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SUMMARY

The appearance of genetic changes in human pluripotent stem cells (hPSCs) presents a concern for their use

in research and regenerative medicine. Variant hPSCs that harbor recurrent culture-acquired aneuploidies

display growth advantages over wild-type diploid cells, but the mechanisms that yield a drift from predom-

inantly wild-type to variant cell populations remain poorly understood. Here, we show that the dominance of

variant clones inmosaic cultures is enhanced through competitive interactions that result in the elimination of

wild-type cells. This elimination occurs through corralling and mechanical compression by faster-growing

variants, causing a redistribution of F-actin and sequestration of yes-associated protein (YAP) in the cyto-

plasm that induces apoptosis inwild-type cells. YAP overexpression or promotion of YAP nuclear localization

in wild-type cells alleviates their ‘‘loser’’ phenotype. Our results demonstrate that hPSC fate is coupled tome-

chanical cues imposed by neighboring cells and reveal that hijacking this mechanism allows variants to

achieve clonal dominance in cultures.

INTRODUCTION

The ability of cells to influence their neighboring cells’ fate

choices has become apparent from studies in various in vitro

and in vivo models. An example of this is cell competition, a

type of cell-cell interaction wherein viable but less-fit ‘‘loser’’

cells are outcompeted for nutrients or space and eventually elim-

inated by the fitter ‘‘winner’’ cells (Bowling et al., 2019). Initially

described and studied in Drosophila as a tissue-homeostatic

mechanism (Morata and Ripoll, 1975), over recent years it has

become evident that a form of cell competition, known as ‘‘super

competition,’’ is implicated in the expansion of cancerous cells

(Eichenlaub et al., 2016; Suijkerbuijk et al., 2016). In super

competition, the acquisition of a mutation which enhances the

relative fitness of a cell results in the removal of neighboring

wild-type cells (Johnston, 2014).

In the field of regenerative medicine, the fundamental question

of how mutant cells may influence behavior of their wild-type

counterparts has been brought into focus by observation that

human pluripotent stem cells (hPSCs) acquire genetic changes

upon prolonged passaging (Draper et al., 2004; International

Stem Cell et al., 2011). Studies of the genetic integrity of hPSCs

over the last two decades have revealed a bias in the genetic

changes acquired in hPSCs, with the most common karyotypic

abnormalities involving gains of chromosomes 1, 12, 17, 20,

and X (Baker et al., 2016; Draper et al., 2004; International

StemCell et al., 2011). The recurrent nature of genetic abnormal-

ities in hPSCs is indicative of such changes conferring a selective

growth advantage to the variant cells (Baker et al., 2007; Draper

et al., 2004). The implications of the variant presence could be

significant for therapeutic and research uses of hPSCs, as

altered behavior of variant cells could impact on the efficiency

of differentiation protocols, functionality of differentiated cells,

or the safety of cell replacement therapies (Andrews et al.,

2017; Halliwell et al., 2020).

The emergence of variant cells in hPSC cultures has been

likened to the process of evolution, whereby the interplay of mu-

tation and selection leads to the expansion of clones that

possess the greatest growth advantage under particular culture

conditions (Andrews et al., 2005). Indeed, selective advantage of

commonly occurring genetic changes in hPSCs is evident from

their increasing ratios in culture from the first point of detection

over subsequent passages (Catalina et al., 2008; Draper et al.,

2004; Imreh et al., 2006) and has also been demonstrated
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Figure 1. Wild-type cells are eliminated by apoptosis from co-cultures with variant hPSCs

(A–B) Growth curves of wild-type-RFP and variant-GFP cells grown separately (A), or in co-culture (B). Fields acquired: entire well.

(C) Representative images of wild-type-RFP hPSCs (red) grown separately (upper panels) or in co-culture with variant-GFP hPSCs (green) (lower panels). Scale

bar: 50 mm.

(D) Ratio of variant-GFP/wild-type-RFP cells in separate versus co-culture conditions.

(E) Percentage of cells positive for cleaved caspase-3.

Data are the mean of three independent experiments ± SD. n.s. nonsignificant; ****p < 0.0001, two-way ANOVA, followed by Holm-Sidak’s multiple compari-

sons test.

See also Figures S1, S2, and S3; Video S1.
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Figure 2. Cell competition in hPSC cultures is cell-contact mediated

(A) Percentage of caspase-3-positive cells in Transwell cultures of different sublines.

(B) Effect of increasing the ratio of variant-GFP cells in co-cultures with wild-type cells on the ratio of wild-type cells at day 3.

(C) Effect of increasing plating cell density of co-cultures on the number of wild-type cells.

(D and E) Cell-confrontation assay of wild-type-RFP and variant-GFP cells (D) and wild-type and wild-type-RFP (E) cells at 48 h post contact. (D) Top panel: nuclei

of wild-type-RFP and variant-GFP cells represented as blue and green dots, respectively. Top panel (E): nuclei of wild-type and wild-type-RFP cells represented

as blue and red dots, respectively. Middle panel (D and E), cleaved caspase-3-positive cells represented as purple dots. Bottom panels: Percentage of cleaved

(legend continued on next page)
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through mixing experiments, wherein spiking a small proportion

of variant cells into wild-type cultures resulted in a rapid overtake

of cultures by the variants (Avery et al., 2013; Olariu et al., 2010).

To explain the reasons behind the variants’ overtake of cultures,

studies of variant hPSCs have mostly focused on the intrinsic

properties that could lead to their growth advantage, such as

enhanced proliferation and reduced levels of apoptosis (Avery

et al., 2013; Barbaric et al., 2014; Ben-David et al., 2014; Draper

et al., 2004; Enver et al., 2005; Nguyen et al., 2014). Yet, when

variant cells first emerge, they coexist within the same culture

as the wild-type cells, and hence share their culture environment

aswell as a proportion of their cell-cell contacts. However, little is

known about the nature of wild-type and variant hPSC cell-cell

interactions and whether the presence of variants affects the

growth and survival of wild-type hPSCs.

Here, we show that an important aspect of the selective

advantage displayed by some commonly occurring variant

hPSCs is the ability to induce apoptosis of wild-type cells in

mosaic cultures, akin to the super-competition-like behavior

described in other cell types (de la Cova et al., 2004; Moreno

and Basler, 2004). The elimination of loser cells in hPSC cultures

is exerted through mechanical cues and is mediated by yes-

associated protein (YAP), downstream of the actomyosin cyto-

skeleton. Our findings illuminate the reliance of hPSC fates on

their mechanical environment and highlight the need for consid-

eration of mechanical cues in the scale up of hPSCs for research

or clinical use.

RESULTS

Variant hPSCs selectively eliminate diploid wild-type

counterparts from co-cultures

To uncover the reasons behind the rapid overtake of cultures by

genetically variant hPSCs (Olariu et al., 2010), we sought to

examine how wild-type and genetically variant hPSCs interact

and whether they affect each other’s growth. To this end, we

initially used two diploid H7 sublines (either non-modified or

genetically engineered to constitutively express red fluorescent

protein [RFP], termedwild-type andwild-type-RFP, respectively),

and their aneuploid variant harboring a gain of chromosomes 1,

12, 17q, and 20q copy number variant (CNV), and stably express-

ing green fluorescent protein (GFP) (termed variant-GFP). Time-

lapse microscopy of co-cultures containing wild-type-RFP and

variant-GFP cells showed a selective elimination of wild-type-

RFP cells during a 3-day culture period (Video S1). To establish

that the observed elimination is due to the presence of variant

cells in mixed cultures we compared the growth rates of wild-

type-RFP or unlabeled wild-type cells in separate cultures with

how they grew in mixed cultures with variant-GFP cells. Wild-

type sublines were viable and created well-established, large col-

onies in separate cultures but, consistent with previous findings,

did grow more slowly than variant cells (Figures 1A and S1A)

(Barbaric et al., 2014; Enver et al., 2005). In striking contrast to

this, upon mixing with equal numbers of variant-GFP cells, the

wild-type-RFP or unlabeled wild-type cells showed severely

compromised growth (Figures 1B, 1D, and S1A). The co-culture

had no effect on the number of variant-GFP cells (Figures 1A,

1B, and S1A). We observed a similar decrease of wild-type-

RFP cell numbers upon mixing them with further aneuploid H7

sublines harboring recurrent genetic changes, such as a variant

subline with a gain of chromosome 17q (termed v17q) (Fig-

ure S1B) and a subline with gains of chromosomes 1 and 17q

and isochromosome 20q (termed v1,17q,i20) (Figure S1C). More-

over, we detected competitive behavior in additional pairs of

diploid and aneuploid cells from different hPSC lines (H14 and

HUES-17), with aneuploid cells (termed H14 variant-BJ1 and

HUES-17v12,17) also outcompeting diploid cells in co-cultures

(Figures S1D and S1E). Conversely, we detected no competitive

behavior when mixing wild-type cells and fluorescently labeled

sublines from the same line (H7, H14, and HUES-17), with the

initial mixing ratio of wild-type sublines retained both in short-

term culture (over 3 days) (Figures S2A–S2C) and upon longer-

term passaging (over 5 passages) (Figures S2D–S2F). Overall,

these experiments demonstrated that the presence of variant

cells negatively affects the numbers ofwild-type hPSCs in co-cul-

tures with variants.

The elimination of wild-type hPSCs which occurred in co-cul-

ture with variants is reminiscent of cell competition described in

many different systems, whereby ‘‘weaker,’’ loser cells are elim-

inated in the presence of ‘‘fitter’’ winner cells (Bowling et al.,

2019). Cell competition typically involves inducing either senes-

cence (Bondar and Medzhitov, 2010) or apoptosis (Brumby and

Richardson, 2003; Moreno et al., 2002; Sancho et al., 2013) in

loser cells. From our time-lapse analysis of wild-type-RFP cells

co-cultured with either variant-GFP cells or unlabeled wild-type

cells as a control, it was evident that the loser cells were not

arresting in co-cultures (Figure S3). On the other hand, using

cleaved caspase-3 staining as a readout of apoptosis, we

observed that while wild-type and variant cells showed similar

levels of cell death in separate cultures, the proportion of

apoptotic cells was significantly increased in wild-type cells

upon co-culture with variants (Figures 1E and S1F–S1J). There

was no change in the cleaved caspase-3 levels of variant cells

upon co-culture with wild-type hPSCs (Figures 1E and S1F–

S1J). Based on these results, we concluded that the presence

caspase-3-positive cells calculated as the number of cleaved caspase-3-positive cells in the total cell number within a defined area of a cell insert. The width of

the bar corresponds to the analyzed area of the insert shown in the middle panel above.

(F andG) Time-lapse images of cell-confrontation assay of wild-type-RFP (red) and variant-GFP (green) cells (F) or wild-type andwild-type-RFP (red) cells (G). Left

panel: inserts at 4 h before contact. Middle panel: inserts at the time when cells first come into contact (denoted as 0 h). Right panel: inserts at 48 h post contact.

Dashed white line indicates the position on the insert where the two different populations first met at 0 h.

(H) Time-lapse images of cell-confrontation assay of wild-type and variant-GFP cells with live caspase-3/7 dye. Left panel: region of the inserts where wild-type

and variant-GFP cells come into contact. Dashed red line indicates the boundary between the two different populations. Right panel: middle region of the wild-

type cell population on the inserts. Scale bar: 10 mm.

Data represent the mean of three independent experiments ± SD (A–C). Statistical analysis was performed by Student’s t test (A) or two-way ANOVA, followed by

Holm-Sidak’s multiple comparisons test (B); n.s. nonsignificant; ****p < 0.0001.

See also Figure S4; Videos S2 and S3.
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of variant cells is inducing apoptosis and thereby the elimination

of wild-type cells from mosaic cultures.

Crowding of loser cells within mosaic cultures induces

loser-cell apoptosis

Given the apparent selective elimination of wild-type cells when

co-cultured with variant hPSCs, we wanted to establish whether

the increased death rate of wild-type cells wasmediated through

cell-cell contacts or by cell-secreted diffusible factors, or a com-

bination of both. To this end, we performed conditioned-medium

experiments, whereby wild-type and variant hPSCs were grown

in amedium conditioned by the same or competing cell type. We

found no increase in the activated caspase-3 levels in wild-type

cells upon incubation with medium conditioned by their variant

counterparts (Figures S4A–S4C). We also made use of a Trans-

well assay (Boyden, 1962) to spatially separate wild-type and

variant populations while allowing the free exchange of secreted

factors in the culture media. In these conditions, the presence of

variant-GFP cells did not increase the levels of activated cas-

pase-3 staining in wild-type cells compared with wild-type cells

when co-cultured with wild-type cells in Transwell cultures (Fig-

ure 2A), indicating that the effect of variants on wild-type cells is

not mediated by soluble factors. In contrast to this, plating the

increasing ratios of variant-GFP cells in co-cultures (from 10%

to 90%) in a monolayer caused an increasing suppression of

wild-type cell numbers (Figure 2B) in a cell-density-dependent

manner (Figure 2C). Together, these results demonstrate that

cell competition in hPSC cultures is mediated by cell contact

rather than by soluble factors.

The increased loss of wild-type cells upon increasing the ratio

of variant cells in co-cultures, or upon plating the co-cultures at

increasing cell densities, could be explained by one of two pos-

sibilities: either the higher numbers of wild-type-variant hetero-

typic cell contacts result in receptor-mediated cell competition

(Burke and Basler, 1996); or alternatively, the winner cells are

mechanically compressing the losers, causing their eradication

from cultures in a process termed mechanical cell competition

(Levayer et al., 2016; Wagstaff et al., 2016). To distinguish be-

tween these possibilities, we first performed a cell-confrontation

assay, which allows two cell populations to be brought into con-

tact at a clearly defined border (Moitrier et al., 2019; Porazinski

et al., 2016). We reasoned that the receptor-mediated competi-

tion would result in cell apoptosis localized at the border of het-

erotypic cell contacts, whereas mechanical cell competition

would result in the apoptotic signal spread throughout the areas

of cell crowding (Brás-Pereira and Moreno, 2018). We plated

wild-type-RFP and variant-GFP cells within separate chambers

of a commercially available culture insert and allowed them to

populate the area within their respective chambers overnight.

Upon removal of the insert, the cells from different chambers

were allowed to come into contact with each other and were

then cultured for a further 48 h, prior to fixing and staining for

the apoptotic marker cleaved caspase-3. Supporting the notion

that cell competition in hPSC cultures is mediated through me-

chanical means, we found that the cleaved caspase-3 was

distributed within the wild-type-RFP cells beyond the heterotyp-

ic border with variant-GFP cells (Figure 2D). This effect was spe-

cifically caused by the presence of variants in the cell-confronta-

tion assay, as inserts containing wild-type-RFP cells and

unlabeled wild-type counterparts resulted in less caspase-3

staining compared with wild-type-RFP: variant-GFP confronta-

tion cultures (Figure 2E). Moreover, time-lapse imaging of the

cell fronts from the time of contact over the subsequent 52 h

also revealed that the wild-type-RFP hPSCs were pushed back

by the advancing variant-GFP population (Figure 2F; Video S2),

whereas the wild-type: wild-type-RFP cells boundary remained

in a similar position over 52 h of tracking (Figure 2G; Video S3).

The advancement of the variant-GFP population was accompa-

nied by an increased activation of caspase in the wild-type-RFP

population. Apoptotic signaling was initially evident in the area

close to the boundary between the two populations and subse-

quently in regions of wild-type-RFP populationmore distant from

the boundary, which were becoming crowded as a result of the

variants advancing and invading their space (Figures 2H and

S4D). Together, these results suggest that the variant-GFP cells

outcompete the wild-type cells in the competition for space.

The competition for space that we detected in the cell-

confrontation assays was also evident in mosaic co-cultures

grown in a monolayer. We tracked cells by time-lapse micro-

scopy in the presence of live caspase staining, and we noted

an apparent corralling of wild-type-RFP by variant-GFP cells, fol-

lowed by caspase activation in wild-types and their subsequent

extrusion from the monolayer (Figure 3A; Video S4). We

confirmed the corralling effect by analyzing the relative cell den-

sity of wild-type and variant-GFP cells in separate cultures and

upon co-culture. The nuclei of wild-type cells in co-cultures

Figure 3. Wild-type cells are corralled by variants into areas of high cell density

(A) Time-lapse images of wild-type-RFP and variant-GFP cells in co-culture from day 2 in the presence of live caspase-3/7. Closed arrowheads denote the

position of the z axis within the x-y plane. Scale bar: 10 mm.

(B) Corralling of wild-type cells by variant-GFP counterparts. The outlined areas in the middle and right panels indicate regions of co-culture harboring wild-type

cells. Scale bar: 50 mm.

(C) Cell density of wild-type and variant-GFP cells grown either separately or in co-cultures.

(D and E) Percentage of wild-type (D) and variant-GFP (E) cells positive for cleaved caspase-3 grown either in separate culture or upon co-culture at increasing

plating densities.

(F) Apparent Young’smodulus (E) of wild-type and variant-GFP cells. Small points indicate individual cells and larger circles indicate amean from each of the three

independent experiments.

(G) Cell-compaction assay; percentage of wild-type and variant-GFP cells positive for cleaved caspase-3 indicator of apoptosis on uncompressed or com-

pressedmembranes (denoted as - and + compression, respectively). Data are themean of three independent experiments ± SD. ****p < 0.0001, one-way ANOVA.

Data represent the values of individual cells (C) or themean (D–G) from three independent experiments (C–G) ± SD. Statistical analysis was performed by one-way

ANOVA (C and G); two-way ANOVA, followed by Holm-Sidak’s multiple comparisons test (D and E) or Student’s t test (F); n.s., nonsignificant; *p < 0.05, ***p <

0.001, ****p < 0.0001.

See also Figure S4; Video S4.
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Figure 4. The winner phenotype is dependent on higher proliferative rates of variant cells

(A–E) Growth curves of wild-type-RFP and v1q cells (A), wild-type-RFP and v20q cells (B), V1,17q,i20 and variant-GFP cells (C), v1q and variant-GFP cells (D), and

v20q and variant-GFP cells (E) grown separately or in co-culture. Cells in (A, B, D, and E) were plated at 45,000 cells/cm2. Cells in (C) were plated at the lower

(legend continued on next page)
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clustered within areas of increased local density compared with

the density within the separate wild-type culture (Figures 3B and

3C). The differential response of wild-type and variant cells to

crowding conditions was evident from increased levels of

cleaved caspase-3-positive cells which occurred at increasing

cell densities of wild-type cells but not the variant ones (Figures

3D, 3E, and S4E). Moreover, compared with their wild-type

counterparts, variant cells in separate cultures exhibited

reduced cellular stiffness (the apparent Young’s modulus) (Fig-

ures 3F and S4F), suggesting that differences in their mechanical

properties could be underpinning a differential response to cell

crowding.

To directly assess the sensitivity of wild-type and variant-GFP

cells to compaction-mediated cell death induced by cell-crowd-

ing conditions, we used a compaction assay (Wagstaff et al.,

2016). This entailed plating wild-type and variant-GFP cells on

an elastic substrate stretched by 35% and then releasing the

stretch to compress the substrate, thereby inducing an increase

in cell density. We noted a 2-fold increase in activated caspase-3

levels in wild-type cells on the compressed substrate over their

uncompressed counterparts (Figure 3G). Conversely, we de-

tected no increase in cleaved caspase-3 staining upon compres-

sion of variant-GFP cells. Collectively, these results show that

the corralling of wild-type hPSCs by variants within mosaic cul-

tures causes them to crowd into areas of high local-cell density

and thereafter commit to apoptosis.

Winner status is conferred onto cells by having a

relatively higher proliferative ability

Given that a key feature of mechanical cell competition is the

crowding of loser cells caused by the faster-growing winners

(Levayer et al., 2016; Wagstaff et al., 2016), we next asked

whether the winner status in hPSC cultures is conferred onto

cells by the ability to expand faster and thus fill the available

space. To this end, we performed mixing experiments of H7

wild-type-RFP cells with a range of H7 variant sublines, which

harbored distinct genetic changes and displayed diverse growth

rates. For example, variant H7 sublines with a gain of 1q (here-

after, v1q) or a gain of 20q copy-number variant (v20q) had

similar growth rates to wild-type-RFP hPSCs in separate cul-

tures (Figures 4A and 4B). As predicted, upon mixing with wild-

type cells, the numbers of wild-type or variant cells (either v1q

or v20q) remained unaffected (Figures 4A and 4B). In addition,

we tested the behavior of v1,17q,i20 variant lines in co-culture

with variant-GFP cells, as both lines grew at equivalent rates

when cultured separately (Figure 4C). Again, the growth rate pro-

files of each of these variants were unaffected by their co-culture

(Figure 4C), demonstrating that no competition takes place in

cultures of cells with equivalent growth rates. Conversely,

culturing variant lines v1q and v20q separately or in co-culture

with the faster-growing variant-GFP cells showed a significantly

decreased number of v1q and v20q cells within co-cultures

compared with separate cultures (Figures 4D and 4E). We

confirmed that the decrease of v1q and v20q cell numbers in

co-cultures with variant-GFP cells was due to apoptosis, as

both sublines showed higher levels of cleaved caspase-3 stain-

ing in the co-culture condition compared to separate culture

(Figures 4F and 4G). Nonetheless, neither the decrease in cell

numbers nor the level of activated caspase-3 in v1q and v20q

upon competition with variant-GFP was as extensive as seen

in wild-type cells upon mixing with variant-GFP. The v20q and

v1q variant lines harbor an additional copy of BCL2L1 and

MCL-1, respectively. The higher levels of expression of antia-

poptotic proteins BCL-XL and MCL-1 (Figure 4H) are thought

to confer v20q and v1q cells with increased resistance to

apoptosis (Avery et al., 2013; Nguyen et al., 2014). Given that

v1q and v20q variants did not assume a winner status upon mix-

ing with wild-type cells, our data revealed that increased resis-

tance to apoptosis is not sufficient to confer a winner-cell pheno-

type. Together, these results confirmed that cell competition

behavior is context dependent and that the faster proliferation

rate and higher homeostatic density are features of variant

hPSCs exhibiting a winner-cell phenotype. Moreover, we show

that increased resistance to apoptosis is not sufficient to confer

cells with a winner-cell phenotype, but it reduces the rate of

loser-cell elimination.

YAP mediates the winner versus loser-cell phenotype

in hPSCs

To determine how cell competition in hPSC cultures is mediated

at the molecular level, we initially performed transcription anal-

ysis of loser (v1q) and winner (variant-GFP) cells in both separate

and co-cultures (Figures S5A and S5B). The use of v1q rather

than wild-type cells facilitated the capture of sufficient numbers

of cells in sorting experiments due to their increased resistance

to apoptosis. We first focused on identifying expression signa-

tures associated with prospective winner and loser populations,

by analyzing the differential gene expression between these cells

in separate cultures (Figures S5C and S5D). In line with the com-

plex aneuploidy of variant-GFP cells, the number of differentially

expressed genes in winner versus loser cells was large, with

3,524 genes significantly upregulated and 3,311 genes signifi-

cantly downregulated in winner cells compared with loser cells

(Figure S5D). The Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment analysis (Kanehisa et al., 2010) showed

that the most significantly enriched molecular network from the

downregulated genes was the ribosomal pathway, followed by

the cell cycle and TGF-b signaling (Figure S5E; Table S1). The

Hippo signaling was the only significantly enriched pathway in

the KEGG analysis of differentially expressed genes between

winner and loser cells upon co-culture (Figures S5F andS5G; Ta-

ble S2). Thus, we next focused on yes-associated protein 1

density of 22,500 cells/cm2 due to the faster growth rate of both sublines with a complex karyotype. Fields acquired: entire well. Data represent the mean of two

independent experiments (A, B, D, and E) or the mean of 6 technical replicates from the same experiment (C) ± SD.

(F–G) Percentage of cells positive for cleaved caspase-3 in v1q and variant-GFP cells (F) and v20q and variant-GFP cells (G) in separate cultures or upon co-

culture. Data are the mean of three independent experiments ± SD.

(H) Western blot of antiapoptotic proteins in wild-type, v1q, v20q, and variant-GFP cells. b-actin was used as a loading control.

Statistical analysis was performed by two-way ANOVA, followed by Holm-Sidak’s multiple comparisons test (A, B, D, E, F, and G) or Student’s t test (C); n.s.

nonsignificant; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Figure 5. YAP mediates the winner versus loser hPSC phenotype

(A–C) YAP displays cytoplasmic localization in crowded wild-type cells co-cultured with variants. YAP (orange) and phosphorylated YAP (p-YAP) (red) staining in

wild-type cells in separate culture (A), variant-GFP cells in separate culture (B) and upon co-culture (C). Scale bar: 25 mm.

(D–E) Nuclear to cytoplasmic ratio of YAP (D), and the mean intensity of phosphorylated YAP in the cytoplasm (E). Data are represented as the mean ± SEM.

(F) Representative images of YAP staining in separate cultures. Scale bar: 50 mm.

(G) YAP intensity in variant-GFP and wild-type YAP-overexpressing cells relative to the wild-type cells.

(legend continued on next page)
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(YAP1, also known as YAP), as a major effector of the Hippo

signaling. YAP was previously shown to be also modulated by

mechanical signaling, including mechanical stresses imposed

by neighboring cells (reviewed in (Panciera et al., 2017)) and

was implicated in cell competition in different model systems

(Hashimoto and Sasaki, 2019; Liu et al., 2019; Moya et al.,

2019; Neto-Silva et al., 2010; Ziosi et al., 2010).

We first checked YAP localization in separate and mosaic cul-

tures of wild-type and variant-GFP cells by immunofluores-

cence. YAP localized predominantly to the nucleus of both

wild-type and variant-GFP cells when they were grown in sepa-

rate cultures (Figures 5A, 5B, and 5D). Strikingly, while the

variant-GFP cells retained the nuclear YAP in co-cultures with

wild-type cells, the wild-type cells within the same culture ex-

hibited a shift in YAP localization from nuclear to cytoplasmic

(Figures 5C, 5D, S5H, and S5I). The cytoplasmic YAP in wild-

type cells was phosphorylated at Ser127 residue (Figures 5C

and 5E), indicating that co-culture with variant cells leads to

sequestration and inactivation of YAP in the cytoplasm of wild-

type hPSCs.

To directly address the hypothesis that YAP is mediating the

super competition behavior of hPSCs, we first overexpressed

YAP in wild-type cells (Figures 5F–5H, S6A, and S6B) and

analyzed the effect of overexpression on the cell phenotype.

YAP overexpression was previously reported to promote the

naive state of hPSCs transferred to naive culture conditions

(Qin et al., 2016). Under the ‘‘primed’’ conditions used in our

study, YAP overexpression did not affect the expression of

markers associated with undifferentiated, primed, or naive

states of pluripotency (Figures S6C and S6D). However, YAP

overexpression resulted in the improved growth rates and

increased homeostatic density of wild-type cells (Figures 5I

and S6E). Further, YAP-overexpressing cells exhibited a winner

phenotype in co-cultures with wild-type cells (Figures 5J and

S6F). Finally, in comparison with wild-type cells, YAP-overex-

pressing cells were more resistant to crowding caused by co-

culture with variant-GFP cells, as evidenced by higher numbers

of YAP-overexpressing cells persisting in co-cultures with

variant-GFP cells (Figures 5K and S6G). Conversely, the knock-

down of YAP in variant cells suppressed their winner phenotype

upon co-culture with wild-type cells (Figures 5L, 5M, S6H, and

S6I). Based on these results, we concluded that YAP is a major

contributor to cell competition in hPSC cultures.

Apical actin constriction regulates YAP localization

in hPSCs

To gain further mechanistic insight into YAP-mediated hPSC

competition, we set out to investigate the upstream regula-

tors of YAP in this context. Our observation that wild-type

hPSCs are corralled into smaller spaces upon co-culture

with variants, coupled with the findings from other cell models

that YAP localization can be mechanically influenced by cell

shape and actin fibers (Aragona et al., 2013; Wada et al.,

2011), prompted us to examine the cytoskeleton as a poten-

tial regulator of YAP in hPSCs. Phalloidin staining of F-actin

showed a similar basal-to-apical profile of actin fibers in

wild-type and variant-GFP cells in separate cultures, with

both populations exhibiting a faint staining of actin filaments

encircling the cell within the adhesion belt (Figure 6A). How-

ever, while the variant cells retained a similar actin distribution

upon co-culture with wild-type cells, the crowded wild-type

cells showed a dramatic change in their actin fiber network

(Figure 6B). Specifically, we detected a redistribution of actin

stress fibers within the adhesion belt, evident as intense

staining of F-actin within the circumferential actin ring (Fig-

ure 6B). Expression of myosin IIB, a major nonmuscle myosin,

was also upregulated in the adhesion belt of the crowded

wild-type cells (Figures 6C and 6D), reflecting the increased

constriction of the adhesion belt in these cells upon co-cul-

ture with variants.

To determine whether the observed cytoskeletal differences in

winner and loser cells upon co-culture underpin the differences

in their subcellular YAP localization, we utilized a set of chemi-

cals that perturb actomyosin cytoskeleton. First, we used noco-

dazole to disrupt microtubules. Microtubule disruption, evident

by diminished a-tubulin staining (Figures 6E and 6F), reduced

the adhesion belt contraction in crowded wild-type cells (Fig-

ure 6G). Concomitantly, we detected a shift from a predomi-

nantly cytoplasmic YAP in co-cultured wild-type cells to a diffuse

(i.e., both cytoplasmic and nuclear) localization in their nocoda-

zole-treated counterparts (Figure 6H). Disruption of actin fibers

using latrunculin A or cytochalasin B also resulted in reduced

actin ring within the adhesion belt of crowded wild-type cells

and a diffuse localization of YAP in those cells (Figures 6I–6M).

On the other hand, inhibition of myosin activity by treating cells

with the rho-associated coiled coil kinase (ROCK) inhibitor

changed the actin stress fibers at the cell-extracellular matrix

level but did not reduce the intense actin staining within the

adhesion belt of the crowded wild-type cells (Figures 6N and

6O), and ROCK inhibitor had no overt effect on the subcellular

localization of YAP (Figure 6P). Taking these findings together,

we conclude that in hPSC cultures super-competitive variant

cells corral wild-type counterparts into areas of significantly

higher density compared with the density of wild-type separate

cultures. Consequent restructuring of actin fibers within the

adhesion belt of crowded wild-type hPSCs causes sequestering

(H) YAP and its target genes are upregulated in wild-type YAP-overexpressing cells compared with wild-type hPSCs.

(I) YAP overexpression leads to improved growth of wild-type cells.

(J and K) YAP overexpression confers the winner phenotype in co-cultures with wild-type cells (J) and increased resistance to cell crowding in co-cultures with

variant-GFP cells (K).

(L) YAP intensity in v17q cells transfected with either LUC or YAP siRNA relative to v17q control cells.

(M) Knockdown of YAP in v17q cells co-cultured with wild-type-RFP cells partially rescues the loser phenotype in wild-type-RFP hPSCs.

(G–M) Data are the mean of three independent experiments ± SD. (I, J, K, M), 16 fields were acquired per well.

Statistical analysis was performed by one-way ANOVA followed by Kruskal-Wallis multiple comparisons test (E), Student’s t test (G and L), one-way ANOVA

followed by Fisher’s LSD test (H), or two-way ANOVA followed by Holm-Sidak’s multiple comparisons test (I, J, K, M); n.s. nonsignificant; *p < 0.05, **p < 0.01,

***p < 0.001, ****p < 0.0001.

See also Figures S5 and S6.
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of YAP in their cytoplasm and triggers them to commit to

apoptosis.

Modulations of cell density and YAP localization in wild-

type cells reduce competitive the advantage of

variant hPSCs

To identify culture conditions that could reduce the competitive

advantage of variant hPSCs, we first tested a pan-caspase inhib-

itor, z-VAD-FMK, and a ROCK inhibitor, Y-27632, as they have

been were previously shown to alleviate mechanical cell compe-

tition or cell extrusion in crowded-cell conditions in other models

(Saw et al., 2017; Wagstaff et al., 2016). However, neither of the

inhibitors rescued hPSC cell competition (Figures S7A–S7E). The

pan-caspase inhibitor z-VAD-FMK reduced the elimination of

wild-type cells from co-cultures, but the wild-type cells stopped

proliferating in crowded cultures (Video S5; Figure S7C). These

findings are in line with our data showing that inhibition of

apoptosis is not sufficient to confer winner-cell phenotype and

with our observation that Y-27632 does not impact on YAP

cellular localization of hPSCs at high cell density.

Considering our findings that cell competition in hPSC cultures

is cell-density dependent and underpinned by differential locali-

zation of YAP in wild-type and variant hPSCs, we reasoned that

promotion of YAP nuclear localization in wild-type cells at a high

cell density might alleviate the competitive advantage of variant

hPSCs. We plated separate and mixed cultures of wild-type and

variant cells at increasing cell densities and in the absence or

presence of a selective inhibitor of SETD7 methyltransferase in-

hibitor (R)-PFI-2, which has been previously shown to promote

YAP nuclear localization (Barsyte-Lovejoy et al., 2014). In wild-

type hPSC, (R)-PFI-2 also promoted YAP nuclear localization,

which is evident from the quantification of the YAP nuclear/cyto-

plasmic ratio and the intensity of staining of phosphorylated

(inactive) YAP in the cytoplasm of wild-type hPSCs in co-culture

(Figures 7A and 7B). As stated previously, we observed no cell

competition in co-cultures at low cell density, whereas an in-

crease in cell density resulted in a significant shift in ratios of

wild-type and variant cells (Figures 7C–7E). Strikingly, the inclu-

sion of (R)-PFI-2 suppressed cell competition at high cell den-

sities (Figures 7C–7E). This effect was due to the increased

numbers of wild-type cells in co-cultures treated with (R)-PFI-2

(Figures 7F–7H). Thus, the effect of (R)-PFI-2 is consistent with

a key role of YAP in hPSC competition. Moreover, these data

demonstrate that cell competition can be suppressed by

growing cells at low density or by promoting YAP nuclear local-

ization in conditions of high cell density.

DISCUSSION

Suppressing the commonly arising variant hPSCs from over-

taking these cultures requires a thorough understanding of the

attributes that facilitate variant cells in achieving the clonal domi-

nance. Here we report that the supremacy of particular variant

clones in hPSC cultures is enhanced through competitive inter-

actions with their wild-type counterparts, leading to the elimina-

tion of wild-type cells from mosaic cultures. The manner of wild-

type cell elimination resembles previously described cell compe-

tition (Mamada et al., 2015; Morata and Ripoll, 1975; Sancho

et al., 2013) in that the wild-type hPSCs, albeit viable in homo-

typic cultures, failed to thrive and underwent increased levels

of apoptosis when co-cultured with variants. We showed that

the winner-cell phenotype was assumed by variant clones,

which possessed relatively faster growth rates and achieved

higher homeostatic density compared with the loser cells.

Thus, cell competition in hPSC cultures is akin to mechanical

cell competition (Levayer et al., 2016; Wagstaff et al., 2016).

Our data identified YAP as a key mediator of cell competition in

hPSC cultures. First, we detected differences in YAP localization

in wild-type cells upon co-culture with their faster-growing variant

counterparts. Second, YAP knockdown in variant cells alleviated

cell competition in hPSCs. Finally, overexpression of YAP in

wild-type cells or promotion of YAP nuclear localization using a

chemical inhibitor also partially rescued wild-type cells from elim-

ination by variants. YAP overexpression was previously shown to

promote naive cell state of hPSCs (Qin et al., 2016). However, in

our study, overexpression of YAP under the primed conditions

did not affect the pluripotency state of hPSCs. Thus, in our model

system, YAP does not appear to act as a stemness factor, but

rather, increased YAP expression or promotion of YAP nuclear

retention allows wild-type cells to withstand cell competition in

co-cultures with variants. Further work is needed to address spe-

cificYAP targets thatmodulate hPSC fates during cell competition

and what contribution an increased resistance to apoptosis of

variant cells may play in the winner-cell phenotypes.

It also remains unknown which precise signals upstream of

YAP winner hPSCs utilize to communicate their fitness

Figure 6. YAP localization is regulated by adhesion belt actin in hPSCs

(A) F-actin staining at the adhesion belt and basal planes in wild-type (left panels) and variant-GFP (right panels) grown in separate cultures.

(B) F-actin staining at the adhesion belt and basal planes of wild-type and variant-GFP co-cultured cells. Closed arrowheads point to wild-type cells displaying

YAP localized within the cytoplasm and having a prominent staining of adhesion belt F-actin. Open arrows point to neighboring variant-GFP cells displaying

nuclear localization of YAP and no prominent adhesion belt.

(C) Myosin IIB and F-actin staining within the adhesion belt of co-cultured wild-type and variant-GFP cells.

(D) The mean intensity of myosin IIB in wild-type and variant-GFP cells upon co-culture. ***p < 0.001, Kolmogorov-Smirnov test.

(E) Localization of YAP in co-cultured wild-type and variant-GFP cells treated with nocodazole. Closed arrowheads point to wild-type cells displaying YAP

localized within the cytoplasm and having prominent staining of a-tubulin. Nocodazole treatment perturbed the microtubule structure and caused diffuse

localization of YAP in wild-type cells (open arrows).

(F–H) The mean intensity of a-tubulin (F), F-actin (G), and the nuclear to cytoplasmic ratio of YAP (H), in wild-type and variant-GFP cells ± nocodazole.

(I–M) Disruption of F-actin in the adhesion belt of co-cultured wild-type and variant-GFP cells treated with latrunculin A or cytochalasin B.

(N–P) Treatment of co-cultures with Y-27632.

Data are represented as the mean ± SEM (F–H, J–P); n.s., nonsignificant; **p < 0.01, ***p < 0.001, ****p < 0.0001; one-way ANOVA followed by Kruskal-Wallis

multiple comparisons test.

Scale bars: 10 mm.
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Figure 7. Optimized culture conditions restrict the competitive behavior of winner hPSCs

(A and B) Nuclear to cytoplasmic ratio of YAP (A), and the mean intensity of p-YAP in the cytoplasm (B) of wild-type and variant-GFP hPSCs in co-culture ± 1mM

(R)-PFI-2.

(C–E) Ratio of H7 variant-GFP/wild-type (C), H14 variant-BJ1/H14 wild-type (D), and HUES-17 V12,17/HUES-17 wild-type cells (E) in separate culture, co-culture

and co-culture treated with 1mM (R)-PFI-2 at increasing plating cell density.

(legend continued on next page)
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advantage over loser hPSCs. Our study implicated differences in

mechanical properties of cells as potential readouts of hPSC

cellular fitness. For example, we noted that winner cells exhibit

reduced cellular stiffness compared with wild-type loser cells.

Reduced stiffness of cancerous cells compared with their

noncancerous tissue counterparts was previously shown to

result in the altered intercellular force transmission and was

linked to the changes in the cytoskeletal organization of cancer

cells (Schwager et al., 2019). Gene-expression analysis of winner

and loser cells also highlighted differences in genes encoding

components of actomyosin cytoskeleton, cell-cell adhesion,

and tight-junction proteins. Conceivably, changes in the cyto-

skeleton and/or adhesion properties of variant cells could be

driving a differential response to mechanical cues encountered

in the cell-crowding conditions. However, given that commonly

amplified regions in the hPSC genome typically span several

megabases (Baker et al., 2016) and commonly acquired genetic

changes induce a global transcriptional response (Ben-David

et al., 2014), it remains difficult to pinpoint potential drivers

frommere passenger mutations implicated in variant cell pheno-

types (Halliwell et al., 2020).

In conclusion, our work revealed cell competition as an impor-

tant aspect of cellular interaction of wild-type and variant hPSCs,

contributing to a complete overtake of cultures by super-

competitive variant clones. Undertaking further detailed ana-

lyses of genetic variants that exhibit super-competitive behavior

should be informative for impact on regenerative medicine appli-

cations. The culture conditions that alleviate cell competition re-

vealed through our work provide a grounding for expansion pro-

tocols of hPSCs for research and clinical applications.

Limitations of the study

Here, we have focused on investigating how variants with recur-

rently acquired aneuploidies overtake hPSC cultures. This ques-

tion should be extended to other types of genetic changes,

including recurrent point mutations that have also been reported

in hPSCs (Avior et al., 2021; Merkle et al., 2017). Moreover, it is

conceivable that a presence of epigenetic variants could also

lead to competitive behavior in hPSC cultures. Future studies

are warranted to investigate these questions.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit anti-Cleaved caspase-3 Cell Signalling Technology 9661; RRID:AB_2341188

Rabbit anit-MCL-1 Cell Signalling Technology 5453; RRID:AB_10694494

Rabbit anti-BCL-XL Cell Signalling Technology 2764; RRID:AB_2228008

Rabbit anti-BCL2 Cell Signalling Technology 2870; RRID:AB_2290370

Mouse anti-b-ACTIN Proteintech 66009-1-Ig; RRID:AB_2687938

Mouse anti-YAP Santa Cruz Biotechnology sc-101199; RRID:AB_1131430

Rabbit anti-Phospho-YAP (Ser127) Cell Signalling Technology 4911; RRID:AB_2218913

Mouse anti-non-muscle Myosin IIB/MYH10 Abcam ab684; RRID:AB_305661

Rabbit anti-a-tubulin Cell Signalling Technology 2144; RRID:AB_2210548

Mouse anti-TRA-1-81 monoclonal In-house N/A

Mouse anti-TRA-1-85 monoclonal In-house N/A

Rat anti-SSEA3 monoclonal In-house N/A

Mouse anti-THY1(CD90) In-house N/A

Mouse anti-P3X In-house N/A

Goat anti-Mouse AffiniPure IgG+IgM H+L

(Alexa Fluor� 647)

Stratech 115-605-044-JIR; RRID:AB_2338906

Goat anti-Rabbit AffiniPure IgG+IgM H+L

(Alexa Fluor� 647)

Stratech 111-605-003-JIR; RRID:AB_2338072

Goat anti-Mouse AffiniPure IgG, Fcg
Fragment Specific (Alexa Fluor� 594)

Stratech 115-585-008-JIR;RRID:AB_2338873

Goat anti-Rabbit AffiniPure IgG H+L (Alexa

Fluor� 594)

Stratech 111-585-003-JIR;RRID:AB_2338871

Anti-Mouse IgG H+L (HRP) Promega W4021; RRID:AB_430834

Anti-Rabbit IgG H+L (HRP) Promega W4011; RRID:AB_430833

Chemicals, peptides, and recombinant proteins

Y-27632 Generon A11001-10

Latrunculin A Cambridge Bioscience 10010630-25ug-CAY

Cytochalasin B Sigma-Aldrich C2743-200UL

Nocodazole VWR 487928

Z-VAD-FMK Stratech A1902-APE-10mg

(R)-PFI 2 hydrochloride Bio-Techne 4892/10

Hoechst 33342, trihydrochide Fisher Scientific 11534886

Incucyte� Caspase-3/7 Red Dye for

Apoptosis

Sartorius 4704

Vitronectin (VTN-N) Life Technologies A14700

Sodium selenium Sigma-Aldrich S5261

Insulin Thermo Fisher Scientific A11382IJ

NaHCO3 Sigma-Aldrich S5761

Transferrin Sigma-Aldrich T0665

Glutamax Thermo Fisher Scientific 35050038

FGF2 Peprotech 100-18B

Heat Stable Recombinant bFGF Thermo Fisher Scientific PHG0367

TGFb1 Peprotech 100-21

Vectashield Mounting Medium Vector Laboratories H-1000

Phalloidin (Alexa Fluor� 647) Cell Signalling Technology 8940
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TrypLE Express enzyme Thermo Fisher Scientific 11528856

ReLeSR STEMCELL Technologies 05873

DMEM/F12 Sigma-Aldrich D6421

DMEM/F12 without phenol red Sigma-Aldrich D6434

Dulbecco’s phosphate buffered

saline (PBS)

Sigma-Aldrich D1408

FastDigest EcoRI Thermo Fisher Scientific FD0275

Critical commercial assays

DNeasy Blood & Tissue Kit QIAGEN 69504

RNAeasy Plus Mini Kit QIAGEN 74134

Qubit RNA HS Assay Kit Thermo Fisher Scientific Q32855

Silicone culture-inserts 2 well Ibidi 80209

Transwell 8.0mm PET membrane inserts Millipore PIEP12R48

TaqMan Fast Universal Master Mix Thermo Fisher Scientific 4352042

Deposited data

RNA-Seq This paper ArrayExpress: EMBLE-MTAB-10193

Experimental models: Cell lines

H7 (WA07) hPSC line Thomson et al., 1998 RRID:CVCL_9772

H7-H2B-RFP; H7 hPSCs constitutively

expressing H2B-RFP (in this study referred

to as wild-type-RFP cells)

This paper RRID:CVCL_A5NJ

H7-YAP; H7 hPSCs overexpressing YAP (in

this study referred to as wild-type-YAP)

This paper RRID:CVCL_A5LL

H7v1q; H7 hPSCs with a gain of

chromosome 1q (in this study referred to

as v1q)

This paper RRID:CVCL_A5KR

H7v17q; H7 hPSCs with a gain of

chromosome 17q (in this study referred to

as v17q)

This paper RRID:CVCL_A5KS

H7v20q; H7 hPSCs with a gain of

chromosome 20q (in this study referred to

as v20q)

This paper RRID:CVCL_A5KT

H7v1,17q,i20; H7 hPSCs with a gain of

chromosomes 1, 17q and isochromosome

20 (in this study referred to as v1,17q,i20)

This paper RRID:CVCL_A5LK

H7v1,12,17q,20q-GFP; H7.s6-GFP (in this

study referred to as variant-GFP)

Baker et al., 2016 RRID:CVCL_A5KW

H14 (WA14) hPSC line Thomson et al., 1998 RRID:CVCL_9775

H14-H2B-RFP; H14 hPSCs constitutively

expressing H2B-RFP (in this study referred

to as H14 wild-type-RFP)

This paper RRID:CVCL_A5NK

H14-YAP; H14 hPSCs overexpressing YAP

(in this study referred to as H14 wild-

type-YAP)

This paper RRID:CVCL_A5LM

H14.BJ1-GFP; H14 hPSCs with a gain of

chromosomes 12 and 17 and stably

expressing GFP (in this study referred to as

H14 variant-BJ1)

Baker et al., 2016 RRID:CVCL_A5KX

HUES 17 hPSC line Cowan et al., 2004 RRID:CVCL_B147

HUES 17-H2B-RFP; HUES 17 hPSCs

constitutively expressing H2B-RFP (in this

study referred to as HUES-17 wild-

type-RFP)

This paper RRID:CVCL_A5NL
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REAGENT or RESOURCE SOURCE IDENTIFIER

HUES 17v12,17; HUES 17 hPSCs with a

gain of chromosomes 12 and 17 (in this

study referred to as HUES-17v12,17)

This paper RRID:CVCL_A5KC

Oligonucleotides

PrimeTime qPCR Assay: TERT Integrated DNA Technologies Hs.PT.58.27489922

PrimeTime qPCR Assay: KLF5 Integrated DNA Technologies Hs.PT.56a.40282397

PrimeTime qPCR Assay: KLF4 Integrated DNA Technologies Hs.PT.58.45542593

PrimeTime qPCR Assay: KLF2 Integrated DNA Technologies Hs.PT.58.39339409

PrimeTime qPCR Assay: GBX2 Integrated DNA Technologies Hs.PT.58.803756

PrimeTime qPCR Assay: POU5F1 Integrated DNA Technologies Hs.PT.58.14648152.g

PrimeTime qPCR Assay: SOX2 Integrated DNA Technologies Hs.PT.58.237897.g

PrimeTime qPCR Assay: ACTB Integrated DNA Technologies Hs.PT.39a.22214847

PrimeTime qPCR Assay: YAP1 Integrated DNA Technologies Hs.PT.58.14881945

PrimeTime qPCR Assay: TFCP2L1 Integrated DNA Technologies Hs.PT.58.26495531

PrimeTime qPCR Assay: NANOG Integrated DNA Technologies Hs.PT.58.21480849

PrimeTime qPCR Assay: OTX2 Integrated DNA Technologies Hs.PT.58.46695245

PrimeTime qPCR Assay: DPPA3 Integrated DNA Technologies Hs.PT.58.2165190

PrimeTime qPCR Assay: TBX3 Integrated DNA Technologies Hs.PT.58.3646164

PrimeTime qPCR Assay: DNMT3B Integrated DNA Technologies Hs.PT.58.5075361

PrimeTime qPCR Assay: GATA6 Integrated DNA Technologies Hs.PT.58.38396504

PrimeTime qPCR Assay: Lin28A Integrated DNA Technologies Hs.PT.58.24268123

PrimeTime qPCR Assay: ZFP42 Integrated DNA Technologies Hs.PT.58.23001209

TaqMan� Gene Expression Assay: ACTB ThermoFisher Scientific Hs99999903_m1

TaqMan� Gene Expression Assay: YAP1 ThermoFisher Scientific Hs00902712_g1

TaqMan� Gene Expression Assay: CTGF ThermoFisher Scientific Hs00170014_m1

TaqMan� Gene Expression Assay: CYR61 ThermoFisher Scientific Hs00155479_m1

ESIRNA HUMAN YAP1 Sigma-Aldrich EHU113021-20UG

ESIRNA RLUC Sigma-Aldrich EHURLUC-20UG

Recombinant DNA

pGAMA-YAP Qin et al., 2016 RRID:Addgene_74942

pCAGeGFP Liew et al., 2007 N/A

pCAG-YAP This paper N/A

pCAG-H2B-RFP A kind gift from Dr Jie Na, Tsinghua

University, Beijing

N/A

Software and algorithms

Cell Profiler Carpenter et al., 2006 RRID:SCR_007358

R R Core Team RRID:SCR_001905

FlowJo Software v10 FlowJo RRID:SCR_008520

FIJI Schindelin et al., 2012 RRID:SCR_002285

DESeq2 Love et al., 2014 RRID:SCR_015687

PANTHER v14 Mi et al., 2019 RRID:SCR_004869

ReViGO Supek et al., 2011 RRID: SCR_005825

GraphPad Prism 9.0.2 Prism RRID:SCR_002798

Developer Toolbox 1.7 GE Healthcare RRID:SCR_015790

QuantStudio 12K Flex Software Applied Biosystems N/A

Sortware BD N/A

TreeGraph 2 Stöver and M€uller, 2010 N/A

Interactive Tree of Life (iTOL) Letunic and Bork, 2007 N/A

arivis Vision4D arivis AG RRID:SCR_018000
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RESOURCE AVAILABILITY

Lead contact

Requests for further information or reagents can be directed to and will be fulfilled by the Lead Contact, Ivana Barbaric (i.barbaric@

sheffield.ac.uk), Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield.

Materials availability

Plasmids generated in this study will bemade available upon request. All cell lines generated in this study will bemade available upon

request but wemay require a completed materials transfer agreement and reasonable compensation by requestor for its processing

and shipping.

Data and code availability

RNA sequencing data related to Figure S5; Tables S1 and S2 has been submitted to ArrayExpress: EMBLE-MTAB-10193.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human pluripotent stem cell (hPSC) lines

Wild-type hPSCs used in this study were early passage sublines of H7 (WA07), H14 (WA14) and HUES-17 originally established in the

laboratories of James Thomson (Thomson et al., 1998) and Douglas Melton (Cowan et al., 2004), respectively, which were karyotyp-

ically normal (based on at least 20 metaphases analysed by G-banding of cell banks prior to experiments and at various time points

upon subsequent passaging) and did not possess a commonly gained 20q11.21 copy number variant (as determined by quantitative

PCR for copy number changes and/or Fluorescent In Situ Hybridisation (Baker et al., 2016; Laing et al., 2019)). Spontaneous variants

with karyotypic abnormalities were detected during the subsequent culture of H7, H14 and HUES-17 cells at the Centre for StemCell

Biology in Sheffield (Baker et al., 2007; Draper et al., 2004). Genetically variant sublines of H7 line used in this study and their karyo-

types were: ‘variant-GFP’ cells [48,XX,+del(1)(p22p22),der(6)t(6;17)(q27;q1),+12,ish dup(20q11.21q11.21)] (30 metaphases ana-

lysed), also harbouring chromosome 20q CNV as determined by quantitative PCR analysis and FISH (Baker et al., 2016; Laing

et al., 2019); ‘v1,17q,i20’ [47,XX, +del(1)(p22p22), der(6)t(6;17)(q27;q1), t(12;20)(q13;q11.2), i(20)(q10) dup(20)(q11.21q11.21)] (30

metaphases analysed); ‘v17q’ cells [46,XX,der(6)t(6;17)(q27;q1) (30 metaphases analysed) and ‘v1q’ cells [46,XX,dup(1)(q21q42)]

(30 metaphases analysed). The variant ‘v20q’ appeared to have a diploid karyotype when analysed by G-banding (30 metaphases

analysed), but a gain of a copy number variant 20q11.21 was detected by Fluoresecent In Situ Hybridisation and quantitative PCR

analysis. The karyotype of the H14 variant subline H14.BJ1-GFP was [48,XY,+12,+der(17)hsr(17)(p11.2) del(17)(p13.3)] (20 meta-

phases analysed). The karyotype of the HUES-17 variant subline ‘HUES-17 v12,17’ was [48,XY,+12,+17] (20 metaphases analysed).

Variants v1q, v20q and v17qwere established in this study by cloning out spontaneously arising variants frommosaic cultures using

single cell deposition by fluorescent activated cell sorting. Single cells frommosaic cultures were sorted directly into individual wells

of a 96 well plate using a BD FACS Jazz and cultured to form colonies over 2-3 weeks. The resulting colonies were expanded in cul-

ture and subsequently frozen to establish cell banks. At the time of freezing, sister flasks were sent for karyotyping by G-banding and

assessment of the relative copy number of commonly identified genetic changes by qPCR as described below.

METHOD DETAILS

Human pluripotent stem cell (hPSC) culture

Flasks used for hPSCmaintenance were coated with vitronectin (VTN-N) (Cat. # A14700, Life Technologies) diluted to 5 mg/ml in Dul-

becco’s phosphate buffered saline (PBS) and incubated at 37�C for 1h prior to aspirating the vitronectin solution and plating hPSCs.

HPSCs were maintained in E8 medium prepared in house, consisting of DMEM/F12 (Cat. # D6421; Sigma-Aldrich) supplemented

with 14 mg/l sodium selenium (Cat. # S5261; Sigma-Aldrich), 19.4 mg/l insulin (Cat. # A11382IJ; Thermo Fisher Scientific),

543 mg/l NaHCO3 (Cat. # S5761; Sigma-Aldrich), 10.7 mg/l transferrin (Cat. # T0665; Sigma-Aldrich), 10 ml/l Glutamax (Cat. #

35050038; Thermo Fisher Scientific), 100mg/l FGF2 (Cat. # 100-18B; Peprotech) and 2 mg/l TGFb1 (Cat. # 100-21; Peprotech)

(Chen et al., 2011). For time lapse experiments, E8 was prepared using DMEM/F12 without phenol red (Cat. # D6434; Sigma-Aldrich).

Cells were fed daily and maintained at 37�C under a humidified atmosphere of 5% CO2 in air. Routine passaging every 4-5 days was

Continued
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ZEN Digital Imaging for Light Microscopy ZEISS RRID:SCR_013672

Other

Manual Cell Stretching System STREX Inc. STB-100-10

4-well PDMS Stretch Chamber STREX Inc. STB-CH-4W
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performed using ReLeSR (Cat. # 05873; STEMCELL Technologies) according to manufacturer’s instructions. Cells were resus-

pended in E8 and split at 1:3 or 1:4 ratio (wild type cells) or 1:8 to 1:30 ratio (variant sublines). Cells were genotyped after thawing

and every 5-8 passages byG-banding, Fluorescent In Situ Hybridization and/or using quantitative PCR for common genetic changes.

Karyotyping by G-banding and FISH for chromosome 20q copy number variant were performed by the Sheffield Diagnostic Genetics

Service (https://www.sheffieldchildrens.nhs.uk/sdgs/), as previously described (Baker et al., 2016; Laing et al., 2019).

Quantitative PCR (qPCR) for determining copy number changes of target genes

Relative copy number of commonly identified genetic changes was assessed using the qPCR-based approach described in (Baker

et al., 2016; Laing et al., 2019). Genomic DNAwas extracted from hPSCs using theDNeasy Blood & Tissue Kit (Cat. # 69504; QIAGEN)

and digested with FastDigest EcoRI (Cat. # FD0275; Thermo Fisher Scientific) for 2 h at 37�C, followed by inactivation at 65�C for

20 min. PCR reactions were set up in triplicate, with each 10ml PCR reaction containing 1X TaqMan Fast Universal Master Mix

(Cat. # 4352042; Thermo Fisher Scientific), 100nM of forward and reverse primers, 100nm of probe from the Universal Probe Library

and 10ng of genomic DNA. PCR reactions were run on a QuantStudio 12K Flex Thermocycler (Cat. # 4471087; Life Technologies).

Following the first two steps of heating the samples to 50�C for 2 min and denaturing them at 95�C for 10 min, reactions were sub-

jected to 40 cycles of 95�C for 15 s and 60�C for 1 min. The Cq values were obtained from the QuantStudio 12K Flex Software with

auto baseline settings andwere then exported to Excel for copy number analysis using the relative quantificationmethod (2-ddcq). The

calibrator samples for the qPCR assay were hPSC gDNA samples previously established as diploid using karyotyping and Fluores-

cent In Situ Hybridisation analyses (Baker et al., 2016).

Quantitative PCR (qPCR) for determining gene expression

Expression of YAP target genes and genes associatedwith the naı̈ve and primed state of pluripotencywas assessed using qPCR. RNA

was isolated using a Qiagen RNAeasy Plus Mini Kit (Cat. # 74134; Qiagen), and the RNA concentration and purity determined using a

NanoPhotometer (Implen, Munich, Germany). cDNA was synthesised using a high-capacity reverse transcription kit (Cat. # 4368814;

Thermo Fisher Scientific). qPCR reactions were set up in triplicate, with each 10ml PCR reaction containing 1X TaqMan Fast Universal

Master Mix (Cat. # 4352042; Thermo Fisher Scientific), 1X PrimeTime� qPCR Assay (Integrated DNA Technologies) or TaqMan Gene

Expression Assay (Thermo Fisher Scientific) and 10ng of cDNA. PCR reactions were run on a QuantStudio 12K Flex Thermocycler

(Cat. # 4471087; Life Technologies). Following the first two steps of heating the samples to 50�C for 2 min and denaturing them at

95�C for 10min, reactionswere subjected to 40 cycles of 95�C for 15 s and 60�C for 1min. The Ct valueswere obtained from theQuant-

Studio 12K FlexSoftwarewith auto baseline settings andwere then exported to the ExpressionSuite Software (Thermo Fisher Scientific)

for analysis.

Cell competition assay

Cellswere dissociated to single cells using TrypLE (Cat. # 11528856; ThermoFisher Scientific) for 4min at 37�C,washedonce inDMEM/

F12, counted and resuspended in E8media supplementedwith 10mMY-27632 (Cat. # A11001-10;Generon). Cells were plated as sepa-

rateculturesofeachsublineormixedculturesofdifferent sublines, asdescribed in the individual experiments.After 24h, themediumwas

removed and the wells were washed once with basal medium DMEM/F12 (Cat. # D6421; Sigma-Aldrich) to remove the Y-27632. The

medium was replaced with E8 and that point was considered as ‘day 0’ of competition experiments. Cells were cultured for further 72

hours and fed daily with E8 medium. Cells were fixed at different time points post-plating in 4% paraformaldehyde (PFA) for 15 min at

room temperature, and nuclei stained with 10mg/ml Hoechst 33342 (Thermo Fisher Scientific). In every mixing experiment, one of the

sublines used was fluorescently labelled (e.g. either variant-GFP mixed with other non-labelled sublines or wild type-RFP mixed with

otherwild typeor variant sublines), thus allowing identification of cell numbers of each of the sublines inmixed cultures. Imaging of either

the entirewell or 16 randomfieldswithin thewellwas performedusing the InCell Analyzer (GEHealthcare) high-contentmicroscopyplat-

form. Quantification of total and individual subline cell numbers was performed either using custom protocols in Developer Toolbox 1.7

software (GEHealthcare) or CellProfiler (Carpenter et al., 2006). ‘Separate culture’ ratio was calculated by dividing the number of variant

cells in separateculturewith anumberofwild-type cells in separateculture. ‘Co-culture’ ratiowasobtainedbydirectly counting the num-

ber of either wild-type or variant cells in co-culture using high-content microscopy and dividing by the total cell count.

For growth curve analysis, cells were plated at 4,4x104 cells/cm2 in separate cultures or co-cultures, with the co-cultures contain-

ing 50:50 ratio of different sublines (i.e. 2,2 x104 cells/cm2 of each subline). As an additional control, separate cultures were also

plated containing equivalent numbers of cells from co-cultures (i.e. 2,2 x104 cells/cm2 for each subline). For cell competition assays

of v1,17q,i20 cells with variant-GFP cells, cells were plated at the lower density of 22,500 cells/cm2 due to the faster growth rate of

both sublines with a complex karyotype. Cells were fixed with 4% PFA at different time points post-plating and the cell numbers an-

alysed as described above.

For assessing the effect of increasing ratios of variant cells on wild-type cell growth, wild type and variant-GFP cells were plated in

E8 supplemented with 10mM Y-27632 (Cat. # A11001-10; Generon) at the total number of 4,4x104 cells/cm2, with the ratio of variant

cells varying from 10% to 90% of the total cell number. After the initial 24h post-plating, cells were washed with DMEM/F12 (Cat. #

D6421; Sigma-Aldrich) to remove the Y-27632 and then grown in E8 for further 3 days. Cells were then fixed with 4%PFA and the cell

numbers analysed as described above.

For assessing the effect of increasing cell density on wild-type cell growth, wild type and variant-GFP cells were plated at a 50:50

ratio, at cell densities increasing from 3,750 to 45,000 cells/cm2. After the initial 24h post-plating, cells were washed with DMEM/F12
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(Cat. # D6421; Sigma-Aldrich) to remove the Y-27632 and then grown in E8 for further 3 days. Four days post-plating, cells were fixed

with 4% PFA and the cell numbers analysed as described above.

Time-lapse imaging and analysis

Time-lapse microscopy was performed at 37�C and 5% CO2 using either a Nikon Biostation CT or a ZEISS LSM 880 (Carl Zeiss AG,

Oberkochen, Germany) fitted with an Airyscan detection unit. For lineage analysis, cells were imaged on a Nikon Biostation CT every

10min for 72 h using 10x or 20x air objectives. Image stacks were compiled in CLQuant (Nikon) and exported to FIJI (Image J) (Schin-

delin et al., 2012) for analysis. Lineage trees were constructed manually from FIJI movies. Individual cells were identified in the first

frame and then tracked in each subsequent frame until their death, division or the end of themovie. The timing of cell death or division

for each cell was noted and then used to reconstruct lineage trees of founder cells using either TreeGraph 2 (Stöver andM€uller, 2010)

or Interactive Tree Of Life (iTOL) (Letunic and Bork, 2007) software.

For the cell confrontation assay, cells were imaged on either a Nikon Biostation CT every 4 hours for 48 hours using 10x or 20x air

objectives, or a ZEISS LSM 880 (Carl Zeiss AG, Oberkochen, Germany) fitted with an Airyscan detection unit every 1 hour for 48

hours. For images acquired using the Biostation CT, image stacks were compiled and analysed to determine the cell area covered

by live caspase-3/7 signal in CL Quant (Nikon). For images acquired on the ZEISS LSM 880, a z-stack of 10mm starting below the

central position of the nucleus and finishing beyond the apical surface was captured at each timepoint. The images were processed

in ZEN (ZEISS) software and exported to FIJI (Image J) (Schindelin et al., 2012) for analysis.

Imaging of the cell competition assaywith live caspase-3/7 dyewas performed on the ZEISS LSM880 (Carl Zeiss AG,Oberkochen,

Germany) fitted with an Airyscan detection unit every 10 min for 15 hours. A z-stack of 10mm starting below the central position of the

nucleus and finishing beyond the apical surface was captured at each timepoint and processed in ZEN (ZEISS) software. The pro-

cessed image data was rendered into a 4D movie using arivis Vision4D (arivis AG) software.

Conditioned medium experiments

Wild-type and variant sublines of H7, H14 and HUES-17 were plated at 4x104 cells/cm2 and pre-cultured independently for 24h in the

medium supplementedwith 10mMY-27632 (Cat. # A11001-10; Generon). To negate problemswith FGF degradation and pH acidosis

of conditioned medium, the recipe for E8 was altered to contain 40ng/ml of Heat stable FGF (Cat# PHG0367; ThermoFisher) and an

additional 10mM of sodium bicarbonate. Cells were changed with fresh medium and cultured for another 24 hours to condition the

medium. Mediumwas aspirated from the flasks and passed through a 0.22mmfilter to remove any cells that had been lifted. The cells

in the flasks were washed with DMEM/F12 (Cat. # D6421; Sigma-Aldrich) andmediumwas changed to either fresh medium, medium

conditioned on corresponding wild-type sublines or medium conditioned on variant sublines. Cells were cultured for a further 24

hours before harvesting and staining for flow cytometric analysis of cleaved caspase-3 as described below.

Transwell assay

For indirect co-culture, Millipore Transwell 8.0mmPETmembrane inserts (Cat. # PIEP12R48; Millipore) were used in combination with

24 well plates. Both the insert and well were coated with vitronectin (VTN-N) (Cat. # A14700, Life Technologies) diluted to 5 mg/ml in

PBS. Cells were harvested using TrypLE (Cat. # 11528856; Thermo Fisher Scientific) and 1.5x104 cells were seeded in the well and

insert. Cells were pre-cultured independently for 24h in E8 medium supplemented with 10mM Y-27632 (Cat. # A11001-10; Generon)

to facilitate cell attachment. 24h post-plating, cells were washed with DMEM/F12 (Cat. # D6421; Sigma-Aldrich) to remove the Y-

27632 and inserts were subsequently placed into appropriate wells with fresh E8 medium. Medium was changed daily until the

end of the experiment when the cells were fixed with 4% PFA.

Cell confrontation assay

Cells were harvested using TrypLE (Cat. # 11528856; Thermo Fisher Scientific) and washed once in DMEM/F12 (Cat. # D6421;

Sigma-Aldrich). After counting, 5x104 cells were seeded in E8 medium supplemented with 10mM Y-27632 (Cat. # A11001-10; Gen-

eron) into the inner compartment of two-well silicone inserts (Ibidi 80209). One day post-plating the silicone inserts were removed,

leaving a defined 500mm gap between the two cell populations. The cells were then washed with DMEM/F12 (Cat. # D6421; Sigma-

Aldrich) to remove Y-27632 and the medium was replaced with a fresh E8 medium. Cells were fed daily and left to grow for four days

until the two opposing cell fronts had been in contact for approximately 48h. Cells were then fixed with 4% PFA for 15 min at room

temperature, followed by washing in PBS. Cells were subsequently stained for the apoptotic marker cleaved caspase-3 (Cat. # 9661;

Cell Signaling Technology) and nuclei were counterstained with Hoechst 33342 (Cat. # H3570; Thermo Fisher Scientific). Images

were processed in CellProfiler (Carpenter et al., 2006) to identify wild-type, wild-type-RFP and variant-GFP cells. Using the nuclei

stain, each cell was assigned a positional identity relative to the border and further analyzed for positive cleaved caspase-3 signal.

Using the positional information of each cell, figures displaying the location of each cell, as well as cleaved caspase-3 positive cells

were constructed in R (R Project for Statistical Computing; RRID:SCR_001905).

Cell compression assay

PDMS chambers with 4 wells (Cat. # STB-CH-4W, STREX Inc.) were stretched by 35% in a uniaxial direction over the resting length

on a stretching device (Cat. # STB- 100-10, STREX Inc.). Each well was coated with vitronectin (VTN-N) (Cat. # A14700, Life Tech-

nologies) diluted to 5 mg/ml in PBS. Cells were harvested using TrypLE (Cat. # 11528856; Thermo Fisher Scientific) and washed once
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in DMEM/F12 (Cat. # D6421; Sigma-Aldrich). After counting, cells were seeded at 500,000 cells/cm2 and 400,000 cells/cm2 perwell in

E8medium supplemented with 10mMY-27632 (Cat. # A11001-10; Generon), forming a confluent monolayer of wild-type and variant-

GFP hPSCs respectively, and allowing for both conditions to be assessed on the same stretched chamber. The cells were left to

attach for 16h and then medium was removed and the wells were washed twice with basal medium DMEM/F12 (Cat. # D6421;

Sigma-Aldrich) to remove the Y-27632. The medium was replaced with E8 and incubated for a further 4h, following which the stretch

was released to induce compaction. 5h after release the cells were then fixedwith 4%PFA for 15min at room temperature. In parallel,

cells were seeded onto unstretched membranes and treated as uncompressed controls. Cells were subsequently stained for the

apoptotic marker cleaved caspase-3 (Cat. # 9661; Cell Signaling Technology) and nuclei were counterstained with Hoechst

33342 (Cat. # H3570; Thermo Fisher Scientific). Themembranes from individual wells were dissected from the chamber andmounted

onto slides in 10 ml Vectashield Mounting Medium (Cat. # H-1700; Vector Laboratories). Imaging of 64 random fields from each well

was performed using the InCell Analyzer (GE Healthcare) high-content microscopy platform. Images were processed in CellProfiler

(Carpenter et al., 2006) to identify nuclei and further analysed for positive cleaved caspase-3 signal.

Local density analysis

To compute the local density of each wild-type and variant-GFP cell from either separate or co-culture conditions, images of the

entire corresponding wells at day 3were analyzed. Nuclei within each field were identified using custom protocols in CellProfiler (Car-

penter et al., 2006) and assigned corresponding XY coordinates. The resulting data was processed in the programming language R.

Delaunay triangulation was performed on each image by using the cell nuclei position as points for the triangulation. For each cell, the

sum of areas of Delaunay triangles sharing a vertex with the cell of interest was calculated. As this sum is inversely proportional to the

compactness of the cells, local density is taken as the inverse of this sum. Mathematically, the local density r for each cell is

defined as:

r =
X

1⁄ AðiÞ for i = 1; :::; n

where n is the number of Delaunay triangles that share a vertex with the cell of interest, and A(i) is the area of Delaunay triangle i.

Atomic force microscopy

Cells were harvested using TrypLE (Cat. # 11528856; Thermo Fisher Scientific) and washed once in DMEM/F12 (Cat. # D6421;

Sigma-Aldrich). After counting, cells were seeded onto 9.5cm2 dishes (Cat. # 93040; TPP) in E8 medium supplemented with

10mM Y-27632 (Cat. # A11001-10; Generon) at either 1.5x104 cells/cm2 for wild-type (H7 or H14), or 5.0x103 cells/cm2 for variant-

GFP and variant-BJ1 cells. After 24h, the medium was removed, and the cells were washed once with basal medium DMEM/F12

(Cat. # D6421; Sigma-Aldrich) to remove the Y-27632. Themediumwas replacedwith E8 and cells cultured for a further 24hrs. Atomic

Force measurements were carried out using a Nanowizard III system (JPK Instruments) with a heated sample stage (37�C). The tip-

less probe (Cat. # MLCT-O10; Bruker) with a nominal spring constant of 0.02N/m, was prepared with the addition of a 5mm polysty-

rene sphere. Prior to measurements, the spring constant was determined using the thermal vibration method and the cantilever

deflection sensitivity was calibrated from the hard contact regime of force-distance curves measured in E8 medium at 37�C. Small

colonies with between 3-8 cells were identified and measurements from at least two cells per colony were taken from approximately

the centre of the cell. Between 5-10 measurements were taken for each cell. For each measurement an approach speed of 2mm/s

was used to reduce viscus drag. Following each experiment, final measurements were taken on a section of the cell culture dish

devoid of cells to ensure the cantilever was not contaminated. The resultant force-indentation curves were analysed using the

JPK SPM Data Processing software. The Young’s modulus of each cell was determined using the classical Hertz model as this is

appropriate for small indentations, a Poisson’s ratio of 0.5 was assumed.

Immunocytochemistry and image quantification

Cells were fixed with 4% PFA for 15 min at room temperature, and permeabilised with either 0.5% Triton-X in Dulbecco’s phosphate

buffered saline (PBS) for 10 min or 0.2% Triton-X in PBS for 1h. Cells were then incubated with 1% bovine serum albumin (BSA) and

0.3% Triton X-100 in PBS. Primary and secondary antibodies, their suppliers and the dilutions used are listed in the Key Resources

Table. Cells were incubated with primary antibodies either for 1h at room temperature or overnight at 4�C with gentle agitation on an

orbital shaker. Following three washes with PBS, cells were incubated with an appropriate secondary antibody in PBS supplemented

with 1% BSA, 0.3% Triton X-100 and 10mg/ml Hoechst 33342 for 1h at 4�C. Cells were then washed three times with PBS before

imaging. Cells that were prepared for confocal imaging were grown on glass coverslips and mounted onto slides in 10 ml Vectashield

Mounting Medium (Cat. # H-1000; Vector Laboratories). Images were captured using the InCell Analyzer (GE Healthcare) or ZEISS

LSM 880 (Carl Zeiss AG, Oberkochen, Germany) fitted with an Airyscan detection unit.

For quantification of YAP, p-YAP, actin, tubulin and myosin IIB images taken on the Airyscan at 40x magnification as an average

intensity projection of 10 slices. Briefly, Hoechst33342 staining was used first to segment the nuclei from images; difficult to separate

nuclei weremanually segmented using Adobe Photoshop to draw a nuclear border between cells. CellProfiler (Carpenter et al., 2006)

was then used to analyse the images. After nuclei identification from the edited Hoechst images, the nuclei were dilated and eroded

by 15 pixels to give cytoplasm and inner nuclei masks, respectively. The mean intensity for YAP staining was quantified for the cyto-
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plasm and inner nuclei and the nuclear to cytoplasmic ratio was calculated using these values. For phospho-YAP, actin, tubulin and

myosin IIB the mean intensity of the cytoplasmic signal (using the same mask described above) of each cell was quantified.

Flow cytometry

Flow cytometry for cleaved caspase-3 was performed to assess levels of apoptotic cells in cultures. To collect apoptotic cells which

had detached from the flask, the oldmedia was added to a 5ml FACS tube and centrifuged at 270 x g for 5min. Remaining cells in the

flask were harvested with TrypLE (Cat. # 11528856; Thermo Fisher Scientific) and added to the FACS tube containing the collected

cells from the supernatants of the same flasks. The collated sample was pelleted and the cell pellet fixed in 4%PFA for 15min at room

temperature. Cells were permeabilised with 0.5% Triton X-100 in PBS for 5 min at room temperature and then incubated with anti-

cleaved caspase-3 primary antibody (Cat. # 9661; Cell Signalling Technology) in the blocking buffer (1% BSA and 0.3% Triton X-100

in PBS). Samples were gently agitated for 1h at room temperature, prior to washing three times in blocking buffer and staining with

secondary antibody (Goat anti-Rabbit AffiniPure IgG+IgM (H+L), Cat. # 111-605-003-JIR; Stratech) for 1h at room temperature in the

dark. Cells were then washed twice with blocking buffer and analysed on BD FACS Jazz. Baseline fluorescence was set using sec-

ondary antibody-only stained samples.

For intracellular analysis of YAP, cells were harvested with TrypLE, permeabilised and blocked as described above. Cells were

incubated with anti-YAP antibody (Cat. # sc-101199; Santa Cruz Biotechnology) and gently agitated for 1h at room temperature, prior

to washing three times in blocking buffer and staining with secondary antibody (Goat anti-Mouse AffiniPure IgG+IgM (H+L), Cat. #

115-605-044-JIR; Stratech) for 1h at room temperature in the dark. Cells were then washed twice with a blocking buffer and analysed

on BD FACS Jazz. Baseline fluorescence was set using secondary antibody-only stained samples.

For analysis of pluripotency-associated surface antigens, cells were harvested with TrypLE as described above and resuspended

in PBS supplemented with 10% Foetal Calf Serum (FCS) at 1x107 cells/mL. Cells were incubated with primary antibodies at the

appropriate dilution for 30 mins at 4�C, prior to washing with PBS supplemented with 10% FCS and incubating with secondary anti-

body (Goat anti-Mouse AffiniPure IgG+IgM (H+L), Cat. # 115-605-044-JIR; Stratech) at 1:200 for 30mins at 4�C in the dark. Cells were

then washed twice with PBS supplemented with 10% FCS and analysed on BD FACS Jazz. Baseline fluorescence was set using the

primary antibody control P3X, an IgG1 antibody secreted from the parental myeloma cell line P3X6Ag8, which does not bind to any

epitopes on human cells (Köhler and Milstein, 1975). The primary monoclonal antibodies TRA-1-85 (Williams et al., 1988), SSEA3

(Shevinsky et al., 1982), TRA-1-81 (Andrews et al., 1984) and THY1(CD90) (International Stem Cell et al., 2011) were prepared in-

house as described previously (Draper et al., 2002; International Stem Cell et al., 2011).

Cell sorting of individual sublines from co-cultures

After establishing that variant v1q cells are losers in co-cultures with variant-GFP cells, we performed mixing experiments of v1q and

variant-GFP cells in T75 flasks, following the same protocol as in 96 well plates. Briefly, cells were plated at 4,4x104 cells/cm2 in E8

supplemented with Y-27632 (Cat. # A11001-10; Generon). After 24 h, Y-27632 was removed and cells were cultured in separate or

mixed cultures for another day. Cells were then harvested using TrypLE (Cat. # 11528856; Thermo Fisher Scientific) for 4min at 37�C,

washed with DMEM/F12 (Cat. # D6421; Sigma-Aldrich), counted and resuspended at 2x106 cells/ml in E8 media. Sorting was per-

formed using BD FACSJazz cell sorter (BD Biosciences). Sort gates were set using the separate culture unlabelled v1q cells and

variant-GFP separate cultures as baseline and positive gates, respectively. GFP-negative v1q and GFP-positive variant-GFP cells

were sorted into collection vessels at 5x105 cells per sample. Samples were re-analysed post sorting to establish the purities. In

all cases aminimumpurity of 98%was achieved. Separate cultures were also put through the same sorting procedure as co-cultures.

Samples were centrifuged at 270 x g for 3 min, supernatant removed and cell pellets stored at -80�C prior to RNA or protein extrac-

tion. Samples from four independent experiments were obtained for further analyses.

Generation of wild-type-RFP cell lines

To generate the wild-type-RFP line, karyotypically diploid H7, H14 and HUES-17 sublines were transfected with pCAG-H2B-RFP

plasmid (a kind gift from Dr Jie Na, Tsinghua University, Beijing) using either the 4D nucleofector (Lonza) in the ‘‘P3 Primary Cell so-

lution’’ as per the manufacturer’s instructions or Neon Transfection System (Cat. # MPK10025; Thermo Fisher Scientific). H7 wild-

type in the 4D nucleofector were pulsed using the CB-150 pulse code, optimised for hPSCs. H14 and HUES-17 wild-type sublines

were dissociated to single cells using TrypLE as described above and resuspended at 2,0 x104 cells/ml in ‘‘R buffer’’. Transfection

was performed with 5mg of plasmid DNA using 1 pulse of 1600V, 20msec width. Following transfection, H7, H14 and HUES-17 cells

were then plated into flasks coatedwith Geltrex (Cat. # A1413202; ThermoFisher Scientific) inmTESR1medium (Cat. # 85850; STEM-

CELL Technologies) supplemented with 10mM Y-27632 (Cat. # A11001-10; Generon). After two days, the stably transfected cells

were selected by growing in medium supplemented with puromycin (Cat. # A11138; Thermo Fisher Scientific). Resistant colonies

were manually picked and expanded. Clonal lines were then screened for their RFP expression levels by fluorescent imaging. The

chosen clone was karyotyped by G-banding and screened for common genetic changes by quantitative PCR prior to freezing

and at regular intervals (�5 passages) upon subsequent culture.

YAP overexpression

The pCAG-YAP expression vector was established by inserting a YAP-T2A-mCherry sequence into the pCAGeGFP vector (Liew

et al., 2007). In brief, pGAMA-YAP, a gift from Miguel Ramalho-Santos (Cat. # 74942; Addgene) (Qin et al., 2016), was obtained
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from Addgene. Single digests were performed on the pGAMA-YAP and pCAGeGFP vectors using EcoRI (Cat. # 0101, New England

Biolabs) and NotI (Cat. # 0189, New England Biolabs) restriction sites, respectively, to linearize plasmids. The cohesive ends were

blunted using T4 DNA polymerase (Cat. # M0203, New England Biolabs) and vectors subsequently digested at the NheI restriction

site to produce single cohesive ends. The YAP-T2A-mCherry sequence was obtained by gel extraction (Cat. # 740609, Machery-Na-

gel) and inserted into the pCAGeGFP using ligation reaction (Cat. #M0202, New England Biolabs) to produce the pCAG-YAP expres-

sion vector. To generate the wild-type YAP overexpressing line, cells were transfected using the Neon Transfection System (Cat. #

MPK10025; Thermo Fisher Scientific). Wild-type H7 or H14 cells were dissociated to single cells using TrypLE as described above

and resuspended at 2,0 x104 cells/ml in ‘‘R buffer’’. Transfection was performed with 5mg of plasmid DNA using 1 pulse of 1600V,

20msec width. After electroporation, the cells were immediately transferred to a vitronectin coated 60mm diameter culture dish

(Cat. # 150288; Thermo Fisher Scientific) containing E8 media supplemented with 10mM Y-27632 (Cat. # A11001-10; Generon).

To select for stably transfected cells, 48h post transfection cells were subjected to puromycin (Cat. # A11138; Thermo Fisher Scien-

tific) drug selection. Individual colonies of resistant cells appeared after 1-2 weeks and were handpicked by micropipette, and trans-

ferred into a 12-well culture plate. The cells were then expanded in the presence of puromycin selection and subsequently frozen to

establish cell banks. At the time of freezing, cells from sister flasks were karyotyped by G-banding and assessed for the relative copy

numbers of commonly identified genetic changes by qPCR, as described above. Upon defrosting and subsequent culture, cells were

also regularly genotyped by karyotyping and screened for common genetic changes by quantitative PCR, as described above.

YAP knock-down using siRNA

To knockdown the expression level of YAP in variant cells, we used MISSION esiRNA for YAP (ESIRNA HUMAN YAP1, Cat. #

EHU113021-20UG; Sigma-Aldrich) and MISSION esiRNA for Renilla Luciferase as a control (ESIRNA RLUC Cat. # EHURLUC-

20UG; Sigma-Aldrich). A 500ml transfection reaction included 50 nM siRNA and 5.6 ml DharmaFECT 1 Transfection Reagent (Cat.

# T-2001-03; Horizon Discovery Ltd) in Opti-MEM I Reduced Serum Medium (Cat. # 10149832; Thermo Fisher Scientific). The reac-

tions were incubated for 30 min at room temperature before mixing with 375,000 variant cells in mTESR supplemented with 10mMY-

27632. Variant cells were plated in a 96-well plate at 15,000 cells per well or in a 12-well plate at 150,000 cells per well. After 18 hours,

the siRNA was removed from cells in both the 96-well and 12-well plates. In 96-well plates, variant cells in control wells were fed with

fresh mTESR supplemented with 10mM Y-27632 (separate cultures of variant cells), whereas in the remaining wells, wild-type cells

were plated at 10,000 cells/well in mTESR supplemented with 10mMY-27632 (co-cultures of variant and wild-type cells). Cells in the

12-well plates were fed with fresh mTESR only. At 24 hours after plating the wild-type cells in 96-well plates, the medium was re-

placed with fresh mTESR (without Y-27632), denoting ‘day 0’ of the experiment. Medium was changed daily in both the 96-well

and 12-well plates. Cells in 12-well plates were dissociated on Day 2 of the experiment and analysed for YAP expression by immu-

nostaining followed by flow cytometry. Cells in 96-well plates were fixed with 4% PFA on Day 3 of the experiment, stained with

Hoechst 33342 and imaged using the InCell Analyser 2000.

Treatment of hPSCs with cytoskeletal inhibitors

HPSCswere treatedwith either 10 mMnocodazole (Cat. #487928; VWR International), or 10 mMY-27632 (Cat. # A11001-10; Generon)

for 3h or 0.5 mM latrunculin A (Cat. # 10010630-25ug-CAY; Cambridge Bioscience) or 0.5 mM cytochalasin B (Cat. # C2743-200UL;

Sigma-Aldrich) for 1h. DMSOwas used as vehicle control for nocodazole, cytochalasin B and Y-27632, whereas ethanol was used as

vehicle control for latrunculin A. Cells were fixed with 4% PFA for 15 min at room temperature, washed in PBS and processed for

immunocytochemistry as detailed above.

RNA extraction, sequencing and bioinformatic analysis

Four biological replicates of v1q and variant-GFP cells FACS-sorted from either separate or mixed cultures were used for RNA

extraction and RNAseq analysis. The RNA was isolated using a Qiagen RNAeasy Plus Mini Kit (Cat. # 74134; Qiagen), and the

RNA concentration and purity determined using a Qubit 3.0 Fluorometer (Life Technologies, Carlsbad, USA) and NanoPhotometer

(Implen, Munich, Germany), respectively. The libraries were constructed and sequenced by Novogene (Beijing, China). Briefly, li-

braries were prepared using NEBNext Ultra RNA Library Prep Kit for Illumina (New England Biolabs, Ipswich, USA) and the library

preparations were sequenced on an Illumina Hiseq platform (Illumina, San Diego, USA) to generate 150 bp paired-end reads. The

sequencing reads were aligned to a reference human genome using TopHat v2.0.12. Raw read counts were calculated using the

HTSeq v0.6.1 and were normalized into the fragments per kilobase of transcript per million mapped reads (FPKM), based on the

length of the gene and reads count mapped to it. Differential gene expression analysis was performed using the DESeq R package

(1.18.0) (Love et al., 2014). Genes with the Benjamini and Hochberg’s adjusted p value of < 0.05 were considered differentially ex-

pressed. To identify potential signaling pathways within differentially expressed genes, KEGG enrichment analysis of differentially

expressed genes was performed using the PANTHER v14 software (Mi et al., 2019). The resulting list was refined using REViGO (Su-

pek et al., 2011) to remove redundant GO terms.

Western blotting

Cells were lysed in 1x Laemmli Buffer pre-warmed to 95�C and the total protein concentration was normalised using the Pierce BCA

Protein Assay (Cat. # 23250; ThermoFisher Scientific). Proteins (10mg/sample) were resolved by SDS-PAGE andwere run alongside a

Page Ruler prestained protein ladder (Cat. # 26616; ThermoFisher Scientific). Proteins were then transferred onto a PVDFmembrane
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(Cat. # IPVH00010; Millipore) using an Electrophoresis Transfer Cell (Bio-Rad). The membrane was blocked in 5%milk for one hour,

washed three times with TBS-T (50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 0.1% (v/v) Tween 20) and then incubated with primary an-

tibodies for MCL-1 (Cat. # 5453; Cell Signalling Technology) at 1:1,000 dilution, BCL-XL (Cat. # 2764; Cell Signalling Technology) at

1:1,000 dilution, BCL2 (Cat. # 2870; Cell Signalling Technology) at 1:1,000 or b-ACTIN (Cat. #66009-1-Ig; Proteintech) at 1:5,000 dilu-

tion. Following three washes with TBS-T, the membrane was incubated with secondary antibody (either Anti-Rabbit IgG (H+L), HRP

conjugate (Cat. # W4011; Promega) at 1:4,000 dilution or Anti-Mouse IgG (H+L), HRP conjugate Cat. # W4021; Promega) at 1: 4,000

dilution for 1h. After three washes, immunoreactivity was visualised using ECL Prime detection kit (Cat. # RPN2232, GE Healthcare)

and signal captured on a CCD-based camera (Syngene).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis of the data presentedwas performed using GraphPad Prism version 9.0.2, GraphPad Software, La Jolla California

USA, www.graphpad.com. Differences were tested by statistical tests including Student’s t test, one-way ANOVA or two-way

ANOVA as indicated in figure legends.
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