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Abstract—In this paper, the impact of Photovoltaic (PV) micro cracks is assessed through the analysis of 7 

4000 polycrystalline silicon solar cells. The inspection of the cracks has been carried out using an electron 8 

microscopy, which facilitate the detection of the cracks though the acquisition of both Everhart-Thornley 9 

Detector (ETD) and the Back Scatted Electron Diffraction (BSED) image, where it was found that the size 10 

micro cracks are ranging from 50µm to a maximum of 4mm. Micro cracks have been categorized into two 11 

main categories, including cracks in the solar cell front or rear contact. Several remarkable observations 12 

have been found, including but not limited to, (i) the output power loss due to micro cracks varies from 13 

0.9% to 42.8%, subject to micro crack type and size, (ii) cracks in solar cells fingers reduce the finger width, 14 

resulting an increase in the output power loss by at least 1.7%, and (iii) there is a substantial correlation 15 

between PV hot-spots and the presence of micro cracks, while minimum increase in the cell temperature is 16 

observed at 7.6 °C. 17 

Keywords—Photovoltaic Micro Cracks; PV Defects; Hot-Spots; Output Power Loss; Micro Analysis; 18 

Electron Microscopy Imaging. 19 

 

I. Introduction 20 

Nowadays the lifetime of photovoltaic (PV) modules is an important target for the sustainable development 21 

of PV technologies. According to the International Electro-Technical Commission (IEC) 61215 PV 22 

qualification standard [1], PV modules are subject to multiple failure modes, ultimately an increase of PV 23 

micro cracks [2-3] and PV hot-spotting phenomenon [4-5] have been widely acknowledged. For instance, 24 

limited approaches and examination of such faults have been raised, and therefore, further data inspection 25 

and validation of typical PV failure have to be assessed and analysed comprehensively. 26 

In order to examine PV micro cracks several methods have been proposed, including but not limited to the 27 

Laser scanning technique [6], Electron Microscopy (EM) analysis [7], Photoluminescence (PL) imaging 28 

technique [8], and the widely used Electroluminescence (EL) method [9]. 29 

F. Haase et al. [10] found that PV micro cracks do not reduce the output power of affected solar cells by 30 

more than 2.5%, only if the crack does not harm the fingers or busbars. While, a real-time long-term data 31 

analysis of multiple cracked PV modules were analysed by M. Dhimish et al. [11]. It was observed that 32 

output power of cracked PV modules ranging from -0.5% to -19.7%; depending on the crack size, 33 

orientation and location. 34 
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Furthermore, the micro crack analysis on gallium arsenide (GaAs) PV solar cells has been carried out by S. 35 

Oh et al. [12]. It was observed that the crack density, defined as the total length of the micro crack per unit 36 

area, is found to be in the range from 13.8 to 33.2 cm-1 in all investigated solar cell samples of 1620. On 37 

the other hand, the analysis of the output power loss and cracks distribution have not been considered.  38 

PV micro cracks are major cause of hot-spotting. PV hot-spots are a reliability problem in PV modules; this 39 

phenomenon is distinguished when a mismatched/cracked solar cell heats up significantly and reduces the 40 

PV module output power [13-14]. PV hot-spots can be easily detected using infrared inspection, which 41 

nowadays has become a common practice in current PV fault diagnosis as presented in [15]. However, the 42 

correlation between micro cracks and hot-spotting has not widely been considered, while the largest up-to-43 

date study on PV hot-spotting has been reported by our previous work [16]. Furthermore, PV hot-spots can 44 

cause a permanent loss in the output power of PV module, and could be reach up to -25% of the PV module 45 

maximum power point. 46 

PV hot-spotting can be mitigated using various methods such as novel distributive maximum power point 47 

tracking (MPPT) method [17-18], adoption of bypass diodes which are parallelized with the PV modules 48 

[19], and most recently, a novel two MOSFET layer method developed by [20-21] improved the output 49 

power of hot-spotted PV modules by at least 8% under various environmental conditions. 50 

The main contribution of this work is to present the impact of micro cracks; ranging from 50µm to a maximum 51 

of 4mm, on the output power performance of solar cells. A total of 4000 cracked samples has been examined. 52 

Various major findings have been observed, including: 53 

1) The output power loss due to micro cracks ranging from 0.9 to 42.8%. 54 

2) Cracks in solar cells fingers reduce the finger width, resulting an increase in the power loss. 55 

3) There is a substantial correlation between the hot-spots and micro cracks, multiple results were observed 56 

by the reason of the heat expansion due to the micro cracks affect. 57 

 

II. Methodology 58 

A. Electron Microscopy 59 

Nowadays in order to examine the micro cracks in the solar wafers, an electron microscopy shown in Fig. 60 

1 has been used. The microscopy is interfaced with a personal computer (PC) using a data acquisition board. 61 

The acquisition of both the Everhart-Thornley Detector (ETD) and the Back Scatted Electron Diffraction 62 

(BSED) is facilitated using the acquisition board as presented Fig. 1. 63 

The BSED is a microstructural-crystallographic characterization technique normally use to study any 64 

crystalline or polycrystalline materials [22], whereas the ETD consists of a secondary electron and back-65 

scatted electron detector, this detector is used to increase the efficiency of existing secondary electron 66 

detectors by adding a light pipe to carry the photon signal from the scintillator inside the evacuated 67 

specimen chamber of the electron microscopy [23].  In fact, it is not necessary to capture both images, but, 68 

for a better resolution and detection of the inspected wafer, both images have been captured. 69 
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B. Examined Solar Cell Samples 70 

In this article, the examination of 4000 cracked solar cell have been examined; example of multiple samples 71 

are shown in Fig. 2(a); showing both front and rear view for diffident types of cracks. All tested samples 72 

are dismounted from actual PV modules operated in a field across the UK. The solar cells have been on 73 

actual operation for 5 to 13 years. 74 

All main electrical parameters of the cracked samples have been tested under standard test conditions 75 

(STC), where the solar irradiance is equal to 1000 W/m2 and ambient temperature of 25 ºC; main electrical 76 

parameters are shown in Table 1. 77 

Fig. 2(b) shows the location of the fingers and the solar cell busbar. Solar cell fingers are the metallic 78 

rectangular–shape grid connecters which collect the generated current for devilry to the busbar. The busbar 79 

is constructed from copper, coated with silver to enhance the current conductivity (front side) as well as to 80 

lower oxidization (rear side). 81 

 

 

Fig. 1.  Electron microscopy facility used to inspect the cracked solar cell samples. The microscope has a data 

acquisition system which facilitate the monitoring for both the ETD and BSED images using a personal computer 

Table 1 Examined solar cells main electrical parameters 

Electrical Parameter Theoretical Value – Taken form 

manufacturer data sheet 

Voltage at maximum power point (Vmpp) 0.48 V 

Open circuit voltage (Voc) 0.61 V 

Power at maximum power point (Pmpp) 3.10 W 

Current at maximum power point (Impp) 6.46 A 

Short circuit current (Isc) 7.12 A 
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C. Distribution and Data Collection Process 82 

The examined solar cells samples have been distributed according to the existence of the micro crack type. 83 

The analysis and data collection were distributed across front and rear view/side of the solar cell damage, 84 

including: 85 

Front View: 86 

1) Wafer + Fingers (Fig. 3(a)): micro cracks affecting both wafer and the fingers of the solar cell. 87 

2) Wafer + Busbar (Fig. 3(b)):  existence of micro cracks on solar cell wafer and busbar, but not 88 

fingers. 89 

3) Wafer + Fingers + Busbar (Fig. 3(c)):  micro cracks affecting the wafer, fingers, and the busbars. 90 

Rear Contact: 91 

1) Micro cracks affecting rear surface of the solar cell, example shown in Fig. 3(d). 92 

2) Micro cracks affecting both rear surface of the solar cell and the rear busbar, example shown in 93 

Fig. 3(e). 94 

All observed micro cracks have a length ranging from 50µm to a maximum of 4mm, therefore, the output 95 

power analysis as well as the observations in the rest of the article are based on this assumption, and 96 

ultimately, different crack length would result different observations. 97 

The percentage of occurrence of the micro cracks in all tested samples are summarized as follows: 98 

1) Wafer + Fingers presenting 39%; 1560 samples. 99 

2) Wafer + Busbar presenting 17%; 680 samples. 100 

3) Wafer + Fingers + Busbar presenting 36%; 1440 samples. 101 

4) Rear surface presenting 6%; 240 samples. 102 

5) Rear surface + Rear Busbar presenting 2%; 80 samples. 103 

     
                                                     (a)                                                                            (b) 

Fig. 2.  (a) Example of the front and rear view for multiple examined solar cell wafers, (b) Solar cell wafer, fingers 

and busbar 
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It is worth noting that the number of cracked busbars or fingers has not been considered in the data analysis. 104 

There are two reasons behind this choice including, (i) the data collection and analysis of the output power 105 

loss will fluctuate rapidly if the number of fingers and busbars are counted, and (ii) in order to draw relevant 106 

conclusions with the consideration of multiple case studies, it would help to classify which micro crack 107 

type/category has the most significant impact on the output power loss; resulting a generic/extensive gained 108 

knowledge on the studied samples, where the outcomes can be used extensively across a number of other 109 

studies, including PV degradation, PV manufacturing analysis and solar cell micro cracks detection 110 

systems. 111 

 

 

 

   
                                 (a)                                                             (b)                                                                (c) 

                

                 
                                                         (d)                                                                                 (e)  

 

Fig. 3.  Examples of the distribution for the micro cracks in different solar cell samples. (a) Micro cracks affecting solar cell 

wafer and fingers, (b) Micro cracks affecting solar cell wafer and busbars, (c) Micro cracks affecting solar cell wafer, fingers and 

busbar, (d) Micro cracks in the rear surface of the solar cell, (e) Micro cracks affecting rear surface of the solar cell as well as the 

rear busbar 
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III. Results 112 

A. Power Loss Analysis 113 

In this section, the evaluation of the power loss of all examined PV solar cell is presented. The measured 114 

power loss of the solar cells is captured while experimentally illuminating the cells under standard test 115 

conditions (STC), where the solar irradiance is equal to 1000 W/m2, and cell surface temperature of 25 °C, 116 

the experimental setup is shown in Fig. 6(b). The output power loss is measured by the following formula: 117 

                 𝑃𝑜𝑤𝑒𝑟 𝐿𝑜𝑠𝑠 (%) =  100 − ( 𝑃𝑀𝑖𝑐𝑟𝑜 𝑐𝑟𝑎𝑐𝑘𝑒𝑑 𝑠𝑜𝑙𝑎𝑟 𝑐𝑒𝑙𝑙𝑃𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑤𝑒𝑟  × 100 )                                  (1) 118 

where 𝑃𝑀𝑖𝑐𝑟𝑜 𝑐𝑟𝑎𝑐𝑘𝑒𝑑 𝑠𝑜𝑙𝑎𝑟 𝑐𝑒𝑙𝑙  is the actual measured output power of the tested micro cracked solar cell 119 

sample, whereas 𝑃𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑤𝑒𝑟 is the theoretical power taken from the datasheet; the value 120 

for the theoretical power is equal to 3.1 W, presented earlier in Table 1. 121 

According to Fig. 4(a), the solar cell samples affected by cracks in the front contact have a power loss 122 

ranging from: 123 

1) Cracks in Wafer + Finger: -1.7% to -13.5%. 124 

2) Cracks in Wafer + Busbar: -0.9% to -17.1%. 125 

3) Cracks in Wafer + Finger + Busbar: -8.9% to -42.8%. 126 

Evidently, the cracks affecting solar wafer, fingers and the busbar have the uppermost power loss, with 127 

mean of 25.52%, whereas the second maximum mean output power loss of 9.01% is obtained for the solar 128 

cells affected by micro cracks in the solar wafer and the busbar. The minimum output power loss is observed 129 

for solar cells that are affected by micro cracks across the wafer and fingers, their mean output power loss 130 

is equal to 7.59%. 131 

According to the solar cell samples affected by rear contact micro cracks, it was observed that loss in the 132 

output power is very limited (mean of 1.48%) for the rear surface cracks, however, there are an increase in 133 

the output power loss due to the rear contact cracks affecting both surface and the rear busbar, where it was 134 

found that the mean output power loss is equal to 7.99%. 135 

It is noticeable that front contact micro cracks have the most significant impact on the overall performance 136 

of the solar cells because these cracks affects the surface of the junction, ultimately limiting the amount of 137 

solar energy to be extracted by the cell. On the other hand, the output power loss for micro cracked rear 138 

surface is far less than the front contact, since it is much further away from the junction, whereas the rear 139 

busbar plays significant role in driving the solar cell current, therefore, cracks in rear and front busbar have 140 

a much higher output power loss. 141 

There are a number of observations that have been identified using the studied sample set, including the 142 

correlation between micro cracks and hot-spots in the micro cracked solar cells. These observations are 143 

discussed in the following sections. 144 
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B. Effect of Breakdown/Micro-Cracks in Solar Cells Fingers 145 

Due to the existence of micro cracks, it was observed that out of all examined samples, almost there are 146 

1500 samples that has a breakdown/cracks in the solar cell fingers, resulting a less forward current 147 

generation of the solar cell. Two examples of the micro crack, damage and discontinuity in the solar cell 148 

fingers are shown in Figs. 5(a) and 5(b). 149 

There is an increase in the output power loss due to the cracked/damaged fingers. In order to calculate the 150 

power loss in a single finger, the integration of the length for the finger starting from 0 to L (shown in Fig. 151 

5(c)) gives the power loss as calculated by (2). 152 𝑃𝑜𝑤𝑒𝑟 𝑙𝑜𝑠𝑠 = ∫ (𝑥𝐽𝑀𝑃𝑃𝑆𝑓)2𝑤𝑓 𝑑𝑓𝑥=𝐿𝑥=0 𝑑𝑥 =  13  𝐿3 𝐽𝑀𝑃𝑃2  𝑆𝑓2  𝜌𝑓𝑤𝑓 𝑑𝑓                         (2) 153 

where 𝐿 = 2𝑐𝑚 is the finger length, 𝐽𝑀𝑃𝑃 = 30 𝑚𝐴/𝑐𝑚2 is the current at maximum power point, 𝑆𝑓 =154 2𝑚𝑚 is the finger spacing, 𝜌𝑓 = 1.82 ×  10−8 Ω𝑚 is the effective resistivity of the metal, 𝑤𝑓 = 25 𝜇𝑚 is 155 

the finger width, and 𝑑𝑓 = 13 𝜇𝑚 corresponds to the finger depth (or height); all parameters values are 156 

taken from solar cell manufacturer datasheet. 157 

 

 
(a) 

 
(b) 

 

Fig. 4.  Power loss analysis of the cracked solar cell samples. (a) Front contact crack-types, (b) Rear contact crack-

types  
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As shown in Figs. 7(a) and 7(b), the measured total power loss for the solar cell finger without the existence 158 

of micro cracks is equal to 3.8%, while it is increased to 5.0% for the cracked finger sample. The main 159 

reason in the increase of the power loss is due to the decrease in the finger width. Therefore, According to 160 

(2), if the width of the finger 𝑤𝑓 decrease, the finger power loss will increase. Furthermore, the cracks in 161 

the solar cell fingers increase the heat-level of the affected solar cell, because the forward current will be 162 

delivered though marginal size of metal (due to the reduction of the finger width size). Consequently, this 163 

will create a hot-spot in the finger and will reduce the forward current delivered by the cracked cell. Fig. 164 

6(a) shows a cracked solar cell sample tested under STC conditions, where two fingers are cracked.  165 

The obtained results shown in Fig. 7 are measured using the analysis of a healthy vs. micro cracked solar 166 

cell sample under STC. The setup of the class AAA LED flasher is shown in Fig. 6(b). The solar cell sample 167 

has been placed inside the LED-based flasher, whereas a control unit is used to attain a light intensity of 168 

1000 W/m2 and ambient temperatures of 25 °C. Thereafter, the output power, current and resistive loss are 169 

measured using a data acquisition system which uses LabVIEW software. It is also worth noting that all 170 

tested samples get an illumination of 1000 W/m2 for a period of 5 milliseconds, this is the fastest rate of 171 

change that is possible for the flasher to switch its mode from the on/off state. Therefore the observed heat-172 

map and thermal-image corresponds to the actual change of the heat across the surface of the solar cell. 173 

   
                           (a)                                                 (b)                                                                      (c) 

 

Fig. 5.  (a) Cracked – non discontinuity in solar cell finger, sample 1, (b) Cracked – non discontinuity in solar cell finger, 

sample 2, (c) Illustration on the fingers main parameters, where the width of the cracked finger is reduced resulting a greater 

power loss 

 

 

 
                                                   (a)                                                                                            (b) 

 

Fig. 6. (a) Cracked solar cell tested under STC, (b) PV Class AAA Flasher setup 
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The output heat-map/thermal-image of the solar cell is shown in Fig. 8. By contrast with the results shown 174 

in Fig. 8(a), after ten seconds of evaluating the solar cell sample under STC, the temperature of the cracked 175 

area raised to 72.6 °C, whereas adjacent regions started to heat-up to a limit of 42.5 °C. Interestingly, due 176 

to the expansion of the heat over the whole solar cell, the heat of the cracked area started to decrease due 177 

to the flow of the heat over the full cell sample. In Fig. 8(b), thermal image of the solar cell sample is 178 

captured after 60 seconds, it is evident that the cracked area has a lower temperature of 43.9 °C, but more 179 

area of the solar cell is affected by a rise in the temperature. In addition, according to Fig. 8(c), after 120 180 

seconds (the test sample was still under STC), the solar cell sample almost have an identical temperature 181 

level of 34.3 °C, compared to original temperature of 26.7 °C, therefore, the increase of the solar cell 182 

temperature due to the existence of the micro cracks is raised by 7.6 °C. It is worth noting that this 183 

temperature level remains same after 120 seconds. This result confirms that micro cracks in solar cells cause 184 

hot-spots, where the main heat source of the cell is spread from the original cracked area, and it heats up 185 

significantly due to the excitation of the electrons through a thinner width of the metal carrying the current 186 

either in the fingers or busbars, subsequently an increase in the solar cell temperature will be garneted, as 187 

well as an increase in the output power loss would highly be expected. 188 

By contrast with above results, the heat is transferred from the hot-spot area to the rest of the solar cell due 189 

to the concept of heat by conduction. Conduction is the transfer of heat energy through a solid by the 190 

collision and vibration of molecules in the solar cell, without movement of the bulk material. For example, 191 

the hot-spotted area molecules interact with neighboring molecules, transferring some of their energy (heat) 192 

to these adjacent particles. And since this heat would decrease in the hot-spotted area and increase in the 193 

adjacent area, the solar cell temperature went steady. This phenomenon is well-known by the transient 194 

conduction where the heat is not only transferred through the solid using the vibration of the molecules but 195 

also as a function of time [24]. 196 

                 
(a)                                                                                     (b) 

Fig. 7. (a) Power loss estimation (~3.8%) for finger without existence of micro cracks, (b) Power loss estimation (~ 

42%) for finger including micro cracks 

 
                          (a)                                                             (b)                                                             (c) 

Fig. 8.  Heat-Map distribution of the cracked solar cell shown in Fig. 6, operating under STC, images are captured 

using FLIR thermal camera. (a) After 10 seconds, (b) After 60 seconds, (c) After 120 seconds – this level of 

temperature remains steady 
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According to [25] it was observed that 78% of the reverse power is turned into heat at the hot-spot area. 197 

The remaining fraction of the power was evenly distributed over the cell, accounting for the normal reverse 198 

current, possible contact resistance and additional small shunts. Consequently, the distribution of the heat 199 

over the cell is generated due to the reverse current flowing from the hot-spotted area throughout the cell 200 

using the adjacent fingers and busbar, successively reducing the output generated power of the affected 201 

solar cell. Similarly, authors in [26] presented a new method which provides simple and fast evaluation of 202 

the hot-spotted solar cells. It was shown that the heat of the affected solar cell by possible hot-spots could 203 

be distributed across the adjacent locations after a period of 60ms, where the main cause of the heat 204 

distribution is due to the existence of non-cracked fingers and busbars. 205 

In order to determine the I-V and P-V curves of the solar cell sample under STC, an experiment has been 206 

carried out using the class AAA LED flasher shown in Fig. 6(b). The obtained I-V and P-V curves are 207 

presented in Fig. 9. Compared to the theoretical predictions (discussed earlier in Table 1), the solar cell 208 

sample has almost equal Vmpp of 0.48V. However, there is drop in the Impp by 0.286A; Impp (theoretical: 209 

6.46A) – Impp (cracked solar cell: 6.174A). Resulting an output power loss of 4.39%; calculated as follows: 210 

𝑃𝑜𝑤𝑒𝑟 𝐿𝑜𝑠𝑠 (%) =  100 − ( 2.964 (𝑃𝑀𝑖𝑐𝑟𝑜 𝑐𝑟𝑎𝑐𝑘𝑒𝑑 𝑠𝑜𝑙𝑎𝑟 𝑐𝑒𝑙𝑙)3.1 (𝑃𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑤𝑒𝑟)  × 100 ) =  4.39% 211 

Another example of cracked fingers has been examined, the cracked cell is shown in Fig. 10. The cell is 212 

affected by three cracked fingers, where it is evident that there is a discontinuity in the finger connections, 213 

this would result an increase in the amount of heat generated by this particular case. 214 

 
Fig. 10.  Micro crack affecting three fingers – there is a discontinuity in the finger connection to the main busbar 

       
                                              (a)                                                                                             (b) 

Fig. 9 Obtained I-V & P-V curves of the cracked solar cell sample shown in Fig. 6(a) under STC 
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The examination of the heat-level of the solar cell, starting at 0 second; where the cell has not yet been 215 

tested under STC, ending up with 100 seconds, where at this stage the cell temperature remains at constant 216 

level. The results of the experiment are shown in Fig. 11. 217 

At zero seconds, the temperature of the cell is equal to 24.3 °C. The temperature of the cracked area raised 218 

to 105.1 °C after 20 seconds of testing the cell under STC. Ultimately, the heat-level of the cracked would 219 

decrease, due to the expansion of the heat over the cell, resulting a temperature levels of: 220 

1) 83.6 °C (40 seconds) 221 

2) 70.9 °C (60 seconds) 222 

3) 55.8 °C (80 seconds) 223 

4) 40.2 °C (100 seconds) - this level of temperature remains consistent 224 

In contrast with the results of the heat-distribution, the solar cell had an increase in the temperature of about 225 

15.9 °C; final temperature level 40.2 °C – original temperature level 24.3 °C. Therefore, this results 226 

confirms that micro cracks in solar cells are one of the main cause of PV hot-spotting, as well as, the 227 

increase in the size of cracked area, ultimately will increase the heat-level of the hot-spot in the affected 228 

solar cell. 229 

The solar cell sample has been tested under STC. The obtained I-V and P-V curves are presented in Fig. 230 

12. Compared to the theoretical predictions (discussed earlier in Table 1), the sample has almost equal Vmpp 231 

of 0.47V. However, there is drop in the Impp by 0.662A. Hence, the output power loss is equal to 12.09%; 232 

calculated as follows: 233 

𝑃𝑜𝑤𝑒𝑟 𝐿𝑜𝑠𝑠 (%) =  100 − ( 2.725 (𝑃𝑀𝑖𝑐𝑟𝑜 𝑐𝑟𝑎𝑐𝑘𝑒𝑑 𝑠𝑜𝑙𝑎𝑟 𝑐𝑒𝑙𝑙)3.1 (𝑃𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑤𝑒𝑟)  × 100 ) =  12.09% 234 

 
Fig. 11.  Heat-Map distribution from 0 to 100 seconds of the cracked solar cell shown in Fig. 9; the solar cell is 

operated under STC 
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C. Impact of Busbars and Rear Contact Surface Damage due to Micro Cracks and Poor 235 

Manufacturing/Soldering Practice 236 

Due to the Another remarkable result was observed while examining the solar cell samples, out of 4000 237 

there are 680 affected by cracks in the busbar. The micro cracks in the busbar leads to significant damage 238 

in the metal driving the current from the fingers outer to an external circuit. On the other hand, almost 380 239 

solar cell samples are affected by poor soldiering. 240 

A sample showing a poor adjustment of the busbar metal is shown in Fig. 13. As noticed, there are a number 241 

of cracks in the solar wafer, while the busbar contains multiple cracks. The silicon (Si) chemical 242 

composition is present instead of original chemical composition of the silver (Ag). This poor busbar 243 

structure leads to a second breakdown in the solar cell sample, ultimately causing hot-spot. 244 

The solar cell shown in Fig. 13 has been examined under STC (experimental setup similar to Fig 6). The 245 

solar cell has a micro crack as well as poor soldiering in the busbar. It is expected after 10 seconds the heat 246 

would increase significantly in the cracked area, and as shown in Fig. 14(a), the temperature of the cracked 247 

area increased to abnormal level of 91.4 °C. After 60 seconds, the heat started to expand over the entire 248 

solar cell, where the busbar and the cracked area has a temperature of 77.3 °C, as presented in Fig. 14 (b). 249 

       
                                              (a)                                                                                             (b) 

 

Fig. 12 Obtained I-V & P-V curves of the cracked solar cell sample shown in Fig. 10 under STC 

 

  

 

 
 

Fig. 13.  Micro cracks and soldering mismatch in a solar cell busbar 
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According to Fig. 14(c), the heat is spread all over the solar cell sample, the temperature is equal to 38.2 250 

°C; this temperature level stays consistent after 120 seconds. Therefore, this experiment proves that cracks 251 

in solar cell busbars have a significant impact on the solar cell heat level, ultimately initiating hot-spots. 252 

I-V and P-V curves for the solar cell sample have been measured under STC, results are presented in Fig. 253 

15. The measured Vmpp of 0.48V is identical with the theoretical predictions (presented earlier in Table 1). 254 

However, there is a drop in the maximum output current of 0.15A; Impp (theoretical: 6.46A) – Impp (cracked 255 

solar cell: 6.31A). Resulting a loss in the output power equals to 2.19%; calculated as follows: 256 

𝑃𝑜𝑤𝑒𝑟 𝐿𝑜𝑠𝑠 (%) =  100 − ( 3.032 (𝑃𝑀𝑖𝑐𝑟𝑜 𝑐𝑟𝑎𝑐𝑘𝑒𝑑 𝑠𝑜𝑙𝑎𝑟 𝑐𝑒𝑙𝑙)3.1 (𝑃𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑤𝑒𝑟)  × 100 ) =  2.19% 257 

 

 

 

 
                                (a)                                                    (b)                                                                (c) 

 

Fig. 14.  Heat-Map distribution of the cracked solar cell shown in Fig. 8. (a) After 10 seconds of operating the solar 

cell under STC, (b) After 60 seconds, (c) After 120 seconds – this level of temperature remains consistent 

  

       
                                              (a)                                                                                             (b) 

 

Fig. 15 Obtained I-V & P-V curves of the cracked solar cell sample shown in Fig. 13 under STC 
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The rear contact of a typical solar cell is far less important than the front contact, since it is much further 258 

away from the junction. However, the design of the rear contact is becoming progressively essential as 259 

overall efficiently increases and the solar cells become thinner. During the investigation of the rear contact 260 

of the examined solar cells, it was found that 320 solar cells are cracked; 240 samples are cracked in the 261 

surface, while 80 samples are cracked in both the surface and the rear busbar. Fig 16 shows the rear 262 

contact/view of an examined solar cell sample. The difference between the cracked and non-cracked area 263 

are shown in the figure. Principle, the cracked area consists of two chemical composition of aluminum (Al) 264 

and silicon (Si), while the non-cracked area is only made of aluminum.  265 

As shown in Fig. 16, the non-cracked area has multiple micro cracks of 50 µm width; nevertheless, it does 266 

not have a noteworthy loss to the solar cell rear contact. However, the actual size of cracked rear area varies 267 

from 4mm to 300 µm. This damage in the rear contact of solar cell resulting a limited open circuit voltage 268 

(Voc), subsequently will reduce the efficiency of the cell. In light of what was observed during the 269 

experiments, hot-spotting phenomena has no correlation with the presence of micro cracks in solar cells 270 

rear contact surface. 271 

Likewise, Fig. 17(a) shows a rear contact image for a solar cell samples affected by micro cracks in the 272 

surface and busbar. The solar cell was tested under STC, while the temperature of the cell has been captured 273 

and reported in Fig. 17(b); image is taken from 0 seconds to 100 seconds. 274 

At zero seconds, the temperature of the cell is equal to 25.2 °C. The temperature of the cracked area raised 275 

to 78.2 °C after 20 seconds. Eventually, the heat-level of the cracked area will decrease, due to the expansion 276 

of the heat over the cell and would result a temperature levels of 67.7 °C (40 seconds); 61.9 °C (60 seconds); 277 

51.6 °C (80 seconds); and 42.3 °C (100 seconds), this level of temperature remains consistent. In light with 278 

the results of the heat-distribution, the solar cell had an increase in its temperature of 17.1 °C; final 279 

temperature level 42.3 °C – original temperature level 25.2 °C. Therefore, this result shows the impact of 280 

micro cracks on the rear contract temperature, while it was evident that there is an abnormal increase in the 281 

cell temperature while performing at STC. 282 

                   
Fig. 16. Micro cracks affecting rear contact of a solar cell  
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I-V and P-V curves for the solar cell sample have been measured under STC, results are presented in Fig. 283 

18. The measured Vmpp of 0.48V is identical with the theoretical predictions (presented earlier in Table 1). 284 

However, there is a drop in the maximum output current of 0.215A; Impp (theoretical: 6.46A) – Impp (cracked 285 

solar cell: 6.245A). Resulting a loss in the output power equals to 3.29%; calculated as follows: 286 

𝑃𝑜𝑤𝑒𝑟 𝐿𝑜𝑠𝑠 (%) =  100 − ( 2.998 (𝑃𝑀𝑖𝑐𝑟𝑜 𝑐𝑟𝑎𝑐𝑘𝑒𝑑 𝑠𝑜𝑙𝑎𝑟 𝑐𝑒𝑙𝑙)3.1 (𝑃𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑤𝑒𝑟)  × 100 ) =  3.29% 287 

 
(a) 

 

 
(b) 

 

Fig. 17. Micro cracks affecting rear contact surface and busbar of a solar cell. (a) Crack affected rear surface and 

busbar; images magnification of 2mm, 500µm and 100µm, (b) Heat-Map distribution from 0 to 100 while the solar 

cell is illuminated under STC 
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IV. Conclusion 288 

The impact of Photovoltaic (PV) micro cracks has been assessed through the analysis of 4000 289 

polycrystalline silicon solar cells. The inspection of the cracks has been carried out using an electron 290 

microscopy, which facilitate the detection of the cracks though the acquisition of both Everhart-Thornley 291 

Detector (ETD) and the Back Scatted Electron Diffraction (BSED) image, where it was found that the size 292 

micro cracks are ranging from 50µm to a maximum of 4mm. Micro cracks have been categorized into two 293 

main categories, including:  294 

1) Front contact cracks affecting wafer, fingers and busbar. 295 

2) Rear contact cracks affecting rear furnace and the busbar. 296 

 Various remarkable observations have been found, including: 297 

1) The output power loss due to micro cracks ranging from 0.9 to 42.8%. 298 

2) Cracks in solar cells fingers reduce the finger width, resulting an increase in the power loss by at 299 

least 1.7%. 300 

3) There is a significant correlation between PV hot-spots and existence of micro cracks. While the 301 

temperature of a cracked solar cell sample could increase by 7.6 °C or more, resulting a permanent 302 

hot-spots in the affected cell. 303 

In future, it is intended to investigate the mitigation of micro cracks in solar cells, and develop a novel 304 

intelligent detection system to locate and possibly evaluate the impact of such cracks on the output power 305 

performance of solar cells. 306 
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