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Abstract

With the integration of renewable energy into power systems, traditional power systems
face new challenges. Due to their inherent fluctuations and variability, the introduction
of renewable energy in power systems poses new challenges in modelling uncertainty.
Controlling and optimising the operation cost by adjusting the output generation of renewable
energy resources makes the operation more reliable and secure.

We first formulate the optimal power flow (OPF) problems for both the transmission and
distribution systems and investigate the variables that greatly affect the outcome.

Solving the power system optimal operation problem, we realise the importance of
uncertainties involved with renewable energy due to the inherent variability of weather data.
Accurate forecasting mechanisms that address their inherent intermittency and variability
enable the smooth integration of such resources in power system operations. To solve this
problem, in the next step, we propose a novel probabilistic framework to predict short-term
PV output taking into account the variability of weather data over different days and seasons.
We go beyond existing prediction methods, building a pipeline of processes, i.e., feature
selection, clustering and Gaussian Process Regression (GPR). We make use of datasets that
comprise power output and meteorological data such as irradiance, temperature, zenith, and
azimuth. First, a correlation study is performed to select the weather features which affect
solar output to a greater extent. Next, we categorise the data into four groups based on solar
output and time using k-means clustering. Finally, we determine a function that relates the
selected features with solar output using GPR and Matérn 5/2 as a kernel function. We
validate our method with five solar generation plants in different locations and compare with
the existing methodologies. More specifically, to test the proposed model, two different
methods are used: (i) 5-fold cross-validation; and (ii) holding out 30 random days as test
data. To confirm the model accuracy, we apply our framework 30 independent times on
each of the four clusters. The average error follows a normal distribution, and with a
95% confidence level, it takes values between −1.6% to 1.4%. The proposed framework
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decreases the normalised root mean square error and mean absolute error by 54.6% and
55.5%, respectively, compared with other relevant works.

Although we address the integration of a Microgrid into the distribution power network
in the first research question, we yet need to address the transmission system constraints, as
the incorporation of renewable energy into power systems poses serious challenges to the
transmission and distribution power system operators (TSOs and DSOs). To fully leverage
these resources, there is a need for a new market design with improved coordination between
TSOs and DSOs. To answer the last research question, we propose two coordination schemes
between TSOs and DSOs: one centralised and another decentralised that facilitate the
integration of distributed based generation; minimise operational cost; relieve congestion;
promote a sustainable system. To this end, we approximate the power equations with
linearised equations so that the resulting OPFs in both the TSO and DSO become convex
optimisation problems. In the resulting decentralised scheme, the TSO and DSO collaborate
to allocate all resources in the system optimally. In particular, we propose an iterative
bi-level optimisation technique where the upper level is the TSO that solves its own OPF and
determines the locational marginal prices at substations. We demonstrate numerically that the
algorithm converges to a near-optimal solution. We study the interaction of TSOs and DSOs
and the existence of any conflicting objectives with the centralised scheme. More specifically,
we approximate the Pareto front of the multi-objective optimal power flow problem where the
entire system, i.e., transmission and distribution systems, is modelled. The proposed ideas
are illustrated through a five-bus transmission system connected with distribution systems,
represented by the IEEE 33- and 69-bus feeders.
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Chapter 1

Introduction

1.1 Motivation

Over the past years, many countries have opted to integrate renewable energy resources such

as solar energy in the grid to increase the penetration of environmental friendly resources

(see, e.g., [3–5]) as well as to find cleaner methods of powering electric vehicles [6]. As an

example, Japan, China, Germany, USA, and UK are able to meet 80% of their demand from

solar generation; and the total installed solar energy capacity at the end of 2018 was more

than 500 GW [4, 7]. However, the large-scale penetration of renewable energy resources

into conventional power distribution systems presents different challenges to power system

operation. Considering the connected power distribution grid, the optimal operation of these

renewable energy resources provides a promising future for the power grid. The ratio of r/x,

the ratio of the system resistance to the system reactance, makes the voltage of each bus

sensitive to active power injections (e.g., [8]). Therefore, one way to control the voltage is

to inject active power that storage-based resources and renewable energy resources can do

through power system optimal operation management (e.g., [9]).

More specifically, the inherent uncertainty of these resources, e.g., irradiance, temperature

and cloud conditions, makes its smooth integration into power system operations a formidable

challenge. The intermittency of solar generation might cause issues in system stability, power
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balance and frequency response, and reactive power generation (see, e.g., [10–12]). As a

result, building accurate forecast models of solar generation is of vital importance.

Furthermore, incorporating renewable energy into the power system also challenges

power system operators’ transmission (TSO) and distribution (DSO). On the one hand, the

transition of the power system into the new carbon-free system is inevitable; on the other

hand, these resources might disturb the power system quality, voltage, and frequency [13].

The TSO can use these renewable energy resources (RES) to mitigate the power quality,

improve the congestion management and the operation cost, and the DSO can use the local

energy resources. However, despite all the techno-economic benefits of RESs, and also the

new incentive policies which governments have introduced [14] to support the investor in

the energy sector, the power network operators need to work in a more coordinated and

collaborative mode to be able to maintain the reliable power system [15–17]. Specifically, the

procurement of RESs as ancillary services (AS) in the power system needs the coordination

between the distribution (DS) and the transmission system (TS) [18].

1.2 Problems Overview and Research Objectives

As mentioned in the previous section, there are difficulties in integrating renewable energy

resources into traditional power systems. This dissertation aims to propose solutions to

smooth the power system’s transition into the new carbon-free system. To this end, the

dissertation starts with modelling a distribution network into a linear optimal distribution

network considering a Microgrid that comprises different renewable energy resources. The

main objectives are to optimally operate a microgrid comprising different distributed gen-

erators comprising the upper-hand distribution power system and to minimise each bus’s

voltage deviation from the reference value. Thus, we approximate the AC load flow into a

linearised AC load flow and solve the optimization problem in a deterministic framework

using Quadratic programming.

Then, to model the PV output in a more realistic framework in the power system, we

propose a forecast model to predict the solar output for five different sites. Due to the solar
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output dependency on the weather type and its parameters, most recent works have focused

on the seasonality trends or weather types rather than on the time of day. However, the

solar output in one season does not necessarily follow the same pattern. Also, PV energy

resources’ inherent uncertainty due to, e.g., irradiance, temperature and cloud conditions,

makes its smooth integration into power system operations a formidable challenge.

Considering a large-scale penetration of PV-Batteries into the power network, we aim

to help the Transmission system operator (TSO) and distribution system operator (DSO)

maintain and operate their system more reliably and collaboratively. To this end, we propose

an iterative algorithm to solve a bi-level TSO-DSO coordination scheme in a decentralised

manner where no sensitive information is being exchanged. Furthermore, we will analyse

the interaction of TSOs and DSOs, i.e., how conflicting their objectives and priorities are, by

formulating a common TSO-DSO OPF scheme where the Pareto front is determined.

1.3 Research Questions

The essential focus of this dissertation addresses the following research questions:

• How do we improve the solar output forecast model considering the inherent uncer-

tainty of weather data?

• Considering the integration of the distributed generation into the power systems, how

do we model the coordination schemes between the distribution and transmission

power system?

1.4 Main Contributions

In this dissertation, we have focused on the impact of renewable energy on the power system.

The main contribution and focus of our work are summarised as:

• The identification of highly correlated features with solar output through a preprocess-

ing stage which will make the solar forecast model simpler, demanding less data with

yet greater prediction accuracy.
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• Development of clustering techniques based on time of day and categorization of data

into four clusters that improve the accuracy of the GPR model beyond the state-of-the-

art techniques.

• Choice of using Matérn 5/2 as kernel function that has not been exploited for solar

output prediction previously despite its capability to solve probabilistic problems.

• Proposing the transmission-distribution coordination schemes by using a bi-level

iterative approach and Quadratic optimization techniques.

• Constructing a centralised TSO-DSO framework which is used to quantify the opera-

tors’ conflicting objectives and provide appropriate incentives for their coordination.

• Proposing a decentralised TSO-DSO scheme that reaches a near-least cost solution by

respecting the privacy concerns of TSOs, DSOs; is computationally efficient; relieves

congestion; and increases the level of DG resources’ integration.

1.5 List of Publications

A number of articles have been published during this PhD. Part of this dissertation is based

on the following peer-reviewed journal and conference papers.

1.5.1 Peer-reviewed Journal

• F. Najibi, D. Apostolopoulou, and E. Alonso, “Gaussian process regression for

probabilistic short-term solaroutput forecast,” International Journal of Electrical

Power and Energy Systems, 2021 .

• F. Najibi, D. Apostolopoulou, and E. Alonso , “TSO-DSO Coordination Schemes to

Facilitate Distributed Resources Integration”, Sustainability, 2021.
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1.5.2 Conference

• F. Najibi, D. Apostolopoulou, and E. Alonso, “Clustering Sensitivity Analysis for

Gaussian Process Regression Based Solar Output Forecast”, PowerTech IEEE

PES, 2021.

• F. Najibi, D. Apostolopoulou, and E. Alonso, “Optimal dispatch of pumped storage

hydro cascade under uncertainty”, in 2018 UKACC 12th International Conference

on Control, pp. 187–192, IEEE, 2018.

1.5.3 Poster Presentation

• Poster/Talk on ‘Microgrid Optimal Operation’ , Doctoral Symposium, City Univer-

sity of London, 2018.

1.6 Dissertation Outline

This dissertation includes six chapters and is organized as follows:

1. Chapter 1 discusses the motivations for the research conducted in this dissertation.

Also, a short description of the related work is discussed. The contributions of this

thesis and the list of publications are also presented in this chapter.

2. Chapter 2 provides the constructive literature review on the power system optimal

operation, different forecast models, and different coordination schemes between the

transmission and distribution power systems.

3. In Chapter 3, the power system optimal operation is discussed. The linear model that

we developed for the deterministic optimal operation is formulated.

4. Chapter 4 presents an enhanced performance Gaussian Process Regression framework

with the choice of a specific kernel for probabilistic short-term solar output forecast.

This chapter starts with a brief introduction to the related work. Then, the data



6 Introduction

processing as the correlation study and clustering analysis is described. Next, the

formulation of the GPR with Matérn 5/2 as a kernel function related to the solar

output with the input features is discussed as the framework validation methodologies.

In the last section of this chapter, we illustrate the proposed methodology through

five different datasets. In conclusion, we will summarise the results and make some

concluding remarks.

5. In Chapter 5 proposes two different coordination schemes will be presented to help the

TSO and DSO to operate the power system more smoothly. This section encompasses

the power grid data, load data, and the mathematical formulation of linear approxima-

tion. Then we will go over implementation and the numerical results. And finally, the

comparison between different schemes will be elaborated in detail as in the conclusion.

6. Chapter 6 is the final chapter where all results will be discussed, final remarks will be

made, and reflections will be presented on the research aims and outcomes. Also, we

will provide more suggestions for future research.



Chapter 2

Literature Review

The literature review is divided into the following sections: In the first section, a relevant

history on the power system optimal operation considering the integration of renewable

energy is discussed. Then, following the renewable energy challenges in the previous section,

section 2.2 provides more information on the exigency of proposing solar output forecast

model. More specifically, this section presents a brief history of different solar forecast

models and the specific Gaussian Process Regression technique which we exploited in this

thesis. After providing more information on the forecast model, we elaborate the impact of

renewable energy, e.g., PV-battery systems on the power system in detail, and we review

different coordination schemes provided to help the Transmission System Operator (TSO)

and Distribution System Operator (DSO) collaborate, and operate the system in a more

reliable way.

2.1 Power System Optimal Operation

In this part, we review the literature about various studies on the power network operation

management approaches. The power system’s optimal operation in Microgrids’ presence

can be either steady-state or dynamic. Moreover, both operation modes can be simulated in

deterministic or probabilistic frameworks. In this section, firstly, we go through studies on
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microgrid optimal operation problem, Followed by the research question that we solved in

this dissertation.

By the advent of new technologies in power systems, the regulation of active power

and voltage in distribution systems led to growing interest in injecting the active power

by utilising renewable energy resources into the power system [19]. Moreover, with the

increase in the number of electric vehicles (EV), the distributed generators outputs need to

be optimally coordinated to avoid any undesirable voltage fluctuation. As a revolution in

technology, interest in Microgrids (MG) is increasingly growing. Microgrids are electrical

distribution systems including loads, distributed generators (DGs) such as microturbines,

wind generators, photovoltaic modules (PV) within clearly defined generations that act as a

single controllable system with respect to the grid [20]. Microgrids can be operated either

as islanded or as connected to the power network. Some relevant studies on the optimal

Microgrid operation are provided as follows. In [21], the authors proposed an optimal load

frequency control that improves a load frequency control system’s efficiency in all balancing

areas. In this work, the authors suggest a distributed load frequency control system that

imitates economic dispatch behaviour. In [22], one neural network control approach is

presented to control a Microgrid and the DGs within the Microgrid. This controller is more

potent than the conventional method, which is investigated in [23]. In [24], one approach

is implemented to control the load in islanded MGs. In [25], the authors tried to review

comprehensive methodologies implemented on the optimal allocation of renewable energy

resources.

In [26, 27] one intelligent method is used to manage the MG system to optimise operational

cost. Also, one Fuzzy ARTMAP Neural Network is used to forecast hourly day-type

productions based on which output generations can be predicted. The authors in [28, 29]

presented one heuristic algorithm to optimise a Microgrid operation cost. This algorithm is

GSA. In this control system, the load demand and generation are both foretasted by using

fuzzy systems and ANN. In [30], one approach is presented to control the residential loads

by predicting the market price in a real-time electricity pricing environment. In [31], the
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authors proposed an IGDT method to investigate an operation strategy for CHP units in a

competitive electricity market.

As a further analysis, probabilistic analyses are needed in MG problems to promote the

system’s performance besides optimising the operation cost. The renewable energy resources

insert uncertainty into the power system, and the load demand and utility price are uncertain.

Therefore, modelling uncertainties is necessary. Different methodologies can be exploited

to model uncertainties. In [32], the authors tried to propose a hybrid stochastic/robust

optimisation model to minimise the expected net cost, which equals operation cost minus

the total benefit demand. In this article, the results with and without Microgrid bidding in

the day ahead are compared. It is clearly demonstrated that if a Microgrid participated in

the day-ahead market, it can anticipate the energy from the day-ahead market. In [33] an

approximation of dynamic programming-based approach is proposed for economic dispatch

of Microgrid comprising different distributed generators. In this work, the authors modelled

the uncertainties by employing the Monte Carlo method for sampling training scenarios.

Also, they used piecewise linear function approximation for their proposed strategy. This

work showed that the optimal solution is very close to the optimal global solution. However,

in this work, the upper hand power grid is not modelled, and the method is implemented on

Microgrid. In [34], the research focuses on renewable-based AC/DC Microgrid system price

and service quality. The authors tried to utilise renewable energy resources by maintaining the

state of charges in batteries. The system working is categorised into four distinct operating

manners to satisfy both DC and AC loads in the system without power transfer between

the micro-grids. Eleven operational modes are defined with power conversation amongst

the AC source and DC source grids. Although this work’s results show the effectiveness

of their method, this approach is more successful in isolated Microgrids. In [35], one

stochastic framework is proposed for the Microgrid energy scheduling problem. The proposed

approach aims to minimise the expected operation cost and power losses while considering

renewable energy resources’ uncertainties. The production cost for PV and Wind turbine

units is assumed to be zero; however, these units are expensive, and their operation cost

cannot be neglected. In [36] a model predictive control based on linear mixed-integer linear
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programming is proposed and tested on an experimental Microgrid located in Athens, Greece.

This method is using commercial solvers to solve the problem efficiently. However, in this

work, uncertainties are not modelled. New energy management methodologies are introduced

by many researchers all over the world day-to-day. One of the new methods emphasised

utilising the whole energy system is proposed in [37]. The authors aimed to present an

approach based on deep learning to optimise renewable energy resources utilisation and

minimise power loss. They tested the results on a 100-routers test system to prove the

effectiveness of their methods.

In [38], the authors address the problems of Microgrid energy management in Energy

Internet (EI). Actually, EI’s main benefit is autonomous systems such as solar panels and

wind turbines (WT), which can be integrated into the traditional power system and supply

energy to their customers. This work aims to maximise each market player’s individual

objective function while guaranteeing a reliable system operation and satisfying demand load.

To model the uncertainties, they consider WT uncertainties by using a deep learning-based

short-term forecasting algorithm for wind power by combining stacked auto-encoders (SAE),

and a back-propagation genetic algorithm. The energy management problem is then modelled

by a three-stage Stackelberg game to capture the dynamic interactions and interconnections

among electricity users, the Microgrid, the utility company, and the energy storage company.

Despite the model effectiveness, the stochastic behaviour of all sources is not modelled. In

[39], the authors aimed to optimise the droop coefficients of dispatchable distributed energy

resources for a Microgrid in the Energy Internet (EI) considering the volatility of renewable

energy generation. Although renewable energy resources can be integrated into EI, they

can not be penetrated on a large scale because of uncoordinated renewable generators into

the Microgrid, especially the distribution network. This will cause a high level of volatility

system disturbances. In [40], an intelligent management method is proposed to optimise a

Microgrid operation cost and environmental impact. In this work, an artificial neural network

is used to predict PV, WT output and load demand (LD). Also, a fuzzy logic expert system is

used for battery scheduling. This work shows considerable improvement in minimising the
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cost compared to previous methods based on opportunity charging and Heuristic Flowchart

(HF) battery management.

In [41], the authors model one Microgrid considering the uncertainty of storage based

on a 2m point estimate method. The evolutionary algorithm is also used to optimise the

objective function. In [42], the authors try to consider the uncertainties of DGs, market price

and load demand for one MG operation problem by considering one electro-thermal model

of PV. In this research, the authors suggest a probabilistic framework to take into account the

uncertainties. Also, one optimisation Back Tracking Search algorithm is used to optimise

the objective operation cost. The optimisation algorithm, electro-thermal PV model and

the probabilistic approach, which are implemented in [42] have better performances than

the models represented in previous work [43]. In [43], the authors model the probabilistic

behaviour of random parameters with one scenario-based methodology. One simple PV

module is simulated as one of the Microgrid distributed generators, and an evolutionary

algorithm is presented as a tool to optimise the objective function.

All in all, Microgrid contribution to the power distribution grid improves energy efficiency,

power quality, and reliability. To achieve this, the optimal operation of the Microgrids is

of the primary concern. The optimal Microgrid operation objectives are typically based on

optimising the benefit, which can be minimising the real power loss, optimising the voltage

profile or maximising the revenue (e.g. [20, 44–51]). To this end, we consider one Microgrid,

which comprises different renewable energy resources to inject active power to the grid.

Moreover, the operation cost is regarded as another objective goal that can be achieved by

controlling the output generation of each renewable energy resource.

In our work, we aim to model the power network into a linear model to minimise cost as

well as to optimise voltage deviation. We use Quadratic programming to solve the problem.

We will provide the model in Chapter 3. It is worth noting that this chapter motivates what

we propose in Chapter 5 as coordination management schemes between transmission and

distribution power systems.
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2.2 Solar Output Forecast Model

PV output forecasting may be classified into four groups based on the approach used to model

solar panels and weather behaviour, namely: (i) statistical methods; (ii) Artificial Intelligence

(AI); (iii) physical models; and (iv) hybrid approaches [52]. Statistical approaches are based

on available historical measured meteorological and PV output data as well as numerical

weather forecasts. AI methods use machine learning techniques such as Artificial Neural

Networks (ANNs) to capture the non-linear relationship between weather data and solar

output and construct a probabilistic model [53]. These methods may be classified in a group

(i) above if their performance is judged by statistical metrics [54]. Physical models focus on

numerical weather forecasts and the use of satellite images to predict weather parameters

such as solar irradiation as input to a PV model to determine the solar generation output.

Last, hybrid models combine the approaches mentioned above.

There are several advantages and disadvantages associated with each group of methods.

For instance, in physical models where a detailed description of the panels based on the

single diode model is used, weather data’s stochastic nature is neglected (see, e.g., [55]).

Moreover, the output is based on a PV datasheet; therefore, partial failure and downtime

of a PV plant are not considered. As such, physical models usually have less accuracy in

their forecasts compared to AI algorithms. Other studies pivot around statistical approaches

or hybrid models that incorporate machine learning and statistical techniques. In [56] a

probabilistic forecast model is proposed as a linear programming model. The authors used the

Extreme Learning Machine (ELM) and quantile regression to efficiently develop a statistical

approach to generate a confidence interval on the forecasted power generation. ELM was

also used in [2] to forecast day-ahead solar output. In [1, 57], different distribution functions

were combined to predict a 15-minute ahead probability distribution function of PV output

based on a higher-order Markov chain. This method has been recently proved to improve

generalisation in comparison to a standard multilayer perceptron (MLP) [58]. Although a

plethora of contemporary studies have focused on ANNs and Support Vector Regression

approaches in the context of forecasting [59], other machine learning techniques such as

regression trees can also be used based on available historical data. According to [60], which
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discusses the assessment of different forecasting techniques, most ANNs and persistence

models disregard the uncertainty provoked by the random behaviour of meteorological data.

On the other hand, regression techniques incorporate uncertainty and are able to build a

probabilistic forecast model. For example, in [61, 62], the authors utilised a Support Vector

Machine (SVM) to predict PV output based on different meteorological conditions.

In addition, physical models for PV forecasting need a large amount of accurate equipment

data that are hard to obtain due to measurement and simulation errors [63]. On the other hand,

AI techniques, such as SVM and ANNs, are solely based on historical statistical data for

training [64]. Gaussian Process Regression (GPR) exploits the advantages of both methods

in the sense that it uses both historical data and data fitting approaches to build a robust

model [65]. It should be noted that mathematical modelling of the uncertainties of output as

a function of uncertainties of input is outside the scope of this work (see, e.g., [66]).

Among all the approaches used to predict solar output, GPR is one of the most powerful

due to its flexibility to be applied to a wide range of time-series data [67, 68]. GPR is a unique

method for modelling uncertainty in a probabilistic framework setup [69]. In modelling

weather forecasts, the uncertainty of input attributes is taken into account by using GPR,

which treats input data as random points with an unknown distribution function. Therefore,

the uncertainties are reflected in the output forecast with a specific confidence interval. GPR

is based on Bayesian statistics, which help us to model and quantify uncertainty in the

parameters. Moreover, the non-linear relationship between solar output and meteorological

weather parameters can be explicitly modelled using an appropriate kernel function [70].

In comparison to other methods, GPR is more efficient for prediction in time-series events

with a wide range of variation for each hour of a day over one year [71]. By using GPR,

the uncertainty of the input data is reflected in the output forecasts since this technique

assumes each input as a random variable with an unknown distribution. This is true due to

the Bayesian nature of GPR. Details on the proposed method may be found in [72] Recent

work has focused on using GPR [67] to forecast wind power output (see, e.g., [73–77]).

For instance, the authors in [77] proposed GPR using the squared exponential kernel for

wind output forecast. Their approach showed promising results. However, the focus of GPR
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methods for forecasting solar output is more limited (see, e.g., [78, 79]). In [78], a weighted

GPR approach is proposed so that data outliers have less importance in the forecast model.

More specifically, the authors use outlier detection by integrating a weighted covariance

function into GPR to identify different features and outliers that influence output forecast.

In [79] a Grouped Gaussian Process (GPP) is used as a linear combination of different

independent GPRs to forecast the solar output. The authors combined data from twelve

Sydney sites and ten Adelaide sites in Australia. They exploited GGP with separable kernel

functions as a multi-task framework for solar output forecast based on different data from

different sites.

In Chapter 3, we elaborate on GPR in detail, and also we provide more information on

the main contribution of our work and address the gap in the previous studies.

2.3 Transmission-Distribution Coordination Schemes

In recent years, power systems have undergone critical changes due to the penetration

of renewable energy. In turn, incorporating renewable energy into power systems poses

serious challenges to transmission and distribution system operators (TSOs and DSOs).

The transition to a carbon-free power system is welcome; however, concerns about the

quality, voltage and frequency of such systems have been raised [13]. The main objective

is to use renewable energy sources (RESs) and guarantee efficient congestion management,

reduction in operational costs, and increased flexibility while using local energy resources [80–

82]. Working in this direction, governments have introduced incentives through policies

that support the integration of RESs and encourage the collaboration and coordination of

operators to maintain reliable and cost-efficient power systems [14, 17]. For instance, in

[15] a hierarchical economic dispatch model was proposed to control the congestion in a

power network and provide a unified bid function to network operators. In [16], the authors

addressed issues about the intermittent nature of non-dispatchable resources, which requires

the network operators to cooperate on new regulations, network designs, and congestion

management solutions. Ancillary services are an example of the need for coordination
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between TSOs and DSOs [18]. RESs can specifically provide distribution systems with

ancillary services such as spinning reserves, voltage support and real-time frequency control.

Currently, such services are commonly priced, and cleared in the wholesale markets. However,

to fully leverage such services from these resources, it is paramount to create a new market

design where new technologies such as microgrids become smoothly integrated into power

systems [83, 84]. Existing centralised power market models lack appropriate mechanisms to

insert more environmentally friendly resources into distributed grids.

In this dissertation, we assume that in the current practise, the TSO solves its own optimal

power flow (OPF) and determines the locational marginal prices (LMPs) at the substations.

Next, the DSOs dispatch distributed generation (DG) by optimising cost and considering

the LMP at the substation as a fixed parameter. To facilitate the integration of RESs into

power systems, the interaction between TSOs and DSOs, which are responsible for balancing

the demand and supply, could be further improved (see, e.g., [85, 86]). Research has been

focused on proposing methods that increase the level of coordination between TSOs and

DSOs. These vary from centralised to totally decentralised methodologies. In centralised

schemes, the TSO is responsible for satisfying the system demand in both the transmission

and distribution systems using generators at both levels. In a more common market model,

on the other hand, each operator is responsible for its own operation cost minimisation

taking into account the RESs connected to each system respectively [87]. Such models

are referred to as decentralised schemes where the TSO and DSO collaborate [88]. More

specifically, in decentralised schemes, DSOs and TSOs need to agree on the point of common

coupling (PCC) power flow interchange. The DSO operates its local system considering

the TSO’s bid to supply energy to the distribution system at the PCC; this is usually the

LMP at the PCC. Before solving the DSO OPF, the TSO solves its own OPF representing

the entire distribution system by its netload. Therefore, the DSO can operate its system

with the knowledge of the supply function for the real power, i.e., the bid function, from the

TSO. After the DSO solves the OPF considering the local constraints, the DSO can again

participate in the TSO market and receive the payment for its energy supply sent back to the

transmission system [89]. Decentralised TSO-DSO coordination approaches are categorised
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as hierarchical or distributed [90]. In hierarchical TSO-DSO coordination schemes, the

interaction between distributed resources in the distribution (lower level) system and the

transmission (upper level) power system is like a leader-follower type, where the leader has

fixed decision variables and leads the followers in making decisions [91]. In distributed

TSO-DSO, all local RESs connected to the market communication graph can potentially be

selected to meet the load. A detailed representation of the physical distribution system at a

nodal basis as well as its market structure is necessary [92].

In Chapter 5, We will elaborate more on our proposed coordination schemes.



Chapter 3

Power System Optimal Operation

In order to solve the power system optimal operation problem, we started our research by

addressing the issues associated with the integration of microgrids into the conventional

power system. Microgrids are electrical distribution systems including loads, distributed

generators(DGs) such as microturbines, wind generators, photovoltaic modules (PV) within

clearly defined generations that act as a single controllable system with respect to the

grid [20].This chapter lays the ground for the research undertaken and reported in Chapter 5.

3.1 Introduction

Integrating renewable energy resources into conventional power systems makes their oper-

ation more complex. Microgrids are gaining popularity due to their ability to satisfy local

demand and sell energy to the grid. Moreover, they can inject active power into buses in

power systems and improve bus voltages. Although the microgrid can supply the energy for

local consumers, it is more beneficial for these systems to store energy in the storage devices

and sell it to the grid in time intervals such that the energy is expensive. One way to integrate

the storage devices into the microgrid is to allocate batteries in the system. The other way

is coupling the resources that have complementary characteristics, such as a photovoltaic

source, to a hydroelectric resource. In this case, the pumped hydro serves as storage when

the solar generation exceeds the netload. For example, when the solar generation is high, the
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potential power output of the other is lower, e.g., hydro generation (e.g. [93], [94]). This

is true when the solar irradiance is high and there is no rainfall, thus reducing the water

inflows to the hydroelectric system and the potential output of the hydroelectric resource.

Moreover, when the solar generation is not sufficient to meet the net load, the pumped hydro

has satisfactory ramping capabilities to quickly ramp up to meet the load. The other resources

that can be integrated into MG include a wind turbine and microturbine.

This chapters aims to model the distribution power system AC power flow considering

the microgrid optimal management problem to control the generators power outputs and

improve the voltage of each bus. The uncertainty, intermittency and variability associated

with renewable generators and the nonlinear AC load flow make the problem nonlinear. To

linearize the problem, we consider the nonlinear nature of AC load flow and approximate the

power system to a linear system. The objective function is thus linearized and can be solved

by exploiting linear programming techniques.

Briefly, in this chapter, we linearize the load flow to make the optimization problem linear

and convex. The case study is a 33-bus IEEE standard feeder. A microgrid comprising

five renewable generators such as photovoltaic(PV), wind turbine (WT), hydroelectric plant,

battery and microturbine (MT) is connected to this feeder. The main objectives include the

cost of operation, generation, and the voltage deviation of each bus.

3.2 Methodology

In this part, the objectives are clarified, and the mathematical model is presented:

3.2.1 Microgrid modeling

Firstly the grid-connected microgrid is modelled. The microgrid is implemented on one 33

buses IEEE test feeder as a case study as shown in Fig. 3.1. The bus data for this feeder

can be found in [95]. This microgrid comprises one photovoltaic (PV), wind turbine (WT),

battery as storage, hydroelectric plant and microturbine (MT). The local load is met by

microgrid; however, excessive generation can be sold to the grid. Also, the load is met by
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Fig. 3.1 The diagram of the network used with the locations of the various resources

the grid when local generation is not sufficient. These loads include different loads such as

commercial, residential and domestic heat water load [43]. The bids information of each

generators are presented in table 3.1 [43]. The tariff for different renewable technologies can

be found in [96]. The values used for the load demand, market price and PV and WT power

production can also be seen in figure 3.2. As demonstrated in table 3.1 the solar plant, hydro

plant and WT are the most expensive units but have an environmental advantage since they

don’t use any fossil fuel. Thus, it is more beneficial to use them in the new power system.

The other reason to use such green energies would be finishing fossil fuels shortly. Using the

battery as a storage device, we can store energy to sell to the grid at an appropriate time to

gain revenue.

Type Node Min power(KW) Max power(KW)
Bid

(ect/kwh)
PV 3 0 30 2.584
WT 4 7 30 1.073

Battery 5 -25 25 .38
Hydro plant 6 5 30 2.294

MT 8 20 50 .457

External grid 1 -75 75 -

Table 3.1 The limit information and bid information for each generator
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Fig. 3.2 Estimated values of the load demand, market price and PV and WT power production.

3.3 Optimal Power Flow Formulation

In this section, we formulate the linearized OPF models for transmission and distribution

systems. More specifically, we formulate the augmented DC OPF for the transmission

system by defining its objective and constraints. Next, we present the linearized model for

the network representation of the distribution system and other constraints and determine the

objective of the DSO; these are used as input to the DSO OPF.

This chapter mainly focuses on the distribution network constraints, and we assume that the

transmission system constraints are satisfied. However, this chapter motivates us to address

the interactions between the transmission and distribution systems in Chapter 5 as in different

coordination schemes.

3.3.1 Transmission level

The AC OPF at the transmission level is a nonlinear non-convex problem as it has nonlinear

equality constraints, e.g., the power balance. Using a DC formulation of the power flow, we

obtain a convex problem known as the DC OPF. The objective function at the transmission

DC OPF usually comprises the generators’ cost. In this paper, we augment the objective

function with a soft penalty function on the sum of the squared voltage angle differences, as
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suggested in [97]. This augmentation has both physical and mathematical benefits. From

a physical perspective, it provides a way to conduct sensitivity experiments on the size of

the voltage angle differences that could be informative for estimating the size and pattern of

AC-DC approximation errors. From a mathematical perspective, augmentation could help to

improve the numerical stability and convergence properties of any applied solution method.

The resulting augmented DCOPF is a strictly convex quadratic problem that can be solved

through quadratic programming. The constraints of the OPF refer to the nodal power balance,

whose dual variables are the LMPs, the line flow limits, and the generation limits.

We consider a time period of interest T = {1, . . . ,T} with time increments denoted by

∆t and a power system consisting of the set of K nodes K = {1, . . . ,K}, with the slack

bus at node 1. We denote the set of I generators by I = {1, . . . , I}, the set of J loads

by J = {1, . . . ,J}, the set of generators connected to bus k by Ik, i.e., I = ∪k∈K Ik;

the set of loads connected to bus k by Jk, i.e., J = ∪k∈K Jk; and the set of L lines by

L = {ℓ1, . . . , ℓL}. Each line is denoted by the ordered pair ℓ= (n,m) where n is the from

node, and m is the to node with n,m ∈K , with the real power flow f ℓ ≥ 0 whenever the

flow is from n to m and f ℓ < 0 otherwise. We assume that each bus is connected to at least

one other bus. We consider a lossless network with the diagonal branch susceptance matrix

Bd ∈ RL×L. Let A ∈ RL×K be the reduced branch-to-node incidence matrix for the subset of

nodes K /{1} and B ∈ RK×K be the corresponding nodal susceptance matrix. We assume

that the network contains no phase shifting devices and so B⊤ = B. We denote the slack bus

nodal susceptance vector by b1 = [b11, . . . ,b1K]
⊤, with b1 +B1K = 0, where 1K is the unit

K-dimensional vector. We denote by PGi the power injection of generator i ∈I , by PL j the

power withdrawal at load j ∈J , and by θk the angle at node k, as node 1 is the slack bus

θ1 = 0.
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The mathematical formulation of the augmented DC OPF at the transmission level at

hour t ∈T is presented as follows:

min
PGi(t),i∈I ,θk(t),k∈K

∑
i∈I

ci(t)+π ∑
ℓ=(m,n)∈L

(θn(t)−θm(t))2

subject to ∑
i∈Ik

PGi(t)− ∑
ℓ∈L

BdℓAθ(t) = ∑
j∈Jk

PL j(t),k ∈K ,←→ λk(t),

f m ≤ f (t) = BdAθ(t)≤ f M,

Pm
G ≤ PG(t)≤ PM

G , (3.1)

where Bdℓ is the ℓth row of the Bd matrix; f M and f m are the values of the maximum real

power flow allowed through the lines in L in the same direction and in the opposite direction

of line ℓ, respectively; π is a coefficient for the generator’s angles as part of our objective.

and Pm
G (PM

G ) is the vector of lower (upper) generation limits. Usually, the cost of generator

i ∈I is a quadratic function in the form of ci(t) = αiPGi(t)+βiP2
Gi
(t)+ γi. The LMPs are

the dual variables of the nodal power balance denoted by λ (t) = [λ1(t), . . . ,λK(t)]⊤.

3.3.2 Distribution Level

We assume a radial distribution feeder with a set of N buses denoted by N and a set of N−1

lines denoted by L ′. Bus 1 denotes the PCC with the TSO and is considered to be the slack

bus. For each bus, i, Vi stands for the bus voltage magnitude, while pi and qi represent the

injected active and reactive power, respectively. For each line segment in L ′ that connects

bus i to bus j, ri j and xi j stand for its resistance and reactance, respectively, and Pi j and Qi j

for the real and reactive power from bus i to j respectively. In addition, the set N j ⊂N

denotes bus j’s neighbouring buses, which are further downstream. The linear equations that
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model the distribution feeder for each line (i, j) are as follows (see, e.g., [8]):

Pi j−∑k∈N j Pjk =−pi + ri j
P2

i j+Q2
i j

V 2
i

, (3.2)

Qi j−∑k∈N j Q jk =−qi + ri j
P2

i j+Q2
i j

V 2
i

, (3.3)

V 2
i −V 2

j = 2(ri jPi j + xi jQi j)− (r2
i j + x2

i j)
P2

i j+Q2
i j

V 2
i

. (3.4)

The nonlinear part in the equations above, i.e.,
P2

i j+Q2
i j

V 2
i

, corresponds to the power losses in the

system, which are assumed to be zero in our work. Also, under relatively flat voltage profile,

i.e., Vi ≈ 1, we have V 2
i −V 2

j ≈ 2(Vi−Vj). Thus, we have:

M⊤0
[
V1V⊤

]⊤
= m0 +M⊤V = DrP+DxQ, (3.5)

where M0 ∈ RN×(N−1). More specifically, its lth column corresponds to one line segment

(i, j) ∈L ′, the entries of which are all zero except for the ith and jth ones, where M0
il = 1

and M0
jl =−1 when j ∈ Ni, i.e., bus i is closer to the feeder head. mT

0 corresponds to the first

row of M0 and denotes the slack bus while the rest of the matrix is shown by M with the

size of (N−1)× (N−1) [98]. We assume V1 = 1 and define the vectors [Vi : ∀i ∈ {N / 1}],

P = [Pi j : ∀(i, j) ∈L ′], Q = [Qi j : ∀(i, j) ∈L ′]. We define Dr and Dx as (N−1)× (N−1)

diagonal matrices with the lth column and row entry that corresponds to one line segment

(i, j) ∈L ′ equal to ri j and xi j respectively. Thus, (3.2)-(3.4) can be written in the form of

matrices as:

−MP =−p, (3.6)

−MQ =−q, (3.7)

V = Rp+Xq−M−1⊤m0, (3.8)

with p= [pi :∀i∈{N / 1}], q= [qi :∀i∈{N / 1}], R=M−1⊤DrM−1 and X =M−1⊤DxM−1.

As can be seen in (3.8), the relationship between the voltage and real power is now linear.

Let us assume a set of D distribution systems denoted by D = {1, . . . ,D} connected to the

transmission system. For each d ∈D we know the PCC, which is denoted by kd . The OPF at
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each distribution system d ∈D has a goal to minimise the cost of electricity purchased from

the transmission system, the cost of distributed resources and the voltage deviation from the

reference value. The cost of electricity at the substation for the time period T is a function

of the LMP at the PCC at time t denoted by λkd(t) and the amount of power purchased from

the transmission system at time t, i.e., Pd
grid(t), and is defined as follows:

∑
t∈T

(
λkd(t)P

d
grid(t)∆t

)
. (3.9)

We denote by N d
PV the set of PVs connected to distribution system d. The cost of PV

generation resource is formulated as:

∑
t∈T

∑
i∈N d

PV

BPViPPVi(t)∆t, (3.10)

We denote by N d
DG the set of DGs connected to distribution system d. The cost of DGs are

formulated as:

∑
t∈T

∑
i∈N d

DG

BDGiPDGi(t)∆t, (3.11)

where BPVi is the cost of PV generation at node i, and BDGiis the cost of DG generation at

node i. We denote by N d
B the set of battery systems connected to the distribution system d.

The cost of battery systems is equal to:

∑
t∈T

∑
i∈N d

B

BBi(P
ch
Bi
(t)+Pdis

Bi
(t))∆t, (3.12)

where BBi is the cost of the battery system at node i. We denote by Pch
Bi
(t) the charging power

of the battery system at node i at time t and by Pdis
Bi

the discharging power of the battery

system at node i at time t. The voltage deviation from some reference value is defined as

follows:

∑
i∈N

∑
t∈T

α(Vi(t)−Vref)
2, (3.13)
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where α is the voltage regulation cost and Vref is the voltage reference value. The constraints

of the distribution system OPF include the maximum and minimum limits for the decision

variables:

Pmin
PV,i ≤ PPVi(t)≤ Pmax

PV,i , i ∈NPV , t ∈T , (3.14)

Pmin
DG,i ≤ PDGi(t)≤ Pmax

DG,i, i ∈NDG, t ∈T , (3.15)

Pch,min
B,i ≤ Pch

Bi
(t)≤ Pch,max

B,i , i ∈NB, t ∈T , (3.16)

Pdis,min
B,i ≤ Pdis

Bi
(t)≤ Pdis,max

B,i , i ∈NB, t ∈T , (3.17)

V min
i ≤Vi(t)≤V max

i , i ∈N , t ∈T , (3.18)

Pd,min
grid ≤ Pd

grid(t)≤ ∑i∈Ik
PGi(t), t ∈T , (3.19)

where Pd,min
grid is defined by the interchange flow limit between the distribution system d and

the transmission system. We model the battery system i as follows (see, e.g., [99])

Emin,i ≤ ∑
t∈T

(
ηch,iPch

Bi
(t)− 1

ηdis,i
Pdis

Bi
(t)
)

∆t +E0,i ≤ Emax,i,∀i ∈NB, (3.20)

where E0,i is the initial value of the energy stored, Emax,i and Emin,i are the maximum and

minimum energy that can be stored in the battery. The network constraints from (3.6)-(3.8)

for every time step t ∈T are defined as follows:

V (t) = Rpi(t)+Xqi(t)−M−1⊤m0, (3.21)

pi(t) = PPVi(t)+PDGi(t)+Pdis
Bi

(t)−Pch
Bi
(t)−Ploadi(t),∀i ∈NPV ∩NB, (3.22)

pi(t) = PPVi(t)+PDGi(t)−Ploadi(t),∀i ∈NPV \NB, (3.23)

pi(t) = Pdis
Bi

(t)−Pch
Bi
(t)−Ploadi(t),∀i ∈NB \NPV , (3.24)

pi(t) =−Ploadi(t),∀i ∈N \NPV ∩NB, (3.25)

qi(t) =−Qloadi(t),∀i ∈N , (3.26)

where Ploadi(t) is the real load at bus i at time t and Qloadi(t) is the reactive load at bus i at

time t.
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The OPF at the distribution system d ∈D is formulated as follows:

min
PPVi(t),P

ch
Bi
(t),Pdis

Bi
(t),Vi(t),Pd

grid(t)
(3.9)+ (3.11)+ (3.12)+ (3.13)

subject to (3.15)− (3.26). (3.27)

3.4 Quadratic Programming

After we linearise the problem, we can solve the problem using quadratic programming [100]

as follows:

min
x

f (x) =
1
2

XT H X + cT X

subject to Ain X ≤ Bin,

Aeq X = Beq,

(3.28)

where f (x) in our problem is the objective function of the distribution OPF, as described in

Equation 3.27. XT denotes the vector transpose of all decision variables. Ain X ≤ Bin and

Ain X ≤ Bin represent all inequality and equality constraints respectively. H stands for the

Hessian matrix of the objective function, wherein our problem represents a coefficient for the

voltage regulation cost. c denotes the generation cost in our problem. When we optimize the

cost to a reference point x0, H is set to its Hessian matrix H( f (x0)) and c is set to its gradient

∇ f (x0).
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3.5 Results

In this part, the results presented are based on the case study of one 33 bus IEEE standard

feeder which has been defined in previous parts. The cost before the optimization is calculated

using the estimated value in Fig. 3.2. After we run the optimization, the cost is the summation

of generation cost and voltage regulation as explained in Section 3.3.2. In Figure 3.3 the

cost before and after optimization is shown. As can be seen, the cost after optimization has

decreased. However, this cost is calculated for H = 1 including the utility cost, the generation

cost, and the value of voltage optimization (sum of square of the voltage deviation).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

1

2

3

4

5
Cost before

Cost After

Fig. 3.3 Cost before and after optimization

In Figure 3.4, the cost is divided into different parts and as seen the generation cost is the

most significant part of the objective function which is beneficial for the operators because

the utility cost decreased as can be seen in Figure 3.4.
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Fig. 3.4 Optimal cost divided into different cost parts

In table 3.2 the cost value before and after optimization is demonstrated. As seen,

the cost is significantly reduced after the optimization. More specifically, buying energy

from renewable energy resources is more beneficial for the grid than supplying energy as

standalone system to all customers.
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Value Total cost before (ect/kwh) Total cost after(ect/kwh)

1 1.06 0.47

2 1.07 0.44

3 1.17 0.41

4 1.24 0.40

5 0.95 0.41

6 1.18 0.47

7 1.00 0.51

8 1.84 0.68

9 2.28 1.62

10 3.88 3.43

11 4.47 3.67

12 4.39 4.05

13 3.22 2.39

14 4.45 3.88

315 3.25 2.29

16 2.65 2.12

17 2.14 1.33

18 1.43 1.31

19 0.92 0.81

20 1.23 0.79

21 1.73 1.21

22 1.21 0.69

23 0.83 0.53

24 1.02 0.49

Table 3.2 Total cost before and after optimization



30 Power System Optimal Operation

1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Fig. 3.5 The total cost value for H=1,2,3,4,5 for the first hour
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Fig. 3.6 The total cost value for H=1,2,3,4,5 for 24 hour

The output generation of different generators is presented in Figure. 3.7. It can be seen

that the PV, WT, and hydroelectric plants are the most expensive units but have the benefits

of not requiring fuel as well as being green energy. As expected, the summation of output

generation and utility production meets the load. The values of the generators’ output are

presented in table3.3. As can be seen in the table in the intervals that the utility bid is low,

the battery starts to charge and in the time intervals that the utility cost is more, the battery
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starts to discharge. The hydro plant is producing the minimum amount of energy since they

are expensive units. The PV just produce energy in the intervals that the irradiance of the sun

is present, however as seen in table 3.3, the PV and the battery can act as complementary to

each other as well.

Table 3.3 Optimal output generation

The voltage deviation in this work is between .95pu to 1.05pu which is the standard

range in the distribution power system. However, the maximum deviation after and before

optimization is .07pu which is in the range of acceptable voltage deviation, e.g., %10. The

mean value of deviation is .03pu. These results can be seen in Figure 3.8 and Figure 3.9

respectively.
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Fig. 3.7 Output generation for H=1 for 24 hours
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Fig. 3.8 Maximum Voltage deviation from the reference voltage for 24 hours
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Fig. 3.9 Average Voltage deviation from the reference voltage for 24 hours

3.6 Conclusion

This chapter solved the first problem we aimed to solve as an optimal microgrid operation to

address the first research question. The power system is moving fast towards a more carbon-

free power energy system. However, the high penetration of renewable energy resources

into the power system forces the conventional power to adapt to these new changes resulting

in a smarter power system. To maintain the power system stability, frequency, voltage and

optimize the operation cost, in the chapter, we proposed a deterministic linear microgrid

operation framework to optimize the operation cost and maintain the busses’ voltages at a

nominal range. The microgrid included different resources such as photovoltaic(PV), wind

turbine (WT), hydroelectric plant, battery and microturbine (MT). The microgrid is modelled

in a 33 buses IEEE standard feeder. The results illustrated improvement in the cost before
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and after we ran the optimization algorithm. Also, to quantify the influence of parameter

H in the optimization, we have run a sensitivity analysis as by increasing the value of this

parameter, the objective function increased.



Chapter 4

Solar Output Forecast

After addressing the issues with the operation of distribution power network, we realised

the importance of an effective forecast model for the renewable energy output. Thus, we

move into the second research question in this chapter by providing solutions on an enhanced

forecast model for the solar output.

4.1 Introduction

Based on the relevant literature on solar output forecast models, despite the appealing

features of GPR methods, there are still significant challenges in the implementation of GPR

to ensure satisfactory performance and avoid ad-hoc implementations. The new smart grid

paradigm involves the availability of numerous input parameters and introduces the idea

of working with high dimensional datasets. However, without an effective input feature

selection mechanism, such data-driven models become computationally expensive. Also, the

models become more prone to overfitting and their prediction accuracy decreases with the

increase of redundant features [101, 102]. Data clustering helps identify and group datapoints

with similar patterns and distributions together. This way, we transform the unstructured data

into more homogeneous clusters and empower the machine learning algorithm to analyze

and extract important information much more efficiently [103–105]. In this regard, we

enhance GPR performance by integrating feature selection and pre-clustering techniques;
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and selecting the appropriate kernel function. Our choice of kernel Matérn 5/2 has shown

promising results for wind power output forecast and for fault location prediction in power

systems [106, 107]. Using Matérn 5/2 as a kernel function increases the accuracy of forecast

due to the capability of this kernel in solving stochastic problems [108]. The process of

training and testing models are depicted in Figs. 4.1, 4.2. As shown in Fig. 4.1, we build

a dataset which comprises of solar output and meteorological weather data. We perform a

correlation study to identify the features that have a high impact on solar output in order to

improve the accuracy of the forecast and reduce computational complexity. The features

selected are: direct solar irradiance, diffused solar irradiance, horizontal solar irradiance,

temperature, zenith, and azimuth. Next, we partition the data into four groups based on time

and solar output using k-means clustering. Each hour of the day is considered to belong in one

specific cluster. We use GPR to relate solar output generation with the selected features and

train each cluster using Matérn 5/2 as a kernel function for the forecasting model. We apply

it to different datasets from different sites, i.e., Denver, New York, Dallas, San Francisco, and

St. Lucia, to validate the proposed framework. We build a dataset combining meteorological

weather data and solar output for four geographical locations which is publicly available to

foster research in the area1. We validate the results by utilising both k-fold cross validation

and holding-out data techniques.

Solar Output

Weather data

Feature
Selection Clustering

Training

Dataset

Trained
Models

Training
Dataset

Fig. 4.1 The proposed process of building trained models.

1https://figshare.com/s/3b114c8fa4574dc0dd69
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Fig. 4.2 The process of testing our trained models to predict solar output.

We choose 30 random days from the dataset as hold-out test set to represent different

weather conditions. To test the model, we first use the clustering algorithm to determine

the cluster each test data point belongs to. Then, we use the corresponding trained GPR

model to predict the solar output for each test data point, as shown in Fig. 4.2. The numerical

results’ section shows that the average forecast error follows a normal distribution, and with

95% confidence level, it takes values between −1.6% to 1.4%. The proposed framework

decreases the normalised root mean square error (RMSE) and mean absolute error (MAE)

by 54.6% and 55.5%, respectively, when compared with other relevant works. It should be

noted that clustering and feature selection were implemented only on the training dataset, i.e.,

excluding the testing dataset, to avoid data leakage. The main contribution of this chapter

is summarised as the combination of all following steps, resulting in one coherent novel

forecast model: i) the identification of highly correlated features with solar output through a

preprocessing stage which makes the model simpler, demanding less data while prediction

accuracy is still high; ii) development of clustering techniques based on time of day and

categorisation of data into four clusters that improves the accuracy of the GPR model beyond

state of the art techniques; and (iii) choice of using Matérn 5/2 as kernel function which has

not been exploited for solar output prediction previously in spite of its capability in solving

probabilistic problems.

The remainder of this chapter is organised as follows. In Section 4.2 the data processing

is described. More specifically, in Section 4.2.1 the correlation study to identify the features
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that have a high impact on solar output is presented and in Section 4.2.2 the clustering of the

dataset is described. In Section 4.3 the proposed framework is developed. In particular, in

Section 4.3.1 the GPR with Matérn 5/2 as a kernel function that relates the solar output with

the input features is discussed and in Section 4.3.2 the framework validation methodologies

are presented. In Section 4.4, we illustrate the proposed methodology through five different

datasets. In Section 4.5, we summarise the results and make some concluding remarks.

4.2 Data Processing

In this section, we present the processing that needs to be performed to the data in order

to formulate the proposed framework. In particular, we describe the feature selection and

clustering methodologies.

4.2.1 Features’ Selection

Before clustering the data into four clusters, we carry out a correlation study to identify

the highly related features to the historical output power. In fact, studies have found that

meteorological data such as temperature and solar irradiance are the main features which

affect the solar output [109], however there are still other features which affect the solar

output significantly. We choose to perform feature selection to make the proposed model less

sensitive to changes and not prone to overfitting. If a very simple model is developed, it has

a high bias and is likely to fail to predict complex relationships. As such, by selecting the

appropriate number of features a balance between complexity and bias is achieved [110, 111].

Another reason to select fewer features is that less data needs to be collected to apply the

framework.

There are different feature selection approaches, such as filter (e.g., Pearson correlation,

Spearman correlation), wrapper (e.g., cross-validation) and embedded techniques [112].

Although, the Pearson correlation coefficient might not be the most robust one, it is neverthe-

less one of the standard coefficients as shown in the recent studies (see, e.g., [113–117]).

The main benefit of using Pearson coefficient is its time-effectiveness and small compu-
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tational complexity [118]. To this end, we calculate Pearson and Spearman correlation

coefficients of solar generation and meteorological features of different datasets from Denver,

New York, Dallas, and San Francisco that can be found in National Solar Radiation (NSR),

Iowa Environmental Mesonet (IEM), and National Renewable Energy Laboratory (NREL)

databases.

Let us assume, we have a collection of data over a period of T hours. We use the Pearson

correlation, which linearly measures the relation between solar output and each feature,

defined as a correlation coefficient. The Pearson correlation coefficient between vectors

a ∈ RT and b ∈ RT is calculated by the following formulation [119]:

ρ(a,b) =
1

T −1

T

∑
t=1

at−µa

σa
· bt−µb

σb
, (4.1)

where at (bt) is the value of a (b) at time t, µa and σa (µb and σb) are respectively the mean

and the standard deviation of a (b). The Spearman coefficient is equivalent to calculating

the Pearson correlation coefficient on the ranked, i.e., ordered data and used to determines if

there is a nonlinear relationship between the selected features and solar generation [120].

We assume that we have data for different features for T time intervals denoted as Xi ∈RT

where i = 1, . . . ,M is the index of each feature we perform the correlation study on and

Y ∈ RT is the time-series solar output. More specifically, meteorological weather data refer

to direct solar irradiance, diffused solar irradiance, horizontal solar irradiance, temperature,

sky cloud covering, zenith (angle between sun and zenith), azimuth (angle between sun and

the North), albedo, visibility, ozone (cm), humidity, and wind speed (knots) i.e., M = 12. We

calculate the correlation coefficients ρ(Xi,Y ) for i = 1, . . . ,M to determine which features

affect in a greater extent the solar output.

In Table 4.1, the correlation coefficient values for all attributes are presented. As seen in

this table, we obtain the similar results by using either Pearson or Spearman coefficients. The

value of correlation coefficients for sky cloud covering, albedo, visibility, ozone, humidity

and wind speed are very small in comparison to other features, therefore the aforementioned

features are not included in the selected feature set.
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Feature Pearson coeff Spearman coeff
Horizontal solar irradiance 0.81 0.86

Zenith 0.81 0.86
Direct solar irradiance 0.71 0.77

Diffused solar irradiance 0.64 0.81
Azimuth 0.49 0.52

Temperature 0.27 0.28
Albedo 0.07 0.09

Humidity 0.06 0.05
Sky cloud covering 0.03 0.02

Visibility 0.02 0.02
Ozone 0.01 0.01

Wind speed 0.003 0.003

Table 4.1 The absolute value of correlation coefficients between solar output and different
features.

It is worthy to note that although albedo is a good measure to show how well a surface

is reflecting the light (for instance, green grass and white sand snow have albedo values

of 0.24 and 0.67 respectively [121]), representation of albedo as a constant value produces

unsatisfactory and unreliable results for radiation exchange [122]. Considering that our

datasets manifest a constant value of albedo and taking into account the small correlation

value, we do not include this feature in our dataset. Moreover, cloud covering increases

the interpretability of the model, i.e., the effect of the amount of clouds in the sky is more

understandable for a human observer than other measurements, e.g., zenith. However, as

shown in Table 4.1 cloud covering has a very small correlation with solar output generation.

It has been shown in [123] that the effect of cloud covering on solar panels, without the

knowledge of thickness, density and type of clouds, cannot be quantified. As the correlation

coefficient also shows, one can ignore this feature and expect the model’s accuracy not to

deteriorate.

To sum up, based on the analysis above and the criterion we define using Table 4.2 [124],

we eliminate the features with small and no correlation from the dataset. In our model,

temperature represents the medium correlation, and direct solar irradiance, diffused solar

irradiance, horizontal solar irradiance, zenith, and azimuth represent the strong correlation
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value. Thus, six features were identified as the parameters which affect more prominently PV

output generation, namely, direct solar irradiance, diffused solar irradiance, horizontal solar

irradiance, temperature, zenith, and azimuth. The number of features whose relationship with

solar generation was originally studied was twelve. The accuracy of the forecasts was better

and the computational complexity was reduced in the case of six selected features compared

to twelve. To estimate computation time, on average a run with all twelve features takes 17.9

minutes. With our selected six features it takes 10.3 minutes in a Windows machine which

is equipped with AMD® FX-9830P RADEON R7 CPU with 4 Cores at 3.00 GHz and 16

GB of RAM. The lead time is hourly. However, if weather data for the selected features are

available for a greater amount of time, the one hour lead time can be extended. Moreover,

in terms of forecast errors introduced with training models with six compared to twelve

feature data we compare the effect in the accuracy against the increase in the number of

features. More specifically, we select solar data from Denver International Airport PV, i.e.,

Site A (see Table 4.3 for more details) and calculated the following error metrics when six

and twelve features were selected respectively. Let us denote by y(t)⋆ , the forecasted value

for solar generation at time t, and by ỹ(t) the actual value at time t; the error metrics are

calculated as follows:

RMSE =

√√√√ 1
T⋆

T⋆

∑
t=1

(
ỹ(t)− y(t)⋆

)2
, (4.2)

MAE =
1
T⋆

T⋆

∑
t=1

∣∣∣ỹ(t)− y(t)⋆
∣∣∣, (4.3)

where T⋆ is the number of hourly intervals we are predicting the solar output. We also

compute normalised values of the above metrics. Such metrics are widely-used to test the

performance of both deterministic and probabilistic forecast models [59, 125–129]. In terms

Strength Minimum value Maximum value
No correlation 0 0.09
Small correlation 0.10 0.24
Medium correlation 0.25 0.40
Strong correlation 0.41 1.00

Table 4.2 Correlation value thresholds
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of error for Site A the RMSE and MAE are equal to 1.48 and 0.69 MW, respectively, when

all twelve features are taken into account and 1.23 and 0.56 MW when six features were

used. Thus, we can see that selecting a large number of features can lead to worse results

than a small number due to overfitting issues.

4.2.2 Data Clustering

Prior to clustering, we perform a correlation study to identify the features that highly impact

solar output. Several papers that are dedicated to the development of solar forecasting

techniques focus on the seasonality trends or weather types rather than on the time of

day [1, 78]. The latter affects the solar output to a great extent, as shown in Fig. 4.3, where

hours in one season belong in different clusters. The figure shows that solar output in one

season does not necessarily follow the same pattern.

Fig. 4.3 3D graph of four clusters. Different colours represent different clusters.

Clustering is an unsupervised pattern classification learning technique used to partition

data with high similarity into different groups based on a distance or dissimilarity function

[130–132]. The key concepts and different clustering algorithms are discussed in [133].

k-means is a very popular clustering algorithm which is used to cluster data into different

groups while each point belongs to a cluster with the least Euclidean distance to the centroid

[134, 135].
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In previous studies, k-means is not employed to cluster output solar energy based on time

[136], while in our proposal the dataset is clustered based on output and time. PV output has

a huge amount of scattering across both the time of day and the day of year. Also, another

advantage of using k-means clustering with solar output and time of day is that no data

need to be excluded, e.g., night hours or seasonal effects, making our model flexible for all

geographical locations on earth. k-means aims to partition the data into K categories in a

way that the sum of squares from points to the assigned cluster centres is minimised. In each

cluster, all cluster centres are at the mean of the data points which belong to the corresponding

cluster. Consider a set X = {x1,x2, . . . ,xN} with N elements, where xi ∈ Rn for all of

i = 1, . . . ,N; the data point cluster number C(i) ∈ {1, . . . ,K}, i ∈ {1, . . . ,N}; the cluster

centroid for cluster k ck ∈ Rn, k = 1, . . . ,K; and the Euclidean distance d(xi,ck) = ||xi− ck||,

which is the distance between xi and cluster centroid ck. Then k-means clustering tries to

minimise the following squared error function:

minimize
{ck}K

k=1

K

∑
k=1

Nk ∑
C(i)=k

d2(xi,ck), (4.4)

where Nk is the number of points assigned to cluster k.

Fig. 4.4 Elbow statistic test.

To determine the number of clusters we use the Elbow and Gap statistic methods. The

Elbow technique uses the sum of squared errors (SSE), which is the sum of the distances
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Fig. 4.5 Gap statistic test.

between the sample points in each cluster and the centroid of the cluster as a performance

indicator for a set number of clusters [137]. More specifically, the SSE is calculated over

a series number of clusters. If small SSE values are obtained then that is an indication that

each cluster is more convergent. When the number of clusters is set to approach the optimal

number of clusters K, SSE shows a rapid decline. When the number of clusters exceeds K,

SSE continues to decline but with a slower rate. Usually the optimal number of clusters K

is obtained graphically at the point that looks like an “elbow”, i.e., at the largest inflection

point down. Once K is determined, if the selected number of clusters is less than K, the SSE

will be greatly reduced for every 1 increase of the number of clusters. On the other hand,

when the selected number of clusters is greater than K the change of the SSE will not be

so obvious for every 1 increase of the selected number of clusters. The basic idea of Gap

Statistic is to introduce reference datasets, which are generated with independent Monte

Carlo simulations sampling from an empirical distribution and to calculate the sum of the

squares of the Euclidean distance between two measurements in each cluster. To describe

the Gap methodology we define the summation of all pairwise Euclidean distances for all

datapoints in cluster k to be Dk = ∑i,i′∈Ck
d(xi,x′i) and the normalized sum of intra-cluster
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distances to be Wk = ∑
K
k=1

1
2Nk

Di. Then, we use the following function to measure the Gap

value [138]:

Gapn(k) = En [log(Wk)]− log(Wk), (4.5)

where En[·] denotes the expectation operator under a sample of size n from the empirical

distribution of the data. The optimal number of clusters based on the Gap statistic is the

smallest number k that satisfies the following expression:

Gapn(k)≥ Gapn(k+1)− sk+1, (4.6)

where sk =
√

1+1/Bsd(k) is the simulation error that is calculated using the standard

deviation sd(k) of B Monte Carlo replicates, in this study B = 500, drawn from the empirical

distribution.

In our framework the outcome of both Elbow and Gap methods for the optimal number of

clusters is four (see Figs. 4.4 and 4.5). We use R version 4.0.2 with factoextra (v. 1.0.7) and

NbClust (v. 3.0) libraries to analyse Elbow and Gap statistics. It means that if the selected

number of clusters is less than four, the cost value (i.e., the total within sum of square) will

be greatly reduced for every one increase in the number of clusters. On the other hand, when

the selected number of clusters is greater than four the change of the cost value will not

be so obvious for every one increase of the selected number of clusters. By using the Gap

method we determined that the value of four clusters corresponds to the minimum value of k

such that Gapk ≥Gapk+1−Sk+1. Specifically, the Gap value for the optimal k as the optimal

number of clusters is within one standard deviation away from the Gap value at k+1.

Site Location Size [MW] Latitude [◦] Longitude [◦]

A Denver Intl Airport 30 39.8561 N 104.6737 W
B John F. Kennedy IntlAirport 30 40.6413 N 73.7781 W
C Dallas Executive Airport 35 32.6807 N 96.8672 W
D San Francisco Intl Airport 30 37.6213 N 122.3790 W
E St Lucia 0.433 27.498 S 153.013 E

Table 4.3 Site description.
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To further study the optimal number of clusters, we perform a sensitivity study and

compare the increase in the accuracy against the increase in the number of clusters. More

specifically, we select solar data from Denver International Airport PV, i.e., Site A (see

Table 4.3 for more details) and cluster the data into one to eight clusters. For each of the

clusters we train a GPR model, as discussed in Section 4.3, and depict the error between the

forecasted and the actual values in Fig. 4.6. We use the RMSE and MAE error metrics as

defined in Section 4.2.1 along with

MSE =
1
T⋆

T⋆

∑
t=1

(
ỹ(t)− y(t)⋆

)2
. (4.7)

These metrics compare how accurate the prediction of PV is with respect to the number of

clusters. Each bar shows the average prediction error for each experiment with a different

number of clusters. A choice of a large number of clusters increases the computational

complexity of the forecasting algorithm since one GPR model needs to be trained for each

distinct cluster. From the graph, we can see that there is a big decrease in all error metrics

when the number of clusters is four. However, after increasing the number of clusters from

four to eight, we notice that there is a marginal decrease in the error metrics. Taking into

account Elbow and Gap results along with Fig. 4.6, where the sensitivity study on the number

of clusters by comparing different normalised error metrics values is presented, the optimal

number of clusters is set to four. This number provides a trade-off between two different

objectives of minimum forecast error and minimum number of clusters. Thus, the data are

grouped into four clusters, which are depicted in Fig. 4.3. Clusters 2 and 3 represent early

morning and night times. Clusters 1 and 4 represent seasonal variations. More information

about the clusters’ characteristics may be found in Table 4.4.

When applying the k-means algorithm on the datasets, one should bear in mind that the

algorithm (i) is sensitive to the outliers and the number of clusters; and works better with

spherical data [139, 140]. As such, we test the presence of outliers in our dataset using R’s

Box plot (see, e.g., [141]). No outliers are detected, as shown in the Fig. 4.7 where no data

points are observed outside the whiskers of the box plot. The y-axis is showing the output
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Fig. 4.6 Sensitivity study on the number of clusters by comparing different normalised error
metrics values.

Time PV output [MW]

Cluster number min centroid max min centroid max

Cluster 1 8 11.25 15 14.1 18.78 25.70
Cluster 2 0 3.37 11 0.0 0.35 5.40
Cluster 3 12 19.40 23 0.0 0.24 5.30
Cluster 4 7 11.43 16 1.8 9.35 14.10

Table 4.4 Clusters’ details

Fig. 4.7 Box plot of dataset that shows non existence of outliers.

power, which is between zero and 25.7 MW. In order to determine the optimal number of

clusters, we use the Elbow and Gap statistic methods [138]. Although k-means works better

on globular clusters [142], in the 3D graph of Fig. 4.3 we can see that k-means distinguished
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four clusters. We have also applied the k-medoids method on our datasets, which is more

robust to noise and outliers than k-means [143]. The results on the RMSE and MAE on the

forecast errors for Site A (see Table 4.7 for more details) when using k-medoids instead

of k-means are 1.20 and 0.55 MW, respectively. These values are very close to the ones

obtained with k-means clustering, which are 1.23 and 0.56 MW, respectively.

4.2.3 Clustering Sensitivity Implementation

To demonstrate the effect of different numbers of clusters in the performance of the proposed

forecasting methodology, we present the results for one to eight clusters. Wee use the input

weather datafor each cluster to train our GPR model and determine the nonlinear relationship

between the solar output and the weather data. To validate our methodology, we use two

datasets based on two locations at Denver and St. Lucia, and the 5-fold cross-validation and

holding-out data techniques. More specifically, to take into account different days in different

seasons, we choose 30 random days as a hold-out test dataset.

To show how the solar power forecast is affected by the number of clusters, we apply the

proposed framework on Site A for one to eight clusters. More specifically, in the case of one

cluster, we only train one GPR model for the entire dataset; in the case of two clusters, we

train two GPR models, one for each cluster; and so on until we have eight clusters and eight

GPR models. We use the 5-fold cross-validation and hold out validation techniques to obtain

the forecast errors and be able to analyse the clustering effect on the accuracy of the solar

power forecasting.

For Site A, the available historical data comprise of hourly input weather data: diffused

solar irradiance, horizontal solar irradiance, direct solar irradiance, temperature, zenith,

and azimuth from 2006, i.e., we have 6×8760 data points for weather input data and the

solar generation output. We implement the proposed framework in one to eight number of

clusters and select 30 random days as hold-out data as representative of different days of the

year during different seasons. Each cluster is trained by using Matérn 5/2 GPR and tested

by 5-fold cross-validation and hold-out techniques. The error metrics used are defined in

equations 4.2 and 4.7.
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no. of RMSE MAE RMSE MAE
clusters [MW] [MW] [%] [%]

8 0.90 0.34 2.72 1.02
7 0.80 0.26 2.43 0.78
6 1.02 0.40 3.10 1.20
5 1.18 0.49 3.58 1.48
4 1.29 0.36 3.91 1.08
3 1.53 0.47 4.63 1.43
2 1.64 0.66 4.98 2.00
1 2.94 0.58 8.91 1.77

Table 4.5 Training set error metrics for various number of clusters.

The results of the forecast error metrics for the training and test sets for one to eight

number of clusters are given in Tables 4.5, 4.6. The error metrics of the training data between

the actual and the predicted values are based on the average error of all 5 folds for the training

set. It should be noted that the test results are expected to be different from the training

set results, since 30 hold-out days are not shown to the model during the training process.

However, the results with any test set should be approximately the same as those obtained

with the training set, as it may be seen in Tables 4.5, 4.6. We notice that the error metrics

are usually improved as we increase the number of clusters. However, at the same time a

choice of a large number of clusters increases the computational complexity of the model

since for each cluster, we build a GPR model. The number of clusters needs to balance the

no. of RMSE MAE RMSE MAE
clusters [MW] [MW] [%] [%]

8 0.80 0.38 2.41 1.14
7 1.01 0.48 3.05 1.45
6 0.95 0.41 2.87 1.25
5 1.00 0.47 3.02 1.43
4 1.08 0.50 3.26 1.52
3 1.46 0.65 4.43 1.97
2 1.44 0.68 4.36 2.05
1 2.75 1.16 8.35 3.53

Table 4.6 Test set error metrics for various number of clusters.
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trade-off between two different objectives of minimum forecast error and minimum number

of clusters due to the computational complexity.

In this regard, we further study the effect of the number of clusters in the forecast error

and depict in Figs. 4.8, 4.13, 4.10 the forecasts for the training set along with the actual

values. As seen in these figures, the different patterns of solar generation are better captured

and modelled in the case of eight clusters. However, partitioning the data into four clusters

also leads to good results in comparison to eight based on the results, we can see in Fig. 4.6,

where the sensitivity on the number of clusters to different normalised error metrics values is

depicted. As such, we partition the data into four clusters and as seen in Fig. 4.3, clusters

two and three, represent the seasonal variations while clusters one and four represent early

morning and night times.In Fig. 4.8, we trained only one cluster by using Matérn 5/2 GPR.

This figure shows different patterns of solar output which are all combined together.

Fig. 4.8 Proposed framework predictions of the training data set for one cluster.

The sensitivity study demonstrated the improved framework performance, when four

clusters are chosen in terms of balancing model complexity and accuracy.
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Fig. 4.9 Proposed framework predictions of the training data set for four clusters.

Fig. 4.10 Proposed framework predictions of the training data set for eight clusters.

4.3 Proposed Forecasting Framework

In this section, the stochastic framework for the short-term forecast of PV output is presented.

More specifically, the formulation of the GPR is described and the validation methodologies

are discussed.

4.3.1 Gaussian Process Regression

In this dissertation, a model is trained for each cluster using a GPR model, which is a

supervised learning technique. We aim to learn a mapping function that relates the input

feature set data to the output data in supervised learning. In fact, GPR is a kernel-based
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nonlinear nonparametric regression technique in which the covariance function plays a crucial

role in defining the relation between input data and the responses.

Let the training set S = {(x(t),y(t))}T
t=1 be a set of i.i.d. samples from some unknown

distribution, where T is the period of available data with one hour resolution; q stands for

the number of selected features, i.e., q = 6; x(t) ∈ Rq is the vector containing all selected

features at time t; and y(t) ∈ R the solar output at observation t. With the use of a Gaussian

model we may relate the input with the output terms by:

y(t) = f (x(t))+h(x(t))
⊤

β + ε
(t), for t = 1, . . . ,T, (4.8)

where ε(t) are i.i.d. “noise” variables with independent N (0,σ2) distributions, f (x(t)) is the

mapping function Rq→ R and h(x(t)) is a set of a fixed basis function. The explicit use of

basis functions is a way to specify a non-zero mean over f (x(t)). In this work we assume that

h(x(t)) is a q×1 vector whose all entries are equal to the constant value of one, and β is the

basis function coefficient q×1 vector and is evaluated by maximising a likelihood function

as described below. For notational convenience, we define:

X =


(x(1))

...

(x(T ))

 ∈ RT×q,y =


y(1)

...

y(T )

 ∈ RT ,ε =


ε(1)

...

ε(T )

 ∈ RT ,

f =


f (x(1))

...

f (x(T ))

 ∈ RT ,H =
[
h(x(1)), . . . ,h(x(T ))

]
= ⊮q×T ,

where ⊮q×T is a q by T matrix whose all elements are one. In matrix form we may rewrite

(4.8) as

y = f (X)+H⊤β + ε. (4.9)
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We assume a prior distribution over functions f (X) as

f (X)∼N (0,K(X ,X)), (4.10)

where 0 is the mean value; K(X ,X) is the covariance matrix:

K(X ,X) =


k(x(1),x(1)) . . . k(x(1),x(T ))

... . . . ...

k(x(T ),x(1)) . . . k(x(T ),x(T ))

 ,

where k(·, ·) is the covariance or kernel function. By using the kernel function we aim

to actively model the unknown relationship between the input and the output variables.

The kernel function is defined based on the likely pattern that we can observe in the data.

One assumption to model the kernel may be that the correlation between any two points

in our input set, i.e., x(t),x(t
′) ∈ S , with t, t ′ = 1, . . . ,T, t ̸= t ′, decreases with increasing

the euclidean distance between them. This means that points with similar features behave

similarly. Under this assumption, in this work we use the Matérn 5/2 as a kernel function,

which is parameterised as follows:

k(x(t),x(t
′)) = σ2

f

(
1+

√
5d(x(t),x(t

′))
σl

+ 5d2(x(t),x(t
′))

3σ2
l

)
e−
√

5d(x(t),x(t
′))

σl , (4.11)

where d(x(t),x(t
′)) is the euclidean distance between any two input observations x(t),x(t

′) ∈

S as defined in Section 4.2.2; σl and σ f , are two other kernel parameters which show

respectively the characteristic length scale and the signal standard deviation that both belong

in Rq. The characteristic length scale σl defines how far the response variable y(t) needs to

be away from the predictor x(t) to become uncorrelated. These two parameters are greater

than zero and are formulated as follows:

σl = 10θl ,σ f = 10θ f . (4.12)
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We now define a new parameter θ to be:

θ =

θl

θ f

=

 log(σl)

log(σ f )

 ∈ Rq×2. (4.13)

From (4.9) we may write that

y| f (X),X ∼N (H⊤β ,σ2I +K(X ,X)), (4.14)

since both f (X) and ε have zero means. In order to determine the distribution that y follows,

we need to determine three parameters, i.e., β , σ2 and θ . K(X ,X) is a function of θ as

may be seen in (4.11)-(4.13). β , σ2, and θ are also known as the hyperparameters of the

kernel function. In order to estimate the parameters we maximise the following marginal

log-likelihood function

logP(y| f (X),X) = logP(y|X ,β ,θ ,σ2). (4.15)

Thus, the estimates of β , θ , and σ2 denoted by β̂ , θ̂ and σ̂2 are given by

β̂ , θ̂ , σ̂2 = argmax
β ,θ ,σ2

logP(y|X ,β ,θ ,σ2). (4.16)

We may write from (4.14) and (4.15) that

P(y|X) = P(y|X ,β ,θ ,σ2) = N (HT
β ,K(X ,X)+σ

2I). (4.17)

Thus, the marginal log-likelihood function is

logP(y|X ,β ,θ ,σ2) =−1
2
(y−H⊤β )T [K(X ,X)+σ

2I] −1

(y−H⊤β )− 1
2

log 2π− 1
2

log|K(X ,X)+σ
2I|.

(4.18)
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We concentrate the likelihood function for the subset of parameters, σ2 and θ , by expressing

β as a function of the parameters of interest and replacing them in the likelihood function.

Thus, we have that the estimate of β for given θ and σ2 is:

β̂ (θ ,σ2) = [H⊤[K(X ,X |θ)+σ
2I] −1H] −1

H⊤[K(X ,X |θ)+σ
2I] −1y.

(4.19)

By substituting (4.19) in (4.18) we have

logP(y|X , β̂ (θ ,σ2),θ ,σ2) =−1
2
(y−Hβ̂ (θ ,σ2))T

[K(X ,X |θ)+σ
2I] −1(y−Hβ̂ (θ ,σ2))

−1
2

log 2π− 1
2

log|K(X ,X |θ)+σ
2I|.

(4.20)

We now determine the hyperparameters as the output of the above optimisation problem.

Once the hyperparameters are evaluated, we may use (4.14) to predict the output of solar

generation based on the input parameters. More specifically, {x(t)∗ }T∗
t=1 be a set of i.i.d. input

points of the features drawn from the same unknown distribution; we will plug these values

in (4.14) and the unknown {y(t)∗ }T∗
t=1 can be calculated as the predicted solar output value for

the time period T∗. More details on GPR model may be found in [66, 144].

After training our model and estimating the kernel parameters for each of the four clusters,

we can use the proposed framework for solar generation forecasting. As also noted in [1, 2],

training the models is time-consuming. Therefore, it will not be cost-efficient to build a

model each time we intend to predict the solar output. As such, it is more efficient to train

the model based on historical data and then predict the solar output online. The overall

forecast block-scheme in Fig 4.12 illustrates offline and online processes. The training

process (pictured on the left) is performed offline, while the trained GPRs are used in the

online process (depicted on the right) to forecast solar output.
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Fig. 4.11 Diagram of k-fold cross-validation with k=5; the grey boxes refer to testing the
data and the white to training.
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Fig. 4.12 The overall forecast system.

4.3.2 Framework Validation

To test the accuracy of the proposed method for solar output forecasting, different tests and

validation methods are exploited. K-fold cross-validation and hold out validation are the
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most prevalent validation methods used in recent studies [145]. As depicted in Fig. 4.11, in

k-fold cross-validation, the whole data set is split into k folds: at each time, k-1 folds are

used as a training set and a one-fold as a testing set, until all folds used to build the forecast

model, typical values for k range between 3 to 10 [146]. In addition, hold-out is used to

avoid overfitting [147]. In this work both methods are used for test and validation.

In our implementation, 30 days of a year are randomly selected as hold-out data, while

the remaining data are used for training and testing using 5-fold cross-validation.

4.4 Numerical results

In this section, we provide the proposed framework results at five sites and its comparisons

with existing forecasting methodologies from the literature.

In Section 4.4.1, the five sites’ information is given; in Section 4.4.2 detailed results and

analysis of site A are given so that the reader better understands the proposed framework. In

Section 4.4.3, summarised results for all sites are provided as well as comparisons with other

methods to prove the efficiency of the proposed framework.

4.4.1 Dataset Information

Different datasets from five sites are used to test the model’s efficiency based on available

historical data from National Solar Radiation, Iowa Environmental Mesonet (IEM) and

National Renewable Energy Laboratory. The five sites’ details are given in Table 4.3. The

data for sites A-D are lagged hourly data for the year 2006 from National Solar Radiation,

Iowa Environmental Mesonet (IEM) and National Renewable Energy Laboratory. The data

for site E is also lagged observed data for years 2012 and 2013. For site E, the temporal

resolution is one-minute data for the year 2012, which are used as training set and year 2013,

which are used as test set; however, to implement our model on site E and compare it with

state of the art, we used hourly resolution data.
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4.4.2 Framework Implementation on Site A

The model is tested on the Denver International Airport PV plant, i.e., site A. The dataset

comprises of hourly attributes’ values from 2006, i.e., of 8760 data points for each feature and

the solar generation output. The experiments are run 30 independent times for each cluster;

30 random days are selected as hold-out data representing different days of the year during

different seasons. As described in Sections 4.2 and 4.3, the training set is partitioned into four

clusters, and all clusters are trained using GPR Matérn 5/2 independently and validated using

5-fold cross-validation and hold-out methods. It is also worth mentioning that in our model,

the lead time is hourly. However, if weather data for the selected features are available for a

greater amount of time, the one hour lead time can be extended. For example, if we have

an accurate weather prediction, e.g., for the next 36 hours [148], then we can forecast the

hourly solar output for the next 36 hours.

We first train the GPR model with the available hourly dataset of 335 (365-30=335)

days. In Fig. 4.13 the box plots of the predicted and actual solar output for the training

data set for the four different clusters are depicted. We use 5-fold cross-validation as a test

and validation method for our training set, which comprises hourly data points of 335 days.

Since clusters are partitioned based on similarities between the points, as shown, each cluster

follows specific patterns with specific ranges which prove the similarity of the data in them.

Fig. 4.13 Proposed framework predictions of the training data set.
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Fig. 4.14 Proposed framework hourly predictions of the training data set.

In order to further understand the value of clustering in Fig. 4.14, the box plots of the

hourly predictions and actual values of the testing data are depicted. It can be seen that there

are hours that belong to more than one cluster, which means that even the same hour patterns

may be different based on which cluster they are identified to be in. In other words, different

hours on different days, even if the days are in the same season, may behave completely

different. It can also be seen in Fig. 4.14 that Clusters 2 and 3 represent early morning

and night times and Clusters 1 and 4 represent seasonal variations, as also mentioned in

Section 4.2.2.

Fig. 4.15 hourly prediction for 30 random days.
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Fig. 4.16 30 random days 24-hour prediction with one hour intervals, Denver.

In Fig. 4.15 the forecasts and actual values of the 30 hold-out selected days that are

representative of different seasons are depicted. The x-axis of the figure has 30 days, which

correspond to 24-hour intervals for each day. As it may be seen, the two values are very close

to each other. Another visual representation of the same result, i.e., the daily hourly forecast

of the 30 days, seen in Fig. 4.16, where we notice that the predicted and the actual values

(true response) follow the same pattern.

In order to test the accuracy of the forecasts, we use the following statistical metrics:

RMSE, and MAE, as defined in (4.2) and (4.3). The statistical results for the training set

and the test set are summarized in Table 4.7. The error metrics of the testing data between

the actual and the predicted values are based on the average error of all five folds for the

training set. To interpret these values, notice that the higher RMSE and MAE values, the less

predictive the model is. In addition, it should be noted that the test results are expected to

be different from the training set results since 30 hold-out days are not shown to the model

during the training process. However, the results with any test set should be approximately

the same as those obtained with the training set, as it may be seen in Table 4.7.

Site A RMSE [MW] MAE [MW] RMSE[%] MAE[%]

Training set 1.24 0.36 4.18 1.22
Test set 1.23 0.56 4.12 1.89

Table 4.7 Site A forecasts’ error metrics.

The error between the actual and the forecasted value for the 30 hold-out days is depicted

in Fig. 4.17. The average prediction error of the hold-out days for one cluster is fitted into
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a normal distribution. In this figure, the y-axis represents the percentage of hours. It can

be seen that for 54% of the hours, i.e., 382 hours, the prediction error is less than 0.03

MW. In order to provide a confidence level to the forecast, we use the confidence interval

(CI) [149]. The selection of a confidence level for an interval determines the probability that

the confidence interval produced will contain the true parameter value. Common choices for

the CI are 0.90, 0.95, and 0.99. The CI is defined as follows:

CI =
(

ε̄− z⋆
σε√
T⋆
, ε̄ + z⋆

σε√
T⋆

)
, (4.21)

Where ε̄ is the mean value of the errors, σε is the standard deviation, and T⋆ is the sample size

of the errors. The value z⋆ represents the point on the standard normal density curve, such that

the probability of observing a value greater than z⋆ is equal to p. The relationship between

CI and p is p = (1−CI)/2. Thus, if we wish to have a CI of 95% then p = 0.025. The value

z⋆ such that P(Z > z⋆) = 0.025, or P(Z < z⋆) = 0.975, is equal to 1.96 as we may find in a

standard normal distribution table. As the size of the width of the corresponding interval

decrease, the confidence level decreases. By fitting a normal distribution in Fig. 4.17 we have

mean value ε̄ = 0.03 and a standard deviation σε = 0.50. Now, we may calculate the CI for

various confidence levels; for instance, with 95% confidence level, the difference between

the actual data and the prediction value of each point ranges between [−0.47,0.43] MW or

[−1.6%,1.4%]. On the other hand, our model produces a prediction interval (PI) for each

Fig. 4.17 Probability distribution fitting of average error of one sample model.
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Fig. 4.18 Prediction interval with 95% confidence level and one hour look-ahead time for 17
June, 2006 at Site A.

point estimate, giving the lower and upper bounds within which the predicted solar output is

expected to fall with a 95% confidence level. As seen in Figs. 4.18, 4.19, the hourly forecast

is bounded with the PI lower and upper bounds produced for each hour. As we can see, the

predicted PV line, which is constructed by connecting the central points of PIs, is close to the

actual PV output. In order to provide more statistical metrics appropriate for probabilistic

forecasts (see, e.g., [129]), we evaluate the Prediction Interval Coverage Probability (PICP)

and the Prediction Interval Normalized Root-mean-square Width (PINRW), which are two

standard performance metrics used to evaluate model accuracy [150]. PICP measures the

Fig. 4.19 Prediction interval with 95% confidence level and one hour look-ahead time for 17
March, 2006 at Site A.
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number of observed values within the predicted intervals and the reliability of the Prediction

Interval (PI). These are defined as follows:

PICP =

(
1
T∗

T∗

∑
t=1

C(t)

)
·100%, (4.22)

where

C(t) =

1 ỹ(t) ∈ [L(t),U (t)]

0 ỹ(t) /∈ [L(t),U (t)]

,

where L(t) = ȳ− z⋆ σy√
T⋆

and U (t) = ȳ+ z⋆ σy√
T⋆

are the lower and upper values of the prediction

interval and ỹ(t) is the observed value at time t with ȳ and σy representing the mean and

standard deviation of the solar output predictions respectively.

PINRW =
1
A

√√√√ 1
T∗

T∗

∑
t=1

(L(t)−U (t))2, (4.23)

where A is the range of target data. It can be seen that larger PICP and narrower PINRW

indicate higher quality PI [125]. In our work for Site A, the PICP score is 93.89%, which

implies that the reliability of the PI is very high. Also, PINRW is 5.68% which shows a

narrow prediction interval. Thus, the PICP and PINRW results show a high-quality prediction

interval that has a high value of PICP and a low value of PINRW. It is worthy to note that

these values are averaged over 30 independent runs.

As a further investigation, to validate the rationality of the proposed approach, we

use a Q-Q plot as a graphical tool to illustrate the reliability of the forecast [151]. If the

forecast system is statistically reliable, the forecast falls inside the prediction interval [152].

Furthermore, as depicted in Fig. 4.20, the error is falling around the straight line, which shows

that the error between the observations and the estimations follows a normal distribution and

thus indicates the suitability of our approach.
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Fig. 4.20 Q-Q plot of absolute error between the observed value of sample test data points
and their predicted value.

4.4.3 Summary of results of all sites

In order to further validate our framework, we have applied it to the remaining four sites

as given in Table 4.3. Following the same procedure, as described in more details in

Section 4.4.2, we have four clusters per site; from each dataset, we hold-out 30 representative

days and train a GPR model for each cluster with the remaining data. The results for each

site are summarised in Table 4.8 for the training dataset and in Table 4.9 for the test dataset.

As seen above, the results for all datasets are approximately in the same range, which means

that the model may be applied in any site under the assumption that the data of the selected

features are available.

To further prove the effectiveness of the proposed framework, we compare our results

with other recent studies. In order to make the comparison meaningful, we need to have

access to the same set of data. The work presented in [1, 2] use the same data for site E,

Site RMSE [MW] MAE [MW] RMSE [%] MAE [%]

A 1.25 0.36 4.18 1.22
B 1.39 0.63 4.18 1.91
C 1.51 0.59 4.33 1.69
D 1.39 0.30 4.21 0.92
E 0.02 0.01 4.48 1.96

Table 4.8 Training set error metrics for all sites.
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Site RMSE [MW] MAE [MW] RMSE [%] MAE [%]

A 1.23 0.56 4.12 1.89
B 1.51 0.66 4.58 2.00
C 1.61 0.72 4.60 2.06
D 1.44 0.65 4.38 1.98
E 0.02 0.01 3.48 1.85

Table 4.9 Test set error metrics for all sites.

RMSE[%] MAE[%]

Proposed framework 3.48 1.85

[1]

Fall 13.85 8.48
Winter 7.67 4.16
Spring 13.60 8.08

Summer 16.43 10.73

[2]
ELM 12.84 6.68
MLP 13.33 7.53

Table 4.10 The comparison of forecast error metrics for our framework against two other
methods ([1, 2]), for site E.

which are available from the University of Queensland. The temporal resolution of the data

in [2] is 1-minute; however, since we are interested in hourly values, we select historical

data with hourly resolution. We used 2012 data for training and 2013 data for testing. The

authors in [1] calculate predictions for each of the four seasons, i.e., fall, winter, spring and

summer. In [2] the authors calculate hourly forecasts using their proposed ELM method and

a multilayer perceptron (MLP) (referred to as FFBPG in their work). Yearly results are better

than each season prediction in [1, 2], as shown in Table 4.10.

The errors of the proposed framework are small since the variation of solar output over

different times of day and year is taken into account with the use of k-means clustering. The

use of a clustering algorithm results in similar points that belong in the same cluster being

trained with a GPR model. More specifically, k-means divides similar data in one group,

which follows a distribution with specific characteristics, making each cluster’s training more

efficient with lower errors. Moreover, using an appropriate kernel function that relates the

input features to output improves the forecast. In this work, using Matérn 5/2 as a kernel
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function increase the accuracy of prediction due to the capability of the kernel in solving

stochastic problems [108].

4.5 Conclusion

In this Chapter, we proposed a probabilistic framework for short-term photovoltaic forecasting

to answer the second research question we defined in the first Chapter. We carried out a

correlation study to identify the features which are highly related to solar output power. The

six selected features that affected the PV output generation more prominently were: direct

solar irradiance, diffused solar irradiance, horizontal solar irradiance, temperature, zenith,

and azimuth.

After identifying the highly correlated features, since solar output relies on solar irradi-

ance, we clustered our data into four groups based on day-time. Two clusters appeared to

represent early morning and night times, and the remaining two represent seasonal variations.

We then trained a model for each of the four clusters using GPR in order to learn the relation-

ship between the six input features and the PV generation. GPR is a kernel-based nonlinear

nonparametric regression technique in which the covariance function plays a crucial role. In

this work, we selected the Matérn 5/2 as a covariance or kernel function. This function was

selected under the assumption that the correlation between any two points in the input feature

set decreases with increasing the euclidean distance between them. To test the accuracy of

the proposed method for solar output forecasting, different tests and validation methods were

exploited, i.e., k-fold cross-validation and hold-out validation methods.

In the case studies, we demonstrated the framework implementation in five different sites.

For each site, the experiments were run 30 independent times for each cluster. Then, 30

random days were selected as hold-out data that were representative of different days of the

year during different seasons. As shown in Fig. 4.3, selecting an appropriate number of

clusters significantly improves the results, i.e., RMSE for eight clusters is 2.4%, while this

metric value is 8.34% without clustering and for four clusters, the choice of our study, this

value is 4.12%. The largest RMSE and MAE were 4.60 % and 2.06 %, respectively, showing
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the efficacy of the proposed framework. Furthermore, the comparison of our proposed

framework with the existing state of the art in Table 4.10 showed an improvement on the

same accuracy metrics they used for point prediction. In the clustering, we used groups

of similar data points that are more likely to produce similar PV outputs and use them for

training a single model, reducing the variance of training data and increasing the accuracy.

The rationale behind this is that similar data points in different seasons can be grouped in

the same cluster in our model, while in the seasonal model, they happen to be grouped in

different seasons.





Chapter 5

Transmission-Distribution Coordination

Schemes

As we addressed the first two research questions in the previous Chapters, we now are aware

of the role of an effective forecast model in the massive integration of renewable energy into

the conventional power system. Also, we know how the constraints associated with the power

network need to be appropriately addressed in the optimal power flow problem. The network

operators play a significant role in the transition towards the net-zero emission system.

So, now we are moving into the final research question. We are modelling the interaction

between the network operators in two different frameworks considering the penetration of

PV-Batteries into the distribution network.

5.1 Introduction

Several coordination schemes that can precisely model the system taking into account Several

coordination schemes that can precisely model the system taking into account nonlinear

bidirectional AC power flow constraints present in transmission and distribution systems

have been recently proposed. In [153], the authors propose five coordination schemes to

evaluate the recent proposals of the SmartNet project consortium. In order to do so, they

model the optimisation problem considering the AC load flow and the topology of the grid in
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each scheme. The main objective of this work was to quantify the proximity of the optimal

solution to a physically compatible solution in different coordination schemes. In [154], the

study aims at minimising the deviation from the real-time dispatch and maximising the share

contribution of renewable energy while addressing uncertainty using Dynamic AC Optimal

Power Flow. In [155], distribution locational marginal pricing is designed through quadratic

programming. The case studies include a high number of electric vehicles and heat pumps

to address issues associated with these resources in the distribution system. In [156], the

authors summarise the main challenges proposed in the SmartNet project in three different

countries (Denmark, Italy, and Spain) by providing techno-economic analysis on various

coordination schemes in 2030 scenarios.

Alternative approaches are based on approximations of the AC power flow and represent

the distribution and transmission systems with linearised power equations to overcome the

challenges associated with nonlinearities (see, e.g., [97]. Approximations of AC power

flow have been used in various problems in power systems that can also be applied in this

particular setting. For instance, to control the reactive power at every bus, a method that

approximates the distribution network into a linear distribution load flow was proposed in

[8]. The results show that by linearising the load flow, the error on the voltage mismatch

error is minimised. The authors in [157] address the power loss optimisation in smart power

distribution by linearising the distribution power flow. This work demonstrates that the results

of quadratic programming are better than conventional power flow in both robustness and

computational complexity. In [158], a linear optimal load flow has been introduced using

quadratic programming to cope with the increase in the number of DC microgrids.

How the network is represented is one of the main aspects to consider in TSO-DSO

coordination. For instance, as the integration of RESs affects the voltage levels and the line

thermal limits, network constraints need to be considered to ensure that these resources do

not adversely disturb the power system operations [159]. In [160] the authors propose a

coordination scheme that does not explicitly represent the grid topology but incorporates

some information concerning, e.g., bus voltages. In [161], three market designs are proposed

to mitigate coordination between the TSO and the DSO that provide a flexible, competitive
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market design for retailers. In the model, the main focus is on the market rather than

on the operation and topology of the grid. A control framework that provides the DSO

with information on the contribution of each smart home, the unbalanced power flow and

network voltage constraints are given in [162]. In this way, DG participates in the electricity

market while ensuring that the upstream constraints are satisfied. In [86], three TSO-DSO

coordination models are discussed. First, a TSO-managed model is presented, where the TSO

is responsible for the optimal operation of the system by considering DG and transmission

system constraints. Next, a TSO-DSO hybrid-managed model is introduced, where the TSO

operates the system regarding the transmission network constraints and the DG that submits

bids to demonstrate its willingness to participate in the market. Last, a DSO-managed

model is mentioned where the DSO is responsible for operating its own system taking into

account the distributed energy sources and sending back the outcomes to the TSO [153].

Centralised TSO-managed schemes make the coordination model simpler to implement (see,

e.g., [13, 163]). By using a centralised scheme, we utilise the traditional SCADA system to

monitor, measure and collect the data from different assets of the grid [163].

However, they might fail to fully utilise DG resources at the distribution system as the

DSO has less visibility of their usage. TSO-DSO hybrid systems are an improvement of the

latter since DG resources indicate by their bids to the TSO and DSO their willingness to

participate, and both operators, based on their priorities, can decide whether they accept the

offer or not [164]. Thus, a DSO-managed scheme has the potential to reach to the highest

level of efficient use of distributed resources. However, it incorporates the risk that there

might be a conflict between the TSO and DSO requirements and needs. Thus, making a

real-time exchange of information between both operators necessary to ensure a reliable

operation. Notwithstanding the merits of the solutions mentioned above, there are still gaps

to assist operators with practical solutions to smoothly adapt to the large-scale integration of

renewable energy resources and reliably transition into carbon-free power systems. Different

solutions have been proposed to model coordination schemes. However, privacy concerns of

the entities involved and their individual priorities need to be further analysed.
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The aforementioned centralised schemes face a variety of regulatory challenges that

make their actual implementation difficult. However, centralised schemes can still be used to

provide insights into the desired coordination between TSOs and DSOs. As such, in practice,

decentralised schemes need to be further investigated. These schemes need to respect the

privacy concerns of the entities involved, be computationally efficient, depend on realistic

communication infrastructure, achieve an optimal with some objective outcome, relieve

congestion, and facilitate the integration of renewable-based generation. As discussed in the

previous section, the methods present in the literature fail to meet at least one of the points

mentioned above.

This thesis proposes a linear transmission-distribution system coordination framework

considering large-scale integration of distributed resources, e.g., photovoltaic (PV) and

storage. More specifically, we approximated the power equations with linearised equations

so that the resulting optimal power flows performed by both the TSO and DSO are convex

optimisation problems (see, e.g., [8, 97]) in Chapter 3. Next, we propose two different

coordination schemes, decentralised and centralised. In the decentralised scheme, the TSO

and the DSO collaborate to allocate all resources in the system optimally. In particular, we

develop an iterative bi-level optimisation technique where the upper level is the TSO. The

TSO solves its own OPF and determines the LMPs at substations. Then, the LMPs are passed

on to the lower level, a collection of DSOs, each of which solves its own OPF. The new

demand of the distribution system is aggregated at the substation levels and sent back to the

TSO. We iterate between the two levels until some stopping criterion, e.g., that the infinity

norm of the vector containing the differences of LMPs at current and previous iterations

does not change by some tolerance is met. We demonstrate numerically that this process

converges to a point near the optimal solution. Moreover, in the numerical results’ section,

it is shown that the proposed decentralised scheme provides a balance between the TSO

and DSO objectives in terms of cost. It is worthy to note that the only information used in

the iterative decentralised scheme is the customers’ net load at the PCC; thus, there is no

issue associated with privacy concerns of individual entities. The transmission system acts

as the entire system operator in the proposed centralised scheme and has all the necessary
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information about the distribution system. In such a case, the objective function consists of

the distribution system voltage deviation from reference, the distributed resources cost, and

the transmission system operating cost, aggregated as one objective with some weighting

coefficients. We modify the weighting coefficients to approximate the Pareto front of the

TSO and DSO objectives and study their interaction. In particular, we quantify the conflicting

objectives of TSOs and DSOs, which may be used by DSOs to submit bids to the TSO

or by the TSO to appropriately incentivise DSOs to provide their services. The proposed

framework is validated by constructing a transmission distribution system using the 33- and

69-bus IEEE distribution feeders and a five-node transmission system. More specifically, the

main contributions of our work are: (i) to propose an iterative algorithm to solve a bi-level

TSO-DSO coordination scheme in a decentralised manner where no sensitive information is

being exchanged, (ii) to analyse the interaction of TSOs and DSOs, i.e., how conflicting their

objectives and priorities are, by formulating a common TSO-DSO OPF scheme where the

Pareto front is determined. To this end, we approximate both transmission and distribution

networks with linearised formulations, construct a transmission-distribution power system,

analyse the impact of DG integration in terms of cost and congestion, and validate the

proposed framework by comparing the results against the benchmark of current practice.

In Chapter 3, Section 3.3 we model the augmented DC OPF for the transmission system

and a linear OPF for the distribution system. Thus, we can use that model in this chapter. The

remainder of the chapter is organised as follows. In Section 5.2 and 5.3, we formulate the

proposed decentralised and centralised schemes. In Section 5.4, we illustrate the proposed

framework through the constructed transmission-distribution system. Finally, in Section 5.5,

we summarise the results and make some concluding remarks.

5.2 Decentralised Scheme

We define for each distribution system d the set of decision variables yd and the vector

y = ∪d∈Dyd representing all distribution systems connected to the transmission system. The
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proposed decentralised scheme is based on solving the following optimisation problem:

min
x

f1(x,y)

subject to g1(x,y)≤ 0,

h1(x,y) = 0,

yd ∈ argmin
yd
{( f2(x,yd) : g2(x,yd)≤ 0,h2(x,yd) = 0},∀d ∈D , (5.1)

where f1(x,y) in our problem is the objective function of the TSO OPF, i.e., ∑i∈I ci(t)+

π ∑ℓ∈L (θn(t)−θm(t))2 as described in Section 3.3.1. Similarly, g1(x,y) and h1(x,y) = 0 are

the equality and inequality constraints of (3.1) evaluated at y. In the lower-level parametric

optimisation problem for each distribution system d, f2(x,yd) , g2(x,yd) and h2(x,yd) are

the collection of distribution level objective functions, equality and inequality constraints,
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respectively, as defined in (3.27). More specifically, the functions f1, f2,g1,g2,h1, and h2

can be easily mapped to the functions below:

min
PGi (t),i∈I ,θk(t),k∈K

∑
t∈T

(
∑

i∈I
ci(t)+π ∑

ℓ=(n,m),ℓ∈L
(θn(t)−θm(t))2

)
∆t

subject to f m ≤ f (t) = BdAθ(t)≤ f M , t ∈T ,

Pm
Gi
≤ PGi (t)≤ PM

Gi
, t ∈T ,

∑
i∈Ik

PGi (t)− ∑
ℓ∈L

BdℓAθ(t) = Pd
grid(t),k ∈K , t ∈T ,d ∈D

∀d ∈D ,Pd
grid(t) ∈ arg min

PPVi (t),P
ch
Bi
(t),

Pdis
Bi

(t),Vi(t),

Pd
grid(t)

∑
t∈T

λkd (t)P
d
grid(t)+ ∑

i∈N d
PV

BPVi PPVi (t)+ ∑
i∈N d

B

BBi (P
ch
Bi
(t)+Pdis

Bi
(t))+ ∑

i∈N
α(Vi(t)−Vref)

2

∆t

subject to Pmin
PV,i ≤ PPVi (t)≤ Pmax

PV,i , i ∈NPV , t ∈T ,

Pch,min
B,i ≤ Pch

Bi
(t)≤ Pch,max

B,i , i ∈NB, t ∈T ,

Pdis,min
B,i ≤ Pdis

Bi
(t)≤ Pdis,max

B,i , i ∈NB, t ∈T ,

V min
i ≤Vi(t)≤V max

i , i ∈N , t ∈T ,

Pd,min
grid ≤ Pd

grid(t)≤ ∑
i∈Ik

PGi (t), t ∈T ,

Emin,i ≤ ∑
t∈T

(
ηch,iPch

Bi
(t)− 1

ηdis,i
Pdis

Bi
(t)
)

∆t +E0,i ≤ Emax,i,∀i ∈NB, t ∈T ,

V (t) = Rp(t)+Xq(t)−M−1⊤m0, t ∈T ,

pi(t) = PPVi (t)+Pdis
Bi

(t)−Pch
Bi
(t)−Ploadi (t),∀i ∈NPV ∩NB, t ∈T ,

pi(t) = PPVi (t)−Ploadi (t),∀i ∈NPV \NB, t ∈T ,

pi(t) = Pdis
Bi

(t)−Pch
Bi
(t)−Ploadi (t),∀i ∈NB \NPV , t ∈T ,

pi(t) =−Ploadi (t),∀i ∈N \NPV ∩NB, t ∈T ,

qi(t) =−Qloadi (t),∀i ∈N , t ∈T ,

(5.2)

where the objective of the upper level problem is the TSO cost minimisation and an-

gle deviation; its constraints refer to power flow and generator limits and power balance.

The lower level optimisation problem has as an objective the DSO cost and voltage regulation

cost minimisation; its constraints refer to voltage, power, energy storage limits, and power
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balance. It is worth noting that Pd
grid is the net power imported into the distribution network

from the transmission system.

This problem is a bi-level optimisation [165]. Such problems were introduced when

Stackelberg (see, e.g., [166]) formulated a strategic game in 1934 where a leader and a

follower make sequential moves, starting with the leader. Thus, the upper level and lower

level can be considered as leader and follower. More specifically, bi-level optimisation

problems are defined where one or some of the decision variables are constrained to the

solutions of another optimisation problem. Then, the problem is formulated as in (5.1) in

two levels of optimisation. Solving bi-level optimisation problems has been known to be

NP-hard [167]. There are basically two main techniques for solving bi-level optimisation

problems. The first one keeps the bi-level structure and treats the lower level (LL) problem

as a parametric optimisation problem that is solved whenever the solution algorithm for the

upper level (UL) problem requires it. The second technique is based on the formulation

of first-order necessary optimality conditions for the lower level problem. The lower level

problem is then replaced by its necessary conditions, which are considered as constraints

in the upper-level problem. This reduces the bi-level problem to a single level nonlinear

optimisation problem. The drawback of this method is that, in general, necessary conditions

are not sufficient for optimality and thus information is lost in the single level formulation,

which, in turn, may result in non-optimal solutions for the bi-level optimisation problem.

In particular, the Karush-Kuhn-Tucker (KKT) conditions that should be satisfied in this

approach are only guaranteed if the optimisation problem is convex [168].

In this work, we propose an approach that resembles the first one discussed above. Still,

we treat the two levels as coupled optimisation problems while iteratively solving one after the

other; that is, LL optimisation problem is treated as interdependent parametric optimisation

problems that are solved whenever the solution algorithm for the UL requires it. In particular,

the TSO and DSO collaborate to operate the power network optimally. Initially, the TSO

optimises the transmission system, considering a feasible distribution system initial load

solution. The transmission system’s resources meet the distribution system’s entire load, i.e.,

the distribution system does not use its distributed resources to meet the load. Next, the TSO
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solves its own augmented DC OPF and announces the locational marginal price of the PCC

to the DSO. Next, the DSO solves its own LL problem taking into account the capabilities of

the distributed resources. The DSO net load is different in the next iteration, and the amount

of energy that DSO buys from the TSO may be reduced, depending on cost. We iterate

between these two levels until a convergence criterion is met, e.g., that the infinity norm of

the vector containing the LMP differences between the current iteration and the previous

iteration does not change by some tolerance. The proposed algorithm is described as follows:
Algorithm 1: Iterative algorithm for solving (5.1)

1: Initialization
2: Set ν = 0.
3: Consider yd [0] so that it is a feasible solution of the LL optimisation ∀d ∈D .
4: Repeat until convergence
5: Solve the UL optimisation problem using yd [ν ]; let the solution be x[ν ] and λkd [ν ].
6: Solve the LL optimisation for x[ν ] using λkd [ν ]. Let the solution be yd [ν +1],∀d ∈D .
7: Set ν ← ν +1 and go to step (4).

Considering this iterative procedure, the LL and UL optimisation problems are solved

the same number of times and the levels are treated as uncoupled problems, just coupled

at the interface by the procedure. There is no formal proof of convergence for such an

iterative scheme, however convergence has been experimentally shown [169]. We further

demonstrate that the proposed algorithm converges to a near-optimal solution. The flowchart

of the algorithm is given in Fig. 5.1.
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Fig. 5.1 Decentralised iterative scheme flowchart.

5.3 Centralised Scheme

This coordination scheme introduces the TSO as a leader who operates the transmission

and distribution systems as one entire power network. In this case, the TSO solves a multi-

objective optimisation (MOO) problem which can be formulated as follows:

min
x,y

( f1(x,y), f2(x,y))

subject to g1(x,y)≤ 0,

g2(x,y)≤ 0,

h1(x,y) = 0,

h2(x,y) = 0, (5.3)

where x represents the decision variables for the transmission system and y the decision

variables for all distribution systems. The first objective, f1(x,y), incorporates the TSO
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objective functions, and f2(x,y) the objective functions of all the distribution systems in D ,

that is, (3.11)+ (3.12)+ (3.13) as described in (3.1) and (3.27) respectively. The inequality

and equality constraints are denoted as g1(x,y),g2(x,y) and h1(x,y),h2(x,y) respectively.

The notion of “optimality” in solving MOO problems is known as Pareto optimal. A

solution is said to be Pareto optimal if there is no way to improve one objective without

worsening the other, i.e., the feasible point (x⋆,y⋆) is Pareto optimal if there is no other

feasible point (x,y) such that for all i, j with i ̸= j, fi(x,y) = fi(x⋆,y⋆) with strict inequality

in at least one objective, f j(x,y)< f j(x⋆,y⋆). However, given their conflicting nature, it is

difficult to minimise the objective functions simultaneously, and thus the Pareto solutions

usually appear scattered. In solving the optimisation problem (5.3) we obtain the Pareto front.

In general, identifying the set of all Pareto optimality points is not a tractable problem. A

common approach for solving MOO is to find many evenly distributed efficient points, and

use points to approximate the Pareto front. In this paper, we use the weighted sum method

(see, e.g., [170, 171]) to convert the MOO into a single objective optimisation problem by

using a convex combination of objectives. More formally, the weighted sum method solves

the following scalar optimisation problem:

min
x,y

w1 f1(x,y)+w2 f2(x,y)

subject to g1(x,y)≤ 0,

g2(x,y)≤ 0,

h1(x,y) = 0,

h2(x,y) = 0

w1 +w2 = 1,

w1,w2 ≥ 0. (5.4)

By appropriately changing the weight vector w = [w1,w2]
⊤ we can approximate the Pareto

front. The weight w2 corresponds to all d ∈D distribution systems. We assign equal weights

to each distribution system, i.e., w2 = ∑d∈D w2d , where w2d = w2
|D | ,∀d ∈ D with |D | the
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cardinality of the set D . To make the formulation more clear we present here its detailed

representation. The functions f1, f2,g1,g2,h1, and h2 can be easily mapped to the functions

below.

min
PGi (t),i∈I ,

θk(t),k∈K ,

PPVi (t),P
ch
Bi
(t),

Pdis
Bi

(t),Vi(t)

∑
t∈T

w1

(
∑

i∈I
ci(t)+π ∑

ℓ=(m,n)∈L
(θn(t)−θm(t))2

)
+w2 ∑

d∈D

 ∑
i∈N d

PV

BPVi PPVi (t)+ ∑
i∈N d

B

BBi (P
ch
Bi
(t)+Pdis

Bi
(t))+ ∑

i∈N
α(Vi(t)−Vref)

2

∆t

subject to f m ≤ f (t) = BdAθ(t)≤ f M ,

Pm
G ≤ PG(t)≤ PM

G ,

∑
i∈Ik

PGi (t)− ∑
ℓ∈L

BdℓAθ(t) = pd
1(t),k ∈K ,d ∈D , t ∈T ,

Pmin
PV,i ≤ PPVi (t)≤ Pmax

PV,i , i ∈NPV , t ∈T ,d ∈D ,

Pch,min
B,i ≤ Pch

Bi
(t)≤ Pch,max

B,i , i ∈NB, t ∈T ,d ∈D ,

Pdis,min
B,i ≤ Pdis

Bi
(t)≤ Pdis,max

B,i , i ∈NB, t ∈T ,d ∈D ,

V min
i ≤Vi(t)≤V max

i , i ∈N , t ∈T ,d ∈D ,

Emin,i ≤ ∑
t∈T

(
ηch,iPch

Bi
(t)− 1

ηdis,i
Pdis

Bi
(t)
)

∆t +E0,i ≤ Emax,i,∀i ∈NB, t ∈T ,d ∈D ,

V (t) = Rpd(t)+Xqd(t)−M−1⊤m0, t ∈T ,d ∈D

pd
i (t) = PPVi (t)+Pdis

Bi
(t)−Pch

Bi
(t)−Ploadi (t),∀i ∈NPV ∩NB, t ∈T ,d ∈D ,

pd
i (t) = PPVi (t)−Ploadi (t),∀i ∈NPV \NB, t ∈T ,d ∈D ,

pd
i (t) = Pdis

Bi
(t)−Pch

Bi
(t)−Ploadi (t),∀i ∈NB \NPV , t ∈T ,d ∈D ,

pd
i (t) =−Ploadi (t),∀i ∈N \NPV ∩NB, t ∈T ,d ∈D ,

qd
i (t) =−Qloadi (t),∀i ∈N , t ∈T ,d ∈D ,

(5.5)

where the objective of the centralised optimisation is the TSO cost, angle deviation,

the DG cost and voltage regulation cost minimisation; its constraints refer to power flow and

generator limits and power balance. The power balance in this case is modified to directly

incorporate the real power injection/withdrawal at the PCC of each DSO.
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Our problem has a convex Pareto front; thus we can generate all points of the Pareto front.

Using the proposed method, we investigate how the objectives of TSO and DSOs interact

with each other, and the TSO directly manages the entire system and purchases power from

distributed energy sources in the distribution system; as for bidirectional power flows, if

distributed energy sources generate excess energy needed at the distribution system level is

fed into the transmission system.

5.4 Numerical Results

We present several numerical examples to demonstrate the capabilities of the proposed

framework. We discuss the properties of the proposed decentralised coordination scheme in

terms of convergence with some sensitivity studies. Insights are provided into both proposed

coordination schemes. Furthermore, we demonstrate the interaction of TSOs and DSOs with

the determination of the Pareto front of the centralised optimisation problem. Thus, in 5.4.1,

the case study information is provided, followed by the numerical results of decentralised

and centralised schemes in 5.4.2 and 5.4.3 respectively.

5.4.1 System Description

To validate the proposed framework we need to construct a power system with many voltage

levels that will represent the transmission and distribution systems. As such, we select a

five-node transmission system on which four distribution system feeders are connected to

different nodes as depicted in Fig. 5.2.
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F1

F2

F3

F4

G1 G2
G3

G4
G5

LSE1

LSE2

LSE3

Node 1
Node 2

Node 3

Node 4
Node 5

Fig. 5.2 Transmission and distribution system.

We denote by Fi the ith feeder connected to the transmission system. More specifically,

F1 and F3 correspond to the IEEE standard 33-bus feeder and F2 and F4 to the 69-bus IEEE

standard bus feeder [172–174]. The load that is serving entities at a transmission node i are

denoted by LSEi. There are five generators connected at the transmission level in nodes 1,

3, 4 and 5. The transmission system data may be found in [97]. To demonstrate how the

TSO-DSO coordination schemes can facilitate the integration of DG, we modify the standard

IEEE 33- and 69-bus feeders by deploying PV and battery systems at different nodes. We

assume that the distributed resources are mostly installed at end-nodes in the distribution

level where the voltage drop levels are worst [175]. The modified feeders are depicted in

Figs. 5.3, 5.4, respectively. In particular, PV and battery systems are installed in nodes 18,

22, 25 and 33 in the 33-bus feeder and in nodes 2, 3, 27, and 64 in the IEEE 69-bus feeder.

The distributed resources data are presented in Table 5.1. Furthermore, we assume that each

node’s voltage in the distribution system is bounded between 0.95 pu and 1.05 pu and α is

equal to 1.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

26 27 28 29 30 31 32 33

23 24 25

19 20 21 22

Transmission node

Fig. 5.3 Modified IEEE 33-bus distribution feeder.

Transmission node

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 2727

68 6951 52

66 67

53 54 55 56 57 58 59 60 61 62 63 64 65

28 29 30 31 32 33 34 35

47 48 49 50

36 37 38 39 40 41 42 43 44 45 46

Fig. 5.4 Modified IEEE 69-bus distribution feeder.

Next, we implement both the proposed centralised and the decentralised schemes, and

we compare the results with current practice, which refers to when the TSO solves its

OPF and determines the LMPs at the substations. Next, the DSOs dispatch distributed

DG by optimising cost and considering the LMP at the substation as a fixed parameter. In

current practice, there is minimal coordination between TSOs and DSOs. Finally, the three

methodologies are compared against a variety of metrics: total cost, hourly LMPs, hourly DG

output, hourly generator output at the transmission level, netload, and level of congestion.

5.4.2 Decentralised Coordination Scheme

We apply the scheme proposed in Section 5.2 to the system described above. In order to

demonstrate how the decentralised scheme facilitates the integration of distributed energy

resources, we compare its optimal operation (method (ii)) against the current practice (method
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Feeder Variable Value Unit
All Pmin

PV 0 MW
All Pmax

PV 30 MW
All BPV 2.584 e/MW

F1, F3 Pdis,min
B 0 MW

F1, F3 Pdis,max
B 30 MW

F1, F3 Pch,min
B 0 MW

F1, F3 Pch,max
B 30 MW

F1, F3 Bdis,min
B 0.380 e/MW

F2, F4 Pdis,min
B 0 MW

F2, F4 Pdis,max
B 15 MW

F2, F4 Pch,min
B 0 MW

F2, F4 Pch,max
B 15 MW

F2, F4 Bdis,min
B 0.380 e/MW

F1, F3 Pmin
grid -110 MW

F2, F4 Pmin
grid -60 MW

Table 5.1 Distributed resources’ physical limits and bid information.

(i)), where the current practice as discussed in the introduction section is when the TSO

solves its own OPF and determines the LMPs at the substation, and the DSOs dispatch DG

by optimising cost and considering the LMP at the substation as a fixed parameter. In other

words, there is limited coordination between the operators in the current practice, and each

operator tries to meet its own individual objectives. We run both cases for a one day period

with hourly intervals. In Fig. 5.5, the TSO operation cost for both cases is depicted. We

notice that the proposed decentralised coordination scheme results in a reduced transmission

operation cost for all hours of the day. The reason is that distributed energy resources, which

are less expensive than generators connected at the transmission level, are used to a greater

extent, as seen in Fig. 5.6.
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Fig. 5.5 Transmission operation cost for methods (i) current practise and (ii) proposed
decentralised TSO-DSO coordination scheme.

Fig. 5.6 The total amount of distributed generation for methods (i) current practise and (ii)
proposed decentralised TSO-DSO coordination scheme at nodes 3 and 4.

Another effect of the increasing use of distributed resources is that they relieve the

congestion present in the transmission system, which reduces TSO operational costs. For

method (i), the LMPs for each hour at each node may be found in Table 5.2. We notice

that for the same hour, each node has a different LMP. This demonstrates, based on the

formulation of the augmented DCOPF in (3.1), that some line flows reached their limits. The

LMPs of method (ii) are shown in Table 5.3. We notice that the LMP difference between

hours has been reduced, reflecting the fact that there is less congestion in the transmission

system. In fact, the LMPs are practically the same for all nodes at every hour when the

proposed decentralised scheme is implemented. Following the formulation of (3.1) and

using the KKT conditions of optimality, the LMP difference is expressed as a function of the
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congestion that can be present in the network (see, e.g., [176]), i.e.,:

λk−λk′ = ∑
ℓ∈L̃

φ
{k,k′}
ℓ µℓ, (5.6)

where µℓ is the dual variable of the power flow limits for line ℓ; L̃ is the subset of lines

that are at their limits, i.e., L̃ = {ℓi : i = 1, . . . ,L,µℓi ̸= 0}; and φ
{k,k′}
ℓ is the power transfer

distribution factor of transaction with node pair {k,k′} with respect to line ℓ. We can interpret

(5.6) physically by considering an injection at node k and its withdrawal at node k′. We

interpret φ
{k,k′}
ℓ as the fraction of the transaction with node pair {k,k′} of 1 MW that flows on

line ℓ. As such for every hour the LMP differences are purely a function of the transmission

usage costs of the congested lines, thus showing the “level” of congestion.

Hour Node 1 Node 2 Node 3 Node 4 Node 5

1 12.67 28.15 25.22 17.15 13.46

2 12.62 28.01 25.10 17.08 13.41

3 12.62 28.01 25.10 17.08 13.41

4 12.64 28.08 25.16 17.11 13.44

5 12.76 28.42 25.45 17.30 13.56

6 12.93 28.89 25.87 17.55 13.74

7 13.09 29.36 26.28 17.80 13.92

8 13.21 29.70 26.58 17.99 14.05

9 13.23 29.77 26.64 18.02 14.08

10 13.32 30.04 26.88 18.17 14.18

11 13.51 30.58 27.35 18.46 14.39

12 13.53 30.65 27.41 18.49 14.41

13 13.68 31.05 27.76 18.71 14.57

14 13.44 30.38 27.17 18.35 14.31

15 13.39 30.24 27.05 18.28 14.26

16 13.32 30.04 26.88 18.17 14.18

17 13.44 30.38 27.17 18.35 14.31

18 13.51 30.58 27.35 18.46 14.39

19 13.32 30.04 26.88 18.17 14.18

20 13.21 29.70 26.58 17.99 14.05

21 13.09 29.36 26.28 17.80 13.92

22 12.88 28.75 25.75 17.48 13.69

23 12.81 28.55 25.57 17.37 13.62

24 12.71 28.28 25.34 17.22 13.51

Table 5.2 Locational marginal prices for method (i): current practise for TSO-DSO coordina-
tion in e/MW.
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Hour Node 1 Node 2 Node 3 Node 4 Node 5

1 12.27 12.28 12.28 12.27 12.27

2 12.13 12.14 12.14 12.14 12.13

3 12.13 12.14 12.14 12.14 12.13

4 12.20 12.21 12.21 12.21 12.20

5 12.54 12.55 12.55 12.54 12.54

6 13.01 13.02 13.02 13.01 13.01

7 12.55 28.14 25.19 17.06 13.35

8 12.88 12.89 12.89 12.88 12.88

9 12.90 12.91 12.91 12.90 12.90

10 12.98 12.99 12.99 12.99 12.98

11 13.15 13.16 13.16 13.15 13.15

12 13.17 13.18 13.18 13.17 13.17

13 11.93 11.94 11.94 11.94 11.93

14 13.08 13.10 13.10 13.09 13.08

15 13.04 13.06 13.06 13.05 13.04

16 12.98 12.99 12.99 12.99 12.98

17 13.08 13.10 13.10 13.09 13.08

18 13.15 13.16 13.16 13.15 13.15

19 12.98 12.99 12.99 12.99 12.98

20 12.88 12.89 12.89 12.88 12.88

21 12.55 28.14 25.19 17.06 13.35

22 12.87 12.89 12.89 12.88 12.87

23 12.67 12.68 12.68 12.68 12.67

24 12.40 12.41 12.41 12.41 12.40

Table 5.3 Locational marginal prices for method (ii): proposed decentralised TSO-DSO
coordination in e/MW.

In Tables 5.4, 5.5, the hourly power output of each transmission generator is shown. We

notice that with method (ii), the total power used by generators at the transmission level is

reduced compared to method (i). The reason is that the less expensive distributed generators

at the distribution level are used to satisfy the load instead. More specifically, we notice that

with method (ii), the transmission level generators 2, 3, and 4 have zero output for most

hours of the day as they are the most expensive ones.
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Hour PG1 PG2 PG3 PG4 PG5

1 110 18.53 19.52 0 110

2 110 15.09 13.36 0 110

3 110 15.09 13.36 0 110

4 110 16.81 16.44 0 110

5 110 25.41 31.84 0 110

6 110 37.45 53.39 0 110

7 110 49.5 74.95 0 110

8 110 58.1 90.35 0 88.4

9 110 59.82 93.43 0 90.88

10 110 60 110 2.45 100.81

11 110 43.78 110 57.07 110

12 94.58 60.36 110.71 60 110

13 62.8 0.03 116.72 42.99 110

14 110 55.25 110 31.2 110

15 110 60 110 16.85 108.26

16 110 60 110 2.45 100.81

17 110 55.25 110 31.2 110

18 110 43.78 110 57.07 110

19 110 60 110 2.45 100.81

20 110 58.1 90.35 0 88.4

21 110 49.5 74.95 0 110

22 110 34.01 47.23 0 110

23 110 28.85 38 0 110

24 110 21.97 25.68 0 110

Table 5.4 The power output in MW of generators at the transmission level for method (i):
current practise for TSO-DSO coordination.
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Hour PG1 PG2 PG3 PG4 PG5

1 39.14 0 0 0 110

2 30.02 0 0 0 110

3 30.02 0 0 0 110

4 34.58 0 0 0 110

5 57.38 0 0 0 110

6 89.3 0 0 0 110

7 107.99 6.66 6.58 0 110

8 82.98 0 0 0 88.4

9 85.82 0 0 0 90.88

10 91.19 0 0 0 100.81

11 101.05 0.88 0 0 110

12 101.78 1.49 0 0 110

13 9.58 0 0 0 110

14 97.9 0 0 0 110

15 95.22 0 0 0 108.26

16 91.19 0 0 0 100.81

17 97.9 0 0 0 110

18 101.05 0.88 0 0 110

19 91.19 0 0 0 100.81

20 82.98 0 0 0 88.4

21 107.99 6.66 6.58 0 110

22 80.18 0 0 0 110

23 66.5 0 0 0 110

24 48.26 0 0 0 110

Table 5.5 The power output in MW of generators at the transmission level for method (ii):
proposed decentralised TSO-DSO coordination.

In Fig. 5.7, we depict the operational cost for each distribution feeder connected to

different nodes of the transmission system for methods (i) and (ii). We notice that the

proposed coordination scheme results in reduced costs for all DSOs as all resources were

utilised in a more efficient way as discussed above.
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Fig. 5.7 The cost for each feeder for methods (i) and (ii).

We now study the net load at the transmission nodes using both methods. We can see in

Fig. 5.8 that the net loads at the transmission system at nodes 2 and 3 decreases, a fact that is

also reflected in the OPF in the transmission system and its LMPs. We also notice that there

is a sharp fall and rise in the net load, between hours 7 and 8, and 20 and 21, respectively.

This is due to the fact that the power flow between nodes 1 and 2 at times 7 and 21 is 75 MW,

which is equal to the line’s thermal limit. This causes the LMP divergence in these hours, as

shown in Table 5.3.

Fig. 5.8 Netload at nodes 2,3 with using methods (i) and (ii).

Last, we depict the hourly operational cost for the TSO and the DSOs in Fig. 5.9 which

will be used to compare the two proposed schemes.
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Fig. 5.9 TSO and DSOs operational cost using the proposed decentralised coordination
scheme.

We next check the convergence properties of the proposed algorithm. In Figs. 5.10, 5.11,

we illustrate the evolution of the hourly objective functions of F2 and the transmission system

for a 24-hour period with respect to the iteration numbers of algorithm. We notice that the

algorithm converges after three iterations. To test the sensitivity of the proposed algorithm

with respect to the initial point, i.e., the choice of initial load value for the distribution system,

we changed the initial point to be full load, 85%, 75% and 65% of the full load. In all cases,

the algorithm converges in three iterations. Next, to analyse the sensitivity of the proposed

algorithm with respect to the level of distributed resources penetration, we depict in Fig. 5.12

the evolution of F2 hourly cost for two different levels of penetration with the same initial

point (step 3 of the algorithm) concerning the number of iterations. The final cost is different

for the two cases since there are hours where the DG price is smaller than the grid price and

vice versa.

Fig. 5.10 Evolution of the hourly cost for F2 with respect to the iteration number.
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Fig. 5.11 Evolution of the hourly cost for the transmission system with respect to the iteration
number.

Fig. 5.12 Evolution of hourly cost for F2 for different penetration levels of distributed
generation.

5.4.3 Centralised Coordination Scheme

We apply the proposed scheme developed in Section 5.3 to the system described in Fig. 5.2.

In order to demonstrate how the proposed centralised scheme can facilitate the integration

of distributed energy resources, we compare method (i), which is the optimal operation

with the current practice, with method (iii), which is the proposed centralised scheme. We

start the simulation by assigning the same weights to the transmission cost function and the

distribution feeders’ cost functions as w1 = w2 = 0.5. The TSO cost, as depicted in Fig. 5.13,

is reduced significantly with method (iii), i.e., the centralised scheme, in comparison to the
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current practice due to the increase in the integration of the distributed resources at different

nodes as shown in Fig. 5.14.

Fig. 5.13 Transmission operation cost for methods (i) current practise and (iii) proposed
centralised TSO-DSO coordination scheme.

Fig. 5.14 The total amount of distributed generation for methods (i) current practise and (iii)
proposed centralised TSO-DSO coordination scheme at nodes 3 and 4.

In Fig. 5.15, the netload at the transmission level using methods (i) and (iii) is depicted.

We notice that it is more cost-efficient for the TSO to purchase power from the DG present

in the distribution systems. For instance, the negative load at node 2 means that the excess

power of the distributed resources is redirected to the transmission system. DGs usually

sell at a price equal to the LMP at their PCC. This results in distributed resources’ owners

gaining revenue by selling power to the TSO, while the TSO also meets its load at a lower

cost. In Fig. 5.16, the operational cost for each hour for the TSO and DSOs for the proposed

centralised coordination scheme is depicted. Fig. 5.16 shows that the transmission cost for
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method (iii) with w1 = w2 = 0.5 is lower than that of method (ii) as depicted in Fig 5.9. The

difference is that more power is being used from the DGs in method (iii) compared to that of

method (ii). However, we notice that the cost of feeders in method (iii) is higher than that of

method (ii). Again, this is because more power is being used from the DGs in method (iii)

compared to method (ii). DSOs and TSOs can use these values to formulate their bids and

provide incentives for DG participation, respectively.

Fig. 5.15 Net load at nodes 2,3 with using methods (i) and (iii).

Fig. 5.16 TSO and DSOs operational cost using the proposed centralised coordination
scheme.
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Hour PG1 PG2 PG3 PG4 PG5

1 52.05 0 0 0 110

2 42.45 0 0 0 110

3 42.45 0 0 0 110

4 47.25 0 0 0 110

5 71.25 0 0 0 110

6 102.64 2.2 0 0 110

7 110 10.87 17.58 0 110

8 0 0 0 0 88.4

9 0 0 0 0 90.88

10 0 0 0 0 100.81

11 10.67 0 0 0 110

12 13.15 0 0 0 110

13 28.05 0 0 0 110

14 3.22 0 0 0 110

15 0 0 0 0 108.26

16 0 0 0 0 100.81

17 3.22 0 0 0 110

18 10.67 0 0 0 110

19 0 0 0 0 100.81

20 0 0 0 0 88.4

21 110 10.87 17.58 0 110

22 95.25 0 0 0 110

23 80.85 0 0 0 110

24 61.65 0 0 0 110

Table 5.6 The power output in MW of generators at the transmission level for method (iii):
proposed centralised TSO-DSO coordination.

The hourly power output of transmission generators for method (iii) is presented in

Table 5.6. We notice that between hours 8 and 20, the distributed resources located in the

distribution systems satisfy the load at the transmission level, whereas at night hours, mostly

the TSO is responsible for supplying the load to the customers. This reverse power flow also

impacts the LMP as shown in Table 5.7, where we notice a marginal increase in the LMPs

for the night hours is achieved. Similar to method (ii), there is congestion at hours 7 and 21

due to the congested line between nodes 1 and 2.
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Hour Node 1 Node 2 Node 3 Node 4 Node 5

1 14.52 14.53 14.53 14.53 14.52

2 14.42 14.43 14.43 14.43 14.42

3 14.42 14.43 14.43 14.43 14.42

4 14.47 14.48 14.48 14.48 14.47

5 14.71 14.72 14.72 14.72 14.71

6 15.03 15.04 15.04 15.03 15.03

7 15.13 27.74 25.35 18.78 15.78

8 11.24 11.24 11.24 11.24 11.24

9 11.27 11.27 11.27 11.27 11.27

10 11.41 11.41 11.41 11.41 11.41

11 14.11 14.11 14.11 14.11 14.11

12 14.13 14.13 14.14 14.13 14.13

13 14.28 14.28 14.29 14.28 14.28

14 14.03 14.03 14.04 14.04 14.03

15 11.52 11.52 11.52 11.52 11.52

16 11.41 11.41 11.41 11.41 11.41

17 14.03 14.03 14.04 14.04 14.03

18 14.11 14.11 14.11 14.11 14.11

19 11.41 11.41 11.41 11.41 11.41

20 11.24 11.24 11.24 11.24 11.24

21 15.13 27.74 25.35 18.78 15.78

22 14.95 14.97 14.97 14.96 14.95

23 14.81 14.82 14.82 14.81 14.81

24 14.62 14.63 14.63 14.62 14.62

Table 5.7 Locational marginal prices for method (iii): proposed centralised TSO-DSO
coordination in e/MW.

Next, we analyse the interaction between the TSO and the DSOs. For this, we modify

the weights of (5.4) to obtain an approximation of the Pareto front. More specifically, we

start with w1 = 0 and w2 = 1, and with increments of 0.05 we reach w1 = 1 and w2 = 0. The

Pareto front is depicted in Fig. 5.17. The x axis shows the summation of all hourly costs as

daily cost. By moving along the curve, we can minimise DSOs’ objective at the expense

of the TSO objective or minimise the TSO objective at the expense of DSOs’ objective.

However, we cannot improve both at once, i.e., there is no mathematical “best” point along

the Pareto front.

To provide insights into the potential conflicts between TSOs and DSOs we discuss in

greater detail the two extreme cases, i.e., w1 = 0 and w2 = 1 and w1 = 1, and w2 = 0. The
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TSO and DSO costs for the first one are 0 e/MW and 500 e/MW, respectively, and for the

latter, they are 140 e/MW and 0 e/MW, respectively. In other words, when the objective is

only to minimise the TSO cost, all costs are being incurred by the DSOs and vice versa. In

both cases, all constraints, e.g., voltage and thermal limits, are met; thus, the power system

quality is guaranteed.

Fig. 5.17 Pareto Front of the sum of all feeders DG and voltage regulation daily cost with
respect to the TSO cost.

In Fig. 5.18, we depict the total DSO cost that includes the payments to the TSO given in

(3.9), DG cost given in (3.11) and (3.12), and voltage regulation costs given in (3.13). We

compare the results for different weights with methods (i) and (ii). We notice that method (ii)

results are close to the Pareto front offering a near-optimal solution. The appropriate choice

of operation for the Pareto front is a balance of priorities between TSOs and DSOs and the

determination of specific incentives, which are part of future work. Another implication of

the Pareto front is that any point in the feasible region that is not on the Pareto front is not

considered to be a “good” solution, e.g., method (i). Either objective or both can be improved

at no penalty to the other. This demonstrates that there are many improvements to be made

to the current TSO-DSO coordination practice, i.e., method (i). To determine the priorities of

the proposed decentralised scheme, we have to analyse where its solution lies in the Pareto

front. More specifically, we notice in Figs. 5.18 and 5.19 that the proposed decentralised

scheme provides a balance between the TSO and DSO objective as it lies between the two

extreme cases.
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Fig. 5.18 Pareto Front of the sum of all feeders daily cost with respect to the TSO cost.

Next, we depict in Fig. 5.19 the daily cost of individual feeders, which includes the

payments to the TSO, the cost of DG and voltage regulation, to investigate how far from the

optimal solution each feeder operates for the various schemes. We notice that for method (ii),

F2 operates at the optimum, F3 at a point that is at the expense of other feeders, and F1 and

F4 are at points further away from the optimal solutions. However, the summation of these

costs corresponds to a near optimal solution as seen in Fig. 5.18.

Fig. 5.19 Pareto Front of daily cost for Fi, i = 1, . . . ,4 with respect to the TSO cost.

In both schemes, the transmission cost decreases, while for method (iii), the transmission

operation cost reduction is higher than that of method (ii). In comparison to the current

practice, i.e., method (i), both schemes are more effective in terms of the share contribution

of the distributed generators at each transmission node, while the utilisation rate of generation

for method (iii) is higher than that of method (ii). Using method (iii), we can see that the

output of each generator at the transmission level is lower than that of method (ii) and for

method (ii) is lower than that of method (i). Although for method (ii) and method (iii), the

congestion level is improved, the LMP for each node at each hour is higher at night hours in
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method (iii). This is due to the increased output of transmission generators at night hours. In

all case studies, all variables, e.g., voltage levels, transmission line flows, are kept within the

limits of acceptable power quality purposes as defined by the constraints of the OPFs. For

example, voltage levels of each bus in the distribution system at every time interval are in the

range of 0.95 – 1.05 pu. The algorithm running time for the centralised scheme is 12,387

msec, and for the decentralised is 21,800 msec in a Windows machine which is equipped with

AMD® FX-9830P RADEON R7 CPU with four Cores at 3.00 GHz and 16 GB of RAM. As

expected, the centralised scheme is approximately two times faster; however, both schemes

are fast enough for real-time operation purposes.

5.5 Conclusion

In this chapter, we have presented a novel TSO-DSO coordination framework that increases

the efficient use of distributed generation resources. More specifically, we have two coor-

dination schemes: one centralised, another decentralised. The underlying network for both

systems is approximated linear, and the OPF formulations result in convex optimisation

problems. We have formulated a decentralised TSO-DSO coordination scheme based on an

iterative approach where no sensitive information is exchanged that achieves a near-optimal

solution. Next, we have analysed the interaction of TSOs and DSOs and how conflicting

their objectives are by approximating the Pareto front of a multi-objective OPF problem

where the entire system, i.e., transmission and distribution systems, is modelled. Through

numerical results, we have demonstrated that both coordination schemes result in (i) reduced

operational costs for both TSOs and DSOs, (ii) congestion relief, and (iii) increased use of

distributed generation.

In the two proposed schemes, different entities are responsible for making a decision, and

thus diverse information is shared between them. In particular, in the centralised scheme, the

TSO makes the decisions and has access to all information about the underlying physical

distribution systems as well as DG bidding. In the decentralised scheme, both the DSO and

TSO share the decision-making-process, and the only information that the TSO sends the
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DSO is the LMP at the PCC and the DSO to the TSO its netload. The two proposed methods

also differ in the total cost, level of DG integration, voltage levels and level of congestion,

as demonstrated in the numerical results’ section. These affect the “power quality” of the

system. However, all variables, e.g., voltage levels, transmission line flows, are kept within

the limits of acceptable power quality purposes as defined by the constraints of the OPFs.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

Due to climate concerns, the integration of renewable energy resources into the power system

has gained popularity. However, the large-scale penetration of these resources into the

conventional power system brings challenges to the system. This dissertation focused on

different aspects of this problem by addressing them in a cascade order. Firstly, we address the

power system optimal operation by linearising the optimal power flow considering integrating

different renewable energy resources into the power distribution system. Solving the first

problem, we came up with the new research concern, an accurate probabilistic forecast model

for the renewable energy output such as PV. The answers to the previous research questions

corroborate the network operators’ critical role in transitioning to the carbon-free power

system. We addressed the concern in the last research question in the last chapter. The results

are elaborated in detail in the following paragraphs.

As we incorporate the DGs into the power system, the distribution problem’s operation

gets more complicated. The reason is the intermittency of these resources; they inject a

considerable amount of uncertainties into the system. However, the active power injection to

the distribution power system can help decrease the load demand. In contrast, the price of

such RESs makes the operation cost more expensive. To this end, proposing optimal operation

management and the output of these RESs can minimise operating costs and mitigate the
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voltage deviation. To better make use of renewable energy, microgrids have gained popularity

in recent years. Microgrids are distribution systems comprising different renewable energy

resources that can satisfy the local load in a stand-alone mode. Simultaneously, they can also

connect to the power system, sell the excess energy to the system, and profit.

This dissertation proposed deterministic optimal energy management of a microgrid

connected to one 33-bus IEEE standard feeder. Due to the bidirectional load flow and the

optimal power flow’s nonlinear nature, the optimal power flow problem becomes nonlinear

and nonconvex. Therefore, we proposed a linearised optimal power load flow. We solved

the problem using Quadratic programming. The results explicitly show that although the

PV, WT, and hydroelectric plants are the most expensive units, it is more beneficial to buy

energy from them to benefit from using green energy to produce energy. The battery starts

to charge when the energy cost is low, while it gets discharged in intervals when the cost is

higher. After proposing the deterministic framework for the optimal microgrid management

to model the problem in a more realistic environment, we researched the solar output forecast

model.

As mentioned above, the inherent uncertainty involved with renewable energy resources

such as PV makes integration more difficult. The solar output depends on the weather

data, such as solar irradiance and temperature. After exploring relevant studies on different

forecast techniques, we found that most models relied on the seasonal trend of solar output

rather than the time of the day. Also, we found GPR as one of the widely-used methods

in building forecast models. GPR has been used since the 1940s as a tool for prediction,

but it is becoming increasingly popular due to its flexibility to be applied to a wide range

of time-series data. During the past two decades, energy systems using machine learning

(ML) for different purposes such as forecasting are in higher demand. Based on one different

energy benchmarking technique, they can be categorised into three different groups. The

first ones are based on mathematical and physical constraints that need a lot of simulation

and documentation; the second techniques, such as support vector machine (SVM) and

artificial neural network method (ANN), require historical statistical data for training. The

third method, such as GPR, use historical data and d data fitting approaches to build a robust
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model. GPR is a good approach based on meteorological data uncertainties, since it can

calculate the parameters’ uncertainties. Moreover, the model’s nonlinear performance can

explicitly be modelled by this method. Compared to other methods, GPR method is more

efficient for predicting time-series, with a wide range variation of each hour of a day over

one year.

Thus, identifying the highly correlated features, direct solar irradiance, diffused solar

irradiance, horizontal solar irradiance, temperature, zenith, and azimuth, we clustered our

data in four groups based on day-time. We utilised different techniques, such as Elbow, Gap,

and k-means, to determine the optimal number of clusters to cluster the data into four groups.

Afterwards, we trained a model for each of the clusters using GPR. The kernel we used is

Matérn 5/2, which has not been used for solar output forecast before; however, it proved that

has plenty of capabilities in dealing with uncertainty in other forecast models. We ran each

model 30 times and tested the accuracy of the model. We used a mixture of two different

test and validation techniques, i.e., 5-fold cross-validation and hold-out validation methods.

We proceeded to validate our results based on implementing the model on five various sites.

We held out 30 random days as a test set as the representatives of different days in different

seasons.

The results clearly showed there are similar data points in different seasons that can be

grouped in the same cluster in our model, while in the seasonal model, they happen to be

grouped in different seasons. Furthermore, choosing the appropriate number of clusters can

significantly improve the results, as RMSE for eight clusters is 2.4%, while this metric value

is 8.34% without clustering. For the four clusters, the choice of our study, this value is 4.12%.

The largest RMSE and MAE were 4.60 % and 2.06 %, respectively. Testing the model

implementation on different sites, we found our methodology to improve the state-of-the-art

results significantly. In other words, the clustering technique we used in our model grouped

similar points into the same cluster. Therefore, the variance of each cluster reduces and the

accuracy increased.

After proposing the forecast model for solar output forecast, we investigated the impact

of renewable energy, i.e., PV-Battery systems, on the TSO and DSO interactions. The reason
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is that integrating renewable energy into the power system needs collaboration between the

DSO and TSO to operate the system reliably. Since the energy that RESs generate are non-

dispatchable, they need to be either consumed or sold to the upper-hand power system. In this

dissertation, we proposed two different centralised and decentralised linearised coordination

schemes.

In the first scheme, as the decentralised scheme, we modelled the problem into an iterative

bi-level optimisation problem, while in the upper-level, the TSO operates the system and

bids the LMP to the DSO. In other words, the DSO and TSO collaborate to solve the

optimal operation problem in this scheme. At the upper level, the TSO operates the system

and bids the LMP to the DSO. The DSO optimises its network to evaluate the PV-Batt

generations and send back the new load into the TSO. Iteratively, the problem is solved.

We demonstrated that the problem is converged to a near-optimal solution. Afterwards, we

investigated the interactions between the DSO and TSO through a centralised coordination

scheme and a multi-objective optimisation problem. For this, we approximated a Pareto

Front to show the existence of any conflicting objectives. These schemes were implemented

on a five-bus transmission system with four different distribution feeders, IEEE 33- and

69-bus feeders, connected to its different nodes. The results showed improvement in LMP

and congestion management. Also, the decrease in the operation cost and the increase in the

share of renewable energy in both transmission and distribution systems proves the proposed

framework’s effectiveness.

Different entities are responsible for making a decision, and diverse information is shared

between them. In particular, in the centralised scheme, the TSO makes the decisions and

has access to all information about the underlying physical distribution systems as well as

DG bidding. In the decentralised scheme, both the DSO and TSO share the decision making

process, and the only information that the TSO sends the DSO is the LMP at the PCC and

the DSO to the TSO its netload. The two proposed methods also differ in the total cost, level

of DG integration, voltage levels and level of congestion, as demonstrated in the numerical

results’ section. These affect the “power quality” of the system. However, all variables, e.g.,
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voltage levels, transmission line flows, are kept within the limits of acceptable power quality

purposes as defined by the constraints of the OPFs.

All projects have their strengths and limitations. This work is also not an exception, and

I have faced some challenges during my PhD. The most significant challenge was having

to conduct a substantial portion of this research during a global pandemic. As a limitation

to the Microgrid optimal operation, we could model the probabilistic model considering

the uncertainty of load, WT and utility price. However, time limitations hindered me from

pursuing this. One of the limitations that we successfully overcame during the work was the

lack of a concrete dataset for the solar output forecast. We spent much time collecting three

different datasets from different resources to make a consistent dataset. We made the dataset

publicly available to other researchers.

6.2 Future Work

In this part, we are going to have an overview of future work. There are a number of ways

we can further improve this research in the future, such as:

6.2.1 More detailed coordination scheme

There are natural extensions of the work we presented in Chapter 5. For instance, a distributed

solution of the proposed centralised scheme is necessary, so that system operators do not share

sensitive information about their topology and generators bids. Moreover, a more detailed

representation of the topology of the distribution system would provide more accurate results

as well as the incorporation of uncertainty in renewable-based generation. We will report on

these developments in future papers.

6.2.2 Probabilistic model

With new power system technologies and renewable energy generators, traditional power

system operators face new challenges. Some of these technologies, such as microgrids,
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can locally supply energy for their consumers and change the power system voltage and

frequency. At the same time, they insert uncertainty into the system and make the operation

more complex and challenging. Therefore, to achieve optimal operation, probabilistic

modelling of uncertainty is necessary as much as finding the tools for optimizing generation

and voltage regulation costs. In this part, Deep Reinforcement Learning Solution (DRL),

Neural Network tools, Monte Carlo (MC) modelling and Fuzzy Logic tools can be helpful

for future work.

6.2.3 Electro-thermal model of PV

Using the PV thermal systems as an asset to systems can improve solar systems since we can

use them to supply the heating loads in MG problems. The model for one PVT is presented in

[42]. The idea of PVT systems is new. Different designs and novel applications for them has

been introduced recently in [177–181].In future work, we can use electro thermal PV plant

to improve the PV system efficiency as well as using the Electro thermal PV for supplying

hot water for residential loads.

6.2.4 Model of pump hydro

Pumped storage hydroelectric plants are designed to serve the peak load at certain times, e.g.,

peak hours, with hydroelectric energy and then pumping the water back up into the reservoir

at other times, e.g., light load periods. Thus, two intervals need to be considered when

modelling the operation of pumped storage hydroelectric systems: intervals of generation and

intervals of pumping. In any one interval, the plant can be (i) pumping or (ii) generating. The

idle case may be presented as either a pump or generate. The model for a Pumped Storage

Hydro Cascade is presented in [182]. We try to model pump hydro and utilize the model as a

storage device instead of a battery in future work. Then in our future work, we can compare

the performance of these storage-based units compared to normal lithium-ion batteries.
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6.2.5 Model of hydro plant

In [183] a robust optimal operation scheme is implemented on a real cascade hydroelectric

power system to maximizing the head level of the dams as well as minimizing the spillage

effects. The focus of the optimization problem is to make the head level of the dams robust

against uncertainty. The case study is based on the Seven Fork system located in Kenya,

which includes five cascaded hydroelectric power systems. In [184] the authors tried to

highlight the importance of low-carbon strategies and technologies by simulating a high-

resolution electricity demand model to address the requirements needed for the integration of

renewable energy resources into the power system. In [185] an optimization approach is

proposed for one photovoltaic-wind hybrid system considering the size, cost, and availability.

In [186, 187] the value of hybrid solar-hydro systems are discussed. Basically, in mentioned

work, these models were not implemented on a typical microgrid to observe their effect on

the performance of microgrid operation. In our future work, we aim to use the hydroelectric

and pump hydro storage models to see their effects on the new model’s performance.

6.2.6 Hyperparameters Optimization

We can optimise the hyperparameters of the kernel function to improve the forecast accuracy.

Based on a very recent study [188], optimising the hyperparameters of a kernel function

can have great effects on the performance of a GPR model. Moreover, a thorough analysis

of the sky coverage effect in solar power output could be investigated. More specifically,

knowledge of the density, thickness, and type of clouds can help to improve the solar output

prediction model. The use of sky images [189] can help in this direction.

6.2.7 Hosting Capacity

The integration of renewable energy resources into the power system has generated a signifi-

cant amount of coverage and discussion. As we discussed in this dissertation, the precise

estimation of the power system’s need to integrate these resources into the system is also
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critical. In future work, we can focus on the hosting capacity and model the linearized

framework problem.
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Nomenclature

A reduced branch-to-node incidence matrix

Bd diagonal branch susceptance matrix

BBi cost of the battery system at node i

BPVi cost of PV generation at node i

ci(t) cost of generator i at time t

E0,i initial value of the energy stored at battery system at node i

Emin,i minimum energy that can be stored at battery system at node i

Emax,i maximum energy that can be stored at battery system at node i

f (t) vector of line power flows at time t

f M vector of maximum real power flows

σ f kernel parameter, signal standard deviation

σl kernel parameter, characteristic length scale

σε standard deviation of the errors

f m vector of minimum real power flows

f1(·) TSO objective function



128 Nomenclature

f2(·) all DSOs objective functions

g1(·) TSO inequality constraints

g2(·) DSO inequality constraints

h1(·) TSO equality constraints

h2(·) DSO equality constraints

I set of I generators

J set of J loads

Jk set of loads connected to bus k

K set of K nodes

L set of L lines

M graph incidence matrix

N d
PV set of PVs connected to distribution system d

N d
B set of battery systems connected to distribution system d

pd
i (t) net real power at node i at time t in distribution system d

Pdis
Bi

(t) discharging power of the battery system at node i at time t

Pdis,min
B,i discharging power of the battery system at node i lower limit

Pdis,max
B,i discharging power of the battery system at node i upper limit

Pch
Bi
(t) charging power of the battery system at node i at time t

Pch,min
B,i charging power of the battery system at node i lower limit

Pch,max
B,i charging power of the battery system at node i upper limit
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PL j(t) load j at time t

Ploadi(t) real load at node i at time t

Pd
grid(t) amount of power purchased from the transmission system at time t for distribution

system d

Pd,min
grid minimum amount of amount of power purchased from the transmission system for

distribution system d

PGi(t) the power injection of generator i at time t

Pm
G vector of lower generation limits

PM
G vector of upper generation limits

PPVi(t) power output of PV at node i at time t

Pmin
PV,i power output of PV at node i lower limit

Pmax
PV,i power output of PV at node i upper limit

qd
i (t) net reactive power at node i at time t in distribution system d

Qloadi(t) reactive load at node i at time t

R positive definite matrix representing the network

T time period of interest

Vi(t) voltage level at node i at time t

V min
i voltage level at node i lower limit

V max
i voltage level at node i upper limit

Vref voltage reference value

X positive definite matrix representing the network



130 Nomenclature

α the voltage regulation cost

∆t simulations time interval

ηch,i charging efficiency of battery system at node i

ηdis,i discharging efficiency of battery system at node i

θk(t) angle at node k at time t

λk(t) locational marginal price at node k at time t

(·)t value of variable at time t

CI Confidence Interval

ck cluster k centroid

C(i) data point cluster number

d(xi,ck) distance between xi and ck

f (x(t)) mapping function of features to solar output

f vector of mapping functions

h(x(t)) basis function

H vector of basis functions

K number of clusters

K(·, ·) covariance matrix

M number of features

MAE Mean Absolute Error

MSE Mean Square Error
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Nk number of points assigned to cluster k

q number of selected features

RMSE Root Mean Square Error

T period of T hours

T⋆ number of hourly intervals the solar output is predicted

x(t) vector of features at time t

xi vector with n elements

Xi vector of feature i for T time intervals

X matrix of features for entire period

X set of N elements

y(t)⋆ forecasted value for solar generation at time t

ỹ(t) actual value at time t

y(t) solar output at time t

y vector of solar output

β basis function coefficient

β̂ estimated basis function coefficient

ε(t) noise variable at time t

ε vector of noise variables

ε̄ mean value of the errors

θ hyperparameter of the kernel function



132 Nomenclature

θ̂ estimated hyperparameter of the kernel function

θ f kernel parameter

θl kernel parameter

µ mean value

ρ(·, ·) correlation coefficient

σ standard deviation

σ̂ estimated standard deviation



Nomenclature

A reduced branch-to-node incidence matrix

Bd diagonal branch susceptance matrix

BBi cost of the battery system at node i

BPVi cost of PV generation at node i

ci(t) cost of generator i at time t

E0,i initial value of the energy stored at battery system at node i

Emin,i minimum energy that can be stored at battery system at node i

Emax,i maximum energy that can be stored at battery system at node i

f (t) vector of line power flows at time t

f M vector of maximum real power flows

σ f kernel parameter, signal standard deviation

σl kernel parameter, characteristic length scale

σε standard deviation of the errors

f m vector of minimum real power flows

f1(·) TSO objective function



134 Nomenclature

f2(·) all DSOs objective functions

g1(·) TSO inequality constraints

g2(·) DSO inequality constraints

h1(·) TSO equality constraints

h2(·) DSO equality constraints

I set of I generators

J set of J loads

Jk set of loads connected to bus k

K set of K nodes

L set of L lines

M graph incidence matrix

N d
PV set of PVs connected to distribution system d

N d
B set of battery systems connected to distribution system d

pd
i (t) net real power at node i at time t in distribution system d

Pdis
Bi

(t) discharging power of the battery system at node i at time t

Pdis,min
B,i discharging power of the battery system at node i lower limit

Pdis,max
B,i discharging power of the battery system at node i upper limit

Pch
Bi
(t) charging power of the battery system at node i at time t

Pch,min
B,i charging power of the battery system at node i lower limit

Pch,max
B,i charging power of the battery system at node i upper limit
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PL j(t) load j at time t

Ploadi(t) real load at node i at time t

Pd
grid(t) amount of power purchased from the transmission system at time t for distribution

system d

Pd,min
grid minimum amount of amount of power purchased from the transmission system for

distribution system d

PGi(t) the power injection of generator i at time t

Pm
G vector of lower generation limits

PM
G vector of upper generation limits

PPVi(t) power output of PV at node i at time t

Pmin
PV,i power output of PV at node i lower limit

Pmax
PV,i power output of PV at node i upper limit

qd
i (t) net reactive power at node i at time t in distribution system d

Qloadi(t) reactive load at node i at time t

R positive definite matrix representing the network

T time period of interest

Vi(t) voltage level at node i at time t

V min
i voltage level at node i lower limit

V max
i voltage level at node i upper limit

Vref voltage reference value

X positive definite matrix representing the network
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α the voltage regulation cost

∆t simulations time interval

ηch,i charging efficiency of battery system at node i

ηdis,i discharging efficiency of battery system at node i

θk(t) angle at node k at time t

λk(t) locational marginal price at node k at time t

(·)t value of variable at time t

CI Confidence Interval

ck cluster k centroid

C(i) data point cluster number

d(xi,ck) distance between xi and ck

f (x(t)) mapping function of features to solar output

f vector of mapping functions

h(x(t)) basis function

H vector of basis functions

K number of clusters

K(·, ·) covariance matrix

M number of features

MAE Mean Absolute Error

MSE Mean Square Error
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Nk number of points assigned to cluster k

q number of selected features

RMSE Root Mean Square Error

T period of T hours

T⋆ number of hourly intervals the solar output is predicted

x(t) vector of features at time t

xi vector with n elements

Xi vector of feature i for T time intervals

X matrix of features for entire period

X set of N elements

y(t)⋆ forecasted value for solar generation at time t

ỹ(t) actual value at time t

y(t) solar output at time t

y vector of solar output

β basis function coefficient

β̂ estimated basis function coefficient

ε(t) noise variable at time t

ε vector of noise variables

ε̄ mean value of the errors

θ hyperparameter of the kernel function
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θ̂ estimated hyperparameter of the kernel function

θ f kernel parameter

θl kernel parameter

µ mean value

ρ(·, ·) correlation coefficient

σ standard deviation

σ̂ estimated standard deviation
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