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Bone metastasis in breast cancer is associated with high mortality. Biomechanical cues

presented by the extracellular matrix play a vital role in driving cancer metastasis. The lack

of in vitromodels that recapitulate themechanical aspects of the in vivomicroenvironment

hinders the development of novel targeted therapies. Organ-on-a-chip (OOAC) platforms

have recently emerged as a new generation of in vitro models that can mimic cell-cell

interactions, enable control over fluid flow and allow the introduction of mechanical cues.

Biomaterials used within OOAC platforms can determine the physical microenvironment

that cells reside in and affect their behavior, adhesion, and localization. Refining the

design of OOAC platforms to recreate microenvironmental regulation of metastasis and

probe cell-matrix interactions will advance our understanding of breast cancer metastasis

and support the development of next-generation metastasis-on-a-chip platforms. In this

mini-review, we discuss the role of mechanobiology on the behavior of breast cancer and

bone-residing cells, summarize the current capabilities of OOAC platforms for modeling

breast cancer metastasis to bone, and highlight design opportunities offered by the

incorporation of mechanobiological cues in these platforms.

Keywords: organ-on-a chip, breast cancer, metastasis, microenvironment, biomaterials

INTRODUCTION

Metastasis is a complex and dynamic process. Breast cancer cells (BCCs) can remain dormant at
the metastatic site, triggering relapse years after the treatment of the primary tumor. The presence
of metastases in breast cancer patients decreases the 5-year overall survival rate to 27% (1). The
development of physiologically relevant in vitro models that recapitulate key aspects of the in vivo
mechanical microenvironment is urgently needed to advance our understanding of the biophysical
forces that drive the various aspects of the metastatic cascade.

One reason why breast cancer metastases are challenging to model is the dynamic complexity of
the tumor microenvironment (TME), which is increasingly recognized as a key factor in metastasis.
During tumor progression, the extracellular matrix (ECM) undergoes substantial modification by
cancer cells, surrounding cancer-associated fibroblasts and immune cells. These changes in the
TME lead to the induction of angiogenesis and abnormal tissue function, contributing tometastasis
(2). Advancing our understanding of the physical TME and developing physiologically relevant
in vitro models of tumor complexity will increase the correlation between in vitro preclinical
data and clinical outcome. Monolayer cell cultures are unable to simulate the complex TME
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and lack appropriate cell-cell and cell-matrix interactions (3).
Whilst animal models allow for the consideration of cell-cell
and cell-matrix interactions, they require extensive training,
are ethically controversial, and do not always translate to
human disease due to intrinsic genetic and physiological species
differences (4).

Organ-on-a-chip (OOAC) platforms, also known as
microphysiological systems, are three-dimensional (3D) in
vitro models that contain cell-lined micro-channels, and
are continuously perfused with culture medium (5). OOAC
platforms are able to recreate the multicellular architecture and
microenvironment of the tissue(s) being studied (6). However,
the absence of immune, inflammatory and metabolic responses,
limited culture span, and specific challenges associated with the
representation of each organ with multiple connected tissue
types (multi-OOACs) reduces their usability (7). In addition,
the use of animal-derived matrices, such as the commonly
used Matrigel, can lead to reproducibility issues (8). The
potential of OOAC platforms to make an impact on academic
research and industrial drug discovery is driving investment
into new microfluidic approaches to model metastasis (9). Drug
development necessitates well-defined, connected mixed-cell
models that combine physiological flow and a supporting,
physiologically relevant ECM. Functional OOAC platforms that
allow communication between primary and secondary sites, each
incorporating distinct, tissue-specific mechanobiological cues
(Figure 1), will inform research and facilitate drug discovery by
replacing the currently available poorly predictive models.

The strategic combination of tissue engineering strategies
and OOAC platforms provides a path toward the construction
of models that are truly physiologically relevant. While OOAC
engineering is a growing field that is generating considerable
scientific interest, especially in preclinical testing, the creation
of environments that possess sufficient physiological complexity
takes more than linking individual cell populations via
microfluidics. This mini-review addresses the key question
of how the design of OOAC platforms can be enhanced,
summarizes current capabilities of OOAC platforms for
modeling breast cancer metastasis to bone, and highlights the
role of biomaterials in engineering physiologically relevant
microenvironments and the design opportunities offered by the
incorporation of mechanobiological cues.

ROLE OF THE PHYSICAL
MICROENVIRONMENT AS A DRIVER OF
BONE METASTASIS

Tumor progression and metastasis is guided by cell interactions
with the surrounding biochemical, cellular and mechanical cues.
The ECM provides physical and biochemical cues for cellular
proliferation and migration (10). Such interactions influence
their behavior and consequently activates different signaling
pathways (11, 12). Factors to consider when engineering physical
microenvironments include matrix elasticity, topography, flow
within the system and substrate chemistry (Figure 1).

Matrix Elasticity
Breast tissue stiffness plays a role in the development of
breast cancer (13), with mammary tissue undergoing up to 20-
fold stiffening during tumor progression (14). Non-tumorigenic
MCF-10A human breast epithelial cells cultured in a matrix
of a stiffness of ∼1 kPa has been reported to cause tumor-
like development in these cells compared with those cultured
on native mammary tissue stiffness of ∼150 Pa, which did not
develop a cancerous phenotype (15). Matrix stiffness affects
genome accessibility, mediating the induction of malignancy
via increased matrix stiffness (16). Stiffening of the ECM
causes non-tumorigenic mammary epithelial cells to develop an
invasive phenotype and activate mesenchymal gene expression
(17). Matrix stiffening from <150 Pa to >3,000 Pa, at specific
time points, was reported to promote epithelial-mesenchymal
transition (EMT) in mammary epithelial cells (14). Matrix
stiffness-induced EMT was reported in breast epithelial cells
when grown on 5.7 kPa gels that mimic tumor stiffness, but not
when cultured on gels that mimic the natural stiffness of breast
tissue, via a TWIST1–G3BP2 mechanotransduction pathway
(18). Malignant BCCs have been shown to adapt and survive on
collagen matrices of different densities, whereas non-metastatic
BCCs cannot (19). Cancer progression is also associated
with significant softening of tumor epithelial cells relative to
normal mammary epithelium, as detected by indentation-type
atomic force microscopy (AFM), as well as broadening stiffness
distribution of the TME (20). This demonstrates the dynamic
nature of extracellular matrix remodeling in cancer progression.

The stiffness gradient within a tumor also affects themigration
ability of BCCs. Anisotropic stiffness gradients caused by
remodeling of the ECM triggers directional cell migration and
increases BCCs ability to migrate and metastasize (21). Different
types of BCCs respond differently to various levels of matrix
stiffness. Triple-negative BCCs favor honeycomb geometries
with greater stiffness, adenocarcinoma MCF-7 cells prefer mesh
scaffolds with low elastic modulus, and pre-malignant cells favor
aligned scaffolds with high stiffness and contact guidance (22).
Additionally, it has been reported that rigidity sensing by healthy
mammary cells is impaired in BCCs but remains active in normal
mammary cells (23). This is further supported by work by Tse
et al., who showed that compressive stress that accumulates
during tumor growth can promote the migration of BCCs by
stimulating the formation of leader cells and increasing cell–
substrate adhesion (24).

Bone is a highly heterogeneous tissue. Elastic and viscoelastic
measurements on cortical and trabecular bone have reported
varying Young’s/shear moduli in the GPa range (25–27).
Differences within bone and bone marrow, determined by cell
type and ECM components, also plays a significant role in
bone metastasis in vivo (28). The endosteal surface is reported
to be over 35 kPa, marrow sinusoids are more compliant (2–
10 kPa), while the densely-populated central marrow is much
softer (0.3 kPa) (29). Matrix elasticity has been shown to drive
the differentiation of mesenchymal stromal cells (MSCs) (30).
Furthermore, matrix stiffness modulates cellular stiffness during
the differentiation process: The rate of increase in cellular Young’s
modulus during osteogenic differentiation has been positively
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FIGURE 1 | Mechanobiological design considerations for metastasis-on-a-chip systems mimicking breast cancer metastasis to bone. Breast cancer cells (BCCs)

invade the extracellular matrix (ECM), intravasate into blood vessels where they circulate in the vascular system before extravasating into a secondary site, in this case

bone, where they grow into secondary tumors in vivo. A breast cancer-mimicking compartment should be made up of appropriate breast cancer cells and a

surrounding ECM that will generate physiologically relevant matrix stiffness. A bone-mimicking compartment will consist of bone-residing cells, including mesenchymal

stromal cells, osteoblasts, and osteoclasts, as well as key bone ECM components, such as hydroxyapatite. The ECM components included will define the elasticity,

topography and chemistry of the matrix. Interconnected, physiologically relevant fluid flow between compartments will allow cancer cell migration to the secondary site

and the formation of suitable cytokine/growth factor gradients. Portions of the schematic were produced using Servier Medical Art (smart.servier.com).

correlated with matrix stiffness (31). Bone matrix elasticity also
plays a role in the regulation of immune response by MSCs: Soft
extracellular matrices maximize the ability of MSCs to produce
paracrine factors that are implicated inmonocyte production and
chemotaxis upon inflammatory stimulation by tumor necrosis
factor–α (TNFα) (32).

Matrix elasticity has also been shown to prime breast
epithelial cells and regulate their collective migration (33).
Epithelial cells primed on stiff matrices were reported to
migrate faster, display higher actomyosin expression, form
larger focal adhesions, and retain nuclear Yes-associated protein
(YAP), even when cells had arrived at a softer secondary
matrix. This showed that epithelial cells have memory of past
matrix stiffness (33). Bone matrices with high elastic moduli,
e.g., 380 kPa, can impart a bone-destructive phenotype in
triple-negative MDA-MB-231 breast cancer cells via regulating

integrin-β3 (Iβ3) and transforming growth factor-β (TGF-
β) (34). Furthermore, parathyroid hormone-related protein
(associated with tumor destruction of bone) and Iβ3 expression
increases with increasing substrate rigidity (34), promoting the
progression and symptoms of bone metastasis. A reduction in
matrix elasticity from 35 to 0.5 kPa was shown to increase
MSCs homing to the breast TME (35). Migration of MSCs
to the TME has been associated with an enhancement of
tumor growth due to BCCs stimulating de novo secretion
of the chemokine CCL5 from MSCs. CCL5 acts on BCCs
to enhance their motility, invasion and metastatic capability
(36). Migration rate of MDA-MB-231 cells toward a human
trabecular bone explant was enhanced when cultured in stiffer
gelatin hydrogels relative to softer ones, signifying an association
between mechanical properties of the matrix and chemotactic
signaling (37).
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Human tissues exhibit viscoelasticity, which is a time-
dependent response to loading or deformation. Viscoelastic
materials display a combination of elastic and viscous
characteristics (38). Breast cancer progression has been
linked to variations in tissue viscoelasticity, with remarkable
differences reported between benign and malignant tumors
(39). Additionally, MSCs have been found to exhibit
enhanced proliferation and osteogenic differentiation when
cultured in 3D viscoelastic alginate hydrogels that exhibit
faster stress relaxation. These effects were mediated by
actomyosin contractility, adhesion ligand binding and ligand
clustering (40).

Topography
Topography is defined as the microscopic surface features that
cells interact with, and is determined by the hierarchical structure
of the ECM and roughness (41). Topography of the breast TME
is a mixture of ridges, pores and collagen fibers, which makes
it challenging to mimic in vitro (42). Topography regulates the
expression and translation of human epidermal growth factor
receptor type 2 (HER-2) (42), which is a predictive biomarker
of the clinical efficiency of chemotherapeutic agents (43). While
normal breast epithelial cells has been reported to show increased
proliferation on topographically-patterned surfaces, defined by
the presence of polystyrene beads of 23, 300, or 400 nm in
diameter, estrogen receptor-positive MCF-7 breast cancer cell
line showed lower proliferation (44). Furthermore, different BCC
populations show distinctive behaviors on varying patterned
culture substrates, dependent on cancer subtype. Metastatic
MDA-MB-231 cells display uneven vinculin distribution when
cultured on patterned substrates but not flat ones. On the
contrary, non-metastatic MCF-7 cells do not exhibit this non-
uniform vinculin distribution regardless of the substrates used.
Significant difference in motility was also reported between the
two cell lines (45).

Trabecular bone consists of a highly porous lattice network
encompassing marrow and determines the topography of
the majority of bone metastatic sites (29). Topography
can be more dominant than biochemical cues and matrix
elasticity in determining behavior of MSCs (30), and has
been used to guide their differentiation (46, 47). Adhesion
of MSCs was also shown to be bi-phasically regulated
by interfacial roughness (48). In the context of bone
remodeling, previous studies have reported the impact of
surface topography on osteoclast differentiation and resorption
(49, 50).

Guidance from matrix topography is a key regulator of
metastasis. Nuclei of BCCs undergo extensive deformation
when migrating through tight interstitial spaces (51). Topotaxis
(directed cell migration guided by a gradient of topographical
features) has also been suggested to influence the invasiveness
of cancers (52). Benign and metastatic BCCs favor movement
parallel to nano-ridges, showing greater speeds relative to flat
surfaces. In contrast, asymmetric sawtooth structures create a
unidirectional, cell type-dependent bias in the movement of
BCCs (53).

Flow
Shear stress, which is induced by fluid flow, contributes to
proliferation and metastasis of tumor cells. Flow can either be
through vasculature or through the ECM, the latter termed
interstitial flow (54). Whilst different tissues support different
flow rates, flow within solid tumors is generally much lower than
in healthy tissue due to underdeveloped vasculature (55).

Flow within breast tissue has a significant impact on BCCs
within the primary tumor. Higher flow rates promote EMT
and increase cell metastatic capability (56), which promotes
the conversion of BCCs into cancer stem-like cells and tumor-
initiating cells by the suppression of extracellular signal-related
kinase/glycogen synthase kinase 3β pathway (56). Interstitial
fluid flow also generates mechanical forces that modulate tumor
growth (57). Interstitial shear stress within breast tumor tissues
is reported to create pressures of around 0.001 Pa (58) while
circulating cancer cells can experience up to 3 Pa (59). When
extravasation of cancer cell clusters (up to 20 cells) were
investigated in a microfluidic device containing micro-channels
with narrow constrictions of 5–10µm, most were observed to
migrate through the narrowest constrictions of 5µm, unfolding
into chain-like arrangements as they approached them and
forming clusters as they exit. Clusters of over five cells displayed
a migration velocity similar to the sum of resistances of the
cluster’s cells (60). Only 0.02% of circulating tumor cells survive
to successfully undergo metastasis owing to anoikis, natural killer
cells and mechanical damage by shear stress (61). Fluid flow
also creates shear stress on endothelial cells, which leads to
vasculature remodeling, cytoskeletal rearrangement and changes
in the expression of transcriptional genes (62).

Interstitial fluid flow in tissues exposed to repeatedmechanical
loading, such as bone, induces variable levels of fluid shear
stress of up to 3 Pa (63). Flow within bone causes osteocytes to
release signaling factors, including nitric oxide and prostaglandin
E2. These influence osteoblast behavior and trigger osteocytes
to release receptor activator of nuclear factor kappa-B ligand
(RANKL) and osteoprotegerin, the ratio of which is indicative of
the amount of bone resorption (64). Laminar flow within bone
is altered by compressive loading, muscle contractions, blood
pressure changes and mechanical loading, and this generates
varying shear stress on cells (65). Additionally, different cell
types experience flow differently within the bone. Osteoclasts
experience high flow and shear stress as they are directly exposed
to flow through the lacunar-canalicular system (66). Osteoblasts,
however, experience less flow and shear stress (67). Flow within
the bone is also altered by the degree of mineralization, which
changes the shear stress forces that cells experience (64).

Flow within bone has a significant impact on metastatic BCCs
present, as increased bone remodeling can promote proliferation
of BCCs (68). The “vicious cycle theory” states that osteoclastic
bone resorption releases bone-derived growth factors, including
TGF-β and insulin-like growth factor-1, which stimulates
metastatic cancer cells to release osteoclast-stimulating factors,
such as parathyroid hormone-related protein. These in turn
causes further bone destruction through upregulated RANKL
expression in MSCs and osteoblasts. This promotes the
differentiation of RANK-expressing osteoclast precursor cells
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into mature osteoclasts, which resorb bone and so the cycle
continues (69).

Biomineralisation
Bone ECM comprises collagen, laminin, fibronectin, adhesive
proteins, adipocytes, proteoglycans (70), and natural bone apatite
(71). Around 60% of the dry weight of adult human cortical
bone is mineral (71, 72). Mineral in bone is documented to be
chemically similar to hydroxyapatite [HAp; Ca10(PO4)6(OH)2]
although it tends to be less crystalline, more soluble, and
highly substituted in the human body (73). HAp is known
to interact with a variety of proteins, such as osteopontin,
to support cell adhesion (74). Crystallinity, particle size,
and substitution of HAp all affect cellular behavior. Highly
crystalline HAp exhibits increased osteoconductivity (75).
Smaller, less crystalline HAp enhances cell adhesion and
proliferation whereas larger, more crystalline HAp particles
enhance expression of the osteolytic factor interleukin-8 (IL-
8) in BCCs (76), but not in the more benign MCF-7 cells
(77). It has also been revealed that HAp has a role in
the adhesion of BCCs (78) and causes BCCs to secrete
higher levels of cytokines, including TGF-β and pro-osteoclastic
IL-8, relative to non-mineralized scaffolds (79). IL-8 drives
bone degradation (76) and results in the clinical symptoms
of bone metastases, namely bone pain and pathological
fractures (80).

It has been long understood that HAp, in the form of
microcalcifications, is also found within breast tissue of
breast cancer patients (81). The processes by which these
microcalcifications form are largely unknown despite
being positively correlated with BCCs mitogenesis (81).
Microcalcifications with larger HAp particles have been
more strongly associated with malignant breast cancer than
microcalcifications made up of smaller particles (82). HAp has
been implicated in upregulating the expression of several matrix
metalloproteinases (MMPs), including MMP-2, MMP-9, and
MMP-13, which promote BCCsmigration due to decreased ECM
elasticity (81). The existence of a direct relationship between
mineral deposition and the ability of BCCs to metastasize to
distant organs suggests a link between mineral deposition in the
breast and metastasis. This has been suggested to be through the
regulation of osteopontin expression (83).

HAp has also been implicated in promoting the colonization
of metastatic BCCs in bone (84, 85). Although processes by
which BCCs preferentially target bone and induce pathological
remodeling remain unclear, there is increasing evidence that
HAp is involved in this. HAp increases the expression of
stromal-derived factor-1 (SDF-1) which promotes the activation
of the migratory axis in BCCs thus directing their circulation
to bone via increased signaling through the chemoattractant
CXCR4 (85). Mineral-mediated changes in the collagen network
were reported to result in increased cell motility (86).
However, HAp inhibited directed migration of BCCs (86). These
results suggest that mineralization of collagen fibrils reduces
tumor cell adhesion, which may affect skeletal homing of
disseminated tumor cells in the early stages of breast cancer
metastasis (86).

MECHANOBIOLOGICAL DESIGN
OPPORTUNITIES FOR ORGAN-ON-A-CHIP
PLATFORMS

OOAC platforms often consist of inlet and outlet ports for
media to flow through and single or multiple chambers
connected in different ways, allowing for interactions between
various cell types (87). Microfluidics-based models have been
designed in numerous ways to study the interactions of
BCCs with the bone metastatic niche (Table 1). This approach
has revealed that BCCs have a preference to extravasate
to bone-specific microenvironments (93, 95), with flow-
conditioned BCCs migrating further into the surrounding
matrix relative to static controls (94). However, there are
limitations to these microphysiological models. Many do not
include vasculature, a distinct breast cancer compartment
and/or a representation of the secondary site, and therefore
cannot be effectively used to comprehensively study certain
steps of the metastatic cascade (90, 92, 93). BCCs are
commonly introduced directly to the secondary site rather
than breaking away from the primary location, such that
these models cannot be used to study extravasation (91,
94). Microfluidic approaches for investigating extravasation in
metastasis have been reviewed previously (97). Another example
is a microfluidics-based model consisting of vascular and tumor
compartments only, which was used to investigate the formation
of vascular vessels by endothelial cells (98). Metastatic tumor
cells and tumor cell-conditioned media were shown to increase
endothelial cell permeability and impair endothelial cell-cell
junctions (98).

There are a range of commercial microfluidic models that
can be used to explore breast cancer metastasis to bone. These
have been reviewed for their use in basic discovery research (9)
as well as in drug testing and diagnostics (99). Commercialized
devices are valuable as they can be tested across numerous
laboratories and offer a standardized model. Examples include a
microfluidic model used to investigate osteogenic differentiation
in vitro using a flow rate ranging between 0 and 1,000 µL/h
(100) and studying BCCs migration and proliferation in the
presence of mechanical stimulation of osteocytes (101). However,
other key substrate design parameters were not considered,
such as topography. Another microfluidic model was used to
recreate bone marrow cell populations with hydroxyapatite and
a fluid shear stress range of 0.02–2 Pa, but did not recapitulate
the heterogeneity of bone ECM stiffness and topography (102).
A different microfluidics model was used to assess sensitivity
to doxorubicin when cells are cultured in 2D vs. 3D (breast
tumoroids) using physiologically relevant pressure and flow (550
µL min−1), highlighting the importance of a 3D environment
(103). Lanz et al. proposed a high-throughput microfluidics-
based platform with individual breast cancer spheroids for
drug screening (104). This model utilized a gravity driven
pump-free perfusion via a rocker system, generating fluidic
shear stress of 0–0.3 Pa (9). Whilst this alone cannot be
used to comprehensively investigate the metastatic process, it
exemplifies the potential of incorporating both flow and varying
ECM composition.
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TABLE 1 | Overview of microfluidic systems that study the role of the bone microenvironment in breast cancer metastasis, highlighting biomaterials used.

Area of research Relevant cells used Cell growth surface Key findings Reference

Role of bone cells and

mineralization in

adhesion of BCCs

Murine RAW264.7 (OCs),

MDA-MB-231, MCF-7

3D HAp-mineralized, porous scaffolds

made of PLG microspheres

HAp enhances BCCs proliferation and

adhesion to the matrix.

HAp upregulates the secretion of IL-8 by

BCCs, which induces inflammatory response,

angiogenesis and osteoclastic resorption.

(79)

Role of bone structure

and mineralization

parameters in adhesion

of BCCs

hMSCs, MDA-MB-231,

MCF-7

3D porous chitosan scaffolds containing

HAp with different crystallinities,

concentrations and grain sizes

(micron/nano)

BCCs adhesion was increased in scaffolds

containing 10% nano-crystalline HAp

compared to those containing microcrystalline

HAp.

Coculture with hMSCs in HAp-containing

scaffolds induced the upregulation of

expression of the metadherin gene in BCCs

(enhances metastatic potential and

chemoresistance of BCCs).

(78)

MDA-MB-231 Porous PVA scaffolds generated via

foaming and freezing and then mineralized

via immersion in modified HBSS for 14

days.

The greater the extent of mineralization of the

scaffold, the greater the adsorption of serum

proteins leading to higher BCC adhesion and

proliferation.

(88)

Role of bone

mineralization in

adhesion of BCCs

MDA-MB-231 3D porous scaffolds containing HAp

nanoparticles. HAp was aged for different

lengths of time to increase crystalline

development and added to the scaffold.

The smaller and less crystalline the HAp

nanoparticles, the greater the adhesion of

BCCs. Larger, more crystalline HAp particles

stimulate more IL-8 production.

(76)

Role of bone structure

in adhesion and

survival of BCCs

hMSCs, MDA-MB-231 Scaffold was 3D printed with different

geometries created: either large or small

square or hexagonal pores. Printable ink

consisted of HAp nanoparticles

suspended in PEG/PEG-DA hydrogel.

Different geometries of 3D scaffolds influenced

BCC adhesion, with the small square matrices

displaying greater cell numbers than the others.

BCCs were less responsive to 5-FU in 3D HAp

scaffolds with their optimized geometry.

(89)

Role of bone cells in

survival of BCCs

Human fetal osteoblast

cell line (hOBs),

MDA-MB-231

Porous constructs were 3D printed to

allow for BCCs to form spheroids within

the scaffold

Enhanced BCCs proliferation on

HAp-containing matrices. BCCs co-cultured

with hOBs directly affected the morphology,

proliferation and IL-8 secretion by OBs.

(90)

Role of bone in

colonization by BCCs

ECs, MSCs,

MDA-MB-231

Decellularised bone matrix within a

microfluidic chip

Interstitial flow promotes colonization of BCCs

in the bone microenvironment and BCCs

exposed to interstitial flow display a

slow-proliferative state linked with

chemoresistance.

(91)

MDA-MB-231 and murine

MC3T3-E1

Collagen-HAp composite in a PDMS

device.

Osteoblastic tissue was invaded by BCCs,

which eroded apical collagen and consumed

the surrounding matrix.

(92)

Role of bone in

extravasation of BCCs

hMSCs, HUVECs,

MDA-MB-231

Cells grew in a PDL-coated PDMS

channels, with a thin Matrigel layer coating

the central media channel

BCCs extravasated significantly more in the

bone-like microenvironment compared to

collagen-only controls.

Extravasation rate was associated with

paracrine signaling via CXCL5 and CXCR2.

(93)

hMSCs, OBs, HUVECs,

MDA-MB-231

Cells mixed into a fibrin gel within a PDMS

microfluidic device.

BCCs responded to the bone stromal cells via

paracrine signaling, and this increased

extravasation rate. Extravasation rate in

bone-like environments was significantly higher

relative to muscle-like microenvironments or

controls.

(94)

HDMECs, MDA-MB-231 Cells were seeded directly into a PDMS

microfluidic device with no additional

biomaterials

CXCL12 acts through CXCR4 on HDMECs to

promote the adhesion of circulating BCCs,

which promotes extravasation.

(95)

hOBs, HDMECs, MSCs,

HLF, MDA-MB-231

Multilayer microfabrication method used.

Cells were seeded into rat tail collagen

type I to introduce into PDMS microfluidic

device

Bone-like microenvironment promoted

extravasation of bone-tropic BCCs, suggesting

OBs influence selective extravasation of BCCs.

(96)

BCCs, breast cancer cells; FBs, fibroblasts; hMSCs, human mesenchymal stem cells; hOBs, human osteoblasts; ECs, endothelial cells; HDMECs, human dermal microvascular

endothelial cells; HAp, hydroxyapatite; HLF, human lung fibroblasts; HBSS, Hanks’ Balanced Salt Solution; HUVECs, human umbilical vein endothelial cells; IL-8, interleukin-8; OCs,

osteoclasts; PLG, poly(lactic-co-glycolic acid); PEG, poly(ethylene glycol); PEG-DA, poly(ethylene glycol) diacrylate; PDL, Poly-D-lysine; PDMS, polydimethylsiloxane; PVA, polyvinyl

acetate; 5-FU, 5-fluorouracil.
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Whilst polydimethylsiloxane (PDMS) is the most common
elastomer used for the development of OOAC platforms for
research and fast prototyping, commercial models are often
manufactured using hard plastics, such as polystyrene, to reduce
production costs and time. The majority of these products
have a solid structure, with the exception of lung-on-a-chip
devices, where the device structure includes an elastic silicone
membrane that can be stretched to create periodic mechanical
forces and adapts to fluid stress, thus mimicking tissue dynamics
(5). However, polymers used for the fabrication of membranes
typically used in OOAC platforms are flat and do not account
for tissue surface morphology. The degradability of these elastic
polymers is another important consideration, as this determines
possible changes in membrane properties over time and potential
cytotoxicity issues that may arise.

To expand the potential of these devices, more sophisticated
engineered environments must be created that embrace
biomimetic topographical, elasticity and chemical engineering
design aspects. Figure 1 presents various mechanobiological
parameters that could be incorporated into OOAC platforms to
allow the investigation of the complex metastatic pathway. There
have been recent advances in OOAC platforms with multiple
linked organs (105–108). Many challenges remain, including
choice of culture medium across organ representations, ensuring
optimal organ-specific time points in protocols, and creating
approaches for on-chip imaging and non-invasive sample
analysis over extended time periods.

Engineering Matrix Elasticity
Studies into the influence of matrix elasticity on breast and bone
tissues gives rise to fundamental knowledge that can be applied to
OOACplatform design.Methacrylated hyaluronic acid hydrogels
have been used to mimic the stiffening of breast tissue in
microwell plates to model epithelial-mesenchymal plasticity and
the metastatic capability of BCCs (14). Polyethylene glycol
(PEG) have also been introduced into collagen gels to alter
their stiffnesses without altering their microstructures (109).
These can be applied within OOAC models, where PEG
is mixed with cells and pre-gelled collagen solution before
inserting into the platform. Gel formation would then be
induced by changing pH. PEG changes the non-covalent forces
that are responsible for collagen self-assembly, so varying the
concentration of PEG can vary the stiffness of collagen gel
(109). With UV-crosslinked hydrogels, such as PEG and its
derivatives, stiffness can be tailored by modifying macromer
content and molecular weight (30). Another example are PEG-
based hydrogels containing enzymatically degradable peptide
sequences with varying concentrations of the integrin ligating
peptide RGDS, and the non-degradable, co-monomer N-vinyl
pyrrolidinone (NVP) (110). This allows tuning of cross-linking
density and degradation, and has been shown to generate
different phenotypic states in BCCs (110). However, changes
in the content of the monomer and crosslinking will alter the
porosity of the matrix; this impacts protein tethering, which in
turn influences stem cell differentiation (111). Whilst this is an
effectivemethod for the inclusion of customizablematrix stiffness

within OOAC platforms, it does not permit dynamic changes in
stiffness of the TME as seen in cancer progression.

Conventional hydrogels offer inadequate dynamic signals,
such as spatial or temporal control of formation/degradation,
and the mechanical strength required to mimic bone stiffness.
One way to mimic the dynamic TME is to use tunable
hydrogels, which allow flexible control of the biophysical features
of the gels in question to study how changes in matrix
stiffness affect a cell population over time. One example is
photodegradable hydrogels. Light-responsive biomaterials are
of interest as an approach for spatiotemporal regulation of
cell dynamics. These can be modified in a controlled manner
by illuminating with light of specific intensity and wavelength
(112). Progress has been made in the synthesis of dynamically
tunable photo-responsive biomaterials (113, 114). For 4D cell
culture (where 3D culture substrates are used to present changing
biophysical or biochemical properties over time), chemically-
decorated hydrogels have been fabricated with a combination of
photochemistry and other orthogonal click reactions (115, 116).
Temporal and spatial control of in vivo presentation of cell-
adhesive RGD peptides has also been reported using a protecting
group that can be removed via transdermal light exposure to
activate the peptide (117). Temporal stiffening of substrates
is key to mimicking breast cancer progression in vitro, and
was reported to induce invasion from MCF-10A mammary
acini (15). Innovative engineering of the mechanics and multi-
scale architecture of tunable hydrogels is needed to achieve
physiologically relevant features for in vitromodeling.

Cells often exhibit directed migration in response to the
rigidity of the surrounding environment, migrating toward stiffer
regions. This mechanosensitive behavior is termed durotaxis.
Matrix elasticity gradients can be created to mimic in vivo
stiffness gradients by exploiting chemical and mechanical
gradients within OOAC platforms. This has been previously
used to investigate haptotactic behavior in neurite growth, where
a matrix elasticity gradient was created across an H-shaped
collagen gel to investigate neurite growth (118). Additionally,
matrix stiffness of the secondary site needs to be considered as
bone ECM is much stiffer than breast tumor ECM.

Incorporation of Topographical Features
Anumber of attempts have beenmade to incorporate topography
in microfluidic devices. Replication of bioinspired surfaces with
tunable 3D topography has been achieved using microinjection
compression molding with novel dual-layer molds to create
open microfluidic devices (119). Yang et al. fabricated nano-
patterned surfaces using photolithography and electron beam
lithography and stitched them together to assemble PDMS-
based microfluidic platforms (120). Integration of patterned
electrospun fibers into microfluidic systems to create aligned and
random patterns in PDMS microfluidic chips was also used to
create a complex microenvironment to mimic that in vivo, as
validated by neural stem cell alignment (121). Another method
to integrate topography is by surface patterning, for example
PDMS grates. Grates with widths from 2 to 4µm have been
shown to cause MDA-MB-231 cells to align along the grating
length and to increase the extension and spreading of these
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cells compared to planar controls (122). Topography can also be
exploited in OOAC platforms to mimic BCCs migration seen in
vivo. For example, nanoscale ridges have been shown to enhance
the movement of benign and metastatic BCCs relative to flat
surfaces (53).

Polyacrylamide hydrogels with different patterns, including
spirals, stars, and squares, have been employed to study the
concept of ‘topographical memory’, showing that topography
can affect histone modifications and prime cancer cells to a
tumorigenic state (123). Different shaped fibers have been tested
for their topographical effect on BCCs, with curved polystyrene
fibers causing MDA-MB-231 cells to exhibit sensitivity to
curvature, in terms of eccentricity (measurement of protrusion
width), compared to flat ribbons (124). Varying the diameter
of type I collagen fibers has also been investigated, where
BCCs exhibited ∼20% increase in cell spreading on type
I collagen fibers with a diameter of 850 nm compared to
550 nm. Cell invasiveness also increased with fiber diameter,
although proliferation was unchanged (125). This shows that
cell response and tumor invasiveness are dependent on substrate
surface patterns and collagen fiber diameter, and highlights the
importance of considering topography of the microenvironment
created within OOAC platforms.

Constructing appropriate topographical cues within
metastasis models is essential, in terms of both the surfaces
which cells have to travel over and the environment which they
must travel through. The dimensionality, length and scale of
the physical microenvironment has been reported to influence
MDA-MB-231 triple-negative carcinoma cell signaling and
decision-making at intersections of micro-contact printed lines
(126). Cells confined in narrow micro-channels, and therefore
had fully explored their microenvironment, favored entry into
wider branches at bifurcation points, whereas cells in wider
channels made pore size–independent decisions (126). Cancer
cells traveling through ECM pores, modeled using a microfluidic
device containing micro-channels of varying widths (3–50µm),
was shown to prevent the normal increase in cellular size during
cell cycle progression, resulting in a reduction in the frequency
of cell division and an increase in the frequency of abnormal
division events (127). Pore size reduction within collagen-PEG
mesh networks causes BCCs to exhibit reduced cell spreading,
increased cell-cell adhesion protein expression, larger cell
aggregates and triggers morphogenesis (128).

One way of incorporating topographical cues within OOAC
platforms to mimic topographical variations sensed bymetastatic
BCCs would be to use temperature- or pH-sensitive hydrogels.
Tunable topographies can be created using shape-changing,
stimuli-responsive polymers or self-folding films to provide
cells with an appropriate spatial environment for cells (129).
Thermoresponsive hydrogels have been created with poly(N-
isopropylacryalmide)-based copolymers (130–132) and exhibit
low critical solution temperature behavior, swelling in water at
lower temperatures and contract with increasing temperature
(129). Temperature-sensitive hydrogels can be used for the
fabrication of bilayers, which allow reversible folding and
unfolding at low and elevated temperature, respectively, and have
been used for cell encapsulation (130, 131). The topography of

these hydrogels can be altered: Swelling will stretch the culture
surface by expanding it. By utilizing shape transformation of
these tunable hydrogels there is greater potential for the creation
of dynamic structures with high resolution, which are difficult to
achieve by other biofabrication techniques, such as bioprinting
(129). Topography can also be created and controlled by utilizing
culture substrates such as polymeric microparticles within
OOAC platforms. Topographically-designed microparticles have
been used to drive MSCs down an osteogenic lineage without
the use of exogenous osteo-inductive factors (47). In addition,
surface roughness is important in bone OOAC platforms as
osteogenic differentiation can be enhanced in MSCs by culturing
them on growth surfaces with intermediate roughness (48).
This is controlled through roughness-regulated expression of
YAP (48). Substrate roughness is another design parameter
to consider. Sandblasting of the surface of poly(methyl
methacrylate) films with alumina grains has been used to alter
roughness, resulting in increased adhesion and migration of
vascular cells with higher surface roughness. Increased cell
adhesion was attributed to higher adsorption of proteins, such
as fibronectin and collagen I, on the surface of the films (133).

Topography can also be controlled on the surface of the
membranes used within OOAC platforms. These membranes are
often suboptimal, as they are typically flat and do not replicate the
shape or surface morphology of a tissue (134). Microfabrication
techniques can be applied to create porous membranes with
suitable porosity, shape and surface morphology to match the
requirements of the tissue being modeled. Porous membranes
with micron-sized features can be made by electrospinning
(135). Soft lithography and thermoforming are used to prepare
porous, micro-structured membranes for other applications,
where thermoforming is combined with ion track etching to
create microstructures and pores, respectively (134). Phase
separation micro-molding is able to create patterns and pores in
membranes in one step by inducing phase separation (136).

Flow Rate
Flow of cell culture media within OOAC platforms generates
pressures and oxygen gradients which affect cell behavior and
survival (65). As there are different flow rates within the
body, different organs modeled within OOAC platforms require
different flow rates. There are several ways to recreate flow in
these devices, including the use of peristaltic pumps, syringe
pumps, or rocker plates. These different methods can create
significantly different flow rates, with peristaltic pumps creating
the strongest rates and rocker plates the slowest ones (137). The
technique for perfusing an OOAC platform therefore needs to be
carefully selected for each organ component.

Microfluidic channels filled with gels can be used to study the
effects of interstitial flow. Haessler et al. used this technique to
study the effects of 10µm s−1 interstitial flow on MDA-MB-231
cells (138). Gel-free systems or channels coated in a thin layer of
gel only can be used to study laminar flow. For example, a channel
can be lined with gelatin before allowing fluid to flow through
the channel with endothelial cells to form a single channel blood
vessel (139). Lanz et al. seeded metastatic triple negative BCCs
in an artificial ECM under static and dynamic conditions, with
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cells displaying a proliferation rate of 80% in the perfused system
compared to 60% in the static one (104). Pradhan et al. fabricated
a high and low perfusion chip to mimic cancer-ECM-endothelial
interactions. This showed that BCCs elongated forming colonies
similar to those formed in vivo in high perfusion regions, whereas
BCCs appeared rounded, relatively dark and unhealthy in low
perfusion region, possibly indicative of a quiescent state due
to lack of nutrient availability (140). Extreme flow rates are
undesirable within breast OOAC platforms, as only peripheral
and circulating BCC should be exposed to high flow rates
(56). BCCs cultured within 3D ECM are more representative
of in vivo BCCs, displaying greater proliferation, invasiveness,
chemoresistance and higher plasminogen activator urokinase
signaling when subjected to interstitial flow than cells in static
conditions (141).

Flow within bone and vasculature representations is also
of great importance. Fluid shear stress governs the binding
of tumor cells to endothelial cells. Breast cancer cells were
reported to not adhere to endothelial cells directly under low
shear stress of 0.5–2 dyn cm−2, instead forming a tumor-
monocyte complex before binding to endothelial cells (142).
MSCs grown on a bone-on-a-chip system under flow (30
µL/h; 0.346 mPa) showed improved survival and proliferation
relative to cells grown under static conditions (100). Fluid shear
stress was reported to enhance osteogenic differentiation in an
osteogenesis-on-a-chip device, but was not sufficient to induce
it on its own (143). Conditioned medium from oscillatory
flow-stimulated osteocytes significantly increased migration and
reduced apoptosis of BCCs (144). In another study, MDA-
MB-231 BCCs were cultured inside a microfluidic channel
lined with human endothelial cells and adjacent to another
channel containing osteocyte-like cells. Physiologically relevant
oscillatory fluid flow (1 Pa, 1Hz) was applied and hydrogel-filled
side channels allowed real-time extravasation to be observed.
The applied fluid flow induced intracellular calcium responses
in osteocytes (3.71-fold increase), with extravasation distance
significantly reduced by mechanically-stimulated osteocytes
relative to static osteocytes (145). Additionally, a physiologically
relevant perfusable vasculature to investigate intravasation,
migration, and extravasation, cannot be achieved without flow
(62) and shear stress is required to maintain the system (146).
Once vasculature has developed, flow continues to have a vital
role in decreasing the permeability and increasing the stability of
vessel walls within the vasculature (146).

Chemistry and Biomineralisation
Materials used to create OOAC platforms, such as elastomers, are
commonly formed from acrylate monomers, which can adsorb
different amounts of fibronectin. This affects cell attachment
(147) and integrin signaling, which can promote osteoblast
differentiation (148). Furthermore, elastomers can affect the
composition of culture medium. PDMS, for example, has
been shown both to adsorb small molecules and release other
chemicals into the device (149). This can be overcome by priming
devices with ECM components such as collagen, or by using a
lipophilic coating (150).

A key part of the design of the bone component of a
metastasis-on-a-chip platform is the inclusion of a mineral
component. HAp-coated ceramic scaffolds with MSCs
and hematopoietic stem/progenitor cells have already been
successfully integrated into a microfluidic device (102). HAp
has been shown to affect viability, proliferation and cytoplasmic
volume of metastatic colorectal and gastric cancer cells when
incorporated in a bone-mimicking OOAC model (151). HAp
can be precipitated in bulk solution as anisotropic needles,
and 50 nm pores support the formation of HAp rods that are
comparably oriented to native mineralized collagen fibrils (152).
If precipitated within the confines of cylindrical pores that
offer physiologically relevant gap regions (>100 nm diameter),
polycrystalline HAp rods are formed (152, 153).

The inclusion of HAp must be carefully considered, as it may
have a negative impact on vascularization. While Jusoh et al.
reported that HAp has a positive effect on sprouting angiogenesis
(154), increasing HAp concentration was reported to result in a
decrease of the number of blood vessel sprouts, with angiogenesis
sprouting length displaying a biphasic response to increasing
HAp concentration (151).

It has been demonstrated that epidermal growth factor and
CXCL12 gradients cooperatively increase tumor cell motility and
are important in regulating cell migration in 3D environments
(155). Chemical gradients can be included within OOAC
platforms by introducing these molecules through microfluidic
gradient generators (156). Shared media and interconnecting
chambers allow media exchange within the device and permit
natural gradients to form. In this way, cytokines and growth
factors released from cells in secondary locations, such as MSCs
in bone microenvironment, can spread through the OOAC to
create physiologically relevant gradients.

Components of the ECM can be studied within OOAC
platforms. One example of this is a compartmentalized platform
developed by Sung et al., which enabled the analysis of the
intrinsic second harmonic generation signal of collagen. This
offered a label-free assessment of collagen remodeling in the
model (157).

CONCLUDING REMARKS AND FUTURE
DIRECTIONS

Breast cancer metastasizes to bone, lung and brain tissues,
whereas prostate cancer, for example, mainly metastasizes
to bone. This suggests that cancer cells respond to signals
from the secondary site, leading to preferential migration.
An ideal model of metastasis will allow the full metastatic
cascade to be modeled, permitting the observation of cell
dissemination from a primary tumor to secondary sites. Such a
model is critical for understanding cross-organ communication
that may lead to metastasis and for identifying biomarkers
of cancer metastasis, including circulating tumor DNA/cells,
which play a key role in metastasis. The evident obstacle
to the investigation of metastasis using OOAC platforms is
the successful recreation of the broad, dynamic range of
the physiological complexity of the microenvironments at the
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primary and secondary sites, and the complex paracrine signaling
implicated in metastasis. Multi-OOACs platforms have been
developed to allow the study of systemic processes, which
has been recently reviewed (158, 159). Numerous coupling
arrangements have been proposed for building such “body-
on-a-chip” approaches, which present challenges such as the
lack of appropriate vasculature modeling, which is often simply
represented by tubing, and the difficulties associated with
optimizing the circulating media composition to ensure the long-
term viability of multiple different compartments.

Physical microenvironments can be determined by the
biomaterials used in the manufacturing of the device, such
as PDMS, as well as the choice of biomaterials integrated
within the microfluidic culture system. Combinatorial screening
platforms have been recently developed that can help identify
the most appropriate micro topographically-patterned polymers
(160). OOAC platforms that incorporate dynamic mechanical
stimuli are ideal for creating microenvironments to replicate
in vivo cell behavior. Existing models do not accurately mimic
the in vivo biomechanical environment, but instead focus on
individual stimuli, most commonly flow rate. The inclusion

of tunable hydrogels and other polymeric scaffold systems
together with physiologically relevant flow rates are critical to
achieve tissue-specific, dynamic cellular systems that capture the
key aspects of the metastatic cascade. By combining current
chip platforms with increased awareness and consideration of
mechanobiology, OOAC platforms can be used to advance
knowledge and understanding of metastasis and ultimately lead
to the development of a more effective drug discovery pipeline
for bone metastatic cancers.
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