
1.  Introduction
The Asian summer monsoon (ASM) sustains roughly 60% of the global population (Li et al., 2016) and 
serves as the main moisture supply for Asia (Webster et al., 1998). Meteorologists have shown that changes 
in the intensity of the ASM are reflected by the advance and retreat of the monsoon frontal rain belt. It is 
generally accepted that the more northerly the penetration of the frontal rain belt, the greater the intensity 
of the summer monsoon (Tao & Chen, 1987). The northern edge of the ASM, defined as the northern limit 
of the monsoon precipitation (Chen et al., 2018; Hu & Qian, 2007) and geographically parallel to the wet–
dry transitional area (Qian et al., 2009), delineates the advance and retreat of the summer monsoon rain belt 
(Lan et al., 2020; Yang et al., 2015). However, in recent years the impact of global warming and associated 
ice loss in polar regions on the northern edge of the ASM has been debated (Severinghaus, 2009), with con-
tradictory conclusions regarding the northward advance or southward retreat of the ASM (Endo et al., 2018; 
Hu & Qian, 2007; Jiang et al., 2019; Li et al., 2010).

Changes in the northern edge of the ASM during cold and warm periods in the geological past can pro-
vide insights into future monsoon changes caused by global warming. The Last Glacial Maximum (LGM, 
∼21,000 yr BP), the preindustrial, the mid-Holocene (∼6,000 yr BP), and the mid-Pliocene (∼3.0–3.3 Ma) 
have been widely studied (Abell et al., 2021; Cao et al., 2019; Haywood et al., 2016; Marcott et al., 2013; 
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Otto-Bliesner et al., 2006; Shakun et al., 2012; Wang et al., 2019). These four periods exhibited similar Tibet-
an Plateau topography, but with different global temperature and atmospheric CO2 concentration (Table 1), 
thus providing an opportunity to comprehensively analyze the response of the ASM northern edge to differ-
ent degrees of global warming and the resulting melting of polar ice.

Numerical experiments have emerged as an efficient means of understanding past climates on regional and 
global scales. As abundant geological data are available for the mid-Holocene, LGM, and the mid-Pliocene, 
many paleoclimate simulations targeting these time slices have been conducted. Based on preindustrial con-
trol experiments and simulations of the LGM and the mid-Holocene climate within the framework of the 
Paleoclimate Model Intercomparison Project (PMIP), and of the mid-Pliocene climate within the framework 
of the Pliocene Model Intercomparison Project (PlioMIP1), the large-scale features of global and regional cli-
mate change have been widely analyzed (e.g., Braconnot et al., 2007; Dowsett et al., 2013; Jiang et al., 2015; 
Kageyama et al., 2012; Koenig et al., 2015; Roche et al., 2012; Zhang et al., 2013). Although the northern edge 
of the ASM during the mid-Pliocene has been analyzed (Huang et al., 2019), its characteristics and dynamic 
mechanisms during different warm intervals are not fully understood. Here we use output data derived from 
the PMIP3 and PlioMIP1 climate models to comprehensively analyze the behavior of the northern edge of 
the ASM. We then compare the simulations with geological records and address the possible mechanisms 
responsible for the migration of the northern edge of the ASM under different global warming levels.

2.  Data and Methods
This study considers simulations of the LGM and mid-Holocene climates using coupled ocean–atmosphere 
general circulation models (AOGCMs) carried out within the PMIP3 framework (Table S1); while the mid-Pli-
ocene climates are derived from two types of experiment within the PlioMIP1 framework: atmosphere-only 
general circulation models (AGCMs) and coupled atmosphere-ocean general circulation models (AOGCMs) 
(Table S2). AGCMs run with fixed SSTs and sea-ice, while AOGCMs predict SSTs and sea-ice. Therefore, out-
puts of the AOGCMs from the PMIP3 and PlioMIP1 were used in this study. The boundary conditions for the 
PMIP3 and PlioMIP1 experiments are listed in Tables 2 and 3, respectively. Further details of the boundary 
conditions and experimental design for PMIP3 can be found in Braconnot et al. (2012) and Taylor et al. (2012), 
or at http://pmip3.lsce.ipsl.fr/; and details for PlioMIP1 can be found in Haywood et al. (2010, 2011) and Dow-
sett et al. (2010), or at http://geology.er.usgs.gov/eespteam/prism/prism_pliomip.html.

The most significant differences among the boundary conditions for the LGM, preindustrial, mid-Holo-
cene, and mid-Pliocene simulations are as follows: (a) Atmospheric CO2 concentration. Its value for the 
LGM, preindustrial, mid-Holocene, and mid-Pliocene was set to 185 ppmv, 280 ppmv, 280 ppmv, and 405 
ppmv, respectively. (b) Changes in Earth orbital parameters. Compared to the preindustrial, the summer 
insolation at northern high latitudes increased by ∼5% for the mid-Holocene, and decreased slightly during 
the LGM, while the insolation value for the mid-Pliocene was the same as that of the preindustrial. (c) Ice 
sheet volume and extent. Compared to the preindustrial, the polar ice sheets expanded extensively during 
the LGM and decayed substantially during the mid-Pliocene, while the mid-Holocene ice volume was the 
same as during the preindustrial.

LGM Pre-Industrial Mid-Holocene Mid-Pliocene References

Atmospheric CO2 
concentrations

∼185 ppmv 280 ppmv ∼280 ppmv 400–450 ppmv Lüthi et al., 2008; Lunt 
et al., 2012; Pagani 
et al., 2010; Yang 
et al., 2018

Global mean air temperature 
compared with today

∼5°C lower ∼0.8°C–1.2°C lower ∼0.7°C higher ∼1.9°C–3.6°C higher Chang, 2018; Hansen 
et al., 2006; 
Intergovernmental Panel 
on Climate Change, 2013; 
Marcott et al., 2013

Table 1 
Atmospheric CO2 Concentrations and Global Mean Air Temperature for the LGM, the Pre-Industrial, the Mid-Holocene, and the Mid-Pliocene

http://pmip3.lsce.ipsl.fr/
http://geology.er.usgs.gov/eespteam/prism/prism%5Fpliomip.html
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Different models may have different responses to the same external forcings, such that the simulated 
results may have model dependence. A multi-model ensemble (MME) can reduce the model biases 
(Yan et al., 2018), and has been widely used to analyze climate changes (Kageyama et al., 2021; Saito 
et al., 2013; Yan et al., 2018). In this study, all analyses were performed using the multi-model ensemble 
mean (MME). Not all AOGCMs for the mid-Pliocene have water vapor flux data available, and therefore 
this variable was calculated using a four-model ensemble mean (CCSM4-AOGCMs, GOALS-g2-AOG-
CMs, MIROC4m-AOGCMs, and NorESM-L-AOGCMs). In addition, we adopted the northern boundary 
of the monsoon area as the northern edge of the ASM, following the definition that the summer monsoon 
area is the region where the local summer (May–September) minus winter (November–March) precipi-
tation rate exceeds 2 mm day−1, and the local summer precipitation exceeds 55% of annual precipitation 
(Wang et al., 2012).

The paleoclimates and paleoenvironments of the LGM, mid-Holocene and mid-Pliocene have been studied 
extensively using a variety of proxies, including paleontological indicators, geochemical proxies, and phys-
ical indicators, which constitute the primary basis for reconstructions of dry–wet conditions. In order to 
reduce uncertainties derived from multiple interpretations of various paleoclimatic proxies, paleoclimatic 

Mid-Holocene LGM

Orbital parameters Eccentricity = 0.018682; Obliquity = 24.105°; 
Precession-180° = 0.87°

Eccentricity = 0.018994; Obliquity = 22.949°; 
Precession-180° = 114.42°

Trace gases CO2 = 280 ppm; CH4 = 650 ppb; N2O = 270 ppb; CFCs = 0; 
O3 = same as in pre-industrial

CO2 = 185 ppm; CH4 = 350 ppb; N2O = 200 ppb; 
CFCs = 0; O3 = same as in pre-industrial

Aerosols Same as in pre-industrial Same as in pre-industrial

Solar constant Same as in pre-industrial Same as in pre-industrial

Vegetation Prescribed or interactive as in pre-industrial Same as in pre-industrial

Ice sheets Same as in pre-industrial Averaging three different ice sheets 
reconstructions: ICE-6G v2.0, MOCA and ANU

Topography and coastlines Same as in pre-industrial pmip3_21k_sftlf_v0; pmip3_21k_orog_diff_v0

Table 2 
The Boundary Conditions for the Mid-Holocene (6 ka) and LGM (21 ka) in the PMIP3

Atmosphere-only general circulation models (AGCMs) Coupled ocean–atmosphere general circulation models (AOGCMs)

SSTs fixed SSTs predict SSTs

The same boundary conditions between AGCMs and AOGCMs

Land-sea mask Topography Ice sheet Vegetation

Prefered boundary conditions PRISM3D  
(land_fraction_v1.1)

PRISM3D  
(topo_v1.1*)

PRISM3D  
(biome_veg_v1.3 or 
mbiome_veg_v1.3)

PRISM3D  
(biome_veg_v1.3 or 
mbiome_veg_v1.3)

Alternate boundary conditions Modern PRISM3D  
(topo_v1.4*)

PRISM3D  
(biome_veg_v1.2 or 
mbiome_veg_v1.2)

PRISM3D  
(biome_veg_v1.2 or 
mbiome_veg_v1.2)

CO2 N2O CH4 CFCS O3

Trace gases 405 ppmv Same as in pre-industrial Same as in pre-industrial Same as in pre-industrial Same as in pre-industrial

Solar constant Same as in pre-industrial

Aerosols Same as in pre-industrial

Orbital parameters Same as in pre-industrial

Table 3 
The Boundary Conditions for the Mid-Pliocene (3.0–3.3 Ma) in the PlioMIP1
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records based on paleontological indicators (sporopollen, plant macrofossils, ostracoda, and fauna; Ta-
bles S3–S5), which are robust measures of paleomonsoon intensity, were assembled.

3.  Results
3.1.  Temperature and Precipitation Anomalies Between the LGM, Preindustrial, Mid-Holocene, 
and Mid-Pliocene

The MME results show that, with respect to the LGM, the summer surface air temperature (SAT) in the pre-
industrial was substantially warmer (∼7°C) at northern high latitudes, while the low-latitude SAT increased 
by 2°C–3°C (Figure 1a); and the summer SAT was ∼5°C warmer in Eurasia during the preindustrial (Fig-
ure 1a), while the sea surface temperatures (SSTs) of the South China Sea and the equatorial western Pacific 
were ∼2°C higher (Figure 1b). Compared with the preindustrial, the mid-Holocene SAT increased by ∼1°C 
at northern high latitudes, while the low-latitude SAT decreased by 0.5°C (Figure 1c). Moreover, the sum-
mer SAT in the Eurasia mainland increased by ∼1.5°C during the mid-Holocene (Figure 1c), while the SSTs 
of the South China Sea and the equatorial western Pacific cooled by ∼0.5°C (Figure 1d). With respect to 
the mid-Holocene, the increased summer SAT in the mid-Pliocene at northern high latitudes (∼1.5°C–3°C) 
was slightly higher than at low latitudes (∼1°C–2°C; Figure 1e). The summer SAT in the mid-Pliocene was 
∼3°C warmer in Eurasia (Figure 1e), while SSTs in the South China Sea and the equatorial western Pacific 
were ∼1.5°C higher in the mid-Pliocene than in the mid-Holocene (Figure 1f). Apparently, the meridional 
temperature gradient between high and low latitudes decreased, and the thermal contrast between Eurasia 
and the equatorial western Pacific was enhanced with increasing global temperature.

The numerical simulations show that the summer MME precipitation increased in most areas of Asia dur-
ing the preindustrial, relative to the LGM, as well as during the mid-Holocene, relative to preindustrial. 
The former simulation (the preindustrial relative to the LGM) showed significantly increased precipitation 

Figure 1.  Multi-model ensemble (MME) for summer mean surface air temperature (SAT, units: °C), summer mean sea surface temperature (SST, units: °C), 
and summer mean precipitation (units: mm day−1) anomalies between the Last Glacial Maximum (LGM), preindustrial, mid-Holocene, and mid-Pliocene. 
Summer spans May–September (MJJAS) and winter spans November–March (NDJFM) for the Northern Hemisphere.
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of ∼0.5–1.5 mm day−1 in the Asian continent (Figure 1g), while the latter (the mid-Holocene relative to 
preindustrial) exhibited increased precipitation of ∼0.5–1 mm day−1 in India and China (Figure 1h). Dur-
ing the mid-Pliocene, with respect to the mid-Holocene, precipitation increased significantly in India and 
northern China (0.5–1.5 mm day−1), but decreased slightly in southern China (0–1 mm day−1; Figure 1i), 
and significantly in the Indo-China Peninsula (1–2.5 mm day−1; Figure 1i). The annual precipitation anom-
alies (Figure S1) show similar patterns as seen in summer precipitation anomalies. The winter precipitation 
increased in most areas of Asia during the preindustrial, relative to the LGM, as well as during the mid-Pli-
ocene, relative to mid-Holocene, while decreased in most areas of Asia during the mid-Holocene, relative 
to the preindustrial (Figure S1).

3.2.  The Northern Edge of the ASM During the LGM, Preindustrial, Mid-Holocene, and 
Mid-Pliocene

The northern edge of ASM was analyzed systematically, based on the definition mentioned in Data and 
Methods section. As shown in Figure 2, during the four periods, the northern edge of the ASM moved 
northwestward with global warming, although the scale of the migration varies with different degrees of 
global warming. A large northwestward shift (∼200 km) of the ASM northern edge was evident during the 
preindustrial relative to LGM, while a small northwestward shift (∼50 km) of the edge is simulated in the 
mid-Holocene compared with the preindustrial. In addition, with respect to the mid-Holocene, the mid-Pli-
ocene ASM northern edge shifted northwestward by ∼50 km over the region east of 100°E, while its location 
was almost the same during the two intervals over the region west of 100°E.

3.3.  Data-Model Comparison

We compiled three paleontological datasets covering the whole of China to examine the spatial climatic 
patterns for the LGM, mid-Holocene, and mid-Pliocene (Figures 3a–3c; Tables S3–S5). The three datasets 
represent three key time windows: 18,000–24,000 yr BP for the LGM, 5,000–7,000 yr BP for the mid-Hol-
ocene, and 3.0–3.3 Ma for the mid-Pliocene. The LGM data set contains 75 records (Figure 3b), of which 
27 sites were humid and 48 sites were dry. For the mid-Holocene, 227 records were compiled (Figure 3a), 
which included 175 humid sites and 52 dry sites. The mid-Pliocene data set contains 50 sites throughout 
China (Figure 3c), among which 15 sites were dry and 35 sites were humid. The three time periods show a 
spatial climatic pattern similar to the present day, with dry conditions in northwestern China and humid 
conditions in southeastern China.

Figure 2.  The northern edge of the Asian summer monsoon (ASM) for the Last Glacial Maximum (LGM) (green line), 
the preindustrial (thick black line), the mid-Holocene (blue line), and the mid-Pliocene (red line).
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At present, the 500-mm isoline of annual precipitation marks the boundary between humid-subhumid and 
arid-semiarid areas (Figure 3d; Sun & Wang, 2005). The distribution of modern vegetation zones shows that 
the areas to the north of the 500-mm isoline are dominated by steppe or desert–steppe, while those to the 
south of the boundary are dominated by forest (Sun & Wang, 2005). Therefore, pollen records are an effective 
approach for reconstructing the wet–dry boundary in the geological past. During the three geological time 
periods, the location of the wet–dry boundary, which was reconstructed based on paleontological records, 
was supported by several precipitation estimates based on pollen records (Figures 3a–3c). During the LGM, 
pollen records from Lake Qinghai, located on the dry side of the reconstructed wet–dry boundary, indicated 
an annual precipitation as low as ∼200 mm (Li et al., 2017). For the mid-Holocene, reconstructions from 
four pollen sites (Daihai, Gonghai, Bayanchagan, and Qinghai) near the wet–dry boundary showed an an-
nual precipitation of ∼500–600 mm (Chen et al., 2015; Jiang et al., 2006; Li et al., 2017; Xu et al., 2010); while 
at Dajiuhu, located in the wet region and far from the reconstructed wet–dry boundary, annual precipitation 
of as high as ∼1,200 mm was derived from the pollen record (Sun et al., 2019). During the mid-Pliocene, the 
Changgoucun pollen site had a reconstructed annual precipitation of ∼800 mm (Wang et al., 2019). Clearly, 
the reconstructed location of the wet–dry boundary, that is, the northern edge of the ASM, was displaced 
northwestwards by ∼350, ∼100, and ∼150 km with global warming, from the LGM to the present, from the 
present to mid-Holocene, and from the mid-Holocene to the mid-Pliocene, respectively.

The northwestward shift of the northern edge of the ASM captured by the models (Figure  2) is rough-
ly consistent with the geological records (Figure  3d); however, there are differences in detail between 
the simulations and reconstructions. The geological records show a greater magnitude shift of the ASM 

Figure 3.  Reconstructed wet–dry boundary for the Last Glacial Maximum (LGM) (a, d; green lines), the mid-Holocene (b, d; blue lines), and the mid-Pliocene 
(c, d; red lines), and comparison with the present-day (d; thick black line). The wet sites are in blue and the dry sites are in red (a–c); solid circles indicate sites 
with a quantitative annual precipitation reconstruction (adjacent) based on pollen records. The mid-Pliocene records (c) are updated from Huang et al. (2019), 
and detailed information on all of the records can be found in the supplementary data (Tables S3–S5). The thick black line (d) represents the 500-mm isoline of 
annual precipitation (1981–2010, provided by the US Center for Climate Prediction; Xie and Arkin, 1997), which is the present-day boundary between humid–
subhumid and arid–semiarid areas.
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(∼350 km) at present relative to the LGM, while the simulations show a ∼200 km northwestward migration 
from the LGM to preindustrial. Moreover, the geological records show a greater shift of the wet–dry bound-
ary at the northeastern and southwestern ends of the boundary during the mid-Pliocene compared to the 
mid-Holocene, while the simulations show a northwestward shift of the edge only over the region east of 
110°E. It follows that, except for the north–south climatic contrast, a distinct enhanced east–west contrast 
is evident in geological records during the mid-Pliocene. In addition, in southern China, all geological sites 
show wet conditions during the mid-Pliocene, while the simulations show a slight decrease in precipitation 
(Figure 1i). As the mid-Pliocene geological records are sparse and clustered in the eastern and western ends 
of southern China, more robust geological reconstructions from across southern China are needed in future 
studies.

4.  Mechanism for ASM Changes During Past Global Warming
During the Plio-Pleistocene, atmospheric CO2 concentration and solar insolation are thought to be the 
primary factors affecting global temperature (Intergovernmental Panel on Climate Change,  2013; Lacis 
et al., 2010; Royer, 2006; Sackmann & Boothroyd, 2003). Although atmospheric CO2 levels and Northern 
Hemisphere summer insolation both increased from the LGM to Holocene, numerous studies have demon-
strated a dominant contribution of the rise in atmospheric CO2 to the last deglacial warming of ∼6°C (Cao 
et al., 2019; Shakun et al., 2012). Likewise, the 2°C global warming during the mid-Pliocene was unambigu-
ously ascribed to increased CO2 concentrations (Foster & Rohling, 2013; Marcott et al., 2013). These CO2-in-
duced warmings would have affected the ASM via changing the position and strength of the atmospheric 
circulation and increasing the water vapor supply.

4.1.  Changes in the ITCZ and WPSH

The ASM is composed of two primary subsystems: the South Asian (Indian) summer monsoon and the 
East Asian summer monsoon (EASM; Wang et al., 2003). Previous studies (Wang et al., 2003) have shown 
that, in the South Asian monsoon domain (40°E–105°E), the summer monsoon is mainly controlled by the 
tropical climate system, while in the East Asian monsoon domain (105°E–160°E), the summer monsoon is 
controlled by both the subtropical and tropical climate systems.

The South Asian monsoon results from a seasonal shift in the Intertropical Convergence Zones (ITCZ) 
(Gadgil, 2003; Wang & Ding, 2009). In order to analyze changes in the ITCZ among the LGM, preindustrial, 
mid-Holocene, and mid-Pliocene, we calculated the ITCZ location, defined as the latitude corresponding 
to the centroid of the area-integrated precipitation from 20°S to 20°N (Donohoe et al., 2013). The results 
(Figure 4) show that over South Asia, the ITCZ shifted northward with global warming from the LGM to 
preindustrial, from the preindustrial to mid-Holocene, and from the mid-Holocene to the mid-Pliocene, 
which is consistent with the northward displacement of the ASM northern edge (Figure 2). In contrast, 
over the western Pacific warm pool region, the ITCZ shifted southward with global warming from the LGM 

Figure 4.  Summer location of the Intertropical Convergence Zones (ITCZ) during the Last Glacial Maximum (LGM) 
(green line), the preindustrial (black line), the mid-Holocene (blue line), and the mid-Pliocene (red line).

LGM
preindustrial

mid-Holocene
mid-Pliocene

South 
Asia
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to preindustrial, from the preindustrial to mid-Holocene, and from the mid-Holocene to the mid-Pliocene, 
whereas the ASM northern edge migrated northward (Figure 2).

Modern meteorological observations have shown that poleward air flow along the western flank of the 
western Pacific subtropical high (WPSH) is a major component of the EASM (Huang et al., 2019; Lu & 
Dong, 2001), and thus the advance and retreat of the EASM are closely related to the activity of the WPSH. 
The position of the WPSH is conventionally measured by the 5,870/5,880-gpm contour line in the 500-hPa 
geopotential height field (Gong & Ho, 2002; Zhou & Li, 2002). However, using the geopotential height itself 
to investigate changes in the WPSH could be affected by artificial trends of the lifted isobaric surface at mid-
dle and low latitudes and its exacerbated effects with increasing geopotential height under global warming 
(Lu et al., 2008; Yang & Sun, 2003). To minimize this effect, we used the 0-gpm contour lines of the 850-hPa 
eddy geopotential height (i.e., the anomaly between the 850-hPa geopotential height and the zonal mean 
of the 850-hPa geopotential height [Huang et al., 2015]), to investigate the position of the WPSH during 
the LGM, preindustrial, mid-Holocene, and mid-Pliocene. The results show that the WPSH expanded with 
global warming, from the LGM to preindustrial, from the preindustrial to mid-Holocene, and from the 
mid-Holocene to the mid-Pliocene (Figure 5a).

Additionally, the MME summer wind anomalies at 850 hPa exhibit an anticyclonic circulation pattern across 
the region from 105°E to the western Pacific during the preindustrial (relative to LGM), the mid-Holocene 
(relative to preindustrial), and the mid-Pliocene (relative to mid-Holocene) (Figures 5b–5d), indicating a 
significantly enhanced WPSH and associated southeasterly winds with global warming. The expansion and 
intensification of the WPSH both led to the northwestward shift of the northern edge of the ASM and the 
southward movement of the ITCZ over the East Asian domain. Recently, some researchers emphasized the 
role of interactions between the westerlies and the ASM in determining the rainfall in the Yangtze River 
Valley (Chiang et al., 2017; Kong & Chiang, 2020; Sampe & Xie, 2010). However, the effect of the westerlies 
on the northeastern ends of the ASM edge, which is located far north of the Yangtze River Valley, remains 
unclear. Furthermore, the location of the southwestern end of the ASM edge is controlled mainly by the 
Indian monsoon (Wang et al., 2014; Yim et al., 2014), but shows the same migration pattern (Figure 2) as 

Figure 5.  (a) Zero contour lines of the 850-hPa eddy geopotential height field for the Last Glacial Maximum (LGM) (green), preindustrial (black), mid-
Holocene (blue), and mid-Pliocene (red), and summer wind field (m s−1) anomalies for (b) preindustrial relative to the LGM, (c) mid-Holocene relative to the 
preindustrial, and (d) mid-Pliocene relative to the mid-Holocene.
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Figure 6.  Vertically integrated water vapor flux (arrows, units: kg m−1 s−1) for (a) the Last Glacial Maximum (LGM), (b) the preindustrial, (c) the mid-
Holocene, and (d) the mid-Pliocene, and the anomalies (arrows, units: kg m−1 s−1) for (e) the preindustrial relative to the LGM, (f) the mid-Holocene relative to 
the preindustrial, and (g) the mid-Pliocene relative to the mid-Holocene.

(e) preindustrial minus LGM (f) mid-Holocene minus preindustrial

(g) mid-Pliocene minus mid-Holocene

(a) LGM (b) preindustrial

(c) mid-Holocene (d) mid-Pliocene
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the northeastern end of the edge. In this context, the northern edge of the ASM is controlled mainly by the 
changes in the ASM intensity

4.2.  Changes in Water Vapor Flux

To further investigate the mechanism responsible for the changes of the ASM during the LGM, preindus-
trial, mid-Holocene, and mid-Pliocene, we analyzed the summer water vapor flux for the four time slices. 
The results show that two air flows, namely the southwesterly and southeasterly flows, are responsible for 
the transport of water vapor to mainland China (Figures 6a–6d). The southwesterly flow originated in the 
Indian Ocean and passed through the Bay of Bengal and the Indo-China Peninsula, and the southeasterly 
flow came from the South China Sea and the West Pacific. The water vapor flux from the southwest and 
southeast both increased during the preindustrial (relative to the LGM; Figure 6e), as well as during the 
mid-Holocene (relative to preindustrial; Figure 6f), in response to the expansion and intensification of the 
WPSH and the northward shift of the ITCZ over the South Asian sector. Compared to the mid-Holocene, the 
water vapor flux from the southeast further increased during the mid-Pliocene. However, strong anomaly 
vectors from east to west appeared over the South China Sea, Indo-China Peninsula, and the Bay of Ben-
gal during the mid-Pliocene (Figure 6g), indicating a substantially decreased water vapor supply from the 
Indian Ocean to southern China and the Indo-China Peninsula; this is evidently responsible for the slight 
decrease in precipitation in these regions (Figure 1i). In this context, we suggest that during the mid-Pli-
ocene, the pronounced warming, especially over the Tibetan Plateau (Duan et al., 2017; Li et al., 2011), 
substantially intensified the WPSH, thereby leading to a suppressed moisture transport from the Indian 
Ocean, and a resulting slightly drier southern China and the Indo-China Peninsula. Modern meteorological 
observations have shown that frequent droughts occur in southern China and the Indo-China Peninsula 
with global warming (Miyan, 2015; Wang et al., 2016), which may result from to the exceptionally enhanced 
WPSH induced by strong heating over the Tibetan Plateau (Duan et al., 2017; Li et al., 2011). These droughts 
may serve as modern examples of the mid-Pliocene global warming.

5.  Conclusions
The simulation results show that the northern edge of the ASM generally exhibited a northwestward shift 
of ∼200, ∼50, and ∼50 km with global warming from the LGM to preindustrial, from the preindustrial to 
mid-Holocene, and from the mid-Holocene to the mid-Pliocene, respectively. Additionally, the geological 
records show respective northwestward migrations of ∼350, ∼100, and ∼150 km for the dry–wet boundary. 
The simulation and reconstruction results consistently indicate a northwestward advance of the ASM rain 
belt with global warming. Accordingly, summer precipitation increased in most areas of China from the 
LGM to preindustrial, as well as from the preindustrial to the mid-Holocene; while during the mid-Pliocene 
relative to the mid-Holocene, precipitation increased significantly in northern China, but decreased slightly 
in southern China and the Indo-China Peninsula.

The simulations also show a substantial increase in the thermal contrast between the Asian mainland and 
the equatorial western Pacific with global warming. In this scenario, the WPSH intensified and expanded, 
and the ITCZ migrated northward over the Indian Ocean and was shifted southward over the Western Pa-
cific, thereby leading to the northwestward advance of the ASM and associated rain belt penetration into 
northern China. During the mid-Pliocene, the pronounced global warming substantially intensified the 
WPSH, leading to the suppressed moisture transport from the Indian Ocean. As the mid-Pliocene is an ana-
logue for near-future warming, we suggest that in the future, northern China will become wet, and southern 
China and the Indo-China Peninsula will become slightly dry and experience more frequent droughts.

Data Availability Statement
The PlioMIP data are described at https://geology.er.usgs.gov/egpsc/prism/prism_1_23/prism_pliomip_
data.html. The PMIP3 data are available at https://esgf-node.llnl.gov/search/cmip5/. The CMAP precipita-
tion data used in this study are available online at the following URL: https://www.esrl.noaa.gov/psd/data/
gridded/data.cmap.html.
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