non-

induced Aldh1b1flox/flox Msh2-LS (H2O_Aldh1b1fl/fl_Msh2fl) mice. Fisher’s exact test was carried out to 



247 
 

compare the tumour incidence between EtOH_Aldh1b1fl/fl_Msh2fl KO and EtOH_Aldh1b1fl/fl_Msh2fl 

mice (∆p=0.0466).  

 

 

 

Figure 3.40: Bar chart of the numbers of non-induced Aldh1b1-/- Msh2-LS control mice, and Tamoxifen-

induced Aldh1b1-/- Msh2-LS experimental mice that developed intestinal tumours after receiving 

either 20% ethanol in drinking water or normal/standard drinking water. Fisher’s exact test was 

carried out to compare the effects of ethanol in the three different pairs of cohorts: 8/12 (66.7%) 

ethanol-treated Tamoxifen-induced Aldh1b1-/- Msh2-LS (EtOH_Aldh1b1-/-_Msh2fl KO) mice developed 

large intestinal tumours compared with 0/12 (0%) water-treated induced Aldh1b1-/- Msh2-LS 

(H2O_Aldh1b1-/-_Msh2fl KO) mice (Fisher’s exact test,**p=0.0013), 0/6 (0%) ethanol-treated non-

induced Aldh1b1-/- Msh2-LS (EtOH_Aldh1b1-/-_Msh2fl) mice, and 0/6 (0%) water-treated non-induced 

Aldh1b1-/- Msh2-LS (H2O_Aldh1b1-/-_Msh2fl) mice. Fisher’s exact test was carried out to compare the 

tumour incidence between EtOH_Aldh1b1-/-_Msh2fl KO and EtOH_Aldh1b1-/-_Msh2fl mice 

(∆∆p=0.0073).  
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6.5 Immunohistochemical characterization of tumours and tissues from 

the Aldh1b1 conditional-knockout Msh2-LS and Aldh1b1 constitutive-

knockout Msh2-LS model mice with and without ethanol treatment 

6.5.1 Methods 

We performed IHC analyses in FFPE colonic and small intestinal tissues from induced Aldh1b1 

conditional-knockout Msh2-LS mice, Aldh1b1 constitutive-knockout Msh2-LS mice, non-

induced Aldh1b1 conditional-knockout Msh2-LS control mice and non-induced Aldh1b1 

constitutive-knockout Msh2-LS control mice to verify or investigate the expression of various 

proteins of interest. We performed the same analysis on the colonic and SI tissues comparing 

ethanol-treated mice with water-treated mice. Small and large intestinal tissues were 

harvested, prepared as Swiss-rolls and fixed in 10% NBF (as described in Materials and 

Methods). They were processed using standard tissue processing protocols for paraffin wax 

embedding and microtome sectioning. 

IHC was performed to confirm changes to the expression of Msh2 and Aldh1b1 (target 

proteins), the proliferation marker Ki-67, the Wnt pathway marker β-Catenin, the DNA 

damage marker γ-H2AX, the DNA damage / tumour suppressor marker p53, and cCas-3 a 

critical executioner of apoptosis.  DAB was used to visualise positive staining by these 

antibodies. IHC staining for these antibodies was performed using protocols described in 

Materials and Methods (Chapter 2, 2.2.3). Staining and quantification was performed either 

by manual scoring or using the bioimage analysis software for digital pathology images, 

QuPath.  
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6.5.2 Results 

6.5.2.1 Msh2 immunohistochemical analyses of intestinal samples from Aldh1b1 

conditional-knockout Msh2-LS and Aldh1b1 constitutive-knockout Msh2-LS mouse 

models  

6.5.2.1.1 Msh2 immunostaining of Aldh1b1 conditional-knockout Msh2-LS murine small 

intestinal and colonic tissues 

We investigated Msh2 expression in Aldh1b1flox/flox; Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-mice. 

We used small intestinal samples of Msh2-/- and WT mice as Msh2-negative and -positive 

expression controls respectively (Figure 6.41). The lack of IHC DAB-brown staining in all of 

the SI crypts and villi and in all of the colonic crypts of the Msh2-/- mice confirmed complete 

loss of Msh2 expression in the Msh2-null control tissues. In contrast, scattered crypts, in both 

SI and colon, showed Msh2 expression loss in the Msh2-LS model mice.  

The number of Msh2-negative crypts was higher in the SI than in the colon in 

EtOH_Aldh1b1fl/fl_Msh2fl KO mice, however no tumours were observed in the small intestine. 

The number of Msh2-negative crypts in the SI was statistically significantly higher in the 

EtOH_Aldh1b1fl/fl_Msh2fl KO mice compared with the H2O_Aldh1b1fl/fl_Msh2fl KO mice (Figure 

6.42). In EtOH_Aldh1b1fl/fl_Msh2fl KO mice, 43% Msh2-negative small intestinal crypts were 

observed compared with 24% Msh2-negative small intestinal crypts found in 

H2O_Aldh1b1fl/fl_Msh2fl KO mice (Figure 6.43).  

IHC analysis of Msh2 expression in the intestinal tissue samples from 

EtOH_Aldh1b1fl/fl_Msh2fl mice and H2O_Aldh1b1fl/fl_Msh2fl mice showed no Msh2-negative 

crypts in either small or large intestinal mucosal epithelium (Figures 6.44-6.45), consistent 

with lack of induction of Cre activity with continued expression of protein from the floxed 

Msh2 allele.  

In the colon, the number of Msh2-negative crypts was statistically significantly higher in the 

EtOH_Aldh1b1fl/fl_Msh2fl KO mice compared with the H2O_Aldh1b1fl/fl_Msh2fl KO control mice 

(Figure 6.46). In EtOH_Aldh1b1fl/fl_Msh2fl KO mice 17% Msh2-negative colonic crypts were 

observed compared with 7% Msh2-negative colonic crypts found in H2O_Aldh1b1fl/fl_Msh2fl 

KO control mice (Figure 6.47). EtOH_Aldh1b1fl/fl_Msh2fl KO mice formed some caecal and some 

colonic adenomas that were characterized by Msh2-negative dysplastic glands often 

surrounded by or admixed with Msh2-positive crypts showing reactive or hyperproliferative 

changes (Figure 6.48).  
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Figure 6.41: Immunohistochemical analysis of Msh2 protein expression in small intestinal mucosal 

epithelium from a positive-control WT mouse (A), in which the brown staining indicates positive Msh2 

expression in all crypts (further magnified in the red rectangle); and from a negative-control Msh2-/- 

mouse (B), in which the lack of brown staining confirms the absence of Msh2 expression in small 

intestinal mucosal epithelium (further magnified in the red rectangle). Images taken from anti-Msh2 

IHC stained sections scanned using the Hamamatsu Nanozoomer and analysed with the Hamamatsu 

NDP Viewer software at 10X and 20X magnification (bar at lower left indicates 250μm, bar in red 

rectangle indicates 100μm). 
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Figure 6.42: Immunohistochemical analysis of Msh2 protein expression in small intestinal mucosal epithelium of Aldh1b1flox/flox; Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-mice treated 

with either 20% ethanol in drinking water (A) or normal / standard drinking water (B). Msh2-negative crypts (indicated by the red arrows) were manually counted along the entire 

small intestine of treated Aldh1b1flox/flox; Msh2-LS mice (C). Paired Students t Test, *p= 0.0169 vs. water (data shown as mean±SD, n=3 mice in each group). Images taken from 

sections scanned using the Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP Viewer software at 10X magnification (bar at lower left indicates 250μm).
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Figure 6.43: Percentage of Msh2 protein-non-expressing crypts in small intestinal mucosa of 

Aldh1b1flox/flox; Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-mice treated with either 20% ethanol in drinking water 

or normal / standard water. Paired Students t Test, **p=0.0056 vs. water (data shown as mean±SD, 200 

crypts counted in 3 mice from each group).  

 

 

Figure 6.44: Immunohistochemical analysis of Msh2 protein expression in large intestinal mucosal 

epithelium of non-induced Aldh1b1 conditional-knockout Msh2-LS control mice treated with either 20% 

of ethanol in drinking water (A) or normal / standard water (B). No Msh2-negative crypts were observed 

along the entire colon of non-induced Aldh1b1 conditional-knockout Msh2-LS mice in either the ethanol- 

or water-treated groups (n=3 mice in each group). Images taken from sections scanned using the 

Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP Viewer software at 10X and 20X 

magnification (bar at lower left indicates 250μm, bar in red rectangle indicates 100μm).   
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Figure 6.45: Immunohistochemical analysis of Msh2 protein expression in small intestinal mucosal 

epithelium of non-induced Aldh1b1 conditional-knockout Msh2-LS control mice treated with either 20% 

ethanol in drinking water (A) or normal / standard drinking water (B). No Msh2-negative crypts were 

observed along the entire small intestine of non-induced Aldh1b1 conditional-knockout Msh2-LS mice in 

either the ethanol- or water-treated groups (n=3 mice in each group). Images taken from sections scanned 

using the Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP Viewer software at 10X 

magnification (bar at lower left indicates 250μm).   
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Figure 6.46: Immunohistochemical analysis of Msh2 protein expression in large intestinal mucosal epithelium of of  Aldh1b1flox/flox; Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-mice treated 

with either 20% ethanol in drinking water (A) or normal/standard water (B). Msh2-negative crypts (indicated by the red rectangle and further magnified in the upper right inset 

red rectangle in Figures A and B) were manually counted along the entire colon of treated Aldh1b1flox/flox Msh2-LS mice (C). Mann-Whitney U Test, *p=0.0210 vs. water (data 

shown as mean±SD, n=5 mice each group). Images taken from sections scanned using the Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP Viewer software at 

10X and 20X magnification (bar at lower left indicates 250μm, bar in red rectangle indicates 100μm).
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Figure 6.47: Percentage of Msh2 protein-non-expressing crypts in large intestinal mucosa of 

Aldh1b1flox/flox; Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-mice treated with either 20% ethanol in drinking 

water or normal/standard water. Paired Students t Test, ***p=0.0006 vs. water (data shown as 

mean±SD, 200 crypts counted in 5 mice from each group).  

 

 

Figure 6.48: Representative images of immunohistochemical staining for Msh2 in adenomas from 2 

ethanol-treated Aldh1b1flox/flox; Msh2flox/-; Lgr5CreERT2+/-; mTmG+/- mice. In both examples, a caecal 

adenoma (A) and a colonic adenoma (B), there are Msh2-negative dysplastic or adenomatous glands, 

either surrounded by or admixed with reactive crypts or hyperproliferative crypts that are staining 

positively for Msh2. Images taken from sections scanned using the Hamamatsu Nanozoomer and 

analysed with the Hamamatsu NDP Viewer software at 10X magnification (bar at lower left indicates 

250μm). 
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6.5.2.1.2 Msh2 immunostaining of Aldh1b1 constitutive-knockout Msh2-LS murine small 

intestinal and colonic tissues 

Msh2 IHC analyses were performed to verify or investigate Msh2 expression in Aldh1b1-/-; 

Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-mice. Details of the positive and negative controls are 

reported in the previous section (6.5.2.1.1, Figure 6.41). The number of Msh2-negative crypts 

was higher in the SI than in the colon in EtOH_Aldh1b1-/-_Msh2fl KO mice, however no tumours 

were observed in the small intestine. The number of Msh2-negative crypts in the SI was 

statistically significantly higher in the EtOH_Aldh1b1-/-_Msh2fl KO mice compared with the 

H2O_Aldh1b1-/-_Msh2fl KO mice (Figure 6.49). In EtOH_Aldh1b1-/-_Msh2fl KO mice, 55.7% Msh2-

negative small intestinal crypts were observed compared with 28% Msh2-negative small 

intestinal crypts found in H2O_Aldh1b1-/-_Msh2fl KO mice (Figure 4.50).  

IHC analysis of Msh2 expression in the intestinal tissue samples from EtOH_Aldh1b1-/-_Msh2fl 

mice and H2O_Aldh1b1-/-_Msh2fl mice showed no Msh2-negative crypts in either small or 

large intestinal mucosal epithelium (Figure 6.51-6.52), consistent with lack of induction of 

Cre activity with continued expression of protein from the floxed Msh2 allele.  

In the colon, the number of Msh2-negative crypts was statistically significantly higher in the 

EtOH_Aldh1b1-/-_Msh2fl KO mice compared with the H2O_Aldh1b1-/-_Msh2fl KO (Figure 6.53). 

In EtOH_Aldh1b1-/-_Msh2fl KO mice 29% Msh2-negative colonic crypts were observed 

compared with 10% Msh2-negative colonic crypts found in H2O_Aldh1b1-/-_Msh2fl KO control 

mice (Figure 6.54). EtOH_Aldh1b1-/-_Msh2fl KO mice formed some caecal and some colonic 

adenomas that were characterized by Msh2-negative dysplastic glands often surrounded by 

or admixed with Msh2-positive crypts showing reactive or hyperproliferative changes (Figure 

6.55). 
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Figure 6.49 Immunohistochemical analysis of Msh2 protein expression in small intestinal mucosal epithelium of Aldh1b1-/-; Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-mice treated with 

either 20% ethanol in drinking water (A) or normal / standard drinking water (B). Msh2-negative crypts (indicated by the red arrows) were manually counted along the entire 

small intestine of treated Aldh1b1-/- Msh2-LS mice (C). Paired Students t Test, *p= 0.0246 vs. water (data shown as mean±SD, n=3 mice in each group). Images taken from sections 

scanned using the Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP Viewer software at 10X magnification (bar at lower left indicates 250μm).
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Figure 6.50: Percentage of Msh2 protein-non-expressing crypts in small intestinal mucosa of Aldh1b1-/-; 
Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-mice treated with either 20% ethanol in drinking water or normal / 

standard water. Paired Students t Test, ****p<0.0001 vs. water (data shown as mean±SD, 200 crypts 

counted in 3 mice from each group).  

 

 

Figure 6.51: Immunohistochemical analysis of Msh2 protein expression in large intestinal mucosal 

epithelium of non-induced Aldh1b1 constitutive-knockout Msh2-LS control mice treated with either 20% 

of ethanol in drinking water (A) or normal / standard water (B). No Msh2-negative crypts were observed 

along the entire colon of non-induced Aldh1b1-/- Msh2-LS mice (n=3 mice in each group). Images taken 

from sections scanned using the Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP Viewer 

software at 10X and 20X magnification (bar at lower left indicates 250μm, bar in red rectangle indicates 

100μm).   
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Figure 6.52: Immunohistochemical analysis of Msh2 protein expression in small intestinal mucosal 

epithelium of non-induced Aldh1b1 constitutive-knockout Msh2-LS control mice treated with either 20% 

ethanol in drinking water (A) or normal / standard drinking water (B). No Msh2-negative crypts were 

observed along the entire small intestine of non-induced Aldh1b1-/- Msh2-LS mice (n=3 mice in each 

group). Images taken from sections scanned using the Hamamatsu Nanozoomer and analysed with the 

Hamamatsu NDP Viewer software at 10X magnification (bar at lower left indicates 250μm).   
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Figure 6.53: Immunohistochemical analysis of Msh2 protein expression in large intestinal mucosal epithelium of Aldh1b1-/-; Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-mice treated with 

either 20% ethanol in drinking water (A) or normal/standard water (B). Msh2-negative crypts (indicated by the red square/rectangle and further magnified in the upper right 

inset red rectangle in figures A and B) were manually counted along the entire colon of treated Aldh1b1-/- Msh2-LS mice (C). Mann-Whitney U Test, **p=0.0085 vs. water (data 

shown as mean±SD, n=5 mice each group). Images taken from sections scanned using the Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP Viewer software at 

10X and 20X magnification (bar at lower left indicates 250μm, bar in red rectangle indicates 100μm).



261 
 

 

Figure 6.54: Percentage of Msh2 protein-non-expressing crypts in large intestinal mucosa of Aldh1b1-

/-; Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-mice treated with either 20% ethanol in drinking water or 

normal/standard water. Paired Students t Test, ****p<0.0001 vs. water (data shown as mean±SD, 200 

crypts counted in 5 mice from each group).  

 

 

Figure 6.55: Representative images of immunohistochemical staining for Msh2 in adenomas from 2 

Aldh1b1-/-; Msh2flox/-; Lgr5CreERT2+/-; mTmG+/- ethanol-treated mice. In both examples, a caecal 

adenoma (A) and a colonic adenoma (B), there are Msh2-negative dysplastic or adenomatous glands, 

either surrounded by or admixed with reactive crypts or hyperproliferative crypts that are staining 

positively for Msh2. Images taken from sections scanned using the Hamamatsu Nanozoomer and 

analysed with the Hamamatsu NDP Viewer software at 10X magnification (bar at lower left indicates 

250μm).  
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6.5.2.2 Aldh1b1 immunostaining of Aldh1b1 conditional-knockout Msh2-LS and 

Aldh1b1 constitutive-knockout Msh2-LS murine small intestinal and colonic tissues 

Aldh1b1 protein is highly expressed in the intestinal epithelial cells. In normal small 

intestines, there is strong Aldh1b1 cytoplasmic immunostaining in the crypt epithelial cells, 

but this fades in the non-dividing differentiated SI villus cells. In contrast in normal colon, 

Aldh1b1 cytoplasmic immunostaining appears homogeneous along the crypt axis (Müller et 

al., 2016). We used colonic tissue samples of WT and Aldh1b1tm2a(EUCOMM)Wtsi mice (mice with 

depletion of Aldh1b1, used by Müller at al., 2016) as Aldh1b1-positive and Aldh1b1-negative 

expression controls respectively (Figure 6.56).  

In Aldh1b1flox/flox conditional-knockout Msh2-LS mice, Tamoxifen treatment induced the loss 

of Aldh1b1 expression, together with the loss of Msh2, in Lgr5+ expressing crypt epithelial 

stem cells scattered along the entire small and large intestines (Figure 6.57). Aldh1b1-

negative crypts were observed in the intestinal samples of EtOH_Aldh1b1fl/fl_Msh2fl KO and 

H2O_Aldh1b1fl/fl_Msh2fl KO mice (Figure 6.58). IHC analysis of Aldh1b1 expression in the 

intestinal tissue samples from EtOH_Aldh1b1fl/fl_Msh2fl mice and H2O_Aldh1b1fl/fl_Msh2fl 

mice showed no Aldh1b1-negative crypts in either small or large intestinal mucosal 

epithelium (Figure 6.59), consistent with lack of induction of Cre activity with continued 

expression of protein from the floxed Aldh1b1 allele.  

In Aldh1b1-/- constitutive-knockout Msh2-LS mice, Aldh1b1 is permanently inactivated in all 

tissues and cells (Tamoxifen treatment is not required to induce the loss of Aldh1b1 

expression).  Immunohistochemical analysis of Aldh1b1 expression in the intestinal tissue 

samples from both Tamoxifen induced and non-induced (no Tamoxifen treatment) Aldh1b1-

/- Msh2-LS model mice treated with either 20% ethanol in drinking water or normal water 

showed only Aldh1b1-negative crypts in both small intestinal and large intestinal mucosal 

epithelium (Figure 6.60-6.61). 
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Figure 6.56: Immunohistochemical analysis of Aldh1b1 protein expression in colonic mucosal 

epithelium from a positive-control WT mouse (A), in which the brown staining indicates positive 

Aldh1b1 expression in all crypts (further magnified in the red rectangle); and from a negative-control 

Aldh1b1tm2a (EUCOMM)Wtsi mouse (B), in which the lack of brown staining confirms the absence of Aldh1b1 

expression in colonic mucosal epithelium (further magnified in the red rectangle). The Aldh1b1 protein 

is predominantly located in the cytoplasm of epithelial cells. Images taken from anti-Aldh1b1 IHC 

stained sections scanned using the Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP 

Viewer software at 10X and 20X magnification (bar at lower left indicates 250μm, bar in red rectangle 

indicates 100μm). 

 

 

Figure 6.57: Representative comparison between Msh2 and Aldh1b1 immunostaining of adjacent 

serial sections of caecum of Aldh1b1flox/flox; Msh2flox/-; Lgr5CreERT2+/-; mTmG+/- mice treated with 

Tamoxifen to activate Cre in scattered crypts. The same dMMR crypt foci (A) are negative for Msh2 

and negative for Aldh1b1 (B) (red ovals). Images taken using the Hamamatsu Nanozoomer and 
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analysed with the Hamamatsu NDP Viewer software at 10X magnification (bar at lower left indicates 

250μm). 

 

 

 

Figure 6.58: Immunohistochemical analysis of Aldh1b1 protein expression in large intestinal (A&B) and 

small intestinal (C and D) mucosal epithelium of Aldh1b1flox/flox; Msh2flox/-; Lgr5CreERT2+/-; mTmG+/- 

mice treated with either 20% ethanol in drinking water (A and C) or normal/standard water (B and D). 

Colonic Aldh1b1-negative crypts are indicated by the red rectangle and further magnified in the upper 

right inset red rectangle in figure panels A and B and small intestinal Aldh1b1-negative crypts are 

indicated by the red arrows in figure panels C and D. Images taken from sections scanned using the 

Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP Viewer software at 10X and 20X 

magnification (bar at lower left indicates 250μm, bar in red rectangle indicates 100μm).  
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Figure 6.59: Immunohistochemical analysis of Aldh1b1 protein expression in intestinal mucosal 

epithelium of non-induced (no Tamoxifen treatment) Aldh1b1flox/flox; Msh2flox/-; Lgr5CreERT2+/-; 

mTmG+/- mice treated with either 20% ethanol in drinking water (A and C) or normal/standard water 

(B and D). Normal Aldh1b1 expression is observed in colonic mucosal epithelium (Aldh1b1-positive 

crypts indicated by the red rectangle and further magnified in the upper right inset red rectangle in 

figure panels A and B) and in small intestinal mucosal epithelium (C and D). Images taken from sections 

scanned using the Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP Viewer software 

at 10X and 20X magnification (bar at lower left indicates 250μm, bar in red rectangle indicates 100μm). 
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Figure 6.60: Immunohistochemical analysis of Aldh1b1 protein expression in intestinal mucosal 

epithelium of Aldh1b1-/-; Msh2flox/-; Lgr5CreERT2+/-; mTmG+/- mice treated with either 20% ethanol in 

drinking water (A and C) or normal/standard water (B and D). Complete loss of Aldh1b1 expression is 

observed in colonic mucosal epithelium (Aldh1b1-negative crypts are indicated by the red rectangle 

and further magnified in the upper right inset red rectangle in figure panels A and B) and in small 

intestinal mucosal epithelium (C and D). Images taken from sections scanned using the Hamamatsu 

Nanozoomer and analysed with the Hamamatsu NDP Viewer software at 10X and 20X magnification 

(bar at lower left indicates 250μm, bar in red rectangle indicates 100μm). 
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Figure 6.61: Immunohistochemical analysis of Aldh1b1 protein expression in intestinal mucosal 

epithelium of non-induced (no Tamoxifen treatment) Aldh1b1-/-; Msh2flox/-; Lgr5CreERT2+/-; mTmG+/- 

mice treated with either 20% ethanol in drinking water (A and C) or normal/standard water (B and D). 

Complete loss of Aldh1b1 expression is observed in colonic mucosal epithelium (Aldh1b1-negative 

crypts are indicated by the red rectangle and further magnified in the upper right inset red rectangle 

in  A and B) and in small intestinal mucosal epithelium (C and D). Images taken from sections scanned 

using the Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP Viewer software at 10X 

and 20X magnification (bar at lower left indicates 250μm, bar in red rectangle indicates 100μm). 
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6.5.2.2 Ki-67 immunohistochemical analyses of intestinal samples from Aldh1b1 

conditional-knockout Msh2-LS and Aldh1b1 constitutive-knockout Msh2-LS mouse 

models  

6.5.2.2.1 Ki-67 immunostaining of Aldh1b1 conditional-knockout Msh2-LS murine small 

intestinal and colonic tissues 

Immunohistochemical analysis of Ki-67 showed large and significant differences in the 

number of intestinal Ki-67-positive cells between EtOH_Aldh1b1fl/fl_Msh2fl KO murine colon 

and H2O_Aldh1b1fl/fl_Msh2fl KO murine colon (Figure 6.62). The percentage of Ki-67-positive 

cells per crypt was significantly higher in EtOH_Aldh1b1fl/fl_Msh2fl KO mice (80.6%) compared 

with H2O_Aldh1b1fl/fl_Msh2fl KO mice (27.3%) (Figure 6.63), consistent with the large regions 

of mucosal crypt hyperproliferation, that show extended crypt lengths, observed in H&E 

stained sections of EtOH_Aldh1b1fl/fl_Msh2fl KO murine colons (Figure 6.64).   

The comparative analysis of SI Ki-67 expression between EtOH_Aldh1b1fl/fl_Msh2fl KO and 

H2O_Aldh1b1fl/fl_Msh2fl KO mice didn’t show the same large differences. 

EtOH_Aldh1b1fl/fl_Msh2fl KO murine SI showed similar numbers of Ki-67-positive cells per 

crypt when compared with H2O_Aldh1b1fl/fl_Msh2fl KO mice SI, with no significant differences 

observed between the two groups (Figure 6.65). However, the percentage of Ki-67-positive 

cells per crypt was significantly higher in SI of EtOH_Aldh1b1fl/fl_Msh2fl KO mice (13.5%) 

compared with H2O_Aldh1b1fl/fl_Msh2fl KO mice (8.3%) (Figure 6.66).  
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Figure 6.62: Immunohistochemical analysis of Ki-67 protein expression in large intestinal mucosal epithelium of Aldh1b1flox/flox; Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-mice treated 

with either 20% of ethanol in drinking water (A) or normal/standard water (B) (magnified in the upper right inset red rectangles in figure panels A and B). Numbers of Ki-67-

positive cells per colonic crypt were manually counted (C). Paired Students t Test, ****p<0.0001 vs. water (data shown as mean±SD, 30 crypts per mouse were analysed, n=4 

mice in each group). Images taken from sections scanned using the Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP Viewer software at 10X and 20X 

magnification (bar at lower left indicates 250μm, bar in red rectangle indicates 100μm). 
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Figure 6.63: Percentage of Ki-67 protein expressing cells in large intestinal mucosal crypts of 

Aldh1b1flox/flox; Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-mice treated with either 20% ethanol in drinking water 

or normal / standard water. Paired Students t Test, ****p<0.0001 vs. water (data shown as mean±SD, 30 

crypts per mouse counted, n=4 mice from each group).  

 

 

Figure 6.64: Quantification of the colonic crypt lengths (in μm) comparing colons from ethanol-treated 

versus water-treated Aldh1b1flox/flox Msh2-LS mice. Mann-Whitney U test analysis, ****p<0.0001 vs. water 

(data shown as mean ± SD). 
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Figure 6.65: Immunohistochemical analysis of Ki-67 protein expression in small intestinal mucosa of Aldh1b1flox/flox; Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-mice treated with either 

20% ethanol in drinking water (A) or normal / standard drinking water (B). Ki-67-positive cells per colonic crypt/villus were counted using QuPath (C). Paired Students t Test, (data 

shown as mean±SD, 30 crypts/villi per mouse were analysed, n=3 mice in each group) showed no statistical differences were observed between these 2 groups. Images taken 

from sections scanned using the Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP Viewer software at 10X magnification (bar at lower left indicates 250μm).  
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Figure 6.66: Percentage of Ki-67 protein expressing cells in small intestinal mucosa of Aldh1b1flox/flox; 

Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-mice treated with either 20% ethanol in drinking water or normal 

/ standard water. Paired Students t Test, ***p=0.0005 vs. water (data shown as mean±SD, 30 crypts 

per mouse counted, n=3 mice from each group).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



273 
 

6.5.2.2.2 Ki-67 immunostaining of Aldh1b1 constitutive-knockout Msh2-LS murine small 

intestinal and colonic tissues 

Immunohistochemical analysis of Ki-67 showed large and significant differences in the 

number of intestinal Ki-67-positive cells between the EtOH_Aldh1b1-/-_Msh2fl KO murine 

colon and the H2O_Aldh1b1-/-_Msh2fl KO murine colon (Figure 6.67). The percentage of Ki-67-

positive cells per crypt was significantly higher in EtOH_Aldh1b1-/-_Msh2fl KO mice (87%) 

compared with H2O_Aldh1b1-/-_Msh2fl KO mice (25.3%) (Figure 6.68), consistent with the large 

regions of crypt hyperproliferation, that show extended crypt lengths, observed in H&E 

stained sections of EtOH_Aldh1b1-/-_Msh2fl KO murine colons (Figure 6.69). 

The comparative analysis of SI Ki-67 expression between EtOH_Aldh1b1-/-_Msh2fl KO and 

H2O_Aldh1b1-/-_Msh2fl KO mice didn’t show the same large differences. EtOH_Aldh1b1-/-

_Msh2fl KO murine SI showed similar numbers of Ki-67-positive cells per crypt compared with 

H2O_Aldh1b1-/-_Msh2fl KO mice SI, with no significant differences observed between the two 

groups (Figure 6.70). The percentage of Ki-67-positive cells per crypt was significantly higher 

in SI of EtOH_Aldh1b1-/-_Msh2fl KO mice (17.8%) compared with H2O_Aldh1b1-/-_Msh2fl KO 

mice (13.2%), but with only a small difference between the two groups (Figure 6.71).  
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Figure 6.67: Immunohistochemical analysis of Ki-67 protein expression in large intestinal mucosal epithelium of Aldh1b1-/-; Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-mice treated with 

either 20% of ethanol in drinking water (A) or normal/standard water (B). Numbers of Ki-67-positive cells per colonic crypt (magnified in the upper right inset red rectangles in 

figure panels A and B) were manually counted (C). Paired Students t Test, ****p<0.0001 vs. water (data shown as mean±SD, 30 crypts per mouse were analysed, n=4 mice in 

each group). Images taken from sections scanned using the Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP Viewer software at 10X and 20X magnification (bar 

at lower left indicates 250μm, bar in red rectangle indicates 100μm). 
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Figure 6.68: Percentage of Ki-67 protein expressing cells in large intestinal mucosal crypts of Aldh1b1-/-; 

Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-mice treated with either 20% ethanol in drinking water or normal / 

standard water. Paired Students t Test, ****p<0.0001 vs. water (data shown as mean±SD, 30 crypts per 

mouse counted, n=4 mice from each group).  

 

 

Figure 6.69: Quantification of the colonic crypt lengths (in μm) comparing colons from ethanol-treated 

versus water-treated Aldh1b1-/- Msh2-LS mice. Paired Students t Test, ****p<0.0001 vs. water (data 

shown as mean ± SD). 
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Figure 6.70: Immunohistochemical analysis of Ki-67 protein expression in small intestinal mucosa of Aldh1b1-/-; Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-mice treated with 

either 20% ethanol in drinking water (A) or normal / standard drinking water (B). Ki-67-positive cells per colonic crypt/villus were counted using QuPath (C). Paired 

Students t test, (data shown as mean±SD, 30 crypts/villi per mouse were analysed, n=3 mice in each group) showed no statistical differences were observed between 

the 2 groups. Images taken from sections scanned using the Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP Viewer software at 10X magnification 

(bar at lower left indicates 250μm).  



277 
 

 

Figure 6.71: Percentage of Ki-67 protein expressing cells in small intestinal mucosa of Aldh1b1-/-; 

Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-mice treated with either 20% ethanol in drinking water or normal 

/ standard water. Paired Students t test, *p=0.0127 vs. water (data shown as mean±SD, 30 crypts per 

mouse counted, n=3 mice from each group).  
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6.5.2.3 Beta-Catenin immunostaining of Aldh1b1 conditional-knockout Msh2-LS 

and Aldh1b1 constitutive-knockout Msh2-LS murine small intestinal and colonic 

tissues 

We investigated β-catenin expression in Aldh1b1flox/flox; Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-

mice and Aldh1b1-/-; Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-. β-catenin IHC was performed with 

assistance from Marion Bacou using large intestinal samples from Apc Min mice that 

contained large intestinal adenomas (provided by Vidya Rajasekaran), and WT mice as β-

catenin-positive and β-catenin-normal expression controls respectively (Figure 4.41). Details 

of the IHC positive and normal β-catenin expression controls were reported in Chapter 4 

(4.4.2.3). The IHC analysis of β-catenin was performed on large intestinal adenomas and 

caecal adenomas from Aldh1b1flox/flox; Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-mice (Figure 6.72) 

and Aldh1b1-/-; Msh2flox/-; Lgr5CreERT2+/-; mTmG+/- (Figure 6.73). Analysed samples showed a 

heterogeneous pattern with variable numbers of adenoma cells showing positive β-catenin 

nuclear immunostaining due to accumulation and translocation of β-catenin in the nuclei. 
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Figure 6.72: Representative images of immunohistochemical analysis of β-catenin protein expression and localisation in large intestinal adenomas of Aldh1b1-/-; 

Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-mice treated with 20% ethanol in drinking water. Variable areas of positive β-catenin nuclear immunostaining in adenomatous cells 

were observed in colonic adenomas (A-C), indicated by the red ovals. Selected areas (red ovals) within images in panels A-C are further magnified in panels D-F, and 

clusters of cells with nuclei positive for β-catenin are indicated by the red arrows. Images taken from sections scanned using the Hamamatsu Nanozoomer and analysed 

with the Hamamatsu NDP Viewer software at 10X and 40X magnification (bar at lower left indicates 250μm and 50μm).  
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Figure 6.73: Representative images of immunohistochemical analysis of β-catenin protein expression and localisation in intestinal adenomas of Aldh1b1-/-; Msh2flox/-; 

Lgr5CreERT2+/-; mTmG+/-mice treated with 20% ethanol in drinking water. Variable areas of positive β-catenin nuclear immunostaining in adenomatous cells were 

observed in both caecal adenomas (A) and colonic adenomas (B&C), indicated by the red ovals. Selected areas (red ovals) within images in panels A-C are further 

magnified in panels D-F, and clusters of cells with nuclei positive for β-catenin are indicated by the red arrows. Images taken from sections scanned using the 

Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP Viewer software at 10X and 40X magnification (bar at lower left indicates 250μm and 50μm).  
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6.5.2.4 DNA damage response evaluation by immunohistochemistry of Aldh1b1 

conditional-knockout Msh2-LS and Aldh1b1 constitutive-knockout Msh2-LS murine 

small intestinal and colonic tissues 

6.5.2.4.1 DNA damage response evaluation by Gamma-H2AX immunostaining of Aldh1b1 

conditional-knockout Msh2-LS murine small intestinal and colonic tissues 

In order to evaluate the presence and extent of DNA damage, y-H2AX immunostaining was 

used. We used colonic tissue samples from WT mice and TMZ-treated Msh2-LS mice as 

negative and positive y-H2AX expression controls, respectively. Details of the negative and 

positive y-H2AX expression controls can be found in Chapter 4 (4.4.2.4.1; Figure 4.43). IHC 

analysis of y-H2AX showed large and significant differences in the number of intestinal y-

H2AX-positive cells between the EtOH_Aldh1b1fl/fl_Msh2fl KO murine colon and the 

H2O_Aldh1b1fl/fl_Msh2fl KO murine colon (Figure 6.74). The percentage of y-H2AX-positive 

cells per crypt was significantly higher in EtOH_Aldh1b1fl/fl_Msh2fl KO mice (38.7%) compared 

with H2O_Aldh1b1fl/fl_Msh2fl KO mice (0.5%) (Figure 6.74), consistent with 

ethanol/acetaldehyde induced DNA damage.  The comparative analysis of SI y-H2AX 

expression between EtOH_Aldh1b1fl/fl_Msh2fl KO and H2O_Aldh1b1fl/fl_Msh2fl KO mice didn’t 

show any differences, as EtOH_Aldh1b1fl/fl_Msh2fl KO and H2O_Aldh1b1fl/fl_Msh2fl KO murine SI 

showed no y-H2AX-positive cells (Figure 6.75). EtOH_Aldh1b1fl/fl_Msh2fl KO Msh2-LS murine 

large intestinal adenomas, both colonic and caecal, showed high levels of y-H2AX expression 

(Figure 6.76). 
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Figure 6.74: Immunohistochemical analysis of y-H2AX protein expression in large intestinal mucosal epithelium of Aldh1b1flox/flox; Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-

mice treated with either 20% ethanol in drinking water (A) or normal/standard water (B). Gamma-H2AX-positive cells in colonic crypts (further magnified in the upper 

right inset red rectangle in figure panel A) were observed in ethanol-treated Aldh1b1flox/flox Msh2-LS (EtOH_Aldh1b1fl/fl_Msh2fl KO) mice but not in water-treated 

Aldh1b1flox/flox Msh2-LS (H2O_Aldh1b1fl/fl_Msh2fl KO) mice (further magnified in the upper right inset red rectangle in figure panel B). Numbers of y-H2AX-positive cells 

per colonic crypt were counted using QuPath to calculate the percentage of y-H2AX-positive cells (C) and these showed a large and statistically significant difference. 

Paired Students t-Test, ****p<0.0001 vs. water (data shown as mean±SD, 40 crypts per mouse were analysed, n=4 mice in each group). Images taken from sections 

scanned using the Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP Viewer software at 10X and 20X magnification (bar at lower left indicates 250μm, 

bar in red rectangle indicates 100μm). 
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Figure 6.75: Immunohistochemical analysis of y-H2AX protein expression in small intestinal mucosa of 

Aldh1b1flox/flox; Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-mice treated with either 20% ethanol in drinking 

water (A) or normal / standard drinking water (B). No y-H2AX-positive cells were observed in either 

sample. Images taken from sections scanned using the Hamamatsu Nanozoomer and analysed with 

the Hamamatsu NDP Viewer software at 10X magnification (bar at lower left indicates 250μm).  
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Figure 6.76: Representative images of y-H2AX immunohistochemical staining in a large intestinal 

adenoma (A) and a caecal adenoma (B) from 2 ethanol-treated Aldh1b1flox/flox; Msh2flox/-; 

Lgr5CreERT2+/-; mTmG+/- mice. In both examples, there are numerous y-H2AX-positive cells within the 

regions of dysplastic cells in the adenomas. Images are further magnified in panels C and D. Images 

taken from sections scanned using the Hamamatsu Nanozoomer and analysed with the Hamamatsu 

NDP Viewer software at 10X and 40X magnification (bar at lower left indicates 250μm and 50 μm). 
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6.5.2.4.2 DNA damage response evaluation by Gamma-H2AX immunostaining of Aldh1b1 

constitutive-knockout Msh2-LS murine small intestinal and colonic tissues 

Details of the negative and positive y-H2AX IHC expression controls can be found in Chapter 

4 (4.4.2.4.1; Figure 4.43). IHC analysis of y-H2AX showed large and significant differences in 

the number of intestinal y-H2AX-positive cells between the EtOH_Aldh1b1-/-_Msh2fl KO 

murine colon and the H2O_Aldh1b1-/-_Msh2fl KO murine colon (Figure 6.77). The percentage 

of y-H2AX-positive cells per crypt was significantly higher in EtOH_Aldh1b1-/-_Msh2fl KO mice 

(46%) compared with H2O_Aldh1b1-/-_Msh2fl KO mice (0.5%) (Figure 6.77), consistent with 

ethanol/acetaldehyde induced DNA damage.  The percentage of SI y-H2AX-positive cells was 

higher in EtOH_Aldh1b1-/-_Msh2fl KO mice (3.4%) compared with H2O_Aldh1b1-/-_Msh2fl KO 

mice (0.1%) (Figure 6.78). EtOH_Aldh1b1-/-_Msh2fl KO murine large intestinal adenomas, both 

colonic and caecal, showed high levels of y-H2AX expression (Figure 6.79).
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Figure 6.77: Immunohistochemical analysis of y-H2AX protein expression in large intestinal mucosal epithelium of Aldh1b1-/-; Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-mice 

treated with either 20% ethanol in drinking water (A) or normal/standard water (B). Gamma-H2AX-positive cells in colonic crypts (further magnified in the upper right 

inset red rectangle in figure panel A) were observed in ethanol-treated Aldh1b1-/- Msh2-LS (EtOH_Aldh1b1-/-_Msh2fl KO) mice but not in water-treated Aldh1b1-/- Msh2-

LS (H2O_Aldh1b1-/-_Msh2fl KO) mice (further magnified in the upper right inset red rectangle in figure panel B). Numbers of y-H2AX-positive cells per colonic crypt were 

counted using QuPath to calculate the percentage of y-H2AX-positive cells (C) and these showed a large and statistically significant difference. Paired Students t-Test, 

****p<0.0001 vs. water (data shown as mean±SD, 40 crypts per mouse were analysed, n=4 mice in each group). Images taken from sections scanned using the 

Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP Viewer software at 10X and 20X magnification (bar at lower left indicates 250μm, bar in red rectangle 

indicates 100μm). 
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Figure 6.78: Immunohistochemical analysis of y-H2AX protein expression in small intestinal mucosal epithelium of Aldh1b1-/-; Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-mice 

treated with either 20% ethanol in drinking water (A) or normal/standard water (B). Gamma-H2AX-positive cells in small intestinal crypts (further magnified in the 

upper right inset red rectangle in figure panel A) were observed in ethanol-treated Aldh1b1-/- Msh2-LS (EtOH_Aldh1b1-/-_Msh2fl KO) mice but not in water-treated 

Aldh1b1-/- Msh2-LS (H2O_Aldh1b1-/-_Msh2fl KO) mice (further magnified in the upper right inset red rectangle in figure panel B). Numbers of y-H2AX-positive cells per 

small intetsinal crypt were counted using QuPath to calculate the percentage of y-H2AX-positive cells (C) and these showed a large and statistically significant 

difference. Paired Students t-Test, **p<0.0012 vs. water (data shown as mean±SD, 40 crypts per mouse were analysed, n=4 mice in each group). Images taken from 

sections scanned using the Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP Viewer software at 10X and 20X magnification (bar at lower left indicates 

250μm, bar in red rectangle indicates 100μm).
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Figure 6.79: Representative images of y-H2AX immunohistochemical staining in a caecal adenoma (A) 

and a large intestinal adenoma (B) from 2 ethanol-treated Aldh1b1-/-; Msh2flox/-; Lgr5CreERT2+/-; 

mTmG+/- mice. In both examples, there are numerous y-H2AX-positive cells within the regions of 

dysplastic cells in the adenomas. Images are further magnified in panels C and D. Images taken from 

sections scanned using the Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP Viewer 

software at 10X and 40X magnification (bar at lower left indicates 250μm and 50 μm). 

 

 

 

 

 

 

 
 



289 
 

6.5.2.4.3 DNA damage response evaluation by p53 immunostaining of Aldh1b1 

conditional-knockout Msh2-LS murine small intestinal and colonic tissues 

As reported in Chapter 4 (4.4.2.4.2), p53 IHC was performed to detect activation of DNA 

damage response mechanisms (referred as p53 “wildtype pattern”) (Köbel et al., 2016; Lakin 

& Jackson, 1999). We used colonic tissue samples from WT mice and TMZ-treated Msh2-LS 

mice as p53-wildtype and p53-positive expression (resulting from TMZ-induced DNA 

damage) controls, respectively. Details of the wildtype and positive p53 expression controls 

can be found in Chapter 4 (4.4.2.4.2, Figure 4.47).  

In Aldh1b1flox/flox Msh2-LS mice, IHC analysis of p53 showed large and significant differences 

in the number of intestinal p53-positive cells between the EtOH_Aldh1b1fl/fl_Msh2fl KO murine 

colon and the H2O_Aldh1b1fl/fl_Msh2fl KO murine colon (Figure 6.80). The percentage of cells 

with either moderate or high levels of p53-positive nuclear staining per crypt was 

significantly higher in EtOH_Aldh1b1fl/fl_Msh2fl KO mice (52.7%) compared with 

H2O_Aldh1b1fl/fl_Msh2fl KO mice (6.3%) (Figure 6.80), consistent with an 

ethanol/acetaldehyde induced DNA damage response.   

The percentage of small intestinal p53-positive cells per crypt was higher in 

EtOH_Aldh1b1fl/fl_Msh2fl KO mice (21.7%) compared with H2O_Aldh1b1fl/fl_Msh2fl KO mice 

(3.3%) (Figure 6.81). EtOH_Aldh1b1fl/fl_Msh2fl KO murine large intestinal adenomas, both 

colonic and caecal, showed high percentages of p53-positive cells, with variably moderate to 

marked nuclear p53 positivity with some surrounding or mixed cells showing p53-negative 

nuclei in a “p53 wildtype” pattern, indicative of a widespread response to DNA damage, 

rather than a “p53 overexpression” or “null” pattern associated with p53 mutation (Figure 

6.82). 
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Figure 6.80: Representative images of immunohistochemical analysis of p53 protein expression in large intestinal mucosal epithelium of Aldh1b1flox/flox; Msh2flox/-; 

Lgr5CreERT2+/-; mTmG+/-mice treated with either 20% ethanol in drinking water (A) or normal/standard water (B). The percentage of positive p53-positive nuclei in 

colonic crypts in ethanol-treated Aldh1b1flox/flox Msh2-LS (EtOH_Aldh1b1fl/fl_Msh2fl KO) mice (further magnified in the upper right inset red rectangle in figure panel A) 

was higher compared with water-treated Aldh1b1flox/flox Msh2-LS (H2O_Aldh1b1fl/fl_Msh2fl KO) mice (further magnified in the upper right inset red rectangle in figure 

panel B). Numbers of cells with positive p53 nuclear staining per colonic crypt were counted using QuPath to calculate the percentage of p53-positive cells (C) and 

these showed a statistically significant difference. Paired Students t-Test, ***p<0.0002 vs. water (data shown as mean±SD, 40 crypts per mouse were analysed, n=4 

mice in each group). Images taken from sections scanned using the Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP Viewer software at 10X and 20X 

magnification (bar at lower left indicates 250μm, bar in red rectangle indicates 100μm). 
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Figure 6.81: Representative images of immunohistochemical analysis of p53 protein expression in small intestinal mucosal epithelium of Aldh1b1flox/flox; Msh2flox/-; 

Lgr5CreERT2+/-; mTmG+/-mice treated with either 20% ethanol in drinking water (A) or normal/standard water (B). The percentage of positive p53-nuclear stained cells 

in small intestinal crypts was higher in ethanol-treated Aldh1b1flox/flox Msh2-LS (EtOH_Aldh1b1fl/fl_Msh2fl KO) mice compared with water-treated Aldh1b1flox/flox Msh2-LS 

(H2O_Aldh1b1fl/fl_Msh2fl KO) mice. Numbers of cells with positive p53 nuclear staining per small intestinal crypt were counted using QuPath to calculate the percentage 

of p53-positive cells (C) and these showed a statistically significant difference. Paired Students t-Test, ***p<0.0001 vs. water (data shown as mean±SD, 40 crypts per 

mouse were analysed, n=4 mice in each group). Images taken from sections scanned using the Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP 

Viewer software at 10X magnification (bar at lower left indicates 250μm).
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Figure 6.82: Representative images of p53 immunohistochemical staining in a colonic adenoma (A and 

C) and a caecal adenoma (B and D), from 2 ethanol-treated Aldh1b1flox/flox; Msh2flox/-; Lgr5CreERT2+/-; 

mTmG+/- mice. In both examples, there are numerous p53-positive nuclei (variably moderate to high 

p53 nuclear staining with some p53-negative nuclei) within the regions of dysplastic cells in the 

adenomas. Images taken from sections scanned using the Hamamatsu Nanozoomer and analysed with 

the Hamamatsu NDP Viewer software at 10X (A and B) and 40X (C and D) magnification (bar at lower 

left indicates 250μm and 50 μm). 
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6.5.2.4.4 DNA damage response evaluation by p53 immunostaining of Aldhd1b1 

constitutive-knockout Msh2-LS murine small intestinal and colonic tissues 

Details of the normal and positive p53 expression controls can be found in Chapter 4 

(4.4.2.4.2, Figure 4.47).  

In Aldh1b1-/- Msh2-LS mice, IHC analysis of p53 showed large and significant differences in 

the number of intestinal p53-positive cells between the EtOH_Aldh1b1-/-_Msh2fl KO murine 

colon and the H2O_Aldh1b1-/-_Msh2fl KO murine colon (Figure 6.83). The percentage of cells 

with either moderate or high levels of p53-positive nuclear staining per crypt was 

significantly higher in EtOH_Aldh1b1-/-_Msh2fl KO mice (47.5%) compared with H2O_Aldh1b1-

/-_Msh2fl KO mice (3.3%) (Figure 6.83), consistent with ethanol/acetaldehyde induced DNA 

damage.   

The percentage of small intestinal p53-positive cells per crypt was higher in EtOH_Aldh1b1-/-

_Msh2fl KO mice (20%) compared with H2O_Aldh1b1-/-_Msh2fl KO mice (4%) (Figure 6.84). 

EtOH_Aldh1b1-/-_Msh2fl KO murine large intestinal adenomas, both colonic and caecal, 

showed high percentages of p53-positive cells, with variably moderate to marked nuclear 

p53 positivity and some negative nuclei in a “p53 wildtype” pattern, as observed previously 

in the section 6.5.2.4.3 (Figure 6.85).
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Figure 6.83: Representative images of immunohistochemical analysis of p53 protein expression in large intestinal mucosal epithelium of Aldh1b1-/-; Msh2flox/-; 

Lgr5CreERT2+/-; mTmG+/- mice treated with either 20% ethanol in drinking water (A) or normal/standard water (B). The percentage of p53-positive nuclei in colonic 

crypts in ethanol-treated Aldh1b1-/- Msh2-LS (EtOH_Aldh1b1-/-_Msh2fl KO) mice (further magnified in the upper right inset red rectangle in figure panel A) was higher 

compared with water-treated Aldh1b1-/- Msh2-LS (H2O_Aldh1b1-/-_Msh2fl KO) mice (further magnified in the upper right inset red rectangle in figure panel B). Numbers 

of cells with positive p53 nuclear staining per colonic crypt were counted using QuPath to calculate the percentage of p53-positive cells (C) and these showed a 

statistically significant difference. Paired Students t-Test, ****p<0.0001 vs. water (data shown as mean±SD, 40 crypts per mouse were analysed, n=4 mice in each 

group). Images taken from sections scanned using the Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP Viewer software at 10X and 20X magnification 

(bar at lower left indicates 250μm, bar in red rectangle indicates 100μm). 
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Figure 6.84: Representative images of immunohistochemical analysis of p53 protein expression in small intestinal mucosal epithelium of Aldh1b1-/-; Msh2flox/-; 

Lgr5CreERT2+/-; mTmG+/-mice treated with either 20% ethanol in drinking water (A) or normal/standard water (B). The percentage of positive p53-nuclear stained cells 

in small intestinal crypts was higher in ethanol-treated Aldh1b1-/- Msh2-LS (EtOH_Aldh1b1-/-_Msh2fl KO) mice compared with water-treated Aldh1b1-/- Msh2-LS 

(H2O_Aldh1b1-/-_Msh2fl KO) mice. Numbers of cells with positive p53 nuclear staining per small intestinal crypt were counted using QuPath to calculate the percentage 

of p53-positive cells (C) and these showed a statistically significant difference. Paired Students t-Test, *p<0.0105 vs. water (data shown as mean±SD, 40 crypts per 

mouse were analysed, n=4 mice in each group). Images taken from sections scanned using the Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP 

Viewer software at 10X magnification (bar at lower left indicates 250μm).
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Figure 6.85: Representative images of p53 immunohistochemical staining in a colonic adenoma (A and 

C) and a caecal adenoma (B and D), from 2 ethanol-treated Aldh1b1-/-; Msh2flox/-; Lgr5CreERT2+/-; 

mTmG+/- mice. In both examples, there are numerous p53-positive nuclei (variably moderate to high 

p53 nuclear staining with some p53-negative nuclei) within the regions of dysplastic cells in the 

adenomas. Images taken from sections scanned using the Hamamatsu Nanozoomer and analysed with 

the Hamamatsu NDP Viewer software at 10X (A and B) and 40X (C and D) magnification (bar at lower 

left indicates 250μm and 50 μm). 

 

 



297 
 

6.5.2.5 Cleaved Caspase-3 immunostaining of Aldh1b1 conditional-knockout Msh2-

LS and Aldh1b1 constitutive-knockout Msh2-LS murine small intestinal and colonic 

tissues 

Caspase-3 (Cas3) IHC was performed to identify cCas3-positive apoptotic bodies, as 

explained in Chapter 4 (4.4.2.5). Colonic mucosal tissue samples from WT mice and TMZ-

treated Msh2-LS mice were used as negative and positive controls, respectively. Details of 

the positive and negative controls can be found in Chapter 4 (4.4.2.5; Figure 4.51).  

In Aldh1b1flox/flox Msh2-LS mice, IHC analysis of cCas3 with quantification of cCas3-positive 

apoptotic bodies, showed significant differences in the numbers of cCas3-positive apoptotic 

bodies per 30 colonic crypts per mouse between the EtOH_Aldh1b1fl/fl_Msh2fl KO murine 

colonic epithelium and the H2O_Aldh1b1fl/fl_Msh2fl KO murine colonic epithelium. There were 

significantly higher numbers of cCas3+ apoptotic bodies in EtOH_Aldh1b1fl/fl_Msh2fl KO mice 

compared with no detectable cCas3+ apoptotic bodies in H2O_Aldh1b1fl/fl_Msh2fl KO mice 

(Figure 6.86), consistent with increased apoptosis associated with colonic epithelial exposure 

to ethanol/acetaldehyde. EtOH_Aldh1b1fl/fl_Msh2fl KO murine large intestinal adenomas 

showed no detectable cCas3+ apoptotic bodies, indicating rare to no apoptotic events in 

dMMR colonic tumours (Figure 6.87).  

In Aldh1b1-/- Msh2-LS mice, IHC analysis of cCas3 with quantification of cCas3-positive 

apoptotic bodies, showed significantly higher number of cCas3+ apoptotic bodies in 

EtOH_Aldh1b1-/-_Msh2fl KO mice compared with no detectable cCas3+ apoptotic bodies in 

H2O_Aldh1b1-/-_Msh2fl KO mice (Figure 6.89), consistent with increased apoptosis associated 

with colonic epithelial exposure to ethanol/acetaldehyde. EtOH_Aldh1b1-/-_Msh2fl KO murine 

large intestinal adenomas showed no detectable cCas3+ apoptotic bodies, indicating rare to 

no apoptotic events in dMMR colonic tumours (Figure 6.90). In both Aldh1b1flox/flox Msh2-LS 

mice and Aldh1b1-/- Msh2-LS mice, IHC analysis of cCas3 of small intestinal epithelium failed 

on technical grounds. 
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Figure 6.86: Representative images of immunohistochemical analysis of cCas3 in large intestinal mucosal epithelium of induced Aldh1b1flox/flox;  Msh2flox/-; Lgr5CreERT2+/-

; mTmG+/- mice treated with either 20% ethanol in drinking water (A), or normal/standard water (B). The number of apoptotic bodies positive for cCas3 in the colonic 

crypts of ethanol-treated Aldh1b1flox/flox Msh2-LS (EtOH_Aldh1b1fl/fl_Msh2fl KO) mice (further magnified in the upper right inset red rectangle in figure panel A) was 

significantly higher compared with that for water-treated Aldh1b1flox/flox Msh2-LS (H2O_Aldh1b1fl/fl_Msh2fl KO) mice, in which no apoptotic bodies were detected (further 

magnified in the upper right inset red rectangle in figure panel B). Numbers of cCas3-positive apoptotic bodies per colonic crypt were counted manually (C), showing 

a statistically significant difference. Paired Students t-Test, **p=0.0024 vs. water (data shown as mean±SD, 30 crypts per mouse were analysed, n=3 mice in each 

group). Images taken from sections scanned using the Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP Viewer software at 10X and 20X magnification 

(bar at lower left indicates 250μm, bar in red rectangle indicates 100μm).
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Figure 6.87: Representative images of immunohistochemical analysis of cCas3 in a large intestinal 

adenoma (A and C) and a caecal adenoma (B and D), from 2 ethanol-treated Aldh1b1flox/flox; Msh2flox/-; 

Lgr5CreERT2+/-; mTmG+/- mice. In both examples, there are almost no apoptotic bodies within the 

regions of dysplastic cells in the adenomas, indicating rare apoptotic events detectable in dMMR 

colonic adenomas. Images taken from sections scanned using the Hamamatsu Nanozoomer and 

analysed with the Hamamatsu NDP Viewer software at 10X (A and B) and 40X (C and D) magnification 

(bar at lower left indicates 250μm and 50 μm).
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Figure 6.88: Representative images of immunohistochemical analysis of cCas3 in large intestinal mucosal epithelium of induced Aldh1b1-/-;  Msh2flox/-; Lgr5CreERT2+/-; 

mTmG+/-mice treated with either 20% ethanol in drinking water (A), or normal/standard water (B). The number of apoptotic bodies positive for cCas3 in the 

hyperproliferative colonic crypts of ethanol-treated Aldh1b1-/- Msh2-LS (EtOH_Aldh1b1-/-_Msh2fl KO) mice (further magnified in the upper right inset red rectangle in 

figure panel A) was significantly higher compared with the colonic epithelium of water-treated Aldh1b1-/- Msh2-LS (H2O_Aldh1b1-/-_Msh2fl KO) mice, in which no 

apoptotic bodies were detected (further magnified in the upper right inset red rectangle in figure panel B). Numbers of cCas3-positive apoptotic bodies per colonic 

crypt were counted manually (C), showing a statistically significant difference. Paired Students t-Test, ***p=0.0001 vs. water (data shown as mean±SD, 30 crypts per 

mouse were analysed, n=3 mice in each group). Images taken from sections scanned using the Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP 

Viewer software at 10X and 20X magnification (bar at lower left indicates 250μm, bar in red rectangle indicates 100μm).
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Figure 6.89: Representative images of immunohistochemical analysis of cCas3 in a large intestinal 

adenoma (A and C) and a caecal adenoma (B and D), from 2 ethanol-treated Aldh1b1-/-; Msh2flox/-; 

Lgr5CreERT2+/-; mTmG+/- mice. In both examples, there are almost no apoptotic bodies within the 

regions of dysplastic cells in the adenomas, indicating rare apoptotic events detectable in dMMR 

colonic adenomas. Images taken from sections scanned using the Hamamatsu Nanozoomer and 

analysed with the Hamamatsu NDP Viewer software at 10X (A and B) and 40X (C and D) magnification 

(bar at lower left indicates 250μm and 50 μm). 
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6.6 Plasma acetaldehyde concentrations from the Aldh1b1 conditional-

knockout Msh2-LS and Aldh1b1 constitutive-knockout Msh2-LS mouse 

models with and without ethanol treatment 

 
6.6.1 Methods 

During the necropsy dissection procedure, blood was taken from the Aldh1b1 conditional-

knockout Msh2-LS and Aldh1b1 constitutive-knockout Msh2-LS mice by post-mortem 

cardiac puncture. Blood was collected in heparinized tubes, which were centrifuged at 3000 

X g for 15 min at 4∘C to allow blood fractionation. Acetaldehyde is a highly volatile compound, 

classified as a VOC (Missia et al., 2010; Sarigiannis et al., 2011). To preserve the acetaldehyde 

concentration, plasma was collected in cryo-tubes and immediately snap-frozen in liquid 

nitrogen and stored at −80∘C until analysis. Plasma samples were analysed in a single batch 

and plasma acetaldehyde concentrations were determined using an enzymatic acetaldehyde 

assay kit (K-ACHYD; Megazyme), as described in Materials and Methods.  

 

6.6.2 Results 

In Aldh1b1flox/flox Msh2-LS mice, plasma acetaldehyde levels were analysed comparing 

samples from EtOH_Aldh1b1fl/fl_Msh2fl KO mice and H2O_Aldh1b1fl/fl_Msh2fl KO mice, as well 

as comparing these with EtOH_Aldh1b1fl/fl_Msh2fl mice and H2O_Aldh1b1fl/fl_Msh2fl mice, 

after long-term ethanol or water treatment (experimental mice were treated with ethanol 

for between 10 and 52 weeks prior to sacrifice). 

Plasma acetaldehyde levels were statistically significantly higher in EtOH_Aldh1b1fl/fl_Msh2fl 

KO mice compared with H2O_Aldh1b1fl/fl_Msh2fl KO mice (p=0.0019, Mann-Whitney U-test) 

(Figure 6.90). The difference in plasma acetaldehyde levels between H2O_Aldh1b1fl/fl_Msh2fl 

mice and EtOH_Aldh1b1fl/fl_Msh2fl mice did not show any statistically significant differences.  

Plasma acetaldehyde levels in the EtOH_Aldh1b1fl/fl_Msh2fl KO mice were slightly higher 

compared with the EtOH_Aldh1b1fl/fl_Msh2fl mice, but this difference was not statistically 

significant.  

In Aldh1b1-/- Msh2-LS mice, plasma acetaldehyde levels were analysed comparing samples 

from EtOH_Aldh1b1-/-_Msh2fl KO mice and H2O_Aldh1b1-/-_Msh2fl KO mice, as well as 

comparing these with EtOH_Aldh1b1-/-_Msh2fl mice and H2O_Aldh1b1-/-_Msh2fl mice after 
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long-term ethanol or water treatment (experimental mice were treated with ethanol for 

between 10 and 52 weeks prior to sacrifice). 

Plasma acetaldehyde levels were significantly higher in EtOH_Aldh1b1-/-_Msh2fl KO mice 

compared with H2O_Aldh1b1-/-_Msh2fl KO mice (p<0.0001) (Figure 6.91). Plasma acetaldehyde 

levels in EtOH_Aldh1b1-/-_Msh2fl mice were higher than those in H2O_Aldh1b1-/-_Msh2fl mice 

(p<0.0362).  Plasma acetaldehyde levels in EtOH_Aldh1b1-/-_Msh2fl KO mice were significantly 

higher compared with EtOH_Aldh1b1-/-_Msh2fl mice (p<0.0001). 

 

 

 

 

 

 

 

Figure 6.90: Plasma acetaldehyde concentrations in ethanol- and water-treated Tamoxifen-induced 

Aldh1b1flox/flox Msh2-LS (EtOH_Aldh1b1fl/fl_Msh2fl KO and H2O_ Aldh1b1fl/fl_Msh2fl KO respectively) mice 

and ethanol- and water-treated non-induced Aldh1b1flox/flox Msh2-LS (EtOH_Aldh1b1fl/fl_Msh2fl and 

H2O_Aldh1b1fl/fl_Msh2fl respectively) mice, after long-term ethanol or water treatment. Mann-

Whitney U-test was carried out to compare plasma acetaldehyde levels (*p=0.0159) (data shown as 

mean±SD, n=4-6 plasma samples per group).  
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Figure 6.91: Plasma acetaldehyde concentrations in ethanol- and water-treated Tamoxifen-induced 

Aldh1b1-/- Msh2-LS (EtOH_Aldh1b1-/-_Msh2fl KO and H2O_ Aldh1b1-/-_Msh2fl KO respectively) mice and 

ethanol- and water-treated non-induced Aldh1b1-/- Msh2-LS (EtOH_Aldh1b1-/-_Msh2fl and H2O_ 

Aldh1b1-/-_Msh2fl respectively) mice, after long-term ethanol or water treatment. Mann-Whitney U-

test was carried out to compare plasma acetaldehyde concentrations in EtOH_Aldh1b1-/-_Msh2fl KO 

and H2O_ Aldh1b1-/-_Msh2fl KO mice (****p<0.0001), and it was carried out to compare plasma 

acetaldehyde concentrations in EtOH_Aldh1b1-/-_Msh2fl KO mice and EtOH_Aldh1b1-/-_Msh2fl mice 

(∆∆∆∆p<0.0001). Mann-Whitney U-test was carried out to compare plasma acetaldehyde 

concentrations in EtOH_Aldh1b1-/-_Msh2fl and H2O_ Aldh1b1-/-_Msh2fl mice (p=0.0362) (data shown 

as mean±SD, n=4-6 plasma samples per group).  
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6.7 Discussion 

In this chapter, the first aim was to introduce the conditional Aldh1b1 allele (Aldh1b1flox/flox) 

and the constitutive Aldh1b1 knockout allele (Aldh1b1-/-) by cross-breeding into the Msh2-LS 

mouse model, in order to establish an Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-; Aldh1b1flox/flox 

colony and an Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-; Aldh1b1-/- colony.  To generate the 

Aldh1b1 conditional-knockout (Aldh1b1flox/flox) mice, the Aldh1b1 tm1a mice were cross-bred 

with Flpe mice and subsequently, the generated Msh2+/+; Lgr5CreERT2-/-; mTmG-/-; 

Aldh1b1flox/flox mice were cross-bred with Msh2flox/-; Lgr5CreERT2+/-; mTmG+/+; Aldh1b1+/+ mice 

(Msh2-LS model mice) producing: 25% Msh2flox/+; Lgr5CreERT2+/-; mTmG+/-; Aldh1b1fl/+ mice, 

25% Msh2flox/+; Lgr5CreERT2-/-; mTmG+/-; Aldh1b1fl/+ mice, 25% Msh2-/+; Lgr5CreERT2+/-; 

mTmG+/-; Aldh1b1fl/+ mice, and 25% Msh2-/+; Lgr5CreERT2-/-; mTmG+/-; Aldh1b1fl/+ mice. The 

resulting progeny were used as breeders for the creation of the Aldh1b1 conditional-

knockout Msh2-LS experimental subject mice. The mice derived from these matings were 

predicted to show 1.5% progeny with Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-; Aldh1b1flox/flox 

genotypes and 0.8% progeny with Msh2flox/-; Lgr5CreERT2+/-; mTmG+/+; Aldh1b1flox/flox 

genotypes, and the actual progeny proportions were similar. In Msh2flox/-; Lgr5CreERT2+/-; 

mTmG+/-; Aldh1b1flox/flox, loss of Aldh1b1 activity following Cre recombinase activation only 

occurs in the scattered Lgr5-expressing intestinal epithelial stem cells (that go on to form 

crypt daughter cells) along with inactivation of the second allele of Msh2 and conversion to 

mG expression, by Cre recombinase activity induced following Tamoxifen treatment.  

To generate the Aldh1b1 constitutive-knockout (Aldh1b1-/-) mice, embryos from the Aldh1b1 

conditional-knockout (Aldh1b1flox/flox) mice were treated with TAT-Cre in vitro and implanted 

into surrogate mothers using standard techniques. Subsequently, the generated Msh2+/+; 

Lgr5CreERT2-/-; mTmG-/-; Aldh1b1-/- mice were cross-bred with Msh2flox/-; Lgr5CreERT2+/-; 

mTmG+/+; Aldh1b1+/+ mice (Msh2-LS model mice) producing: 25% Msh2flox/+; Lgr5CreERT2+/-; 

mTmG+/-; Aldh1b1+/- mice, 25% Msh2flox/+; Lgr5CreERT2-/-; mTmG+/-; Aldh1b1+/-mice, 25% 

Msh2-/+; Lgr5CreERT2+/-; mTmG+/-; Aldh1b1+/- mice, and 25% Msh2-/+; Lgr5CreERT2-/-; mTmG+/-

; Aldh1b1+/- mice. The resulting progeny were used as breeders for the creation of the 

Aldh1b1 constitutive-knockout Msh2-LS experimental subject mice. The mice resulting from 

these matings were predicted to show 1.5% progeny with Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-

; Aldh1b1-/- genotypes and 0.8% progeny with Msh2flox/-; Lgr5CreERT2+/-; mTmG+/+; Aldh1b1-/- 

genotypes, and the actual progeny proportions were similar. Msh2flox/-; Lgr5CreERT2+/-; 

mTmG+/-; Aldh1b1-/- mice were shown by immunohistochemistry to have complete loss of 
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Aldh1b1 in all cells, but only showed loss of Msh2 expression in scattered Lgr5-expressing 

intestinal stem cells (and crypts populated by their daughter cells) due to Cre recombinase 

activity induced following Tamoxifen treatment. 

 

The second aim was to study the interaction of defective MMR with either low/moderate or 

high levels of intestinal acetaldehyde in the model mice when placed on long-term ethanol 

treatment. In this chapter we investigated whether conditional-knockout and/or 

constitutive-knockout of Aldh1b1 resulted in increased plasma levels of acetaldehyde, as a 

surrogate indicator of increased intraepithelial acetaldehyde in the intestines, previously 

shown to mediate increased DNA damage (Garaycoechea et al., 2012; Langevin et al., 2011; 

Müller et al., 2016), that together with defective MMR could influence intestinal tumour 

formation. Once the Aldh1b1 conditional-knockout Msh2-LS mouse colony and the Aldh1b1 

constitutive-knockout Msh2-LS mouse colony were established, the long-term ethanol 

treatment protocol was applied to these two groups of mice for up to one year. It was 

hypothesised that the conditional-knockout Aldh1b1flox/flox mice would result in only 

scattered stem cells, and subsequently scattered crypts or crypt foci, having inactivated 

Aldh1b1 enzyme activity, generating mildly to moderately increased plasma levels of 

acetaldehyde overall, reflecting intestinal intraepithelial levels. In contrast, it was 

hypothesised that the constitutive-knockout Aldh1b1-/- mice would have widespread 

inactivation of the Aldh1b1 enzyme activity in all cells of the murine body, having the most 

biologically significant effect in the intestinal epithelium, generating moderately to markedly 

increased plasma levels of acetaldehyde overall, reflecting intestinal intraepithelial levels.  

Ethanol exposure in this experimental design was based on previous experience using 

Aldh1b1-depleted mice and control wildtype mice under long-term (~1 year) treatment with 

20% ethanol in drinking water, in which intestinal tumour formation was observed within 

one year in both groups, indicating that long-term ethanol treatment of mice leads to 

intestinal tumour development (Müller et al., 2016).  

Mice received Tamoxifen treatment by daily i.p. injection for 4 consecutive days, to activate 

Cre-recombinase in a low proportion of Lgr5-expressing intestinal stem cells, as described in 

Chapter 3. In both Aldh1b1 conditional-knockout Msh2-LS mice and Aldh1b1 constitutive-

knockout Msh2-LS mice, body weights of the female and male mice didn’t significantly differ 

during the Tamoxifen treatment, showing successful drug administration and acceptance of 

the experimental procedure by the mice. Aldh1b1flox/flox Msh2-LS mice and Aldh1b1-/- Msh2-
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LS male mice showed statistically higher mean body weight compared with Aldh1b1flox/flox 

Msh2-LS mice and Aldh1b1-/- Msh2-LS female murine mean body weight at the same age (as 

expected due to normal sexual dimorphism for body weight observed in rodents).  On the 

fifth day after the last Tamoxifen i.p. injection, both Aldh1b1flox/flox Msh2-LS mice and 

Aldh1b1-/- Msh2-LS mice received 20% ethanol in drinking water or normal drinking water.  

EtOH_Aldh1b1fl/fl_Msh2fl KO female mice did not show abnormal behaviour or reduced body 

weight compared with H2O_Aldh1b1fl/fl_Msh2fl KO female mice, indicating good acceptance of 

the ethanol regime. EtOH_Aldh1b1fl/fl_Msh2fl KO and H2O_Aldh1b1fl/fl_Msh2fl KO male mice 

showed some variation in body weight most likely reflecting the low number of experimental 

mice in this experimental group. EtOH_Aldh1b1-/-_Msh2fl KO female and male mice did not 

show abnormal behaviour or significantly reduced body weight compared with 

H2O_Aldh1b1-/-_Msh2fl KO female and male mice, indicating good acceptance of the ethanol 

regime.  

In Aldh1b1flox/flox Msh2-LS mice, the liquid consumption per mouse was on average 12.83ml 

for H2O_Aldh1b1fl/fl_Msh2fl KO male mice, 13.4ml for EtOH_Aldh1b1fl/fl_Msh2fl KO male mice, 

12.87ml for H2O_Aldh1b1fl/fl_Msh2fl KO female mice, and 9ml for EtOH_Aldh1b1fl/fl_Msh2fl KO 

female mice. In Aldh1b1-/- Msh2-LS mice, the liquid consumption per mouse was on average 

10.4ml for H2O_Aldh1b1-/-_Msh2fl KO male mice, 10.5ml for EtOH_Aldh1b1-/-_Msh2fl KO male 

mice, 10.2ml for H2O_Aldh1b1-/-_Msh2fl KO female mice, and 11.5ml for EtOH_Aldh1b1-/-

_Msh2fl KO female mice. In both Aldh1b1flox/flox Msh2-LS mice and Aldh1b1-/- Msh2-LS mice, no 

significant differences were observed between any of the liquid consumption comparisons 

of ethanol-treated versus water-treated males or females.  

The cohorts of experimental mice were studied over time for evidence of intestinal (or other) 

tumour formation. As the study progressed, in both Aldh1b1flox/flox Msh2-LS mice and 

Aldh1b1-/- Msh2-LS mice, most of the ethanol-treated Msh2-LS mice displayed either anal 

prolapse or >20% reduction in body weight as common clinical signs of distress at various 

times and were culled for necropsy dissection. In Aldh1b1flox/flox Msh2-LS mice, 41.7% (5/12 

mice) of EtOH_Aldh1b1fl/fl_Msh2fl KO mice showed evidence of large intestinal 

hyperproliferation and adenoma formation (with 1 adenocarcinoma) within an average of 

4.5 months of ethanol treatment, compared with no hyperproliferation and no cases of large 

intestinal adenoma formation in H2O_Aldh1b1fl/fl_Msh2fl KO mice (0%, 0/12 mice) in the same 

time-period. EtOH_Aldh1b1fl/fl_Msh2fl KO mice showed a pattern of tumour distribution of one 
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or more large intestinal tumours mainly in the proximal colon and mid colon (total 21 

neoplasms; 14.3% of neoplasms were found in caecum, 38% in proximal colon, 23.8% in mid-

colon, 14.3% in distal colon and 9.6% in the rectum). The overall large intestinal tumour 

distribution pattern observed in EtOH_Aldh1b1fl/fl_Msh2fl KO mice was similar to that 

observed in EtOH_Msh2fl KO mice (total 36 neoplasms; 19.5% of neoplasms were found in 

caecum, 33.4% in proximal colon, 41.7% in mid-colon, 2.7% in distal colon and 2.7% in the 

rectum). However, in EtOH_Aldh1b1fl/fl_Msh2fl KO mice, ethanol-induced colonic adenomas 

occurred earlier, but not statistically significantly so, than in EtOH_Msh2fl KO mice (4.5 months 

on average compared with 6 months). However, EtOH_Aldh1b1fl/fl_Msh2fl KO mice showed 

statistically significantly higher numbers of tumours per mouse compared with EtOH_Msh2fl 

KO mice.  

In Aldh1b1-/- Msh2-LS mice, 66.7% (8/12 mice) of EtOH_Aldh1b1-/-_Msh2fl KO mice showed 

evidence of large intestinal hyperproliferation and adenoma formation within an average of 

6 months of ethanol treatment, compared with no hyperproliferation and no cases of large 

intestinal adenoma formation in H2O_Aldh1b1-/-_Msh2fl KO mice (0%, 0/12 mice) in the same 

time-period. EtOH_Aldh1b1-/-_Msh2fl KO mice showed a pattern of tumour distribution of one 

or more large intestinal tumours mainly in the proximal colon and mid colon (total 35 

neoplasms; 22.9% of neoplasms were found in caecum, 40% in proximal colon, 22.9% in mid-

colon, 0% in distal colon and 14.2% in the rectum). In EtOH_Aldh1b1-/-_Msh2fl KO mice, 

ethanol-induced colonic adenomas occurred at statistically significantly higher numbers per 

mouse than in EtOH_Msh2fl KO mice (35 neoplasms in 8/12 EtOH_Aldh1b1-/-_Msh2fl KO Msh2-

LS mice compared with 36 neoplasms in 15/23 EtOH_Msh2fl KO mice). As observed in 

Aldh1b1wt Msh2-LS mice, no small intestinal adenomas were seen in either the Aldh1b1flox/flox 

Msh2-LS or Aldh1b1-/- Msh2-LS mice, for both ethanol- and water-treated mice. 

EtOH_Aldh1b1-/-_Msh2fl KO mice showed a number of rectal adenomas, but these was not 

observed in EtOH_Msh2fl KO mice. Rectal tumours in human LS patients are uncommon, but 

occur later compared with right-sided neoplasms. Rectal adenomas are observed in LS 

patients mainly after a procedure on a previously diagnosed right-sided lesion (Lee et al., 

2001). 

A range of relevant control animal cohorts, including non-induced Aldh1b1flox/flox Msh2-LS 

mice, non-induced Aldh1b1-/- Msh2-LS mice and non-induced Msh2-LS mice, were also tested 

for comparison with tumour formation in these test cohorts, after long-term ethanol- or 

water-treatment. In the absence of Tamoxifen treatment, the Cre-recombinase is not 
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activated, preventing the loss of the conditional (floxed) Msh2 allele and thus, there is no 

MMR pathway abrogation in all of these non-induced control cohorts, together with no loss 

of the conditional Aldh1b1 allele in Lgr5 expressing intestinal epithelial stem cells and their 

daughter cells of Aldh1b1flox/flox Msh2-LS mice.  

It was hypothesised that without Cre activation, the Aldh1b1flox/flox Msh2-LS control mice 

should not present altered or harmful phenotypes, or show an increased intestinal tumour 

predisposition, or other tumour predisposition, compared with wild-type mice. In the 

Aldh1b1-/- Msh2-LS mouse model, the absence of Tamoxifen treatment prevents the loss of 

the conditional Msh2 allele in Lgr5-expressing intestinal epithelial stem cells, whereas the 

loss of Aldh1b1 expression is constitutive in all cells of the mouse.  It was hypothesised that 

without Cre activation, the Aldh1b1-/- Msh2-LS control mice should not show an increased 

dMMR-driven intestinal tumour predisposition, although it was hypothesised that they may 

show higher sensitivity to ethanol/acetaldehyde in the whole GI tract due to the constitutive 

loss of Aldh1b1 expression, compared with wild-type mice. The data shown here provide 

support for both of these hypotheses. The data related to wild-type control mice have 

already been discussed in Chapter 4 (4.3). 

 

In both Aldh1b1 conditional-knockout Msh2-LS mice and Aldh1b1 constitutive-knockout 

Msh2-LS mice, body weights of the female and male mice didn’t significantly differ during 

the corn oil treatment, showing successful drug administration and acceptance of the 

experimental procedures by the mice. EtOH_Aldh1b1fl/fl_Msh2fl and EtOH_Aldh1b1-/-_Msh2fl 

female and male mice did not show abnormal behaviour or reduced weight compared with 

H2O_Aldh1b1fl/fl_Msh2fl and H2O_Aldh1b1-/-_Msh2fl female and male mice, indicating good 

acceptance of the ethanol regime. However, the mild variations in the data distributions for 

the body weight curves for both non-induced Aldh1b1flox/flox Msh2-LS mice and non-induced 

Aldh1b1-/- Msh2-LS mice were influenced by the small numbers of mice coming from 

different litters and starting at different time points. 

In non-induced Aldh1b1flox/flox Msh2-LS mice, 43% (3/7 mice) of the EtOH_Aldh1b1fl/fl_Msh2fl 

mice showed zones of colonic crypt epithelial hyperproliferation mainly in the proximal and 

mid-colon, consistent with this previously described ethanol effect (Müller et al., 2016). 

However, none of the EtOH_Aldh1b1fl/fl_Msh2fl and H2O_Aldh1b1fl/fl_Msh2fl mice showed 

intestinal tumour formation. The tumour incidence in EtOH_Aldh1b1fl/fl_Msh2fl KO mice was 

statistically significantly higher compared with EtOH_Aldh1b1fl/fl_Msh2fl mice (p=0.0466). 
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In non-induced Aldh1b1-/- Msh2-LS mice, 33.4% (2/6 mice) of the EtOH_Aldh1b1-/-_Msh2fl 

mice showed zones of colonic crypt epithelial hyperproliferation mainly in the mid-colon, 

consistent with this previously described ethanol effect (Müller et al., 2016). However, none 

of the EtOH_Aldh1b1-/-_Msh2fl and H2O_ Aldh1b1-/-_Msh2fl mice showed intestinal tumour 

formation. The tumour incidence in EtOH_Aldh1b1-/-_Msh2fl KO mice was statistically 

significantly higher compared with EtOH_Aldh1b1-/-_Msh2fl mice (p=0.0073). 

 

The tumours and normal tissue samples from Aldh1b1flox/flox Msh2-LS mice and Aldh1b1-/- 

Msh2-LS mice were characterised by IHC, comparing samples from ethanol-treated and 

water-treated mice. IHC was used to investigate the expression of Msh2 in tumours and 

tissue samples from Tamoxifen-induced Aldh1b1flox/flox Msh2-LS mice, Tamoxifen-induced 

Aldh1b1-/- Msh2-LS mice, non-induced Aldh1b1flox/flox Msh2-LS mice and non-induced 

Aldh1b1-/- Msh2-LS mice. Tamoxifen treatment induced the loss of Msh2 expression in Lgr5+ 

expressing crypt epithelial stem cells scattered along the entire SI and LI. The Lgr5+ 

expressing stem cells, located at the bottom of the crypts, generate daughter cells that can 

expand to fill the entire crypt-villus epithelium in SI or entire crypt in the colon (Barker et al., 

2007; Wojciechowicz et al., 2014). In normal intestinal tissues, Msh2 was strongly expressed 

in crypt stem cells and transit amplifying cells in the small intestinal crypts, but Msh2 protein 

expression levels fade in the non-dividing differentiated SI villus cells, and similarly fade in 

the differentiated cells of the upper third of the colonic crypts (Tomé et al., 2013). 

In induced Aldh1b1flox/flox Msh2-LS mice, EtOH_Aldh1b1fl/fl_Msh2fl KO mice showed 43% Msh2-

negative small intestinal crypts and 17% Msh2-negative colonic crypts compared with 

H2O_Aldh1b1fl/fl_Msh2fl KO mice that showed 24% Msh2-negative small intestinal crypts and 

7% Msh2-negative colonic crypts. The percentage of Msh2-negative or dMMR crypts was 

statistically significantly higher in both SI and colon of EtOH_Aldh1b1fl/fl_Msh2fl KO mice 

(p=0.0056 and p=0.0006 respectively) compared with H2O_Aldh1b1fl/fl_Msh2fl KO mice, 

consistent with ethanol/acetaldehyde-mediated selection for survival of dMMR cells. The 

number of Msh2-negative crypts was higher in SI than in the colon in Aldh1b1flox/flox Msh2-LS 

mice, however although tumours were observed in the colon, no tumours formed in the SI.  

In induced Aldh1b1-/- Msh2-LS mice, EtOH_Aldh1b1-/-_Msh2fl KO mice showed 55.7% Msh2-

negative small intestinal crypts and 29% Msh2-negative colonic crypts compared with 

H2O_Aldh1b1-/-_Msh2fl KO mice that showed 28% Msh2-negative small intestinal crypts and 

10% Msh2-negative colonic crypts. The percentage of Msh2-negative or dMMR crypts was 
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statistically significantly higher in both SI and colon of EtOH_Aldh1b1-/-_Msh2fl KO mice 

(p<0.0001 for both SI and colon) compared with H2O_Aldh1b1-/-_Msh2fl KO mice, consistent 

with ethanol/acetaldehyde-mediated selection for survival of dMMR cells. The number of 

Msh2-negative crypts was higher in SI than in the colon in Aldh1b1-/- Msh2-LS mice, however 

although tumours were observed in the colon, no tumours formed in the small intestine.  

In induced Aldh1b1flox/flox Msh2-LS mice, the Msh2-negative crypts pattern in SI and colon is 

similar to the one observed in induced Msh2-LS mice (in EtOH_Msh2fl KO 43% Msh2-negative 

small intestinal crypts and 11.2% Msh2-negative colonic crypts compared with H2O_Msh2fl 

KO mice that showed 25.8% Msh2-negative small intestinal crypts and 5% Msh2-negative 

colonic crypts). By contrast, in induced Aldh1b1-/- Msh2-LS mice, the percentage of Msh2-

negative crypts is higher in both SI and colon compared with those in both EtOH_Msh2fl KO 

and H2O_Msh2fl KO mice. Given the significantly higher levels of plasma acetaldehyde in 

EtOH_Aldh1b1-/-_Msh2fl KO mice, this is consistent with the hypothesis that 

ethanol/acetaldehyde mediates selection, acting significantly via acetaldehyde-induced DNA 

damage, as shown by the y-H2AX and p53 IHC analyses, bringing about increased survival of 

dMMR cells in these mice (as explained in Chapter 4, Figure 4.58).  

All large intestinal adenomas tested from EtOH_Aldh1b1fl/fl_Msh2fl KO mice and 

EtOH_Aldh1b1-/-_Msh2fl KO mice showed Msh2-negative dysplastic glands, often surrounded 

by or admixed with Msh2-positive crypts showing reactive or hyperproliferative changes. 

This confirmed colonic adenomas arose from dMMR (Msh2-negative) crypts. This is 

consistent with observations from human LS patients that the risk of colonic tumour 

formation correlates with the size of the MMR-deficient crypt clusters that grow over time 

in affected patients, in line with observations by Wojciechowicz et al, (2014) (Kloor et al., 

2012; Shia et al., 2015). 

Immunohistochemical analysis of Msh2 expression in the intestinal tissue samples from non-

induced Aldh1b1flox/flox Msh2-LS control mice and non-induced Aldh1b1-/- Msh2-LS treated 

with either 20% ethanol in drinking water or normal / standard water, showed no Msh2-

negative crypts in either small or large intestinal mucosal epithelium, consistent with lack of 

induction of Cre activity with continued expression of full-length protein from the floxed 

Msh2 allele. 

IHC was performed to investigate Aldh1b1 murine protein expression. ALDH1B1 is a 

mitochondrial aldehyde dehydrogenase highly expressed in the intestinal epithelium, 

especially in the stem cells and transit-amplifying cells of the crypts of both small intestines 
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and large intestines, and has been proposed to play an important role in acetaldehyde 

detoxification in the intestines to protect stem and progenitor cells from acetaldehyde-

mediated damage (Stagos et al., 2010). In Aldh1b1flox/flox Msh2-LS mice, Tamoxifen-treatment 

induced the loss of Aldh1b1 expression, together with the loss of Msh2, in scattered Lgr5+ 

expressing intestinal crypt epithelial stem cells and their crypts, shown by IHC. Aldh1b1-

negative crypts were observed in the intestinal samples of both EtOH_Aldh1b1fl/fl_Msh2fl KO 

and H2O_Aldh1b1fl/fl_Msh2fl KO mice. Non-induced (no Tamoxifen treatment) Aldh1b1flox/flox 

Msh2-LS model mice treated with either 20% ethanol in drinking water or normal water 

showed no Aldh1b1-negative crypts in either SI and LI mucosa, consistent with lack of 

induction of Cre activity with continued expression of protein from the floxed Aldh1b1 allele. 

In induced Aldh1b1-/- Msh2-LS mice, Aldh1b1 is permanently inactivated in all tissues and 

cells (Tamoxifen treatment is not required to induce the loss of Aldh1b1 expression) and in 

both these mice and in non-induced Aldh1b1-/- Msh2-LS model mice, treated with either 20% 

ethanol in drinking water or normal water, IHC showed that all crypts were Aldh1b1-negative 

in both SI and LI mucosal epithelium, as expected. 

IHC was performed to investigate Ki-67 expression in intestinal tissue samples from 

Tamoxifen-induced Aldh1b1flox/flox Msh2-LS mice and Aldh1b1-/- Msh2-LS mice to determine 

proliferative activity. In normal large and small intestinal tissue, Ki-67 is expressed only in the 

proliferating cells at or near the base of crypts as previously reported (Johnston et al., 1989). 

In both Aldh1b1flox/flox Msh2-LS mice and Aldh1b1-/- Msh2-LS mice, the percentage of Ki-67-

positive cells per crypt was significantly higher in the colon in EtOH_Aldh1b1fl/fl_Msh2fl KO 

mice and EtOH_Aldh1b1-/-_Msh2fl KO mice compared with H2O_Aldh1b1fl/fl_Msh2fl KO mice and 

H2O_Aldh1b1-/-_Msh2fl KO mice respectively, confirming the presence of large regions of 

mucosal crypt epithelial hyperproliferation observed in histological sections of ethanol-

treated murine colons. The percentage of Ki-67-positive cells per crypt in SI of 

EtOH_Aldh1b1fl/fl_Msh2fl KO mice and EtOH_Aldh1b1-/-_Msh2fl KO mice was mildly higher than 

in the SI of H2O_Aldh1b1fl/fl_Msh2fl KO mice and H2O_Aldh1b1-/-_Msh2fl KO mice respectively. 

These observations confirm the previously reported association of long-term ethanol 

treatment of mice and colonic mucosal epithelial hyperproliferation (Müller et al., 2016). 

We investigated the expression of β-catenin protein, an intracellular signal transducer in the 

Wnt signalling pathway (Cong et al., 2003), on tumours and tissue samples from Tamoxifen-

induced Aldh1b1flox/flox Msh2-LS mice and Tamoxifen-induced Aldh1b1-/- Msh2-LS mice. 

Normal colorectal mucosal crypt epithelium exhibited moderate membranous and weak 
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cytoplasmic staining for β-catenin, but absent nuclear localisation. In colonic tumours in the 

EtOH_Aldh1b1fl/fl_Msh2fl KO mice and EtOH_Aldh1b1-/-_Msh2fl KO mice, immunohistochemical 

analysis of β-catenin showed a heterogeneous pattern with variable numbers of adenoma 

cells showing moderately to strongly positive β-catenin nuclear immunostaining due to 

accumulation and translocation of β-catenin into the nuclei. This pattern has been observed 

in human MMR-deficient CRC (Lugli et al., 2007). 

Ethanol metabolisms plays a major role in intestinal carcinogenesis (Seitz & Stickel, 2007), as 

described earlier in this chapter. Acetaldehyde is the first product of ethanol metabolism, 

and aldehydes are very reactive small molecules that can cause a wide range of DNA 

modifications. In normal conditions, acetaldehyde is oxidized to acetate by ALDHs. ALDH1B1 

is the major aldehyde dehydrogenase in the gastrointestinal epithelium (Stagos et al., 2010). 

In Aldh1b1 conditional-knockout Msh2-LS mouse model and Aldh1b1 constitutive-knockout 

Msh2-LS mice, lack of Aldh1b1 expression leads to increased plasma levels of acetaldehyde 

and accumulation of acetaldehyde-induced DNA damage. IHC was performed for y-H2AX and 

p53 to evaluate the DNA damage response in Aldh1b1 conditional-knockout Msh2-LS mice 

and Aldh1b1 constitutive-knockout Msh2-LS mice. Y-H2AX is a key co-ordinator of signalling 

and activator of DNA damage repair pathways and for this it is considered a specific 

molecular marker for monitoring DNA damage (Mah et al., 2010). In EtOH_Aldh1b1fl/fl_Msh2fl 

KO mice, a statistically significantly higher percentage of y-H2AX-positive cells in the colon 

(38.7%) was observed compared with H2O_Aldh1b1fl/fl_Msh2fl KO murine colon (0.5%). In both 

EtOH_Aldh1b1fl/fl_Msh2fl KO and H2O_Aldh1b1fl/fl_Msh2fl KO murine SI, no y-H2AX positive cells 

were observed.  

In EtOH_Aldh1b1-/-_Msh2fl KO mice, a statistically significantly higher percentage of y-H2AX-

positive cells in murine colon (46%) was observed compared with H2O_Aldh1b1-/-_Msh2fl KO 

murine colon (0.5%). The percentage of SI y-H2AX-positive cells was higher in EtOH_Aldh1b1-

/-_Msh2fl KO mice compared with H2O_Aldh1b1-/-_Msh2fl KO mice. In both 

EtOH_Aldh1b1fl/fl_Msh2fl KO mice and in EtOH_Aldh1b1-/-_Msh2fl KO mice, colonic and caecal 

adenomas showed high levels of y-H2AX expression. 

The high expression of y-H2AX in EtOH_Aldh1b1fl/fl_Msh2fl KO and EtOH_Aldh1b1-/-_Msh2fl KO 

murine colonic mucosal epithelium is consistent with DNA damage induced by acetaldehyde, 

suggesting that acetaldehyde (more so than ethanol) mediates a significant genotoxic effect, 

predominantly on dMMR colonic mucosal epithelium rather than on dMMR small intestinal 
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mucosa, indicating that other protective mechanisms may be operative in the small intestinal 

epithelium, consistent with the lower incidence of small intestinal cancers compared with 

colonic cancers in human LS patients. This suggests that Msh2 has a key role in protecting 

the MMR-proficient colonic epithelial cells against this type of DNA damage, but Msh2 may 

not be the sole protective mechanism for small intestinal epithelial cells from acetaldehyde-

induced DNA damage. By contrast, the presence of y-H2AX-positive cells in EtOH_Aldh1b1-/-

_Msh2fl KO murine colonic mucosal epithelium confirms the important role of Aldh1b1 in 

protection of large intestinal epithelial cells from acetaldehyde-induced DNA damage.  

Upon DNA damage, increased p53 levels in response can be demonstrated 

immunohistochemically as a greater proportion of cells containing moderate to high (but 

variable) nuclear staining of p53 in individual cells (referred as p53 “wildtype pattern”) (Köbel 

et al., 2016; Lakin & Jackson, 1999). In Aldh1b1flox/flox Msh2-LS mice, the numbers of cells with 

either moderate or high levels of p53-positive nuclear staining per colonic crypt was 

significantly higher in EtOH_Aldh1b1fl/fl_Msh2fl KO mice (52.7%) compared with 

H2O_Aldh1b1fl/fl_Msh2fl KO mice (6.3%), consistent with ethanol/acetaldehyde-induced DNA 

damage.  The percentage of small intestinal p53-positive cells per crypt was higher in 

EtOH_Aldh1b1fl/fl_Msh2fl KO mice (21.7%) compared with H2O_Aldh1b1fl/fl_Msh2fl KO mice 

(3.3%).  

In Aldh1b1-/- Msh2-LS mice, the numbers of cells with either moderate or high levels of p53-

positive nuclear staining per colonic crypt was significantly higher in EtOH_Aldh1b1-/-_Msh2fl 

KO mice (47.5%) compared with H2O_Aldh1b1-/-_Msh2fl KO mice (3.3%), consistent with 

ethanol/acetaldehyde-induced DNA damage.  The percentage of small intestinal p53-

positive cells per crypt was higher in EtOH_Aldh1b1-/-_Msh2fl KO mice (20%) compared with 

H2O_Aldh1b1-/-_Msh2fl KO mice (4%). In both EtOH_Aldh1b1fl/fl_Msh2fl KO mice and 

EtOH_Aldh1b1-/-_Msh2fl KO mice, colonic and caecal adenomas showed high percentages of 

p53-positive cells, with variably moderate to high nuclear p53 positivity and some negative 

nuclei in a “p53 wildtype” pattern, indicative of widespread response to DNA damage, with 

no tumours showing either the “overexpression” or “null” patterns associated with Tp53 

mutation.  

Caspase-3 (Cas3) is a key executive member of the caspase cascade, with cysteine-aspartic 

acid protease activity, that acts as one of the key effectors of cell death by apoptosis. It 

requires proteolytic cleavage into 2 subunits that dimerize to create the active form, cCas3 

(Holubec et al., 2005; Talmon et al., 2010). Once activated, cCas3 is responsible for the 
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cleavage of key target proteins essential in cell proliferation and survival, and cCAS3 is 

involved in inducing DNA fragmentation, cell shrinkage, chromatin and cytoplasmic 

condensation and formation of apoptotic cells and bodies. Apoptotic bodies express ligands 

for phagocytic cell receptors for recognition by phagocytic cells or neighbouring cells 

(Elmore, 2007). In Aldh1b1flox/flox Msh2-LS mice, IHC analysis of cCas3 with quantification of 

cCas3-positive apoptotic bodies showed significantly higher numbers of cCas3+ apoptotic 

bodies in EtOH_Aldh1b1fl/fl_Msh2fl KO mice compared with very few or no detectable cCas3+ 

apoptotic bodies in H2O_Aldh1b1fl/fl_Msh2fl KO mice. In Aldh1b1-/- Msh2-LS mice, 

immunohistochemical analysis of cCas3 with quantification of cCas3-positive apoptotic 

bodies, showed significantly higher numbers of cCas3+ apoptotic bodies in EtOH_Aldh1b1-/-

_Msh2fl KO mice compared with very few or no detectable cCas3+ apoptotic bodies in 

H2O_Aldh1b1-/-_Msh2fl KO mice. The detection of cCas3+ apoptotic bodies is consistent with 

increased apoptosis associated with colonic epithelial exposure to ethanol/acetaldehyde, 

and it is hypothesised that this is mediated by those colonic epithelial cells with proficient 

MMR that can recognise severe ethanol/acetaldehyde-induced DNA damage triggering 

apoptosis. In both EtOH_Aldh1b1fl/fl_Msh2fl KO mice and EtOH_Aldh1b1-/-_Msh2fl KO mice, 

colonic and caecal adenomas showed very few or no detectable cCas3+ apoptotic bodies, 

indicating very few or rare apoptotic events in dMMR colonic tumours, consistent with 

inactivation of the MMR-mediated process by which ethanol/acetaldehyde-induced DNA 

damage is recognised leading to apoptosis. 

The increased DNA damage observed in EtOH_Aldh1b1fl/fl_Msh2fl KO mice and EtOH_Aldh1b1-

/-_Msh2fl KO mice large intestinal mucosal epithelium is consistent with the high levels of 

circulating acetaldehyde detected by plasma acetaldehyde assay. Statistically significantly 

higher plasma acetaldehyde levels were observed in EtOH_Aldh1b1fl/fl_Msh2fl KO mice and 

EtOH_Aldh1b1-/-_Msh2fl KO mice compared with H2O_Aldh1b1fl/fl_Msh2fl KO mice and 

H2O_Aldh1b1-/-_Msh2fl KO mice (p=0.0019 and p<0.0001, respectively). Furthermore, 

statistically significantly higher plasma acetaldehyde levels were observed in EtOH_Aldh1b1-

/-_Msh2fl mice compared with H2O_Aldh1b1-/-_Msh2fl mice, consistent with a greater effect 

due to constitutive loss of Aldh1b1 combined with ethanol exposure.  

In conclusion, we successfully introduced both the conditional-knockout Aldh1b1 allele 

(Aldh1b1flox/flox) and the constitutive Aldh1b1 knockout allele (Aldh1b1-/-) by cross-breeding 

into the Msh2-LS mouse model. Ethanol-treatment was shown to cause accumulation of high 

plasma levels of acetaldehyde in the Aldh1b1-/- Msh2-LS mice and lower, more moderate, 



316 
 

levels of plasma acetaldehyde in the Aldh1b1flox/flox Msh2-LS mice. Acetaldehyde was shown 

by immunohistochemical analysis of both y-H2AX and p53 to lead to an increased DNA 

damage response. Long-term ethanol-treatment was also observed to induce colonic crypt 

epithelial hyperproliferation, mostly in the proximal and mid colon, and this contributed to 

intestinal adenoma formation, indicating that ethanol/acetaldehyde can act as tumour 

promoter in these cells.  In both the Aldh1b1 conditional-knockout Msh2-LS model and 

Aldh1b1 constitutive-knockout Msh2-LS model, acetaldehyde-mediated DNA damage and 

carcinogenic effects appeared to be stronger than in the Aldh1b1 wild-type Msh2-LS mouse 

model, as both EtOH_Aldh1b1fl/fl_Msh2fl KO mice and EtOH_Aldh1b1-/-_Msh2fl KO mice showed 

increased numbers of precursor colonic crypt foci lesions and large intestinal adenomas 

(both colonic and caecal adenomas, with occasional progression to adenocarcinoma), 

compared with EtOH_Msh2fl KO mice. These results verified the key role of Aldh1b1 in 

protecting the large intestinal epithelial stem and progenitor cells from acetaldehyde-

induced DNA damage.  

This study produced strong evidence in support of the hypothesis that there is a 

gene/environment interaction between dMMR and ethanol/acetaldehyde, demonstrated 

most notably by the Aldh1b1 constitutive-knockout Msh2-LS mouse model. In Aldh1b1-/- 

MMR-proficient intestinal epithelial stem cells, acetaldehyde-induced DNA damage is likely 

to result in activation of the DNA mismatch repair pathway in the case of mild DNA damage 

or cell death by apoptosis in the case of severe DNA damage (Figure 6.92). By contrast, in 

Aldh1b1-/- MMR-deficient intestinal epithelial stem cells, significant acetaldehyde-induced 

DNA damage is not recognized by the DNA mismatch repair system, with no activation of 

either cell cycle arrest, DNA mismatch repair or apoptosis. The DNA-damaged Aldh1b1-/- 

MMR-deficient intestinal epithelial cells show inappropriate survival and subsequent 

proliferation. This leads to an increase of Aldh1b1-/- dMMR intestinal epithelial cells, 

observed as higher numbers of clusters of Aldh1b1-/- dMMR crypt foci, with elevated 

subsequent tumour formation with both right-sided and left-sided colonic adenomas and 

occasional adenocarcinomas in these mice (Figure 6.92). 
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Figure 6.92: Schematic diagram of the proposed model of the MMR/acetaldehyde gene/environment 

interactions in Aldh1b1-/- MMR-proficient and Aldh1b1-/- MMR-deficient intestinal epithelial cells. 

Ethanol is metabolized to highly reactive acetaldehyde by ADHs in intestinal epithelium. Acetaldehyde 

is further oxidized to acetate by ALDHs, such as ALDH1B1 in intestinal epithelial stem cells and transit-

amplifying cells. In some epithelial cells, acetaldehyde can escape the metabolic pathway and induce 

various forms of DNA base damage, some of which would normally be recognised and repaired by the 

MMR system, or if unrepaired this base damage may induce replication errors, such as base 

mismatches or InDels, during S-phase of the cell cycle. In the Aldh1b1-/- MMR-proficient intestinal 

epithelial cell (red cell membrane), ethanol is metabolized to highly reactive acetaldehyde, with 

reduced oxidation to acetate due to the lack of Aldh1b1, leading to increased levels of highly reactive 

acetaldehyde that can damage DNA. The Aldh1b1-/- MMR-proficient intestinal epithelial cell is able to 

activate DNA mismatch repair, inducing cell cycle arrest to allow DNA repair. However, high levels of 

reactive acetaldehyde causing severe acetaldehyde-induced DNA damage may force the Aldh1b1-/- 

MMR-proficient intestinal epithelial cell to activate cell death by apoptosis. By contrast, the Aldh1b1-

/- MMR-deficient intestinal epithelial cell (green cell membrane) is unable to activate the MMR 

signalling pathway and so there is neither cell cycle arrest nor apoptosis, following increased 

acetaldehyde-induced DNA damage, resulting in aberrant survival of DNA-damaged cells and their 

subsequent proliferation. These proliferating Aldh1b1-/- MMR-deficient intestinal epithelial cells 

populate the crypt and expand further (by crypt fission) to form Aldh1b1-/- dMMR crypt foci. 

Stimulated by ethanol/acetaldehyde to undergo increased proliferation, these cells form 

hyperproliferative crypts whilst remaining subject to ongoing DNA damage. Thus, these Aldh1b1-/- 

dMMR cells can accumulate mutations reflecting a form of dMMR genomic instability, and are 

consequently at increased risk of tumour formation, thus explaining the acceleration of colonic 

adenoma formation and increased probability of evolution to adenocarcinoma. In the Aldh1b1flox/flox 

Msh2-LS model mice, scattered Aldh1b1flox/flox Msh2flox/- intestinal epithelial stem cells are induced by 

Tamoxifen-mediated Cre activation to become Aldh1b1-/- Msh2-/- MMR-deficient intestinal epithelial 

cells and thus respond to ethanol exposure in a similar way to that described above for the cells with 

green membranes. 
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Chapter 7: Investigation of the effects of 

ethanol/acetaldehyde on defective Mismatch Repair colonic 

crypt foci precursors in the Msh2-LS models 

7.1 Introduction 

The mTmG reporter transgene was introduced through cross-breeding into the Msh2-LS 

mouse model, as previously described in Chapter 3. This Cre-mediated reporter construct 

confers a red fluorescence to cells of all tissues without Cre activation, due to whole body 

expression of mT. Upon Cre activation, Cre recombines the two LoxP sites surrounding the 

floxed mT allele and the adjacent polyadenylation site, thus excising this section of DNA, 

allowing expression of an mG (Chapter 3, Figure 3.3). In the modified version of the Msh2flox/-

; Lgr5CreERT2+/-; mTmG+/- mouse model (described in Chapter 3), the activation of Cre 

recombinase by Tamoxifen-treatment generates a Msh2 knockout allele (Msh2flox/OFF) and 

converts the same intestinal stem cells (and their daughter cells) to mG expression, 

generating dMMR intestinal stem cells that subsequently form dMMR crypts, which are 

marked by green fluorescent mG expression. In Chapter 3 (3.2.2.3), it was demonstrated that 

the dMMR crypt foci were positive for mG/GFP by performing IHC analyses of adjacent serial 

sections using anti-Msh2 antibody and anti-GFP antibody.  

In this chapter, the first aim was to use the mTmG transgene reporter system to monitor any 

changes in the number, size, or distribution of mG+ dMMR crypt foci following ethanol 

treatment of the mouse models over the time. The second aim was to investigate differences 

in gene expression patterns between ethanol-treated and water-treated Msh2-LS murine 

colonic and small intestinal epithelial cells to shed light on why hyperproliferative changes 

and adenoma formation occur in the colon, but not in the small intestine, in this Msh2-LS 

model and which signalling pathways are involved. 

In Chapter 4 and Chapter 6, evidence was provided that ethanol-treatment can cause tumour 

formation in the large intestinal mucosal epithelium, but not in the small intestine.  This 

suggested that Msh2 has a key role in protecting the pMMR colonic epithelial cells against 

some types of ethanol/acetaldehyde-induced DNA damage, but Msh2 may not be the sole 

protective mechanism for small intestinal epithelium cells from such DNA damage. 

The plan was to use FACS to sort mT-expressing red small intestinal and colonic epithelial 

cells (pMMR) and mG-expressing green small intestinal and colonic epithelial cells (dMMR) 
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from both ethanol-treated and water-treated murine colon, followed by extraction of RNA 

and gene expression analysis. However, due to COVID-19-related laboratory restrictions the 

latter experiment was not fully completed.  

 

7.2 Investigation of ethanol effects on mG-expressing dMMR colonic 

crypt foci in the Msh2-LS models 

7.2.1 Methods 

7-9 weeks old Msh2flox/-; Lgr5CreERT2+/-; mTmG+/- mice were divided into 4 Groups: A-D 

(Figure 7.1). Group-A and Group-B mice received i.p. injections of 0.15mg Tamoxifen/g bw 

on day 1 and 0.1mg Tamoxifen/g bw on day 2, 3 and 4; on day 5 mice were provided with 

normal drinking water or 20% ethanol in drinking water, respectively.  Group-C and Group-

D mice received i.p. injections of 0.15mg corn oil/g bw on day 1 and 0.1mg corn oil/g bw on 

day 2, 3 and 4; on day 5 mice were provided with normal drinking water or 20% ethanol in 

drinking water, respectively. Group-A to Group-D mice were sacrificed after either 5 days or 

15 days of the ethanol or water regime. During the necropsy dissection procedure, small and 

large intestinal tissues were harvested, inverted on skewer as for preparation of Swiss-rolls, 

fixed in 10% NBF and kept on ice. The large and small intestines were opened longitudinally 

and flattened out as whole mount specimens on a transparent petri-dish, until fluorescent 

microscopic analysis of red mT and green mG fluorescent protein expression (as described in 

Material and Methods, 2.1.5). Images were acquired and analysed as described in Materials 

and Methods. The mT and mG protein expression detection was extended so that it was 

performed in all analyses of the experimental (tumour-watch) Aldh1b1-wild-type Msh2-LS 

mice, Aldh1b1-conditional-knockout Msh2-LS mice and Aldh1b1-constitutive-knockout 

Msh2-LS mice, in order to obtain data about changes in the dMMR colonic crypt foci in terms 

of their size, number and distribution over time. Following image acquisition of small and 

large intestines, tissues were prepared as Swiss-rolls and fixed in 10% NBF. They were 

processed using standard tissue processing protocols for paraffin wax embedding. 
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Figure 7.1: Experimental treatment protocols and timelines for Group-A to -D using Msh2-LS mice. 

Animals in Group-A and Group-B received i.p Tamoxifen injections over 4 days (0.15mg Tamoxifen/g 

bw on day 1 and 0.1mg Tamoxifen/g bw on day 2, 3 and 4), followed by either standard/normal 

drinking water (Group-A) or drinking or water containing 20% ethanol (Group-B). Animals in Group-C 

and Group-D received i.p corn oil injections over 4 days (0.15mg corn oil/g bw on day 1 and 0.1mg 

corn oil/g bw on day 2, 3 and 4), followed by either standard/normal drinking water (Group-C) or 

drinking or water containing 20% ethanol (Group-D). (i.p. = intraperitoneal; EtOH= Ethanol). 
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7.2.2 Results 

7.2.2.1 Investigation of ethanol effects on mG-expressing dMMR colonic crypt foci after 5 

or 15 days of ethanol or water regimes 

The proportional area (as a percentage) of colonic mucosa composed of mG-expressing crypt 

foci relative to the total area of mG and mT fluorescent protein expression (percentage green 

area) was quantified in Msh2flox/-; Lgr5CreERT2+/-; mTmG+/- (Msh2-LS) mice after 4 i.p. 

Tamoxifen injections and either 5 days of 20% ethanol in drinking water regime or 5 days of 

normal drinking water regime (Figure 7.2). There was a statistically significant increase in the 

percentage green area, combining number and size of crypt foci containing mG-expressing 

cells, along the large intestinal tract of 5-day ethanol-treated Msh2-LS mice compared with 

5-day water-treated Msh2-LS mice (p=0.0003). Moreover, the ethanol-treated Msh2-LS mice 

showed a statistically significantly higher percentage area of mG-expressing crypt foci in the 

proximal colon than in the distal colon (p=0.0384) (Figure 7.2). Images of Msh2-LS murine 

small intestine were acquired after 5 days of either ethanol- or water-treatment regimes 

(Figure 7.3), but quantification of the mG+ villlus/crypt foci was technically much more 

difficult due to the extensive and often confluent mG+ villus/crypt foci with some partially 

mG+ villi, and the complicated folded structure of the small intestinal villi in 3-dimensions, 

including partially fluorescent green and partially fluorescent red villi that were folded and 

twisted.  

The percentage area of mG+ crypt foci relative to the total area of mT and mG fluorescent 

protein expression was measured in Msh2flox/-; Lgr5CreERT2+/-; mTmG+/- mice after 4 i.p. 

Tamoxifen injections and either 15 days of 20% ethanol in drinking water or 15 days of 

normal drinking water (Figure 7.4). There was a larger and statistically significant increase in 

the percentage area of crypt foci containing mG-expressing cells along the large intestinal 

tract of 15-day ethanol-treated Msh2-LS mice compared with 15-day water-treated Msh2-LS 

mice (p<0.0001), more so proximally than distally (p=0.004) (Figure 7.4). Images were 

acquired of Msh2-LS murine small intestine after 15 days of either ethanol- or water-

treatment regimes (Figure 7.5), but the quantitative analysis was technically difficult as 

previously explained. 

Detection of mG+ crypt foci and quantification of the percentage green area was evaluated 

in the large intestinal tissue samples from non-induced (no Tamoxifen treatment) Msh2-LS 

model mice after 4 i.p. corn oil injections and either 15 days of 20% ethanol in drinking water, 

or 15 days of normal drinking water, but these mice showed no mG+ colonic crypt foci (Figure 
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7.6), consistent with lack of induction of Cre activity with continued expression of mT 

fluorescent red protein from the mTmG construct (presumably together with continued 

expression of Msh2 protein from the floxed Msh2 allele) in this tissue.  

Higher magnification images were taken during mT and mG protein detection to obtain a 

better understanding of the cellular localisation of mG expression within intestinal crypts, 

using the Leica MZ FLIII fluorescence stereomicroscope (Figure 7.7-7.8), showing highly-

magnified images of small intestinal mucosa with mG+ cells in strips along the SI villi (Figure 

7.8). By contrast, highly-magnified images of Msh2-LS control (no ethanol treatment) murine 

colon were unable to provide a sufficiently detailed views of the mG+ crypt foci (Figure 7.7). 

Subsequently, these murine colonic crypts were examined using a confocal microscope to 

obtain more fine-detailed images of the distribution of mG+ cells within the crypts (Figure 

7.9, supplementary CD and Video: https://media.ed.ac.uk/media/1_385a3vwh).  

 

 

 

 
 

 

 

https://media.ed.ac.uk/media/1_385a3vwh
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Figure 7.2. A) Fluorescence stereomicroscopic analysis of the mT and mG fluorescent protein expression in whole-mount colonic samples of Msh2flox/-; Lgr5CreERT2+/-; 

mTmG+/- mice after 5 days of either 20% ethanol in drinking water (top row) or 5 days of normal water (row below). Representative fluorescent images of the mT & 

mG/GFP detection in the proximal colon (left) and distal colon (right). B) The percentage green areas were statistically significantly higher in ethanol-treated Msh2-LS 

(EtOH_Msh2fl KO) murine whole colon, proximal colon and distal colon compared with water-treated Msh2-LS (H2O_Msh2fl KO) murine colon equivalents. Students t 

Test; ***p=0.0003; **p=0.0020; *p=0.0277. The percentage green areas were statistically significantly higher in EtOH_Msh2fl KO murine proximal colon compared with 

EtOH_Msh2fl KO murine distal colon. Students t Test; ∆p=0.0384. Images taken using the Leica MZ FLIII fluorescence stereomicroscope at 2.5X magnification/1x objective 

 (bar at lower left indicates 1000μm).
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Figure 7.3. Fluorescence stereomicroscopic analysis of the mT and mG fluorescent protein expression 

in whole-mount small intestinal samples of Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-mice after 5 days of 

either 20% ethanol in drinking water (top row) or 5 days of normal water (row below). Representative 

fluorescent images of the mT & mG/GFP detection in the proximal small intestine (left) and distal small 

intestine (right). Images taken using the Leica MZ FLIII fluorescence stereomicroscope at 2.5X and 3.6X 

magnification/1X objective (bar at lower left indicates 1000μm).
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Figure 7.4: A) Fluorescence stereomicroscopic analysis of the mT and mG fluorescent protein expression in whole-mount colonic samples of Msh2flox/-; Lgr5CreERT2+/-; 

mTmG+/- mice after 15 days of either 20% ethanol in drinking water (top row) or 15 days of normal water (row below). Representative fluorescent images of the mT & 

mG/GFP detection in the proximal colon (left) and distal colon (right). B) The percentage green areas were statistically significantly higher in ethanol-treated Msh2-LS 

(EtOH_Msh2fl KO) murine whole colon, proximal colon and distal colon compared with water-treated Msh2-LS (H2O_Msh2fl KO) murine colon equivalents. Students t 

Test; ****p<0.0001; **p=0.0029. The percentage green areas were statistically significantly higher in EtOH_Msh2fl KO murine proximal colon compared with 

EtOH_Msh2fl KO murine distal colon. Students t Test; ∆∆p=0.0040. Images taken using the Leica MZ FLIII fluorescence stereomicroscope at 2.5X magnification/1X 

objective (bar at lower left indicates 1000μm).
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Figure 7.5: Fluorescence stereomicroscopic analysis of the mT and mG fluorescent protein expression 

in whole-mount small intestinal samples of Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-mice after 15 days of 

either 20% ethanol in drinking water (top row) or 15 days of normal water (row below). Representative 

fluorescent images of the mT & mG/GFP detection in the proximal small intestine (left) and distal small 

intestine (right). Images taken using the Leica MZ FLIII fluorescence stereomicroscope at 2.5X 

magnification/1X objective (bar at lower left indicates 1000μm). 
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Figure 7.6. Fluorescence stereomicroscopic analysis of the mT and mG fluorescent protein expression 

in whole-mount colonic samples of non-induced (no Tamoxifen treatment) Msh2flox/-; Lgr5CreERT2+/-; 

mTmG+/-mice after 15 days of either 20% ethanol in drinking water (top row) or 15 days of normal 

water (row below). Representative fluorescent images show only mT expression (with no mG/GFP 

detection) in the proximal colon (left) and distal colon (right). Images taken using the Leica MZ FLIII 

fluorescence stereomicroscope at 2.5X magnification/1X objective (bar at lower left indicates 

1000μm). 
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Figure 7.7: Representative images of mT and mG fluorescent protein expression in whole-mount colon 

samples of Msh2flox/-; Lgr5CreERT2+/-; mTmG+/- control (no ethanol treatment) mice. Images taken 

using the Leica MZ FLIII fluorescence stereomicroscope at 2.5X (A), 4X (B), 6.3X (C) and 8X (D) 

magnification/1X objective (bar at lower left indicates 1000μm). 

 

 

 

Figure 7.8: Representative images of mT and mG fluorescent protein expression in whole-mount small 

intestinal samples of Msh2flox/-; Lgr5CreERT2+/-; mTmG+/- control (no ethanol treatment) mice, showing 

green strips of green mG+ epithelium partially lining otherwise red mT+ villi. Images taken using the 

Leica MZ FLIII fluorescence stereomicroscope at 2.5X (A) and 8X (B) magnification/1X objective (bar at 

lower left indicates 1000μm). 
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Figure 7.9: Two representative images (A and B) of mT and mG fluorescent protein expression in 

whole-mount large intestinal mucosa samples of Msh2flox/-; Lgr5CreERT2+/-; mTmG+/- mice (no ethanol 

treatment). The images show the distribution of green mG+ cells in Cre-activated colonic crypts and 

adjacent surface epithelium of Msh2-LS murine colon (in selected crypts with cells that express mG). 

In contrast, some of the adjacent crypts, lamina propria cells and smooth muscle cells of the 

muscularis mucosae express red mT fluorescent protein. Images taken using the Nikon A1R point 

scanning confocal microscope (bar at lower left indicates 50μm). 

 

 

 

 

 

 

 

 

 

 

 

 



330 
 

7.2.2.1 Investigation of ethanol effects on mG-expressing colonic crypt foci with 

fluorescence microscopy in Aldh1b1 wild-type Msh2-LS mice, Aldh1b1 conditional-

knockout Msh2-LS mice and Aldh1b1 constitutive-knockout Msh2-LS mice. 

The combined areas of mT and mG fluorescent protein were detected by fluorescence 

microscopy and quantified using an ImageJ algorithm in all analyses of the Aldh1b1wt Msh2-

LS mouse model, Aldh1b1flox/flox Msh2-LS mouse model and Aldh1b1-/- Msh2-LS mouse model 

experiments, in order to obtain data about changes in the mG+ colonic crypt foci size and 

number, measured as percentage green area, as well as their distribution over time under 

ethanol or water treatment regimes. Small groups (n=3) of mice were used to investigate the 

changes at 5 days and 15 days, whereas after these times single mice in tumour-watch 

studies were analysed at longer timepoints. The mG+ crypt foci were quantified in both 

EtOH_Msh2fl KO and H2O_Msh2fl KO murine colonic samples and there was a peak of 

percentage green area around the first 15 days of ethanol- or water-treatment (30.9% and 

19%, respectively).  Subsequently, the percentage of green areas were broadly stable over 

the following weeks showing a gentle increase over time with some variability towards the 

end of the experiment, at around 30 to 50 weeks. EtOH_Msh2fl KO murine colon showed 

statistically significantly higher percentage green areas than H2O_Msh2fl KO murine colon 

(Figure 7.10).  In Aldh1b1flox/flox Msh2-LS mice, quantification of the mG+ colonic crypt foci in 

both EtOH_Aldh1b1fl/fl_Msh2fl KO and H2O_Aldh1b1fl/fl_Msh2fl KO mice showed a steady 

increase in percentage of green area reaching a high peak around 11-12 weeks of ethanol-

treatment (39.9%). By contrast, this high peak was not observed in the 

H2O_Aldh1b1fl/fl_Msh2fl KO murine colon, which showed a pattern very similar to that seen in 

H2O_Msh2fl KO mice. In Aldh1b1flox/flox Msh2-LS murine colon, the percentage green areas 

decreased after 12 weeks to stabilize over the subsequent weeks, with a small increase 

towards the end of the experiment with some mild variability. EtOH_Aldh1b1fl/fl_Msh2fl KO 

colon showed statistically significantly higher percentage green areas than 

H2O_Aldh1b1fl/fl_Msh2fl KO murine colon equivalents (Figure 7.11). In EtOH_Aldh1b1-/-_Msh2fl 

KO mice, measurement of the mG+ colonic crypt foci showed a similar trend to that observed 

in EtOH_Msh2fl KO mice, in which after the peak seen around 15 days of ethanol-treatment, 

the percentage green areas settle to a more stable trend with a mild increase over the 

subsequent weeks towards the end of the experiment. EtOH_Aldh1b1-/-_Msh2fl KO murine 

colon showed statistically significantly higher percentage green areas than H2O_Aldh1b1-/-

_Msh2fl KO colon (Figure 7.12). 
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Figure 7.10: Quantification of green fluorescent crypt foci in large intestinal mucosal epithelium of 

Aldh1b1wt Msh2-LS mice treated with either 20% ethanol in drinking water or normal drinking water 

for various periods of time (x-axis). Percentage green areas were measured in whole-mount 

specimens of Aldh1b1wt Msh2-LS murine whole colonic samples (A), with separate examination of 

proximal colon (B), and distal colon (C). Ethanol-treated Aldh1b1wt Msh2-LS (EtOH_Msh2fl KO) murine 

colon showed statistically significantly higher percentage green areas than in water-treated Aldh1b1wt 

Msh2-LS (H2O_Msh2fl KO) murine colon equivalents; 2-way-ANOVA test analysis, ****p<0.0001 vs. 

water (data shown as mean±SD, n=1-3 mice in each group per time point). 
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Figure 7.11: Quantification of green fluorescent crypt foci in large intestinal mucosal epithelium of 

Aldh1b1flox/flox Msh2-LS mice treated with either 20% ethanol in drinking water or normal drinking 

water for various periods of time (x-axis). Percentage green areas were measured in whole-mount 

specimens of Aldh1b1flox/flox Msh2-LS murine whole colonic samples (A), with separate examination of 

proximal colon (B), and distal colon (C). Ethanol-treated Aldh1b1flox/flox Msh2-LS 

(EtOH_Aldh1b1fl/fl_Msh2fl KO) murine colon showed statistically significantly higher percentage green 

areas than in water-treated Aldh1b1flox/flox Msh2-LS (H2O_Aldh1b1fl/fl_Msh2fl KO) murine colon 

equivalents; 2-way-ANOVA test analysis, ****p<0.0001 and ***p=0.0001 vs. water (data shown as 

mean, n=1-3 mice in each group per time point).  
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Figure 7.12: Quantification of green fluorescent crypt foci in large intestinal mucosal epithelium of 

Aldh1b1-/- Msh2-LS mice treated with either 20% ethanol in drinking water or normal drinking water, 

for various periods of time (x-axis). Percentage green areas were measured in whole-mount 

specimens of Aldh1b1-/- Msh2-LS murine colonic samples (A), with separate examination of proximal 

colon (B), and distal colon (C). Ethanol-treated Aldh1b1-/- Msh2-LS (EtOH_Aldh1b1-/-_Msh2fl KO) murine 

colon showed statistically significantly higher percentage green areas than in water-treated Aldh1b1-

/- Msh2-LS (H2O_Aldh1b1-/-_Msh2fl KO) murine colon equivalents; 2-way-ANOVA test analysis, 

****p<0.0001 vs. water (data shown as mean, n=1-3 mice in each group per time point). 
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7.2.2.2 Immunohistochemical characterization of mG-expressing intestinal crypt 

foci in Aldh1b1 wild-type Msh2-LS mice after long-term ethanol treatment 

To test whether the expression of mG/GFP observed by fluorescence microscopic detection, 

following Cre activation, correlated with the loss of Msh2 expression, IHC analyses were 

performed using anti-Msh2 antibody and anti-GFP antibody on intestinal tissue serial 

sections that were almost adjacent to each other. Small intestine, caecum and colon serial 

(or near serial) sections were cut from Tamoxifen-induced Msh2flox/-; Lgr5CreERT2+/-; mTmG+/- 

mice and immunostained for both mG/GFP and Msh2 proteins.  

Small intestinal tissue samples of Msh2-/- mice were used as Msh2-null controls and GFP-

negative expression controls; and SI tissue samples of Tamoxifen-induced mTmG+/+ mice as 

Msh2-positive and GFP-positive expression controls (Figure 3.9). The lack of DAB-brown 

staining for both anti-Msh2 and anti-GFP IHC in the Msh2-/- SI tissues confirmed complete 

loss of Msh2 expression and lack of mG/GFP expression (Figure 3.9 A-B) in the Msh2-null 

negative control tissues. The presence of DAB-brown staining in the mTmG+/+ SI tissues 

confirmed presence of Msh2 expression throughout the SI tissue and GFP expression in some 

Cre-activated crypts (Figure 3.9 C-D) in the mTmG+/+ positive control tissues.  

The IHC analysis of Msh2 in Msh2flox/-; Lgr5CreERT2+/-; mTmG+/- murine intestinal tissues 

showed lack of DAB-brown staining in some crypts scattered along the length of small 

intestinal mucosa, caecal mucosa and colonic mucosa (Figure 7.13, 7.14, 7.15). The exact 

same crypts appeared positive for DAB-brown staining after immunohistochemical detection 

of mG/GFP on the almost adjacent serial sections from the same Msh2flox/-; Lgr5CreERT2+/-; 

mTmG+/- murine intestinal tissue (Figure 7.13, 7.14, 7.15), confirming that the same small 

intestinal crypts, caecal crypts and colonic crypts had lost Msh2 protein expression and 

gained mG/GFP expression. 

The immunohistochemical detection of Msh2 in large intestinal adenomas (both colonic and 

caecal) from Msh2-LS mice showed lack of DAB-brown staining (Figure 7.16), however after 

IHC staining for mG/GFP, the same crypts displayed either weak or no DAB-brown staining in 

the same adenomatous dysplastic glands (Figure 7.16).  
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Figure 7.13: Representative images showing the comparison between mG/GFP and Msh2 

immunostaining of almost adjacent serial sections of large intestinal mucosal epithelium of Msh2flox/-; 

Lgr5CreERT2+/-; mTmG+/- mice treated with Tamoxifen to activate Cre in scattered Lgr5+ stem cells and 

their crypts. The same hyperproliferative crypt is positive for mG/GFP (A) and negative for Msh2 (B) 

(red ovals). Images taken using the Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP 

Viewer software at 20X magnification (bar at lower left indicates 100um). 

 

 

Figure 7.14: Representative images showing the comparison between mG/GFP and Msh2 

immunostaining of almost adjacent serial sections of caecal mucosal epithelium of Msh2flox/-; 

Lgr5CreERT2+/-; mTmG+/- mice treated with Tamoxifen to activate Cre in scattered Lgr5+ stem cells and 

their crypts. The same crypt foci are positive for mG/GFP (A) and negative for Msh2 (B) (red ovals). 

Images taken using the Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP Viewer 

software at 10X magnification (bar at lower left indicates 250um). 
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Figure 7.15: Representative comparison between mG/GFP and Msh2 immunostaining of almost 

adjacent serial sections of small intestinal mucosal epithelium of Msh2flox/-; Lgr5CreERT2+/-; mTmG+/- 

mice treated with Tamoxifen to activate Cre in scattered Lgr5+ stem cells and their crypts. The same 

crypts, villi and part-villi are positive for mG/GFP (A) and are negative for Msh2 (B) (red arrows). 

Images taken using the Hamamatsu Nanozoomer and analysed with the Hamamatsu NDP Viewer 

software at 10X magnification (bar at lower left indicates 250um). 
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Figure 7.16: Representative adenoma images show the comparison between Msh2 and mG/GFP 

immunostaining of almost adjacent serial sections of a caecal adenoma (A and B) and a large intestinal 

adenoma (C and D) from Msh2flox/-; Lgr5CreERT2+/-; mTmG+/- mice treated with Tamoxifen to activate 

Cre in scattered Lgr5+ stem cells and their crypts that may progress to form adenomas. In the caecal 

adenoma, the same crypt foci are negative for Msh2 (A) and positive for mG/GFP (B) (red ovals), 

however the GFP staining appears weak in some crypts. In the large intestinal adenoma those dMMR 

dysplastic crypt foci that are negative for Msh2 (C) are also negative for mG/GFP (D) (red ovals), 

consistent with GFP mutation resulting in lack of expression (GFP was expressed elsewhere in this 

section in non-dysplastic crypts). Images taken using the Hamamatsu Nanozoomer and analysed with 

the Hamamatsu NDP Viewer software at 10X magnification (bar at lower left indicates 250um). 
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7.3 FACS sorting of mT- and mG-expressing epithelial cells from small 

and large intestines from the Msh2-LS mouse model 

7.3.1 Methods 

7-9 weeks old Msh2flox/-; Lgr5CreERT2+/-; mTmG+/- mice were divided into two groups. Group-

A mice received i.p. injections of 0.15mg Tamoxifen/g bw on day 1 and 0.1mg Tamoxifen/g 

bw on day 2, 3 and 4; on day 5 mice were provided with normal drinking water for 1.5 

months. By contrast, Group-B received i.p. injections of 0.15mg Tamoxifen/g bw on day 1 

and 0.1mg Tamoxifen/g bw on day 2, 3 and 4; but on day 5 the Group-B mice were provided 

with 20% ethanol in drinking water for 1.5 months (Figure 7.17). During the necropsy 

dissection procedure, morphologically normal-appearing small and large intestinal tissues 

were harvested, and soaked in cold PBS and kept on ice. Samples of small and large epithelial 

cells were isolated by FACS from fresh tissue following the protocol described in Materials 

and Methods, using anti-EpCAM antibody to detect epithelial cells. Disaggregated samples 

of ethanol-and water-treated Msh2-LS murine small and large intestinal epithelial cells were 

sorted as EpCAM positive populations in 4 groups: mT-expressing events, mG-expressing 

events, double-positive mT+mG+ expressing events and double-negative null-mT/null-mG 

expressing events, using the FACSAria II with BD Accuri C6 analyser (IGMM FACS facility). 

Resulting data were analysed with FACSDiva 6.3.1 Software.  
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Figure 4.17: Experimental treatment protocols and timelines for Group-A (water-treated) and -B 

(ethanol-treated) mice, showing 4 days of i.p. injections of Tamoxifen, followed by either 

standard/normal drinking water (Group-A) or drinking or water containing 20% ethanol (Group-B). 

(EtOH = Ethanol). 
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7.3.2 Results 

The FACS sorting of the ethanol- and water-treated Msh2-LS large and small intestinal 

samples did not show any quantitative and qualititative differences between the cell 

populations, due to loss of cell viability during experimental preparation procedures. 

EpCAM+ cells were subdivided into 4 groups, mT+/mG- cells, mT-/mG+ cells, double positive 

mT+/mG+ cells and double-negative mT-/mG- cells. The mT+/mG- cells or mT-/mG+ cells 

were the result of correct detachment of the intestinal epithelial cells (without or with prior 

Cre activation, respectively). The number of mT+/mG- cells was higher than the number of 

mT-/mG+ cells. Some cells that were negative for both mT and mG were detected during the 

FACS sorting, as a result of loss of both mT and mG expression. Some cells (or cell groups) 

that were positive for both mT and mG were detected during the FACS sorting, as a result of 

expression of both mT and mG, most probably due to doublets or larger clusters of mixed 

cells (Figure 7.18).  

All 4 groups of cell samples were collected from each sorted specimen. RNA extraction was 

performed and resulting RNA samples were stored at -80֯C. Due to COVID-19-related 

laboratory restrictions further analysis of gene expression in these samples was not 

completed. 
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Figure 7.18: Representative graphs of the FACS sorting analysis reports. Ethanol-treated Msh2-LS 

murine large intestine (A), water-treated Msh2-LS murine large intestine (B), ethanol-treated Msh2-

LS murine small intestine (C), and water-treated Msh2-LS murine small intestine were selectively 

sorted according to their positivity for EpCAM (antigen positive cells=APC pos) in 4 different groups: 

RFP+ cells (RFP only), cells positive for both RFP and GFP (RFP GFP), cells negative for both RFP and 

GFP (neg) and GFP+ cells (GFP only). (LI=large intestine, SI=small intestine, RFP= red fluorescent 

protein [mT], GFP=green fluorescent protein [mG]). 
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7.4 Discussion 

In this chapter, expression of fluorescent green mG or fluorescent red mT proteins from the 

mTmG transgene reporter system was used to monitor any changes in the number, size, or 

distribution of crypt foci that were dMMR, following ethanol (compared with water) 

treatment of the mouse models over time. It was previously demonstrated (in Chapter 3) 

that the same crypts are both negative for Msh2 (confirming that they are dMMR) and 

positive for mG/GFP immediately following Cre-mediated activation in the Msh2-LS mouse 

model, and this was confirmed again by the data shown in this chapter for all three of the 

Aldh1b1wt Msh2-LS, Aldh1b1flox/flox Msh2-LS and Aldh1b1-/- Msh2-LS murine models (data not 

shown for all cases). Thus, mG expression can be used as a marker to detect and measure 

percentage green areas of dMMR cells and crypts in these models immediately following Cre 

activation by Tamoxifen. Long-term studies were also used to follow the natural history of 

these dMMR crypts as they proliferate to form dMMR crypt foci along with their subsequent 

potential for evolution to neoplasms over longer periods of time in single mice in the tumour-

watch study. 

To study the early effects of ethanol/acetaldehyde on dMMR crypts and crypt foci, 

experimental groups were set up to monitor changes after 5 days or 15 days of either 20% 

ethanol in drinking water or normal water. Statistically significant increases in the percentage 

green areas, combining number and size of crypt foci containing mG-expressing cells, were 

observed along the large intestinal tract for both 5-day and 15-day ethanol-treated Msh2-LS 

mice compared with 5-day and 15-day water-treated Msh2-LS mice, more so in proximal 

colon than distal colon, matching the pattern of adenoma distribution. Following the peak 

around the 15-day timepoint, these percentage green area differences between ethanol- 

and water-treated Msh2-LS mice stabilised and continued over the longer term, up to 50 

weeks, with some variability in the 30-50 week data.  

Images of mG+ villi/crypts in the Msh2-LS murine small intestine were acquired after 5 days 

and 15 days of either ethanol- or water-treatment regimes, but quantification of the mG+ 

villlus/crypt foci was technically difficult due to the extensive and often confluent mG+ 

villus/crypt foci and the more complicated folded structure of the small intestinal mucosa in 

3-dimensions. However, highly-magnified images of small intestinal mucosa showed the 

cellular localisation of mG+ cells sometimes in strips along the SI villi and this was 

corroborated by the anti-GFP IHC stains of Msh2-LS small intestine sections that showed 
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partial coverage of villi by strips of mG+/GFP+ and Msh2- epithelial cells. The murine colonic 

crypts were examined using a confocal microscope to obtain more high-powered and fine-

detailed images of the distribution of mG+ cells within the colonic crypts. This revealed that 

the fluorescent green crypt foci observed with the stereomicroscope consisted of whole 

colonic crypts, either singly or in crypt clusters, that were fully occupied by mG+/GFP+ cells, 

with mG+/GFP+ cells present on the table surface epithelium of the colon. This was 

corroborated by the anti-GFP IHC stains of Msh2-LS colon sections that showed mostly whole 

crypts or groups of crypts containing mG+/GFP+ and Msh2- epithelial cells. These 

appearances are consistent with scattered colonic crypt Lgr5+ stem cells undergoing Lgr5-

driven Cre-mediated concurrent inactivation of the floxed allele of Msh2 and change from 

mT to mG expression, with rapid monoclonal conversion of the crypts, such that whole crypts 

appear positive for mG expression within 5-15 days. Following further exposure to ethanol 

and its metabolite acetaldehyde, subsequent crypt fission leads to formation of mG+ crypt 

foci within a few weeks and these continue to expand over time at variable rates. 

The detection and quantification of mT and mG fluorescent protein by fluorescence 

microscopy was extended to all analyses of the Aldh1b1wt Msh2-LS, Aldh1b1flox/flox Msh2-LS, 

and Aldh1b1-/- Msh2-LS murine model tumour-watch experiments, in order to obtain data 

about changes in the mG+ dMMR colonic crypts and crypt foci over longer periods of time 

under long–term ethanol- or water-treatment regimes.  In all three mouse models, the 

ethanol-treated murine colon showed statistically significantly higher percentage green 

areas than water-treated murine colon. The PGA followed very similar trends in all 3 

experimental mouse models, in which after reaching a peak around 15 days (or longer, 11-

12 weeks, in the Aldh1b1flox/flox Msh2-LS model), the PGA stabilises over the following weeks 

showing a mild increase over time with some variability towards the end of the study period. 

In Aldh1b1flox/flox Msh2-LS mice, the early peak was higher and this may be consistent with 

combined inactivation in individual cells of MMR and Aldh1b1 expression with increased 

levels of intracellular acetaldehyde conferring an increased survival selective advantage 

upon dMMR cells (relative to MMR-proficient cells that can still undergo cell cycle arrest or 

apoptosis following DNA damage, as described in Chapter 6, Figure 6.92), with subsequent 

increased acetaldehyde-driven proliferation resulting in a relatively higher and longer early 

peak of mG+/dMMR crypt foci.  
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The PGA of dMMR crypt foci trends over time showed a high early peak that decreased after 

15-30 days (11-12 weeks for the Aldh1b1flox/flox Msh2-LS model) followed by subsequent 

stabilisation with a mild increase over time rather than a continually increasing level of PGA 

over time. Possible explanations for this include a time-related immune response to the early 

expansion of dMMR/mG+ crypts, with a reduction in dMMR/mG+ crypt foci occurring 

perhaps due to immune attack against the more immunogenic dMMR crypt cells that may 

present more frameshift peptides (Seth et al., 2018). This would require future 

immunological studies to evaluate whether greater numbers of infiltrating T lymphocytes 

could be found around dMMR crypt foci at the appropriate timepoints. However there is 

evidence of an immune response with infiltrating CD8+ and other lymphocytes and myeloid 

cells within and around adenomas shown in Chapter 4, 4.4.2.6. Another explanation might 

be that dMMR/mG+ crypt cells, including stem cells that populate the whole crypt, may 

acquire inactivating mutations in the mG/GFP gene sequence, resulting in loss of mG 

expression. Evidence for this was observed in the IHC analyses of adenomas for Msh2 and 

mG/GFP expression. In addition to confirming the co-localization in the same crypts or crypt 

foci showing gain of mG expression and loss of Msh2 expression, IHC for Msh2 and mG/GFP 

showed evidence of a partial or complete lack of GFP expression in some large intestinal 

adenomas, consistent with acquired mutations in mG/GFP. 

MMR-deficient cells are characterized by hypermutability (increased mutation rate by 100x 

– 1000x due to uncorrected mismatches) and microsatellite instability (MSI, variation in 

length of repetitive or microsatellite sequences, due to uncorrected insertion/deletion loops 

or InDels), with MSI confirmed in the Msh2-LS murine adenomas described in Chapter 4, 4.6 

(Kloor et al., 2012).  Analysis of the pCA-mTmG plasmid sequence (used to generate mTmG 

reporter mice) revealed the presence of several repetitive DNA coding sequences in the 

membrane-targeted EGFP (mG/GFP) gene sequence that are highly likely to act as targets for 

InDel mutations that are not repaired in mismatch repair-deficient cells (Figure 7.19). These 

are likely to confer susceptibility of the mG/EGFP gene to inactivating frameshift mutations, 

including within dMMR crypt stem cells in the Msh2-LS model, particularly following 

ethanol/acetaldehyde exposure. Subsequent investigations could include targeted DNA 

sequencing of the mG gene in those colonic adenoma glands (microdissected) that show loss 

of mG immunostaining to study the proposed acquisition of inactivating InDel mutations in 

mG. 
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As a result of the induced loss of Msh2 expression with abrogation of MMR in the Aldh1b1wt 

Msh2-LS, Aldh1b1flox/flox Msh2-LS and Aldh1b1-/- Msh2-LS murine model intestinal epithelial 

stem cells (and subsequently whole crypts and crypt foci), there will be an increased risk of 

InDel mutations in repetitive sequences in large numbers of genes that contain exonic 

repetitive DNA sequences, as well as microsatellite sequences between genes, thus 

generating expression of InDel mutated proteins or truncated proteins, that are fragmented 

to frameshift peptides that can be presented as antigenic epitopes on MHC molecules to 

trigger an immune attack against the dMMR cells. In a previous chapter (Chapter 4) dMMR 

tumours from the Msh2-LS mouse model were shown to have MSI, functionally confirming 

this deficiency in mismatch repair. The observation of loss of mG/GFP immunostaining in 

some adenomas in these models indicate that the mTmG transgene reporter can be used 

effectively for short-term studies (perhaps up to 12-15 weeks, although further studies are 

required to map these changes more precisely in time) of Cre-mediated DNA recombination 

in the Msh2-LS models, but in the context of Cre-induced inactivation of the mismatch repair 

system, the mTmG transgene system appears to become a less reliable system to monitor 

changes in mG+ dMMR crypt foci over longer periods of time due to the proposed time-

related acquisition of InDel mutations in the mG/GFP gene (Figure 7.20). 

In conclusion, a model is proposed (set out in a schematic diagram in Figure 7.20) to show 

the effects on colonic crypts and crypt foci of the mismatch repair pathway/acetaldehyde 

gene/environment interactions. These MMR/acetaldehyde interactions are likely to have 

significant effects on both MMR-proficient and MMR-deficient cells and crypts scattered 

along the large intestinal mucosa. Following ethanol ingestion and its metabolic conversion 

to acetaldehyde with acetaldehyde-induced DNA base damage, MMR-proficient intestinal 

stem cells and crypt daughter cells are able to activate DNA mismatch repair of the (MMR-

recognised) base damage, leading to either cell cycle arrest, to allow repair of mild DNA 

damage, or apoptosis in the case of unrepairable severe DNA damage. However, following 

loss of the second Msh2 allele (in the Msh2-LS model), MMR-deficient stem cells and their 

crypt daughter cells are unable to activate the MMR pathway  and so neither cell cycle arrest 

nor apoptosis can be triggered, resulting in aberrant survival of DNA-damaged cells and their 

subsequent proliferation (mostly acetaldehyde-induced colonic crypt cell proliferation, as 

shown in previous chapters). The proliferating dMMR stem cells populate crypts (detected 

as mG-positive appearing crypts in the Msh2-LS model colon under fluorescent microscopy 

and shown as green dots on the red background in the schematic diagram), and these crypts 
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expand further, by crypt fission, to form dMMR crypt foci or clusters. MMR-deficient stem 

cells and crypts have MSI resulting in accumulation of InDel mutations in microsatellite or 

repeat sequences, leading to both activation of an increased immune response to frameshift 

peptides and loss of expression of mG/GFP, as the mG gene contains many repetitive 

sequences. This mutational inactivation of mG generates colonic crypts and crypt foci that 

lack expression of both mG and mT and would thus be transparent (represented as black 

dots in the third panel of the schematic diagram). Such transparent crypts and crypt foci 

would allow red fluorescent light from the underlying mT-expressing tissue (lamina propria, 

muscularis mucosae, submucosa and muscularis propria) below to shine through and hence 

should also appear red on fluorescence microscopy, but negative on immunstaining for 

mG/GFP.  This process of dMMR crypt foci expansion would be enhanced by continued 

exposure over time to acetaldehyde, increasing DNA damage with selective survival and 

proliferation of dMMR cells and crypts, only partially balanced by some crypt loss from 

immune attack, with an increasing risk of these precursors forming neoplasms (adenomas) 

and a risk of further progression to malignancy (adenocarcinomas) in a few cases as 

mutations accumulate. 
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Figure 7.19: The mG/EGFP gene sequence (from the mTmG reporter construct DNA sequence) 

contains 8 repetitive (microsatellite) sequences (highlighted in yellow), which are summarised in a 

table of the microsatellite repeats showing their position within the EGFP gene, number of repetitions 

and the repeated sequence. Mononucleotide (e.g. AAAAAA or TTTTTT), dinucleotide (e.g. TGTGTG) 

and trinucleotide (e.g. AACAACAAC or TCATCATCA) repeats are known to be more susceptible to  InDel 

mutations in MMR-deficient cells in Lynch Syndrome tumours and their precursors, rendering the 

mG/EGFP gene particularly susceptible to mutational inactivation in dMMR crypt stem cells in the 

Msh2-LS model, particularly following ethanol/acetaldehyde exposure. 
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Figure 7.20: Schematic diagram of the proposed model of the effects on crypt foci of MMR/acetaldehyde gene/environment interactions in both MMR-proficient (mG-

/mT+ red cells/crypts constituting the red background of the large intestinal mucosa) and MMR-deficient (mG+/mT- green cells/crypts scattered along the large 

intestinal mucosa, shown as green dots) cells. Upon acetaldehyde (AcAld) exposure (following ethanol (EtOH)  ingestion and its metabolism to acetaldehyde), the 

pMMR intestinal cells (with red cell membranes) are able to activate DNA mismatch repair of the (MMR-recognised) base damage, bringing about either cell cycle 

arrest (mild DNA damage) or apoptosis (severe DNA damage). By contrast, the dMMR cells (with green cell membranes) are unable to activate the MMR pathway 

(following Cre-mediated inactivation of Msh2, indicated by the red cross through Msh2) and so, neither cell cycle arrest nor apoptosis are triggered, resulting in
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aberrant survival of DNA-damaged cells and their subsequent proliferation. The proliferating 

mG+/dMMR stem cells populate crypts (shown as green dots on the red background, first panel), and 

these crypts expand further (by crypt fission) to form mG+/dMMR crypt foci or clusters (second panel), 

with more mG+/dMMR crypt foci in the proximal than the distal colon. These mG+/dMMR cells have 

MSI resulting in accumulation of InDel mutations in microsatellite or repeat sequences, leading to 

both activation of an increased immune response to frameshift peptides and loss of expression of 

mG/GFP (as the mG gene contains many repetitive sequences) (mG- /mT- crypt foci are represented 

as black/transparent dots in the third panel). This process is enhanced by continued exposure to 

acetaldehyde over time increasing DNA damage with selective survival and proliferation of dMMR 

cells and crypts, only partially balanced by some crypt loss from immune attack, with increasing risk 

over time of neoplasm formation as mutations accumulate. (Prx=proximal colon; Dst=distal colon). 
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Chapter 8: Final Discussion, Future Work & Summary 

8.1 Ethanol/Acetaldehyde induces colonic neoplasms in a Lynch 

Syndrome mouse model 

In this project the overarching objective was to investigate whether there is a 

gene/environment interaction between ethanol/acetaldehyde and dMMR, that may cause 

an acceleration of dMMR-driven intestinal tumour formation. Aims included determining 

whether ethanol/acetaldehyde can increase the number and size of precursor lesions and 

colonic adenomas, whether these adenomas can progress to invasive adenocarcinoma, and 

whether MMR plays a role in protecting intestinal epithelial cells from 

ethanol/acetaldehyde-induced DNA damage. 

The Msh2-LS mouse model, created by Wojciechowicz et al., (2014), was combined with the 

mTmG transgene reporter, generated by Dr. Lou, Stanford University (Muzumdar et al., 

2007). This modified version of the Msh2-LS mouse model was successfully generated to 

establish a colony of Msh2flox/-; Lgr5CreERT2+/-; mTmG+/- model mice. In the Msh2flox/-; 

Lgr5CreERT2+/-; mTmG+/- mouse model, the activation of Cre recombinase by Tamoxifen-

treatment induced recombination between two inverted loxP sites flanking Msh2 exons 12 

and 13 in the floxed Msh2 allele and also between the loxP sites flanking the mT sequence in 

the mTmG transgene. This was shown to generate a Msh2 knockout allele (Msh2flox/OFF) and 

convert the same intestinal stem cells to mG expression, forming dMMR intestinal stem cells 

that subsequently form dMMR crypts, which are marked by green fluorescent mG 

expression.  That these two events occurred in the same cells/crypts was confirmed by IHC 

for both Msh2 and GFP expression on adjacent serial sections of intestinal tissue, showing 

colocalization in the same cells/crypts of mG expression and the loss of Msh2 expression.  

The Msh2flox/-; Lgr5CreERT2+/-; mTmG+/- model mice (Msh2-LS mice) were used to investigate 

the effects of long-term ethanol treatment on intestinal tumour formation and progression. 

Long-term ethanol treatment of the Tamoxifen-induced Msh2-LS mice showed evidence of 

large intestinal hyperproliferation and adenoma formation (with 5 adenocarcinomas) in 65% 

(15/23 mice) of the EtOH_Msh2fl KO mice, over an average of 6 months of ethanol treatment. 

This is in stark contrast to the H2O_Msh2fl KO mice, none of which developed intestinal 

tumours over the same time period, with only 1 colonic adenoma observed at 15 months 

(4%, 1/23).  
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In previous experiments by our group reported by Müller et al., (2016), Aldh1b1-depleted 

mice and WT control mice treated with long-term ethanol showed intestinal tumour 

formation after 1 year in both groups. In Wojciechowicz et al., (2014), Tamoxifen-induced 

Msh2flox/-; Lgr5CreERT2+/- mice (without any further treatment) showed intestinal tumour 

formation within an average of 19 months. Long-term ethanol-treatment of the Tamoxifen-

induced Msh2-LS mice provided evidence of ethanol-induced colonic adenoma formation 

that occurred at higher numbers and at a much earlier time, consistent with ethanol-

mediated acceleration of dMMR-driven large intestinal tumour formation. 

The EtOH_Msh2fl KO mice showed a pattern of tumour distribution of one or more large 

intestinal tumours mainly in the proximal colon and mid colon. A similar pattern is observed 

in human LS patients, in which colonic tumour formation occurs more in the caecum, 

ascending colon and transverse colon regions (proximal colon), than in the descending colon, 

sigmoid colon and rectum (distal colon), compared with sporadic colorectal tumours that are 

predominantly distal in location. Rijcken et al. (2008), described 50% of colonic adenomas in 

human LS cases were found in the proximal colon, compared with 26% of sporadic 

adenomas. In addition, proximal LS adenomas progressed to high-grade dysplasia more 

frequently than distal LS adenomas, and also more showed high-grade dysplasia than larger 

distal adenomas (Rijcken et al., 2008). Adenomas in LS familial cases were smaller when 

compared with sporadic adenomas, and proximal LS familial adenomas ≥ 5 mm showed more 

severe dysplasia than larger proximal sporadic adenomatous polyps (Lynch et al., 2009). 

 

Here, ethanol-treatment of the combined Msh2-LS and mTmG mouse model, which was 

designed to study intestinal tumour formation associated with defective DNA mismatch 

repair (with Tamoxifen-induced Lgr5-driven Cre activation occurring in small and large 

intestines, as Lgr5 is an intestinal stem cell-specific gene) (Barker et al, 2008), has been 

characterised to show that it represents a good model of human LS in terms of the formation 

and location of adenomas, with some progressing to adenocarcinomas, only in the colon (not 

in the small intestine), and these predominantly form in the proximal and mid colon. No small 

intestinal adenomas were seen in the water- or ethanol-treated Msh2-LS mice, similar to the 

very low incidence of small intestinal tumours in human LS patients (Schulmann et al., 2005). 
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8.2 Ethanol/Acetaldehyde increases mismatch repair-deficient crypt 

foci that act as precursors in the pathogenesis of colonic neoplasms in 

this Lynch Syndrome mouse model 

 

Msh2 immunohistochemical analysis of Msh2-LS murine intestines showed inducible loss of 

Msh2 expression in scattered large intestinal crypts and small intestinal crypts and villi. A 

statistically significantly higher number of dMMR crypt foci were observed in ethanol-treated 

murine colons compared with water-treated murine colons. However, the number of dMMR 

crypt/villus foci appeared to be higher in EtOH_Msh2fl KO murine SI than in colon even though 

no SI tumours were observed. All large intestinal adenomas from EtOH_Msh2fl KO mice 

showed Msh2-negative dysplastic glands, often surrounded by or admixed with Msh2-

positive non-dysplastic crypts showing reactive or hyperproliferative changes. This 

confirmed that colonic adenomas arose from dMMR (Msh2-negative) crypt precursors. This 

is consistent with observations from human LS patients that the risk of colonic tumour 

formation correlates with the number and size of the MMR-deficient crypt clusters that 

expand over time in affected LS patients (Kloor et al., 2012; Shia et al., 2015; Wojciechowicz 

et al., 2014). The complete abrogation of MMR activity in these crypt foci was confirmed by 

the presence of Msh6-negative crypts (detected by IHC) scattered along both SI and colon of 

Tamoxifen-induced Msh2-LS mice in a very similar frequency and pattern as Msh2-negative 

crypts, as Msh6 is the heterodimeric binding partner of Msh2 and loss of Msh2 is considered 

to lead to destabilisation and loss of Msh6, but retention of Mlh1 expression, as confirmed 

in this study (Poulogiannis et al., 2010). Microsatellite instability was also shown in adenomas 

arising in the Msh2-LS mouse model, validating functional loss of the MMR pathway. 

The positive Ki67 immunostaining in elongated large intestine crypts confirmed the presence 

of extended hyperproliferative zones identified morphologically on routine H&E stains. The 

proliferation marker Ki67 showed statistically significant higher expression levels in 

EtOH_Msh2fl KO murine colon compared with ethanol-treated murine SI and compared with 

H2O_Msh2fl KO murine intestinal tissues (both colon and SI). These observations confirm the 

previously reported association of long-term ethanol treatment of mice and colonic mucosal 

epithelial hyperproliferation, likely to act as a tumour promoter  in the initiator-promoter 

model of carcinogenesis (Müller et al., 2016; Scott et al., 1984).  
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β-catenin is a Wnt signalling pathway intermediate and its nuclear localisation by 

immunostaining is a useful biomarker of colorectal neoplasms (Cong et al., 2003). Colonic 

adenomas and adenocarcinomas from EtOH_Msh2fl KO mice showed a heterogeneous 

pattern with variable numbers of adenoma cells showing moderately to strongly positive β-

catenin nuclear immunostaining, due to accumulation and translocation of β-catenin into the 

nuclei of dysplastic cells. This pattern supports heterogeneous activation of the Wnt 

signalling pathway in these tumours and has been observed in human MMR-deficient CRC 

(Lugli et al., 2007), more often in association with activating mutations in the β-catenin 

encoding gene CTNNB1 than APC mutations in LS patients (Ahadova et al., 2016; Fukushima 

et al., 2001; Mirabelli-Primdahl et al., 1999).  

Following ethanol treatment, a significant DNA damage response was 

immunohistochemically detected using antibodies against yH2AX, a DNA damage marker, 

(Siddiqui, 2015) and p53, which showed the “wild-type pattern” observed previously in 

response to DNA damage (Köbel et al., 2016). Increased levels of yH2AX and “wild-type 

pattern” nuclear p53 immunostaining were observed in EtOH_Msh2fl KO murine large 

intestine compared with H2O_Msh2fl KO murine large intestine, and also compared with 

almost no to very low expression in ethanol-treated Msh2-LS small intestine. This suggests 

that Msh2 / MMR plays a key role in protecting the MMR-proficient colonic epithelial cells 

against this type of DNA damage, but Msh2 appears not to be the sole protective mechanism 

for small intestinal epithelial cells from ethanol/acetaldehyde-induced DNA damage. 

The increased DNA damage observed in EtOH_Msh2fl KO murine large intestinal mucosal 

epithelium was consistent with the statistically significantly higher levels of circulating 

plasma acetaldehyde detected in these mice compared with H2O_Msh2fl KO mice by plasma 

acetaldehyde assay. Acetaldehyde is a highly reactive molecule able to cause a wide range 

of DNA modifications (Seitz & Stickel, 2007). In the absence of MMR some of these DNA 

lesions are not recognised and repaired. Loss of MMR pathway function results in dMMR 

with hypermutability (increased mutation rate by 100x – 1000x due to uncorrected 

mismatches) and MSI (manifested by variation in length of repetitive microsatellite 

sequences due to uncorrected insertion/deletion loops). More importantly dMMR results in 

reduced susceptibility to either cell cycle arrest or apoptosis induced by those types of DNA 

damage recognised by the MMR system (Poulogiannis et al., 2010; Seth et al., 2018; Toft et 

al., 1999). Thus, unrepaired acetaldehyde-induced DNA damage in dMMR cells that fail to 
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arrest or die are likely to result in both an increased mutation rate and aberrant survival with 

an increased risk of neoplasm formation. 

The immunohistochemical analysis of cCAs3, a key effector of cell death by apoptosis 

(Holubec et al., 2005; Talmon et al., 2010), showed significantly higher numbers of apoptotic 

bodies in colons from EtOH_Msh2fl KO mice compared with no detectable cCas3+ apoptotic 

bodies in colons from H2O_Msh2fl KO mice, consistent with increased apoptosis associated 

with pMMR colonic epithelial cell exposure to ethanol/acetaldehyde (only scattered crypts 

are defective for MMR in this model, the majority are proficient for MMR as seen by the 

large area of red fluorescent pMMR crypts compared with the smaller area of green dMMR 

crypts). The almost complete lack of detection of apoptotic bodies in large intestinal tumours 

from Msh2-LS mice is consistent with the inability of dMMR cells to activate cell death by 

apoptosis following DNA damage of MMR-recognisable type. Furthermore, MSI was 

detected using a panel of microsatellite markers in colonic adenomas from EtOH_Msh2fl KO 

mice, functionally confirming abrogation of the mismatch repair system in these adenomas. 

Detection of infiltrating immune cells (by IHC pilot studies) in the intestinal adenomas of 

EtOH_Msh2fl KO mice supports an immune response against dMMR adenoma cells. Defective 

MMR with MSI causes mutations in protein coding repetitive DNA sequences that are likely 

to result in production of FSPs (Sæterdal et al., 2001). Such FSPs are novel antigens and elicit 

both humoral and cellular immune responses, which are seen as TILs around the dMMR 

crypts in LS patients as well as in dMMR cancers, both sporadic and due to LS (M. Linnebacher 

et al., 2001; Reuschenbach et al., 2010; Seth et al., 2018a).  

The data provide evidence that ethanol and its metabolite acetaldehyde act as tumour 

promoters causing proliferation of colonic epithelium and can also select for aberrant 

survival of dMMR cells, via loss of MMR-recognised DNA damage-induced apoptosis. This 

aberrant survival and proliferation of DNA-damaged dMMR colonic epithelial cells is likely to 

lead to an increased probability of acquisition and fixation of DNA mutations, including some 

affecting tumour driver genes, explaining the accelerated colonic adenoma formation.  

Hence, there is evidence for a selective advantage of the dMMR/ethanol/acetaldehyde 

interaction, as a gene/environment interaction, that is consistent with accelerated colonic 

adenoma development and further progression to adenocarcinoma (in some cases) in 

EtOH_Msh2fl KO mice. The hyperproliferation process is observed mostly in the proximal colon 

and mid colon, but not in the small intestine, and is proposed to be a key driver of the 
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location of tumour formation at these sites in this Msh2-LS model, very similar to the 

anatomical tumour distribution seen in human Lynch Syndrome patients. 

Early in these studies, we attempted to further accelerate dMMR-driven intestinal 

tumorigenesis in Msh2-LS mice by adding a TMZ treatment (described by Wojciechowicz et 

al., 2014) to the long-term ethanol treatment. The aim was to accelerate intestinal tumour 

formation to 2-4 months to reduce the experimental time period, in contrast to the 1 year 

of ethanol treatment required for intestinal adenoma formation in WT and Aldh1b1-

depeleted mice (Müller et al., 2016), and the 1.5 years or longer for intestinal adenoma 

development in otherwise untreated Msh2-LS model mice (Wojciechowicz et al., 2014). The 

immunohistochemical analysis of Msh2, Ki67 and β-catenin of tumour and normal intestinal 

tissue of TMZ- and ethanol-treated Msh2-LS mice confirmed the carcinogenic properties of 

TMZ, which is known to be a powerful DNA methylating agent and carcinogen. TMZ was 

shown to confer proliferative advantage upon established dMMR crypt foci with selection 

for survival and expansion in the Msh2-LS murine intestines that led to intestinal tumour 

formation (Wojciechowicz et al., 2014). However, the carcinogenic properties of TMZ were 

too potent in these experiments, inducing early-occurring extra-intestinal tumours 

(independent of dMMR), predominantly thymic lymphomas, that masked any carcinogenic 

ethanol effects upon the intestines. The intestinal data obtained were inconclusive as TMZ 

was too potent a carcinogen to allow exploration of the intestinal tumour-promoting and 

DNA-damaging effects of ethanol and its major metabolite acetaldehyde, in combination 

with deficient MMR. For this reason, it was decided to discontinue the experimental use of 

TMZ in combination with ethanol in the Msh2-LS mouse model and to focus solely on the 

effects of ethanol without any other carcinogens on the Msh2-LS models. 
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8.3 Inactivation of Aldh1b1 allowed exploration of the effects of 

acetaldehyde on DNA damage and its interaction with deficient 

mismatch repair during intestinal tumourigenesis in Lynch Syndrome 

mouse models 

 

Both the conditional-knockout Aldh1b1 allele (Aldh1b1flox) and the constitutive-knockout 

Aldh1b1 allele (Aldh1b1-) were introduced into the Msh2-LS mouse model to further 

investigate the gene/environment interaction between acetaldehyde and dMMR, in the 

context of formation of precursor lesions, adenomas and adenocarcinomas. The Msh2flox/-; 

Lgr5CreERT2+/-; mTmG+/-; Aldh1b1flox/flox colony and the Msh2flox/-; Lgr5CreERT2+/-; mTmG+/-; 

Aldh1b1-/- colony were established and used in long-term ethanol treatment tumour-watch 

experiments for up to one year, with the expected changes in Msh2 and Aldh1b1 protein 

expression confirmed by IHC detection of Msh2 and Aldh1b1. In Aldh1b1flox/flox Msh2-LS mice, 

41.7% (5/12 mice) of EtOH_Aldh1b1fl/fl_Msh2fl KO mice showed evidence of large intestinal 

hyperproliferation and adenoma formation (with 1 adenocarcinoma) within an average of 

4.5 months of ethanol treatment, compared with no hyperproliferation and no cases of large 

intestinal adenoma formation in H2O_Aldh1b1fl/fl_Msh2fl KO mice (0%, 0/12 mice) over the 

same time-period. In Aldh1b1-/- Msh2-LS mice, 66.7% (8/12 mice) of EtOH_Aldh1b1-/-_Msh2fl 

KO mice showed evidence of large intestinal hyperproliferation and adenoma formation 

within an average of 6 months of ethanol treatment, compared with no hyperproliferation 

and no cases of large intestinal adenoma formation in H2O_Aldh1b1-/-_Msh2fl KO mice (0%, 

0/12 mice) over the same time-period. As observed in Aldh1b1wt Msh2-LS mice, no small 

intestinal adenomas were seen in either the Aldh1b1flox/flox Msh2-LS or Aldh1b1-/- Msh2-LS 

mice, for both ethanol- and water-treated mice.   

The EtOH_Aldh1b1fl/fl_Msh2fl KO mice showed a pattern of tumour distribution of one or more 

large intestinal tumours mainly in the proximal colon and mid colon and in some cases in the 

distal colon, whereas EtOH_Aldh1b1-/-_Msh2fl KO mice showed one or more tumours in the 

proximal and mid colon as well as in the rectum (distal colonic or rectal tumours were not 

observed in EtOH_Msh2fl KO mice). In both EtOH_Aldh1b1fl/fl_Msh2fl KO mice and 

EtOH_Aldh1b1-/-_Msh2fl KO mice, ethanol-induced colonic adenomas occurred at statistically 

significantly higher numbers of adenomas per mouse than in EtOH_Msh2fl KO mice.  
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There were high plasma levels of acetaldehyde in the Aldh1b1-/- Msh2-LS mice and lower, 

more moderate levels of plasma acetaldehyde in the Aldh1b1flox/flox Msh2-LS mice. 

Acetaldehyde-induced DNA damage response was detected by immunohistochemical 

analysis of both yH2AX and p53 (showing the “wild-type pattern”), with high expression of 

yH2AX and nuclear p53 immunostaining in both EtOH_Aldh1b1fl/fl_Msh2fl KO and 

EtOH_Aldh1b1-/-_Msh2fl KO murine large intestine, compared with H2O_Aldh1b1fl/fl_Msh2fl KO 

and H2O_Aldh1b1-/-_Msh2fl KO murine large intestine. Lower yH2AX and nuclear p53 

expression was observed in EtOH_Aldh1b1fl/fl_Msh2fl KO and EtOH_Aldh1b1-/-_Msh2fl KO 

murine small intestine. This revealed that acetaldehyde (more so than ethanol) mediated a 

significant DNA-damaging effect, mainly on dMMR colonic mucosal epithelium rather than 

on dMMR small intestinal mucosa, indicating that other protective mechanisms appear to be 

operative in the small intestinal epithelium, consistent with the much lower incidence of 

small intestinal cancers compared with colonic cancers in human LS patients. This suggests 

that Msh2 has a key role in protecting the MMR-proficient colonic epithelial cells against this 

type of DNA damage. Measurement of plasma acetaldehyde showed that the inactivation of 

Aldh1b1 led to increased levels of acetaldehyde in the blood, and this likely reflected 

increased acetaldehyde in intestinal epithelial cells causing more acetaldehyde-mediated 

DNA damage. Some acetaldehyde-mediated DNA damage, unrecognised in dMMR cells, was 

associated with increased numbers of intestinal crypt foci in both EtOH_Aldh1b1fl/fl_Msh2fl 

KO and EtOH_Aldh1b1-/-_Msh2fl KO mice. The evidence suggests that these increased dMMR 

crypt foci act as precursors in dMMR-driven intestinal tumour formation, explaining in part 

the increased numbers of colonic adenomas per mouse in this model. These results verified 

the key role of Aldh1b1 in protecting the large intestinal epithelial cells, particularly the stem 

and progenitor cells that have the highest levels of Aldh1b1 expression, from ethanol-derived 

acetaldehyde-induced DNA damage, consistent with previous observations by our group 

(Müller et al., 2016).  

This study produced strong evidence in support of the hypothesis that there is a 

gene/environment interaction between dMMR and acetaldehyde, demonstrated most 

notably by the Aldh1b1 constitutive-knockout Msh2-LS mouse model. The data provide 

evidence in support of the proposed models (Figures 8.1 to 8.5) that in Aldh1b1-/- MMR-

deficient intestinal epithelial stem cells, significant acetaldehyde-induced DNA damage is not 

recognized by the DNA mismatch repair system, with no activation of either cell cycle arrest 

or apoptosis. The DNA-damaged Aldh1b1-/- MMR-deficient intestinal epithelial cells are 
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proposed to undergo inappropriate survival and subsequent proliferation, compared with 

Aldh1b1-/- MMR-proficient cells. This is proposed to confer a selective advantage upon the 

Aldh1b1-/- dMMR intestinal epithelial stem cells that leads to more efficient monoclonal crypt 

conversion (Figure 8.1) and crypt expansion by crypt fission (Figures 8.2-8.3), observed as 

higher numbers of clusters of Aldh1b1-/- dMMR crypt foci. This is further proposed to confer 

an elevated risk of subsequent tumour formation with both right-sided and left-sided colonic 

adenomas and occasional adenocarcinomas developing in these mice. In the Aldh1b1flox/flox 

Msh2-LS model mice, scattered Aldh1b1flox/flox Msh2flox/- intestinal epithelial stem cells are 

induced by Tamoxifen-mediated Cre activation to become Aldh1b1KO MMR-deficient 

intestinal epithelial stem cells and these respond to ethanol exposure in a similar way to 

Aldh1b1-/- MMR-deficient intestinal epithelial stem cells, with a survival selective advantage 

over the surrounding Aldh1b1wt intestinal epithelial stem cells, including those in the same 

crypts, thus making monoclonal crypt conversion by these cells more likely (Figure 8.1).  The 

surrounding Aldh1b1wt intestinal epithelial crypts and other intestinal cell types (lamina 

propria and smooth muscle cells) would be able to metabolise more acetaldehyde to acetate 

leading to relatively lower levels of acetaldehyde in the intestinal tissues compared with 

constitutive Aldh1b1 knockout intestines where all cells have lost functional Aldh1b1. 
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Figure 8.1: Schematic diagram of the proposed model of acetaldehyde-mediated selection for 

monoclonal conversion by dMMR colonic crypt stem cells following ethanol exposure in the 

Tamoxifen-induced Cre-activated Aldh1b1wt Msh2-LS mouse model (top row) and the Tamoxifen-

induced Cre-activated Aldh1b1-/- Msh2-LS mouse model (bottom row) over time (shown as a black 

horizontal arrow). In the Aldh1b1wt Msh2-LS mouse model (top row), Tamoxifen induced Cre-

activation in scattered Lgr5+ colonic stem cells converts them to dMMR/mG+ stem cells (green cells, 

first seen at the crypt base of the second crypt from the left in the top row). Ethanol is metabolised to 

acetaldehyde (at low intracellular levels in the Aldh1b1wt mice), and there is preferential selection for 

survival of dMMR/mG+ stem cells containing acetaldehyde-induced DNA damage over pMMR/mT+ 

stem cells (red cells containing the word ‘stem”) containing acetaldehyde-induced DNA damage. This 

is because pMMR/mT+ stem cells can recognise acetaldehyde-induced DNA damage (of MMR-

recognisable type) and either undergo cell cycle arrest or apoptosis, whereas dMMR/mG+ stems can 

not do this. This acetaldehyde-driven selective advantage for green dMMR/mG+ stem cells allows 

them to replace the red pMMR/mT+ stem cells and populate the crypt with their daughter cells over 

time, gradually leading to monoclonal conversion of the entire crypt with green dMMR/mG+ cells 

(shown in the sixth crypt). This process is proposed to occur earlier in the Aldh1b1-/- Msh2-LS mouse 

model (complete monoclonal crypt conversion is shown occurring by the fourth crypt in the bottom 

row), supported by the evidence of more green crypts observable in Aldh1b1-/- Msh2-LS mice 

compared with Aldh1b1wt Msh2-LS mice. Under ethanol exposure, the Aldh1b1-/- dMMR/mG+ cells are 

proposed to have an increased selective advantage over the pMMR /mT+ cells due to the higher 

intracellular levels of acetaldehyde that mediate DNA damage, leading to earlier or faster monoclonal 

crypt conversion (to be verified by future experiments). In the Aldh1b1flox/flox Msh2-LS model mice, 

scattered Aldh1b1flox/flox Msh2flox/- intestinal epithelial stem cells are induced by Tamoxifen-mediated 

Cre-activation to become Aldh1b1-/- Msh2-/- MMR-deficient intestinal epithelial stem cells and thus the 

dMMR/mG+ monoclonal crypt conversion occurs in a similar way to that described for the Aldh1b1-/- 

dMMR/mG+ crypts shown in the bottom row. 
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Figure 8.2: Schematic diagram of the proposed model of the selective effects of MMR/acetaldehyde 

gene/environment interactions on dMMR/mG+ crypts and their expansion to form crypt foci in the 

Aldh1b1wt Msh2-LS mouse model (upper panels) and the Aldh1b1-/- Msh2-LS mouse model (lower 

panels) over time (horizontal black arrow) during ethanol exposure. The dMMR/mG+ crypts (mG+/mT- 

green crypts scattered along the large intestinal mucosa, shown as green dots on the red background 

in the left-sided panels) are shown progressing to dMMR/mG+ expanded crypt foci (illustrated as two, 

three or more clustered green dots in the right-sided panels) over time. The data shows that this 

process occurs to a greater extent in Aldh1b1-/- Msh2-LS (lower panels) compared with the Aldh1b1wt 

Msh2-LS mice (upper panels). This crypt expansion process is proposed to occur via crypt fission 

(examples of bifid crypts undergoing crypt fission were observed histologically and this is shown in the 

lower panels). The more rapid expansion of dMMR/mG+ crypt foci by crypt fission in Aldh1b1-/- Msh2-

LS mice is proposed to result from higher intracellular acetaldehyde levels conferring a greater 

selective advantage of acetaldehyde-exposed dMMR/mG+ stem cells for survival and proliferation, 

that are triggered to initiate the process of crypt fission. The mG-/mT+ red cells/crypts constitute the 

red background of the large intestinal mucosal epithelial surface. (Prx=proximal colon; Dst=distal 

colon; EtOH=ethanol; AcAld=Acetaldehyde). 
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Figure 8.3: Representative image of a colonic crypt undergoing crypt fission (red oval) in a background 

of colonic epithelial hyperproliferative change in ethanol-treated Msh2-LS mice. Image taken from 

scanned slide files with the Hamamatsu Nanozoomer NDP Viewer software at 20X magnification (bar 

at lower left indicates 100µm).   
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8.4 The mTmG transgene reporter system allowed investigation of the 

effects of ethanol on mG-expressing dMMR crypt foci precursors in the 

Lynch Syndrome mouse models 

The mTmG transgene reporter system was used to monitor any changes in the number, size, 

or distribution of crypt foci that were dMMR, following ethanol (compared with water) 

treatment of the mouse models over time. The detection of mT and mG fluorescent proteins 

after 5 days or 15 days of either ethanol or water treatment showed a statistically significant 

increase in the number and size of mG expressing colonic crypt foci in ethanol-treated mice 

compared with water-treated mice. Furthermore, the treatment of Msh2-LS mice with 

ethanol increased the number of mG expressing dMMR crypt foci in a time dependent 

manner. By contrast, the number of dMMR crypt foci didn’t increase under normal drinking 

water treatment. Ethanol increased mG expressing dMMR crypt foci in the colon, suggesting 

ethanol/acetaldehyde-mediated selection for expansion of dMMR crypt foci (Figures 8.2-

8.3).  

The detection and quantification of mT and mG fluorescent protein was extended to all 

analyses of the Aldh1b1wt Msh2-LS, Aldh1b1flox/flox Msh2-LS, and Aldh1b1-/- Msh2-LS murine 

model tumour-watch experiments, in order to obtain more data about changes in the mG+ 

dMMR colonic crypts and crypt foci over longer periods of time under long–term ethanol- or 

water-treatment regimes. The PGA of dMMR crypt foci showed similar trends over time with 

a high early peak that decreased after 15-30 days for the Msh2-LS model (11-12 weeks for 

the Aldh1b1flox/flox Msh2-LS model) followed by subsequent stabilisation with a mild increase 

over time, rather than a continually increasing level of PGA-detected dMMR foci over time. 

Also the IHC for Msh2 and mG/GFP showed evidence of a partial or complete lack of GFP 

expression in some large intestinal adenomas, consistent with acquired mutations in 

repetitive sequences in the mG/GFP gene. Analysis of the pCA-mTmG plasmid sequence 

revealed the presence of several repetitive sequences in the membrane-targeted EGFP 

(mG/GFP) gene sequence that are highly likely to act as targets for InDel mutations that are 

not repaired in mismatch repair-deficient cells. This mutational inactivation of mG would 

generate colonic crypts and crypt foci that lack expression of both mG and mT (Figures 8.4 

and 8.5). The resulting transparent crypts and crypt foci appear red under the fluorescent 

microscope due to the detection of red fluorescent light from the underlying mT-expressing 

tissue. However, they were negative on immunostaining for mG/EGFP. Furthermore, there 
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may be a time-related immune response to the early expansion of dMMR/mG+ crypts, with 

a reduction in dMMR/mG+ crypt foci occurring perhaps due to immune attack against the 

more immunogenic dMMR crypt cells that may present more frameshift peptides (Seth et 

al., 2018). This would require future immunological studies to evaluate whether greater 

numbers of infiltrating T lymphocytes could be found around dMMR crypt foci at the 

appropriate time-points. 
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8.5 Conclusion 

In conclusion, a model is proposed (set out in schematic diagrams in Figures 8.4-8.5) to show 

the effects on colonic crypts and crypt foci of the mismatch repair pathway/acetaldehyde 

gene/environment interactions. In the Aldh1b1wt Msh2-LS mouse model, following ethanol 

ingestion and its metabolic conversion to acetaldehyde, but before acetaldehyde is fully 

metabolised to acetate, there is some acetaldehyde-induced DNA base damage. MMR-

proficient intestinal stem cells and crypt daughter cells are able to activate DNA mismatch 

repair of the (MMR-recognised) base damage, leading to either cell cycle arrest, to allow 

repair of mild DNA damage, or apoptosis in the case of unrepairable severe DNA damage. 

However, following loss of the second Msh2 allele, MMR-deficient stem cells and their crypt 

daughter cells are unable to activate the MMR pathway and so neither cell cycle arrest nor 

apoptosis can be triggered, resulting in aberrant survival of DNA-damaged cells and their 

subsequent proliferation (mostly acetaldehyde-induced colonic crypt cell proliferation). The 

proliferating dMMR stem cells have both a survival advantage (apoptosis blocked by dMMR) 

and a proliferative advantage (cell cycle arrest inhibited by dMMR) during 

ethanol/acetaldehyde exposure and thus can rapidly populate crypts by monoclonal crypt 

conversion (detected as mG-positive cells filling the whole crypt, which appears as a green 

area/dot (on a red background) on the colonic mucosal surface of the mTmG Msh2-LS model 

colon under fluorescent microscopy, represented as green dots on the red background in the 

schematic diagram in Figures 8.1 to 8.5). During ongoing ethanol/acetaldehyde exposure, 

the proliferative advantage allows these green dMMR crypts to expand further, by crypt 

fission, to form dMMR crypt foci or clusters (Figure 8.2 and 8.3), with more of them observed 

proximally than distally in the colon, consistent with the acetaldehyde-induced epithelial 

hyperproliferation occurring more proximally than distally (Figures 8.4 and 8.5).  

These dMMR cells/crypts can accumulate mutations from continued exposure to 

ethanol/acetaldehyde reflecting a form of dMMR genomic instability. MMR-deficient stem 

cells and crypts have MSI resulting in accumulation of InDel mutations in microsatellites or 

repeat sequences in coding exons; this is proposed to lead to both activation of an increased 

immune response to frameshift peptides (presented on major histocompatibility class I 

molecules on the surface of the affected cells) and loss of expression of mG/GFP green 

fluorescent protein, as the mG gene contains many repetitive sequences. This mutational 

inactivation of mG generates colonic crypts and crypt foci that lack expression of both mG 

and mT and should be transparent, but would appear red on fluorescence microscopy due 
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to transmission of red light from mT-expressing tissues underneath, although they appear 

negative on immunostaining for mG/EGFP.  This process of dMMR crypt foci expansion would 

be enhanced by continued exposure over time to acetaldehyde, increasing the amounts of 

DNA damage with selective survival and proliferation of dMMR cells and crypts, only partially 

balanced by some crypt loss from immune attack, with an increasing risk of neoplasm 

formation and progression as mutations accumulate. 

 In the Aldh1b1-/- Msh2-LS murine model colon (Figure 8.5), ethanol is metabolized to highly 

reactive acetaldehyde, with much reduced oxidation to acetate due to the lack of Aldh1b1 

enzymic activity. This causes a marked increase in acetaldehyde levels in the colonic stem 

cells. High levels of reactive acetaldehyde causing severe acetaldehyde-induced DNA 

damage (of MMR-recognised type) may force the Aldh1b1-/- MMR-proficient colonic 

epithelial cells to activate cell death by apoptosis. This is not the case in Aldh1b1-/- MMR-

deficient colonic epithelial cells that are unable to activate the MMR signalling pathway and 

so there is neither cell cycle arrest nor apoptosis, following increased acetaldehyde-induced 

DNA damage, resulting in aberrant survival of more severely DNA-damaged cells and their 

subsequent proliferation, also driven by increased levels of acetaldehyde. Aldh1b1-/- MMR-

deficient colonic epithelial cells proliferate and expand to form higher numbers of Aldh1b1-

/- dMMR crypt foci, with an elevated risk of accelerated tumour formation, observed as 

higher numbers of colonic adenomas per mouse, with both right-sided and left-sided colonic 

adenoma formation. This process of Aldh1b1-/- dMMR crypt foci expansion would be 

enhanced by continued exposure over time to high levels of acetaldehyde, increasing DNA 

damage with an increasing risk of neoplasm formation and progression to invasive 

adenocarcinoma as mutations accumulate, particularly if these mutations occur in neoplastic 

driver genes.  

The schematic diagrams in Figures 8.1 to 8.5 are also representative of what occurs in 

individual colonic stem cells following Tamoxifen-mediated Cre activation in Aldh1b1flox/flox 

Msh2-LS model mice, as this results in inactivation of both copies of Aldh1b1 and loss of the 

second Msh2 allele as well as conversion from mT to mG expression, resulting in mG+ 

Aldh1b1-null, dMMR stem cells that populate crypts to full monoclonal crypt conversion, 

form crypt foci by crypt fission, and although the circulating levels of acetaldehyde are not 

as high as in the constitutive knockout Aldh1b1-/- Msh2-LS mice, it is proposed that there are 

increased intracellular levels of acetaldehyde conferring a similarly increased risk of 

neoplastic progression to adenomas and adenocarcinomas. 
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Figure 8.4: Schematic diagram of the proposed model of the effects on cells, crypts and crypt foci of MMR/acetaldehyde gene/environment interactions in both MMR-

proficient cells (mG-/mT+ red cells/crypts constituting the red background of the large intestinal mucosa) and MMR-deficient cells (mG+/mT- green cells/crypts 

scattered along the large intestinal mucosa, shown as green dots) over time (black horizontal arrow) during ethanol exposure. Cells/crypts that lose both mG and mT 

expression are shown in black (repeat of diagram in Figure 7.20 for comparison with Figure 8.5). (Prx=proximal colon; Dst=distal colon; EtOH=ethanol; 

AcAld=Acetaldehyde). 
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Figure 8.5: Schematic diagram of the proposed model of the effects on cells, crypts and crypt foci of MMR/acetaldehyde gene/environment interactions in both 

Aldh1b1-/- MMR-proficient cells (mG-/mT+ red cells/crypts constituting the red background of the large intestinal mucosa) and Aldh1b1-/- MMR-deficient cells (mG+/mT- 

green cells/crypts scattered along the large intestinal mucosa, shown as green dots) over time (black horizontal arrow) during ethanol exposure. Cells/crypts that lose 

both mG and mT expression are shown in black. (Prx=proximal colon; Dst=distal colon; EtOH=ethanol; AcAld=Acetaldehyde).
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8.6 Future work 

This project has characterised the Msh2-LS mouse model and provided evidence for a 

gene/environment interaction between dMMR and ethanol/acetaldehyde, causing 

acceleration of dMMR-driven intestinal tumour formation upon ethanol exposure, but there 

are still many details that need further investigation. 

The immune system has an important role in tumour incidence, prognosis and response to 

immunotherapy in LS patients (Gonzalez et al., 2018). The pilot experiment performed on 

caecal adenomas of Msh2-LS mice provided evidence of an immune response with infiltrating 

CD8+ and other lymphocytes and myeloid cells within and around adenomas. Further 

investigation of the immune response in the Msh2-LS mouse model would give a better 

understanding of which infiltrating immune cells are present around dMMR crypt foci 

precursors over the time following expansion of individual dMMR crypts to dMMR crypt foci/ 

clusters and subsequent evolution to intestinal tumours. This may help to elucidate the 

nature of the interaction between dMMR intestinal cells and the immune response in the 

context of the three step process of elimination, equilibrium and escape (Dunn et al., 2004; 

Seth et al., 2018). This could be performed with a more extensive investigation of the 

infiltrating immune cells by IHC comparing normal intestinal tissue with early and late dMMR 

crypt foci and tumours from the Msh2-LS mouse model either treated with 20% ethanol in 

drinking water or normal water.  

Improved knowledge of the gene expression patterns in large intestinal epithelium and small 

intestinal epithelium of both MMR-proficient cells and MMR-deficient cells, with and without 

ethanol exposure, would offer improved understanding about why hyperproliferative 

changes and adenoma formation occur in the colon, but not in the small intestine in this 

Msh2-LS model and which signalling pathways are involved. This could be done by 

performing RNA sequencing analysis on the RNA extracted from the mT-expressing red small 

intestinal and colonic epithelial cells (pMMR cells) for comparison with RNA-seq data from 

the mG-expressing green small intestinal and colonic epithelial cells (dMMR cells), from both 

ethanol-treated and water-treated Msh2-LS mice. RNA has already been extracted from 

these samples following FACS-sorting of the ethanol- and water-treated Msh2-LS large and 

small intestinal epithelial samples (described in Chapter 7). In addition, adjacent pMMR 

crypts and early dMMR crypts (identified by IHC staining for Msh2) could be micro-dissected 

(by laser capture microdissection) and analysed by RNA and DNA extraction for sequencing 
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to allow comparison to determine signalling pathway changes and mutation changes that 

occur at the earliest stages of dMMR monoclonal crypt conversion. 

Furthermore, generation of an organoid model system from isolated small and large 

intestinal stem cells of the Msh2-LS mouse model may shed light on the subsequent 

responses and effects of DNA MMR following ethanol/acetaldehyde-induced DNA damage 

and other types (e.g. Temozolomide, other aldehydes) of DNA damage induced in vitro. 

Analysis of gene expression in such organoids may reveal the molecular mechanisms and 

pathways that become activated under ethanol treatment (and other genotoxic agents) in 

the presence and absence of DNA MMR.  

DNA sequencing and RNA sequencing could be performed in both the organoid model and in 

the Msh2-LS murine colonic crypt foci, adenomas and adenocarcinomas, to investigate the 

most prevalent driver mutations in tumourigenesis and signalling pathways in this model and 

to distinguish those gene mutations that occur early in adenomagenesis from those that 

occur late in this process, which may reveal some actionable gene mutations that may be 

investigated in human LS patients. 

 

8.7 Summary 

In this study, evidence is provided that shows that: 

 The Msh2-LS mouse model is a good model of human Lynch Syndrome. Loss of MMR 

occurs in scattered stem cells, crypts and crypt foci along the small and large 

intestines. However, with long-term ethanol treatment, tumour formation is only 

seen in the colon (mainly in the proximal and mid colon, following the locational 

distribution of ethanol-induced epithelial hyperproliferation) and not seen in the 

small intestine, closely mirroring human LS intestinal tumour distribution. 

 Msh2 has a key role in protecting the MMR-proficient colonic epithelial cells against 

ethanol/acetaldehyde-induced DNA damage, but there appear to be other 

protective mechanisms in addition to mismatch repair in small intestinal epithelial 

cells protecting against acetaldehyde-induced DNA damage. 

  Ethanol/acetaldehyde induces regions of hyperproliferation of the large intestinal 

mucosal epithelium (mostly in the proximal and mid-colon) and this contributes, 

most likely through the process of tumour promotion, to acceleration of dMMR-

driven intestinal adenoma formation compared with water-treated controls. 
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 Ethanol/acetaldehyde promotes survival and proliferation of aberrant dMMR large 

intestinal epithelial cells/crypts over the MMR-proficient colonic epithelial 

cells/crypts. In this way, it increases the number and size of precursor dMMR lesions 

and elevates the risk of progression to either adenoma or invasive adenocarcinoma. 

 Aldh1b1 has a key role of in protecting the large intestinal epithelial stem cells and 

crypts from acetaldehyde-induced DNA damage, demonstrated in the increased 

colonic neoplasm formation in both Aldh1b1fl/fl Msh1-LS and Aldh1b1-/- Msh2-LS 

models compared with Aldh1b1wt Msh2-LS model following ethanol exposure. 

 There is strong evidence for a gene/environment interaction between dMMR and 

acetaldehyde acting via selection for reduced apoptosis, decreased cell cycle arrest, 

increased DNA damage in addition to dMMR-mediated hypermutation, and colonic 

epithelial hyperproliferation, collectively contributing to the acceleration of dMMR-

driven colonic tumour formation upon ethanol exposure in this Lynch Syndrome 

model. 
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Supplementary Figure 2.1: The left panel shows an electrophoretic gel photograph with representative 

results for the PCR genotyping assay DNA products for Msh2wt Msh2- and Msh2flox alleles (genotypes 

shown above the lanes). In this assay, the Msh2flox (Msh2 flox) allele produces a 460bp band (upper 

single band indicating fl genotype), whereas the Msh2 wild-type (wt or +) allele produces a 389bp band 

(lower single band indicating + genotype), whereas the heterozygous state is shown by the presence 

of both bands (two bands of 460bp and 389bp indicating fl/+ genotype). The right panel shows 

representative results for the PCR genotyping assay DNA products for the Mshwt (+) and Msh2- alleles 

(Msh2- or -). In this assay, the Msh2- allele produces a 194bp band (upper single band indicating - 

genotype) and wt allele produces a 164bp band (lower single band indicating + genotype), whereas 

the heterozygous state is shown by the presence of both bands (194bp and 164bp indicating +/- 

genotype) (M=DNA ladder, bp= base pair). 

 

 

 



 
 

 

Supplementary Figure 2.2: The electrophoretic gel photograph shows representative results for the 

PCR genotyping assay for presence of the Cre allele. Presence of the Cre allele is shown by a 1000bp 

band (“Pos”, which can be either Cre+/- or Cre+/+), whereas the absence of a band indicates that Cre is 

not present (“Neg” or Cre-/-) (M=DNA ladder, bp= base pair). 

 

 

Supplementary Figure 2.3: The electrophoretic gel photograph shows representative results for the 

PCR genotyping assay for presence of the mTmG allele. The mTmG allele produces a 250bp band 

(“mut”, mTmG+/+), whereas the absence of this allele produces a 330bp band (“Neg”, mTmG-/-), and 

the heterozygous state is shown by the presence of both bands (“het”, mTmG+/-) (M=DNA ladder, bp= 

base pair).



 
 

 

Supplementary Figure 2.4: The 3 electrophoretic gel photographs show representative results for the 3 separate PCR genotyping assays for Aldh1b1wt, Aldh1b1flox 

and Aldh1b1-alleles. In the first panel (left), the Aldh1b1tm1a allele produces a 445bp band (“tm1a” or “KnockOut Ready” or “KOR”, single band indicating tm1a/tm1a 

genotype), the Aldh1b1flox allele produces a 1000bp band (“flox”, single band indicating “flox/flox” genotype), the Aldh1b1- allele is shown by the absence of a band 

(absent band indicating -/- genotype), and the wild-type Aldh1b1wt allele produces a 775bp band (“wt”, single band indicating a Aldh1b1wt/wt genotype). In the 

second panel (centre), the Aldh1b1flox allele produces a 218bp band (“Pos”, single band indicating “flox/flox” genotype) and the Aldh1b1 wild-type allele is shown by 

the absence of a band (“Neg/wt”). In the third panel (right), the Aldh1b1- allele produces a 177bp band (“Pos”, single band indicating a Aldh1b1-/-  genotype) and the 

Aldh1b1 wild-type allele is shown by the absence of a band (“Neg/wt”) (M=DNA ladder, bp= base pair). 



 
 

 



 
 

 



 
 

 
Supplementary Figure 2.5: Photomicrographs illustrating the immunohistochemistry antibody 

technical controls performed with the absence of the primary (or the secondary) antibody against 

Msh2, Msh6, Mlh1, Pms2, Ki-67, Aldh1b1, y-H2AX, p53, cCas3 (cleaved Caspase-3) and B-catenin 

proteins. IHC performed with antibody diluent and no primary antibody (left column) and/or 

secondary antibody (right column) using either normal small intestine or normal colon murine tissue. 

Images taken from IHC stained sections scanned using the Hamamatsu Nanozoomer and analysed 

with the Hamamatsu NDP Viewer software at 20X magnification, showing no evidence of positivity for 

the target proteins (bar at lower left indicates 100μm).   

 

 

 



 
 

 
Supplementary Table 3.1: Tabular representation of the inter-cross to generate the Msh2-LS mouse 

model experimental subjects. A) Inter-cross between Msh2 flox/flox and the Msh2+/-; Lgr5CreERT2 +/- 

mice. B) Inter-cross between Msh2flox/-; Lgr5CreERT2+/- and Msh2flox/-; Lgr5CreERT2-/- mice.  

 



 
 

 

Supplementary Table 3.2: Tabular representation of the inter-cross to introduce the mTmG transgene 

into the Msh2-LS mouse model. A) Cross-breeding between Msh2flox/-; Lgr5CreERT2+/- and mTmG+/+ 

mice. B) Cross-breeding between Msh2+/-; Lgr5CreERT2+/-; mTmG+/- and Msh2flox/+; Lgr5CreERT2+/-; 

mTmG+/- mice. 

 



 
 

 

Supplementary Figure 4.1: Immunohistochemical analysis of Pms2 protein expression in caecal 

mucosal epithelium of Msh2-LS mice treated with either 20% ethanol in drinking water (A) or normal 

/ standard water (B). Images taken from Pms2 IHC stained sections scanned using the Hamamatsu 

Nanozoomer and analysed with the Hamamatsu NDP Viewer software at 10X and 20X magnification, 

showing no evidence of nuclear positivity for Pms2 protein (bar at lower left indicates 250μm, bar in 

red rectangle indicates 100μm).   
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Supplementary Table 6.1: Tabular representation of the generation of the Aldh1b1 conditional-knockout Msh2-LS mouse model experimental subjects. Representation 

of the breeding between the Msh2+/+; Lgr5CreERT2-/-; mTmG-/-; Aldh1b1flox/flox with Msh2flox/-; Lgr5CreERT2+/-; mTmG+/+; Aldh1b1+/+ mice.  
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Supplementary Table 6.2: Tabular representation of the generation of the Aldh1b1 conditional-knockout Msh2-LS mouse model experimental subjects. Representation 

of the breeding between the Msh2+/-; Lgr5CreERT2-/-; mTmG+/-; Aldh1b1flox/+ with Msh2flox/+; Lgr5CreERT2+/-; mTmG+/-; Aldh1b1flox/+ mice. 



 
 

 



 
 

 
Supplementary Table 6.3: Tabular representation of the generation of the Aldh1b1 constitutive-knockout Msh2-LS mouse model experimental subjects. Representation 

of the breeding between the Msh2+/+; Lgr5CreERT2-/-; mTmG-/-; Aldh1b1-/- with Msh2flox/-; Lgr5CreERT2+/-; mTmG+/+; Aldh1b1+/+ mice.  
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Msh2+  
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Supplementary Table 6.4: Tabular representation of the generation of the Aldh1b1 constitutive-knockout Msh2-LS mouse model experimental subjects. Representation 

of the breeding between the Msh2+/-; Lgr5CreERT2-/-; mTmG+/-; Aldh1b1+/- with Msh2flox/+; Lgr5CreERT2+/-; mTmG+/-; Aldh1b1+/- mice.  
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Abstract
Lynch syndrome (LS) is characterised by predisposition to colorectal, endometrial, and other cancers and is caused by
inherited pathogenic variants affecting the DNAmismatch repair (MMR) genesMLH1, MSH2, MSH6, and PMS2. It is
probably the most common predisposition to cancer, having an estimated prevalence of between 1/100 and 1/180.
Resources such as the International Society for Gastrointestinal Hereditary Cancer’s MMR gene variant database, the
Prospective Lynch Syndrome Database (PLSD), and the Colon Cancer Family Register (CCFR), as well as pathological
and immunological studies, are enabling advances in the understanding of LS. These include defined criteria by which
to interpret gene variants, the function of MMR in the normal control of apoptosis, definition of the risks of the var-
ious cancers, and the mechanisms and pathways by which the colorectal and endometrial tumours develop, including
the critical role of the immune system. Colorectal cancers in LS can develop along three pathways, including flat
intramucosal lesions, which depend on the underlying affected MMR gene. This gives insights into the limitations
of colonoscopic surveillance and highlights the need for other forms of anti-cancer prophylaxis in LS. Finally, it
shows that the processes of autoimmunisation and immunoediting fundamentally constrain the development of
tumours in LS and explain the efficacy of immune checkpoint blockade therapy in MMR-deficient tumours.
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Introduction

Lynch syndrome (LS), previously called hereditary non-
polyposis colorectal cancer (HNPCC), is probably the
most common major cause of inherited susceptibility to
cancer, with an estimated prevalence in the general pop-
ulation of between 1/100 and 1/180 [1]. LS is charac-
terised by predisposition to a range of cancers,
involving most frequently the colorectum and endome-
trium, and also many other organ sites including ovary,
stomach, small intestine, hepatobiliary tract, pancreas,
urinary tract, prostate, brain, and sebaceous skin tumours
[2,3].
LS is caused by constitutional (germline) pathogenic

variants affecting one of four genes encoding the DNA
Mismatch Repair (MMR) system components: MLH1,
MSH2, MSH6, and PMS2, and hence the current com-
monly accepted diagnostic definition of LS is carrying
such a variant [1,4–8]. However, although we acknowl-
edge that there is an opinion that LS can only be diag-
nosed in such individuals once cancer has been
diagnosed, this is contrary to the hereditary polyposes,
which are characterised by the macroscopic syndromic

feature of multiple pre-malignant tumours [9]. Allied to
this, a major purpose of diagnosis of a cancer-
predisposing condition is to identify those who would
benefit from surveillance and prophylactic surgery to
prevent cancer [5]. Hence, our view is that it is inconsis-
tent and to a degree cruel to discriminate against LS by
expecting such individuals to develop cancer in order
to be diagnosed with the condition, especially as cancer
does not always occur [2,3,10]. As we discuss later on,
the definition of LS could, and perhaps should, therefore,
move to one that incorporates recently identified specific
microscopic and molecular pre-malignant syndromic
features.

DNAMMR recognises and repairs mismatched bases
(e.g. C opposite T) and insertions or deletions in repeti-
tive sequences. In LS patients, this MMR gene constitu-
tional variant, when combined with an acquired second
pathogenic variant due to somatic mutation in the wild-
type allele of the same MMR gene, results in the com-
plete loss of MMR pathway function in the affected
cells. Deficiency of MMR (dMMR) leads to hypermut-
ability, resulting in an increase in the mutation rate by
100- to 1000-fold due to uncorrected base mismatches,
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and to microsatellite instability (MSI) due to variation in
the lengths of repetitive sequences (e.g. AAAAAAA…
or CACACACA…. or similar, known as microsatellites)
due to uncorrected insertion/deletion loops that are
prone to occur as DNA replication errors in repetitive
sequences [11]. However, crucially, dMMR does not
simply fail to repair mismatches, it elicits a reduced sus-
ceptibility to apoptosis induced by DNA damage recog-
nised by the MMR pathway [11–14].

The International Society for Gastrointestinal Heredi-
tary Cancer (InSiGHT) was the first expert group to
define pathogenicity of gene variants according to an
agreed set of criteria based upon Bayesian probability,
using the five-tier classification system of Plon et al
[4,15–17]. In this system, Class 5 variants are patho-
genic and Class 4 likely pathogenic, with Class 3 being
variants of uncertain significance (VUS), and Classes
2 and 1 being likely benign and benign respectively.
InSiGHT maintains the world reference database of var-
iants observed inMMR genes, as Leiden Open Variation
Databases (LOVDs), which are now linked to ClinVar as
part of the ClinVar-ClinGen partnership, and accord-
ingly, 82% of the Class 4 and 5 variants listed affect
MLH1 and MSH2, with 13% affecting MSH6 and 5%
PMS2 [16,18–20]. It should be noted that these patho-
genic variants are mostly from cases ascertained by fam-
ily history. As more cases of LS are ascertained from
systematic testing of cancer cases and incidentally from
gene panel testing, more patients will be identified with
pathogenic variants in MSH6 and PMS2, and thus the
proportions due to the different MMR genes will
alter [6].

All types of variants are seen as pathogenic: non-
sense, frameshift, splice-site, missense, insertion–dele-
tion, and large deletions/rearrangements, the largest so
far being a 10 Mb inversion affectingMSH2 and which
is visible cytogenetically [21–23]. Approximately 60%
of all putative pathogenic missense mutations causing
LS actually disrupt splicing and are thus, in effect, trun-
cating [24]. Up to 3% of LS cases are due to variants
involving the 30 end of the EPCAM gene (immediately
adjacent to MSH2), that result in hypermethylation of
the MSH2 promoter or partial deletion of MSH2
[25,26]. Another infrequent but important cause of LS
is constitutional methylation of the MLH1 promoter,
which occurs in 1–2% of cases [27–29]. This is usually
sporadic in nature, so it is neither inherited nor herita-
ble, and relatives are therefore not at risk. However, in
a small number of patients, the hypermethylation may
be secondary to a large deletion involving LRRFIP2,
the gene upstream of MLH1, and it is the deletion that
is the pathogenic variant: The methylation is secondary
[29]. Given the risks to relatives it is therefore impor-
tant to distinguish such cases, and this is achieved by
testing both the tumour and constitutional DNA, and
finding MLH1 promoter methylation in both, perhaps
in the context of an LS family history. It has to be borne
in mind that approximately 15% of sporadic colon can-
cers are also dMMR due to somatic, so acquired, epi-
mutation of both MLH1 alleles by promoter

hypermethylation [30]. This is a function of such
tumours arising from right-sided serrated lesions
[31]. A similar proportion of sporadic endometrial can-
cers also have biallelic hypermethylation ofMLH1, and
as with colon cancers a small proportion are due to con-
stitutional methylation plus a somatic mutation in the
normal MLH1 allele [27,28,32,33].

Other genetic conditions relating to Lynch syndrome
Muir-Torre syndrome (MTS) is a descriptive diagnosis
of an individual in which both skin sebaceous neoplasms
(and keratoacanthoma-like lesions) and a ‘visceral’ car-
cinoma of any sort has occurred [34,35]. It is a frequently
seen combination in LS. Indeed, on close inspection
many, perhaps most patients with LS who have had a
carcinoma probably have a sebaceous skin lesion and
thus MTS [36,37]. However, MTS is also seen in other
heritable predispositions, for example, MUTYH-
associated adenomatous polyposis, or it may be spo-
radic, so although a marker of possible LS, MTS is not
diagnostic [38,39]. Notably, although sebaceous lesions
and hyperplasia are often rightly a cause for concern
regarding LS and a patient with sebaceous lesions and
a visceral cancer warrants testing, it should be noted that
in the absence of a family or personal history of LS-
associated cancer they are at low risk and do not warrant
testing [40,41].
Individuals may inherit pathogenic variants in both

copies of a DNA MMR gene. When both are in the
same gene it causes constitutional mismatch repair
deficiency (CMMR-D) syndrome. CMMR-D is a clas-
sic recessive DNA repair disorder typically charac-
terised by childhood-onset leukaemia, lymphoma, and
colorectal and brain cancers, but also, in contrast to
LS, some patients may have multiple colorectal adeno-
mas [42–44]. Signs suggestive of neurofibromatosis
type 1 also often occur, such as café-au-lait macules
and cutaneous neurofibromata, plus other features such
as immune deficiency [45]. In CMMR-D patients,
abnormal MMR immunohistochemistry (IHC) is seen
in both normal and tumour cells (hence the necessity
always to test all four markers) and it is possible to
detect constitutional MSI in, for example, blood
[46,47]. Patients with CMMR-D due to MSH6 or
PMS2 variants may show milder disease and later
onset [48]. Comprehensive diagnostic criteria and care
pathways have been published [7,45].
Patients may also be found who have pathogenic var-

iants in more than one MMR gene, so-called digenic
LS. It is not clear if this is more severe than LS due to
a pathogenic variant in one gene, but it has clear implica-
tions for clinical genetic counselling. However, LS
patients can and do co-inherit other forms of predisposi-
tion to cancer (or indeed any other genetic condition),
and if this is suspected should be pursued [49].
Finally, Turcot syndrome, a combination of colorectal

cancer or adenomas and central nervous system tumours,
with dominant or recessive inheritance, is another histor-
ical descriptive diagnosis that has been related to
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LS. However, it is now known that it can be due to
CMMR-D, familial adenomatous polyposis (FAP), and
probably other conditions, and so as an ambiguous term
it should be abandoned [42,44,50].

DNA mismatch repair mechanisms
The MMR pathway is a highly evolutionarily conserved
mechanism responsible for the correction of base mis-
matches (e.g. C or G opposite T or A) and insertion/dele-
tion loops (occurring in repetitive sequences such as
AAAAAA … or CACACACA … due to insertion or
deletion of an extra repeat unit during stalled DNA rep-
lication of these repetitive sequences). Such stalling is
probably mostly due to replication-associated errors,
but is also caused by DNA damage due to oxidative
stress, lipid peroxidation, base deamination, methyla-
tion, and alkylation [51].
A base mismatch or single nucleotide insertion/dele-

tion error is recognised by the MutSα complex, which
is composed of MSH2 and MSH6 proteins. Insertion/
deletion loops of 2–8 nucleotides are recognised by the
alternative complex MutSβ, composed of MSH2 and
MSH3 proteins. MutSα complex activation is character-
ized by ATPase activity, which is important for the inter-
action with the mismatchedDNA and initiation of repair.
The binding of MutSα stimulates ATP hydrolysis, lead-
ing to a conformational change that subsequently trig-
gers the recruitment of a second complex MutLα,
composed of MLH1 and PMS2 proteins. The tetrameric
complex, by sliding on the DNA, searches for the single-
strand DNA mismatch on the new strand (daughter
strand). This in turn activates proliferating cell nuclear
antigen (PCNA) and replication factor C (RFC). MutLα
possesses an intrinsic ATP-stimulated endonuclease
activity that requires activation by PCNA in order to cre-
ate an incision in the recently synthesised daughter
strand (containing the error). The incision step is fol-
lowed by the recruitment of exonuclease 1 (EXO1) that
removes the newly synthesised DNA strand up to and
beyond the mismatch or loop. DNA polymerase δ re-
synthesises the DNA, whereas ligase 1 seals the remain-
ing nick [52].
TheMMRpathway is involved in a signalling cascade

that leads to cell cycle arrest and/or apoptosis, if DNA
damage has occurred previously [53]. It has been
observed that MMR-deficient cells fail to recruit
ataxia-telangiectasia mutated (ATM) and ATM and
Rad3-related (ATR); and this prevents p53 phosphoryla-
tion in response to DNA damage [12,54]. The underly-
ing mechanisms by which MMR proteins promote
DNA damage–induced cell cycle arrest and apoptosis
have not been fully elucidated. Two models have been
hypothesised: The futile cycling model and the direct
damage signalling model. In the futile cycling model,
MMR recognises the mismatches triggering the excision
of the newly synthesized strand, although the persistent
offending damage on the template strand cannot be
excised. MMR initiates futile repair cycles, eventually
resulting in the formation of DNA double-strand breaks

and thus activating the ATM/ATR/p53 signalling path-
way to activate cell cycle arrest and/or apoptosis
[55]. In the direct damage signalling model, MutSα
and MutLα directly recruit ATM/ATR and cause cell
cycle arrest and/or apoptosis [56].

A crucial consequence of this is that the low back-
ground level of DNA damage in normal cells may stim-
ulate MMR and thus inhibit the cell cycle, or if severe
even stimulate apoptosis, and so net cell turnover does
not reach its theoretical maximum. However, if MMR
deficiency should occur in such cells, there is no such
limitation by stalling of the cell cycle or activation of
apoptosis and net cell division increases in an uncontrol-
lable fashion, allied to which as a secondary phenome-
non the mutation rate increases, which is manifest as
MSI and/or abnormal MMR IHC. This is very useful
diagnostically, but it is important to appreciate that it is
not the increased mutation rate per se that is driving
the carcinogenic process, and neither does it make ade-
nomas progress any quicker than usual [14]. However,
because mutations are strongly biased towards repetitive
DNA sequences in dMMR cells, this has profound con-
sequences for the biology of such tumours and patients
with LS due to the strong immunological responses this
elicits [57,58]. The critical consequences of this are man-
ifest in how LS tumours develop and potentially evade
the immune system [59].

Notably, someMMR gene variants are associated with
abnormal MMR IHC in tumours but not MSI, and vice
versa [4,15]. In addition, only one of 149 PMS2 patho-
genic variants causative of LS is a missense mutation
[18]. However, many other PMS2 missense variants
are seen in CMMR-D (a recessive DNA repair disorder),
which is consistent with common, but not complete,
overlap between loss of DNA (MMR-recognised) dam-
age repair and apoptotic functions of MMR [18,60,61].

Lynch syndrome databases
In addition to the MMR gene variant database main-
tained by InSiGHT, there are other phenotypic databases
aimed at understanding the precise risks that LS patients
face. Initial estimates were liable to ascertainment bias
and thus tended to overestimate by being necessarily ret-
rospective. The penetrance and expressivity of MMR
pathogenic variants differs in LS patients according to
theMMR gene, age, sex and environmental/lifestyle fac-
tors [62]. Several lifestyle factors, such as smoking,
alcohol, obesity, are associated with an increased risk
of sporadic cancer and have been suggested to have sim-
ilar effects in LS patients. Therefore, as it is fundamental
to quantify accurately the risks of developing cancer for
LS patients, in order to provide adequate data for surveil-
lance and care, as well as understand the underlying biol-
ogy, the PLSD was established in 2012 by the Mallorca
Group of InSiGHT [2,63]. The PLSD collects data on LS
patients from expert centres and registries worldwide;
these patients are thus undergoing colonoscopic surveil-
lance with polypectomy and may also be having thera-
peutic or prophylactic surgery. It therefore provides
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information on the natural history of the disease course
and the effects of interventions and lifestyle factors.
The PLSD is linked to the InSiGHT MMR LOVD: All
patients on the PLSD must have a Class 4 or 5 MMR
variant, so pathogenic or likely pathogenic according
to the InSiGHT classification [4,15]. The PLSD includes
basic information on pathogenic genetic variants, sex,
and age, plus information such as cancers or pre-cancers
diagnosed, age at diagnoses, age at prophylactic surgical
removal of organs, and information on pre-cancers.
Every patient is followed as an individual, as the family
history is ignored so as not to introduce bias, and the
database now has >50 000 patient-years of observations
[10]. The PLSD website is public and allows anyone to
determine the risks to an individual of an LS-associated
cancer in an interactive graphical form according to their
affected gene, age, gender, and whether previously
affected by cancer [63]. Risks of LS-associated cancers
to age 75 are summarised in Table 1; those for PMS2
affecting both sexes are combined due to the smaller
numbers available, and numbers have been rounded
throughout for clarity [10].

Important parallel efforts have been made in defining
risks in Lynch syndrome by the CCFR and the Interna-
tional Mismatch Repair Consortium (IMRC)
[64,65]. The CCFR is an international consortium of
six institutes in the United States, Canada, and

Australasia formed as a resource to support studies on
the aetiology, prevention, and clinical management of
colorectal cancer, and utilises a form of modified segre-
gation analysis to minimise retrospective ascertainment
bias [65,66]. It currently has data on >42 500 individuals
from >15 000 families on its records and has made sig-
nificant advances in demonstrating how environmental
and lifestyle factors affect cancer risks in LS, such as
smoking, increased body mass index, and alcohol con-
sumption [67–69]. By contrast, reduced cancer risk is
seen with, for example, hormone replacement therapy,
vitamin and mineral supplements, nonsteroidal anti-
inflammatory drug (NSAID) use, and parity, but there
is no change in risk associated with oral contraceptive
use [70,71]. The IMRC is a worldwide collaboration of
more than 115 investigators from 59 centres, with
20 000 individuals with LS from 8800 families, facili-
tated by InSiGHT and the Collaborative Group of the
Americas on Inherited Gastrointestinal Cancer (CGA-
IGC) [64,72].
Finally, is the initiative to determine the effects of

aspirin prophylaxis on LS patients, although this is a
series of clinical trials rather than a database. Remark-
ably, the CAPP2 trial has shown that only 2–4 years of
treatment with 600 mg/d of aspirin significantly reduces
the risk of colorectal cancer up to more than 10 years
post treatment, and likely also reduces the risks of other

Table 1 Average risks of Lynch syndrome–associated cancers to age 75 years
Males

Cancer type MLH1 MSH2 MSH6 PMS2

Any cancer 71% [63–81%] 75% [66–86%] 42% [25–67%] See below
Colorectal (bowel) 57% [49–68%] 51% [41–65%] 18% [8–43%] See below
Stomach, small bowel, bile duct, gallbladder, and pancreas 22% [16–30%] 20% [14–28%] 8% [3–30%] See below
Ureter and kidney 5% [3–10%] 18% [13–25%] 2% [<1–24%] See below
Urinary bladder 7% [4–13%] 13% [8–21%] 8% [3–30%] See below
Prostate 14% [9–22%] 24% [17–33%] 9% [3–31%] 5% [<1–68%]
Brain 0.7% [<1–5%] 8% [4–15%] 2% [<1–24%] See below

Females

Cancer type MLH1 MSH2 MSH6 PMS2

Any cancer 81% [74–88%] 84% [77–91%] 62% [47–78%] See below
Colorectal (bowel) 48% [41–57%] 47% [39–55%] 20% [12–41%] See below
Endometrium 37% [30–47%] 49% [40–61%] 41% [29–62%] 3% [5–50%]
Ovaries 11% [7–20%] 17% [12–31%] 11% [4–39%] 3% [<1–43%]
Stomach, small bowel, bile duct, gallbladder, and pancreas 11% [7–17%] 13% [9–19%] 4% [3–30%] See below
Ureter and kidney 4% [2–8%] 19% [14–27%] 6% [2–27%] See below
Urinary bladder 5% [3–11%] 8% [5–14%] 1% [<1–23%] See below
Brain 2% [<1–5%] 3% [1–8%] 1% [<1–23%] See below

Both Sexes combined

Cancer type PMS2

Any cancer 34% [19–60%]
Colorectal (bowel) 10% [3–41%]
Stomach, small bowel, bile duct, gallbladder, and pancreas 4% [1–34%]
Ureter and kidney 4% [<1–34%]
Urinary bladder <1% [0–31%]
Brain <1% [0–31%]

Data from the Prospective Lynch Syndrome Database (PLSD) [10,63].
Note that the individuals studied are under colonoscopic surveillance and may have had prophylactic or therapeutic surgery, which is allowed for in the estimates.

Molecular pathology of Lynch syndrome 521

© 2020 Pathological Society of Great Britain and Ireland.
Published by John Wiley & Sons, Ltd. www.pathsoc.org

J Pathol 2020; 250: 518–531
www.thejournalofpathology.com

http://www.pathsoc.org
http://www.thejournalofpathology.com


LS cancers, although this is less certain. Notably, side-
effects possibly attributable to aspirin were at a low rate
and actually slightly more common, although non-sig-
nificantly, in the placebo compared to treatment arm
[73–75]. A follow-up randomised double-blind dose
non-inferiority trial, CaPP3, is now in progress to deter-
mine the optimum dose of aspirin for long-term prophy-
laxis [76].

Pathology of Lynch syndrome cancers
Typical histological features of LS tumours are best
exemplified by colorectal cancer (CRC), which often
shows a combination of the presence of prominent
tumour-infiltrating lymphocytes, Crohn-like peritu-
moural lymphoid aggregates, poor differentiation, fre-
quently with areas of mucinous and/or signet-ring cell
patterns, sometimes with a medullary growth pattern
[77,78]. These characteristics can be seen in both Lynch
syndrome CRC and sporadic dMMR bowel cancers but
are not sufficiently specific to distinguish them from
MMR-proficient (pMMR) cancers.
Fewer data have been published about non-colorectal

LS-associated cancers. LS-associated endometrial can-
cers can be seen more frequently than sporadic cancers
in the lower uterine segment, are mostly of the endome-
trioid type, and are often with poor differentiation, solid
or dyscohesive, with prominent tumour-infiltrating lym-
phocytes and Crohn-like peritumoural lymphoid aggre-
gates [79–84]. LS-associated ovarian cancers are
typically of endometrioid or clear cell type, with some
tumour-infiltrating lymphocytes [79,80,85,86]. LS-
associated gastric carcinomas are mostly of the
intestinal-type with fewer diffuse-type, and rarely of
mucinous type, and an associated immune gastritis is
reported [87–90]. LS-associated small intestinal adeno-
carcinomas often display mucinous, signet-ring cell, or
medullary differentiation, with tumour-infiltrating lym-
phocytes and Crohn-like reactions, as do ampullary ade-
nocarcinomas [91]. LS-associated pancreatic cancers are
mostly acinar cell carcinomas and medullary carcino-
mas [92].

Testing for Lynch syndrome cancers
Testing of (usually selected) patients with CRC, endome-
trial cancer, and/or other types of LS-associated cancer is
recommended by many guidelines and organisations,
generally starting with testing the tumours for either the
presence of MSI or the absence (or abnormal expression)
of mismatch repair proteins. There is no consensus
regarding whether MMR immunohistochemistry or
MSI testing is the better first test in colorectal cancers
as they have similar test performance characteristics in
detecting LS: Sensitivity of MSI is 88 ~ 100% and IHC
73 ~ 100%, with specificity of MSI 68 ~ 84% versus
IHC 78 ~ 98% [93,94]. They may be used serially, or in
combination [93–97]. However, evidence is now emerg-
ing that IHC may be the preferred option when testing
endometrial cancers (systematic testing of which is now

under consideration by the UK National Institute for
Health and Care Excellence (NICE) as a recent UK study
has shown that while MSI and IHC have similar specific-
ity (83.7 versus 81%), MSI has only 56.3% sensitivity
compared to 100% for IHC [82,83].

MMR IHC is the better option for small biopsies, can-
cers with a low tumour cell proportion, or intense inflam-
matory reaction. Subsequent testing forMLH1 promoter
hypermethylation and somatic (rather than constitu-
tional/germline) mutations can be used to clarify the risk
of inherited pathogenic variants in suspected LS
patients. MLH1 promoter hypermethylation testing
may be used as an alternative to BRAF V600E mutation
analysis in colonic cancers [98–100]. The use of larger
targeted gene mutation panels (or whole exome/genome
sequencing) that includes MMR tumour testing with
mutation analyses is becoming more widespread [101].

Immunohistochemical staining for the four major
DNA mismatch repair proteins (MLH1, MSH2, MSH6,
and PMS2) is probably the most common test to screen
CRCs and other tumours for dMMR [93,95,97]. The
nuclear expression of all four proteins suggests mis-
match repair proficiency with microsatellite stability
[102–104]. Loss or abnormality of nuclear staining for
any of the proteins indicates dMMR and suggests the
most likely MMR gene involved [103,104]. Loss of
MSH2 alone or loss of both MSH2 and MSH6 suggests
that a mutation or abnormality in MSH2 is most likely.
Similarly, loss of MLH1 alone or loss of both MLH1
and PMS2 suggests an underlying mutation, abnormal-
ity, or promoter methylation in MLH1. Combined loss
of both MSH2 and MSH6 (or of both MLH1 and
PMS2) reflects the heterodimeric binding of MSH2 with
MSH6 (or of MLH1 with PMS2) in the mismatch repair
complex MutSα (or of MutLα), such that loss of the first
protein partner generates instability and loss of the sec-
ond [37]. Usually, there is nuclear staining in the nuclei
of both tumour cells and adjacent normal epithelial cells,
stromal cells, and lymphocytes.

In a dMMR tumour due to MSH2 mutation, there is
loss of nuclear MSH2 and MSH6 and intact staining
for MLH1 and PMS2. In a dMMR tumour due to
MLH1 mutation, there is loss of nuclear MLH1 and
PMS2 and intact staining for MSH2 and MSH6. This
pattern of combined MLH1 and PMS2 loss could be
seen either in a sporadic tumour (most commonly due
toMLH1 promoter methylation) or in LS due to constitu-
tionalMLH1mutation. CorrectMMR IHC interpretation
requires adequate internal control staining of the adja-
cent stromal and lymphoid cells to confirm good fixation
of the tissue region [102,103]. Patchy intact nuclear
staining may occur due to variable fixation, tissue hyp-
oxia, or unequal antibody diffusion [105,106]. Cytoplas-
105,106]. Cytoplasmic staining may occur, but if
nuclear staining is lost, this is considered abnormal, indi-
cating dMMR [107].Weak, patchy nucleolar staining, or
sometimes absence of MSH6 has been described in rec-
tal tumours following neoadjuvant treatment without
MSI or a mutation confirmed by molecular testing
[108,109]. Notably, heterogeneous staining or loss of
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MSH6 can be due to a secondary (non-germline)
acquired somatic mutation in theMSH6 codingmononu-
cleotide tract [110,111]. Approximately 3–10% of LS-
associated dMMR tumours show no abnormality on
IHC testing (presumably because of variants that disrupt
normal MMR protein function but nonetheless enable
protein detection by IHC) [112].

Testing DNA extracted from tumours for MSI
involves investigating the presence of extra alleles (lon-
ger or shorter) at a microsatellite locus compared with
normal microsatellite length determined from normal tis-
sue or blood from the same individual [113]. Microsatel-
lites vary in their propensity to show instability, and thus
the frequency with which the same microsatellite is
altered varies in different tumour types. Instability is
more likely to be observed at mononucleotide repeats
(e.g. AAAAA …) than at dinucleotide repeats (e.g.
CACACA …). Microsatellite loci or markers used in
colonic cancer MSI testing are known to have reduced
sensitivity at detecting MSI in non-colonic cancers,
including endometrial, small intestinal, or gastric can-
cers; in tumours from LS patients with MSH6 or PMS2
mutations; and in colonic adenomas [114]. Therefore, a
proportion of LS-associated tumours may not appear to
have MSI using the standard test but might be identified
by abnormal MMR immunohistochemistry.

The efficacy of MMR IHC and MSI may be signifi-
cantly enhanced by testing more than one tumour from
the same individual or family, particularly if there are
tumours that are multiple or rarely seen in LS (e.g. colo-
rectal adenomas, small intestinal cancers, hepatobiliary,
upper urinary tract, and cutaneous sebaceous tumours)
[15,115]. Consistent IHC abnormality of one mismatch
repair protein in more than one tumour from an individ-
ual or family represents very good evidence for variant
pathogenicity [15,116]. Some CRCs due to MUTYH-
associated polyposis (MAP) or proofreading
polymerase-associated polyposis (PPAP) may exhibit
MSI and/or abnormal IHC due to somatically acquired
MMR gene mutations.

Approximately 13–15% of sporadic colonic cancers
have dMMR, usually due to epigenetic silencing of both
alleles of MLH1 by promoter hypermethylation. Hence,
although overall unselected dMMR colonic cancers
have a relatively poor positive predictive value for LS,
because the proportion of colonic cancers with MSI
due to LS varies with age this can be exploited clinically.
In individuals younger than the age of 57, more than half
of all dMMR colonic cancers will be due to LS, whereas
over this age less than half will be, although even at age
70 approximately 25% dMMR colonic cancers will be
due to LS (Figure 1) [8,104,117]. In contrast, pMMR
has a good negative predictive value for LS. Further tests
(BRAF mutation and MLH1 methylation tests) are
required for MLH1-negative cancers to distinguish
between LS and sporadic origin [93,94,96]. Another
important practice point is that rectal cancers are distinct
from colonic cancers in the diagnosis of LS. Because
sporadic colonic cancers with dMMR arise largely from
right-sided serrated lesions, sporadic rectal cancers with

dMMR are correspondingly rare, if they occur at all, and
hence a rectal cancer with dMMR at any age must be
considered to be due to LS until proven otherwise
[118,119].
The activating missense variant BRAF p.V600E

occurs in sporadic colonic cancers with dMMR, but
not in those due to LS; therefore, BRAF p.V600E is
highly predictive of the tumour being of sporadic origin
rather than LS [31,93,94,96,120]. However, sporadic
tumours may occasionally occur in patients with LS, so
the absence of BRAF p.V600E does not definitively
diagnose LS but does indicate that LS is more likely.
Alternatively, detection ofMLH1 promoter hypermethy-
lation in a colonic cancer provides good, although not
unequivocal, evidence that the tumour is sporadic in ori-
gin, as occasional sporadic tumours do occur in LS and
constitutionalMLH1 promoter methylation can be found
in a small proportion of patients with LS [28,29]. BRAF
p.V600E testing is only of use in distinguishing CRCs; it
has no utility in, for example, endometrial cancer.
LS is definitively diagnosed following tumour testing

by constitutional/germlineMMRgene sequencing to iden-
tify a pathogenic constitutional variant [4–6,121]. Patients
with digenic LS,who have inherited pathogenic variants in
more than oneMMR gene, are occasionally seen (andmore
will be as gene panel testing becomes prevalent), but it is
unclear if their risks are increased over those patients with
a pathogenic variant in oneMMRgene. It is often useful to
have samples frommore than one individual in the family,
because case segregation studies may be required to deter-
mine pathogenicity or whether an individual is a pheno-
copy [4,15]. If the family shows evidence of hereditary
transmission of LS but no point mutation is found, tests
for large-scale mutations, such as deletion of a whole exon
(or more), can be performed; 12–40% of pathogenic vari-
ants are of this type [21,23,122–127]. LS-related tumour
types that are rare in the general population and thus have
a high predictive value for LS, such as small intestinal and

Figure 1. Probability by age that a colonic cancer with dMMR is due
to Lynch syndrome. The graph shows the probability by age that a
colonic cancer with dMMR is due to Lynch syndrome
[8,104,117]. Note that this does not apply to rectal cancers, because
right-sided serrated lesions that give rise to sporadic dMMR colonic
cancers do not occur in the rectum; hence a rectal cancer with
dMMR is due to LS until proven otherwise [118,119].
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hepatobiliary cancer, upper urinary tract and bladder
(under age 60) transitional cell carcinoma, or skin seba-
ceous adenoma/carcinomas, are therefore worth testing
[40]. Synchronous ormetachronous bowel cancers are also
significant, as is the development of any two LS-related
tumours (e.g. CRC and endometrial cancer), and all such
cases warrant testing for LS.

Neoplastic precursors in Lynch syndrome
When LS was being defined in the early 1990s, the only
known pathway to CRC was based on the work of
Dukes, Bussey, and Morson on FAP. First was Dukes’
concept of ‘simple tumours and cancer’ in 1925 as part
of his system for the staging of rectal cancer in FAP, fol-
lowed by the adenoma to carcinoma pathway in 1958
[128–130]. Naturally, the reasonable assumption was
that the same pathway applied in LS and colonoscopic
surveillance to remove premalignant adenomas would
thus be beneficial in LS.When early data started to come
in on the efficacy of surveillance in LS, it became obvi-
ous that there was a large number of interval cancers,
and, moreover, these occurred despite the interval
between colonoscopies being steadily reduced to less
than 3 years and sometimes even less than 1 year,
because it appeared that LS cancers developed much
more rapidly than sporadic ones, assuming they all arose
from adenomas [6,131]. Moreover, because of the
increased mutation rate (the MSI) observed in LS can-
cers, allied with the prevailing concept that genomic
instability characterised all cancer, it was further
assumed that this must be what was driving a faster
adenoma-carcinoma progression, although not all
parties were convinced [11,14,132]. In addition,
although dMMR adenomas could be found in LS
patients, further doubts were raised when aspirin treat-
ment failed to reduce the incidence of adenomas
(although it later reduced that of CRCs), and results from
the PLSD became available [2,73,116,133,134]. LS
patients on colonoscopic surveillance at various inter-
vals could finally be compared [133]. Remarkably,
within the limits measurable, colonoscopy did not
appear to reduce the rate at which colorectal cancers
were arising in LS patients, despite it being associated
with a significant reduction in mortality and, in addition,
stage was not related to the interval since last
colonoscopy—completely the opposite of population
screening programmes, which are based primarily on
adenoma removal [2,133–135]. What was going on?
Although LS patient survival is certainly improved by
colonoscopic surveillance, enabling earlier diagnosis
and a degree of downstaging, together this mass of evi-
dence was leading to the conclusion that a pathway inde-
pendent of adenomas must be occurring, and moreover,
a pathway in which precursors were less obvious on
colonoscopy [94].
At about the same time, it was discovered that LS

patients harbour an enormous number of dMMR crypts
in the colorectum (~1/cm2 mucosa, so ~10 000 crypts/
patient), which are not dysplastic, and yet LS patients

only go on to eventually develop between zero and per-
haps one, two, or three cancers [136,137]. Could these
be leading to cancers, perhaps by an occult route? This
was answered shortly afterwards by the finding of flat
intramucosal cancers in which the Wnt pathway was
activated by mutations not in APC, as in classical adeno-
mas, but in beta-catenin; indeed mutations in repetitive
coding sequences, exactly as predicted, would result
from dMMR [138]. It is intriguing that subsequent work
to sequence LS cancers has shown that some 61% of
APC mutations are predicted to occur after MMR defi-
ciency occurs, as they are found in repetitive sequences,
exactly as would be expected in dMMR tumours. Hence,
a proportion of these beta-catenin–mutant flat lesions
acquire secondary APC mutations, thence to become
polypoid adenomas and subsequently cancers
[139,140]. Thus, it is now understood that there are at
least three pathways to CRCs in LS, not including spo-
radic colonic cancer due to a right-sided sessile lesion,
which are occasionally observed (Figure 2). The first
pathway is via sporadic adenomas that acquire second-
ary dMMR. The second pathway is via flat cancers
within the mucosa that arise directly from dMMR crypts,
and the third pathway is LS-specific adenomas that arise
from these flat lesions due to secondary APC mutations
[139]. Hence, a proportion of LS CRCs arise from flat
lesions, which are inherently more difficult to detect,
let alone remove on colonoscopy, explaining at least in
part the apparent high rate of interval cancers, but also
removing the need to invoke a faster progression rate
in LS. Building on this, it has been shown that the can-
cers in patients with LS due to PMS2 mutations arise
largely along pathway 1 (i.e. from sporadic adenomas),
going further to explain why patients with pathogenic
PMS2 variants have only a small increased risk of
CRC [142]. It is interesting that very recently it has been
found that pathway 2 predominates over pathway 3 in
patients with pathogenic MLH1 variants, but pathway
3 predominates over pathway 2 in those with MSH2
pathogenic variants [143]. These fascinating findings
have clear implications for future surveillance strategies,
which of necessity must now also include modalities
such as aspirin prophylaxis and vaccines to address the
inherently limited efficacy of colonoscopy and increased
risks of cancers in LS at sites other than the large bowel,
which are becoming the predominant cause of mortality
in LS patients under surveillance [2,3].

It is of note that a number of observers have now
found dMMR glands in morphologically normal endo-
metrium from LS patients, which in turn has implica-
tions for the understanding of LS carcinogenesis in that
organ [146].

Immune escape of Lynch syndrome neoplasms
The early general observations of large local tumours
and a lower rate of metastasis, together with a strong
immune reaction to LS cancers such as increased tumour
infiltrating lymphocytes (TIL) and tertiary lymphoid
structures (TLS; also termed Crohn-like peritumoural
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lymphoid aggregates or follicles), later backed up by
gene expression signatures characteristic of immune cell
activation, all indicate an important role for the immune
system in LS [57,147,148]. However, this needs to be
put in the context of the normal immune architecture in
the bowel. Gut-associated lymphoid tissue (GALT)
comprises both isolated and aggregated lymphoid folli-
cles in both the small and large intestines. Humans have
approximately 30 000 isolated lymphoid follicles (ILFs)
scattered throughout the large and small intestine, but
especially in the colon [149]. ILFs vary in their distribu-
tion within the large and small intestines, may be muco-
sal or sub-mucosal, and at their simplest may consist
of a single follicle, with or without some T cells
[150,151]. They are considered to be the main source
of immune priming in the colon and fromwhere Crohn’s
disease originates, and they have specialised follicle-
associated epithelium (FAE), which overlies a

subepithelial dome containing numerous macrophages,
dendritic cells, T and B lymphocytes, and special antigen
sampling microfold/M/cells [152,153]. The FAE has a
crucial role in the initiation of the mucosal and systemic
immune responses [154]. However, the relationship
between Crohn-like follicles in LS and ILF in normal
colon is not completely clear. In LS, the follicles are gen-
erally peritumoural and not located inside cancers, and,
although they do not have FAE, they do have T cells,
B cells, and germinal centres [58,155]. Whether they
are induced de novo, as in chronic inflammation, or
develop from submucosal ILFs remains to be deter-
mined [156]. Crohn-like follicles/TLS are found in
CRCs apart from LS; however, the frequency/number
is highest in LS patients compared to sporadic dMMR
and pMMR CRCs, which is not simply related to
age [58].
In recent years, there has been a growing interest in

TLSs in a variety of cancers including CRC, in particular
as prognostic indicators of cancer progression and
responses to immunotherapy [153,157]. In hepatocellu-
lar carcinoma, intratumoral TLSs correlated with a lower
risk of early relapse after surgery [158]. In sarcoma, mel-
anoma, and renal cell carcinoma, both intratumoural
location and the presence of B cells (but not T cells),
and particularly germinal centres, correlate with
improved outcomes to checkpoint blockade immuno-
therapy [159–161]. Further studies of the location, cellu-
lar composition, and presence of germinal centres in
TLS in hereditary dMMR may therefore shed light on
their role in LS.
In dMMRcells, predictablemutations can and do occur

in repetitive protein coding sequences and result in frame-
shift peptides (FSPs) [162–164]. Such FSPs are novel
antigens and elicit both humoral and cellular immune
responses, which are seen as TILs around the dMMR
crypts in LS patients as well as in dMMR cancers, both
sporadic and due to LS [136,144,163,165]. In the face of
such responses, how is it possible for tumours, let alone
cancers, to develop in LS? The answer lies in the three-
step process of elimination, equilibrium, and escape
[59,166]. Cells generating FSPs, presented on their sur-
face by MHC-I, are subjected to attack by cytotoxic T
lymphocytes (CTLs), resulting in elimination. However,
cells that randomly acquire activating mutations in PD-
L1before they are eliminated can hold the immune system
to a local standstill (activating the PD-1 – PD-L1 immune
checkpoint)—the process of equilibrium. Subsequently, if
before being eliminated these cells manage to acquire
inactivating mutations in MHC-I or MHC-II (HLA clas-
ses I & II) that abrogate presentation of FSPs on their sur-
face, they are then able to escape the immune system, at
least locally. Given the huge number of dMMR crypts in
an LS patient, but that the average LS patient manifests
between zero and one, two, or three CRCs, it is clear that
the process of elimination must be highly efficient, giving
a different perspective on cancer biology [2,139].
A number of different escape mechanisms have been

observed. The most common, seen in approximately
30%of dMMRCRCs, ismutation of beta-2-microglobulin

Figure 2. Pathways to colorectal cancer in Lynch syndrome. There
are three pathways to dMMR colorectal cancers in LS
[138,139]. Pathway 1: Classic sporadic adenomas, initiated by
Wnt pathway activation due to mutations in APC (APCm), acquired
dMMR through somatic mutation of the remaining normal MMR
allele (MLH1m, MSH2m, MSH6m, or PMS2m). This can occur at any
stage of the adenoma, from early through to adenoma-carcinoma
transition. Pathway 3: Crypts that have acquired dMMR due to
somatic mutation of the normal MMR allele are not dysplastic,
but if they undergo somatic mutation of beta-catenin (CTNNB1m),
which activates theWnt pathway, they become flat carcinomas that
later acquire mutations in TP53 (TP53m), an otherwise rare event in
dMMR CRCs [138,141]. Pathway 2: A proportion of Pathway
3 lesions acquire secondary APCmutations and thus become polyp-
oid adenomas. Because of this unique combination of somatic
events, these Pathway 2 adenomas are, as far as is known, specific
to LS (hence ‘Lynch-specific dMMR adenomas’). Regarding path-
ways 2 and 3 in their original proposal, Ahadova and colleagues
remark: ‘For better visibility, pre-malignant lesions that do not
develop into cancer are not included in the diagram, because their
number greatly exceeds the number of carcinomas’ [139]. Pathway
1 predominates in patients with LS due to PMS2 pathogenic vari-
ants, whereas CTNNB1-mutant tumours are more likely in MLH1
patients and APC-mutant tumours are more likely in MSH2 and
MSH6 patients [142,143]. Note that sporadic colonic cancers that
arise from serrated lesions with MLH1 deficiency due to somatic
biallelic hypermethylation of the MLH1 promoter can and do occur
in LS, albeit perhaps less often due to the enhanced immunity in LS
patients against dMMR cells because of chronic autoimmunisation
from the novel frameshift peptides generated from dMMR crypts
[31,57,59,136,139,144,145].
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(B2M), which prevents MHC-I presentation of FSPs. This
was an early observation, the full significance of which is
only now apparent [145,167–170]. The outgrowth of such
B2M mutant clones is a prime example of cancer immu-
noediting, which has been further related to variation in
host immune function, for example, mucosal density of
FOXP3-positive regulatory T cells, indicating that such
factors may be additional modifiers of LS [171]. It is nota-
ble that B2Mmutations in dMMR cancers are significantly
associated with an almost zero rate of metastasis and thus
indicate highly favourable prognosis [172,173]. In addi-
tion to mutations in B2M, mutations of CIITA or RFX5
are seen in approximately 20% of dMMR CRCs and pre-
ventMHC-II antigen presentation, whereas approximately
10% of dMMR CRCs have mutations of TAP1 or TAP2,
which are antigenic peptide transporters responsible for
antigen presentation, thus also preventing antigen presen-
tation on the cell surface [174,175]. In such ways, tumour
cells escape the attention of the host’s immune system,
both locally and in the circulation, but are in turn liable to
attack with help from immunotherapy, such as anti-PD-1
or PD-L1 immune checkpoint blockade [176,177].
The full variety of mechanisms by which tumours, and

dMMR tumours in particular, manage to evade the immune
systemhasyet to bedetermined.Undoubtedly, the colorectal
microbiome plays an important part in the process of CRC
development in LS as well as sporadically [178]. Intrigu-
ingly, the immune response to dMMR CRCs in the form
of the development of high endothelial venules (HEVs)
responsible for trafficking lymphocytes into lymphoid folli-
cles/TLS is stronger in LS patients than in sporadic dMMR
colonic cancers, and especially high HEV densities in B2M-
mutant tumours support the concept of immunoediting dur-
ing tumour evolution [58]. Such higher HEV densities in
B2M-mutant tumours imply that under strong immunoselec-
tive pressure created by immune cells recruited via HEVs,
tumour cells that have lostMHCclass I antigens gain growth
advantage due to immunoediting, thus revealing amajor role
of HEVs in enhancing the immunoselective pressure on
highly immunogenic cancers. Taken together with the high
numbers of dMMR crypts in LS and the low numbers of
CRCs that actually manifest, these findings all point toward
a longer process of immunoediting in LS CRCs, possibly
due to the pre-existing dMMR crypts immunising LS
patients against their own propensity to cancer, and explain-
ing the higher proportion ofB2Mmutations in LS compared
to sporadic CRCs [58,136,137]. However, these HEVs gen-
erally recruit naïve lymphocytes from the blood into tissues
and HEV-containing Crohn-like aggregates are generally
seen in a peritumoural location in both pMMR and dMMR
cancers, so our understanding of HEV and TLS in LS is as
yet incomplete [58,155,179].

Conclusions

The major carcinogenic effect of dMMR is to reduce
apoptosis and increase the net cell turnover rate. The
raised mutation rate per se is of little or no consequence,

but the bias to frameshift mutations in repetitive
sequences caused by dMMR is of fundamental conse-
quence, first in auto-immunising LS patients to FSPs
and second in thus modifying the evolution of dMMR
cancers by immunoediting.

That some MMR gene variants are associated with
abnormal MMR IHC in tumours, but not MSI, and vice
versa, plus the observation of, for example, certain
PMS2 variants in cases of CMMR-D but not LS, chal-
lenges the concept of in vitro functional tests in assessing
variant pathogenicity [4,15,18,60,61]. Which function
should be tested: DNA repair, or apoptosis, or both?
[4,180–182]. We would therefore advise caution in the
interpretation of such assays until this is clarified.

It is now understood that there are three main path-
ways to CRC in LS, including via sporadic adenomas,
but also via occult intramucosal dMMR crypts and then
beta-catenin-mutant flat cancers, which are directly inva-
sive, some of which acquire secondaryAPCmutations to
become polypoid [138,139]. Moreover, the likelihood
that tumours follow particular pathways is related to
the underlying gene affected by a pathogenic variant,
and hence the variation in expression of LS starts to be
explained andmay lead to surveillance protocols becom-
ing more tailored to genotype [3,10,142,143].

Currently, LS is defined by an individual carrying a
pathogenic variant in an MMR gene, but interpretation
of variants as pathogenic often requires tests on tumours
for dMMR [4,6]. As part of the interpretational process,
tests of MMR function may be performed in vitro, but
this too is problematic and interpretation cannot be
based solely on such analyses [4,180–182]. However,
recent advances in understanding the pathways and
responses to cancer in LS bring the possibility of alter-
native means of diagnosing LS independent of cancer
itself, indeed perhaps even an alternative definition
involving the immune system. The nature of the intense
immune response to cancers in LS, manifest as the
stronger HEV response seen in individuals with LS
from an early age (16 years) allied to specific T- and
B-cell responses to FSPs can be considered syndromic
features characteristic of LS [58,163,165]. In addition,
the dMMR crypts seen in the normal large bowel
mucosa and the dMMR glands seen in normal endome-
trium can also be considered syndromic features charac-
teristic of LS [136]. So, all taken together we may be
approaching a definition of LS in molecular terms, in
which the development of cancer, although of great
importance clinically, is not necessary to achieve diag-
nosis. This in turn may enable the classification as path-
ogenic of many variants in MMR genes, and MSH6 and
PMS2 in particular, which is currently problematic due
to their reduced penetrance.
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