
This is a repository copy of Statistical Dependency Guided Contrastive Learning for 
Multiple Labeling in Prenatal Ultrasound.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/177883/

Version: Accepted Version

Proceedings Paper:
He, S, Lin, Z, Yang, X et al. (13 more authors) (Accepted: 2021) Statistical Dependency 
Guided Contrastive Learning for Multiple Labeling in Prenatal Ultrasound. In: Medical 
Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021 - 
24th International Conference on Medical Image Computing & Computer Assisted 
Intervention, 27 Sep - 01 Oct 2021, Strasbourg, France. Springer, Cham . (In Press) 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Statistical Dependency Guided Contrastive

Learning for Multiple Labeling in Prenatal

Ultrasound

Shuangchi He1,2,3⋆, Zehui Lin1,2,3⋆, Xin Yang1,2,3, Chaoyu Chen1,2,3, Jian
Wang1,2,3, Xue Shuang1,2,3, Ziwei Deng1,2,3, Qin Liu1,2,3, Yan Cao1,2,3, Xiduo
Lu1,2,3, Ruobing Huang1,2,3, Nishant Ravikumar4,5, Alejandro Frangi1,4,5,6,

Yuanji Zhang7, Yi Xiong7, and Dong Ni1,2,3(�)

1 National-Regional Key Technology Engineering Laboratory for Medical Ultrasound,
School of Biomedical Engineering, Health Science Center, Shenzhen University, China

nidong@szu.edu.cn
2 Medical Ultrasound Image Computing (MUSIC) Lab, Shenzhen University, China

3 Marshall Laboratory of Biomedical Engineering, Shenzhen University, China
4 Centre for Computational Imaging and Simulation Technologies in Biomedicine

(CISTIB), University of Leeds, UK
5 Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, UK

6 Medical Imaging Research Center (MIRC), KU Leuven, Leuven, Belgium
7 Department of Ultrasound, Luohu People’s Hospital, Shenzhen, China

Abstract. Standard plane recognition plays an important role in prena-
tal ultrasound (US) screening. Automatically recognizing the standard
plane along with the corresponding anatomical structures in US image
can not only facilitate US image interpretation but also improve diagnos-
tic efficiency. In this study, we build a novel multi-label learning (MLL)
scheme to identify multiple standard planes and corresponding anatom-
ical structures of fetus simultaneously. Our contribution is three-fold.
First, we represent the class correlation by word embeddings to capture
the fine-grained semantic and latent statistical concurrency. Second, we
equip the MLL with a graph convolutional network to explore the in-
ner and outer relationship among categories. Third, we propose a novel
cluster relabel-based contrastive learning algorithm to encourage the di-
vergence among ambiguous classes. Extensive validation was performed
on our large in-house dataset. Our approach reports the highest accuracy
as 90.25% for standard planes labeling, 85.59% for planes and structures
labeling and mAP as 94.63%. The proposed MLL scheme provides a novel
perspective for standard plane recognition and can be easily extended to
other medical image classification tasks.

1 Introduction

Ultrasound (US) is widely used for the evaluation of fetal growth and congenital
malformations in routine obstetric examinations [12]. During the scanning, US
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standard planes (SPs) that contain key anatomical structures (ASs) are selected
and subsequent biometric measurements are performed [3]. For example, the
abdominal circumference (AC) is measured on the transverse plane of the fetal
abdomen with umbilical vein at the level of the portal sinus and stomach bubble
visible (Fig. 1). The value of AC is then used to estimate the pre-birth weight
of a fetus [12,3]. In clinical practice, the standard plane (SP) selection based on
ASs identification is experience-dependent, cumbersome, and suffering from the
inter-observer and intra-observer variability [1]. Hence, automatic recognition of
SP is desired to improve the examinations.

Fig. 1. Left: standard plane of fetal abdomen; Middle: standard plane of four cham-
bers of fetal heart; Right: non-standard plane around fetal abdomen. All images are
annotated with multiple anatomical structure labels.

In recent years, deep learning-based methods have witnessed significant growth
in automated SP recognition. Chen et al. [3] proposed a composite neural net-
work framework for the automatic recognition of three SPs. Burgos-Artizzu et al.
[1] evaluated a large set of state-of-the-art convolutional neural networks for the
classification of more than 6 maternal / fetal US planes. Cai et al. [2] presented a
convolutional neural network (CNN) framework SonoEyeNet for the detection of
SPs. They found that the eye movement tends to focus on the existence of ASs.
These methods could distinguish the SPs from the non-standard ones directly
with the plane-level labels. However, they did not explicitly incorporate the clues
of key ASs, which limited the clinical interpretability and possible guidance for
novice sonographers. Lin et al. [9] focused on the detection of key ASs, provid-
ing fine-grained information of SPs. However, as shown in Fig. 1, the presence
of anatomical structure (AS) alone does not guarantee an accurate identifica-
tion of the SP, as the SP is also defined by the global image appearance and
subtle details [5]. Furthermore, the extensive annotations of each structure with
bounding boxes are also labor-intensive and are difficult to obtain. Therefore,
new frameworks and methods need to be devised to recognize SP and provide
additional information on key ASs simultaneously.

In this paper, we build a novel multi-label learning (MLL) scheme to recog-
nize multiple SPs and corresponding key ASs at the same time. Our contribution
is three-fold. (i) Inspired by natural language processing techniques, the word
embedding [7] is introduced to model the latent concurrency and statistical de-
pendency among different classes, including SPs and ASs. These kinds of cues
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prove to be strong guidance for MLL prediction. (ii) To further capture the
topological structures in the label space of the word embeddings, graph convolu-
tional network (GCN) [4] is explored to propagate information between multiple
classes to capture the inner and outter relationship among ASs and SPs. (iii) To
tackle the high intra-class variation and low inter-class variation of different SPs
and ASs (Fig. 1), we further devise a cluster relabel-based contrastive learning
(CRC) to align the similarity and increase discrimination across different classes.
We conduct extensive experiments on a large dataset which contains 9742 US
images from 920 fetuses and 39 object classes (including 10 SPs and 29 ASs). Ex-
periments prove that, the proposed MLL method can achieve promising results
in classifying multiple SPs and identifying associated key ASs.

2 Methodology

Fig. 2. Overall framework of the proposed MLL for US image recognition. The word
embeddings Z ∈ R

C×d are generated based on the concurrency matrix and weighting
function. Stacked GCNs are learned over the graph to map these word embeddings
into an inter-dependent object classifier, i.e., K ∈ R

C×D. CRC is used to improve the
discrimination of the classifier. The classifier is then applied to the image representation
from the input image via a CNN for MLL image recognition.

Fig. 2 is the schematic view of our proposed method. We propose a MLL
framework to recognize the multiple SPs and ASs simultaneously. To exploit the
statistical dependency among classes, we firstly generate statistical word embed-
dings from label annotations. Then, we utilize GCN to model the hierarchical
relationship among the classes. Further more, we propose CRC to align the high-
level representation among samples of the same category. The MLL recognition
output is obtained through representation learning and generated classifier.

2.1 Multi-label Learning with Word Embeddings

CNN is known for its ability in representation learning. As shown in Fig. 2, our
MLL learning scheme is built upon a CNN to learn the feature of an image. In
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specific, we use ResNet [6] as the backbone model. Given an input image I with
a size of 448× 448 pixels, we can obtain an image-level feature x:

x = fcnn(I, θcnn) ∈ R
D, (1)

where θcnn indicates model parameters and D = 512.
Inspired by the natural language processing techniques which aim to model

the statistical dependency among words, phrases and sentences, we try to capture
the fine-grained semantic dependency that exists among the SPs and ASs in the
label space following the spirit of word embedding [7]. Since it is intractable
to model the relationship among the SP and AS labels in prenatal US directly
using the word embeddings pre-trained on natural languages, we build a corpus
based on the labels from the trainng US dataset (An image sample is considered
as a sentence, and the SP category and AS labels of the sample are considered
as words.), and use the GloVe [11] to train the word embeddings. According
to the label-based sentences, we construct a concurrency matrix X and use it
as GloVe input. Xij represents the number of times class i and class j appear
together on the same sample in the dataset. Then, the relationship between word
embeddings and the co-occurrence matrix is formulated as:

wT
i w̃j + bi + b̃j = log(Xij), (2)

where wi ∈ R
d is word embedding and w̃j ∈ R

d is separate context word em-

bedding which reduces overfitting. bi and b̃j are corresponding bias terms.
We can obtain the final word embedding output z = wT

i + w̃j by optimizing
the following loss function:

J =

C∑

i,j=1

f(Xij)(w
T
i w̃j + bi + b̃j − log(Xij)), (3)

where C is the size of the vocabulary (i.e. our class number, 39), f is the weight-
ing function [11] that adjusts the frequency of concurrency in the corpus. Word
embeddings matrix Z = {zi}

C
i=1 ∈ R

C×d hence encodes the statistical depen-
dency and distribution relationships among different labels and can be further
explored in the following sections.

2.2 GCN for Class Dependency Learning

It is important to capture the internal relationships between ASs and SPs and
leverage this relationship to improve the classification performance in multi-
label US image recognition. In this paper, inspired by [4], we explore the GCN
to model the class dependency in prenatal US images, which is an effective and
flexible way to capture the topological structures in the word embeddings label
space represented by Z. Specially, GCN is built to directly map the nodes (i.e.
word embeddings Z) of the graph into an inter-dependent classifier (Fig. 2). The
GCN based mapping function is defined as:

Gl+1 = h(B̂GlW l), (4)
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where Gl ∈ R
C×d are feature descriptions (C denotes the number of nodes and

d indicates the dimensionality of node feature) and B̂ ∈ R
C×C is the normalized

version of correlation matrix, and h(·) denotes a non-linear operation. In every

back-propagation, the transformation matrix W l ∈ R
d×d

′

will be updated.
As shown in Fig. 2, for the first layer of the stacked GCNs, the input is the

word embeddings matrix Z. The output of the last GCN layer is K ∈ R
C×D,

which matches the dimensionality of the image representations extracted by the
CNN. K contains the class dependency and hence regularizes the CNN predic-
tion x as the final classifier. The multi-label prediction scores can be computed
by applying the learned classifier to the image representation as follows:

ŷ = Kx, (5)

where the ground truth labels of an image is represented as y with yi = {0, 1}
denoting whether label i appears in the image or not. The training of the whole
network uses the traditional MLL classification loss as follows:

LMLL =

C∑

c=1

yclog(σ(ŷc)) + (1− yc)log(1− σ(ŷc)). (6)

2.3 Cluster Relabeled Contrastive Learning

Borrowing the idea of supervised contrastive learning [8], we propose to use con-
trastive learning (CL) to further increase the discriminative ability of learning.
In CL, the samples belonging to the same class are encouraged to be similar to
each other, while that of the different classes are encouraged to be different in
high dimensional feature space. However, this principle can not be directly ap-
plied to our multi-label circumstance. One sample may have labels overlapped
with the other samples, thus it is difficult to define the positive and negative
sample pairs. On the other hand, semantically related concepts in the word em-
beddings space are found to be naturally close to each other [10]. Therefore, we
propose to assign every sample a new single label based on the cluster of the
word embeddings and perform supervised contrastive learning.

Specially, as shown in Fig. 2, we perform the k-means clustering algorithm
in the word embeddings label space Z ∈ R

C×d. We use C as the sample size and
d as the dimensionality to generate N clusters. Each sample with original multi-
label y is represented as a vector zp. It is calculated through the mean value of
the {zi ∈ R

d|yi = 1, i = 1, · · · , C}. The new single label y∗ with y∗i = {0, 1},
i ∈ [1, N ] is assigned to the sample according to the nearest distance among
these N cluster centroids. For our multi-label task, N is set to 10.

The contrastive loss to drive the learning of relabeled samples is defined as:

Lc =
∑

i

∑

j,k 6=i

α(1− sim(xi,xj)) + β(1 + sim(xi,xk)), (7)

where x is the image representation, i and j is the positive sample pair with
same y∗, i and k is the negative sample pairs with different y∗. sim(a, b) =



6 S. He et al.

a
T
b

‖a‖‖b‖ is the cosine similarity between two vectors a and b. α and β are the

hyperparameter to weight the similarity. Since there are fewer pairs of positive
samples than negative samples, we empirically set α to 0.75 and β to 0.25 to
balance the loss weights. The total loss of the proposed method is defined as the
summation of MLL loss LMLL and contrastive loss Lc

L = LMLL + λLc, (8)

where λ is the hyperparameter to weight the contrastive loss. λ is set to 0.1
based on the validation results.

3 Experimental Results

Implementation Details. Our dataset contains 9742 prenatal US images from
920 fetuses, including 10 types of SP and 29 types of AS. The gestational age
ranges from 18 to 28 week. The image size was set to 448 × 448. An experienced
sonographer provided the ground truth labels. The dataset was randomly split
into 4331, 2643 and 2768 images in fetus level for training, validation and testing.
There was no overlap of fetus among datasets. Adequate data augmentation were
performed. The model was implemented in PyTorch with an RTX 2080Ti GPU.
We used Adam optimizer (learning rate 0.001) to train GloVe for 256 epochs to
obtain 512-dimensional word embeddings. SGD optimizer (learning rate 0.01) is
used to train the model for 100 epochs to obtain the MLL classifier.
Quantitative and Qualitative Analysis. We evaluated the classification in
terms of the average overall precision (OP), recall (OR), F1 (OF1) and the aver-
age per-class precision (CP), recall (CR), F1 (CF1). The mean average precision
(mAP), Hamming loss (HL), the accuracy of the standard plane classification
(SP ACC) and the multi-label classification accuracy that exactly matches the
categories of all targets on the image (MLL ACC) were also taken into consid-
eration. Table 1 illustrates the detailed evaluation results.

Ablation study was conducted to compare different methods, including MLL
without GCN and CL (Single-MLL), MLL with contrastive learning (MLL-
CL, the non-relabeled version of CRC), MLL with CRC (MLL-CRC), MLL
with GCN (MLL-GCN) [4], MLL with GCN and vallina contrastive learning
(MLL-GCN-CL) and the full model (MLL-GCN-CRC). We also compared with
state-of-the-art methods, including CNN-RNN [13] and SRN [14]. All the above
methods were pre-trained with ImageNet. The ResNet34 served as the network
backbone for Single-MLL, MLL-CL, MLL-CRC, MLL-GCN, MLL-GCN-CL and
MLL-GCN-CRC. We can draw the following conclusions from the Table 1:

(a) GCN significantly improves the model performance (4% in MLL ACC)
under both CL and CRC conditions (i.e., MLL-GCN-CL vs. MLL-CL and MLL-
GCN-CRC vs. MLL-CRC). It is attributed to the informative class dependency
extracted from the statistical word embeddings by the GCN. A similar conclusion
can be deduced through the comparison between MLL-GCN and Single-MLL.

(b) Comparing the MLL-GCN, MLL-GCN-CL and MLL-GCN-CRC, we can
draw the conclusion that, CL can increase the discriminative ability of our
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Table 1. Quantitative evaluation of multi-label classification methods (in %).

Method SP ACCMLL ACC mAP HL OP OR OF1 CP CR CF1

CNN-RNN 80.07 76.45 83.15 3.83 - - - - - -

SRN 86.95 66.17 91.74 2.15 90.13 89.63 89.88 86.81 88.40 87.60

Single-MLL 88.26 81.04 93.75 1.64 92.00 92.80 92.40 88.84 89.61 89.22

MLL-CL 88.37 81.37 93.67 1.65 92.02 92.65 92.33 88.84 89.43 89.13

MLL-CRC 88.37 81.37 93.73 1.63 92.22 92.63 92.42 89.09 89.57 89.33

MLL-GCN 89.27 84.83 94.30 1.51 92.64 93.31 92.98 89.64 90.29 89.97

MLL-GCN-CL 90.07 85.52 94.62 1.45 92.43 94.16 93.28 89.67 91.74 90.69

MLL-GCN-CRC 90.25 85.59 94.631.4092.6894.4293.5489.8792.1490.99

method by about 0.7% in MLL ACC. Besides, we can observe that the CRC
methods consistently give better perfomances than the CL methods. The rela-
beled operation in CRC incorporating the fine-grained semantic in word embed-
dings space further boosts the similarity alignment of CL.

(c) Among all the state-of-the-art methods (CNN-RNN lacks some result
due to its design), the proposed full model MLL-GCN-CRC achieves the best
results regarding both the SPs classification and ASs identification. The statis-
tical knowledge via graph manner and similarity alignment in MLL contributes
to the capture of class dependency.

Fig. 3. Left: the t-SNE visualization of the word embeddings space of 39 classes. The
dots of different colors represent categories. The cross represents the center of cluster.
Right: two score matrices of Single-MLL and our proposed MLL-GCN-CRC. Each row
in the matrix represents a sample class prediction. The little green points indicate the
true class and the color of matrix element indicate the predicted class scores.

In Fig. 3, we can observe that the related ASs and SPs embedding clustered
together naturally, which builds a more semantic-reasonable label space. On the
other hand, this result supports the feasibility of our CRC. The score matrices
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Fig. 4. Typical results of multi-label recognition on fetal US. Red box for ground truth.
Blue circle for SPs and green circle for ASs.

in Fig. 3 further illustrates the MLL prediction of some examples. More sample
score matrices can be found in Fig. 5 in the Appendix. It can be observed that
the proposed method MLL-GCN-CRC obtains more matched cases (i.e. green
point locates in the region with high score) than the Single-MLL does. This
phenomenon reflects that the statistical knowledge encoded by GCN and the
discriminative power enhanced by CRC are beneficial in promoting the class
prediction and reducing the false positives.

Fig. 4 shows the prediction comparisons of six samples. Among the six SPs
of fetal LVAP, SPP, CMP, SLAP, FCP, and UAAP (see the detailed name list
of SP and AS in the Table 2 of Appendix) , our MLL-GCN-CRC obtaines high
scores and correct predictions for most of the SPs and ASs (Fig. 4(a)(c)). More
comparison results can be found in the Fig. 6 of Appendix. On the contrary, the
Single-MLL presents mis-classifications and false positives (Fig. 4(b)(f)).

4 Conclusion

In this paper, we propose a novel multi-label learning scheme (MLL-GCN-CRC)
for multiple standard planes and corresponding anatomical structures recogni-
tion in prenatal ultrasound. Following the spirit of word embedding, the statis-
tical concurrency knowledge is explored to capture the latent class dependency
between standard planes and anatomical structures. A GCN is designed to fur-
ther encode the dependency among the word embeddings. By performing rela-
beling based on the clusters in word embeddings space, the contrastive learning
boosts the classification performance. Experiments on large dataset show that
the proposed method obtains promising performances. Our proposed design is
general and may inspire the community for multi-task labeling.

Acknowledgment This work was supported by the SZU Top Ranking Project
(No. 86000000210).
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Table 2. Abbreviation and full name of structures and standard plane. In the Abbre-
viation column, blue represents the standard plane, black represents the anatomical
structure, and the horizontal line represents no abbreviation.

Abbreviation Full name

SLAP long axis plane of the spine

CMP plane of the conus medullary position

TAP the axial plane at the level of the thalamus

LVAP the axial plane at the level of the lateral ventricle

NCP coronal plane of the nasolabial

FHFMP midsagittal plane of the fetal head and face

SPP soft palate plane

FCP four-chamber view plane

UAAP upper abdominal axial plane

FLAP long axis plane of the femur

CF cerebral falx

PH posterior horn

SPC cavity of septum pellucidum

CM conus medullaris

SCR sacro-coccyx region

- thalamus

IC intact cranium

NA apex of nose

NB nasal bone

- palate

- mandible

SP soft palate

- pharynx

FCVH four-chamber view of heart

- aorta

- lung

ST stomach

PSUV umbilical vein at the level of the portal sinus

FD femur diaphysis

- spine

UL upper lip

LL lower lip

- chin

- nostril
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Fig. 5. Two score matrices of Single-MLL and MLL-GCN-CRC. Each row in the matrix
represents an example class prediction. The little green points indicate the true label
and the color of matrix element indicate the model output score.
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Fig. 6. The result comparison between Single-MLL and MLL-GCN-CRC. In the Queue
column, the bold font represents the category in the ground true, the red bold represents
the standard plane category, and the gray non-bold represents the category that does
not exist in the ground true. In the MLL-GCN-CRC and Single-MLL columns, a check
indicates that the category is predicted, and a cross indicates that the category is not
predicted.
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