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Abstract. The Babylonians had some of the most advanced arithmetic models for the
Lunar and planetary theory in ancient times. This allowed them to discover the Saros
eclipse cycle. In this paper we investigate the accuracy of several eclipse prediction
methods tested on worldwide occurring eclipses between 2020–2100 CE, ignoring the
sophisticated modern models based on accurate ephemerides, in an attempt to under-
stand how simple models would have worked in ancient times. First we propose two
numerical methods relying on knowledge available in Babylonian times – lunar phases,
lunar nodes, and the angular separation between the Sun and the Moon. Second, we
assess the performance of four Machine Learning (ML) models modeling human infer-
ence by relying on the same data. The accuracy of the numerical methods is above 80%
while the ML models achieve up to 98% accuracy. The algorithms perform better in
case of lunar eclipses. While not 100% perfect, these methods are simplistic in terms of
required information and enable us to get an insight into how efficient might have been
ancient methods relying on visual observations.

Key words: Astronomy – Solar System – Solar-terrestrial relationships – History of As-
tronomy – Eclipse prediction – Machine Learning – Astronomical algo-
rithms.

1. INTRODUCTION

Eclipses have fascinated humanity since the dawn of time. Written records exist
from China, where in ∼2159 BCE (Brown, 1931), two astronomers were executed
at the orders of the emperor for failing to announce the moment of the first contact.
While this was probably an act of punishment not for failing to predict the eclipse
but rather of their failure in their duty to watch the sky, it does give us an idea of the
importance of such events in past societies. Skywatchers across the globe looked at
the sky depicting their accounts in either rock art (Vaquero and Malville, 2014) or
written documents (Stephenson, 2006).

Among ancient cultures, the Babylonians developed by the mid 1st millennium BCE
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Table 1

Eclipses visible over Europe. Saros solar cycle 145 starting on August 11, 1999 and ending on August

21, 2017. Saros lunar cycle 124 starting on January 21, 2000 and ending on January 31, 2018.

Strikeout lunar eclipses are not visible from Romania.

Date Int. Date Int. Date Int. Date Int.

Aug 11, 1999
(S)

5 Jan 21, 2000
(L)

6 Jul 16, 2000
(L)

6 Jan 9, 2001
(L)

6

Jul 5, 2001
(L)

5 Dec 30, 2001
(L)

6 Jun 24, 2002
(L)

5 Nov 20, 2002
(L)

6

May 16, 2003
(L) May 31,
2003 (S)

6 Nov 9, 2003
(L)

6 May 4, 2004
(L)

5 Oct 28, 2004
(L)

12

Oct 3, 2005
(S)

5 Mar 16, 2006
(L) Mar 29,
2006 (S)

6 Sep 7, 2006
(L)

6 Mar 3, 2007
(L)

11

Feb 21, 2008
(L)

6 Aug 1, 2008
(S) Aug 16,
2008 (L)

6 Feb 9, 2009
(L)

6 Aug 6, 2009
(L)

4/5

Dec 31, 2009
(L)Jan 15,
2010 (S)

11/12 Dec 21, 2010
(L)Jan 4,
2011 (S)

5 Jun 15, 2011
(L)

6 Dec 10, 2011
(L)

11

Nov 28, 2012
(L)

5 Apr 25, 2013
(L)

6 Oct 18, 2013
(L)

6 Apr 15, 2014
(L)

11

Mar 20, 2015
(S)

6 Sep 28, 2015
(L)

12 Sep 16, 2016
(L)

5 Feb 11, 2017
(L)

6

Aug 7, 2017
(L)

6 Jan 31, 2018
(L)

– – – – —

a working theory allowing them to predict the ephemeris of solar system bodies with
increased accuracy. Over time they developed methods for predicting lunar and so-
lar eclipses and there is evidence that they knew the 18-year “Saros”* eclipse cycle
used for the prediction of eclipses and of lunar phases near the syzygies† (Neuge-
bauer, 1975a). The eclipse cycle is probably part of the earliest phases of Babylonian
mathematical astronomy. In fact, based on the amount of data stored in discovered
clay tablets, the lunar theory was more advanced than the planetary theory and more
source material for it has been discovered than for the planets combined.

Similarly to the planetary theory, Babylonians had for the lunar theory two systems,
called System A (described by a step function and for the vernal equinox located
at à10◦) and System B (described by a linear zigzag function and for the vernal
equinox located at à8◦). While a clear chronology between the two has not yet been

*The terminology was first used by Halley in 1691 (Neugebauer, 1975a) who borrowed it from an
11th century Byzantine lexicon. There is no evidence that Babylonians ever used this name.

†Alignment of 3 or more bodies. For the Sun-Earth-Moon system it occurs every Full/New Moon.
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established (they do seem to be favored in different cities, i.e. , Babylon for System
A and Uruk for System B) System A is used in the majority of the “procedure texts”
and later ephemeris based on it is the direct continuation of older ones.

While Babylonians may have noticed the Saros cycle by observing lunar eclipses it is
not without reason to assume that it was well-known in antiquity that eclipses occurs
roughly every 6 months and occasionally every 11 months (Neugebauer, 1975b) – a
recurrence known at least since the time of Hiparchus in the 2nd century BCE. While
this may have been the general rule, not every 6-month or 11-month interval gener-
ates an eclipse visible from a given geographical position (see Table 1) and hence
determining its periodicity empirically requires observers in different geographical
locations. Also, some penumbral lunar eclipses are invisible or at least hard to ob-
serve with the naked eye due to the indiscernible change in lunar brightness.

Today we have accurate numerical methods for predicting eclipses that span 5,000
years (Espenak) but the quest for identifying the time and place of ancient eclipses
(Stephenson, 2006) is far from over due to the well-known ∆T problem which links
the Terrestrial Dynamic Time to the Universal Time (Morrison and Stephenson,
2004; Steele, 2005). The oldest identified eclipse which enables us to refine the
past occurrence of an eclipse goes as far as the Late Bronze Age (October 30, 1207
BCE) in the time of Ramesses the Great (Humphreys and Waddington, 2017).

Babylonians compiled long lists of eclipses dating as far as the 5th century BCE (or
even the 8th century according to Ptolemy) but were unaware that both solar and
lunar eclipses were produced by the same phenomenon. At the same time we do not
know how many of these were accurately predicted by their arithmetical methods.

In this article we investigate two prediction methods accessible to Babylonians through
their knowledge. We also test several modern Machine Learning based methods
which behave similarly to the human brain, by learning and inferring from past expe-
rience. We apply the algorithms on all worldwide occurring eclipses between 2020–
2100. The results shed light on the potential and level of Babylonian astronomy.

The rest of the paper is structured as follows: Section 2 presents some of the existing
prediction methods and introduces the mathematical requirements for an eclipse to
take place. Section 3 describes the proposed eclipse prediction methods. Section 4
presents the performance metrics and Sect. 5 outlines the results. Finally, Sect. 6
summarizes the main results.
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2. RELATED WORK

Arguably, the definite proof that ancient cultures had the ability to predict eclipses
based on the Saros cycle is represented by the Antikythera mechanism which was
analyzed thoroughly by Freeth (2014).

In modern times, the most comprehensive list of solar eclipses compiled to date is
arguably the one from Espenak and Meeus (2006) spanning from 1999 BCE to 3000
CE. It uses the VSOP87 algorithm (Bretagnon and Francou, 1988) for computing
the Sun coordinates and ELP-2000/82 (Chapront-Touze and Chapront, 1983) for the
Moon. For the latter all periodic terms with coefficients smaller than 0.0005′′ in lon-
gitude and latitude, and smaller than 1 m in distance have been ignored. The value
for ∆T is taken from various sources depending on the time span. Meeus (1998)
has provided a series of simplified formulae for computing eclipses that provide rea-
sonable results when high accuracy is not needed. For instance, all solar eclipses
between 2020–2100 are correctly identified while two lunar eclipses are omitted,
namely the one on July 18, 2027 (penumbral magnitude = 0.028) and June 6,
2096 (penumbral magnitude= 0.03 (Wikipedia contributors, 2021)).

The closest study to our own was recently published by Pingalkar (2020). The author
uses a Gradient Boosting based algorithm with an accuracy of 96%. The results are
however not thoroughly discussed and there are a lot of input parameters, with the
algorithm requiring fine tuning which is not addressed in detail.

3. ECLIPSE PREDICTION METHODS

For an eclipse to occur a syzygy between the Sun-Earth-Moon has to take place.
This means that the Moon and Sun must be near the lunar nodes and the Moon
has to be either Full or New. For this to happen P = m · synodic month ≈ n ·
draconic months. Also, for an eclipse to be similar with a previous one the Moon
has to be at the same distance, i.e. , the period covered by a number of anomalistic
months must be equal to P as well. The Saros cycle meets these conditions with 223 ·
synodic month≈ 242 ·draconic month≈ 239 ·anomalistic month≈ 18 years.

To determine this relation the duration of the synodic, anomalistic and draconic
months has to be known. Table 2 shows the values as known in ancient Babylon.
The values for the draconic month for System A and System B have been taken from
(Goldstein, 2002) which derives them based on Babylonian knowledge.‡

‡Goldstein uses a value for the Saros period of 6585.25 days. If we use the rounded value provided
by Neugebauer we get a value of 27.210743802 for the draconic month or 27.212123966 if we use a
Saros period of 6585.334 days that is inferred based on the length of the synodic month in System A.
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Table 2

Mean values for various month types as known in ancient Babylon (Neugebauer, 1975a; Goldstein,

2002).

Type Modern value System A System B Older systems

synodic 29.530588853 29.53064437 29.53059259 29.53055556
anomalistic 27.55454988 27.55458333 27.55555556 n/a

draconic 27.212220817 27.21212037 (?) 27,21212037 (?) 27.33333333

As eclipses can theoretically occur at each node we need to approximate the number
of half draconic months per synodic months, i.e. , 2·synodic month

draconic month = 2.170391682 by
using common fractions since eclipses can only occur at integer (same eclipse type)
or half integer (different eclipse types) multiples of the synodic month.

In case of the Saros cycle we obtain based on the previous relation a ratio of 484 half
draconic months to 223 synodic months which gives a value of 2.170403587 that
differs by only 1.1905 ·10−5 from our target value.

The half year cycle is approximated by 13 half draconic months which fit 6 synodic
months providing a ratio equal to 2.166666666. This is possible since the offset
between a draconic month and a synodic month is of 13,9102108 days after 6 synodic
months, which is short of half a draconic month by just 0.304098 days or roughly 7
hours and 18 minutes. In this interval the argument of latitude increases by ∆ω =
184.023◦ which is within the 180±20◦ limits for the separation of two syzygyes for
a solar or lunar eclipse to take place (Neugebauer, 1975b).

It is clear from the above that the Babylonians had both the skills and the knowledge
to observe eclipses and to possibly make predictions. The question that arises is “how
accurate were these predictions?”. In the following sections we address this issue by
comparing the accuracy of predictions made using simple reasoning by taking into
account various lengths for the synodic and draconic months (since we do not search
for identical eclipses) as indicated by Babylonian sources. In addition, we will test
the efficiency of some modern machine learning techniques in an informal game
between ancient humans and computers.

3.1. NUMERICAL METHODS

3.1.1. Predicting eclipses using lunar phases and nodes

The first algorithm we propose in this paper attempts to predict dates of future
eclipses requiring previous knowledge of just three important dates: one ascending
and one descending lunar node dates, and the date of one New (for solar eclipses) or
a Full (for lunar eclipses) Moon. All can be determined from observations.
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This algorithm considers that an eclipse occurs if two conditions are met: firstly, the
Moon and Sun need to either have the same ecliptic longitude (New Moon) or for
them to differ by 180◦ (Full Moon). Secondly, the Moon needs be close to its nodes.
In this algorithm we successively add the average values of the synodic and draconic
months to predict the next lunar phase of interest and nodes. Obviously, the real
variations in synodic and draconic month lengths will accumulate errors, but these
will be ignored for now.

For each predicted lunar phase, we determine if the Moon is in one of the nodes,
more explicitly, if it is also near to a full cycle equal to a draconic month. To achieve
this we compute the difference in days between the considered date and the predicted
nodes, divide this number by the length of a draconic month, and select the ones with
the remainder closest to 0 (a full draconic cycle).

Due to the error generated by ignoring the variation in the actual synodic and draconic
month lengths and to the fact that the alignment does not need to be perfect, we
allow an error margin of ±1.3 days; therefore, if the remainder previously calculated
is smaller than this error margin, we consider an eclipse to take place on that date.
The method is depicted in Algorithm 3.1.1. Given the nature of the calculations we
always start with a Full/New Moon closest to a node (eclipse).

Algorithm 3.1.1 Predicting eclipses using lunar phases and nodes
function GETFUTUREECLIPSES(lunarPhase,ascNodeDate,descNodeDate,endDate)

eclipses← []
while lunarPhase < endDate do

ascNodeDif ← abs(lunarPhase-ascNodeDate) mod draconicMonth
descNodeDif ← abs(lunarPhase-descNodeDate) mod draconicMonth
ascNodeDif ←min(ascNodeDif,draconicMonth-ascNodeDif)
descNodeDif ←min(descNodeDif,draconicMonth-descNodeDif)
if min(ascNodeDif,descNodeDif)< ERRMARGIN then

eclipses.add(lunarPhase)
end if
ascNode← ascNode+draconicMonth
descNode← descNode+draconicMonth
lunarPhase← lunarPhase+ synodicMonth

end while
return eclipses

end function

solarEclipses← GETFUTUREECLIPSES(newMoon,ascNodeDate,descNodeDate,endDate)
lunarEclipses← GETFUTUREECLIPSES(fullMoon,ascNodeDate,descNodeDate,endDate)

3.1.2. Predicting eclipses using apparent separation between the Sun and Moon

The second algorithm proposed in this paper considers eclipses as visual phenomena.
It expresses an eclipse as a geometric relation between the apparent positions of the
Sun and Moon, as seen by an observer somewhere on Earth. The main idea is to
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test whether or not the relation is valid at any point of the day. This method requires
more information than the previous one. It consists of checking for an overlap of the
apparent shapes of the Sun and Moon at certain moments during a day and certain
locations on Earth. To detect an overlap, knowing the apparent radii of the Sun and
Moon and the separation between them is required.

To obtain perfect accuracy (see Section 4 for a discussion on the evaluation metrics),
we have to check every moment and every position on Earth, which is unfeasible as
there are infinitely many points in space and time. Therefore, we must select a finite
number of moments and locations for which to perform the check.

We will assume a separation small enough but slightly larger than the sum of radii
indicates a solar eclipse. For lunar eclipses, we aim to find a value close to 180◦

(indicating that the Sun and Moon are in opposite positions). The difference between
180◦ and the angular separation is the distance between the centers of the Moon and
Earth’s shadow. Similarly to solar eclipses, where the separation does not need to be
exactly 0, in case of lunar eclipses the separation does not need to be exactly 180◦

for the Moon to be overshadowed by Earth.

The downside of this approach is that it can identify “close calls” as eclipses, thus
false positives. It is trivial to notice that as we increase the number of moments and
locations the accuracy will converge to a theoretical value of 1 but will never reach
it. In practice, as there is a finite number of eclipses during a given time, a theoretical
perfect accuracy is not required for a 100% hit rate on the finite test data.

The algorithm attempts to find the best value detected in one day from certain points
around the globe using the following formula:

best=

{
max(moonrad+sunrad−separation), in case of solar eclipses
min(abs(separation ± 180)), in case of lunar eclipses

(1)

In case we want to predict solar eclipses, best should be > 0 and in case of lunar
eclipses, best should be < 0.5, so that the geometric condition is true.

Algorithm 3.1.2 shows how this method can be used to predict solar eclipses. It
should be noted that we do not calculate the angular distance between the Sun and
Moon or their apparent radii ourselves but instead rely on the PyEphem Python li-
brary – based on the VSOP87 theory and Jean Meeus’ algorithms.

3.1.3. Discussion on the application of these methods in Babylonian times

Both methods that we previously introduced can be solved by using Babylonian
knowledge alone. The first method requires knowing the length of the synodic and
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Algorithm 3.1.2 Predicting eclipses using apparent angular distance between the Sun
and Moon

function ISINITIALCONDITIONVALID(date)
coord← 0:0 . (lon, lat)
time← 12:00
separation← GETSEPARATION(date : time,coord)
return separation < 30

end function

function CHECKIFCOORDSVALIDATEEQ(date)
for time in timeIntervals do

for coord in coordinates do
res←moonRad+ sunRad−GETSEPARATION(date : time,coord)
if res > 0 then

return true
end if

end for
end for
return false

end function

function ISDAYECLIPSE(date)
if ISINITIALCONDITIONVALID(date) then

isEclipse← CHECKIFCOORDSVALIDATEEQ(date)
return isEclipse

else
returnfalse

end if
end function

draconic month, which we know from ancient text that they knew to a fair amount of
precision (cf. Table 2). In Sect. 5 we analyze the accuracy of the method by using
various lengths for the two types of moons.

While in the second method we mentioned – using modern terminologies – a geo-
metrical method, the angular separation between the Moon and the Sun was already
available to Babylonians through the Rising Time Schemes (Steele, 2017) where a
method for determining the culmination times for a select groups of Ziqpu Stars with
respect to sunrise or sunset is given. These provide an equivalent to modern day
oblique ascensions. The position of the Moon is described in relation to zodiacal
constellations and its speed is computed based on either System A or System B. We
know that Hypsicles (2nd century BCE) derived a non-trigonometrical solution for
the oblique ascensions by using Babylonian arithmetic astronomy (Montelle, 2016).

3.2. MACHINE LEARNING METHODS

Machine Learning (ML) has become extremely popular in recent years, being applied
in numerous domains, such as fake news detection and medical diagnosis. It is both
a simple and powerful tool simulating human learning through computer algorithms.
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Supervised learning is one of the best-known areas of Machine Learning; it is spe-
cialized in predicting output values for certain inputs, when we possess knowledge
of some inputs’ outcomes. It takes human effort to compile the dataset, but it op-
timizes the strenuous task of making predictions on never-before-seen data (Müller
and Guido, 2016). Supervised ML problems can be broken down into two main
categories: regression and classification.

Classification problems consist of mapping each input variable to an output, known
as class label; these output variables are discrete and the classes are disjoint. Regres-
sion aims to predict a continuous number, which represents an amount. To determine
if either a classification or regression predictive model is best fit for a task, we must
first look at the structure of the output. If there is continuity between these output
variables, we are dealing with a regressive model; otherwise, a classification model
maps our problem best. It should be noted that a classification problem can be mod-
eled using regression; for example, the regressive function can split the output data in
two or more categories, based on a selected threshold. Such a case is Logistic Regres-
sion, which, despite its name, is a classification algorithm, unlike Linear Regression.
(Müller and Guido, 2016).

Our model should predict if a certain date is likely to be an eclipse or not, therefore
it fits the binary classification predictive model. To achieve this, we can use either
simple classification algorithms (e.g., k-Nearest Neighbors or Decision Tree) or a
Logistic Regression classifier which offers us the confidence that our input variable
belongs to one class or the other. We will describe a few tested methods and while
we argue for the case of binary classification, we will assess the performance of
regressive models as well.

3.2.1. Tested Classification Based Predictive Models

k-NN is a simple classifier that selects the k data points closest to the current input;
if k=1, it assumes that the input belongs to the same class as the most similar data
point while for k > 1 the majority decides.

The Decision Tree classifier algorithm computes a series of sequential decisions
designed to reach a desired result. The danger this model faces is the overfitting of
the training data (if the decision tree is too closely fitted to the training data, it may
not make accurate predictions on the test data, because the model is not generalized
enough). One potential solution to the problem of tree overfitting is an ensemble
model called a Random Forest which is a collection of mildly different decision
trees (Müller and Guido, 2016).

The statistic model of Logistic Regression uses the homonymous function to model
a binary dependent variable. The definition set of the logistic function is (0,1); this
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Table 3

Solar eclipses training sample.

Date Separation Is Eclipse

2019-06-30 23.450(6) False
2019-07-01 10.399(8) False
2019-07-02 0.0642(7) True
2019-07-03 1.72102(7) False

value represents the probability that a sample belongs to a desired category.

For our dataset we will once again use the aforementioned Python PyEphem library.
We aim to skip arithmetically checking if, knowing the separation between the Sun
and Moon at a certain date and from an observation point, an eclipse is likely to occur
(cf. Sect. 3.1.2 for details and implementation). Therefore, our dataset is composed
of three columns: the date, the best separation (angular distance between the Sun
and Moon) during that day (depending on the type of eclipse), and whether or not an
eclipse happened that day.

We have chosen to search for the best separation each (sharp) hour of a day in 12
points around the globe, more specifically at the points determined by each pair of
coordinates (longitudes 0◦, 90◦, 180◦, 270◦ and latitudes 0◦, 45◦ and -45◦). In the
case of a solar eclipse, the separation should be as close to 0 as possible, while for
lunar eclipses, its absolute value should near 180. Table 3 showcases the structure of
the dataset for solar eclipses.

Section 5 outlines the performance of using classification models.

3.2.2. Regression Models

While we argue for classification models we have also considered – for compari-
son purposes – in our initial analysis regression models such as Linear Regression,
ARIMA, and Random Forest/Tree Regression. For our problem we have consid-
ered a series where each value represents the length of the time interval (in days) be-
tween two consecutive eclipses, hence the objective was to predict the interval to the
next eclipse (either lunar or solar). A similar method based on time intervals would
have been available in Babylonian times through the large amount of eclipse tables
although no direct evidence of its existence has been found yet. Figure 1 depicts the
results when varying the number of future predicted eclipses. The plot shows the best
MAPE (Mean Absolute Percentage Error) value out of all methods. It is seen that the
error increases drastically when more than one eclipse is predicted. The best results
are obtained when predicting the next worldwide lunar eclipse or next solar eclipse
over Europe. In 55% of cases ARIMA was the best prediction method followed by
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Linear Regression (25%) and Random Forests (20%). On average, the MAPE val-
ues were: 34.18% (solar eclipses over Europe), 34.85% (worldwide lunar eclipses),
42.14% (worldwide solar eclipses), and 46.29% (lunar eclipses over Europe).

The large average MAPE values (i.e. , 34–46%) indicate that the prediction date is
on average off by more than a month for the tested regressive models. The only
time they fall short of a month is when predicting only the next worldwide lunar
eclipse date. In this case an average interval of ≈153 days between worldwide lunar
eclipses provides a MAPE of ≈14% which translates to a prediction date within
≈ ±21 days from the actual eclipse day. This interval increases to ≈ ±42 days for
the next worldwide solar eclipse, ≈±80 days for the next lunar eclipse visible from
Europe, and≈±87 days for the next solar eclipse visible from Europe. This matches
our expectations, because the problem does not fit a regressive model.

4. EVALUATION METRICS

In order to evaluate the efficiency of the proposed eclipse prediction techniques, it is
necessary to first establish the best-fitted performance measure.

Fig. 1 – Accuracy of regression based prediction models.

Let us define: T as the number of total predictions, both positive and negative; P
represents the real positive predictions, while N the real negative ones (T = P +N );
FN as the number of false negatives (dates of missed eclipses); FP as the number
of false positives (positive predicted dates in which an eclipse does not occur); TP

as the number of true positives (TP = P −FN ), TN as the number of true negatives
(TN =N −FP ) and A as the standard performance metric of accuracy (TP+TN

T ).

Before proceeding it is important to explain why another more widely used metric
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(e.g., accuracy, precision, recall) is not well-fitted enough to our problem and why all
of them lose sight of significant drawbacks in our algorithms.

Since eclipses occur rarely, the standard accuracy will generate a large number (A>
99%) for a naive solution that assumes all days are negatives (we define this as A0).

Precision is defined as the ratio of accurately predicted positive observations (TP ) to
the total of positive predictions (TP +FP ). If our algorithm correctly predicts one
eclipse and misses all others the precision score will be 1, a situation far from ideal.

The problem with using recall (the ratio of correctly predicted positives, TP , to the
actual number of positive observations, P ) is quite similar; if our algorithm considers
each tested date an eclipse, the recall will be 1, as we do not account for a large
number of false positives.

For this reason, we measure the performance of an algorithm using a coefficient
representing the increase in accuracy compared to A0. This accuracy coefficient,
which we define as CA, will be 0 for an accuracy equal to A0 and 1 for perfect
accuracy.

Using simple arithmetic operations, we arrive at the following formulae:

A= TP+TN
T = T−FN−FP

T and A0 =
N
T .

The variable of interest, CA ∈ [0,1], where:

CA =

{
0, if A=A0

1, if A= 1

Therefore, it is easy to observe that it can be expressed as: CA = A−A0
P
T

. By substi-

tuting the terms of the equation, we obtain:

CA =
TP −FP

P
(2)

Another relevant performance metric is the F1 score, more specifically the harmonic
mean of precision and recall. The F1 score accounts for both false positives and
negatives and is generally used when the data is imbalanced (in our case, there are
much fewer days that contain an eclipse than days that do not).

Another metric that may be relevant for our task is Cohen’s Kappa coefficient,
widely used when dealing with imbalanced datasets, but more complex and there-
fore harder to interpret. Moreover, analyzing its behaviour on diverse examples of
confusion matrices reveals an increased tolerance to false positives. For instance, an
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algorithm that predicts three times as many eclipses as their real number (the false
positives are double the number of true positives) achieves a score of ≈ 0.5, which
intuitively seems like a moderate score for what is otherwise a weak and clearly
imbalanced algorithm. By using our metric, CA = 0, as we would expect.

Therefore, to maximize the performance of our algorithms, we will use both the
accuracy coefficient described by Relation 2 and the F1 score.

5. RESULTS

5.1. NUMERICAL METHODS

We tested the performance of the algorithm described in Sec. 3.1.1 by setting as input
the first eclipse of 2020 as the lunar phase along its adjacent lunar nodes.

As already mentioned in the description of the algorithm, to ensure a high F1 score
the error margin (in days) needs to be carefully selected. This requires searching
for the value that balances the number of false positives with false negatives. For
instance, if the number of false positives is greater than the number of false negatives,
we need to have a smaller error margin (and vice-versa).

Table 5 showcases the parameters and error margins used to obtain the results from
Table 4. The performance score can vary slightly depending on the three selected
parameters we pass and we consider this method to be the most unstable of those
presented in this paper. However, the results are surprisingly good for such a naive
algorithm, especially for lunar eclipses (0.8 performance score and 0.9 F1 score).

The experiments considered the currently known values for the average draconic
and synodic month length To determine the performance of this algorithm on lunar
lengths known to Babylonians we also evaluated the algorithm using the values in
Table 2). For System A and System B, the performance score is not greatly affected:
≈ 0.59 (39 FP s and 37 FN s) for solar eclipses and ≈ 0.74 (24 FP s and 26 FN s) for
lunar eclipses. However, the values known in the older system, especially the average
draconic month (≈ 27.(3)) results in a performance score < 0, meaning it performs
worse than a solution that considers that no eclipses occur at all.

Table 4

Performance results of Algorithm 3.1.1 (using lunar phases and nodes).

Type TP FN FP TN Performance F1

Lunar 167 (0.57 %) 18 (0.06%) 19 (0.06%) 29,036 (99.30%) 0.800 0.900
Solar 149 (0.51 %) 33 (0.11%) 34 (0.12%) 28,897 (99.26%) 0.632 0.816



14 Mara SFERDIAN, Marc FRINCU 14

Table 5

Parameters used to achieve results presented in Table 4.

Type of eclipse Full/New Moon Ascending Node Descending Node Error Margin

Solar 2020-06-21 06:41 2020-06-21 04:24 2020-06-06 18:10 1.25
Lunar 2020-01-10 19:11 2020-01-09 23:29 2020-01-22 20:31 1.13

The second algorithm (cf Sect.3.1.2) – using the angular separation between the Sun
and Moon – manages to predict all eclipses in the considered range accurately. How-
ever, the error margin also needs to be carefully selected.

If for solar eclipses we choose the best angular separation value detected in one day in
various points around the globe as the maximum positive value, for lunar eclipses we
choose the minimum value smaller than an error margin of ≈ 0.5 (cf. Sec.3.1.2). We
search for eclipses three times per hour (every 20 minutes) for each point P , where
P ∈ Slongitude×Slatitude∪{(0◦,−90◦),(0◦,90◦)}. We have chosen Slongitude

= {−170◦,−160◦, ...,170◦,180◦} and Slatitude = {−80◦,−70◦, ...,70◦,80◦}.

By using these values, we miss one lunar and one solar eclipse, namely the partial
solar eclipse of October 2098 – first of the Saros 164 series – and the penumbral
lunar eclipse of July 2027 – last of the Saros 110 series. Initial and final eclipses
of a Saros series occur at the limit of the eclipse occurring region around the nodes
which makes them weak in magnitude. We found that they do not even feature in
some future eclipses lists; the solar eclipse has a magnitude of 0.0056 and the lunar
one has a penumbral magnitude of 0.028 (also missed by the Meeus algorithm).

To predict these two eclipses, we have to change the error margins slightly. For solar
eclipses, we will accept a separation value > −0.003 (instead of 0), and for lunar
eclipses a value < 0.56 (instead of the previously used 0.5). It is worth mentioning
that this adjustment does not cause the algorithm to detect any false positives in the
given time interval.

Even if this algorithm achieves a score of 1 (perfect accuracy) on eclipses between
2020 and 2100, it is not guaranteed that it will accurately predict every eclipse in any
given time interval, because it is infeasible to check at every point on Earth, every
second (cf. Sect. 3.1.2).

The main drawback of these two prediction methods is its very long runtime. Initially,
both algorithms (for lunar and solar eclipses) completed running in about 8 hours.
The PyEphem function which we mainly used in our calculations, that computes the
angular separation between two bodies at a certain time and place, performs a single
calculation in about 0.022 ms on an Intel i5-8250U CPU. Given the large number
of calculations we perform (29,565 days, 72 times per day in 614 points around the
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globe), the algorithm runs in ≈ 29 million ms or 8 hours.

However, the runtime can be improved as follows. For example, for solar eclipses
a significant optimization consists in performing an initial check. We calculate the
angular separation at midday (12:00 UTC) at the Equator (lat 0◦,lon 0◦); if this sep-
aration is >= 30, then the chance that it will reach a value smaller than the sum of
the apparent radii of the Sun and Moon is low, so we disregard this day as an eclipse
candidate. While this reduces our running time to about 1 hour, it remains still high
in comparison to existing algorithms.

To drastically reduce our running time, we may check in fewer points around the
globe just once per hour. Therefore, we check in every point P ∈ Slongitude ×
Slatitude, where Slongitude = {0◦,90◦,180◦,270◦} and Slatitude = {0◦,45◦,−45◦}.
This completes running in about 2 minutes, but misses 5 lunar and 6 solar eclipses.
These are also the points and frequency we use for the dataset which we will use
to assess the Machine Learning models described in Sec. 3.2. Meeus’ algorithm
completes the same task in ≈33 ms.

5.2. MACHINE LEARNING METHODS

For each ML classification algorithm discussed in Sect. 3.2, we first selected the
hyperparameters of each model in order to achieve the best accuracy coefficient and
F1 score (cf. Sect.4) §

The training data is composed of the best angular separation values for each day in
the 1950–2019 interval, while the test data consists of each day between 2020 and
2100. Because we are interested in the performance of our proposed methods on
predicting only the chosen time interval, we do not use cross-validation, but simply
validate each day’s actual label with its predicted label. We did not use a separate
validation set for hyperparameter tuning, because we do not expect the training set
to have any issues which may cause biased evaluation of the model, such as over-
or under-fitting. The reason for this is that, having a single feature (e.g., the optimal
separation, depending on the type of eclipse), small differences are notable and we
need to take into account as much data as possible.

Tables 6 and 7 showcase the results for solar and lunar eclipses; for each model, we
can observe the number of accurate and inaccurate predictions and the performance
(cf. Relation 2) and F1 scores. It can be easily observed that for both solar and lunar
eclipses, all models perform well, but two in particular achieve the highest scores,

§The relevant hyperparameters were selected as follows: for the kNN model we used k = 7; for the
Decision Tree, maximum depth 2; for the Random Forest: maximum depth 2, 100 estimators, minimum
samples split 30, criterion Gini Impurity; for Logistic Regression, we used the default parameters.
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Table 6

Performance results of tested classification algorithms for solar eclipses.

Model TP FN FP TN Perf. F1

kNN (k=7) 179 (0.61 %) 3 (0.01%) 21 (0.07%) 29,381 (99.31%) 0.868 0.937
Decision Tree 179 (0.61 %) 3 (0.01%) 23 (0.08%) 29,379 (99.31%) 0.857 0.932

Random Forest 179 (0.61 %) 3 (0.01%) 21 (0.07%) 29,381 (99.31%) 0.868 0.937
Logistic Regr. 170 (0.57 %) 12 (0.04%) 20 (0.07%) 29,382 (99.32%) 0.824 0.921

Table 7

Performance results of tested classification algorithms for lunar eclipses.

Model TP FN FP TN Perf. F1

kNN (k=7) 182 (0.62 %) 3 (0.01%) 22 (0.07%) 29,377 (99.30%) 0.865 0.936
Decision Tree 182 (0.62 %) 3 (0.01%) 23 (0.08%) 29,376 (99.30%) 0.859 0.933

Random Forest 182 (0.62 %) 3 (0.01%) 23 (0.08%) 29,376 (99.30%) 0.859 0.933
Logistic Regr. 175 (0.59 %) 10 (0.03%) 20 (0.07%) 29,379 (99.31%) 0.838 0.921

namely k-Nearest Neighbors and Random Forest, with a performance score > 0.82.
The Decision Tree and Logistic Regression classifiers are not far behind, with a score
of ≈ 0.85 and ≈ 0.82, respectively. In the case of lunar eclipses, the Decision Tree
performs as well as the Random Forest classifier.

It is important to note that the false positives detected by the four models are dates
exactly before or after (±1 day) an exact eclipse prediction. The misprediction usu-
ally takes place for eclipses that occur close to midnight (we use UTC throughout this
paper), making it more likely to falsely mark the previous or next day as an eclipse.

As for the three false negatives missed by the best-performing models (k-NN and
Random Forest) they are three penumbral lunar eclipses and three partial solar eclipses,
all with very small coverage and barely perceptible visually (cf. Table 8).

The best-performing models only miss ≈ 3 eclipses, while the numerical algorithm
that computes the best angular separation with the same frequency and number of
points around the globe misses ≈ 5. However, the numerical algorithm does not de-
tect any false positives, unlike our models. This indicates that our numerical method
maybe is not perfectly calibrated in order to obtain a balance between false positives
and false negatives. By changing the parameter that dictates where the separation
between a positive and negative finding is, we can tune the sensitivity of the algo-
rithm based on previous results. In order to achieve this balance, a solution would be
manually finding the optimal parameter by binary-searching it (if we obtain too many
false positives, we make it more restrictive; if we obtain too many false negatives, we
make it more permissive). This highlights the advantage of ML methods, which are
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Table 8

Magnitude of eclipses missed by the best-performing models.

Date Eclipse Type Magnitude

2054-08-03 Partial solar 0.0655
2069-05-20 Partial solar 0.0879
2083-07-15 Partial solar 0.0168
2060-11-08 Penumbral lunar -0.938
2078-11-19 Penumbral lunar -0.91
2092-07-19 Penumbral lunar -0.90

designed to automatically detect and calibrate this type of parameters.

Also, contrary to our proposed numerical methods (cf. Sect. 3.1.2) the ML algo-
rithms run faster. They need about 15 min to prepare the data (e.g., calculate the best
angular separation per day), after which training and testing take less than 4 seconds.

6. CONCLUSION

Since ancient times people have attempted to predict eclipses. Of all the cultures,
the Babylonians developed sophisticated methods for recording and predicting the
positions of celestial bodies. There are even records that they knew the Saros eclipse
cycle.

Currently, we have sophisticated algorithms based on the Sun and Moon’s ephemerides
which accurately predict when and where eclipses are visible. The question that
arises from studying ancient Babylonian sources is “how accurate would be the pre-
diction of eclipses by using knowledge available at their time?” and “could a modern
computer learn to predict eclipses similarly to a human ancient astronomer by relying
on the dates when eclipses occurred?”. In this research, we proposed several simple
algorithms and tested their accuracy on solar and lunar eclipses occurring world-
wide between 2020–2100 CE. We note here that even some modern day algorithms
(i.e. Meeus (1998)) miss eclipses and require parameter adjustment. In addition, dis-
crepancies between the NASA eclipse database (Espenak and Meeus (2006)) and the
list on www.timeanddate.com exist. We have for instance the partial solar eclipse
of October 2098 and the penumbral lunar eclipse of July 2027. Both figure in the
NASA database as low magnitude eclipses, but not on www.timeanddate.com; the
lunar eclipse is described as an “almost-eclipse”, while the solar eclipse is not men-
tioned at all. Other low magnitude eclipses are however visible in both cases (e.g.,
the penumbral lunar eclipse from May 2013).

The first algorithm uses simple arithmetic operations to predict eclipses, requiring as
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input three dates: a Full/New Moon that is also an eclipse (depending on whether we
want to predict solar or lunar eclipses), and one ascending and one descending lunar
node. The algorithm accurately predicts 90% of lunar and 81% of solar eclipses.
For lunar eclipses it detects ≈ 18 false positives and false negatives; based on the
dates we checked, that is ≈ 0.12% falsely detected dates. For solar eclipses it falsely
detects ≈ 0.25% dates, out of which ≈ 33 are false positives and false negatives.

The second method treats eclipses as visual phenomena and attempts to check if the
geometrical relation between the Sun and Moon (as seen by an observer located in a
specific point of the globe), indicative of an eclipse, is validated. This algorithm’s ac-
curacy depends on the number of points and moments in time for which we perform
the check. For instance if we check three times per hour in approximately 700 points
around the globe, we achieve perfect accuracy (no false positives or negatives). How-
ever, the process takes about 7 hours. The runtime can be improved by reducing the
frequency and number of points but this increases the percentage of missed eclipses,
indicating a lack of balance between the false positives and negatives and a need for
better tuning of the algorithm’s parameters.

The ML models perform very well with the best models (k-Nearest Neighbors Classi-
fier and Random Forest Classifier) accurately predicting 98% of both lunar and solar
eclipses. In each case, we miss 3 eclipses and falsely detect ≈ 22 eclipses (which
are always ±1 day from an actual eclipse date).The code for all described methods
is available at https://github.com/marasferdian/eclipse-prediction.

Our study showed that: (1) by using knowledge available to Babylonians we can
predict eclipses with a reasonable level of accuracy; and (2) modern ML algorithms
simulating human inference can predict eclipses with almost perfect accuracy.
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