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1 

Simulation of protein pulling dynamics on second timescale with Boxed 

Molecular Dynamics. 
Sarah Mapplebeck, Jonathan Booth1 and Dmitrii Shalashilin2 

School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K 

ABSTRACT 

We demonstrate how recently developed Boxed Molecular Dynamics (BXD) and kinetics 1 can 
provide a kinetic description of protein pulling experiments, allowing a connection to be made 
between experiment and atomistic protein structure.  BXD theory applied to Atomic Force 
Microscopy unfolding is similar in spirit to the kinetic two state model 2 but with some 
differences. First, BXD uses large number of boxes and therefore it is not a two-state model.  
Second, BXD rate coefficients are obtained from atomistic Molecular Dynamics (MD) 
simulations.  BXD can describe the dependence of the pulling force on pulling speed. Similarly 
to the ref 1 we show BXD is able to model the experiment on very long timescale up to seconds, 
which is way out of reach for standard molecular dynamics. 

 
 
 
 

1. INTRODUCTION 

Proteins are important biological molecules which play a crucial role in many of the body’s 

functions. Titin for example, is a molecular spring responsible for the elastic response of 

sarcomeres within skeletal muscle, allowing it to stretch and recoil aiding movement.3,4 As it 

is continually subject to mechanical forces, flexibility and mechanical robustness are critical 

attributes for the effective function of titin.5   

The mechanical properties of proteins have been probed by Atomic Force Microscopy 

(AFM), a type of force spectroscopy in which protein domains are unfolded by pulling them 

either at a constant velocity or with a constant force.   In this work we will focus on the constant 

velocity pulling experiments (CV AFM). 6,7   

 
1 Current address: Croda Europe Ltd. Cowick Hall, Snaith, Goole, East Yorkshire, DN14 
9AA, UK 
 
2 Corresponding author, e-mail: D.Shalashilin@leeds.ac.uk 
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2 

 In these experiments one end of the protein is adsorbed from solution onto a flat surface, 

before bringing in the cantilever to bind with the other.6,8,9 Once bound, the cantilever is pulled 

away from the surface and the protein domains stretch and unfold. The deflection of the 

cantilever from its original position is then measured and multiplied by the spring constant of 

the cantilever to get the force as a function of extension.5   

This produces the characteristic sawtooth pattern of a growing force with extension followed 

by a rapid decrease to almost zero. Analysis of such profiles suggests the rising phase of the 

sawtooth reflects the elasticity of the protein and the linker molecule attaching it to the AFM 

cantilever as they are stretched. 9,10    Figure 1 sketches a typical outcome of a single domain 

unfolding experiment and its interpretation.  The domains are connected in sequence.   At point 

1 the element B of the concatemer is ruptured and the cantilever is relaxed.  Then B is extended 

up to the point 2 when it is almost straight and stress is now put on the next unfolding element 

E, shown in red.  At point 3 the stress reaches its maximum and E is ruptured.  This coincides 

with a rapid reduction of the force as the cantilever ‘snaps back’ and the almost vertical edge 

of the sawtooth is produced between points 3 and 4. The cantilever relaxes to its equilibrium 

at point 4 and the element E unfolds further without resistance and the cycle repeats for the 

next unfolding element (A, C, D or F).   

  The extension of the domain between points 1 and 3 often shows smaller unfolding events, 

when weaker structures within protein domains are ruptured.  One of such events is indicated 

as 3’ at the figure 1. Thus, the region 1-3’-2 of the tooth shown in figure 1 can correspond 

further extension of domain B, followed by the rupture of domain E in the region 2-3-4. Or 

alternatively peak 3’ can correspond to an intermediate unfolding event, such as the partial 

break of E before its strongest bonds are broken in the main rupture event. The peak forces, i.e. 

the forces at the points 3 or 3’ are of particular interest as they determine the mechanical 

properties of the protein molecule. 
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3 

 

Figure 1.  In an AFM pulling experiment the point 1 corresponds to concatemer element B (orange) being ruptured 

but not fully extended.  At  this point the cantilever is at equilibrium.  Then the element B is extended, and the 

cantilever deforms producing Hooke’s force.  At point 2 B is nearly fully extended and the next unfolding element 

E (red) comes under stress. At point 3 the stress reaches its maximum and E raptures.  Then between the points 3 

and 4 the cantilever “snaps back” and E “gives away its slack”.  After that the cycle repeats for one of the 
remaining unfolded domains.  On the tooth shaped image, the unfolding events of the domains B and E are 

indicated by corresponding colors. The extension of a domain can reveal smaller unfolding events, one of which  

is indicated as 3’.  The unfolding forces Funfld which rupture the protein structures are the forces at points 3 and 

3’.  
 

Recently, interesting phenomena in constant speed unfolding experiments have been 

observed which can potentially shed some light not only on the structure of the protein but also 

on the kinetics of the unfolding.  These experiments have shown that rupture force, i.e. the 

force at the point 3 (or 3’) at the figure 1,  may depend on pulling velocity8,9,11.  It was 

demonstrated that when pulling at intermediate velocities speed (<100 μm/s) the unfolding 

force often varies linearly with the log of pulling velocity.9,12   

Theoretical explanation of this phenomenon is usually based on the two-state model which 

assumes the presence of, first, the folded state with the protein in its native structure and the 

pulling cantilever spring stretched, and second, the unfolded state with the protein ruptured and 

the cantilever spring at equilibrium.   In the absence of pulling the unfolding rate given by 

transition state theory (TST) would be 𝑘𝑢𝑜 = 𝜅𝑣𝑒−∆𝐺𝑇𝑆−𝑁𝑘𝐵𝑇   where κ is the phenomenological 
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transmission coefficient, v is the vibrational frequency at the TS, ΔGTS-N is the activation 

energy for unfolding, kB is the Boltzmann constant and T is the temperature. When additional 

force is applied to pull the protein by the cantilever spring, the additional term W, the work of 

pulling force, should be added to the TS free energy. This decreases the free energy, so that the 

impact of mechanical force on unfolding includes an additional factor and now 𝑘𝑢 =
𝜅𝑣𝑒−(∆𝐺𝑇𝑆−𝑁 − 𝑊)𝑘𝐵𝑇  =  𝑘𝑢𝑜𝑒  𝑊𝑘𝐵𝑇.  This so-called Bell-Evans model assumes that the force is 

constant during the whole process of unfolding so that 𝑊 = −𝐹𝑥 where 𝑥  is extension of the 

protein.  Bell’s model successfully explains the experimentally observed logarithmic 

dependence. 13    

A more sophisticated model 2 takes into account the effect of the pulling more accurately 

assuming that the pulling cantilever is a harmonic spring so that the work of pulling force 

includes a quadratic term, with respect to the extension of the protein.  This model predicts that 

at very slow pulling speeds the pulling force is independent of the speed, which is followed by 

Bell-Evans logarithmic dependence at higher speeds.9,11,14   

Constant speed experiments have been considered in the refs 8,15 where another microscopic 

model has been suggested, which addresses the differences in the dynamics of unfolding at low 

and high pulling velocities.  First,  when approaching the limit of slow pulling velocities, the 

cantilever works to hold back the molecular coordinate, resulting in slower rupture and a 

negative average unfolding force.15,16 Secondly, at intermediate velocities often used in AFM 

experiments (v = 10-1 - 10 μm/s) both pulling and stochastic motion contribute to the unfolding 

force which averages to an approximate linear dependency on the logarithm of pulling velocity 

similar to that predicted by phenomenological models. 9,13,15,17 The third region described by 

this model occurs at extremely high pulling speeds (> 100 μm/s) at which point stochastic 

motion becomes irrelevant and the dynamics becomes deterministic as there is insufficient time 

for proper exploration of the energy landscape.  Here, TST breaks down as a steady influx into 
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5 

the TS cannot be maintained, and so Bell’s model which Dembo et. al. suggest is only valid 

for diffusive barrier crossings at small forces is no longer valid.18  

Recently, it has been demonstrated experimentally that high-speed AFM (>100 μm/s) may 

result in a more complicated dependence of the force vs speed.  An increase of the force above 

that of linear Bell-Evans force vs logarithm of pulling speed dependence has been observed. 8  

In principle, it should be possible to compare experiment with MD simulations.  However, 

AFM experiments usually take place on micro to millisecond timescale,19,20 or even longer, 

which is out of reach of standard unbiased MD simulations.  In straightforward MD 

simulations, the velocity and force with which the protein is pulled is increased to much higher 

levels than in experiment.21,22  A number of Steered Molecular Dynamics  (SMD) simulations, 

which involve extending the end-to-end distance of protein domains by pulling with a virtual 

harmonic spring at a constant velocity23 have been performed.  The velocity used in MD 

simulations is much faster than experiment, by as much as six orders of magnitude.  Therefore, 

direct comparison of experimental and simulated results is still unachievable with this 

method.12    

Only recently it was possible to perform AFM at sufficiently high pulling speeds and   

conduct steered molecular dynamics simulations over long enough timescales for the 

uppermost and lowermost velocities of the respective methods to overlap.8 However, the 

majority of the experimental speeds are still way out of reach of atomistic MD and can be 

described by phenomenological models only.   

In the recent years we have been developing BXD, a method to speed up atomistic 

simulations and enable us to look at processes occurring over very long timescales.1,24–27  BXD 

involves partitioning the phase space of a system into boxes by placing a series of reflective 

boundaries along the reaction coordinate.  Rate constants for diffusion of a trajectory across 

these boundaries can be calculated in each direction by short time MD simulations, and from 
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6 

these so too can the free energy along the reaction coordinate.25,27  If a reaction coordinate is 

available BXD allows the dynamics to be described efficiently along such coordinate.  In the 

past we were able to capture nontrivial nonstatistical effects with BXD, which cannot be 

described by TST.1 In this paper we attempt to use BXD to simulate protein unfolding.  Unlike 

the MD methods, the low and the moderate velocities seen in experimental AFM are accessible 

to BXD.1,24–27    

The first advantage of BXD in comparison with the two-state model is that BXD can account 

for complicated kinetic effects and describe kinetics far from equilibrium (if any).  The second 

advantage is that BXD kinetic coefficients are not phenomenological parameters like in the 

theory.2,15.  They are obtained from fully atomistic MD and BXD does not make any 

assumptions except those already made about the MD force field.     

In this paper we show how the dynamics of AFM unfolding can be modelled based on the 

results of our previous work [24]. BXD allows us to see the dynamics of unfolding and to obtain 

the force as a function of time and cantilever position, the quantities measured in the 

experiment.  The timescales of slow pulling are way out of reach of normal MD simulations.  

According to our BXD simulations the unfolding force should be affected by the stiffness of 

the cantilever.  Such dependence should allow additional information about the 

thermodynamics of the unfolding Transition State to be extracted. To our best knowledge no 

systematic investigation of cantilever force constant influence on the outcome of pulling 

experiments have been performed and we propose such experiment. 

 

2. THEORY 

2.1 Boxed Molecular Dynamics 

BXD is a simple technique which extends the timescales accessible to atomistic MD 

simulations and has therefore found use in the simulation of rare events such as protein folding 
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7 

and cyclisation.1,24–27 Figure 2 shows BXD in its most simple form, in which it is assumed that 

an atomistic process can be described by a reduced description of the configuration space of 

the system – a reaction coordinate or order parameter which can be split into multiple boxes 

into which the dynamics of a trajectory can be locked.  

Each time a trajectory in box m collides with the boundary separating box m from its 

subsequent box, its velocity along the reaction coordinate is reversed as if it had collided with 

a hard wall. Counting the average number of boundary collisions or “hits” per unit of time is 

used to give the rate coefficients for the diffusion of the trajectory into one of its neighboring 

boxes, m+1 or m-1. This is done by dividing the number of “hits” against a particular boundary, 

hm,m+1 or hm+1,m by the lifetime of the trajectory within the box tm.  

  𝑘𝑚,𝑚+1 = ℎ𝑚,𝑚+1𝑡𝑚            

  𝑘𝑚,𝑚−1 = ℎ𝑚,𝑚−1𝑡𝑚          (1) 

 

 
Figure 2. Schematic of BXD, where a reaction coordinate, ρ, is split into m boxes into which a trajectory can be 
confined. After a given number of inversions (2 in this case) the  trajectory in box m can diffuse across the boundary 
into box m-1. Dividing the number of hits at boundary hm,m-1 by the lifetime of the trajectory in the box gives a rate 
coefficient for diffusion into box m-1. This process is repeated until the trajectory has sampled up and down entire 
reaction coordinate multiple times generating a set of box-to-box rate coefficients.  
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8 

 
 
Once sufficient statistics have been collected, the trajectory is allowed to move into the next 

box and the process is repeated.  In practice, the trajectory is allowed to sample all boxes along 

the entire reaction coordinate multiple times in both forward and backwards directions until 

convergence of rate coefficients is achieved. Eventually, rate coefficients for exchange 

between neighboring boxes are accumulated, and the dynamics is reduced to a set of kinetic 

equations  

     
𝑑𝑛1(𝑡)𝑑𝑡 = −𝑘12(𝑡)𝑛1(𝑡) + 𝑘21𝑛2(𝑡) 

     
𝑑𝑛2(𝑡)𝑑𝑡 = 𝑘12(𝑡)𝑛1(𝑡) + 𝑘32(𝑡)𝑛3(𝑡) − (𝑘21(𝑡) + 𝑘23(𝑡))𝑛2(𝑡)  (2) 

                            … 

     
𝑑𝑛𝑚(𝑡)𝑑𝑡 = 𝑘𝑚−1,𝑚(𝑡)𝑛𝑚−1(𝑡) − 𝑘𝑚,𝑚−1(𝑡)𝑛𝑚(𝑡) 

 
where n is the population of the subscripted box as a function of time, described by the flux 

into minus the flux out of each box. Equation 2 can be written in the matrix form 

      
d𝐧(t)dt = 𝐌𝐧(t)        (3)  

 
where n is the vector of box populations, and the elements of the sparse matrix M are expressed 

via the rate coefficients in eq 1.  Then the long-time MD simulation of the system is replaced 

by the solution of eq 3, the kinetic master equation (KME)  

   𝐧(t) = 𝐔𝚲𝐔−𝟏𝐧(0)       (4) 
 
where n(0) contains the initial conditions for box populations, U is the eigenvector matrix 

resulting from diagonalisation of M, and Λ is a diagonal matrix whose elements, Λij = eλjt, are 

determined by λ, the eigenvalue vector corresponding to M.  

Thus, BXD replaces long time MD with a set of short time simulations localised in all boxes 

along the reaction coordinate.  BXD with two boxes was proposed in the ref [28].  BXD is also 

related to the Intramolecular Dynamics Diffusion Theory (IDDT) where the idea of recovering 

long time dynamics from a set of short time dynamics simulations has been proposed.29  There 

are many related techniques exploring similar idea, such as umbrella sampling30–33 and 
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Milestoning.34–39   BXD relies on the assumption that motion within the box is stochastic and 

that sequential collisions with box boundaries are uncorrelated.  That is, the time between 

successive “collisions” with the box walls must be larger than the correlation time. To meet 

this requirement, the boxes must be longer than the correlation length, the length at which the 

trajectory loses memory of its state following the last collision. However, even in large boxes 

trajectories reflected by box boundaries can sometimes turn back rather quickly and so the 

procedure developed in ref [27] is used to remove any contribution from correlated velocity 

inversions to the number of hits h in the eq 1 for the rate coefficients and ensure BXD 

calculations are properly converged.   

Providing the above conditions have been met, an estimate of the free energy profile along 

the reaction coordinate can be made from the uncorrelated box-to-box rate coefficients 

  𝐾𝑚−1,𝑚 =  𝑘𝑚−1,𝑚𝑘𝑚,𝑚−1 = exp (− Δ𝐺𝑚−1,𝑚𝑘𝑏𝑇 )     (5) 

 
Thus, BXD is a powerful simulation technique as it allows kinetic, i.e. rate coefficients in 

the KME, and thermodynamic, i.e. Gibbs energy along a reaction coordinate or Potential of 

Mean Force (PMF), information to be found simultaneously, which reaches timescales long 

enough to simulate rare events.  BXD results can be taken even further, for example 

differentiation along the reaction coordinate gives the force needed to unfold a molecule to a 

given position, which when applied to proteins can be used as an indication of mechanical 

stability.   

The central advantage of BXD is that it can describe the behavior of atomistic systems on 

very long timescales, much greater than those accessible to straightforward molecular 

dynamics.  BXD is a fully atomistic technique, but it can reach timescales of seconds and 

beyond.  Although BXD assumes statistical equilibrium within each box, it can describe 

complicated nonequilibrium kinetics between the boxes.  See for example ref 1 where BXD 

was used to explain complicated kinetics of peptide cyclization.  This work uses the same 
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methodology as our previous paper 1 and below we will show how BXD kinetics can account 

for the dependence of unfolding force vs pulling velocity in the AFM pulling experiment.  

 

 

 

 

2.2 Box-to-box rate coefficients and PMF from previous BXD simulations of protein 

pulling. 

Previously we have determined the box-to-box rate coefficients along a reaction coordinate 

of distance between the two termini of titin’s I27 domain, corresponding to its unfolding.24,26,40 

along end-to-end reaction coordinate.   

After the initial structure of I27 had been equilibrated, simulations were conducted using the 

BXD subroutine implemented in CHARMM, with the EEF1 implicit solvent model and 

CHARMM 19 force field with a Langevin thermostat set to 303 K and a friction coefficient of 

50 ps-1 to replicate bulk water.  

To converge box-to-box rate constants BXD usually scans boxes back and force along the 

reaction coordinate several times.  But once a large protein is fully extended along its end-to-

end reaction coordinate it would not fold back to native state when BXD moves back towards 

the boxes with a smaller end-to-end distance.  For that reason, in our previous work we 

extended proteins from their native state to full extension several times without folding the 

protein back.  In all BXD trajectories the rate coefficients were similar, and their free energies 

(PMFs) have shown similar features.   

Using the simulated rate coefficients and eq (5), a free energy profile along the reaction 

coordinate, chosen as the extension of the end-to-end distance from its native structure value, 

was generated.  Figures 3a and b show the PMF vs end-to-end distance and its derivative 
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11 

obtained from the BXD extension of I27 as calculated in the refs 24,40.  Point A corresponds to 

the native state of the protein, which would sit in the resulting PMF minimum, if I27 was also 

compressed as well as extended. The PMF at “negative extension” when protein is compressed 

is not shown as we are interested only in pulling of I27.  With extension of the end-to-end 

distance the PMF increases rapidly at first with little change to the equilibrium structure of I27.  

This is a result of hydrogen bonding between β-sheets of I27.  Initially, the force is shared 

between them, but once it becomes too great to withstand the hydrogen bonds break between 

the so-called A and G β-sheets of I27, which form the two ends of the protein amino-acid 

sequence.  At point B they rupture quickly allowing the I27 domain to slacken and extend in 

length causing a reduction in force from the inflection point B to point C.  Point D corresponds 

to the rupture of another set of hydrogen bonds between β-sheets formed in the middle of the 

amino-acid sequence.  Further extension to approximately 250 Å would see the greatest 

increase in gradient as the protein approaches a fully extended linear conformation.  When 

protein is “compressed” to the negative extensions, the PMF increases, but this region of PMF 

is not relevant to protein extension in pulling experiment.  

The gradient of the PMF is shown at the frame (b), where characteristic points A-D can 

be seen much better than at the PMF itself.  The maximal gradient, marked at the frame (b) by 

Fmax, corresponds to the steepest region of the PMF curve, just before the β-sheet hydrogen 

bonds rupture.  As described in the introduction above the unfolding force Funfld reported in the 

experiment is not equal to Fmax, although there might be a correlation between the two.  Below 

we will show how the unfolding force can be calculated with the help of BXD. 
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12 

 

   (a)      (b)  

  
 
   (c)      (d) 

 

 
Figure 3. Frame a) shows PMF of I27, i.e. its free energy as a function of extension, calculated with BXD using 
implicit solvent model and b) its gradient representing low velocity pulling force.  Point A corresponds to the 
native state of the protein and PMF minimum (not shown). Following this there is a steep increase in PMF to 
point B without any significant change in the equilibrium structure as the pulling force is spread over hydrogen 
bonds between I27’s β-sheets. After reaching the point B the hydrogen bonds rupture almost simultaneously 
causing a drop in PMF gradient to point C as the protein slackens and extends.  Further pulling increases the 
gradient up to point D as the next pair of β-sheets connected by hydrogen bonds comes under stress.  The hydrogen 
bond link between these β-sheets is weaker, Fluctuation of the force reflects incomplete convergence of the 
calculation, which however capturers qualitatively the main features of the PMF.  Frame c) shows a modified 
PMF1 with flat regions 25Å- 60Å and 95Å-145Å to account for the formation of hydrogen bonds with water and 
frame d) shows PMF2 with flat regions 5-60 Å and 95-145 Å as well as multiplication of the upwards rate 
coefficients before 5 Å by 0.0025.  This modification provides the best fit to experiment.  

 

In this paper we will use the results of the refs24,40 to describe the unfolding kinetics in AFM 

experiment.  We use previously obtained rate coefficients to develop a kinetic model of the 
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pulling process to model the experimentally observed dependence of unfolding force on pulling 

velocity.   

  To obtain a good description of the experiment we had to modify the PMF obtained in the 

ref24.  Modified PMF1 and PMF2 are shown at the frames (c) and (d) of the Figure 3.  The 

implicit solvent model used in the Refs24,40 underestimates the effect of hydrogen bond 

formation between the newly ruptured protein beta sheets and the surrounding water molecules.  

Hydrogen bond formation significantly lowers the PMF of the system after point B in figure 3 

(point of rupture) so that low gradient regions of the PMF curve should become even flatter.  

If, for extensions at which protein-solvent hydrogen bond formation is important, the rate 

coefficients corresponding to the original PMF in figure 3 (a) are replaced by their geometric 

average, the PMF becomes flat in these regions.  Frame 3(c) shows the modified PMF, with 

flat regions introduced in the regions 25Å-60Å and 95Å-145Å, both around the inflection 

points B and D in figure 3(a). Frame 3(d) has flat regions at 5-60 Å and 95-145 Å along with 

multiplication of the BXD rate coefficients before 5 Å extension by 0.0025 so that the PMF 

value at the flat region is similar to that of point B in 3(a).  As will be shown below this 

modification allows to achieve unfolding forces in better agreement with those from 

experiment. 

 

2.3 Accounting for cantilever dynamics.    

BXD assumes equilibrium within each box, allowing box-to-box rate constants to be defined.  

However, global equilibrium is not required, and as a result BXD is capable of describing 

nonequilibrium kinetics with the help of the Master Equation.  In the case of protein unfolding 

assisted by AFM even if initially the protein was in equilibrium the motion of the cantilever 

distorts the initial equilibrium between boxes, and makes the population move from one box 

to the next.   
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Effective modification of the unbiased BXD rate coefficients and subsequent free energy to 

account for this can only be achieved if a term representing the interaction with the cantilever 

responsible for pulling the protein is included in the simulation.  Similar to the refs2,41, we 

assumed that the PMF of the system comprising of a protein molecule and a pulling cantilever 

is a sum of protein free energy of extension and mechanical potential energy of cantilever 

extension.   Following many other approaches15,23,42–44 we chose to model the cantilever as a 

harmonic spring with potential energy: 

 

  𝑉ℎ𝑎𝑟𝑚  =  𝑘𝑥22  =  𝑘[(𝑟−𝑟0(𝑡)])22         (6) 

 
where k is the cantilever spring constant and x is the displacement of the cantilever tip from its 

initial position, given by the box position along the reaction coordinate, r, minus the time 

dependent position of the tip r0(t).   

The tip is moved with velocity v such that its position at time t is given by: 

 
  𝑟0(𝑡) = 𝑟0(0) + 𝑣𝑡        (7) 
 

where r0(0) is the initial position of the tip.  The modified PMF becomes:  

 

  𝐺𝑡𝑜𝑡(𝑟) = 𝐺𝐵𝑋𝐷(𝑟) + 𝑉ℎ𝑎𝑟𝑚(𝑟, 𝑡) = 𝐺𝐵𝑋𝐷(𝑟) + 𝑘(𝑟−𝑟0(𝑡))22    (8) 

  

The addition of this new time dependent potential, Vharm(r,t) creates a new potential 

difference for diffusion of the population from one box into the next: 

 
  𝛥𝑉ℎ𝑎𝑟𝑚𝑚−1,𝑚 = 𝑉ℎ𝑎𝑟𝑚(𝑟𝑚−1, 𝑡) − 𝑉ℎ𝑎𝑟𝑚(𝑟𝑚, 𝑡)    (9) 
 

The box-to-box rate coefficients are modified to reflect the new potential difference between 

boxes imposed by the cantilever tip: 
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15 

  𝑘𝑚−1,𝑚(𝑡) = 𝑘𝑚−1,𝑚𝐵𝑋𝐷  𝑒−  𝛥𝑉ℎ𝑎𝑟𝑚𝑚−1,𝑚2𝑅𝑇        

  𝑘𝑚,𝑚−1(𝑡) = 𝑘𝑚,𝑚−1 𝐵𝑋𝐷 𝑒  𝛥𝑉ℎ𝑎𝑟𝑚𝑚−1,𝑚2𝑅𝑇      (10) 
 

Using the relationship between PMF and equilibrium constant K, the change in free energy for 

diffusion into box m from box m-1 can now be written as: 

 
  Δ𝐺𝑚−1,𝑚 = Δ𝐺𝑡𝑜𝑡𝑚−1,𝑚 =  −𝑅𝑇 ln(𝐾)  
      = Δ𝐺𝐵𝑋𝐷 𝑚−1,𝑚 + 𝛥𝑉ℎ𝑎𝑟𝑚𝑚−1,𝑚  (11) 
 

which is simply a rephrasing of the eq 8. 

The modified time-dependent rate constants are calculated at time zero before any pulling 

takes place and used to generate the initial free energy.  After that, an initial equilibrium 

population in all the boxes is assumed:  

 

  𝑛𝑚(0) = 𝑒−𝐺𝑚𝐵𝑋𝐷𝑅𝑇∑ 𝑒−𝐺𝑚𝐵𝑋𝐷𝑅𝑇𝑚         (12) 

 

Each time step, Δt, in a simulation the position of the cantilever tip along the reaction 

coordinate, r0(t), moves to the point r0(t+ Δt) = r0(t)+ vΔt.   New box-to-box rate coefficients 

are then generated and the KME (eqs 3 and 4) with initial conditions 𝑛𝑚(t) is solved to 

calculate the corresponding box populations 𝑛𝑚(t + Δt) after time Δt, dragging the box 

populations along the reaction coordinate.  Such a kinetic approach to AFM pulling has been 

outlined in the ref2 albeit with only two states and model kinetic parameters.  Here we 

implement this idea using many boxes with kinetic coefficients between them based on 

calculated by BXD atomistic simulations.  Therefore, although in the end we are solving the 

KME, our BXD approach is based on fully atomistic simulations.    

The box populations after each time step can be used to find the average peptide extension   
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  ⟨𝑟(𝑡)⟩ = ∑ 𝑛𝑚(𝑡)𝑟𝑚𝑚        (13) 
 

Then the experimentally observed force can be estimated according to the Hooke’s law as 

 
    𝐹𝑒𝑥𝑝(𝑟0(𝑡))  =  −𝑘(< 𝑟 > −𝑟0(𝑡))     (14) 
 

where 𝑟0(𝑡) is the position of the cantilever at time t.   

The blue line in figure 4 represents the sum of the harmonic spring and the flattened PMF 

profile. When the tip is moved to the right as in AFM pulling two minima appear. Protein 

rupture occurs upon transition of the populations from the first minimum to the second as 

shown by the gold arrow and can be described as before using the KME.   

 

 

Figure 4: the Total PMF (blue) obtained by the addition of a harmonic spring (green) to the new flattened PMF1 
profile (red) same as the red line at the Figure 3(c).  Frames (a) and (b) are for two different positions of the 
cantilever, 25Å and 80Å respectively.  Unfolding shown by the yellow arrow at the frame (b) occurs after the tip 
is pulled to the right and 2 minima appear in the total free energy.  The figure covers 145 boxes as the box size of 
1Å was used.  

 

Using the kinetic approach described above the time evolution of populations along the total 

free energy of the system accounting for new hydrogen bonding can be seen as they are dragged 

along by the cantilever tip.  

 

 

(b) (a) 
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3. RESULTS 

First, we performed a number of AFM pulling simulations for  PMF1,  using cantilever force 

constants in the range of  k=1-10 pN/Å and pulling velocities covered in conventional and  

high-speed force spectrometry (HS-FS) experiments.8,9,17 Figure 5 shows the dependence of 

the force (eq 14) on the cantilever position and time for two different pulling speeds, v=0.01 

and v=10,000 μm/s shown in frames (a) and (b) respectively.   

 

 
 

 

 

 

 

 

 

 

 

Figure 5 The dependence of the Hooke’s force on time and cantilever position for v=0.01 (frame (a)) and 
v=10,000 μm/s (frame (b)) using a force constant k=2 pN/Å and a flattened PMF1 in the region of 25-60 Å and 
95-145 Å. Pulling at higher velocities results in greater unfolding forces occurring on shorter timescales. 
 

BXD reproduces the expected shape of the tooth for the range of velocities covered by HS-FS 

as well as showing an increase in force with speed.  Importantly, figure 5 illustrates the power 

of BXD.  The timescale of the protein pulling process shown at the left frame of the figure is 

in seconds, which is an extremely long for an atomistic simulation.  Nevertheless, combining 

atomistic calculations of the box-to-box rate coefficients with the KME allows us to reach such 

timescales.  Previously BXD was able to reach such long timescales in the refs1,45. 

   Figure 6 illustrates the kinetics of unfolding.  The lines shown by green, purple and cyan 

show the PMF1 (red line) with the addition of the harmonic potential energy for the cantilever 

(a) (b) 
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positioned at 40, 67 and 120 Å which it reaches at timesteps of 4 x107, 6.7x107 and 1.2x108 

and 4 x102, 6.7x102 and 1.2x103 ns for cantilever speeds of 0.1 and 10000 μm/s respectively. 

First, although the total PMF is substantially distorted by the cantilever the population is still 

located near the original native state (green line).  Then when the cantilever stretches another 

well at the total PMF is formed (purple line) and the population is transferred in there, which 

corresponds to the breaking of the first set of hydrogen bonds.  Finally, when the cantilever is 

moved even further next well is formed and the unfolding continues, breaking the next set of 

hydrogen bonds (cyan).  To illustrate how the force increases with pulling speed the frames (a) 

and (b) show the populations for two different pulling speeds, v=0.1 μm/s and v=10000 μm/s 

respectively.  At higher pulling speeds, due to kinetic inertia the population lags behind which 

results in smaller average length of the protein < 𝑟 > and bigger force calculated with eq 14.   

 

 

Figure 6    Population dynamics taken at three time points, corresponding to the cantilever extended by 40, 67 
and 120 Å in an AFM pulling simulation using a force constant of k=2 pN/Å for low (fame a, v=0.1 μm/s) and 
high (fame b, v=10,000 μm/s) speeds.  In the figure the leftmost well corresponds to a folded protein domain 
(green line) and a stretched cantilever and the right wells (purple and cyan) to unfolded protein domains and a 
relaxed cantilever.  At higher pulling speeds there is less time to transition into the next well and so populations 
remain in the well for longer. The red line is the PMF1curve with flat regions at 25-60 Å and 95-145 Å, whilst 
the populations at an early, intermediate, and later timestep have been superimposed onto their corresponding 
modified PMF1+Vharm (eq 8) curve (shown in green, purple, and cyan).  
 

At higher speeds a combination of kinetic inertia and less time available for transition into the 

next available well lead to an increased unfolding force. 

(a) (b) 
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With lower pulling velocities the kinetics drives the population along the unfolding 

coordinate and over the barrier 46 as soon as the unfolded state becomes thermodynamically 

lower or equal to the native folded state.  Whereas pulling at higher velocities leaves less time 

for escaping to the second minima and the transition occurs with a delay. Therefore, the 

cantilever is shifted more to the right more resulting in a larger 𝑟0(𝑡) and larger force (eq 14). 

Alternatively, this can be thought of as faster pulling reducing the time available to get over 

the barrier and so a lower barrier or greater force is required. Consequently, as pulling velocity 

is increased the population density fails to overcome the barrier and follows the cantilever with 

significant delay.  Although such picture is known 2, BXD allows to visualize the dynamics in 

more detail.  

Figure 7 shows the dependence of the peak force of unfolding, Funfld, on the pulling 

speed.   At low speeds Funfld is independent of speed.  Population transfer coinciding with 

protein rupture happens when the minimum of the right well reaches that of the left well.  If 

the speed is low the cantilever does not move much during the time interval at which population 

transfer takes place.   At higher speeds the cantilever can shift substantially during this time, 

resulting in additional Hooke’s force and an increase in Funfld.  The force increases linearly with 

the logarithm of the pulling speed.  Similar behavior has been yielded by the model 

approaches2, but BXD yields this picture based on atomistic simulations.  

Importantly, Figure 7 shows the dependence of Funfld on pulling velocity for different force 

constants of the cantilever.  For all force constants there is no such dependence for low v.  This 

is because at low v the unfolding occurs after the next well becomes thermodynamically equal 

to the previous well and if the pulling is slow the cantilever does not move far during the 

unfolding.  At higher velocities Funfld shows a linear dependence on log(v) as in the previous 

work2.  The dependence of the Funfld on pulling speed shows a “kink” between flat region and 

the region of linear growth.   
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 Also similar to the ref2 BXD reveals a peak unfolding force dependent on the stiffness of 

the cantilever, with Funfld increasing with increased cantilever stiffness.  By moving the 

cantilever to the right creates a second minimum in the PES and transition into it defines 

entering the unbound state. Multiple bonds must break to unfold a protein. Any bonds in the 

protein that rupture from thermal fluctuations alone are held in place long enough by the rest 

of the structure to reform, and so an external force is required to destabilize all of the bonds for 

long enough for complete rupture.  Depending on the cantilever force constant, the slope of the 

additional potential varies, which controls the steepness of the wall to ‘climb’ to reach the 

forming second minimum. Therefore, the minimum value of the external force depends on the 

cantilever stiffness. 

This applies at very slow loading rates near where global equilibrium can be assumed. But 

at higher pulling speeds the unfolding force follows Bell’s model in which the changing 

external force exponentially amplifies the unfolding rate, leading to non-equilibrium unfolding 

kinetics and a logarithmic force-pulling speed relationship. 2,13 At this point, kinetic parameters 

including the unfolding rate and the distance to the transition state begin to control the 

unfolding force and the cantilever stiffness becomes less relevant.   

Reference 2 predicts that if a typical unfolding force versus the logarithm of pulling speed 

plot is produced for cantilevers of different stiffness over a large enough range of speeds, then 

there will be several flat lines for each force constant in the near equilibrium regime, followed 

by the linear increase in force associated with Bell’s model at higher speeds. 2,13 

Figure 7 is an example of this; however the trend is seen for velocities higher than predicted. 

But as figure 8 shows, with the introduction of PMF2 (figure 3, frame (d)) this trend shifts 

towards the expected range of pulling velocities. 

To the best of our knowledge the dependence of the force on the cantilever force constant 

has not been investigated experimentally in a systematic manner, but such experiment could 
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serve as a verification of the theory.  Combined with BXD simulations such measurement could 

also serve as a source of information about the details of the PMF.   

 

Figure 7 The dependence of the unfolding force on the pulling speed.  At the lowest pulling speeds the force is 
independent of v. With increased pulling velocity populations have less time to escape the first well and cross the 
transition state to unfolding resulting in a higher unfolding force. Increasing the cantilever force constant increases 
the overall unfolding force and shifts the max force – pulling velocity curve to the right. All lines on the graph are 
for simulations done with a PMF flattened in the region of 25-60 and 95-200 Å as in figure 3(c), with the red line 
using a cantilever with 2 pN/Å, purple with 3 pN/Å and green k= 4 pN/Å. Circles mark each velocity at which 
the ’kink’ in force spectrum appears as the force shifts from independent of speed, to linearly increasing with it, 

 

 Everywhere above we have used the PMF and rate coefficients calculated from 

previous BXD molecular dynamics simulations 24,40 with only some corrections to account for 

the interaction of protein with the solvent.  BXD shows a dependence of Funfld on pulling 

velocity.  In the recent HS-FS experiment 8 the dependence of Funfld on the pulling speed has 

been measured.  Like all MD simulations BXD relies on a force field, which is not entirely 

accurate, and its variations can significantly alter the outcome of the calculations.  Given these 

uncertainties as well as ones from converging errors and the impact they can have on BXD rate 
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coefficients, we have introduced additional changes to the BXD rate coefficients in order to fit 

the calculated force-pulling speed dependence to that of experiment. 

PMF2 was introduced which is shown in figure 3 frame (d).  In PMF2 the initial steep rise 

region was made shorter and steeper as shown in the figure.   

 

  

 

Figure 8. (a)  Fit of BXD pulling calculations using a spring constant of 10 pN/Å and PMF2 to the experimental 
HS-FS data using different parameters. The black lines are taken from the dynamic force spectrums for I27 (solid 
line, square points from conventional AFM and circular from HS-FS) and its unfolding intermediate (dashed line) 
in ref 8. The gold lines are for the flattened PMF in figure 3(d) and show the overall maximum unfolding force as 
a function of pulling speed (solid line) and our second maxima for each pulling seed, corresponding to the 
intermediate unfolding species in ref 8 (b) BXD calculations match experiment at conventional AFM speeds. The 
top gold, middle orange and bottom maroon lines are for simulations on PMF2 with k=10, 4 and 2 pN/Å 
respectively. Experimental data taken from ref 8 is shown by black circles and squares as in frame (a), whilst that 
taken from refs 12 and 17 are shown by black diamonds and triangles. 
 

Figure 8(a) shows the Force-speed dependence for our overall maximum unfolding force, 

Funfld, and the second maxima in figure 5 corresponding to an intermediate unfolding event. A 

cantilever force constant of 10 pN/Å was used, the same as in the experiment 8. These 

calculated forces have been compared to the overall and intermediate unfolding forces of I27 

reported in the experiment.8 Agreement with experiment has been achieved at conventional 

pulling speeds (v=0.1-10 μm/s), but BXD could not reproduce additional increase of the force 

seen in the high-speed experiment. Frame (b) shows our Funfld, compared to those of refs.8,12,17 

in the range of velocities usually seen in AFM experiments. We used cantilever force constants 

(a) (b) 
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of 10, 4, and 2 pN/Å applied to PMF2 as shown by the gold orange and maroon  lines, whilst 

the experimental data shown by black circles, squares, triangles and diamonds uses k=10 8, 5 

17 and 4 12 pN/Å respectively.  Our simulations show slightly higher unfolding forces than 

experimentally determined ones but some deviation  is to be expected. Also comparing 

experimental results from different experimental setups should be done with caution.  For 

example, alternative methods of sample preparation between different experiments can lead to 

variation in the observed unfolding force. But qualitatively all the results in frame (b) are 

consistent. Both simulation and experiment show a linear relationship between unfolding force 

and velocity in this region and an overall increase in the force with cantilever spring constant 

is observed. This figure again highlights that an experiment to systematically investigate the 

dependence of the unfolding force on the cantilever force constant alone may be a useful in 

furthering our understanding of protein unfolding. 

 

4. DISCUSSION AND CONCLUSIONS.   

In this paper we demonstrate how BXD methodology can be used to simulate dynamics of 

AFM protein pulling at the slow cantilever speeds inaccessible for other atomistic simulations. 

The unbiased BXD simulations featured in refs 24,40 accelerate unfolding events in proteins by 

using the boxes as a ratchet to ease the transition over steep areas of the PES and do not contain 

any additional potential added to the system. Consequently, they can only be applied to AFM 

pulling at which the cantilever extension is slow enough for thermodynamic equilibrium to be 

maintained globally.24 But, by subsequently modifying these rate constants to reflect the 

potential of the AFM tip, we can distort the kinetic equilibrium between the boxes, such that 

the populations move from box-to-box. In this way, we can model nonequilibrium kinetics 

occurring on a global scale though use of the KME whist still maintain the statistical 

equilibrium within each box assumed by BXD. Therefore, our simulations are capable of 
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modelling AFM pulling experiments over orders of magnitude covering the slowest velocities 

inaccessible to other simulation methods all the way up to those found in HS-FS. 8,9,15 

Protein dynamics on the timescale of seconds has been simulated.  Using the results of 

unbiased BXD simulations as a starting point for our simulations has allowed us to obtain the 

sawtooth shaped force-extension profile symptomatic of CV AFM for all velocities in our 

simulations. This includes even the slowest pulling velocities for which the sawtooth appears 

on a timescale of tenths of seconds. Replicating the sawtooth at different pulling velocities is 

something previous atomistic simulations have failed to do and especially on such long 

timescales. In fact, for rare-event simulation it is the long timescales accessible to only BXD 

that have allowed such results to be obtained.  

BXD yields the dependence of unfolding force vs pulling speed similar to those obtained 

previously.2 At low pulling speeds the unfolding force is independent of the speed but at higher 

speeds it is followed by a Bell-Evans approximate linear increase with the logarithm of pulling 

speed.  The difference, however, is that BXD uses kinetic parameters based on atomistic 

simulations, not simply phenomenological parameters.  Also, BXD is not a two-state model 

but uses many boxes along the reaction coordinate instead.   

Figure 8 demonstrates the agreement of BXD dependence of Funfld on v at slow and moderate pulling 

velocities, typical for conventional AFM experiments, for two unfolding events observed. In the 

experiment 8 the main unfolding event was interpreted as the rupture of the hydrogen bonds between A 

and G β-sheets, and our calculations support this picture.  The weaker unfolding event was interpreted 

as the rupture of the connection between A’ and G β-sheets prior to the main A-G rupture event.  In 

BXD calculations after the main event we observe the breaking of hydrogen bonds connecting  other 

β-sheets in the protein, which is also consistent with the experiment.8  In the AFM pulling experiments 

it is not easy to interpret smaller peaks and humps, similar to the peak 3’ at the figure 1.  They can 

appear due to the events occurring before the rupture of the main set of hydrogen bonds, like the rupture 

of A-G structure suggested in the ref 8,  but also due to an event after the rupture of the strongest set of 
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hydrogen bonds as the “unzipping” of another weaker set of hydrogen bonds for example.  BXD 

calculations suggest the latter.  More than one secondary event was reported in experiments and their 

interpretation is still ambiguous. 

Our results match well with experiment at intermediate pulling speeds in which a linear 

increase in unfolding force with velocity is expected. Figure 8 shows our simulations lie within 

experimental error limits for AFM done using conventional apparatus and HS-FS at speeds ≤ 

100 µm/s (Figure 8a, square and circular points respectively) taken from the reference 8. 

However, similar to the previous theory 41, we were unable to reproduce rapid increase of the 

unfolding force with the speed observed in the ref 8 at higher than v=100 µm/s. It might be at 

these speeds the BXD kinetic description of pulling fails because the molecular dynamics is 

faster that the rate of protein-environment equilibration within each box.  In the ref 8 additional 

contribution to the pulling force due to Stokes friction force was also reported at high pulling 

speeds. 

In our simulations we observed the rupture of two sets of hydrogen bonds.  The first set 

required higher unfolding force, which was consistent with the observations.8  However, 

obtaining quantitative agreement with the experiment required adjustment of the previously 

calculated box-to-box kinetic coefficients and PMF.   This adjustment accounted for the 

formation of hydrogen bonds between water and freed hydrogen bond sites in the ruptured β-

sheets.  This effect is not taken into account by the implicit solvent model used in the 

calculations of BXD box-to-box rate coefficients.  We also had to make the first set of hydrogen 

bonds stronger by adjusting the steepness of PMF in the region responsible for the rupture of 

the first pair of β sheets.  Currently we are working on explicit water simulations trying to 

understand the importance of the solvent.   

In summary this paper shows how BXD can provide a bridge between atomistic simulations 

and protein pulling experiments allowing to make quantitative connection between the 

experiment and atomistic protein structure.   
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