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A B S T R A C T   

Background: The novel coronavirus (COVID-19) pandemic has affected humans worldwide and led to unprece-
dented stress and mortality. Detrimental effects of the pandemic on mental health, including risk of post- 
traumatic stress disorder (PTSD), have become an increasing concern. The identification of prospective neuro-
biological vulnerability markers for developing PTSD symptom during the pandemic is thus of high importance. 
Methods: Before the COVID-19 outbreak (September 20, 2019–January 11, 2020), some healthy participants 
underwent resting-state functional connectivity MRI (rs-fcMRI) acquisition. We assessed the PTSD symptomology 
of these individuals during the peak of COVID-19 pandemic (February 21, 2020–February 28, 2020) in China. 
This pseudo-prospective cohort design allowed us to test whether the pre-pandemic neural connectome status 
could predict the risk of developing PTSD symptom during the pandemic. 
Results: A total of 5.60% of participants (n = 42) were identified as being high-risk to develop PTSD symptom and 
12.00% (n = 90) exhibited critical levels of PTSD symptoms during the COVID-19 pandemic. Pre-pandemic 
measures of functional connectivity (the neural connectome) prospectively classified those with heightened 
risk to develop PTSD symptom from matched controls (Accuracy = 76.19%, Sensitivity = 80.95%, Specificity =
71.43%). The trained classifier generalized to an independent sample. Continuous prediction models revealed 
that the same connectome could accurately predict the severity of PTSD symptoms within individuals (r2 =
0.31p<.0). 
Conclusions: This study confirms COVID-19 break as a crucial stressor to bring risks developing PTSD symptom 
and demonstrates that brain functional markers can prospectively identify individuals at risk to develop PTSD 
symptom.   

1. Introduction 

The outbreak of the novel 2019 coronavirus (COVID-19) pandemic 
started in January 2020 and has subsequently had an unprecedented 
impact on mental health. Despite identification of the viral causes of 

illness (respiratory syndrome coronavirus 2 (SARS-CoV-2)) (Paules 
et al., 2020), no effective antiviral treatments have been developed to 
control the symptoms of the disorder. Despite the development of effi-
cient vaccines, the death toll and prevalence numbers for long term 
disabilities resulting from the virus remain high (Cao et al., 2020; Geleris 

* Corresponding author. Faculty of Psychology, Southwest University, Chongqing, China. 
E-mail address: fengty0@swu.edu.cn (T. Feng).   

1 Zhiyi Chen and Pan Feng contributed equally to this work. 

Contents lists available at ScienceDirect 

Neurobiology of Stress 
journal homepage: www.elsevier.com/locate/ynstr 

https://doi.org/10.1016/j.ynstr.2021.100378 
Received 14 May 2021; Received in revised form 29 July 2021; Accepted 3 August 2021   

mailto:fengty0@swu.edu.cn
www.sciencedirect.com/science/journal/23522895
https://www.elsevier.com/locate/ynstr
https://doi.org/10.1016/j.ynstr.2021.100378
https://doi.org/10.1016/j.ynstr.2021.100378


Neurobiology of Stress 15 (2021) 100378

2

et al., 2020; Holmes et al., 2020; Wang et al., 2020). A second global 
COVID-19 wave is further upending daily life around the world, 
including leading to strict lockdown policies in several European 
countries (see Dataset. S1). 

Given the impact of the pandemic, concerns regarding the detri-
mental effects of the it are increasing. Of particular concern are psy-
chiatric and psychological sequela of the pandemic. The high death toll 
of COVID-19, the risk of being infected and the limited measures to 
control the trajectory of the disorder contribute to increased stress and 
anxiety in the general population. Convergent evidence from initial 
studies demonstrated strongly increasing rates of stress-associated psy-
chiatric disorders, including post-traumatic stress disorder (PTSD) and 
depression, as well as increasing suicide rates (Holmes et al., 2020) 
during the COVID-19 pandemic. As such, approaches that can help to 
identify individuals who are at an increased vulnerability to develop 
these mental disorders are urgently needed. The accurate identification 
of vulnerable individuals is also of utmost importance for the targeted 
development of preventive interventions and for identifying those in 
need of long-term treatment. 

The COVID-19 pandemic poses a considerable threat to an unprec-
edented number of individuals, and thus is likely to lead to increased 
levels of PTSD symptoms, particularly in those with a pre-existing 
vulnerability. PTSD is a trauma-related psychiatric disorder that can 
develop after experiencing or witnessing a life-threatening event. Core 
symptoms include exaggerated anxiety and arousal as well as intrusive 
memories and avoidance which persist over months and cause sub-
stantial distress and functional impairments (Brewin et al., 2010; Hoge 
et al., 2004; Liberzon and Abelson, 2016; Mary et al., 2020; Thomas 
et al., 2010). Current neurobiological conceptualizations of PTSD sug-
gest that trauma-induced dysregulation and preceding individual vari-
ations of specific brain systems could represent a crucial 
pathophysiologicical endpoint as well as vulnerability marker of PTSD 
(Yehuda, 2002). Evidence from animal models further promotes a bio-
logical vulnerability perspective such that variability in brain functional 
networks predicts the vulnerability to develop PTSD in rats following 
exposure to traumatic events (Dopfel et al., 2019). An understanding of 
the brain-based PTSD vulnerability markers in humans could therefore 
potentially contribute to the identification of individuals at highest risk 
to develop PTSD symptom during the COVID-19 pandemic. 

Previous research on the neurobiological mechanism underlying 
PTSD mainly identified dysfunctions in five underlying domains and 
associated neural circuits which are implicated in fear learning, threat 
detection, emotion regulation/executive functions, contextual process-
ing, and episodic prospection network (Shalev et al., 2017). Dysregu-
lated fear learning has been consistently mapped to hyperactivity of a 
neural network, encompassing the amygdala, dorsal anterior cingulate 
gyrus (dACC), insula, and hippocampus (Andero et al., 2013; Shin et al., 
2006). Threat detection and the detection of potentially dangerous 
stimuli has been mapped to the insula and dACC which represent core 
nodes of the brain salience network (SAN) (Seeley et al., 2007). PTSD 
has been closely linked to impaired emotional regulation, a regulatory 
function which critically relies on the integrity of frontoparietal network 
(FPN) and which is crucial for the fear learning (Anticevic et al., 2012; 
Niendam et al., 2012). On the symptomatic level hypoactivation of the 
FPN has been associated with biased attention to traumatic stimuli and 
intrusive memories (Ochsner et al., 2012; Philip et al., 2018). Finally, 
emerging studies also propose a neuropathological role of the episodic 
memory network (EMN) in PTSD (Pitman et al., 2012; Shin and Lib-
erzon, 2010), such that a lack of functional integrity in the 
EM-associated hippocampal-prefrontal-thalamic circuitry has been 
associated with deficient threat/safety discrimination during fear 
generalization in patients with PTSD (Kheirbek et al., 2012). Recently, 
disrupted integrity of the ventral attention network (VAN) has also been 
identified as a potential biomarker of developing PTSD (Etkin et al., 
2019). In sum, convergent evidence indicates that pathology of PTSD is 
accompanied by alterations in a neural connectome that involved into 

fear learning, threat detection, emotion regulation/executive functions, 
contextual processing, and also episodic prospection. 

Against this background the present study capitalized on large-scale 
resting-state functional connectivity MRI (rs-fcMRI) data acquired 
before the COVID-19 pandemic (Sept 17, 2019–Jan 11, 2020) to predict 
risk of developing PTSD symptom during the peak of this pandemic in 
China (Feb 21, 2020). Briefly, 1211 participants were recruited and 
underwent brain rs-fcMRI scanning, and 750 of these participants were 
eligible (see Method and Materials). Two rounds of follow-up in-
vestigations were performed for this sample. In the first follow-up ex-
amination during the peak of the COVID-19 pandemic in China (Feb 21, 
2020–Feb 28, 2020), levels of PTSD symptomatology were assessed with 
the PCL-C test and 42 participants were identified as high-risk popula-
tion to develop PTSD symptom (PTSD+). This data allowed us to adopt a 
pseudo-prospective cohort design which aimed at determining pro-
spective neurobiological markers for the propensity to development of 
PTSD symptom basing on the pre-pandemic neural connectome. To 
reach this goal, we selected 42 participants without PTSD symptom-
atology, but with matching demographic features and acquisition date 
to the PTSD + group, to serve as the healthy control group (PTSD-). 
Despite the large-scale sample, 84 participants were screened eligible for 
the current study. All the included participants underwent neuropsy-
chiatric examinations, and showed no depression symptom, anxiety 
symptoms, insomnia, or recent experiences of negative life events prior 
to the COVID-19 outbreak (see Table 1). 

During April 24, 2020 to May 1, 2020, a second follow-up investi-
gation was collected, which identified additional 16 additional partici-
pants meeting the criteria for PTSD+. Likewise, 16 healthy participants 
matching demographic features and scanning dates were designated as 
the healthy control group, which was constituted as an independent test 
sample for validation. Participants in this independent sample were also 
screened for no depression symptoms, anxiety symptoms, insomnia, or 
recent experiences of negative life events before the COVID-19 outbreak 
(see Table 1). 

Both support vector machine model (SVM) and ensemble machine 
learning algorithms were used for classifying individuals with high risk 
to develop PTSD symptom based on their pre-pandemic neural con-
nectome. Further, given that the classifiers are promising for forwarning 
PTSD symptom, these classifiers trained in the current study have been 
provided in open access. The connectome measures were further used to 
predict continuous levels of PTSD symptom severity across individuals 
(see Fig. 1). Taken altogether, the current study aims to develop reliable 
neural models that allow the accurate identifications of high-risk in-
dividuals who will develop PTSD symptom, and predict the severity of 
PTSD symptoms within those individuals. Our goal is to provide a 
crucial forewarning system to identify individuals at an elevated risk to 
develop PTSD symptom – and validate this system using the COVID-19 
pandemic as a testbed. 

2. Materials and methods 

To achieve high reproducibility and transparency, “Project-
Template” package was drawn to record and trace all the data processes 
(see SM). This study has been approved by IRB of Southwest University 
(IRBSWU2002021). 

2.1. Participants 

42 participants (PTSD+, 24 females, Age: 20.20 ± 1.34, Range: 
19–26) were identified as high-risk to develop PTSD symptom during 
the COVID-19 pandemic by using PTSD Checklist-Civilian Version (PCL- 
C), and 42 participants (PTSD-, 26 females, Age: 19.87 ± 1.40, Range: 
18–26) without PTSD symptom were chosen as healthy controls by 
matching the scanning date and demographic features with PTSD+. All 
included participants were free from history of neuropsychiatric illness 
or intracranial/extracranial damage, and were not menstruating, 
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pregnant, or breastfeeding. They were screened for no severe PTSD- 
related psychiatric conditions, such as depression, anxiety and sleep 
problems (see Fig. 1, Table 1 and SM). 

2.2. PTSD + identifications 

Given well psychometric properties, the PTSD Checklist-Civilian 
Version (PCL-C) was used in follow-up investigation. To identify PTSD 
symptoms of exposed participants in COVID-19 epidemic, the PCL-C was 
modified slightly to coincide with research goal (Conybeare et al., 2012; 
Ruggiero et al., 2003). Here, the item to describe stressful events was 
replaced to targeting event - namely COVID-19 epidemic (e.g., item 1: 
Disturbing recurring memories, thoughts, or images caused by the 
COVID-19 from it begun in China (i.e., Jan 23, 2020)). It showed 
satisfied psychometric properties of PCL-C in this study (Cronbach’s ɑ =
0.911; McDonald’s ω = 0.914; Gutman’s λ = 0.928) (see SM) On the 
basis of diagnostic benchmark, PTSD + would be identified as of scores 
> 50 in PCL-C test (Conybeare et al., 2012). 

2.3. Data acquisition and preprocessing of rs-fcMRI 

The 8-min resting-state functional connectivity MRI (rs-fcMRI) 
scanning for each participant 264 was performed in SIMENS MAGNE-
TOM PRISMA 3T scanner (Siemens Medical 265 Department, Erlangen, 
Germany) during the period: Sept 17, 2019–Jan 11, 2020. To reduce 
head-motion, we made use of foam padding. Participants were instruc-
ted to keep eyes open, and to take a rest without thinking during scan-
ning. Parameters for scanning and preprocessing pipeline were in 
accordance with existing canonical studies and the criteria of the Human 
Connectome Project (HCP), which can be found in SM. 

2.4. Statistical power analysis 

To examine the statistical power, the sample size have been esti-
mated by G*Power in the post-hoc analysis. In this vein, with random- 
effect (RE) parametric independent t-tests of effect sized d = 0.80 
(high effect), error probabilities (α) = 0.05 and statistical power (1-β 

error probabilities) = 0.95 (Two-tails test), it showed that sample size of 
n = 42 for each group (df = 82, critical t = 1.989; noncentrality 

parameter = 3.667) attained the predefined criteria (Faul et al., 2009). 
Thus, the sample size of this study could reach adequate statistical 
power (see SM for full results). 

2.5. Modeling COVID-19 epidemic index (EI) 

The current study proposed to fit an epidemic index to quantify and 
evaluate the relative impact of the COVID-19 epidemic on specific in-
dividuals. Thus, we drew on shared Satellite Remote Sensing Image (S- 
RSI) data of Geographic Information System (GIS) and real-time COVID- 
19 epidemic map provided by Johns Hopkins University (JHG CSSE) (htt 
ps://github.com/CSSEGISandData/COVID-19) to model the epidemic 
index (EI) for each participant. 

This model included two free parameters - that is - the COVID-19 
confirmed cases and geographical distance to the Wuhan (the 
epidemic-central area of COVID-19 pandemic in the China). To deter-
mine the first parameter, the cutoff point of the COVID-19 epidemic was 
calculated as a benchmark by using curvilinear function. Data for 
confirmed cases was derived from Johns Hopkins University (JHG 
CSSE), and was further confirmed by National Health Commission 
(NHC) 1259 and Center of Disease Control (CDC) of China (http://www. 
nhc.gov.cn/xcs/yqtb/) (see SI Methods). To determine the second 
parameter, we used S-RSI data from GIS to extract the distance between 
the exposed locations of each participant and Wuhan (N30◦35′42.65′′, 
E114◦17′59.32′′). The location of each participant was mapped into this 
model by retrieving geographical coordinates in the National Geomatic 
Center of China (NGCC, http://www.ngcc.cn/ngcc/). Once parameters 
have been determined, the conjunction function of logarithmic and 
hyperbolic equation was adopted to fit this model, with former function 
to fit the pattern of increasing confirmed cases and last function to fit the 
relationship of distance/confirmed cases and epidemic influences: 
EI = 1/(1 + log10ζ) × log10(ω – Θ)

More details for EI can be found in SM Methods. 

2.6. Identification of PTSD network 

To build up PTSD network, both brain large-scale functional local-
ized networks involving in PTSD were incorporated for selection of 

Table 1 
Demographic information for samples. Hands represents participants’ handedness, and OC indicates whether the participant is an only offspring in the family. In 
addition, FS describes whether the participant has foster parents, whilst SES refers to the economic status of participants. As to neuropsychiatric examinations, sub- 
scale of The State-Trait Anxiety Inventory (STAI), namely trait anxiety inventory (TAI) was used to check anxiety symptoms for participants. PCL-C (The PTSD 
Cheeklist-Civilian Version) was used to measure one’s PTSD symptom. Self-rating depression scale (SDS) was adopted to test one’s depression symptom. Adolescent 
Self-Rating Life Event Scale Checklist (ASLES) was utilized to investigate their recent negative life events. Positive and Negative Affect Scale (PANAS) was also 
conducted to acquire their emotional status at scanning date, with P for positive affect and N for negative affect. Pittsburg sleep quality index scale (PSQI) was used to 
identify whether one suffers from insomnia (see more details for neuropsychological examinations in Supplementary Materials). EI represents COVID-19 epidemic index 
(see Method and Materials section). Statistics are provided to show whether there were significant differences between the PTSD+ and PTSD-, using a non-parametric 
statistical model for quantifiable variables and a contingency table analysis for counted variables. BF indicates Bayesian factors of corresponding statistics (see Method 
and Materials for more details).   

PTSD + (main sample) PTSD- (main sample) BF10 PTSD + (validation sample) PTSD- (validation sample) BF10 

male female male female male female male female 
Gender 18 24 16 26 0.45 9 7 6 10 0.91 
Age (S.D) 20.20 (1.37) 20.20 (1.32) 20.00 (1.50) 19.80 (1.36) 0.55 20.10 (1.30) 20.19 (0.91) 19.69 (0.72) 19.62 (0.89) 0.75 
Races (%) 66.67 (Han); 33.33 (others) 73.80 (Han); 26.19 (others) 0.01 68.75 (Han); 31.25 (Others) 100.0 (Han); 0.00 (Others) 2.11 
OC (%) 38.10 (OC); 61.90 (others) 38.09 (OC); 61.90 (others) 0.26 50.00 (OC); 50.00 (Others) 43.75 (OC); 56.25 (Others) 0.47 
FS (%) 90.47 (Parents); 9.52 (others) 85.71 (Parents); 14.28 (others) 0.03 87.50 (Parent); 12.50 (Other) 87.50 (Parent); 12.50 (Other) – 

SES (%) 83.33 (Poor); 16.67 (others) 71.42 (Poor); 25.88 (others) 1.54 87.50 (Poor); 12.50 (Others) 81.25 (Poor); 18.75 (Others) 0.99 
PCL-C 56.07 ± 5.07 10.44 ± 3.22 5885* 56.75 ± 10.04 40.25 ± 3.34 37* 
TAI 38.62 ± 7.63 40.17 ± 7.05 0.34 40.44 ± 8.17 41.66 ± 6.71 0.23 
SDS 42.83 ± 6.34 42.53 ± 7.47 0.23 43.43 ± 5.21 41.87 ± 4.24 0.44 
ASLES 53.67 ± 12.71 51.26 ± 13.67 0.31 50.56 ± 10.41 51.73 ± 13.63 0.66 
PANAS-P 28.05 ± 6.06 29.21 ± 6.67 0.31 29.41 ± 6.89 30.01 ± 5.15 0.22 
PANAS-N 20.21 ± 6.25 18.17 ± 5.78 .12 15.26 ± 5.03 15.10 ± 4.72 0.18 
PSQI 10.02 ± 2.91 9.98 ± 3.04 .94 9.80 ± 3.41 9.01 ± 3.95 0.36 
EI 0.89 ± 1.14 0.92 ± 0.14 .80 0.93 ± 0.56 0.89 ± 0.33 0.54  
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nodes. On the basis of previous canonical identifications, frontoparietal 
network (FPN), salience network (SAN), and ventral attention network 
(VAN) were included (Philip et al., 2018; Shalev et al., 2017), and 
functional episodic memories network (EMN, bilateral hippocampus, 
amygdala and mPFC) and fear learning network (FLN, bilateral insular, 
dACC, mPFC and amygdala) (Mary et al., 2020) were also included 
based on the importance of these networks in PTSD. Each node that 
derived from intrinsic networks was produced from Power atlas and was 
labeled by using BredDatabase platform provided by neuroinformatics 
group of DTU (https://neuro.imm.dtu.dk/service/). Thus, a small 
portion of nodes may share the same label but they locate in different 
brain space (see SM). More details for location of these nodes could be 
found in SM Extended Table 1. 

2.7. SVM classification 

2.7.1. Feature selection 
The features for comprising the neural connectome of PTSD in 

classifiers were predefined as functional connectivity (FC) strengths. 
Further, the conjunctive scheme of parametric t-tests + LASSO was 
adopted to facilitate elimination of redundant features and obtaining 
discriminative features, the way retains model generalizability well 
(Bach, 2008). An independent sample t-test was launched initially to 
discern informative features roughly by comparing FC between two 

group at p < .05. Furthermore, L1-norm LASSO regression was carried 
out for more sophisticated filters at lambda = 0.01, which combined 
L-Lipschitz condition and Taylor’s expansion to obtain optimal solutions 
(w) based on selecting most informative sparse features and regularizing 
trivial features to zero (C.-H. Zhang and Huang, 2008): 

MinW

1

2
‖X − XW‖2

F + ‖W‖1  

2.7.2. SVM model evaluation 
An epsilon-insensitive support vector machine (EI-SVM) was 

deployed to classify PTSD+ and PTSD-. A Gaussian radial basis function 
kernel (RBF) was predefined, and C and γ parameters were optimized 
using the heuristic Particle Swarm Optimization (PSO) algorithm 
(Guyon et al., 2002). Feature engineering was done using the indepen-
dent t-test and LASSO strategy described above, but only using the 
training data. To obviate potential risks of double dipping, the nested 
leave-one-subject-out cross-validation (LOSOCV) was exerted to eval-
uate model performance. Here, classifier training and testing were 
accomplished through two nested loops. The outer loop split data into 
training and test sets. The inner loop created multiple partitions of the 
training data in order to perform out-of-sample hyperparameter and 
feature selection. The trained weights associated with the best per-
forming model instantiation were passed to the outer loop and applied to 
the test data (see SI Methods). In addition, the 10-fold CV was also used 

Fig. 1. Workflow and framework of this study. Panel A illustrates the screening procedures of eligible participants for this study. The left bar denotes the timeline 
of the data acquisition in this study, with the “data acquisition” referring to the time duration of brain scanning, “begins” referring to the date of the beginning of the 
COVID-19 epidemic in mainland China, “recruit” for the beginning date of the follow-up data acquisition, and “ends” for the end date of follow-up data acquisition. 
The red bar refers to the timeline before the onset of the COVID-19 epidemic in mainland China, whilst the blue bar refers to the timeline after the onset of the 
COVID-19 epidemic in mainland China. Dots alongside of the timeline show the corresponding date of scanning (Top) and follow-up tests (Bottom) for PTSD+ (dark 
pink) and PTSD- (light pink). Panel B describes the support vector machine model (SVM) for the pseudo-prospective cohort design. The features of this model are the 
neural connectome of the PTSD network and the performance of the SVM that are obtained in leave-one-subject-out cross-validation (LOSOCV). Panel C depicts the 
model of ensemble learning by using Baggoing sampling. Panel D refers to the predictive framework of the pseudo-prospective cohort design. Discriminative features 
identified in the classification model were used as a feature for prediction of PTSD symptoms in the PTSD+. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 
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to validate the classifier’s performance. These processes were imple-
mented in LIBSVM v3.23 (Chang and Lin, 2011) and BrainNetClass 
(Version 1.1) toolbox (Zhou et al., 2020) (see Fig. 2B). 

2.7.3. Cross-model validations of ensembles machine learning 
Ensemble classifiers have been shown in some settings to achieve 

higher levels of performance with enhanced robustness (Pham et al., 
2019). Thus, in addition to SVM model, the multilinear subspace 
learning of discriminant (mlSD) was adopted to classify PTSD+ and 
PTSD- individuals (Li et al., 2020). The mlSD was launched for 

tensor-to-vector projection, and obtained longest inter-label distance 
and shortest intra-label distance of mapping tensors for classification. 
Details for the algorithms and theories of mlSD could be found elsewhere 
(Lu et al., 2013). 

3. Support vector regression (SVR) model 

In addition to classifying individuals with high risk to develop PTSD 
symptom, the current study also aimed to predict the severity of PTSD 
symptom (quantified by PCL-C score) prospectively by using the neural 

Fig. 2. Pattern of neural connectome, performance of machine learning, and discriminative features for classification. Panel A illustrates the location nodes 
of the PTSD network we predefined beforehand. Panel B presents the connectogram of the fully-connected connectome for both PTSD+ (left) and PTSD- (right). Panel 
C provides the performance of the SVM and the corresponding ROC curve, with high values indicating good model performance (* = p < .05; ACC = accuracy; SEN =
sensitivity; SPE = specificity; Youden = Youden index; Fs = F-score; BAC = balanced accuracy; AUC = area-under-curve). Right side of panel C shows the averaged 
weights matrix (34 nodes × 34 nodes, AWM) and normalized occurrence matrix (34 nodes × 34 nodes, NOM) for the contributive features respectively, with higher 
values of the elements (functional connectivity) in the matrix making a greater contribution to classification. Blocks alongside of the matrix indicate the corre-
sponding sub-network (modules) of the PTSD network, with red for the frontoparietal network (FPN), orange for the salience network (SAN), green for the ventral 
attention network (VAN), blue for the episodic memory network (EMN), and dark blue for the fear network (fear). Panel D plots the refined neural connectome of the 
PTSD network with discriminative features (functional connectivity) and its theoretical explanation. The Final neural connectome of the PTSD network contains 17 
nodes and 16 connections obtained from the conjunction of thresholding AWM (absolute weights > 0.8) and NOM (occurrence rates > 0.5). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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connectome. To this end, instead of our SVM classifier, a support vector 
regression (SVR) model was trained to predict the PTSD symptom for 
participants who were identified as high-risk to develop PTSD symptom. 
Algorithms, parameters and processes involving in SVR were analogous 
to those described for the SVM classifications above (see SM for details). 

4. Results 

4.1. PTSD symptoms emerged in COVID-19 pandemic 

To examine the prevalence of PTSD during the COVID-19 pandemic, 
750 participants were investigated for their PTSD symptoms during Feb 
21 - Feb 28, 2020. On the basis of diagnosis of PTSD Checklist (Civilian 
Version, PCL-C), 42 participants (5.60%) were identified as high risk to 
develop clinical PTSD symptom. Further, 90 participants (12.00%) were 
found to display critical PTSD symptoms, whilst remaining exposed 
participants lacked such symptoms. To test whether the neural con-
nectome of the PTSD network could be used to prospectively classify 
high-risk participant to develop PTSD symptom in the COVID-19 
pandemic, 42 matching participants who did not appear PTSD symp-
toms were designated as healthy controls. In brief, our findings sug-
gested that the COVID-19 pandemic caused elevated levels of PTSD 
symptoms. More details can be found in SM. 

4.2. Neural connectome accurately predicts PTSD conversion in COVID- 
19 pandemic 

In line with our hypothesis, the neural connectome associating with 
PTSD symptom focused on FLN, SAN, FPN, EMN and VAN (see Intro-
duction section) (see Fig. 2A and SM). For visual inspection of recon-
structed neural connectome, group-averaged full-connected 
connectomes for both groups were illustrated in connectogram (see 
Fig. 2B). Results indicated the weaker local connections within FPN for 
PTSD + than for the PTSD- group. Weaker global connections were 
observed in PTSD + as well (see Fig. 2B). 

To probe whether the neural connectome status preceding COVID-19 
outbreak could prospectively classify PTSD+ and PTSD- during the 
pandemic, the support vector machine (SVM) was trained by using 
leave-one-subject-out cross-validation (LOSOCV) for performance esti-
mation. This machine learning model revealed a high accuracy of 
76.19% (Sensitivity rate = 80.95%, Specificity rate = 71.43%, F-score =
75.00%, balance accuracy = 76.19 %, area under curve = 0.80) (see 
Fig. 2C). When 10-fold cross-validation was used to test classifier per-
formance, it showed a similarly high accuracy of 70.00% (sensitivity =
69.05%, specificity = 70.95%, AUC = 0.74). A control analysis was 
conducted by selecting a new sample of matched controls, which 
showed similar results (accuracy = 75.00%, sensitivity = 73.81%, 
specificity = 76.19 %, AUC = 0.78). To validate the specificity of this 
neural connectome for classification, another control analysis was per-
formed by selecting FCs of the visual network (VN) and auditory 
network (AN) as trained features, respectively. Results from this analysis 
demonstrated that the VN and AN connectomes cannot classify the 
PTSD + successfully (for VN, accuracy = 44.52%, sensitivity = 43.10%, 
specificity = 45.95 %, AUC = 0.41; for AN, accuracy = 52.38%, sensi-
tivity = 47.62%, specificity = 57.14 %, AUC = 0.50), indicating that 
classifier results are specific to the neural connectome selected for PTSD 
symptoms. 

In addition, an independent sample (16 PTSD+ and 16 PTSD-) was 
used to test the generalization capability for this trained classifier. These 
participants were derived from the same population, and were selected 
by the PCL-C screening in the second follow-up investigation (April 24, 
2020 to May 1, 2020) (see SM). A high balance accuracy of 71.88% 
(Sensitivity rate = 75.00%, Specificity rate = 68.75%) was attained, 
showing a prospective identification of PTSD+ in the independent 
sample and indicating a well generalization capability. 

Another major goal we pursued was to reveal how specific pathways 

(features) in neural connectome contributed to achieve the accurate 
classification. In this vein, the averaged weights matrix (AWM) 
describing absolute importance of each connection in neural con-
nectome was examined, which captured 24 discriminative FCs at 
threshold of (|ω|> 0.5), such as rdlPFC-lSPL, rdlPFC-lACC, and lMTG- 
rAmy (see Fig. 3C and SM). To promote the performance of the classi-
fier in generalization, a normalized occurrences matrix (NOM) quanti-
fying relative contributions of each connection was further adopted, and 
revealed a convergent pattern (see Fig. 3C and SM). To determine the 
discriminative neural connectome pattern for classification, we per-
formed a conjunction analysis to refine the PTSD neural connectome by 
mapping NOM into AWM. Results suggest that intra-connections within 
sub-modules play only minor roles in classification, whereas inter- 
connections between submodules play crucial roles for accurate classi-
fication (e.g., FPN-EMN, VAN-EMN, and VAN-FLN) (see Fig. 2D). 

To promote the robustness of classifier, the ensemble classifier of 
multilinear subspace learning of discriminant (mlSD) was implemented 
and revealed a robust performance for classification (Balanced accuracy 
= 73.8%, AUC = 0.80, see Fig. 3). Meanwhile, parallel coordinates 
analysis was drawn to determine contributive features (FCs), which 
revealed convergent results with SVM classifier (see SM). Likewise, the 
test to its generalization capability has been conducted by using this 
independent sample, and demonstrates a favorable generalization per-
formance (Balanced accuracy = 68.75%, Sensitivity rate = 75.00%, 
Specificity rate = 62.50%). 

To sum up, the neural connectome obtained prior to the COVID-19 
pandemic can be used to accurately classify for participants who sub-
sequently reported a PTSD symptomatology during the COVID-19 
pandemic. Examining the most critical contributors to the classifica-
tion accuracy revealed that the accuracy was largely depended on the 
interplay between top-bottom pathways (e.g., FPN-EMN, FPN-FLN and 
EMN-VAN) but not sole local communications (see Fig. 2D). Further, this 
provided a PTSD connectome more accurate to classify PTSD symptom 
from exposed control, and made detection of susceptible population for 
PTSD in COVID-19 more accessible. All trained classifiers and configu-
rations are openly available at GitHub repository (https://github. 
com/Zhiyi-Chen-github/Classifier-PTSD-COVID-19) so as to promote 
estimations of risk of developing PTSD symptom during COVID-19 
pandemic for other users. 

4.3. Neural connectome predicts severity of PTSD symptom in COVID-19 
pandemic 

In addition to the categorical classification, we aimed to predict 
continuous levels of PTSD symptomatology in the 42 PTSD + in-
dividuals. Specifically, the support vector regression (SVR) model was 
used to investigate whether the neural connectome could predict 
severity of PTSD symptoms during COVID-19 pandemic, within afflicted 
individuals. Results of SVR model demonstrated a pronounced predic-
tive role of this neural connectome to PTSD symptoms (R2 = 0.28, RMSE 
= 4.47; MAE = 3.67). To uncover which pathways (FCs) contributed to 
predictions, the top 10% contributive features for this prediction model 
were captured, including rdlPFC-lACC and lHip-lAMY (see Fig. 4A and 
B). Also, it was of practical interests to perform ensemble machine 
predictors boosting this performance. Bagged tress algorithm was 
adopted and demonstrated robust results for this prediction (R2 = 0.28, 
RMSE = 4.49; MAE = 3.35; see Fig. 4C). 

All in all, the present findings suggest that the neural connectome 
status assessed before COVID-19 pandemic could classify categorical 
PTSD conversion risk during this pandemic, and could further predict 
the severity of PTSD within afflicted individuals. Trained symptom 
severity models have been provided openly for prediction of PTSD 
symptoms (https://github.com/Zhiyi-Chen-github/Classifier-PTSD 
-COVID-19). 
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5. Discussion 

Concerns about the detrimental impact of the COVID-19 pandemic 
on mental health are increasing and have been strongly debated by the 
public health agencies worldwide. This study provided evidence that the 

majority of healthy young adults in China did not develop full clinical 
symptoms of PTSD during the COVID pandemic. However, a significant 
minority of individuals exhibited strongly increased PTSD symptoms 
during the pandemic and thus prospective identification of those at high 
risk and increased susceptibility of developing PTSD symptom during 

Fig. 3. Results of ensemble classifiers of multilinear subspace learning of discriminant (mlSD). Left side of Panel A provides the confusion matrix for this 
ensemble classifier, and right side of panel A shows the corresponding ROC curves. Panel B illustrates the parallel coordinates plots for the classifier, with the top for 
the raw weights value and the bottom for the standardized weights. These plots indicate the importance and contributions of the features for classifier, with the 
orange line for PTSD+, the blue line for PTSD-, the solid line for correct classification, and the dashed line for incorrect classification. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 4. Performance of predictors for predicting PTSD symptoms using discriminative features of the neural connectome in a support vector regression 
model. Panel A provides the scatter plots for the top 10% contributive features of prediction (top) and others (bottom), with a dark blue line for fitting of the locally 
weighted regression and a shadow area for the 95% confidence interval (CI). EI refers to epidemic index (see Method and Materials). Panel B provides the residuals 
plot in the SVR model for PTSD+. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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COVID-19 pandemic would be of tremendous importance to develop 
early intervention strategies. The major contributions of our study are 
threefold: (1) the epidemiological investigations during the peak of 
COVID-19 pandemic in mainland China (Feb 21, 2020–Feb 28, 2020) 
demonstrated that a considerable number of individuals reported severe 
levels of PTSD; (2) the first pseudo-prospective neuroimaging design to 
date could accurately classify participants at highest risk to develop 
PTSD symptom during the COVID-19 pandemic based on brain neural 
connectome data that was acquired before COVID-19 outbreak (Sept 20, 
2019–Jan 11, 2020), demonstrating that the specific neural connectome 
may represent a robust biomarker for the vulnerability to develop PTSD 
symptoms; (3) prediction models were found to accurately predict in-
dividual levels of PTSD symptoms as well, which could allow for early 
identification of those at risk to develop the most severe forms of PTSD. 

The results of our epidemiological survey confirmed emerging evi-
dence for the negative impact of COVID-19 pandemic on mental health, 
with approx. 6% in the current sample fulfilling the initial criteria for 
PTSD. It is in accordance with existing literature that the prevalence of 
PTSD is 5–10 % in the general population (Kilpatrick et al., 2013; 
Yehuda et al., 2015). Thus, it is worthy to note that the COVID-19 
pandemic brought about a certain stress to make individuals more 
vulnerable developing PTSD symptom. For instance, Liu et al. (2020) 
reported 7% prevalence rates of PTSD one month after the COVID-19 
outbreak (Jan 30, 2020–Feb 8, 2020) in the most severely affected re-
gion in mainland China (e.g., Wuhan, Hubei) (N. Liu et al., 2020). 
Comparable rates were observed in other studies such that Sun et al. 
(2021) reported 4.6% (Jan 28, 2020–Feb 2, 2020), Torales et al. (2020) 
reported 7.0% and Jiang et al. (2020) reported 6.1% prevalence rates of 
PTSD (Jan 28, 2020) (Jiang et al., 2020; Torales, O’Higgins, 
Castaldelli-Maia and Ventriglio, 2020). In addition to China, analogous 
conclusions can be found for other areas, such as Ireland (Karatzias 
et al., 2020) and Spain (González-Sanguino et al., 2020). During the 
peak of the pandemic, several stress factors may have contributed to 
increasing stress exposure, including the threat of contagion and illness, 
the fear of supply shortage and may in turn have promoted the devel-
opment of PTSD (Di Crosta et al., 2020; Jovanovic and Ressler, 2010), at 
least in vulnerable individuals. In addition, this risk may further be 
enhanced when these individuals experience social isolation and lack of 
social support during the period of strict lockdown and social distancing 
( S. Liu et al., 2020). As such it is no wonder that substantial evidence 
points to the negative impact of COVID-19 pandemic on mental health, 
especially in the high risk to develop PTSD in the normal population. 

In the current study, we found that some neural pathways within this 
connectome showed greater discriminability with respect to PTSD 
symptoms, such as the FPN-FLN connection and the FPN-EMN connec-
tion. Specifically, the stronger FPN-FLN connection shows high 
discriminative power in classifying PTSD+, and it thus provided insights 
into how emotional regulation works for top-down inhibition towards 
fear learning. Previous findings regarding the neural connections of 
PTSD have shown dysfunctional prefrontal-amygdala connections in 
PTSD patients (Jin et al., 2014; Stevens et al., 2013). Evidence derived 
from real-time neurofeedback training further pronounce that PTSD 
patients showed a clinical reliance of top-down emotional regulation 
deficits in PFC-amygdala connections (Nicholson et al., 2017). EMN was 
of crucial for contextual processing of stimuli information in PTSD pa-
tients (Shkreli et al., 2020). Generalizing threatening experiences to 
daily life in PTSD patients was related to the differential neural coding of 
safety and threat signals in the hippocampus and mPFC (Shalev et al., 
2017). Thus, decoupling of FPN to EMN could reflect a deficient 
top-down modulations towards contextual information, and thus make 
individuals more vulnerable to produce PTSD symptom (Liberzon and 
Abelson, 2016). 

Aside from top-down regulation, dysfunctional subcortical commu-
nication has been proposed as an important contributor to PTSD 
symptom. In line with this idea, our models relied heavily on contri-
butions from EMN-FLN connections and FLN-VAN connection. A 

neurocircuit based model of PTSD encapsulated from quantifiable meta- 
analytic examinations identified dysregulations in inter-connections of 
widespread subcortical areas, especially in interaction of hubs of EMN 
and FLN (Hayes et al., 2012; Patel et al., 2012). As previously discussed, 
individual variances in EMN and FLN may represent the different ability 
for contextual processing of threatening stimuli and fear learning, this 
ability that may determine one’s susceptibility in developing PTSD 
symptom. Taken together, these findings obtained in PTSD patients 
converge well with the identified circuits in the present study. Moreover 
it also suggest that individual variations in the brain connectome status 
of pathways engaged in fear learning, threat processing and salience, 
executive functions (emotional regulation), and contextual processing 
could represent susceptibility neuromarkers for individual variations in 
the risks to develop PTSD symptom during the COVID-19 pandemic. 

The findings from the current study, though novel and important, 
should be considered in the context of several limitations and caveats. 
First, we built upon the machine-learning model to predict PTSD 
symptoms during the COVID-19 pandemic with moderate accuracy. 
However, the small sample size limits our ability to test its broader 
applicability and validity. To partly address this drawback, trained 
classifiers have been made accessible openly for re-training from future 
studies that recruit larger samples. Given these limitations, we would 
recommend users adopt this classifier as one tool for screening high-risk 
populations, but not a singular and decisive tool. In addition, a potential 
weakness of the study is the lack of pre-COVID PTSD symptom data. 
However, a strict psychopathological screening before study inclusion 
makes it unlikely that subjects with strong PTSD symptoms would have 
been included in the data acquisition. Most crucially, brain connectomic 
status may represent one vulnerability factor for developing PTSD 
symptom during the pandemic, but factors such as early life experience 
and genetics, among many others, may also contribute (Shalev et al., 
2017). In addition, as limited by the lockdown policy, it was hard to 
investigate the prior stressful/traumatic events before this study. Also, 
the lacks of such information lets us hard to claim that the COVID-19 
pandemic is the unique traumatic event to produce PTSD symptoms. 
Henceforth, conclusion of this study should be limited to that predated 
neural connectome status could encode risks of PTSD symptom in 
COVID-19 pandemic to some degree, but not decisive. Further, it should 
be in mind that the PCL-C test is not a golden criterion to diagnose PTSD 
patients. Likewise, lacking the exact information for the duration of 
PTSD symptoms still impedes to conclude that such PTSD symptoms are 
specific to COVID-19. Thus, we hope our findings could be validated by 
performing clinical assessments (e.g., the duration of enduring 
dysfunction) when the lockdown is dropped. 

6. Conclusions 

COVID-19 pandemic has disrupted almost all aspects of life, and led 
to acute psychiatric outcomes and widespread mental health problems. 
This is the first study using pseudo-prospective cohort design to test 
whether the COVID-19 pandemic leads to PTSD symptoms and, if so, 
whether they can be predicted by the neural connectome status pre-
ceding COVID-19 outbreak. Here we provided evidence that the COVID- 
19 pandemic led to PTSD in about 6% of the population. Drawing upon 
ensemble machine learning, neural connectome status prior to the 
COVID-19 pandemic (Sept 20, 2019–Jan 11, 2020) was found to predict 
the acute PTSD symptoms during the COVID-19 pandemic. This work 
could form the basis for development of practical and accurate neuro-
markers that can inform the identification of individuals who are sus-
ceptible to developing PTSD symptom. Predictors of machine learning 
further enabled the prediction of PTSD symptoms by using predated 
neural connectome status. Thus, another potential implication might be 
to provide a tool to forewarn the high-risk crowds of developing PTSD 
symptom in COVID-19 pandemic, and this may facilitate to ease the 
burden of psychiatric staff and public mental health authorities. Lastly, 
because pre-pandemic neural connectome status was found to be a 
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robust risk factor for mental health in the current study, it suggests that 
the brain neural systems health is likely to be vulnerable for disruptions 
in the COVID-19 pandemic as well. 
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