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Purpose: This study describes the development and testing of an asymmetrical 

xenon- 129 (129Xe) birdcage radiofrequency (RF) coil for 129Xe lung ventilation 

imaging at 1.5 Tesla, which allows proton (1H) system body coil transmit– receive 

functionality.

Methods: The 129Xe RF coil is a whole- body asymmetrical elliptical birdcage con-

structed without an outer RF shield to enable 1H imaging. B
+

1
 field homogeneity and 

flip angle mapping of the 129Xe birdcage RF coil and 1H system body RF coil with 

the 129Xe RF coil in situ were evaluated in the MR scanner. The functionality of the 
129Xe birdcage RF coil was demonstrated through hyperpolarized 129Xe lung ventila-

tion imaging with the birdcage in both transceiver configuration and transmit- only 

configuration when combined with an 8- channel 129Xe receive- only RF coil array. 

The functionality of 1H system body coil with the 129Xe RF coil in situ was demon-

strated by acquiring coregistered 1H lung anatomical MR images.

Results: The asymmetrical birdcage produced a homogeneous B+

1
 field (±10%) in 

agreement with electromagnetic simulations. Simulations indicated an optimal de-

tuning configuration with 4 diodes. The obtained g- factor of 1.4 for acceleration 

factor of R = 2 indicates optimal array configuration. Coregistered 1H anatomical 

images from the system body coil along with 129Xe lung images demonstrated con-

current and compatible arrangement of the RF coils.

Conclusion: A large asymmetrical birdcage for homogenous B
+

1
 transmission with 

high sensitivity reception for 129Xe lung MRI at 1.5 Tesla has been demonstrated. 

The unshielded asymmetrical birdcage design enables 1H structural lung MR imag-

ing in the same exam.

K E Y W O R D S

Asymmetrical elliptical birdcage coil, hyperpolarized xenon- 129, Lung RF coils
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1 |  INTRODUCTION

MRI of hyperpolarized gases xenon- 129 (129Xe) and 

 helium- 3 (3He)1,2 is established as a clinically sensitive func-

tional imaging modality for assessment of the airways and 

lungs. The safety of the technique3,4 and its inherent sensi-

tivity to  regional lung ventilation and function make it an 

ideal imaging tool for the assessment of lung diseases.5,6 The 

method has been evaluated in clinical studies of different 

lung diseases and has been shown to have high sensitivity 

to early- stage lung diseases such as emphysema7 and early 

obstruction of the airways in pediatric cystic fibrosis.8 Due to 

its moderate cost and natural availability, 129Xe has recently 

become the most employed hyperpolarized gas for MR im-

aging. Studies have shown that 129Xe provides similar image 

quality and quantitative information, as can be achieved 

with 3He MRI.9 129Xe is also soluble in blood and tissue10 

and thus can be used to image lung ventilation– perfusion11 

and evaluate alveolar– capillary gas exchange.12 In addition, 

it has been established as a useful tool for the assessment of 

interstitial lung disease.13 Recently, the feasibility of 129Xe- 

dissolved phase imaging of other perfused organs such as 

kidneys14- 16 and brain17- 19 has also been demonstrated. In all 

of these hyperpolarized 129Xe applications, image quality is 

highly dependent on the delivered flip angle (FA); therefore, 

high- quality transmit RF coils capable of uniformly exciting 

the signal from 129Xe in various organs are desirable.

In this work, we demonstrate the design and implemen-

tation of an elliptical asymmetrical thorax birdcage RF coil 

initially proposed for 3He,20 which has since been adopted 

for various applications such as sodium- 2321,22 and hyperpo-

larized gases.23,24 The 129Xe birdcage here was designed for 

the following: 1) to operate without an RF shield between the 
129Xe birdcage RF coil and the proton (1H) system body coil 

to enable both 1H– 129Xe multinuclear lung MR imaging, and 

2) for use in conjunction with a dedicated receive- only RF 

coil array for 129Xe imaging for enhanced SNR and acceler-

ated imaging. The electromagnetic interaction of the 129Xe 

coil with the 1H body coil is an important consideration for 

coil performance and patient safety; thus, specific absorption 

rate (SAR) was evaluated with electromagnetic simulation 

software. In addition, transmit efficiency of the 1H body coil 

with and without the 129Xe birdcage is another necessary con-

sideration that was optimized with electromagnetic simula-

tion and then verified experimentally in the MR scanner. We 

go on to experimentally compare the 129Xe birdcage RF coil 

when used as a transceiver and as a transmit- only RF coil 

in conjunction with a 129Xe receive- only 8- channel RF coil 

array for lung ventilation MR imaging. We also demonstrate 

the ability to acquire coregistered 1H lung images from the 

system body coil along with accelerated 129Xe lung images.

2 |  METHODS

2.1 | 129
Xe birdcage RF coil design and 

simulations

The 129Xe birdcage RF coil is a 12- legged asymmetrical ellip-

tical structure of band- pass topology, as shown in Figure 1A, 

similar to the topology used in an earlier 3He RF coil.25 The 

birdcage RF coil has length (head– feet direction) of 47 cm, 

common elliptical diameter (left– right direction) of 50.8 cm, 

asymmetrical diameter (anteroposterior direction) of 51.6 cm 

(top half) and 21.2 cm (bottom half), as shown in Figure 1A. 

The design was optimized to maximize the use of the avail-

able space within the magnet (1.5 T GE HDx scanner, GE 

Healthcare, Waukesha, Wisconsin), with a 60 cm inner- bore 

diameter used along with a custom- made patient tabletop in-

sert. Capacitance values were calculated as described in De 

Zanche et al.20 Referring to capacitors on the legs and end- 

rings, as shown in Figure 1A,E, the capacitor values are C1 = 

C12 = 450 pF, C2 = C11 = 630 pF, C3 = C10 = 780 pF, C4 = 

C9 = 680 pF, C5 = C8 = 910 pF, C6 = C7 = 580 pF, C12- 1 = 

C1- 2 = 1700 pF, C11- 12 = C2- 3 = 4400 pF, C10- 11 = C3- 4 = 2220 

pF, C9- 10 = C4- 5 = 750 pF, C8- 9 = C5- 6 = 860 pF and C7- 8 = 

C6- 7 = 640 pF.

Figure 1B illustrates the simulation environment show-

ing the RF coils setup in the scanner. The 1H system body 

coil has a length of 60 cm and diameter of 60.5 cm, with an 

outer RF shield at 63.5 cm. The proposed 129Xe asymmetrical 

birdcage was nested inside the 1H body coil. Full- wave EM 

simulations were performed with Ansys HFSS (Canonsburg, 

PA) to evaluate the following:

1. B
+

1
 field homogeneity of the 129Xe birdcage, for which 

the 129Xe birdcage was loaded with human body model 

(σ = 0.14 S/m and εr = 81) with air spaces for lungs.

2. The 129Xe birdcage RF coil was simulated for its 1H RF 

transparency in 4 different configurations: 1 configuration 

without PIN diodes (tuned 129Xe coil); 3 configurations 

with 4, 8 and 12 PIN diodes applied, respectively, to de-

tune the 129Xe coil, as shown in Figure 2. An equivalent 

circuit for reversed biased PIN diodes (MA4P7435NM- 

109IT, Macom, Lowell, Massachusetts) consisted of a 3 

pF capacitance and 5 kΩ resistance in parallel. To evalu-

ate the transparency, the RF coils were positioned in their 

normal operating conditions; the 129Xe birdcage RF coil 

was set in detuned mode without excitation; and the 1H 

body coil was tuned to the 1H resonance with RF excita-

tion to mimic the state of the RF coils during 1H transmit 

and receive phase. The transparency of 129Xe birdcage 

was assessed by the distortion it would cause to the 1H B+

1
 

magnitude and homogeneity, as shown in Figure 2.
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3. The isolation s- parameters between the RF coils in all of 

the 4 configurations were simulated over a frequency span 

of 10 to 100 MHz. The 1H body RF coil was tuned and the 
129Xe birdcage RF coil was detuned as per the diode con-

figurations mentioned earlier. In addition, SAR was simu-

lated in MatLab (MathWorks, Natick, MA) as described in 

Collins et al.26 using the EM fields exported from Ansys 

HFSS 18.0 for all the 4 diode configurations mentioned.

2.2 | 129
Xe Birdcage coil construction

The mechanical structure  of the birdcage is made from ma-

chined fiberglass composite. The conductors are solid copper 

bars with a length of 47 cm, width of 1.5 cm and thickness of 

0.3 cm. This mechanical arrangement and its assembled geom-

etry (shown in Figure 1A,D,E) optimally utilizes the available 

space and accommodates a dedicated 129Xe (or 1H) receiver 

array. The structure of the coil is split in 2 parts to allow sub-

jects to lie down on the posterior part and the anterior part is 

then fixed on top. Four copper beryllium contact pins make the 

connection between the 2 halves. Unlike flexible coils,27 the 

rigid chassis ensures a more consistent homogeneous magnetic 

field with loading with a range of subject sizes. Both halves of 

constructed RF coil are shown in Figure 1E.

The transmit RF line from the system is split into 0° and 

90° channels using hybrid coupling. Each output port of the 

coupler was fed to the 129Xe birdcage coil at quadrature using 

a lattice balun that also matches the RF coil to 50 Ω. The 

RF feeds are on the end- ring across capacitors C6 and C9, as 

shown in Figure 1E. Two cable traps tuned to 1H resonance 

were placed on both transmit and receive cables. Active de-

tuning was achieved by fixing 4 PIN diodes in series with ca-

pacitors C2- 3, C6- 7, C7- 8 and C11- 12 (Figure 1A,D,E), using RF 

chokes (10.4 µH chip inductance, parallel resonance notch 

circuits using 1 µH, as shown in Figure 1D).

Diode detuning was assessed by s- parameter transmission 

loss using magnetic flux probes with diodes turned on and 

off. Matching and tuning were evaluated with a human load 

(28- year- old male, 75 kg, 177 cm) and positioning within the 

scanner. Q factor was measured with the coil in the loaded 

and unloaded conditions.

The receiver RF coil was a repurposed 1H 8- channel GE 

cardiac coil (GE Healthcare) retuned to resonate at the 129Xe 

Larmor frequency of 17.66 MHz at 1.5 T (Figure 1C). The 

array is divided into 2 separate halves, anterior and posterior, 

with 4 channels each.

F I G U R E  1  (A) Mechanical construction drawing of the 129Xe birdcage RF coil, (B) simulation model of the complete RF coil arrangement 

that includes 129Xe birdcage RF coil, system 1H body coil along with its RF shield, and (C) 8- channel receiver RF coils array. (D) Detuning circuit. 

(E) Practically constructed 129Xe birdcage RF coil, posterior/lower (left) and anterior/upper (right) half
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2.3 | Hyperpolarization

Experiments were performed on a healthy male volunteer (26 

years old, 70 kg) with informed written consent and approval 

from the UK national research ethics committee. 129Xe (87% 

enriched 129Xe) was polarized to ~ 30% by spin- exchange 

optical pumping28 using a homebuilt regulatory- approved 

polarizer system.29

2.4 | FA mapping

To assess the 129Xe birdcage coil homogeneity, in vivo B+

1
 

maps were acquired (inhaled dose of 500 mL 129Xe gas 

topped up with 500 mL N2). The sequence was a 2D spoiled 

gradient- echo with imaging parameters: matrix resolution 

32 × 32, slice thickness 200 mm, coronal/axial plane, field 

of view (FOV) 40 × 40 cm2, receiver bandwidth (BW) ±4 

kHz, TR = 10.2 ms and TE = 4 ms. Images from the same 

slice were acquired 10 times repeatedly in a short acquisition 

time of 4 s, thereby depolarizing the hyperpolarized 129Xe 

gas with a known transmit RF power. The pixel- wise rate of 

depolarization was then used to calculate the B+

1
 maps using 

the relation S
n
= S

0
sin (�) cos (�)(

n−1), where S is the signal 

amplitude at nth RF pulse, α is the FA and S0 is initial am-

plitude. To assess the RF transparency of 129Xe birdcage RF 

coil when positioned within the 1H body coil, a FA map of 

the 1H body coil was acquired with and without the detuned 
129Xe birdcage RF coil in situ using a large cylindrical phan-

tom filled with 3.6 g/L NaCl and 1.96 g/L CuSO4⋅5H2O salt 

solution (radius = 15.5 cm, height = 42 cm). The imaging 

sequence was a 2D spoiled gradient- echo, axial and coronal 

plane, matrix 128 × 128, TR = 300 ms, TE = 30 ms, FOV = 

40 × 40 cm2, 8 mm slice thickness and BW = 15.63 kHz. 

To obtain the FA map, acquisition was repeated with incre-

mental transmit RF power and the acquired image was fitted 

pixelwise as described elsewhere.30

2.5 | 129
Xe ventilation imaging

The sequence used for xenon ventilation imaging was a 3D 

balanced steady- state free precession sequence with param-

eters: 100 × 82 × 24 matrix resolution, 10 mm slice thick-

ness, BW of ±8 kHz, FOV of 40 × 40 cm2, TR = 6.4 ms, 

TE = 3.1 ms, FA = 10°, and with 750 mL 129Xe dose. FA was 

calculated with a series of pulse- acquires at a particular trans-

mit RF power, as described earlier28 and the average FA from 

all the channels were used. SNR was calculated as a ratio of 

average signal from the region of interest of the lungs to the 

square root times the SD of the background noise.31 For the 

receiver array, all channels were combined with root sum of 

square reconstruction32 before calculating SNR. Performance 

of the 2 RF coil combinations were compared using the mean 

SNR (Figure 4C) in a slice.

2.6 | Accelerated imaging

Array sensitivity was estimated through autocalibration by 

fully sampling the 20 lines at the center of k- space,33 then 

under sampling the rest of the k- space,34 zero- padding the un- 

acquired k- space and reconstructing after filtering (3D low- 

pass Kaiser window (β = 3)23 to prevent truncation artefacts). 

The optimal flip angle of the steady- state free precession varied 

with the number of RF encoding steps depending on the accel-

eration factors35, calculated as described elsewhere,36,37 assum-

ing a T1 of 20 s38 and no off- resonance effects. The sequence 

used for accelerated imaging was a 3D steady- state free preces-

sion with 80 × 80 × 20 matrix, slice thickness 10 mm, BW = 

±8.06 kHz, FOV = 40 × 40 cm2, TR = 6.4 ms, TE = 3.1 ms 

and acceleration factor of R = 2 in the phase encode direction.

Coregistered anatomical proton MR images of the lungs 

were also acquired with the 129Xe coils in situ; 1H imaging 

parameters were 3D coronal spoiled gradient echo pulse 

 sequence with matrix 80 × 80 × 20, BW = ±83 kHz; FOV = 

40 × 40 cm2, TR = 1.5 ms, TE = 0.6 ms, 5 Averages, and 

total scan times 12 s. Using the same parameters, a separate 

noise scan was performed without the inhaled gas to compute 

SNR. The transmit RF power for 1H was limited for patient 

safety in accordance with the estimated SAR and RF cou-

pling with 129Xe RF coil.

3 |  RESULTS

3.1 | Simulations

At 17.66 MHz B
+

1
 field simulation showed a homogene-

ous field within the lung region with a SD of 4%. For RF 

F I G U R E  2  Simulated B+

1
 field on the axial plane of the 1H body coil at 63.8 MHz without and with 129Xe birdcage RF coil nested inside for 

various detuning circuit configurations. The mean and SD of B+

1
 uniformity of the 1H body coil within the 129Xe RF coil as outlined by the red 

rectangle for all the configurations are 0.85% and 1.9% (without 129Xe RF coil), 0.38% and 3.8% (no diodes), 0.55% and 14.3% (4 diodes), 0.85% 

and 20.1% (8 diodes) and 0.11% and 9.5% (12 diodes), where mean values being normalized to an obtained maximum regional value. Location of 

the detuning circuits on the legs in series with capacitors are marked as boxed numbers and its equivalent circuit is also shown. The RF isolation 

between 129Xe and 1H RF coils measured as transfer s- parameters (S21) for all the configurations are indicated. SAR simulation for 1H body coil 

with detuned 129Xe birdcage RF coil in situ is also shown
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transparency of the 129Xe birdcage RF coil for 1H imaging, 

the detuning configuration with 4 diodes was optimal when 

compared to the other configurations despite some residual 

coupling that impaired the 1H B+

1
 magnitude (reduction of 

36%) and homogeneity (SD 14.36%), as shown in Figure 2. 

Simulated isolation between the 129Xe birdcage coil and the 
1H body coil was −15 dB. Average SAR was 1.23 W/Kg and 

local SAR (near the shoulders) was 9.39 W/Kg simulated for 
1H body coil with the detuned 129Xe birdcage coil in situ, as 

shown in Figure 2.

3.2 | 129
Xe Birdcage coil evaluation

Measured active detuning effectiveness (measured as differ-

ence) with diodes on and off was −23 dB at 17.66 MHz; the 

return loss of the 129Xe transmitted birdcage was below −22 

dB for both ports. The isolation between the 2 quadrature 

ports of the 129Xe birdcage RF coil was −30.8 dB. Q fac-

tor was 197 and 100 in the unloaded and loaded conditions, 

respectively.

The in vivo FA delivered across the lungs with the 129Xe 

birdcage coil had a SD of 10% and 9% for coronal and axial 

plane, respectively, as seen in Figure 3A,B. The FA for the 
1H body coil for a particular transmitted RF power with the 
129Xe birdcage coil in situ was 4 lower when compared with-

out it present, as seen in Figures 3C- F.

The SNR of the birdcage when used as a transceiver ver-

sus as a transmit- only coil with 8- channel receiver RF coil 

array was 31, 26,18 and 46, 25, 32 in posterior, central and 

anterior slices, respectively (Figure 4A,B). An approximate 

twofold net increase of SNR was observed using the birdcage 

as a transmitter with receive- only RF coil array (Figure 4C). 

This is due to better sensitivity of the array in the anterior and 

posterior regions of the lungs, as seen in the SNR profile in 

Figure 4C.

F I G U R E  3  Flip angle maps of 129Xe birdcage coil in vivo, (A) coronal, and (B) axial plane. Flip angle maps of 1H body coil without detuned 
129Xe RF coil in situ, (C) axial, and (D) coronal plane. Flip angle maps of 1H body coil with detuned 129Xe RF coil in situ, (E) axial, and (F) coronal 

plane for the same transmit RF power as in (C) and (D)
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1H images acquired with 1H system body coil with 129Xe 

birdcage RF coil in situ enabled spatially coregistered multi-

nuclear MR lung images (Figure 5A). HP 129Xe steady- state 

free precession sequence signal simulations found an opti-

mal FA of 10.3° and 14.1° for fully sampled encoded and 

accelerated (R = 2), respectively, as demonstrated by coro-

nal and axial lung images reconstruction shown in Figure 5.  

Total scan times were 11 s and 8 s and for full sampled and 

R = 2 sampled, respectively. Image reconstruction for R = 2 

(Figure 5B) shows no visible reconstruction artefacts with a 

g- factor of 1.4 (Figure 5C).

4 |  DISCUSSION

In this note, we have demonstrated an asymmetrical band 

pass birdcage for hyperpolarized 129Xe MRI that works 

without an RF shield enabling in situ 1H imaging. In vivo FA 

mapping demonstrated B+

1
 similar to values reported in the 

literature.24,39 Of the diode configurations evaluated for de-

tuning, the configuration with 4 diodes showed least distor-

tion of the 1H B+

1
 field. Although the 129Xe transmit birdcage 

coil enables proton imaging, the obtained FA with the 129Xe 

coil in situ was lower by a factor of 4 for the same transmit 

power, which is likely due to residual undesired coupling 

between the RF coils. Increasing the transmit power of the 
1H RF amplifier is not an optimal solution to mitigate this 

because the local SAR values (9.23 W/kg) were close to the 

International Electrotechnical Commission standard for nor-

mal level controlled scans.40 Therefore, future work should 

focus on improving the isolation between the 2 RF coils in 

the magnet, for example, using passive trap circuits tuned to 

the 1H resonance frequency on the 129Xe RF coil.41 The ob-

tained results show some improvement when compared with 

F I G U R E  4  Ventilation images obtained with (A) the asymmetrical birdcage in transceiver configuration and (B) 8- channel receiver RF coils 

array. (C) Comparison of averaged SNR of each coronal slice for the 2 RF configurations
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the B1 field homogeneity obtained with flexible vest coil de-

signs similar to results previously reported in literature.24,25 

When combined with a separate 8- channel receive array, the 

increased SNR was evident despite some dropoff in the sen-

sitivity toward the central slices. The receiver RF coil array 

permitted acceleration of 2 with low g- factor values (maxi-

mum values ~1.4).

5 |  CONCLUSION

We have demonstrated an RF coil setup for 129Xe human lung 

imaging at 1.5 T using an asymmetrical elliptical 129Xe bird-

cage RF coil both as a transceiver and with a receive- only RF 

coil array. This 129Xe birdcage RF coil, designed without an 

RF shield and with receive- only RF coil array compatibility, 

has enabled both 1H MR imaging and accelerated imaging, 

functionality which has not been previously demonstrated 

together.
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