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AI technologies are often used to aid people in performing discrete tasks with well-defined goals (e.g., recognising faces in 
images). Emerging technologies that provide continuous, real-time information enable more open-ended AI experiences. In 
partnership with a blind child, we explore the challenges and opportunities of designing human-AI interaction for a system 
intended to support social sensemaking. Adopting a research-through-design perspective, we reflect upon working with the 
uncertain capabilities of AI systems in the design of this experience. We contribute: (i) a concrete example of an open-ended 
AI system that enabled a blind child to extend his own capabilities; (ii) an illustration of the delta between imagined and actual 
use, highlighting how capabilities derive from the human-AI interaction and not the AI system alone; and (iii) a discussion of 
design choices to craft an ongoing human-AI interaction that addresses the challenge of uncertain outputs of AI systems. 
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1 INTRODUCTION 

Rapidly developing Artificial Intelligence (AI) technologies provide an opportunity for new types of human-AI 
interactions to emerge that enable people to augment, or extend, their own capabilities. People with disabilities, 
as early adopters of AI technologies [8], are fruitfully pushing the boundaries of how AI systems can be used 
and what the interaction paradigm might look like. Indeed, there are already a substantial number of AI 
applications that support people who are blind or low vision to achieve discrete pragmatic tasks, in which the 
end-to-end experience is well defined. For example, a blind user can take a photo of a short piece of text such 
as a conference room name, and the AI application reads out the words [47]. As AI technologies progress, there 
is potential to move beyond the current focus of solving discrete tasks and explore ways in which we can 
harness the promise of AI to assist users in richer, longer-term engagements.  

In this paper, we explore a different kind of human-AI interaction through the design of an open-ended AI 
experience intended to provide children who are blind or low vision with ongoing, real-time information about 
other people in their vicinity (See Fig 1). An enriched understanding of social context [33,57], such as who is in 

the room and how they relate to the user, can empower people who are blind or low vision to proactively choose 
their interactions: to socialise, ask for help, or simply moderate their behavior appropriately. Yet, such social 
understanding is a situated, dynamic sensemaking activity driven by the user as they need it. Moreover, one’s 
social context can change dramatically moment-to-moment as people move about. This differs from the 
completion of a discrete technical task, such as face recognition, as the end-to-end use scenario cannot easily 
be defined. This led us to consider how we might design human-AI interaction in a system intended to support 
the open-ended activity of social sensemaking. 

Our design exploration to support open-ended social sensemaking activities in the context of the evolving 
functionality of AI systems builds on the idea of capability uncertainty proposed by Yang et al. [64]. Following 
their definition, capability broadly refers to the functionality of the AI (ie., face recognition) and how well the 

Figure 1. TH uses PeopleLens to engage with a conversation partner. 
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system performs, including the types of errors it creates. Inherent to this however are uncertainties around how 
well a system might perform (and thus what it can do) given its probabilistic nature and dependency on context 
of use. Standard tools such as sketching and prototyping that help designers understand the boundaries of the 
technology in order to ideate, assess, and define a preferred future, or design goal, can be difficult to apply to 
AI systems as the capabilities often only become apparent after deployment [11,62,63].  

To address this challenge, Yang et al. [64] defined a new design process which distinguishes between 
prototyping the AI system and prototyping the user experience of the AI system. It suggests the latter should 
happen through the thoughtful and choreographed deployment of an AI prototype to explore potential design 
decisions before the user experience is ultimately defined and evaluated. This additional part of the design 
process has been proposed to enable interaction designers to obtain key insights into the workings of the AI 
system in situ in order to respond to capability uncertainties with appropriate interaction design decisions. While 
a necessary step for addressing capability uncertainty in AI systems, it is more resource and time intensive than 
traditional rapid prototyping approaches. Consequently, our ability to learn from exemplars through research-
through-design approaches may be beneficial. 

Framed using a research-through-design (RtD) perspective [67], this paper describes and reflects upon the 
user experience prototyping phase of an open-ended AI system intended to support the social agency of blind 
children at school. Social inclusion in education is a known challenge for blind and low vision children, identified 
in the HCI literature [29], the clinical literature [41], as well as an issue observed by our research team through 
previous deep engagements with this community. Our goal was to provide a facility that could augment 
children’s existing sensemaking skills, as well as scaffold proactive social interactions that allow children to 
experience a sense of social agency. By definition, such a system must support ongoing interaction with a child 
in a social milieu. Given both the technical and ethical challenges of deploying a multi-algorithm, state-of-the-
art AI system that includes facial recognition in a school, we felt the responsible approach [46] was to first focus 
on a deep engagement with a single young blind person, his family, and his school community.  

Over a period of seven months, we worked with TH, his family, and his school to respectfully craft and refine 
experience ideas for a system we dubbed the PeopleLens. TH was twelve years old at the time, and attended 
an independent, mainstream school. Despite strong academic abilities and the skill to travel independently, he 
struggled to find and interact with his friends at school. His family also described challenges in helping TH 
understand the power of physically orienting to social interaction, such as looking at someone when they speak. 
Building on previous research engagements with TH, we started design sessions in our lab, exploring potential 
uses of the technology. We progressively moved into more realistic settings in his school environment to 
understand how he used the system with his friends and teachers, and how they responded.  

The user-experience prototyping discussed in this paper uses a sophisticated AI prototype [27] intended to 
provide people who are blind or low vision with a better understanding of their immediate social environment. 
The prototype uses a head-mounted augmented reality device in the form of a modified HoloLens [30] in 
combination with five state-of-the-art computer vision algorithms to continuously identify and track people in 
space as well as capture the gaze direction and activities of people in the vicinity. It then presents this 
information about the social environment to the user through spatial audio. For example, whenever the user 
passes their gaze over another person, they would hear the name of the person, or, if not identified, a spatialised 
sound to indicate the presence of a person. As this and further examples will illustrate, many design decisions 



4 

are at work to translate the raw perception information provided by the AI prototype into a useful and coherent 
user experience.  

We describe the user-experience prototyping process, the PeopleLens, and vignettes of its usage as a 
means to reflect upon designing with capability uncertainty in the creation of open-ended AI experiences. We 
show how TH, his social surroundings, and interactions with and understanding of the capabilities of the AI 
prototype shaped his experience and that of those around him. This situated, user-encountered capability of AI 
[64] is difficult to anticipate from the outset and yet fundamental to user experience design. We also discuss 
design decisions that address the give-and-take between user, AI system, and social setting in this ongoing, 
open-ended experience, speaking to the challenge of crafting coherent experiences from systems that produce 
uncertain and complex outputs. We make the following three key contributions: 

 
• We describe the design and usage of the PeopleLens, an open-ended AI experience that augments social 

sensemaking, by a 12-year-old blind boy, offering a concrete example of how AI might enable and extend 
human capabilities in ways different from the discrete tasks currently supported.  

• We outline and discuss the design choices that we made for the PeopleLens in order to address the capability 
uncertainties that arose in crafting the experience of this open-ended AI system. These highlight three issues: 
(i) the importance of low-density information; (ii) creating intelligibility through support information; and (iii) 
designing for reciprocal interaction. 

• We reflect upon the PeopleLens design journey and the substantial differences between imagined and actual 
use, suggesting that open-ended AI systems give more scope for users to extend their own capabilities which 
introduces capability uncertainty derived from the human-AI interaction rather than the AI system alone.  

2 RELATED WORK 

We begin by situating our work and approach in the literature on human-AI interaction. We then consider current 
AI and Augmented Reality (AR) technologies for people who are blind and low vision and the types of 
interactions they afford. Finally, we consider the focus of the experience we create, supporting the social agency 
of children who are blind. As this literature is highly clinical in nature, we also bring in perspectives from the 
disability literature for balance.  

2.1 Understanding Human-AI Interaction 

There is a diverse literature on conceptualising and designing human-AI interaction. The HCI literature has, for 
the most part, rejected the conceptualisation of AI as a simulation of human capabilities despite this popular 
framing in machine learning communities (e.g., [49]). Emphasis has instead been put on conceptualising the 
(collaborative) relationship between user(s) and AI system (e.g., [21,50]). One conceptual framing that is 
particularly nuanced in the ways that AI systems might augment human capability is cognitive extenders [22]. 
It contrasts the collective intelligence of a cognitive service that an AI system might provide to a user (User + 
AI) with the role an AI system can play as a tool of cognitive extension (User[AI]). A cognitive extender is defined 
as “an external physical or virtual element that is coupled to enable, aid, enhance, or improve cognition, such 
that all – or more than – its positive effect is lost when the element is not present” [22]. It is this relationship of 
cognitive extension that we aspire to create when supporting ongoing social sensemaking with the PeopleLens.  

Other researchers have focused on the practice of designing human-AI interaction. Guidelines have been 
developed to support interaction design decisions with AI systems (e.g.[4]). Experimental research has tried to 



5 

consider the optimal collaboration conditions through the design and building of toy systems (e.g., [36]). Work 
has been done to understand the types of information users need before they begin to use an AI system, such 
as for medical decision-making (e.g., [10]). Not least, researchers have focused on the system side to develop 
new techniques to make systems more interpretable, explainable, and accountable to people (e.g., [1]). Despite 
the body of knowledge gained from considering human-AI interaction from multiple perspectives, a recent 
review paper suggests that interaction designers continue to have significant challenges in practically designing 
experiences with AI systems [64].   

Yang et al. [64] identify two types of challenges designers face when designing AI systems: 1) uncertainty 
surrounding AI system capabilities in the early, or divergent stages of design; and 2) the complexity of the 
outputs of an evolving system in the later convergent stages. They note that in the divergent stages, for example, 
designers often have difficulty generating novel, purposeful uses of AI and, having done so, may have difficulty 
assessing the feasibility of an idea because it may depend on data or relationships to other algorithms. In the 
convergent stage, challenges are noted around crafting thoughtful experiences with a system that may have 
unpredictable behaviors. These difficulties are collectively referred to as capability uncertainty. They arise from 
the gulf between what the AI system and associated data appear to promise and the reality of what they can 
concretely achieve.  

This paper reflects upon capability uncertainty in the concrete example of designing and using the 
PeopleLens. Note that while the PeopleLens does not adapt or learn over time, the complexity of the models 
leads to outcomes that are often difficult to predict. Variables such as lighting conditions, the density of people 
in space, the positioning of people and their faces in relation to a moving user, images in reflective surfaces, 
variability in training images for face recognition combine to create significant uncertainties in performance that 
are related to the concept of capability uncertainty as described by Yang, et al. 

2.2 AI and AR technologies for Blind and Low Vision People 

Blind and low vision people have been early adopters of AI technologies [8] and particularly computer vision-
based applications. Digital systems now provide automatic image captions for images on social media platforms 
[61] and in operating systems, and they support exploration of visual websites, e.g., shopping for clothes [52]. 
Moving into the physical world, researchers have mined zebra-crossing locations to support route planning [2]; 
created finger-mounted cameras to read text [53] or recognise patterns on clothes [54]; and built smart phone 
apps to help recognise personal objects [23] and people [66]. Systems that provide access to visual information 
in non-digital settings have been validated with large numbers of people through crowd-supported systems 
(e.g., VizWiz [7]).These explorations are now being actualised in products such as SeeingAI [47], an app that 
uses AI to support everyday tasks such as reading signs or recognising the contents of a photo.  

There is also growing research into developing audio AR experiences for people who are blind or low vision. 
The majority of this work focuses on navigation, providing technical contributions [9,15] or supporting users to 
keep a straight path using a mobile phone [39], head-mounted display [16], or an environment tracked with 
motion-capture technology [26]. Other research investigates the use of a wearable device to help enhance the 
spatial cognition of blind children [13] and support them to play and move independently in kindergarten [18]. 
In both cases, sound is being used to guide attention and to connect spatial understanding with proprioception 
to elements of the environment. So far, while these studies show positive results, these lab-based studies do 
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not utilise any AI functionality and provide few insights into the design decisions made for, or the analysis of, 
the audio AR experience.  

Much less research has addressed technology design to support social understanding for those who are 
blind or low vision. Amongst the few existing examples, social assistants have been explored that: provide the 
location and distance of an interaction partner and their facial expression through a tactile belt [38]; verbal 
presentation of emotional valence and head direction [35]; and gaze direction through tactile feedback [43].  
These systems have not been deployed with users in the wild, giving us little feedback on their feasibility and 
the experiences offered. Yet, there is research to suggest the blind community is particularly interested in the 
opportunity to receive social information [33,57]. The work in this paper addresses this need.  

2.3 Blind Children and Social Interaction 

Responding to the specific design focus we present in this paper, we consider the literature on the challenges 
of social interaction for blind children and current strategies to support development. Children born blind often 
have substantial and ongoing difficulties with social interaction [41]. Research has shown that at school age (6–
12 years), blind and low vision children show significantly poorer usage of language for social purposes 
compared to their sighted peers, despite good intellectual abilities and advanced linguistic skills [56]. Other 
difficulties include perspective taking, emotional recognition, and atypical social interaction, which can impact 
educational outcomes as well [41]. The extent of the difficulties is captured in the statistic that two-thirds of blind 
children show behavioral similarities to sighted children with autism [41]. 

While there is much disagreement about the underlying nature of the social challenges of blind children, 
there is consensus that appropriate intervention can shift the ability of blind children to relate and engage with 
others [20,41]. One intervention, the augmentation of toys with sound, illustrated that while it facilitated 
engagement, it hindered cooperative play [58]. Social skills training was also found to be effective and 
generalised in peer-mediated groups [45]. More typically, interaction between blind children and their sighted 
peers is often mediated by adults. Teachers, assistants, or parents often describe the social environment, such 
as who is in the classroom when a child enters, to provide the first layer of information the child needs to 
participate. Yet, while mediation is practical, it is problematic for social interaction as it spawns a ‘teaching 
assistance bubble’ [29]. This suggests an opportunity to consider how a dynamic, AI-enabled experience might 
support a blind child to engage with their peers. 

2.4 Disability Studies Literature  

Contemporary thought in the disability studies literature offers a distinctive perspective on the ways technology 
can work in concert with human agency. This work shows that technology is not a ‘solution’ for people with a 
disability by attempting to replace a physical or sensory ability a person does not have (e.g., vision or 
movement). Rather, assistance [25] and by extension assistive technologies [34] are appropriated to extend 
people’s capacities in highly personal and situationally dependent ways. This is achieved through a continuous 
mutual shaping of technology and person that can reconfigure the relationships between person, technology, 
and social context to enable new capabilities. For example, cochlear implants depend on the user’s capacity to 
adapt to a different way of ‘hearing’ through long-term auditory training programs, evocatively referred to by 
Mauldin as a “choreography of listening” [28]. 
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It is this idea of choreography that provides a particular design stance to audio AR. It suggests a shift in 
emphasis from discrete outputs and efficient task completion towards approaching technology as an element 
in an active back-and-forth engagement with a user. There is an acknowledgement of the interdependence [31] 
between the many entities and activities occurring in any context and their active assembly or sensemaking by 
the user. This, in turn, opens up the conditions of possibility to make certain capabilities attainable. Closer to 
HCI, notions of interdependence [5] and an assemblage of technology to support sensemaking [57] have been 
put forward as framings for the development of technology that consider the often unrepresented ways people 
with disabilities are more than the recipients of support but, in fact, play active roles in what it means to be 
capable. This has been a key framing for our design work discussed in the next sections.  

3 PEOPLELENS PROTOTYPE 

This paper takes a research-through-design (RtD) perspective [67] to describe and reflect upon the user 
experience prototyping phase of the PeopleLens. In Section 3, we first document the AI prototype that we used 
in our design engagements, then we describe the final experience design. This provides the context for Section 
4, which captures key learnings in the design journey.  

3.1 AI Prototype 

3.1.1 Social Sensemaking 

Social sensemaking was a key driver in the creation of the AI prototype. The notion of sensemaking was 
originally introduced in organizational psychology [59] to describe how people come to understand the unique 
configuration and situated dynamics of their social surroundings that gives meaning to their collective 
experience over time. Weick [59] described seven properties of sensemaking that combine to help people 
interpret events and the social experience around them. A central component is the process of understanding 
who is around an individual, their physical proxemics, and the complex social information that one gleans from 
the communication and social history of an individual and between actors. In HCI, Russell, et al. [44] used the 
term sensemaking to capture how people develop representations and organize information to support activities 
such as decision-making and problem-solving. In our work, we lean on both of these concepts, using the term 
social sensemaking to describe how a person comes to understand and successfully interact with the social 
milieu in which they are situated.  

The focus on social sensemaking derived from design ideation workshops with blind and low vision people 
in the UK and India [33] as well as ethnographic fieldwork with Paralympic athletes and spectators [57]. This 
research foregrounded both their social inclination and their skillful sensemaking strategies to understand their 
environment. Examples focused on where other people are in the physical space as well as who those 
individuals are and what activities they are engaged in. For example, a participant in India speaks of a visit to a 
relative’s house: “Who is present today? Is cousin there?” Social sensemaking can also capture the tone of the 
atmosphere (e.g., tense or relaxed) and any interpersonal or group dynamics that might be at play. For example, 
a participant in the UK said: “A way to know how someone is responding when I’m breaking bad news [as a 
doctor] in a hospital context.” 

Sensemaking [40] more generally highlights the ways that people bring together multiple strands of 
information from different senses over time to understand a situation. It was observed in our ethnographic study 
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that participants felt most confident to engage in social interactions when they were able to “work out” what was 
happening around them from triangulating multiple cues. For example, a blind person might expect someone 
to be attending a meeting and then hear that person’s unique phone ring, encouraging the blind person to 
approach or introduce themselves. The AI prototype was imagined as an additional layer of information to 
enable users to extend their existing sensemaking strategies; it is not intended to replicate the social 
sensemaking process.  

3.1.2 Prototype Description 

The experience prototyping of PeopleLens used an AI prototype that was designed to provide information about 
people in the immediate social environment for users who are blind or low vision [27]. The prototype utilises a 
head-mounted augmented reality device in the form of a modified HoloLens [30] in combination with five state-
of-the-art computer vision algorithms to continuously identify and track people in space as well as capture the 
gaze direction and activities of people in the vicinity. By tracking the 6DOF motion of the head-mounted user 
device, information is rendered to users via spatial audio to create a real-time audio augmented reality 
experience that is responsive to the dynamic flow and movement of social interaction.  

The AI prototype employs a pipeline of state-of-the-art computer vision algorithms. The pipeline receives 
images from four of the sensors on the HoloLens: three grey-scale cameras that provide a near 160-degree 
field-of-view with good vertical capture and a 1344x756 pixel central RGB colour camera. Images are first 
processed by a model to detect the pose and location of all people in a scene (re-implementation of [12]). Poses 
are then used to crop the face, which is passed on to a probabilistic model that provides a set of potential 
identities [14]. The poses are also fed into models that provide information on gaze direction (implementation 
of [42]) and activity (unpublished). A responsive experience is achieved through maintaining a predicted world 
state of the social environment in a four-meter radius for all 360 degrees around the user.  

Computation is done on a server box containing two 24 GB TitanX GPUs. While compute heavy, it is 
reasonably fast, with the world state model updating at 12 to 15 frames per second and the user experience 
working at 60 frames per second. The experience is provided on a modified HoloLens mixed reality device, with 
the display (lens) removed (Figure 2). This adaptation reduced the weight of the wearable, avoided occlusion 
of any residual vision of the user, and provided a more natural experience of communication for conversation 
partners. This AI system differs substantially from existing technologies, e.g., SeeingAI [47] or Orcam [37], in 
the immediacy of the real-time, spatial, and continuous experience achieved.  

Figure 2: Modified HoloLens device with external LED display. 
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3.1.3 Baseline Performance 

As performance can impact usage, we calculated the baseline performance of the AI prototype on a dataset of 
children carrying out typical school activities. All performance metrics were calculated on a per-frame basis and 
averaged over the whole of the dataset. The dataset was formulated alongside the children as part of outreach 
work in helping children learn about AI systems and was subsequently donated to the project. It contains 14m 
08s of footage from 19 recordings of 4 distinct activities, such as eating lunch or entering a classroom, and 
included 18 children. This dataset was annotated with ground truth labels. The presence of people was correctly 
identified in the frame with an accuracy of 79% (P: 97% and R: 79%). Per frame correct identification of a named 
person had an accuracy of 18% (P: 22% and R: 18%). These numbers reflect the ‘raw’ predictions of the AI 
prototype and do not include performance enhancements achieved through tracking and the interaction design, 
which are much more difficult to measure.  

3.1.4 Data Considerations 

Datasets and handling are a significant part of the ethical deployment of any AI system, particularly this one 
which raises numerous value tensions [19]. This project followed the Responsible AI Principles from Microsoft, 
assessing potential harms and needed mitigations in the context of the overall benefit of the system [68]. The 
system was built to avoid storing image, time-stamp or location data that could be misused by a malicious actor.  
While a number of models were used to support identity recognition, the facial recognition was done with a 
proprietary model that had been tested on a broad set of demographics. We also considered the impact of the 
system not recognizing a child with facial anomaly. While we were unable to implement a technical solution in 
our deployment, we prepared a protocol for addressing the issue quickly should it arise. This included priming 
teachers to look for inconsistent recognition of specific people as well as a data capture plan to analyse and 
address the situation. 

3.2 Final PeopleLens Experience 

In order to provide the context for our discussion of the design journey in Section 4, we describe the final 
PeopleLens experience that resulted from that journey first.  

3.2.1 PeopleLens Features 

The PeopleLens has three key features:  
Person-In-Front: This feature reads out the name of a person when TH looks at them.  

• All sounds are spatialised so that the person’s name is heard from the direction of that person at the 
time it is read out. 

• If TH moves his head quickly, the notification triggers when TH’s gaze crosses the nose of a person, 
but the sound is spatialised according to head position at the time of rendering.   

 
Orientation Guide: This feature provides additional sound cues to support TH’s in situ understanding of the 
detection of bodies or faces. These cues assist TH in orienting his body and head to interact in a socially 
understood way as well as provide good images to the system for processing. 

• Spatialised percussive bumps are played when a body is seen.  
• Bumps are followed by a name if the person is known to the system and identifiable.  
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• If a person hasn’t been identified after 0.1seconds, a click sound is played.  
• If TH dwells on a click sound for 2 seconds, an elastic band sound is used to help TH shift his gaze 

up or down to help him orient towards the face.  
 

External Feedback: Finally, the head-mounted device has an external LED interface (see Figure 2) that 
indicates the system state to a communication partner: 

• A white light shows the position of the closest tracked person within the system’s 180° field of vision. 
• The white light turns green when the system reads out a name to TH. 

 

Figure 3: PeopleLens experience features 

3.2.2 Exemplar Scenario of Use 

Let’s take the following scenario of use proposed by TH to understand how the PeopleLens might work. This is 
illustrative of the connected use of the PeopleLens system, however, we chose not to implement this particular 
scenario to avoid disrupting classroom learning if the technology went wrong.  

TH walks into a classroom that he is very familiar with. He hears three “bumps” (percussive sounds 
representing body presence) at about 10 o’clock (forward left). TH guesses that three people are standing at 
the interactive whiteboard working on a problem set with their backs to him. As he shifts his gaze to the right, 
he hears a smattering of bumps which he guesses are other children sitting at their desks reading with their 
heads down. As he gets all the way to the right, he hears a bump followed by a name, Jane. TH clicks his 
tongue and listens for its echo. He guesses that Jane is standing next to the wall, perhaps at the classroom 
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coat rack. However, TH really wants to tell his friend Oscar about the new Lego set he got over the weekend. 
He heads in the direction of Oscar’s seat. As he gets closer, he hears woodblock sounds which encourage him 
to look down. Looking at the external interface on TH’s headset, Oscar can see that the system sees him but 
he’s to the right of center so he needs to shift a bit to be properly detected. Oscar’s name is then read out. TH 
surmises that Oscar must be sitting down. TH grabs a chair and pulls out a Lego figure for Oscar to see. 

4 PEOPLELENS DESIGN JOURNEY 

Now that we have described the “destination” in terms of the final prototype we arrived at, we reflect on the 
journey of designing the human-AI interaction for the PeopleLens. We put particular emphasis on the ways in 
which the design and design process address, or contribute to our understanding of, capability uncertainty. To 
do this, we take two different perspectives on the design journey. The first captures the evolution of key design 
decisions and the ways they addressed the uncertain outputs of a multi-algorithm system working in the real 
world. The second takes a higher-level view of how TH’s notions of the capabilities of the AI prototype change, 
shaped by his and others’ interactions with it. We preface these two sub-sections with a description of designing 
with TH and how we documented the journey.  

4.1 Introducing TH 

Given both the technical and ethical challenges of deploying a multi-algorithm, state-of-the-art AI system that 
includes facial recognition in a school, we felt the responsible approach [46] was to first focus on a deep 
engagement with a single young blind person, their family, and their school community. We chose to work with 
TH, a 12-year-old boy born blind who attends an independent mainstream school. A very able child, he loves 
mathematics and coding. He accesses all learning through tactile means (e.g., braille, objects) as he has light 
perception only. Despite being a very independent child with excellent mobility skills, TH finds it difficult to 
interact with his peers in school. His family is constantly encouraging him to adopt more socially oriented 
communication strategies, from saying hello when he meets someone to not putting his head on the desk when 
people are talking to him. He also struggles to engage in extended conversations without mentioning 
technology, his favorite topic.  

Our choice to work with TH was motivated by various practical considerations. He and his family had already 
worked with our research team, and they were excited by the technology they had glimpsed. As TH had 
previously been a co-designer on a different four-year project from sketches to commercialisation, he was 
familiar with technology design processes and understood the possibility that this research technology might 
never get to product and into his hands. We felt this was an important ethical consideration. Ethical clearance 
was received through all necessary IRB processes for this co-design work and inclusion of pictures in this paper. 
Consent was also sought and provided by all participants (or their parents) in the school setting. 

4.1.1 Designing with TH 

Our seven-month engagement took place in two phases. Design explorations began in our lab with three 1.5-
hour-long monthly co-design sessions in which TH participated with his mother. The aim was to use the AI 
prototype to support TH and his mother in imagining what scenarios the technology might be most useful to TH 
and how we could refine the experience for these initial scenarios. We scaffolded this imagination process by 
providing different functionality for TH to try and discuss. It also gave us an opportunity to observe potential 
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design issues and hear from TH about his expectations of the ultimate experience design. Having identified an 
initial experience and use scenario, we then engaged with TH’s school community to explore the experience in 
the wild. The first two sessions were small steps to explore the technology outside the lab: one in TH’s home, 
and the other in a controlled school setting with three other children. In the final two sessions, TH used the 
technology during a drama class.  

4.1.2 Understanding our engagement with TH 

In order to document and reflect on the design process and the capability uncertainties we encountered, data 
was collected throughout the experience prototyping process. The initial lab sessions, the family meal in TH’s 
home, and the initial school session were audio and video recorded. The video stream and system annotations 
(e.g., recognised people) from the PeopleLens were also captured. All discussions in the audio recordings were 
transcribed. System data and annotations were reviewed in custom-written visualisation software.  

In the whole-class school environment (final two sessions) no video or audio was collected, neither from an 
external camera, nor the HoloLens. The user experience was recorded and could be anonymously played back 
through custom tooling, using 6DOF measures from the HoloLens as well as pose annotations. To support this 
as a non-visual process, a researcher had an interface for annotating key events and capturing time-stamped 
observational notes. Observational notes were also taken by an additional researcher. TH and his mother were 
interviewed after each session. Email feedback was sought from involved teachers. The parents of 23 of the 30 
children that the system could potentially identify gave consent for the PeopleLens to learn the children’s 
identities from images. These images were immediately discarded after training.  

The methodological perspective taken in the analysis was interpretive. Acknowledging the mixture of data 
materials produced throughout the research process, we sought to apply different analytical techniques and 
expand on salient excerpts and descriptions in the data in group research meetings and workshops. Some of 
the sequences were then subject to interaction analysis, examining in detail the turns of talk and interaction that 
unfolded around TH’s use of the PeopleLens. Interesting features from the data were also algorithmically 
extracted and visualised in our custom tooling to explore specific patterns of interaction in more detail. Alongside 
these empirically focused activities, theory from accessibility design and disability studies was used to help 
develop and thicken the analysis, building the interpretive frame for thinking about our research. 

4.2 Design Evolution 

4.2.1 Exploration in the Lab 

In the first session, TH was offered a number of different experiences in isolation: 1) person-in-front, in which 
the name of a person was read out when TH looked at them; 2) gaze upon, a spatialised cue when someone 
looked at TH; and 3) follow me, an ongoing sound that tracked the person in closest communication distance. 
For each experience, TH was asked to walk through his previous day and identify if and when such functionality 
would have been useful. This process was supported by his mother using appropriate tactile materials known 
to TH. TH generated a large number of use scenarios, but his overwhelming focus was on his desire to have 
all three features in one experience. He asked many times, “Can I have it all at the same time?” This became 
the focus of the second session.  

In the second session, TH was given a version of the AI prototype that allowed him access to all of its 
functionality through a wrist-worn wearable. In addition to the functionality above, he could also access the 
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number of people looking at him and an overview of all tracked people. However, we found that he faced a 
constant tension between wanting more information about his environment and the practical constraint that he 
had to spend significant energy processing the information he received. This was particularly true for information 
he did not typically account for in his interactions, such as social information (e.g. who is around him). By the 
end of the session, TH flopped on the floor, exhausted.  

As a result, low information density became a deliberate design decision, so that TH could focus on the 
information most salient in any interaction: who is there. Despite the wide range of capabilities available in the 
AI Prototype, the PeopleLens experience is configured to read out a name only when TH looks directly at 
someone (Figure 3: Person-in-front).  

In the final lab session, TH was given the Person-in-front experience to try. We soon discovered that TH 
needed additional audio cues to support orientation and dynamic intelligibility to make a low information 
density interface useful. We had to consider how the dynamic experience of moving through space to find 
people could be supported. We developed two types of sound cues to aid TH’s awareness of, and orientation 
towards, other people. The system plays a “bump” – a short percussive sound – when it identifies people’s 
bodies within its field of view. These bump sounds are rendered using spatial audio, providing TH fast feedback 
on the position of other people regardless of their distance or orientation. The speed with which these bumps 
can be produced (as opposed to names) allows TH to better direct his attention towards a person (or people) 
in space. 

If the bump sound is not followed by a name, a natural “woodblocks” sound is played to help orient TH to the 
nearest face. The woodblock sound changes in pitch if TH’s head is tilted too high or too low, with a clear snap 
sound when TH centres on a face. While the bump sound serves to assist TH in locating people’s bodies, the 
woodblock sound aids in locating people’s faces. In having dynamic access to these kinds of information, TH 
can work with the AI system to support its ability to detect and identify people more robustly, regardless of lag, 
image quality, or person orientation (Figure 3: Orientation Guide). 

Having tried the system, TH was then asked to ideate on which scenario of use he was keen to try first.  As 
trying this out in a noisy, 100+ person lunch hall (TH’s first choice) was not technically feasible, TH decided on 
a busy classroom environment. Classrooms busy with children are often noisy, which made it particularly difficult 
for TH to rely on audio cues to navigate social situations. 

4.2.2 Explorations in the Wild 

With an initial scenario of use and design in place, the final four sessions took place outside the lab. First, 
the research team joined TH and his extended family for a big Sunday lunch with seven adults present. The 
PeopleLens was used first as TH moved from room to room to find people and was then used again during 
lunch with everyone present around a dining table. It was worn for nearly an hour. In the second session, which 
lasted 45 minutes, the PeopleLens was used with classmates. TH played a search-and-rescue game in which 
he had to find his classmates and bring them to a safe zone. PeopleLens was then used during a Lego activity 
challenge in which the team had to build the longest possible bridge from Lego. The session finished with the 
other children trying the PeopleLens blindfolded and speaking about the experience. 

The final two sessions took place as part of TH’s drama class. The first drama class was in the (very) large 
school gym. TH was first asked to deliver props to particular classmates. He was then asked to make a map of 
where the other children were using Lego. Finally, he was left to explore, joining in with the activity if he wanted 
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to. TH did not normally join in for drama due to the interactional challenges of being with 20 children in a space 
that was difficult for him to navigate due to a lack of furniture. The second drama class, although in a different 
large open space, took exactly the same format. TH took part in both consecutive sections of his class, a total 
time of one hour. Both classes were taught by TH’s form tutor (homeroom teacher) who knew TH well.  

Moving out of the lab encouraged us to focus more strongly on the social situation in which the PeopleLens 
was used. We realised that the PeopleLens was not just a resource for TH, but also a means of supporting 
reciprocal interaction with communication partners. We noted that people would often adjust their own body 
position in order to be identified. Yet, with no feedback from TH or the PeopleLens, it was difficult for a 
communication partner to know how they might activate this capacity of “being seen.” Observations like this 
eventually led to the development of external feedback to facilitate reciprocal interaction. This was intended 
to assist the development of common ground and reflexive interpretation of behavior, so communication 
partners could realistically base their interaction on their understanding of what TH knows. 

We included an external interface on the HoloLens to support mutual orientation with a communication 
partner. We respected that TH felt awkward about the idea that others could hear the audio feedback of the 
PeopleLens. Thus, we designed a semi-circular LED interface affixed to the top of the HoloLens (Figure 2). The 
display provides communication partners with information about the state of the system. A moving white light 
tracks the location of the nearest detected person, flashing green when that person is identified to TH. In this 
way we used different forms of spatial information (sound for TH and light for communication partner) to ensure 
a shared, reciprocal interaction to which both TH and communication partner could orient (Figure 3: External 
Feedback). 

First deployed in the second of the four sessions, it initially tracked everyone (not just the nearest 
communication partner). However, the display made the device resemble Christmas tree lights and was 
therefore insufficient in supporting mutual orientation because people could not identify which specific light 
represented themselves. As those in the distance are less likely to use the information provided by the external 
display, we focused on providing feedback to the closest communication partner. The final design was used in 
the drama classes. In this limited circumstance, we observed how children and adults use this feature to be 
seen, and occasionally to hide, in interaction with TH, suggesting the display is filling its purpose in mutually 
negotiating interaction.    

4.3 System Capability Evolution 

Having looked at design decisions in the previous section, we now take a higher-level view to consider how 
TH’s notions of the capabilities of the AI system changed throughout the design process and usage.  

4.3.1 Imagination to Usage 

During the design process, TH articulated that the main intended purpose of the PeopleLens should be as a 
tool to help him find his friends at school. Despite TH’s expressed desire in the design process, we saw that he 
used it to monitor the whereabouts of his teachers instead. In the first school session, TH sat around a square 
table with three other children tasked with collaboratively building the longest Lego bridge possible. TH’s two 
teaching assistants, his class teacher, the head of special educational provision, his mother, and the 
researchers were scattered around the edges of a large classroom. TH did not use the PeopleLens to see 
where his classmates were and did not look at them when he spoke with them. He did, however, call out the 
names and greet his various teachers as they moved about and came and went from the classroom. He was 
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particularly interested in how he could use the PeopleLens to figure out who had left the room when he heard 
the door open.  

Upon first usage, we see that TH’s notion of the capability of the PeopleLens shifts from information about 
friends to adults. While this behavior was not what the research team expected, it did not surprise TH’s mother. 
She commented: “Knowing where the adults are keeps you from getting in trouble.” To give context, TH often 
felt he was being watched, because he continually got “told off.” The view from TH’s mother is that TH was 
unaware who was around and therefore TH had a more difficult time adjusting his behavior to the context. As 
has previously been pointed out [33], the assistance bubble that surrounds blind children in mainstream schools 
can make it difficult to ‘play footsie under the table’. While TH and his mother had bigger aspirations during the 
design process for improving social interaction, TH first used the PeopleLens to extend his existing social 
orientation strategies (locating his teachers) to address his priorities when it came to real social experiences in 
school.  

It is with this unexpected use of PeopleLens that we can begin to develop and refine a notion of capability. 
Yang et al. [64] draw attention to the uncertain capabilities of AI systems due to data and environment interaction. 
We see from the above that TH is also very much a part of this emerging set of capabilities. With the PeopleLens, 
he orients himself to others in ways that, while unanticipated, provide him with a very different ability to engage 
in conversation. It was in working with TH and the PeopleLens that we began to understand capability in a 
broader sense, as not just something that develops in the technical system but in and through the interaction 
between the user and the AI system. 

4.3.2 Physical and Attentional Orientation 

What became especially apparent was how the interweaved capabilities of TH and PeopleLens evolved over 
time. One of TH’s most noticeable uses of the PeopleLens was to physically orient towards social interaction. 
To illustrate this point, we compare two vignettes. One from the first session before TH engaged with the 
PeopleLens, and one while he was using it during a family meal. In each vignette, we consider the ways TH 
orients to a social situation and how others respond to that orientation.  

 

Vignette 1: First Design Session (without PeopleLens). TH is listening to a researcher tell him about the 
activities for the session. Throughout most of the conversation he is leaning down with his head slightly 
angled toward the researcher who is speaking, while his hands are busy engaging with the tactile 
objects of reference for the session (Figure 4: image 1). At one point he lifts his head to the researcher 
to inject a comment: “I don’t want this project to be limited to spaces with super-fast Wifi” (Figure 4: 
image 2). As the researcher attempts to respond, he interrupts again with a comment on the difficulties 
of finding super-fast Wifi in public places. He then adopts a posture with his head in his hand as the 

Figure 4. Vignette 1 images 
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conversation continues (Figure 4: image 3). TH’s mother uses a variety of tactile cues to encourage TH 
to stay on topic and adjust his posture to visually indicate his social engagement.  
 

In this first Vignette, TH did little to physically orient to the interaction despite attending to the topic. This 
suggested to the researchers unfamiliar with TH that he was disengaged from the activity. At one point, he did 
shift his head towards the researcher who was speaking, but because he did not turn or straighten up his body 
he gave the impression that his interest was fleeting (and to some extent it was, as TH’s interjections were only 
tangentially related to the topic of conversation). TH’s physical posture, signaling disengagement, persisted in 
many of the interactions the research team had with him despite frequent tactile and verbal reminders from his 
mother to sit up straight, keep his head up, and turn towards people he was speaking to.  
 

Vignette 2: Family Meal (with PeopleLens): TH is learning about a new feature that the team engineer, 
Philip, is about to turn on. TH turns towards Philip as he hears him approach and listens (Figure 5: 
image 1). After asking a question, he shifts his gaze slightly away (Figure 5: image 2) as he attends to 
the answer. TH then turns towards Philip to ask a follow up question to what Philip has just said (Figure 
6: image 3).  
 

In this second vignette, TH communicated active participation in the conversation through his body 
orientation. He turned his body towards Philip (a pseudonym for this paper) and looked towards Philip’s eyes 
when re-engaging Philip during TH’s turn in the conversation. We also noticed that TH was able to deepen the 
conversation through asking follow-up questions rather than interjecting new topics. This led to a smoother 
conversation. The difference in interaction was noted by his family in a number of ways:  

“Before it was the ear that was talking to me, now it’s his whole person. It’s so different.” -- TH’s 
grandmother  
 
“He will turn, find them, and kind of look at them, and then he will try to interject. Before he would just 
say their name and hope for the best.” -- TH’s father 

The contrast between the two vignettes above draws further attention to the way a fluid capability is achieved 
between TH and the system. With PeopleLens, TH begins to hold his body differently and to participate in 
conversations in ways that were not available to him before. Despite TH’s challenge in articulating how he used 
the PeopleLens or why he never wanted to give it back, these achieved capabilities were noteworthy to his 
family. A particular example of TH’s behaviour using the system presents a helpful illustration of this adaptive 
behavior and emerging capability. We observed that TH started to subtly shift his head side-to-side to repeatedly 
have PeopleLens read out the name of the person(s) with whom he was speaking. At his family meal for 
example, TH used the PeopleLens for 54 minutes from which we automatically extracted 28 instances of this 

Figure 5. Vignette 2 images 
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lateral head shaking. We see similar numbers in the final school sessions (Drama Class 1: 24 minutes, 14 
occurrences; Drama Class 2: 23 minutes, 16 occurrences). This struck the research team as odd, as his existing 
strategies should have easily sufficed to know with whom he was speaking when in a one-to-one conversation.  

Visually inspecting the data and accounting for literature on blind children and social interaction, we propose 
a number of hypotheses for why TH’s usage may have developed in this way. We saw, for example, that he 
might do this when trying, and succeeding, to get someone’s direct eye contact. We also observed this process 
when there were multiple people in close proximity and he repeatedly moved his focus between them. However, 
as our visualisation data suggested that it happened every 2 minutes or so (the span of working memory), it 
may also be that TH had discovered he could support his spatial attention by using the system to stabilise and 
refresh a representation that effectively links identities and space in his working memory. This is necessary to 
maintain attention to external happenings, which is a significant challenge for many blind children but critical for 
maintaining a topic of conversation.  

While understanding the PeopleLens’s usage in this way requires further exploration, it re-emphasises the 
active process of configuring information resources and illustrates how difficult it might be to predict how such 
information might be employed to extend capabilities without having prototypes to hand. Interestingly, TH was 
unaware of this specific behaviour and found it difficult to describe what he wanted to do with the technology in 
general. This is quite typical of skilled behaviour: habitual or routine actions are often unavailable to us in any 
conscious or explicit way, as is well known in psychology (see, for example, Kahneman’s writings on “Fast and 
Slow Thinking” [24]). 

We found it remains important to recognise the varied ways capabilities take hold and come to have value. 
For example, even when using the PeopleLens, TH still found it difficult to orient to unstructured social 
environments, such as his drama class. TH wandered through the students spread out in a large gym, walking 
through the middle of groups and ignoring people not of interest despite identification by the PeopleLens. We 
speculate that these different responses might be a function of the increased complexity of the situation. 
Engaging in his drama class required understanding visual social concepts, e.g., groups, as well as nuanced 
(and potentially visual) social skills such as conversation initiation. Participating in a family meal with familiar 
adults allowed TH to focus on single interactional mechanism, e.g., making eye contact when speaking. These 
differing use patterns suggest that understanding social interaction is not just about knowing where people are, 
but also incorporating higher order concepts of social interaction that are mainly understood visually (e.g., 
proxemics), a process that needs to be actively supported as TH learns to understand them. As we will suggest 
next, it is also clear that the other people in a setting can play an important role in a broader view of capability. 

4.3.3 Socially Situated Sensemaking 

We found capability to be as much about the interactions between TH and the PeopleLens as it was about the 
system’s inherent functionality. TH and PeopleLens can, if you will, to be capable together. Our detailed studies 
of TH’s interactions with his family while using the PeopleLens also showed these interactions extended to 
include others present in a setting. For example, in one scene from the recorded meal TH confirms that it is his 
grandmother standing in front of him. He then announces: “Now that’s Philip,” shifting his head to focus on Philip 
who has come up behind his grandmother. As Philip is speaking with someone else at the table, it is likely that 
TH has heard Philip’s voice and is on some level aware that Philip is there. However, we might surmise that the 
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announcement of the name is a verbalisation of TH’s process to bring PeopleLens recognition and his own 
sensemaking of the situation together.   

The above example illustrates how TH uses the PeopleLens alongside his existing sensemaking strategies 
to build up a sense of where people are around him. The PeopleLens is acting in concert with other information 
available to TH, illustrating the ongoing back-and-forth between TH’s sensemaking and information from the 
PeopleLens, and ultimately a highly dynamic and fluid set of capabilities. Critically, the PeopleLens is not a 
replacement for TH’s sensemaking, but instead provides the conditions for different and sometimes new 
capabilities to emerge. The way TH builds and maintains spatial awareness using the system is key, as it serves 
to orient him to where the talk is being conducted and how to participate in the conversation. These observations 
emphasise how a dynamic and adaptive system (like PeopleLens) can be utilised to enable collective 
sensemaking in ways mundanely achieved, but perhaps not easily imagined. 

5 DISCUSSION 

This paper presents and reflects upon the user experience prototyping phase of PeopleLens, an open-ended 
AI system intended to support the social agency of blind children at school, which was conducted with TH, a 
12-year-old blind boy. It is an exploration of how we design human-AI interaction that moves beyond discrete 
task support to provide continuous, dynamic information streams. We share the artefact of this process, the 
PeopleLens, and vignettes of its use during the prototyping phase as a means to reflect upon designing with 
capability uncertainty in the creation of open-ended AI experiences. First, we consider the PeopleLens as an 
exemplar of how AI systems may enable people to extend their own capabilities. The mutual shaping of user, 
technology, and social context is then used to ground our discussion of key design decisions to enable the 
human-AI interaction in these kinds of systems. We close by considering how this human-AI interaction evolves 
notions of system capabilities and purpose.  

5.1 Open-ended AI and Extending Capabilities 

The PeopleLens artefact and descriptions of its use by TH offer a concrete example of how an open-ended 
AI system might enable and extend human capability in ways different from the discrete tasks AI systems 
currently support well. Demonstrated in the prototyping journey, the continuous nature of the system instigated 
a mutual and ongoing negotiation between TH and PeopleLens – user and AI system. Through the various 
vignettes of use, we showed how TH used the PeopleLens, and the simple, continuous cues that it provided, 
as a resource to manage interaction in ways that gave him new capabilities: physically and attentionally orienting 
to interaction in ways that demonstrated active participation and led to smoother social communication. 

The human-AI interaction was one in which the capabilities of each created something new together: the 
notion of cognitive extension as opposed to cognition as a service [22]. This cognitive extension recognises that 
the system is not something that acts on behalf of its user or offers a non-existent capability to a user. Rather, 
interaction with the system adds to the mix of what is already possible: helping a user to achieve their existing 
goals and aspirations, adding and enriching information already relied upon, and building new strategies on top 
of existing ones. This more complex and unfolding relationship in turn changes a user’s ability to manage 
complex human processes. This concrete example demonstrates the potential opportunities that an AI 
experience can provide when working in concert with human agency as a part of the sensemaking process for 
people with disabilities [5,33]. 
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While the AI experience we designed was specific to the user (TH), we also highlighted the importance of 
supporting socially situated interaction. We saw that shared attention was a complex achievement, particularly 
with different sensory modalities at play. The PeopleLens appeared to offer some resolution, not in that it offered 
TH a way to “see,” but rather it provided him with a means of mutually constructing a frame of reference with 
others. Through his voicing of the PeopleLens’s output and the more active relations he built with others using 
turn-taking and head movements, TH was able to construct a shared understanding. The ensemble of joint, 
continuous interactions between TH, others in his proximity, and the PeopleLens enabled the establishment of 
new forms of social communication.  

While assistive technologies are often designed with a narrow focus on the interactions between user and 
system, a shift in emphasis towards extending human capabilities will demand a much greater sensitivity to a 
wider set of social relationships. A key point to recognise here is that the meanings and actions available in a 
setting are actively produced by the actors involved, including the AI system (connecting to Suchman’s seminal 
work [55]). To extend human capabilities, then, is to consider how design might aid such mutual productions of 
meaning and action, and do so in ways that are accessible to diverse users. A further point to consider is how 
such meanings and actions play into long established norms, and in some cases reproduce ableist norms that 
sanction the objectification and discrimination against people with disabilities [6]. In the work we present, for 
example, further research is needed to examine how mutual attention might be signified not just through bodily 
orientations that arguably align with sighted norms, but also in more diverse ways that expand the repertoire for 
interaction. 

5.2 Designing Intelligible Open-ended AI 

Building an intelligible, long-term relationship with the system also meant making deliberate design choices so 
that the system was easily comprehensible to both the primary user of the technology and other people nearby. 
We identified three key aspects of information design to support social sensemaking: 1) low information density 
enables the user to remain focused on the world around them and develop their own appropriation strategies 
in social situations; 2) dynamic intelligibility provides in situ sound cues that guide the user’s body and head 
orientation towards people and faces. This dynamic interaction with the PeopleLens helps the user find people 
and demonstrate the user’s communication intent, while yielding more robust people identification; and 3) the 
addition of external feedback that visually communicates the system state to bystanders invites a level of 
intelligibility that enables them to mutually orient to the user of the system. Together, we believe these design 
considerations enable users to adapt their use of the system as their experience and the context of use changes.  

The relative simplicity of the features offered by the PeopleLens experience compared to the opportunity 
provided by the AI prototype demonstrates that extending capabilities is not necessarily about providing 
functional complexity but thoughtful design. Despite the technical sophistication of the AI system, what 
supported TH best was the provision of simple, well-chosen cues as a set of resources at his disposal. Both 
designers and users may be seduced by the desire for as rich an information experience as possible, and as 
technology develops, this can lead to a surfeit of information. However, low information density becomes 
necessary when the AI system becomes embedded in everyday life and users need and want to engage with 
the world around them. The challenge is not a straightforward matter of too much or too little, but how information 
in a user’s surroundings can be provided such that it is a resource for capabilities to be extended [54]. 
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The mutual shaping of user and technology also required a different approach to intelligibility, or the user’s 
understanding of the AI system. Multiple audio cues were used to guide the user towards faces, an interaction 
that indicated communication intent for the user but also improved the ability of the PeopleLens to recognise 
people. The more a user works with these cues, the better experience they can gain from the system. 
Intelligibility of AI has often focused on explaining an outcome [17,32]. In an open-ended system in which there 
is give-and-take between user and AI system, we would suggest that intelligibility comes from understanding 
how to improve the outcome of the system, not necessarily understanding all of the technical workings of it. As 
such, we may need to think about how future research in intelligibility applies to open-ended systems.   

The mutual shaping of user and technology can also be socially situated and shaped, as we saw through 
the documentation of PeopleLens’s usage by TH. As designers, we must think about the reciprocal interactions 
with others in a setting and how such interactions are supported. In the case of the PeopleLens, one key design 
element is the external-facing interface, giving those engaging with TH a means to see the information the 
PeopleLens was providing. We saw that this was key to both parties mutually orienting to the interaction. It also 
gave the communication partner a way to actively “be seen” by TH, helping both to initiate and adapt interaction. 
Intelligibility of AI systems for use in social contexts may need to account for a wider set of inspections during 
everyday use, beyond the user. We must explicitly consider how we are designing to account for bystander 
needs, e.g., their ability to orient to the AI system.  

The very types of mutually shaped interactions that intelligible design enables also raises new challenges in 
measuring success. Metrics are a key part of tuning AI systems and their definition is key to systems’ ultimate 
capabilities. In this paper, we have presented metrics of recognition speed and accuracy on a per-frame basis. 
While these “bench” metrics provide important information about system performance, they ignore what 
happens when users actively collaborate with the system to improve accuracy. Users may adapt to the 
idiosyncrasies of a system or identify contexts and behaviors that improve its utility in ways that are very difficult 
to measure. This highlights a challenge that is likely to be shared across open-ended AI systems: how to 
measure success for evaluation purposes as well as AI system optimisation.   

5.3 Ideating Open-ended AI Capabilities  

In their review paper, Yang et al. [64] identify one of the key challenges for designers of AI systems as the 
difficulty in purposefully using AI. This is underpinned by challenges in understanding what the AI can do in situ. 
Our example shows that users have similar challenges. TH and his mother had little difficulty articulating 
scenarios in which TH needed more social information, but these differed very much from how TH actually used 
the PeopleLens. This discrepancy between imagined and actual use may come from the fact that, as noted in 
the disability literature, AI systems are not a replacement for a “missing” capability. Rather, such systems are 
part of an assemblage of resources that TH can actively coordinate to extend his own capabilities. Focusing 
the design process of open-ended AI systems around a lack of capability [35], the need for a superpower [33], 
or inaccessible tasks [52] will not address this initial capability uncertainty.  

We have found, instead, that designing AI systems that serve as a resource for extending capabilities 
demands sensitivity to the ways that any intervention plays out in the real world. In considering the design 
process, a working AI prototype was central to involving users in complex discussions of what AI could and 
could not do. It further took the ideation beyond discussion to specifying more concrete ways that digital and 
physical resources might be combined to enable new capabilities through a process of appropriation. That said, 
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developing cutting-edge technology is an investment and challenge in its own right. The proposition of a new 
step in the design process moves us closer to acknowledging the need to understand AI system capabilities in 
situ [64], but does not address the resource requirements. 

In response to the issue of resource demand for deploying a working AI prototype, we would also suggest 
that tools that help visualise and make tangible how AI prototypes and systems are being used could become 
a new, standard design tool. For example, in the custom tooling that we built, we could visually align 3D 
representations of the space with camera streams and recognition events produced by this sensory and multi-
model system. We could then search across this data to visualise events highlighted by researchers or 
participants as we did when inspecting TH’s use of the PeopleLens for attentional support. Such tools might 
contribute to the prototyping phase, but they may also blur the boundaries between prototyping and deployment. 
Similar to A/B testing on the web [51], the difference becomes one of scale. Thoughtful approaches to scale 
may also be one of the best ways to assess and address potential harms of the AI system that might surface 
when used in situ [46]. 

5.4 Limitations 

This work focused on the experience prototyping stage of a much longer journey toward creating open-ended 
AI experiences to enable people to extend their own capabilities. As a result, the description of the development 
and details of the AI prototype is short. This work also does not extend to a full evaluation of the system, which 
is subsequent work. Not least, the focus on designing human-AI interaction has meant that we’ve only indirectly 
communicated our stance on the development of assistive technologies and the specifics of working with people 
who are blind and low vision. While our team has put much thought into all these aspects of the work, for 
greatest clarity, we have chosen to focus specifically on capability uncertainty in this paper. Any substantive 
consideration of responsible innovation would require a great deal of nuanced discussion, so we are planning 
a future publication to address in detail our reflections on creating AI systems with and for people with 
disabilities, addressing issues such as stigma [48], bias [60], inclusion [65], and privacy [3]. 

6 CONCLUSION 

The nuance of human-AI interaction has been evolving for some years now, providing an alternative to thinking 
about AI as something that competes against or replaces people. Research and the productisation of 
technologies demonstrate how AI can provide task-based support for the general public as well as people who 
are blind or low vision. This paper looks toward the future when AI technologies will allow for more continuous 
experiences, exploring what human-AI interaction in these open-ended AI systems might look like. To contribute 
to an imagination of this future and how it might enable AI to extend human capability more work is needed to 
deploy and reflect upon AI systems in the real world.  
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