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Abstract 

 

In the era of globalization, manufacturing industries need to monitor their manufacturing operations 

acutely in order to remain competitive. Manufacturers seek to engineer highly flexible, robust, and 

efficient manufacturing processes enabling the production of high-quality goods at competitive costs while 

always addressing and adapting to evolving challenges. As a result, manufacturing industries in the present 

time have realized the significance of shop floor data analysis. They are implementing performance 

measurement systems to continually assess and improve the operational state of their manufacturing 

operations. These systems comprise a set of Key Performance Indicators (KPIs), which can enumerate the 

effectiveness, competence, efficiency, and proficiency of manufacturing processes. There is a lack of KPI 

understanding by the manufacturers and no framework or methodology available in the literature to select 

KPIs systematically, methodically, and/or scientifically for a manufacturing facility. This deficiency 

typically leads to failures in reporting and monitoring critical performance measures, with resultant losses 

to achieve key business objectives.  

Viewing the current industrial needs and limitations highlighted in the literature, this research presents a 

holistic approach that enables manufacturers to systematically understand, analyze, and select appropriate 

KPIs for their shop floor operations assessment. The approach is mainly centered on the premise that KPIs 

can be chosen based on a set of measures that are theoretically grounded.  

First, a manufacturing shop floor exploration model is developed to 1) recognize the key business 

objectives, 2) identify the bottlenecks in the manufacturing shop floor facility that negatively impacts the 

throughput, 3) point out the problems and challenges, and 4) list the KPIs used for monitoring shop floor 

performance. The model uses a set of questionnaires and structured interviews to collect the required data 

(i.e., data related to manufacturing shop floor performance) along with the real-time data extracted from 

the manufacturing shop floor.  

Second, a novel KPI guideline is developed to systematically guide the manufactures to understand, 

analyze, and select appropriate KPIs. These guidelines consist of five stages: information stage, 

discernment stage, scheming stage, the origin of the data stage, and assisting technology to capture the 

data stage. Every stage consists of a set of measures and their corresponding elements dedicated to 

providing vital information to help manufacturers better monitor their shop floor operations and improve 
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decision-making capabilities. Last, to streamline the decision-making by prioritizing key business 

objectives and KPIs, the SMART criteria technique is prudently selected. The practicality of the proposed 

approach is demonstrated through its application to an automotive seat manufacturing company.  

It is sensible to indicate that the complete methodology of selecting appropriate KPIs and reviewing the 

manufacturing shop floor performance is a continuous process. After suggesting and implementing the 

KPIs, the manufacturers should evaluate the performance regularly since, in the current complex 

manufacturing environment, both internal and external business factors change over time.  Hence it is 

necessary to incorporate these changes and provide continuous improvement, evaluating the shop floor 

performance on a regular basis. 

Keywords: KPIs, manufacturing shop floor exploration model, KPI guidelines, SMART criteria, 

manufacturing industries, Industry 4.0 
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CHAPTER 1 INTRODUCTION 

 

1.1 Background 

In order to survive in the current competitive environment, manufacturers are pushed to engineer a highly 

flexible, robust, and efficient manufacturing process to produce high-quality goods at a reduced cost to 

combat evolving challenges and attain full economic potential (Leachman, Pegels, and Kyoon Shin, 2005). 

As a result, manufacturing industries in the present time have realized the significance of shop floor data 

analysis and are implementing performance measurement systems to continually assess and improve the 

operational state of their manufacturing operations (Collins et al., 2016; Hester et al., 2017). To improve 

the effectiveness and efficiency of shop floor operations, a set of comprehensive indicators are defined by 

the International Standards Organization (ISO) to comprehend tactical goals of performance management 

and improvement often referred to as Key Performance Indicators (KPIs) (Tugnoli et al., 2012; Jain and 

Samrat, 2015; Badawy et al., 2016).  

KPIs are a critical part of an organization's ability to monitor its business performance health, ensuring 

that organizations' intended goals are achieved. Many researchers and think-tank experts have emphasised 

the significance of selecting the right KPIs to provide the most effective business performance measures 

and identify bottlenecks (Meier et al., 2013; Woolliscroft et al., 2013; Amrina and Vilsi, 2015a; Collins 

et al., 2016). KPIs provide managers, supervisors, operators, and various other decision-makers with a 

snapshot of the business performance, highlighting the bottlenecks encountered in attaining its set business 

objectives (Zackrisson et al., 2017). The correct selection and appropriate implementation of KPIs has a 

significant potential to assist manufacturers in improving business performance.  

There is copious literature related to organizational performance measurements. Despite this, 80% of 

organizations, estimated by the Industrial Review Report (IRR), fail to achieve their business objectives 

(Latorre, Roberts and Riley, 2010; Radujković, Vukomanović, and Burcar Dunović, 2010; Badawy et al., 

2016). Reasons for this failure include a limited understanding of the KPIs used for their business 

operations, the abundance of KPIs present in the literature for selection purposes, an unnecessarily large 

number of KPIs used by businesses for performance measurement, and technological issues that hinder 
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their effective implementation (Onyemeh, Lee and Iqbal, 2015; Almeida and Azevedo, 2016; Collins et 

al., 2016; Hester et al., 2017).  

1.2 Problem Statement  

Most of the traditional KPI selection methods are consultant-driven and ad-hoc, lacking the scientific 

foundation essential for realizing a generalizable and repeatable KPI selection approach (Elzahar et al., 

2015). The selection of the appropriate KPIs is one of the significant challenges faced by manufacturers 

in the current era of industrialization (Carlucci, 2010). Often managers select KPIs without an accurate 

understanding of the shop floor operations. Choosing appropriate KPIs from the literature can be inferred 

as a complex decision-making process, also termed a Multi-Criteria Decision Making (MCDM) problem. 

It involves numerous factors and associated interdependencies (Kaganski et al., 2017).  

Undeniably, it is observed that a set (finite) of KPIs can be estimated and carefully chosen utilizing 

predetermined conditions (Kaganski, Majak, and Karjust, 2018). ISO offers a collection of KPIs, ISO 

22400 (ISO 22400-2:2014+A1:2017), focusing |on manufacturing operations management, referred to as 

Manufacturing Execution System (MES). The Manufacturing Operations Management (MOM) is a term 

used in International Electrotechnical Commission (IEC) 62264 to address a particular level in the 

manufacturing enterprise functional hierarchy model as shown in figure 1 (ISO British Standards 

Institution, 2018).  

 

Figure 1 ANSI/ISA-95 functional hierarchy model (ISO British Standards Institution, 2018) 

KPIs mentioned in the ISO standard are described through name, description, formulae, unit of measure, 

production methodology, and other characteristics. This standard attempts to generalise its applicability 
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to all industries, however in some statements, it clearly states that 'the indicators are suitable only for 

discrete manufacturing' and 'limited to managers as the audience.' These statements are often equivocal 

and imprecise, and the information provided is, at times, fragmented. Thus, ISO standards may not be a 

practical guide for KPI selection and deciding its applicability (Zhu et al., 2017; Khan and Bilal, 2019).  

Furthermore, essential KPIs required for measuring the manufacturing shop floor performance are 

ambiguously covered. In this context, the main challenges encountered by the manufacturers in selecting 

appropriate KPIs and achieving their business objectives include:  

1. Excessive number of KPIs selected for monitoring purposes, which weakens the main focus on business 

objectives.  

2. The selected KPIs often fail to establish a connection with the business objectives to be achieved.  

3. A lack of understanding of KPIs leads to failure in their implementation and interpretation.  

With more than 1,700 KPIs available in the literature, it becomes difficult for any manufacturer to 

understand, analyze, and implement the right KPIs for monitoring their shop floor operations. Therefore, 

there is a need to develop a KPI selection guideline using a systematic approach to help manufactures 

understand, analyze, and implement appropriate KPIs.   

1.3 Industry 4.0- the New Beginning of KPIs in Manufacturing Industries  

The German administration first put forth the "Industry 4.0" model in November 2011 as a futuristic 

stratagem for 2020. After mechanization, automation, and computerisation, the new era of 

industrialization was termed as "Industry 4.0". The word Industry 4.0 was first presented to the public in 

April 2013, during the Hannover Fair held by the German manufacturing industry in order to strengthen 

German's manufacturing sector, attended by representatives from various interdisciplinary fields such as 

academia, business, politics, and research organizations (Zhou, Liu and Zhou, 2016). Internet of Things 

(IoT), Industrial Internet of Things (IIoT), Service-oriented Architecture (SoA), digitalization, KPIs, 

Cyber-Physical Systems (CPS), Artificial Intelligence (AI), virtual and augmented reality are few words 

that emerged and gained popularity from Industry 4.0 (Nagorny et al., 2017).   

This new industrial revolution has attracted numerous currently operating industries to reflect on it. It 

substantially impacts businesses and service models, product lifecycles, productivity, and machine 

maintenance. With the potential to realise data-driven control and monitoring stratagems, the Industry 4.0 
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approach can help industries become more competitive by learning smart manufacturing systems (ECSEL 

PMB, 2016; Schwab, 2016; Nagorny et al., 2017). Figures 2 and 3 summarise the framework and key 

enabling technologies of Industry 4.0. One of the primary focuses of the current industrial era is integrating 

the manufacturing shop floor with digital technologies (smart manufacturing systems). These digital 

technologies enable real-time monitoring of the production process using performance measures, 

essentially KPIs, for identifying the bottlenecks (Bunse, 2013; Russwurm, 2014; Chen et al., 2017).  

 

Figure 2 Framework of Industry 4.0 

In the modern period, smart manufacturing systems are no longer a hierarchical and physically capsulated 

system, but loosely coupled, heterarchical, heterogeneous, integrated Cyber-Physical System (CPS) 

(Schwab, 2016). Such new systems engender new technological opportunities potentially appropriate to 

today's customer desires, expectations, and demands. The new designs of modern manufacturing systems 

reflect a shift from on-demand and periodical to the real-time (continuous) monitoring of production 

flexibility, visibility, and waste efficiency. Alongside with supply chain adaptions, customizable products, 

ambient conditions, dynamic market trends, and changes in the product life cycle (Candra, Truong and 

Dustdar, 2016; Aerts, Reniers and Mousavi, 2017).  
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Figure 3 Key enabling technologies of Industry 4.0 

The key features of Industry 4.0 are horizontal integration, vertical integration, through-engineering, and 

advancement via exponential technologies. Horizontal integration will be attained using globally advanced 

valued chain networks that offer the highest degree of flexibility and transparency throughout the 

production of goods or services. Vertical integration is possible with the help of CPS that allows machines 

to react swiftly to any change in stock levels/demands and the level of faults, decreasing the turnaround 

time. Through-engineering on all the aspects that cover the complete life cycle of goods and customers, it 

is based on the information and data obtained at each production step. Advancement via exponential 

technologies such as artificial intelligence, sensor technology, and advanced robotics (Russwurm, 2014).  

Moreover, industry 4.0 can be broadly realised into six steps: interoperability, virtualization, 

decentralization, real-time capability, service orientation, and modularity (Leitao, Colombo, and 

Karnouskos, 2016), with the key characteristics of industry 4.0 highlighted in figure 4. This realization 

helps industries achieve additional flexibility, decrease lead times, deliver high-performance services, and 

make it solely customer-oriented. Industry 4.0 is seen as a network of the internet of things, services, data, 

and organizations, and its complexity creates new challenges for development, innovation, and research 

undertakings (Russwurm, 2014). These key features enable to capture almost every information available 

on the manufacturing shop floor. As KPIs play a critical part in exploiting this information available at 
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various levels of the ANSI/ISA-95 functional hierarchy model to cautiously monitor the vital processes 

and highlight the bottlenecks (Unver, 2012). In the era of Industry 4.0, manufacturing industries see KPIs 

are an essential tool to monitor their critical performances and assist them in highlighting the problems 

and challenges and achieving their key business objectives. 

 

Figure 4 Characteristics of Industry 4.0 (Russwurm, 2014) 

1.4 Manufacturing Shop Floor- Heart of Manufacturing  

Due to the Industry 4.0 initiative, industrial manufacturing has witnessed histrionic upheaval of 

technology, but few features remain unchanged. The manufacturing shop floor is still considered as the 

heart of any manufacturing operation, and it is a place where equipment, processes, and people merge 

collectively to add value to material and manufacture products for trade (Demchenko, Ngo and Membrey, 

2013; Data Magnum- The Big Data Connection, 2015). In simple words, the manufacturing shop floor is 

an area where production is carried out manually by workers, semi-automatic by workers and machines, 

or automatic by machines. This area includes inventory, warehouse, and equipment. It is common in 

manufacturing to contemplate the shop floor operations as the least important factor to be addressed by 

the manufacturers (Demchenko, Ngo and Membrey, 2013; Data Magnum- The Big Data Connection, 

2015; Russwurm, 2014). 
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Asymptomatic issues that can be measured using KPIs such as idle equipment, inventory inaccuracies, 

emergency breakdown, worker inefficiency, or stations/equipment/machine waiting for attention can go 

unnoticed until a severe customer-affecting event arises. Overlooking shop floor operations is a grave 

insight (Deloitte, 2015). Problems that may initially appear insignificant, such as unexplained variations 

in the cycle time for a manufacturing operation, can swiftly escalate and become a significant issue (or 

result in a substantial setback)—affecting the overall production cycle, customer order fulfillment time, 

profit, and growth across many internal departments (Chong, Ng, and Goh, 2016).  

This research is mainly focused on the manufacturing shop floor KPIs because it reveals the loopholes in 

production or process that can severely impact manufacturers through efficient monitoring. It can also 

reduce the occurrence of errors in the output or process by enabling proactive rather than reactive decision-

making, finding deviation from standard procedures and processes, and increasing staff productivity by 

continuously monitoring their performances and enabling the smart scheduling of staff and resources 

operations. Thus, assisting the manufacturing industries in bringing out usable, tangible, and superior 

quality products as per the customer specifications from their shop floor seamlessly.  

1.4.1 Identifying the Challenges Faced by Manufacturers While Selecting KPIs  

According to Kucukaltan et al., in manufacturing industries, performance measurements are based on 

numerous performance indicators. The information on determining the right performance indicators (i.e., 

KPIs) and identifying the interrelationships between several performance indicators have been lacking. 

For manufacturers, selecting and implementing KPIs to remain competitive in the current business 

environment is severe. These challenges include:  

What are the appropriate KPIs?;  

How many KPIs are needed?; 

How to prioritize the KPIs?;  

How can these KPIs help to improve performance?;  

Finding relevant KPIs to measure the manufacturing performance is challenging and time-consuming. It 

considers all current and future business objectives and targets the weak spots in the production that needs 

attention. There are no KPIs mentioned in the literature that can give manufacturers a complete picture of 

the shop floor performance. Each KPI presents a partial insight into the performance and hence not 
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sufficient to serve as a source for decision making. For this reason, the selection of a set of KPIs that can 

capture the complete picture of the shop floor performance is a necessary but challenging task for the 

manufacturers.  

When selecting KPIs and using them efficiently, everyone involved in the manufacturing facility must 

know: 

How the KPIs affect their manufacturing operation (work or responsibilities)?;  

Do the KPIs help them to improve their manufacturing operations?;  

What kind of changes shall be incorporated from the information received by KPIs? 

Moreover, the selection of KPIs must be in-line with the approach and business objectives that the 

manufacturers are aiming to accomplish. In a complex business environment, where the objectives need 

to be transformed over-time, the KPIs selected should also be altered. Lack of actionable KPIs can cause 

delays in identifying weak spots and severely impact performance improvement. In order to improve 

overall performance, manufacturers should carefully answer the following questions while identifying and 

selecting KPIs for monitoring their shop floor operations:  

Is there a link between KPIs and the business objectives?;  

How many KPIs should be used?;  

How often should the KPI be monitored? KPI accountability? 

To address these challenges, the manufacturers face no framework or methodology to systematically, 

methodically, and/or scientifically select KPIs for a manufacturing facility. A KPI guidelines approach is 

developed to guide the manufacturers to analyze and choose appropriate KPIs systematically. 

Furthermore, prioritizing the KPIs is also discussed within the scope of this research using SMART 

criteria.  

1.4.2 Manufacturing Shop Floor Related Problems 

Visibility—from the many tools and techniques that are used as a part of the Industry 4.0 initiative, 

manufacturers have several options for managing and monitoring their shop floor. Because there may be 

siloes of data from non-integrated systems, overall operation visibility might be hard to achieve and 
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challenging to organize these fragmented reports together (Kaifei He, 2016). Lacking real-time integration 

to a single version of manufacturing status, identifying errors or inefficiencies may be impossible (Donald 

N. Heirman, 2002). Every interruption in production means the waste of resources and failure to fulfill 

customers' demands on time. Manufactures might have a nebulous sense that the production throughput 

KPI is not "where it should have been" and disruptions "are hard to control" and "something" needs to be 

fixed. But what? Maybe machines in a few stations are failing to keep up with the production takt time? 

Perhaps communication gaps between different areas of the shop floor are delaying orders? Maybe labours 

are performing inefficiently? Maybe shop floor managers have limited knowledge? Maybe they do not 

measure the right performance indicators needed to improve the shop floor efficiency.  

With the lack of shop floor data visibility, manufacturers are stuck with reactive rather than proactive 

decision-making. These types of problems in manufacturing can be expected and essential characteristics 

of complex manufacturing. A shop floor with complete visibility typically will potentially reduce these 

types of problems.  

Automation—for any manufacturing industry, it is essential to recruit and retain skilled workforce. 

However, on the shop floor, spotting idle personnel are expected. Often the production staff is made to 

wait for the final product confirmation or authorization from the customer on the design amendments 

(Krumeich et al., 2014). For some manufacturers, understanding labor costs and inadequacies is a complex 

challenge. Automation stands as the solution to many of these issues but it is crucial to experience which 

jobs to automate. Most manufacturers lack insights into the shop floor, directly impacting the overall 

production rate and time invested in fulfilling customers' orders. Automation can also help manufacturers 

to achieve high product quality and guarantee compliance with corporate obligations. For instance, 

product quality KPI checks can be controlled and automated using sensor technology superior to human 

inspection methods (Niggemann et al., 2015). Maintaining high quality helps to improve brand image and 

increases customer satisfaction. 

Digitalization—for manufacturers, is seen as the application of Information Communication Technology 

(ICT) to enhance manufacturing processes' productivity and efficiency. Digitalization can be defined as 

"embracing or escalating the use of computer technology by an organization or industry" (Merkel et al., 

2017). Regrettably, the acceptance of digital technologies in the manufacturing industries is slow-paced, 

with most manufacturers adopting a 'wait and see' method. Digitalizing industrial processes should be 

viewed as a continuing process, not just as a one-stop solution, as manufacturers incessantly evaluate 'what 
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is worth digitalizing' (Prades et al., 2013). In the current industrial revolution, digital technologies, such 

as RFID scanners, telemetry, machine sensors, and GPS tracking, are evolving at a rapid pace. To survive 

and thrive, manufacturers have to adapt to and utilize these new technologies. Shop floor digitalization 

can be applied across manufacturing operations such as material handling, scheduling, inventory, 

planning, logistics, labor, and time tracking (Georgoudakis et al., 2006).  

Out-of-date shop floor equipment, poorly combined with inadequate software solutions, cannot offer the 

much-needed dexterity and visibility required by the shop floor to meet current market demands. The shop 

floor is where most manufacturing profits are made, and customer satisfaction is retained (Williams, 

1994). If the shop floor is functioning poorly, the entire organization suffers. It is the reason why 

manufacturers should consider shop floor processes as their top priority. Digitalizing shop floor processes 

certainly makes everyone involved in manufacturing jobs easier. Digitalization makes the complete 

manufacturing process completely secured, automated, continually monitored, and managed as a global 

entity. That, in turn, helps achieve reduced downtime, improved efficiencies, increased return on 

investment, and greater resource utilization (Hankel and Rexroth, 2015). 

1.5 Need for KPIs in Manufacturing Shop Floor  

The significant reasons for deploying KPIs in manufacturing shop floor are (Bhanot, Rao and Deshmukh, 

2015, 2017; Ghazilla et al., 2015; Star et al., 2016; Zackrisson et al., 2017; Zailani et al., 2017): 

Monitoring the health: KPIs acts as an essential tool for manufacturing industries to track and monitor 

their operational and strategic performances. The bottleneck equipment, process, station, or production 

line can be acutely observed to increase performance by reducing downtime. The major challenge arises 

when the KPIs selected for monitoring are inappropriate and incomprehensible by the manufacturers 

leading to further degradation in performances. The number of KPIs used for monitoring and its 

accountability plays a significant part in sustaining improved industrial health. The selected KPIs should 

incorporate each department of production, namely: product, process, and resource, making sure that 

overall improvement in performance is achieved.  

Measuring progress over time: KPIs such as cycle time, stop time, machine idle time, etc., needs to be 

measured in real-time to improve quick decision-making capabilities. Strategic KPIs, for instance, 

employee performance, production line monthly performance, gross margin, revenues, need to be 

measured periodically since they are result indicators used to track the industry's progress (weekly, 



 

28 
 

monthly, quarterly, or annually) towards achieving its strategic objectives. With appropriate selection of 

KPIs that can be measurable in the real-time, periodical, and on-demand can support manufacturers to 

monitor their performance both in short- and long-term perspectives.   

Making modifications and tackling opportunities: to survive in the current complex environment, 

manufacturing industries make frequent alterations to their operational and strategic objectives. KPIs 

monitors the performances based on new objectives and support manufacturers to make modifications to 

the set objectives. These modifications can be achieved by selecting the right set of KPIs, which has a 

balanced set of leading and lagging indicators. New opportunities, such as increasing the production rate, 

throughput rate, etc., can be realized if the manufacturers succeed in achieving their objectives. Therefore, 

manufacturing industries depend on the results generated by KPIs to make modifications and tackle 

opportunities. 

Analyzing patterns in performance over time: manufacturing industries tend to measure a small number 

of commonly known KPIs frequently over time, such as production ratio, quality, OEE, etc. Measuring 

KPIs over time (quarterly, annually, or a more extended period) tends to generate a pattern. These patterns 

tend to support manufacturers in countless ways. For example, patterns can help them be aware of the 

lowest quarter of production rate and use that time to carry out maintenance activities or other productive 

initiatives. It can help to know the shifts' performances over a certain period, which shift underperforms 

or over-performs. Patterns act as a forecaster for manufacturers to understand what can be expected in the 

next production phase. 

1.6 Motivation  

The manufacturing industry is composed of several operational areas, for instance, manufacturing, sales, 

marketing, and many other related functional areas. Based on the operational areas, manufacturing 

industries can have diverse sets of KPIs. The performance of equipment, process, production line, or the 

whole manufacturing industry is principally measured in two ways: result indicators and performance 

indicators (Kang et al., 2016). Result indicators are used to measure the effects of the operational activities 

but ignoring their causes. In comparison, performance indicators are used to generate the next plan of 

action based on the results. Therefore, performance measures principally key performance measures are 

commonly used at levels 0, 1, and 2 of the ANSI/ISA-95 functional hierarchy model to increase quick 

decision-making capability. According to International Standard ISO 22400-1 and 22400-2 (2014), KPIs 

plays a vital role in swiftly and effectively providing precise and detailed statistics of the whole 
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manufacturing industry by equating real-time performance alongside with their nominal performance to 

accomplish set objectives (International Standard ISO 22400-1, 2014; International Standard ISO 22400-

2, 2014).  

Centered on the operational area, within the manufacturing industries functional hierarchy model: discrete, 

continuous, or batch control of the manufacturing process is at level 1-2. Whereas manufacturing 

operations management is at level 3, and business planning and logistics are at level 4. Figure 1.3 

illustrates the different levels of the manufacturing industries hierarchy model. As mentioned in IEC 

62264-1, manufacturing shop floor operations can be categorized into sub-operations, such as production, 

maintenance, quality, inventory, and other manufacturing-related operations. KPIs based on each of these 

sub-operations can be defined independently or depending on combinations of these sub-operations. In 

this research, level 1-2 of the mentioned hierarchy model, predominantly focusing on manufacturing shop 

floor operation KPIs, is addressed. 

Several manufacturing industries that use KPIs to improve their shop floor operations often detract from 

their objectives because they measure too many KPIs, which leads to a loss of clarity of their primary 

goals (Zhu et al., 2017). Also, various manufacturers have a limited understanding of the appropriate KPIs 

that can help them to enhance their manufacturing operations (Leachman, Pegels, and Kyoon Shin, 2005; 

Woolliscroft et al., 2013). Equally, some of the KPIs have no links related to the manufacturers' objectives. 

In other cases, they monitor one part of the process, not targeting other more imperative parts of the 

process. Many manufacturers are still struggling to find the required guiding KPI approaches, techniques, 

or rules to enable the effective design, measurement, and improvement of their shop floor performance 

(Collins et al., 2016). In order to effectively address the difficulties faced by the manufacturing industries, 

a holistic approach for selecting appropriate manufacturing shop floor KPIs is required.  

1.7 Research Objectives 

1. Develop a manufacturing shop floor exploration model to identify the critical business objectives, 

problems, challenges, crucial performance details, bottlenecks, and a list of KPIs within the given 

manufacturing shop floor facility by using questionnaires and structured interviews with shop floor 

production data. 

2. Develop KPI guidelines by extracting every essential guiding performance measures needed for the 

manufacturer to understand, analyze, select, and implement appropriate KPIs. The KPI guidelines consist 
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of five stages, namely: information stage, discernment stage, scheming stage, the origin of the data stage, 

and assisting technology stage. Each stage consists of measures dedicated to providing vital information 

to help manufacturers better monitor their shop floor operations and improve decision-making capabilities. 

3. Conduct a case study on a tier 1 automotive manufacturing suppliers' shop floor facility to evaluate the 

proposed manufacturing shop floor exploration model's effectiveness and practicality combined with the 

KPI guidelines. The case study will mainly concentrate on analyzing the usefulness of the existing KPIs 

generated from the manufacturing shop floor exploration model in monitoring the critical business 

objectives using KPI guidelines.  

4. From the data collected through the manufacturing shop floor exploration model and coalescing it with 

the focused literature review on KPIs, opinions from industrial and academic experts, and evaluating it 

using KPI guidelines, a set of KPIs are proposed. An explanation of implementing the proposed KPIs in 

the manufacturing shop floor facility is discussed. 

5. Prioritising key business objectives and the proposed KPIs using SMART criteria.  

1.8 Thesis Outline 

The rest of the thesis is outlined as follows: Chapter 2 describes the current manufacturer's problems and 

needs and critically reviews the industrial practices and relevant research for improving their shop floor 

operation assessments. It discusses the literature review around the key topics such as performance 

measurements- frameworks and models, categorization of KPIs- KPI measures and corresponding 

elements, identify the limitations of current industry practices, and highlights the research gaps. Moreover, 

various manufacturing industries' prioritizing techniques to streamline decision-making are explained at 

the end of chapter 2 (section 2.5).  

To address the industrial need and research gap mentioned in the literature review that there is no 

framework or methodology to select KPIs systematically, methodically, and/or scientifically for a 

manufacturing facility. A KPI guidelines approach is developed to systematically guide the manufactures 

to understand, analyze, and select appropriate KPIs in chapter 3 (section 3.3). Chapter 3 also illustrates 

how the proposed KPI guidelines are combined with the manufacturing shop floor exploration model. The 

aim of developing this model is to distinguish the key business objectives; identify the bottlenecks in the 

manufacturing shop floor facility that negatively impacts the throughput; point out the problems and 

challenges, and list the KPIs used for monitoring shop floor performance (section 3.2).  
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For proof of concept and evaluation, chapter 4 demonstrates the procedure of applying the proposed 

approach as described in chapter 3 for understanding, analyzing, and implementing appropriate KPIs 

within company X. Company X is an automotive seat manufacturer. The case study is conducted on the 

L494 assembly line within this facility. Firstly, by employing the manufacturing shop floor exploration 

model, company X's key business objectives, list of KPIs, bottleneck, problems, and challenges are 

identified. Secondly, company X's list of KPIs is evaluated using KPI guidelines to realize the existing 

KPIs' applicability and effectiveness. Thirdly, a set of appropriate KPIs that can enable the company X to 

monitor the key performances and achieve its business objectives are determined using the proposed 

approach. Lastly, the prioritization of key business objectives and appropriate KPIs is offered using 

SMART criteria. 

To conclude, chapter 5 summarises the research objectives' achievements, highlights the research benefits, 

and mentions the research's novelty followed with future directions.  
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CHAPTER 2 LITERATURE REVIEW 

 

2.1 Introduction 

This chapter aims to find and critically assess the techniques, frameworks, models, approaches, and 

procedures available in the literature relevant to this research topic. A meticulous exploration of the 

literature linked to manufacturing industries' shop floor KPIs was conducted. This literature review covers 

material from the last three decades (1990-2020). During the initial literature search on manufacturing 

industries' shop floor KPIs via google scholar and ResearchGate, it was observed that this term arose. It 

gained popularity after the year 1987, with only seven publications registered during that year, followed 

by 10, 11, and 13 publications in the upcoming years 1988, 1989, and 1990 respectively.  

The literature was examined by means of the following electronic databases: ABI/INFORM Global, ACM 

Digital Library, EBSCO host, British Standards Online, ProQuest Science, Engineering Village, IEEE 

Xplore Digital Library, Science Direct, Emerald Full-text, and Scopus. Moreover, the University of 

Warwick library search was also conducted to consider all related books and dissertations. Several 

keywords used to search online literature for this research were: KPI frameworks and models, KPIs in 

manufacturing industries, KPI selection process, KPI guidelines, KPI as performance assessments in 

manufacturing industries, and list of KPI measures in manufacturing industries. The initial evaluation of 

the literature was found to cover several research disciplines, for instance, operational and strategic 

management of KPIs, accounting and finance KPIs, manufacturing logistics, etc. The coverage of journals 

was diverse, illustrated in table 1.  

Only the abstract and introduction of the journals were studied to ascertain whether it discusses the given 

research topic. Many journals discussing KPIs related to industries other than manufacturing were 

overlooked because this research focuses on manufacturing industries. Mostly, the literature review related 

to KPI guidelines, performance measurement models and frameworks, and prioritization techniques for 

manufacturing industries were included in the study's scope. The list of articles reviewed from various 

publications is illustrated in table 1, starting from 1998-2020.  
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Table 1 List of articles reviewed from various publications (1998-2020) 
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Mathematical and Computer Modelling 
 1                      1 

Measuring Business Excellence 
    1  3 1 1 2  1     1 1  3    1

4 

Mechatronics 
                 1 1     2 

Nuclear Engineering and Design 
             1          1 

Pattern Recognition 
             1          1 

Procedia CIRP 
              8 

2
0 

3
3 

3
3 

8
9 

1
0

3 

2
4 

1
5 

 
3

2

5 

Procedia Engineering 
             1 1 5 4 

1

0 
2 7 2 5  3

7 

Procedia Manufacturing 
                 1

5 
 4

3 

1

8 

1

2 
 8

8 

Procedia Technology 
              2 4 4  1     1

1 

Pump Industry Analyst 
           1     1       2 

Proceedings of the ACM on Interactive, 

Mobile, Wearable and Ubiquitous 

Technologies (IMWUT) 

                   1 2   3 

Reliability Engineering & System 

Safety 
          1 1    2  1  1    6 

Renewable Energy 
                2 1  1 1   5 

Review of International Business and 

Strategy 
              1    1     2 

Robotics and Autonomous Systems 
 1                      1 

Robotics and Computer-Integrated 

Manufacturing 
    1     1 3 1 2 1 2   3 2 2 3 4  2

5 

Safety Science 
         1  2 1 2 1 1 4 2  1 3 1  1

9 

Sensors and Actuators A: Physical 
      4 1 1 1 1         1    9 

She Ji: The Journal of Design, 

Economics, and Innovation 
                  1     1 

Simulation Modelling Practice and 

Theory 
            1   1 1   2 1 1  7 

Sustainable Production and 

Consumption 
                   1    1 

The Electricity Journal 
                   1    1 

Theoretical and Applied Mechanics 

Letters 
                1       1 

Transportation Research Part C: 

Emerging Technologies 
                   1    1 
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TQM Journal 
     1     1 2 2   1 3 4  3  1  1

8 

Vehicular Communications 
                   1    1 

Total articles reviewed  
7 

1

0 

1
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0 

2
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2
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4
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4
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4
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5
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6

2 

6

4 

1

1

8 

1

3

8 

1

5

9 

2

0

5 

2

4

0 

2

8

7 

1

2

7 

1

1

3 

1

8

3

0 

2.2 What are Performance Measurements?  

It is the process of assembling, studying, monitoring, and/or reporting statistics (facts and figures) 

regarding the performance of a component, individual, group, system, or organization. The origin of 

performance measurements can be traced back to the 19th century and can be broadly differentiated into 

three significant generations, namely: measurement 1.0, 2.0, and 3.0 (Salloum, 2011). The history of 

performance measures can be observed in figure 5.  

 

Figure 5 History of performance measurements (Salloum, 2011) 

2.2.1 Measurement 1.0 

This was an early stage of analysis characterized by accounting and finance measures because that was 

the only meaningful information available during that period. These measures were considered 

complementary to accounting and financial results, and also, the data required for measurement purposes 

was available after the end of an accounting period (David and Jenson, 2014). Thus, these measures 

provided limited value due to their lagging nature (i.e., results indicators), for which administrations had 
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no direct control. One main weakness in measurement 1.0 was what researchers denote to as the approach 

to the implementation gap. The implementation gap approach is the philosophy in which organizations 

spend innumerable funds on designing and developing sophisticated approaches. Those approaches are 

pointless without an exact linking procedure to implement them (Nudurupati et al., 2011). Thus, in 

measurement 1.0, performance measures, i.e., results indicators, were merely used to present the financial 

results.   

2.2.2 Measurement 2.0 

A major influx of data marked it. This generation was data and technology focussed. Organizations started 

asking themselves a question about what to do with the data? The Information Technology (IT) cell of the 

various organizations accepted that the traditional Business Intelligence (BI) tools were the only solution 

to insufficient information and rich data dilemma (Striteska and Spickova, 2012). Internal IT cells within 

the organizations were solely responsible for implementing solutions that typically lacked the critical 

understanding of the business performances to deliver what is required to drive informed decision making 

(Klovienė and Speziale, 2015). The requirement analysis was also under IT control, typically taking 

months for designing and years to implement and deliver value. This delay in delivering values repeatedly 

created a stiff environment that could not handle the rapidly changing business demands (Heinicke, 2018).  

Few organizations addressed these inherent delays in developing solutions by marketing KPI catalogs with 

the assurance of delivering hundreds and thousands of common measurements to their valuable customers 

(Ambalangodage, Yong, and Fie, 2016). Forlornly, these solutions incorrectly assumed that the 

measurement requirements for all organizations were identical. Every organization is distinctive, facing 

unique challenges and using varied strategies to overcome them. Data collected to address various 

organizations' key business objectives is certainly uneven, making one-size-fits-all solutions inappropriate 

(Ossovski, Lima, and Costa, 2013). This generation also witnessed the rise of bloated Business 

Intelligence (BI) support establishments to maintain their cumbrous tools. These establishments placed 

the burden of extracting the data from BI systems on the organization that demands it.  

Organization's overburdened IT support lacking the technical knowledge of interacting with these complex 

BI systems prevented them from fully embracing BI tools (Kulatunga, Amaratunga, and Haigh, 2015). 

Inconsistent, unreliable, and untrusted data was also one of the reasons for low BI adoption rates. 

Organizations started blaming the BI support establishments for not providing usable performance 

measurements, while those establishments argued that they did not provide functional data. The difference 
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between the performance indicators used in measurement 1.0 to the performance indicators used in 

measurement 2.0 are mentioned in table 2 (Hasan, 2018).   

Table 2 Difference between KPIs and KRIs (Hasan, 2018) 

Criteria KPIs KRIs 

Measurement type  Non-financial  Financial and non-financial  

Measurement frequency  Frequently  Monthly, quarterly, or annually 

Reporting  Supervisor, manager, and CEO Board of directors  

Problem fixing  Highlights the bottleneck that needs 

attention  

Does not mention what needs to be fixed 

Focus  Specific operation  Results of many operations   

Indicator form  Leading and lagging  Always lagging  

2.2.3 Measurement 3.0 

It is the present generation of performance measurements. It concentrates on Objective-Driven 

Performance Measurement (ODPM), based on operational excellence (Kulatunga, Amaratunga and 

Haigh, 2005). It uses approaches that align the critical processes' execution to strategic business objectives 

by assessing and monitoring an organization's bottlenecks. Performance measurements are evidence of an 

organization to ensure that they progress in the right direction to achieve its business objectives. In a 

practical scenario, not many organizations can do so; they instead use the performance measures for which 

the data is easily obtainable (Parida et al., 2015). The configuration and ownership of these measurements 

in the present generation (i.e., measurement 3.0) are directly under organizations' control because they 

have rich knowledge about processes and strategies being measured. Such a distributed model is essential 

to constantly changing customers' demands by eliminating the constraints traditionally imposed by internal 

IT teams and BI support establishments. Flexibility and agility are the characteristic tenets of measurement 

3.0 (Taticchi, Tonelli, and Cagnazzo, 2010).  

The OPDM also includes clear performance goals so that every organization upholds a consistent 

definition of acceptable and objectionable performance. These performance goals are typically linked with 

predefined response strategies (Goshu and Kitaw, 2017). For example, if the organizations know all the 

data variables used to generate the measurement and if they understand how these variables affect the 

measurement direction, then organizations should have a realistic notion of the actions that need to be 

taken if the performance effects fall outside the tolerable limits (Sinclair and Zairi, 2000). Response plans 

illuminate culpability and establish a straight action structure when performance goals are overlooked. 
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Measurement 3.0 further clarifies that one-size-fits-all temperament is unrealizable because performance 

measures that work for one organization will not ineludibly work for others. Figure 6 highlights the 

different generations of performance measurements. Measurement 3.0 gave rise to thousands of KPIs 

depending on the type of industry, nature of production, and audience category. It failed to mention the 

mechanism/ techniques/ methods/ approaches wherein the organization can identify their relevant KPIs 

(Mirela-oana, 2005).  

 

Figure 6 Generations of performance measurement (Mirela-oana, 2005) 

2.3 Performance Measurements ̶ Frameworks and Models   

In measurement 1.0, it was apparent that traditional accounting and cost management-based performance 

measures were solely used. Those accounting and cost performance measures were soon proved 

misleading and inadequate because they could not trace the cost of product, process, and resource; instead, 

they concentrated on the governing processes in separation. Throughout these generations, various models 

and frameworks emerged (Beleska-Spasova, 2014). They were mainly developed to tackle the increasing 

complexity both inside and outside of the organization. The frequently cited models and framework are 

mentioned below in chronological order, which comprises of (Van Looy and Shafagatova, 2016):  

1984 Du Pony Model 

1987 Malcolm Baldrige Model 

1989 Performance Measurement Matrix 
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1990 Performance Questionnaire 

1991 Results and Determinants Framework 

1992 Strategic Measurement Analysis and Reporting Technique (SMART) 

1993 Balanced Scorecard 

1995 Pyramid of Organizational Development 

1996 Cambridge Performance Measurement Design Process 

1997 Integrated Performance Measurement System Reference Model 

1999 Business Excellence Model of the European Foundation for Quality Management 

2000 Performance Prism 

2003 Integral Framework for Performance Measurement 

2004 Performance Planning Value Chain 

2005 Total Performance Scorecard 

2006 Holistic Performance Management Framework  

2010 Flexible Strategy Game-card  

2011 System Dynamics Based Balance Scorecard  

Du Pont Corporation developed the earliest performance measurement model in the 1920s to present the 

Return On Investment (ROI) financial ratios. The Du Pont model is still widely used by organizations as 

a problem-solving tool for indicating their financial health. Steadily organizations’ directors recognized 

that financial accounting measure ROI presented disingenuous indications to innovation and continuous 

enhancement activities needed in the current competitive environment (Colbran et al., 2019). Tableau de 

bord model developed by French engineers by combining financial and non-financial performance 

measures helped the organizations focus more on daily operations rather than fixing whole time on 

strategic issues.  

Post-1985, quality-related performance measures were accounted for as one of the key aspects of 

determining its dependability and quality. Malcolm Baldrige model and the European Foundation for 

Quality Management (EFQM) framework worked towards including quality and management and 

financial performance measures. Kaplan and Norton brought a revolution in performance measurement 

by introducing Balanced Score-Card (BSC). BSC joined strategic and operational performance measures 

to complement financial measures. While many research pieces already thought beyond financial 

measures, Kaplan and Norton were the first to identify financial performance measures as lagging 

indicators depending on leading causes such as quality, improvement activities, customer satisfaction, and 

innovation (Kaplan and Norton, 1992).  
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The BSC framework suggested that an organization have a balanced set of financial and non-financial 

performance measures to improve profitability and operational efficiency. Even though BSC gained 

popularity, the researchers stressed many shortcomings of this framework: its static nature, clustering of 

performance measures, lack of shareholder focused, etc. This integration of traditional financial measures 

with non-financial measures brought in the integrative perspective of performance measures marking it as 

a significant development phase in performance measurement models and frameworks. During the initial 

stages of development of models and frameworks for performance, measurement went through three 

transition stages: the accounting management stage, the financial and integrative stages (Closs and 

Tierney, 1993).  

From the 1990s, the focus from “what gets measured get done” got shifted to “how to manage what is 

measured.” The primary purpose of any measurement model or framework was to encourage proactive 

management.  The necessity for balanced, integrated, strategic, relevant performance improvement 

orientation has been recognized in several publications. Integrating non-financial measures with financial 

measures was the main topic of interest during the 1990s. The results and development framework was 

established to incorporate lagging and leading performance indicators (Parhami, 1990). This framework 

was grounded on the assumption that every organization’s performance can be measured through– results 

(lagging indicators) and determinants of results (leading indicators) and financial measures. To validate a 

strong connection amongst performance measures at the different hierarchical and functional levels of an 

organization, Lynch and Cross proposed a performance pyramid, i.e., a SMART system. Key performance 

and operational measures were used to bridge the gap between operational and management levels. 

Nonetheless, according to several researchers, the SMART system failed to provide a mechanism to 

identify KPIs (Lynch and Cross, 1993).  

Since 1996, inspiring research has been conducted by various researchers and think-tank experts to provide 

dynamic, integrated, and consistent Performance Management Systems (PMS) for organizations. PMS 

claimed to include all the key performance measures applicable to an organization. The major 

improvements associated with PMS were mainly associated with the manufacturing company’s 

perspective. Integrated Performance Measurement System (IPMS) was proposed by Ghalayini et al. to 

relate strategical success areas with an organization's performance. However, the dynamic aspect of PMS 

was poorly incorporated in this system (Ghalayini et al., 1996). To include dynamic PMS within IPMS, 

Bititci et al. suggested including internal and external monitoring, review and deployment system, and 
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PMS. One of the PMS framework's chief shortcomings was failing to integrate competitive and dynamic 

dimensions. Also, several organizations have seen PMS as proactive rather than reactive (Bititci et al., 

1996).  

It can be specified that the period from 1992-2000 has witnessed several transformations and 

developments in performance measurements model and frameworks. These developments were mostly 

related to manufacturing organizations because operational measures that gained high popularity were 

crucial. The dimensions of measures focused during this period were financial, customer satisfaction, 

quality, competitiveness, etc. This shift from exclusively measuring financial performance measures in 

the early 19th century marked it significantly. Nevertheless, the process of selecting the KPIs to achieve 

organizations' strategic and operational objectives to enable efficient decision making was failed to be 

incorporated in the development of models and frameworks. Merely, a list of KPIs based on different 

dimensions of measures was populated and used by organizations without understanding its purpose of 

use in attaining their objectives. The transition of performance measurements since the early 19th century 

is pointed out in figure 7 (Sheykholeslam and Sachin, 2015).    

In the era post-2000, the researchers predominantly started working on finding the solutions for the 

shortcoming of a few well-established models and frameworks of the previous era, such as BSC, SMART 

system, and PMS. For instance, Kanji et al. restructured the BSC framework to Kanji’s business scorecard 

for providing consistent Total Quality Management (TQM) and business excellence to organizations. This 

was achieved by providing organizations with four key factors for consideration ̶ cultivating 

organizational learning, attaining process excellence, appreciating, and exploiting shareholder value 

(Chae, 2009). This era also witnessed the emergence of international standards dedicated to performance 

measurement, for example, Automation systems and integration — Key performance indicators (KPIs) for 

manufacturing operations management. This standard listed 34 KPIs for monitoring level-3 of the ISA-

95 hierarchy model with a few basic KPI selection guidelines for an organization's managers (Zhu et al., 

2017). Table 3 provides the significant models and frameworks developed since the 19th century by 

highlighting key issues, dimensions of performance measures, contributions, and limitations.  
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           1900
Accounting 

Standards

           1914DuPont Model

           1933 Cost Accounting

           1950Tableau De Bord Model

           1981 SMART Model

           2010
Flexible Strategy 

Gamecard

           2000 Performance Prism

           1992 BSC

           1987EFQM

           1997IPMSR Model

           2005
Total Performance 

Scorecard

           2011
System Dynamic Based 

BSC

Management Perspective

Financial Perspective

Integrative Perspective

Integrative and Holistic 

Perspective

 

Figure 7 Transitions of performance measurement (Sheykholeslam and Sachin, 2015) 

Table 3 Summary of significant performance measurement models and frameworks 

Name of the 

performance 

measurement 

framework and 

models  

(Author and year) 

 

 

Dimensions of 

measures 

 

 

Issues addressed 

 

 

Strengths 

 

 

Limitations 

Results and 

determinant 

framework 

(Fitzergald et al., 

1991) 

Financial 

performance, 

competitiveness, 

quality, flexibility, 

resource utilization, 

innovation 

Identification of 

leading and lagging 

factors 

It highlights that 

results are lagging 

indicators and 

determinants are 

leading indicators 

Considerations of 

non-financial 

measures, 

stakeholders, and 

their behavioral 

aspects related to 

performance have 

been neglected 

Performance pyramid 

(Lynch and Cross, 

1991) 

Market, financial, 

customer satisfaction, 

flexibility, 

Identification of 

performance 

measures for 

It ties together the 

hierarchical view of 

business performance 

It does not provide 

any mechanism to 

identify KPIs and 



 

45 
 

productivity, quality, 

delivery, cycle time, 

waste 

organizational 

hierarchy 

measurement with the 

business process view 

does not explicitly 

integrate the concept 

of continuous 

improvements 

EFQM- excellence 

model (European 

Foundation, 1991) 

Leadership, people, 

policy and strategy, 

partnership and 

resources, processes, 

key performance 

results 

Organizational 

improvement through 

self-assessment 

It is a non-

prescriptive 

framework based on 

nine criteria related to 

enablers and results 

for self-assessment to 

improve performance 

It does not consider 

the dynamics of 

changing external 

environment 

Balance scorecard 

(Kaplan and Norton, 

1992) 

Financial, customer, 

internal processes, 

learning and growth 

perspectives 

Complements 

financial measures 

with non-financial 

performance 

measures 

Most dominating and 

highly used 

performance 

measurement 

framework which 

highlights to consider 

non-financial 

measures complement 

to financial 

performance 

measures 

The problems to 

identify cause and 

effect relationships 

between linkages of 

different perspectives, 

static nature of 

performance 

measurement, and 

major stakeholders 

related to 

performance are not 

adequately addressed 

Consistent 

performance 

measurement system 

(Flapper et al., 1996) 

Specific dimensions 

of performance are 

not defined 

Designing of PMS 

covering all aspects of 

performance relevant 

for the organization 

It describes the steps 

to develop consistent 

PMS by defining PI, 

relations between PI’s 

and set target values 

for PI’s 

The framework needs 

to be examined for 

general use 

Dynamic performance 

measurement system 

(Bititci et al., 2000) 

Specific dimensions 

of performance are 

not defined 

To bring in dynamics 

to performance 

measurement systems 

It highlights the 

integration of IT for 

review mechanism, 

feedback loops, and 

integrating changes in 

the internal and 

external environment 

The wicker 

application of this 

framework is not 

highlighted in the 

literature 

Integrated 

performance 

measurement 

framework (Medori 

and Steeple, 2000) 

Quality, cost, 

flexibility, time, 

delivery, future 

growth 

Auditing and 

enhancing 

performance 

measurement systems 

This is an integrated 

framework to audit 

and control the 

performance 

measurement system 

For designing the 

PMS, very few 

competitive 

dimensions are 

considered 

Performance prism 

(Neely et al., 2001) 

Stakeholder 

satisfaction, 

stakeholder 

contribution, 

strategies, processes, 

capacities 

The stakeholder 

orientation 

It highlights a 

comprehensive view 

of different 

stakeholders related to 

the performance of 

any enterprise, and 

new stakeholders are 

also considered 

It gives little away 

about how 

performance 

measures are being 

realized, and hardly 

any consideration is 

given related to the 

use of the framework 

for existing PMS 

Kanji’s business 

scorecard (Kanji and 

Sa, 2002) 

Stakeholder values, 

process excellence, 

organizational 

learning, delighting 

stakeholders 

Overcoming the 

weakness of BSC 

It looks for process 

excellence, 

organizational values, 

and learning and 

This scorecard 

focuses mainly on the 

external stakeholders 
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delighting 

stakeholders  

Total performance 

scorecard 

(Rampersad, 2005) 

Financial, customer, 

internal, knowledge 

and learning 

perspectives, process 

improvement, 

personal improvement 

Integrating personal 

and organizational 

performance 

It integrates personal 

and organizational 

scorecard with PDCA 

cycle, talent 

development cycle, 

and Kolb’s learning 

cycle 

The insights are built 

from experience; no 

empirical validation is 

presented 

Flexible strategy 

game card (Sushil, 

2010) 

Situation, actors, 

process, performance, 

the value in offering 

and relationships 

The dual perspective 

of performance 

This is an attempt to 

provide a holistic, 

integrated, and 

dynamic view of 

performance 

management which 

highlights the 

importance of the 

dual perspective of 

performance, i.e., 

enterprise and 

customer perspective 

A recent development 

needs empirical 

validation 

Proactive balance 

scorecard (Chytas et 

al., 2011) 

Specific dimensions 

of performance are 

not defined 

Using fuzzy cognitive 

map (FCM) and 

simulations 

It addresses the 

problems of BSC and 

overcoming them by 

generating dynamic 

networks, simulating 

KPIs 

It needs empirical 

validation 

Sustainability 

performance 

measurement system 

(Searcy, 2011) 

Specific dimensions 

of performance are 

not defined 

Reviewing and 

updating of corporate 

sustainable PMS 

It provides a 

conceptual framework 

to structure the 

process of updating a 

corporate 

sustainability 

performance 

measurement system 

The conceptual 

framework needs an 

empirical validation 

Link and effect model 

(Stenstrom, 2012) 

Technical indicators, 

like; availability, 

capacity utilization, 

etc. 

Using fuzzy cognitive 

map (FCM) and 

simulations 

Technical indicators 

at the operational 

the level is linked to 

the strategic level 

through the 

tactical level and vice 

versa 

A recent development 

needs empirical 

validation 

 

Nearly every single performance measurement framework and model mentioned in this section was 

concerned with what needs to be measured, how to organize and report those measures. This included 

generating a set of performance measures to reveal the strategy and purpose of an organization; 

constructing a composed set of measures (for example, lagging vs. leading, external vs. internal, 

operational vs. financial); deploying the composed measures to evaluate objective organizational 

alignment; knowing the causative relationships between measures and reporting the measures. The 
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primary purpose of these frameworks and models was to implement a composed and integrated set of 

measures to improve and manage an organization's performance (Sarode, Sunnapwar, and Khodke, 2008). 

The success of these initiatives was calculated by three conditions ̶ is the PMS designed and deployed? Is 

the PMS envisioned to accomplish the performance? Did the organization performance improve? The 

second and third conditions were not completely achieved through these frameworks and models due to 

limited understanding of the indicators deployed within the PMS by the organizations (mainly 

manufacturing sector). Scores of KPIs selected during model development failed to mention the motives 

behind selecting those set of indicators (Haponava and Al-Jibouri, 2009).  

From the organizations' perspective, developing highly sophisticated frameworks and models for 

performance measurements was not rewarding. These organizations needed a method/ tool/ technique/ 

approach that can seamlessly guide them to link their strategic and operational objectives with 

performance measures. Populating a set of measures based on dimensions of measures and organization 

type was simply not sufficient for organizations to improve their performances (Yadav, Sushil, and Sagar, 

2013). To address this research gap, researchers started considering different dimensions to the selection 

of KPIs. The problem of thoroughly understanding KPIs, developing a holistic approach for guiding, 

selecting, and implementing appropriate KPIs remained a significant challenge for organizations. In order 

to address this problem, the author developed a holistic approach for guiding the manufacturers to analyze, 

select, and implement appropriate KPIs. The significance of this approach will be discussed in Chapter 3.      

2.4 Categorization of KPIs Based on Various Research Publications   

Kang et al. understanding the complexity of selecting the right KPIs for improving manufacturing system 

operations, suggested categorizing the KPIs, mainly into primary and comprehensive KPIs; and supporting 

metrics. Basic KPIs were used to represent a single aspect of system performance, and comprehensive 

KPI was used to describe the overall performance. The supporting metrics were directly monitored 

elements. The categorization was based on a hierarchical structure with several categories at several levels, 

as shown in figure 8. The supporting elements level included time and quantity related to production, 

maintenance, and quality-related to the machine, order, and worker. These supporting elements help 

compute basic KPIs and desired mathematical operations over primary KPIs to raise comprehensive KPIs. 

Kang et al. failed to discuss critical parameters: the audience, timing, and production methodology 

essential for KPI selection (Kang et al., 2015). 



 

48 
 

 

Figure 8 KPI classification (Kang et al., 2015) 

Li et al. worked on one of the limitations of the ISO 22400 standard (i.e., standard applicability). The KPIs 

mentioned in ISO 22400 standard are applicable for discrete production, making them technically 

unsuitable for the process industry. Li et al. proposed a framework for classifying KPIs in the process 

industry. The framework follows a similar hierarchy mentioned in ISO 22400 and can be evaluated in 

three levels: equipment KPIs, measurement elements, and process KPIs. Measurement elements, the 

middle level of the framework contains the data that can be directly collected and monitored throughout 

the production process, as shown in figure 9. Equipment and process KPIs are calculated based on the 

measurement elements. This framework provides useful ideas for decision-makers and manufacturing 

engineers to describe and measure appropriate KPIs for process industry process assessment. Li et al. also 

provided the description and formula for the KPIs but failed to discuss few parameters: the audience, 

timing, and production methodology essential for KPI selection (Li et al., 2009).  

 

Figure 9 Process industry: a framework for organizing KPIs (Li et al., 2009) 
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Hester et al. proposed a method for KPI assessment in manufacturing organizations. The proposed method 

is profoundly dependent on the stakeholder contribution at varying levels during the complete course of 

the KPI assessment process. The aim is to improve KPI assessment methods by introducing a 

mathematical foundation centered on value-focused thinking. The steps involved in the assessment are 

shown in figure 10, divided into three main activities: preparatory manufacturing activity, stakeholder 

values, and preference elicitation activity, and manufacturing company KPI characterization and analysis 

activity. Ranking criteria used for assessment are based on KPI characterization.  

The parameters which are considered for KPI characterization are: verified, standardized, relevant, 

predictive, quantifiable, inexpensive, actionable, inexpensive, accurate, documented, independent, 

traceable, understandable, and timely. This proposed method lets the stakeholders assess the 

organization’s KPIs to determine its performance compared to predetermined KPI thresholds. A case study 

was conducted within a chemical manufacturing company to test its validity. With stakeholders playing a 

pivotal role in the KPI assessment method, any failure in understanding the manufacturing process and 

KPIs can result in the incompetence of the developed method (Hester et al., 2017).  

 

Figure 10 KPI assessment methodology (Hester et al., 2017) 

Carlucci et al. addressed one of the significant challenges faced by manufacturing industries, i.e., selecting 

the most meaningful KPIs for monitoring manufacturing operations. The KPI selection was described as 

an MCDM problem involving several factors and associated interdependencies. Using the ANP method, 

a decision-based model was proposed to help manufacturers in KPI selection. This model was based on 

the contemplation that KPIs can be selected and evaluated based on a set of criteria. These set of criteria 

are relevance, reliability, understand-ability, representational quality, comparability, and consistency. A 

set of relevant questions is prepared for the decision-makers founded on criteria to assess the 
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manufacturing company's performance.  While selecting KPIs, it was mentioned that decision-makers do 

not rigorously consider the dependency of criteria and interdependencies among the chosen indicators, 

compromising the indicators' quality.  

The developed model provides a more viable approach to deal with this problem consisting of two clusters, 

namely criteria and performance indicators, as shown in figure 11. Carlucci et al. proposed a model to 

help decision-makers select KPIs' best set for their manufacturing operations. For this model to work 

competently, decision-makers must know the manufacturing process and all the relevant KPIs available 

in the literature to monitor the performance. It is because the proposed model only provides that KPIs 

selected by decision-makers are appropriate or vice-versa. Decision-makers do not always have to 

compete for knowledge of the KPIs available in the literature, so this does not seem to work efficiently 

(Carlucci, 2010).  

 

Figure 11 ANP model for selecting KPIs (Carlucci, 2010) 

Lindberg et al. state that benchmarking KPIs against other KPIs from comparable equipment, process, 

and industry can identify and select appropriate KPIs to monitor industrial performance. A case study was 

carried out on a heat and power plant; a set of KPIs was suggested to the managers after benchmarking 

them with the literature on similar industries. The list of suggested KPIs was divided into energy, raw-

material, equipment, operation, control performance, maintenance, planning, inventory, and buffer 

utilization KPIs. It was seen that the boiler efficiency was considerably improved by deploying 

benchmarked KPIs in their heat and power plant. With the surge in the literature related to KPIs, using the 

benchmarking method for KPI selection would result in using outdated KPIs that have been replaced with 

more efficient ones or new KPIs that have been generated recently. Also, for KPI selection, the 
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manufacturers need to know its description, audience, timing, production methodology, etc. Without a 

complete understanding of the KPI, it would merely remain a number (Lindberg et al., 2015).  

kibira et al. present a procedure for evaluating, monitoring, and improving KPIs for sustainable 

manufacturing industries. The purpose of this procedure was to address KPIs' inconsistent meanings, lack 

of compelling selection, and evaluation methods for environmental KPIs in manufacturing processes. The 

procedure was developed based on ASTM International standard guidelines. The development stages 

include identifying appropriate KPIs from existing literature, defining new KPIs if needed, selecting KPIs 

based on set criteria, and assigning weights. The weights are used to reduce deteriorating effects that result 

from emphasizing similar or interrelationship KPIs.  

By analyzing the relations between the number of KPIs and their supporting matrices, it can be probable 

to compute a similarity score to select appropriate KPIs. For instance, if several KPIs are calculated using 

the same supporting matrices, it can be possible to compute a similarity score to help in effective KPI 

selection. Using repositories that store all the relevant manufacturing processes, KPIs were used to provide 

pre-defined KPIs for initial selection. The procedure is based on both quantitative methods and human 

judgment. Humans are the think tank experts aware of all the key activities critical for successful business 

performance. Figure 12 highlights the keys steps involved in the designed procedure (Kibira et al., 2018).   

 

Figure 12 KPI identification and selection procedure (Kibira et al., 2018) 
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Ding et al. develop a data-driven scheme to predict and diagnose KPIs for static and dynamic processes. 

It aims to apply this scheme to solve the KPI prediction and diagnosis problems faced in the steel 

manufacturing industry's hot strip mill process. This paper discusses the two most popular data-driven 

methods to achieve fault diagnosis tasks, i.e., Partial Least Squares (PLS) and Principal Component 

Analysis (PCA) for complex industrial processes. Despite having wide applications in the industry, these 

schemes have been reported to have certain limitations. Hence, the paper builds upon these schemes to 

give two algorithms for KPI computation and prediction for static and dynamic processes. To implement 

KPI prediction in the hot strip mill process, a four-step procedure is defined in the paper, which includes 

defining the KPI, variable selection, off-line training, and finally, on-line prediction and diagnosis. 

KPI is to be defined according to specific process characteristics, quality requirements, and economic 

benefits. Variables that are responsible for the given KPIs are selected. This implementation shows that 

the dynamic approach's prediction performance is better than that of the static approach. There is a smooth 

variation between the actual and predicted values of the process variable. The dynamic process also gives 

more useful results for fault-detection. However, Ding et al. suggest that selecting a static or dynamic 

method should depend on the underlying process's nature, memory cost, computational cost, design 

complexity, and the required robustness. This paper provides an insight into which methods should be 

utilized for KPI prediction and diagnosis in complex processes where a sophisticated modeling procedure 

is not realizable. Therefore, model-based techniques cannot be utilized. 

Tatsiana et al. identify process-based KPIs that can control the pre-processing stage in a construction 

project. This is done by conducting a pilot-study and validating its results through interviews of experts 

in this industry. It is first identified that even though the pre-project stage is vital to a project’s success, it 

does not always perform well in the construction industry leading to time delays and budget overruns. 

Therefore, the project performance must be governable in the early stages of the construction process. An 

extensive literature review conducted by the authors highlights that most of the KPIs in the construction 

industry focus on end-products rather than providing measures to control the process while it is in progress, 

meaning there is a lack of process-oriented KPIs, which their paper aims to develop.  

A pilot study was conducted in which experts were asked to review a list of main sub-processes in the pre-

project stage, and as a result, eight process-based KPIs were developed. These were again validated by 

experts mainly from large construction organizations as they experienced dealing with large projects' early 

stages. This method is advantageous because large projects can be challenging to control, involve many 
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stakeholders with differing interests that are tough to align. Bad decisions taken in the early stages of the 

process can have massive consequences for the later stages. After considering the suggestions and 

comments of these experts, the KPIs were reduced from eight to five.  

These are initial problem definition, management of client requirements, and alignment of stakeholders’ 

requirements, design solution, and stakeholder involvement. The experts pointed out that it is necessary 

to align clients' needs on different levels before defining and managing client requirements. Additionally, 

the alignment of interests of different stakeholders involved by defining their objectives and influence on 

the project was also deemed essential. Keeping the stakeholders involved continuously in the project 

regarding the decisions that are to be made is also one of the critical indicators of performance. 

Gonzalez et al. aim to establish a useful set of KPIs to measure maintenance services' performance using 

an MCDM methodology. After a comprehensive literature review of different MCDM methods, the 

authors propose a methodology based on the original ELECTRE I method, which uses a preference model 

that uses the concept of concordance and discordance to carry out paired comparisons between the 

alternatives. This method has evolved to allow the ranking of alternatives from best to worst with 

complementary analyses. This ranking method is deemed suitable for selecting KPIs in the maintenance 

framework as it has been successfully applied to other ranking problems. Moreover, it is easy to use, and 

the logic behind it is rational, and the computation process systematic and well-organized. It is also the 

most used method for ranking alternatives. The first step in the proposed methodology is defining the 

maintenance management objectives. Then a set of criteria to evaluate the KPIs are specified to which 

appropriate weights are assigned. Based on the defined objectives, KPIs are pre-selected to be assessed as 

competing alternatives. Then those alternatives are evaluated against the selected criteria by the decision-

makers. The higher the response level on the Likert scale, the more critical it is for KPI (Gonzalez et al., 

2017). 

Effendi et al. emphases on the problems of KPI development in an aerospace manufacturing enterprise. 

The KPIs were targeted to provide the enterprise with the best PM tools to remain cost-competitive and 

effectively implement lean manufacturing. Through techniques such as internal benchmarking, intensive 

literature review, and best industrial practices, a set of KPIs was developed and measured both subjectively 

and objectively. To analyze and investigate the communication issues between different manufacturing 

levels (ISA-95 architecture), focus group discussions and semi-structured interviews were used. To 

overcome these issues, a standard report was generated. The enterprise was suggested to recruit personnel 
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at every manufacturing level to report and review their manufacturing process to their subordinates’ 

regularly. This paper highlighted several problems related to KPI developments, such as lack of ownership 

of responsibility, misinterpretation of company objectives, no normalization of reporting, and difficulty 

measuring employee performance in the given aerospace manufacturing enterprise. Nevertheless, the 

paper could not resolve these problems apart from lack of ownership of responsibility (Effendi et al., 

2008).  

Rødseth et al. focused on the challenges faced by silo departments working independently in a number of 

disciplines within manufacturing industries resulting in a sub-optimized effect on production. It is due to 

poor communication between different departments and disciplines working together. The disciplines 

focussed were maintenance management and Manufacturing, Planning & Control (MPC). The purpose of 

this paper was to identify the relevant KPIs through a literature review for these disciplines. Accordingly, 

throughput time was marked as an essential KPI for MPC; OEE for maintenance management and MPC 

disciplines used integrated planning concepts. This paper also highlights the relationship between several 

leading and lagging indicators. However, identifying two indicators to optimize production performance 

by improving communication between two disciplines was not realistic since manufacturing industries are 

placed where many disciplines have to work simultaneously to achieve organizational objectives. 

Moreover, two KPIs are insufficient to solve the silo problem in manufacturing industries (Rødseth, 

Strandhagen, and Schjølberg, 2015).  

May et al. addressed the challenges faced by current manufacturing industries in supporting the 

development of energy-related KPIs (e-KPIs). The challenges included a lack of applicable KPIs to 

compare energy-use profiles of equipment, processes and benchmarking them alongside competitors’ 

energy performance measures. Aiming to address these challenges, this paper's key motive was to outline 

a method to assist manufacturing industries in e-KPIs development. The paper presents an e-KPIs 

development method containing the following sequential steps: definition of the reference manufacturing 

system; identification of manufacturing resource power requirement; investigation of the causes related to 

energy inefficiencies through exploring manufacturing states of the given resource; connecting energy 

requirements with appropriate time drivers; constructing a hierarchical structure of power resource energy 

consumption; e-KPIs development, design, and management.  

The developed e-KPIs allows the manufacturers to interpret cause-effect relationships and help them in 

making enhanced operative decisions. This method also identifies strong and weak areas for energy 



 

55 
 

efficiency enhancements related to MPC. The granularity of the accessible data is one of the drawbacks 

of the developed method. In the current industrial practices, the energy monitoring is done at level-2, a 

finer granularity at level-0, and 1 of the ISA-95 functional hierarchy model is needed (May et al., 2015).         

Gonçalves et al. stated that several KPIs present in the literature could be applicable for measuring 

maintenance performance. Still, manufacturers must choose an appropriate set of KPIs that impact their 

maintenance-related activities. Creating a suitable set of maintenance KPIs is subjected to manufacturers’ 

maintenance objectives and is considerably associated with definite business processes, systems, 

strategies, and contexts. The maintenance team was responsible for selecting the KPIs, which can help 

them realize their business goals. Cesar et al. offered a new method to choose necessary maintenance KPIs 

using a methodology based on the ELECTRE II (ELimination Et Choice Translating REality), an MCDM 

method. The proposed ELECTRE I established methodology supports manufacturers’ resolve their 

ranking issues by assessing numerous conflicting options through MCDM. Since the manufacturers are 

generally inexperienced with the mathematical formulation required for MCDM methods, a software tool 

was designed utilizing Visual Basic for Applications (VBA).  

All the needed mathematical formulation was encoded using VBA to offer computational analysis for 

decision making. A case study was carried out with two maintenance experts in service quality at the 

airports to validate the methodology. Using the methodology, the experts ranked the alternatives from 

good to bad and steadily selected KPIs with higher interest to airport quality service teams. The case study 

outcome proved that the methodology is an efficient tool to assist maintenance teams in relevant KPI 

selection based on maintenance strategies and objectives (Gonçalves, Dias, and Machado, 2015). 

Alsyouf states that the “fix when it breaks”-concept, which describes the corrective maintenance method, 

mostly moved towards the preventative maintenance concept after the end of the second world war due to 

advancements in industrial production systems with planned maintenance actions aiming to prevent 

machine breakdown from occurring (Alsyouf, 2007). Nevertheless, with the globalization of industries 

and more generous than before worldwide competition, planned maintenance methods used for 

replacement or repair of machine parts did not stand out to be the best solution to solve the given problem.  

Therefore, in order to make the most of industrial assets and curtail unwanted stops for running 

preventative maintenance procedures, the condition-based maintenance method alongside maintenance-

related KPIs was established (i.e., Mean Time To Repair (MTTR) and Mean Time Between Failure 
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(MTBF)). The maintenance-related KPIs were used to closely monitor machine behavior using simple 

visual check-ups to evaluate real-time data using computer-aided technology continuously. The critical 

parameters were carefully observed, and with any small variation in their values compared to a set of 

predetermined values, condition-based maintenance actions were initiated. 

Pereira et al. used a predictive maintenance fuzzy logic technique for on-line monitoring of induction 

motors using related KPIs (Pereira and Augusto, 2016). The authors’ main concern was using 

maintenance-related KPIs to analyze the induction motor's vibration spectrum resulting from a mechanical 

failure such as misalignment, unbalanced disk, bearing faults, and mechanical clearance during motor 

operation. This vibration spectrum was investigated using the fuzzy logic technique. In this technique, the 

motor operating conditions are defined in fuzzy linguistic variables; these variables are then exploited to 

present the result using monitoring programs such as Fast Fourier Transforms (FFT). To prove the 

proposed control method's effectiveness, an experimental test was performed at Dynamic Systems 

Laboratory in the Federal University of São João del-Rei (UFSJ). They were able to identify and diagnose 

faults in the motor casing using maintenance-related KPIs (i.e., MTTR and MTBF). 

Bastos et al. present an architecture aimed to collect the data produced during the industrial maintenance 

schedules and predict future fiascos based on data exploration. Rapid Miner, a product of software 

innovation lab Limited Liability Company (LLC), is used to analyze maintenance data, apply various 

prediction algorithms to gather data, and then compare their accurateness in the detection of predictions 

and patterns using applicable maintenance KPIs. Rapid Miner is incorporated with a real-time system that 

gathers data utilizing automatic agents. These data results are presented in KPIs to the maintenance team 

for decision-making (Bastos, Lopes, and Pires, 2014). 

Goundar et al. work is centered on the real-time monitoring of three-phase AC industrial induction motors 

using KPIs (Goundar et al., 2015). The KPIs monitored here are the vibration and temperature of induction 

motors. Any failure resulting from lubrication, motor ventilation, motor load, electrical consideration, and 

alignments directly impacts motor temperature and vibrations. The data set collected while monitoring 

these motors predicts the motor’s bearing breakdown by comparing the healthy and faulty motor working 

operations' variances. To measure vibration and temperature KPIs, necessary sensors such as 

accelerometer and thermistor are incorporated. 
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Furthermore, to obtain the sensor data, communicate with various other devices, and store the sensor data, 

the author uses Waspmote IDE pro v1.2 board.  The data collected from the sensors is further scrutinized 

and converted from the time domain to the frequency domain so that FFT techniques can be applied to 

solve the motor bearing problem.  This technique transforms the data into frequency plots that can 

distinguish the frequency spectrum from a faulty to a new bearing. 

Susto et al. explain how flexible, adaptive predictive maintenance based planning decision support system 

employing regularized regression and machine learning approaches are used to reduce maintenance linked 

cost and downtime KPIs in a semiconductor manufacturing plant for Ion Beam etching process (Susto et 

al., 2014). To reduce the maintenance cost and downtime, Susto et al. made use of the newly processed 

data accessible from the semiconductor process equipment is to enhance remaining valuable life estimates, 

thus decreasing unpredicted breaks and entire equipment lifetime. The above predictive maintenance-

based system was validated on a real industrial dataset associated with semiconductor manufacturing plant 

experimentally out-performing preventative maintenance and run-to-failure maintenance. 

Munir et al. emphasized the importance of improving the existing KPIs assessment methodology. The 

main objective was to develop a better assessment methodology for KPIs to improve the manufacturing 

plant process. By combining qualitative methods such as questionnaires and assessment matrices adapted 

from EFQM, this methodology was developed. By using these qualitative methods, it was seen that KPIs 

to be considered as an essential element for planning manufacturing strategies were quality, cost, delivery, 

inventory and flexibility; and the top five KPIs to be used where the return on investment, conformance 

to specifications, profitability, overhead cost, and customer satisfaction. Based on the importance of 

specific processes, it was possible to prioritize the KPIs linked to those processes using the developed 

methodology. However, the applicability of using the resultant five KPIs was limited because the nature 

of operations within different manufacturing industries tends to alter, and the tactical and operational 

goals. Merely suggesting the top five KPIs will not improve the process utilization for every 

manufacturing industry. There is still a need for a generalized KPI assessment methodology that can apply 

to all manufacturing industries.  

Stricker et al. understanding the problems arising due to increasingly distributed production, growing 

variant diversity, and disruptions due to shorter product life cycles on the production performance and 

quality of the manufacturing industries, recommended an approach for selecting KPIs. Since KPIs are 

commonly used tools for detecting any changes in production system performance to organize suitable 
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countermeasures. It underlined that the need for choosing an appropriate number of KPIs is significant. 

The manufacturers should not be overburdened or given insufficient KPIs to monitor the production 

performance overstraining decision-makers' cognitive capabilities. By knowing the critical areas of 

performance improvement, a set of KPIs were selected based on employing a mathematical linear 

programming approach (based on integer linear programming). This approach focused on bridging the 

gap between information content and simplicity. The appropriate KPIs needed for this selection approach 

are assumed to be linked to the manufacturers' business objectives. Nevertheless, from a manufacturer’s 

perspective, they require an approach that can make them understand, analyze, and link the KPIs to the 

business objectives before moving towards the selection procedure.     

Bongsug et al. recognized that developing KPIs for monitoring critical business performance is 

challenging, and the set of practical guidelines available in the literature are limited. A list of essential 

KPIs and a practical approach to performance measurement are presented in this paper to address this 

challenge. The list of essential KPIs was developed based on incorporating a rich industrial experience 

and Supply Chain Operations Reference (SCOR) model and hierarchically clustered (i.e., primary and 

secondary). Furthermore, these KPIs were grouped into five categories: planning, sourcing, production, 

and delivering, as shown in figure 13, to cover the whole supply chain management structure. As a 

limitation, the KPIs presented were lagging in nature and specific to managers.      

 

 

 

 

 

 

 

 

Table 4 summarizes various other research publications by outlining their objectives and categorizing 

KPIs (KPI measure and corresponding elements). These publications are within the research objectives 

Figure 13 List of essential KPIs based on the SCOR model 
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domain and target how the manufacturers and/or decision-makers understand, analyze, select, and 

implement KPIs within their production facility. Also, the KPI measures with their respective elements 

identified in this section will play a vital role in the development of KPI guidelines in chapter 3. 

Table 4 Categorization of KPIs from the existing literature 

Author and year Objectives  KPI measures (element) 

(Amrina and Yusof, 

2011) 

Evaluate sustainable manufacturing 

performance in the automotive industry. 

It proposes a set of sustainable 

manufacturing KPIs believed to be 

appropriate for the automotive industry 

Production methodology (discrete), type 

(product), dimension (sustainability) 

 

(Wang, Zhang, and 

Wang, 2018) 

Reducing the cycle time in 

semiconductor wafer fabrication system 

by identifying the root causes within the 

manufacturing process 

Production methodology (batch), equation 

variables (WIP, utilization time, waiting 

time), dimension (time), formulae 

(Jain and Samrat, 

2015) 

Determine the state of the art of quality 

practices of manufacturing industries in 

Gujrat through interviews 

Production methodology (discrete), 

dimension (quality), type (product) 

(Rodrigues et al., 

2010) 

To study the influence of production 

cycle time in manufacturing supply 

chain management 

Production methodology (discrete), 

dimension (time), equation variables (WIP, 

production rate, distribution inventory, 

distribution rate, 

and waste rate), formulae  

(Sonar, Shinde and 

Teh, 2013) 

Improving the automated diffusion 

furnace operation using cycle-time  

Production methodology (batch), 

dimension (time), timing (real-time), 

formulae 

(Chien, Hsu, and 

Hsiao, 2012) 

Reducing the cycle time in the 

semiconductor fabrication process by 

identifying the root causes 

Production methodology (batch), 

dimension (time), equation variables (WIP, 

production rate) , timing (real-time), 

formulae 

(Kibira et al., 2017) Exploring KPI relationships for 

manufacturing production systems  

Dimension (time, quality, cost), equation 

variables, equation, ER model 
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(Borsos, Iacob and 

Calefariu, 2016) 

Using KPIs to determine the waste in the 

production process  

Formulae, equation, equation variables, 

type (resource) 

(Badawy et al., 2016) A survey on exploring key performance 

indicators 

Form (leading, lagging), production 

methodology (discrete, batch, continuous), 

nature (fundamental, derived) 

(Andrej Rakar, 

Sebastjan Zorzut, 

2004) 

Production performance assessment 

through KPIs 

Dimension (time, cost, quality, 

environmental, sustainability), formulae, 

equation, equation variables  

(Rahman, 2015) Implementation of total productive 

maintenance assessment in a semi-

automated manufacturing company 

through downtime and mean downtime 

analysis 

Production methodology (discrete), type 

(process), dimension (time, quality), 

equation, equation variables 

(Bhutani, 2015) Performance assessment and benefit 

estimation in paper machines using KPIs 

Production methodology (discrete), 

dimension (time) 

(Lingam, Ganesh and 

Ganesh, 2015) 

Reducing the cycle time of the T-shirt 

production in the textile industry  

Production methodology (discrete), 

dimension (time), equation variables 

(standard time, basic time, machine 

allowance time, contingency allowance 

time), timing (real-time) 

(Meidan et al., 2011) Employing cycle time identifying key 

factors for production loss in 

semiconductor manufacturing 

Production methodology (batch), 

dimension (time), formulae, equation, 

equation variables, timing (real-time) 

(Radujković, 

Vukomanović and 

Burcar Dunović, 

2010) 

Exploring KPIs in southeastern 

European construction industries  

Production methodology (discrete), 

dimension (time, cost, quality), formulae, 

equation, equation variables, the audience 

(manager)  

(Sowmya K and 

Chetan N, 2016) 

Review on effective utilization of 

resources using OEE KPI in 

manufacturing industries  

Production methodology (discrete), 

dimension (time, quality), type (resource), 

formulae, equation, equation variables, 

nature (derived) 
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(Venkataraman et al., 

2014) 

Reducing cycle time in manufacturing 

machining process by application of 

value stream mapping  

Production methodology (discrete), 

dimension (time, quality, cost, 

environmental, sustainability), type 

(product), formulae, equation, equation 

variables 

(Sriratana, 2018) Improving the efficiency of door frame 

manufacturing process in the wood 

manufacturing industry using takt-time 

KPI 

Production methodology (discrete), 

dimension (time), type (product), formulae, 

equation, equation variables, audience 

(operator) 

(Nallusamy and 

Majumdar, 2017) 

Enhancement of OEE using TPM in the 

manufacturing industry  

Production methodology (discrete), 

dimension (time, quality), type (product), 

formulae, equation, equation variables 

(Chien et al., 2005) Defining time goals in a semiconductor 

foundry industry using cycle time KPI 

Production methodology (batch), 

dimension (time) 

(Amrina and Yusof, 

2011) 

KPIs for sustainable manufacturing 

evaluation in the automobile industry 

Production methodology (discrete), type 

(product), dimension (time, quality, cost, 

environmental, social), form (lagging, 

leading) 

(Marr, 2009) Designing performance indicators Type (product, process, resource), 

dimension (time, cost, quality) 

(Latorre, Roberts and 

Riley, 2010) 

Development of a systems dynamics 

framework for KPIs to assist project 

managers’ decision-making processes in 

the construction industry 

ER model 

(Friedrichs, 2013) Assessment of meaningful KPIs for the 

use of energy in European companies  

Timing (real-time, perioral), production 

methodology (discrete), type (process, 

resource), dimension (time, cost, quality) 

(Taylor, 2016) KPI selection support for global product 

development  

Type (product), dimension (quality) 

(Kaganski et al., 

2017) 

Implementation of the KPI selection 

model as part of the Enterprise Analysis 

Model (EAM) 

Timing (real-time, periodical, on-demand), 

the audience (operator, supervisor, 

manager), dimension (time, cost, quality) 
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(Giegling et al., 

1997) 

Implementation of OEE KPI in the 

semiconductor manufacturing facility  

Production methodology (batch), ER model 

(Lindberg et al., 

2015) 

KPIs to improve industrial performance Production methodology (discrete), type 

(product, process, resource), dimension 

(time, quality), formulae, equation, 

equation variables 

(Schmidt et al., 2016) Implementing KPIs for energy efficiency 

in a pharmaceutical manufacturing 

company in Australia 

Production methodology (batch), ER 

model, type (process) 

(Chan et al., 2006) Managing uptime, cycle time, and 

downtime KPI using integrated 

production control system in foundry 

wafer fabrication industry 

Production methodology (batch), 

dimension (time), formulae, equation, 

equation variables  

(Lepratti et al., 2013) Introducing flexible manufacturing 

control in manufacturing shop floors 

using dynamic cycle time KPI 

Production methodology (discrete), timing 

(real-time, periodical), ER model, 

dimension (time), formulae, equation  

(Janakiram, 1996) Fabrication cycle time reduction at 

Motorola’s advanced custom 

technologies center 

Production methodology (batch), 

dimension (time), equation variables  

(Zhu et al., 2017) KPIs for manufacturing operation 

management in the process industry 

Timing (real-time, periodical, on-demand), 

production methodology (batch), ER 

model, type (process), dimension (time, 

quality), formulae, equation, equation 

variables 

(Meier et al., 2013) Assessing the planning and delivery of 

industrial services using KPIs  

Production methodology (discrete, batch, 

continuous), type (product, process, 

resource), ER model 

(Gonzalez et al., 

2017) 

KPIs for wind farm operation and 

maintenance 

Production methodology (discrete), 

dimension (time, quality) 

(Kumagai et al., 

2017) 

Using ISO 22400 standard for KPI 

element information modeling 

Production methodology (discrete, batch, 

continuous), type (product, process, 

resource), ER model, dimension (time, 
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cost, quality), formulae, equation, equation 

variables 

(Lanza and Mourtzis, 

2015) 

Operational KPI evaluation framework 

within manufacturing industries  

Production methodology (discrete), type 

(product, process, resource), dimension 

(time, quality), formulae, equation, 

equation variables 

(Amrina and Vilsi, 

2015b) 

KPIs for sustainable manufacturing 

evaluation in the cement industry 

Production methodology (discrete), type 

(product), dimension (time, quality, cost, 

environmental, social), form (lagging, 

leading) 

(Mohammed and 

Bilal, 2019) 

Manufacturing enhancement through 

reduction of cycle time using time-study 

statistical techniques in the automotive 

industry 

Timing (real-time, periodical, on-demand), 

production methodology (discrete), 

audience (operator, manager), type 

(process), form (leading), dimension (time) 

(Rohana, Effendi and 

Mohd. Razali, 2008) 

Using KPIs as a performance 

measurement tool in an aerospace 

manufacturing facility 

Production methodology (discrete), ER 

model, type (product, process, resource) 

(Kolte, 2017) Implementing effective preventive 

maintenance strategies to improve 

machine operational availability  

Production methodology (discrete), 

dimension (time, quality), formulae, 

equation, equation variables 

(Roberts and Latorre, 

2009) 

KPIs in the UK’s construction industry Production methodology (discrete), 

dimension (time, cost, quality), type 

(product, process, resource), form (lagging) 

(Khan and Bilal, 

2019) 

Literature survey about elements of 

manufacturing shop floor operation KPIs 

Timing (real-time, periodical, on-demand), 

production methodology (discrete, batch, 

continuous), audience (operator, 

supervisor, manager), type (product, 

process, resource), form (lagging, leading), 

dimension (time, cost, quality), nature 

(fundamental, derived) 

(Raj et al., 2016) Optimization of cycle time KPI to solve 

assembly line balancing problem 

Production methodology (discrete), timing 

(real-time, periodical, on-demand), 
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dimension (time), ER model, formulae, 

equation, equation variables 

(Relkar and 

Nandurkar, 2012) 

Optimizing and analyzing OEE KPI in 

an automobile company through the 

design of experiments  

Production methodology (discrete), 

dimension (time, quality), formulae, type 

(product, process), equation, equation 

variables 

(Kibira et al., 2017) Procedure for selecting KPIs for 

sustainable manufacturing 

Production methodology (discrete), 

dimension (sustainability), type (product, 

process, resource) 

(Jovan, Zorzut and 

Znidarsic, 2006) 

Utilization of KPIs in production control Production methodology (discrete), type 

(product, process), ER model, dimension 

(time, cost, quality), formulae 

(Tugnoli et al., 2012) Supporting the selection of process and 

plant design options by inherent safety 

KPIs 

Timing (on-demand), audience (manager), 

type (product, process), ER model, 

dimension (time, cost, quality), formulae, 

equation, equation variables 

2.5 Manufacturing Industries Prioritizing Techniques 

To sustain in the highly complex business environment, decision-makers have to modify and/or change 

their priorities frequently. These adjustments in the priorities help them to remain competitive and ensure 

business continuity. Prioritization becomes critical when everything seems imperative. Typically, any 

organization or business sets out a list of the task, also termed as requirements to achieve set goals. These 

requirements consist of measures that enable the organization to ensure business continuity and remain 

competitive in the current complex market environment. One of the advantages of prioritizing key business 

objectives and associated KPIs (also perceived as essential requirements) for a manufacturing industry is 

to help manufacturers streamline the decision-making process. Several techniques/ procedures/ 

approaches to prioritizing these requirements have been developed in the literature.  

Some of these techniques/ procedures/ approaches work most OK on a lesser number of requirements. In 

contrast, others are suitable for a more significant number of requirements involving complex decision-

making. This section mentions assessments of various requirement prioritization techniques/ methods/ 

approach, such as simple ranking, grouping, five Whys, MoSCoW, bubble sort, value vs. complexity 

matrix, hundred dollar, SMART, and AHP based on previous literature. Research papers in manufacturing 
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industries are critically studied to select the best prioritization techniques/ methods/ approach. The 

literature study shows that SMART is the best requirement prioritization technique amongst all the 

requirement prioritization techniques. An overview of some of these methods applicable to manufacturing 

industries is mentioned below. 

Numerical assignment: is the most commonly used traditional way of prioritizing the requirements. It is 

grounded on assigning numerical values to the requirements using an ordinary scale. The numeric values 

are based on the significance of the requirements. For instance, number 1 means that the requirement is 

significant, and the number n means that the requirement is least significant, wherein n denotes the total 

number of requirements. This method works best for the industries having fixed customers’ demands and 

unvarying manufacturing processes involving simple decision-making capabilities. In this method, it is 

assumed that the personnel, typical managers, has complete information about the requirements before 

ranking them with some requirements that are ranked higher on this scale being generic, complex to 

achieve timely stops the managers from focusing on other less significant requirements that are specific 

(goal-oriented) and can achieve on-time. Therefore, the prioritization of requirements using a numerical 

assignment method is rewarding when the requirements are specific and swiftly achievable.  

Grouping: this method categorizes the requirements into different priority groups such as high priority, 

moderate priority, and low priority. For instance, the requirements that significantly impact the overall 

business performance are placed in a high priority group compared to the least significant ones. The 

method is analogous to the ranking, wherein different groups replace the ordinary scale. This method 

assumes that managers have complete information about the requirements and subsequently chosen for 

grouping. Like the ranking method, if the requirements are not specific and achievable timely, the results 

generated by using this method will not be productive. Also, if every requirement falls under one group, 

then this method will not be applicable.  

Five Whys: it the simplest method of prioritizing the requirements. It depends on asking the decision-

makers repeatedly (at least five times) whether the given requirement is essential for the business 

continuity or negated/ deferred once the priority is determined. The process of questioning the decision-

makers continues until every requirement is ranked according to its significance. The massive dependence 

on decision-makers makes this method an individual affair, and the outcome generated becomes 

questionable. It also adds pressure on the decision-makers by repeatedly answering the same question (up 
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to five times). This method applies to a fewer set of requirements employing simple decision-making 

competencies.  

MoSCoW (Museum of Soviet Calculators on the Web): this technique prioritizes the requirements based 

on the MoSCoW framework, which stands for Must, Should, Could and Would, and treated as a group. 

The requirements must be monitored/ satisfied/ measured to improve business performance and ensure 

business continuity are placed in the Must group. The requirements in the Must group are considered as 

time-critical and are given the highest priority. The requirement which is equally important to keep up 

with business performance is placed in the Should group. The nice-to-have or desirable requirements that 

are not time-critical and placed in the Could group, and rest all the requirements currently least significant 

for the business are grouped in the Would group. Like the ranking and grouping method, if the 

requirements are not specific but achievable timely, the results generated using this technique will not be 

creditable. Besides, if every requirement falls under one group, then this technique will not be relevant. 

Also, this method does not introduce sequencing of requirements and lacks planning. 

Bubble sort: this is one of the easiest methods for prioritization of the requirements. In this method, two 

requirements are compared, and the decision-makers decide the criteria for comparison. This comparison 

is carried out until the decision-makers find out that one requirement should have a high priority over 

others. The procedure of comparison is continued until the last requirement is appropriately sorted. The 

outcome of using this method is the list of requirements that are ranked. Bubble sort is a time-consuming 

method and is often used when the number of requirements is fewer. With no standard rules set based on 

the comparison, it remains a challenge for all the decision-makers to come to a mutual agreement while 

comparing and prioritizing the requirements.  

Value vs. complexity matrix: this technique involves a balanced approach to business and technology facets 

of development. The value vs. complexity matrix technique is established, taking into account the 

Eisenhower matrix. The requirements are distributed into two dimensions: value and complexity, with 

four quadrants, as shown in figure 14, and are widely used by the project managers to evaluate the 

requirements of a product roadmap. Requirements that are least problematic but have high value are 

prioritized. This technique works better than ranking, grouping, and bubble sort as the requirements' 

complexity is considered while ranking. If all the requirements fall under one quadrant, this technique 

fails to generate useful results.  
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Hundred dollar: in this method, as the name suggests, every person involved in decision-making are given 

a conceptual 100 dollars, which they are supposed to be distributed between the requirements. For 

example, the decision-makers can choose to allocate all 100 dollars to a single requirement or allocate 

evenly between them. The priority of the requirement is decided based on the number of dollars allocated. 

Finally, the total dollars allocated by all the decision-makers are accumulated and counted, and the 

requirements are ranked based on the highest dollars allocated. As this method is time-consuming, it is 

used when the number of requirements is fewer. Also, the difficulties in keeping track of how much 

amount has been assigned and unassigned, this method's results are questionable.  

Analytic Hierarchy Process (AHP): developed by Thomas L.Saaty, this method defines a complete 

framework for making accurate decisions in healthcare, manufacturing, business, etc. It is an effective tool 

for solving MCDM problems and supports the decision-makers to make the best decision by setting 

priorities. In this method, the requirements are decomposed into smaller sub-problems, which can certainly 

be analyzed in a hierarchy. Decomposing the requirements helps to capture both objective and subjective 

features of a decision. As soon as the hierarchy is put together, decision-makers calculate the elements by 

comparing pairs (sub-problems). With AHP, the total number of suggested comparisons is n*(n-1)/2, 

where n stands for the number of requirements at every hierarchy level. The significance of each element 

placed in the different hierarchy is decided through pairwise evaluations by the decision-makers and 

assigned a numeric value (weight). The higher the weight, the significant the element. The pairwise 

comparison is unreliable from the literature due to the excessive amount of repetition in the correlations. 

Figure 14 Eisenhower matrix 
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To decrease the bias in the decision-making process, the AHP method incorporates checking the 

consistency of the decision maker’s assessments. Implementation of AHP can be carried out in three 

simple steps: calculating the vector of pairwise comparison of weights, calculating the matrix of option 

scores, ranking the options. Other methods such as Analytic Network Process (ANP) and Analytic Web 

Process (AWP) are also based on the AHP concepts. Furthermore, many researchers and think tank experts 

have proved that the results generated using this method are defective and considered as an individual’s 

affair. 

SMART (Specific, Measurable, Attainable, Realistic, and Time-sensitive): this technique categorizes the 

requirements based on SMART criteria. Unlike various other prioritizing techniques, the SMART 

technique distinguishes the requirements into specific, measurable, attainable, realistic, and time-sensitive; 

and prioritizes them accordingly. Each element in these criteria works together to generate a sensibly 

planned, transparent, and trackable goal. Peter Drucker and G.T. Doran were the first to design and 

implement the SMART technique in the manufacturing industry. A detailed explanation of the SMART 

technique will be illustrated in section 3.4.  

Prioritization requirements for any manufacturing industry can be broadly categorized into three major 

groups’ business aspects, technical aspects, and customer aspects. It has been witnessed from the existing 

literature that most of the existing techniques, approaches, and methods are incapable of supporting these 

aspects, which affects the manufacturers’ quality of decision-making in the process of prioritizing 

requirements. When prioritizing the requirements, different factors are related to business, and the 

customer needs to consider them. These factors include risk, complexity, cost, sensitivity against errors, 

effort, easy-use, approach type, dependencies, support for consistency index, accuracy, customer 

importance, type of technique, robustness, result type, time constraint, resources, value, effort, time-

complexity, number of comparisons, scalability, expert biases, granularity and size of requirements. Out 

of all the factors mentioned, the once critical manufacturing industry is scalability, easy-use, time-

complexity, accuracy, robustness, and customer satisfaction. Table 5 highlights different techniques and 

their performance towards the manufacturing-specific factors. 
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Table 5 Requirements prioritization techniques 

Techniques A C E R S T 

Analytic Hierarchy Process (AHP) ● ●  ● ●  

Attribute Goal-Oriented Requirement Analysis (AGORA) ● ● ●    

Binary Priority List (BPL)   ●   ● 

Bubble sort   ● ●  ● 

Correlation-Based Assessment framework (CBA) ●  ● ●   

Cumulative Voting (CV)  ● ● ●   

Eclipse Process Framework (EPF) ●  ●    

Fuzzy AHP ● ●  ● ●  

Hierarchical Cumulative Voting (HCV) ●  ●    

Kano analysis  ● ●   ● 

Mathematical programming techniques ●    ●  

Minimal spanning tree   ●   ● 

MoSCoW method   ●   ● 

Multi-Criteria Preference Analysis Requirement Negotiation (MPARN) ●  ●  ●  

Multi-Attribute Utility Theory (MAUT) ● ●   ●  

Multi-objective next release problem  ● ●   ● 

Multi-voting system  ● ●   ● 

Numeral Assignment of Numerical Assignment Technique (NANAT)   ●  ● ● 

Pair-wise analysis   ●  ●  

Planning game combined with AHP  ● ●  ● ●  

Priority groups   ● ● ●  

Purpose Alignment Model (PAM) ●  ●    

Ranking  ● ● ●  ● 

Ranking based on product definition  ● ●   ● 

Relative weighting  ● ● ●  ● 

Simple Additive Weighting   ● ●  ● 

SMART ● ● ● ● ● ● 

Theme Screening/Scoring   ●   ● 

Top ten requirements  ● ● ●  ● 

Value-Oriented Prioritization (VOP) ●  ●  ●  

Weighted criteria analysis   ● ●  ● 

S=Scalability, E=Easy-use, T=Time-complexity, A=Accuracy, R=Robust, C=Customer satisfaction    

Table 5 shows that existing prioritization techniques are not appropriate for many requirements (scalability 

issue), making the prioritization process complex. In most cases, the solution obtained from these 

techniques is not robust. Likewise, complexity is another technical factor that must be considered for the 

prioritization process, and many of the existing techniques are incapable of addressing it. Also, these 

techniques have problems such as automation support and inclination to error. 
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CHAPTER 3 RESEARCH METHODOLOGY 

 

3.1 Introduction 

The development of methodologies that explicitly aim to support manufacturers in improving their 

decision-making capabilities is impacted by the mutual relationship of practical and academic 

stringencies: Research stringency: arises while implementing approaches scientifically not underpinned 

but applicable in practice (C.R.Kothari, 2004). Practice stringency: arises while implementing 

scientifically rigid approaches but challenging to be practically functional (Goundar, 2000). By combining 

an extensive literature review on KPI selection techniques, procedures, methods, and practices with an 

empirical set of questionnaires and structured interviews, this research sets up an effective mechanism to 

deal with the research and practice stringency and support the rationality of the proposed approach. 

This research employs a pragmatic research philosophy that includes both axiomatic and empirical 

methods. The axiomatic methods incorporate all the traditional and modern KPI selection techniques, 

procedures, methods, and practices that support the given research. The empirical methods comprise a set 

of questionnaires and structured interviews, and real-time shop floor data to highlight the key business 

objectives, challenges, and bottlenecks that need to be monitored to attain the required business 

performance. These methods are also useful for receiving continual feedback about research advancement 

(Kapur, 2018).  

The overall process which aims to propose a holistic approach for understanding, analyzing, selecting, and 

implementing appropriate KPIs within the manufacturing shop floor facility is outlined below:  

1. Develop a manufacturing shop floor exploration model to identify the key business objectives, 

problems and challenges, crucial performance details, bottlenecks, and a list of KPIs within the 

given manufacturing shop floor facility.  

2. Develop KPI guidelines by extracting every essential guiding performance measure needed for the 

manufacturer to understand, analyze, select, and implement appropriate KPIs. 

3. Compare the results generated from the manufacturing shop floor exploration model with KPI 

guidelines to demonstrate the proposed KPI holistic approach's effectiveness.  
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4. Suggest appropriate KPIs based on data collected from the manufacturing shop floor exploration 

model combined with KPI guidelines and prioritize the key business objectives and KPIs using 

SMART criteria.  

5. Implement appropriate KPIs in the manufacturing shop floor facility.   

It is sensible to indicate that the complete methodology of selecting appropriate KPIs and reviewing the 

manufacturing shop floor performance is a continuous process. After suggesting and implementing the 

KPIs, the manufacturers should evaluate the performance regularly. Since, in the current complex 

manufacturing environment, both internal and external business factors change over time, incorporate 

those changes, and provide continuous improvement, evaluating the shop floor performance on a regular 

basis is needed.  

The proposed approach is illustrated in figure 15.  
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Manufacturing Shop floor operations

•Production

•Maintenance

•Quality

•Logistics

•Material handling
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•Availability of machines

•Delayed materials supply

•  
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Figure 15 Proposed systematic and holistic approach 
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3.2 Development of the Manufacturing Shop Floor Exploration Model 

Developing a manufacturing shop floor exploration model recognizes the key business objectives; identify 

the bottlenecks in the manufacturing shop floor facility that negatively impacts the throughput; point out 

the problems and challenges, and list the KPIs used for monitoring shop floor performance. The proposed 

model uses questionnaires and structured interviews to collect the required data (i.e., data related to 

manufacturing shop floor performance) along with the real-time data needed from the manufacturing shop 

floor. The developed model is shown in figure 16. Furthermore, a procedure for analyzing the raw data by 

applying weights, sorting, grouping, and feeding in expert group opinions to obtain accurate data for 

further research is designed in this section.  

 

 

 

 

 

 

 

 

 

 

Manufacturing shop floor operations

•Production

•Maintenance

•Quality

•Logistics

•Material handling

•Health and safety related

•Network architecture, data flow, server 

and various other IT related operations

Problems & challenges

•Unplanned stoppages in production line

•Availability of machines

•Delayed materials supply

• .

•Realization of worker performance

•etc

Objectives

•Increasing efficiency

•Eliminating the bottleneck

•Increase OEE

•Improving quality

•Improving the material handling

List of KPIs

•OEE

•Availability

•Performance

•Quality 

•Scrap ratio

Questionnaires and structured 

interviews (Data Collection)

Analysis 

•Literature review

•Outlier detection method

•Expert group opinion 

Data for further 

research

Manufacturing shop floor exploration model

Data Collection & Analysis

Shop floor MES data 

related to production

Figure 16 Proposed manufacturing shop floor exploration model 
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The core of this model is acquiring data through questionnaires and structured interviews. The 

questionnaires and interviews are designed based on examining over 170 research publications covering 

KPIs in manufacturing, KPI challenges to improve efficiency, KPI manufacturing effectiveness, 

performance measurement in the production facility, etc. The complete list of questions (presented through 

questionnaires and structured interviews) are distributed into several categories, as shown in table 6. In 

total, 11 categories with 210 questions are designed (helping the manufacturer and the researcher) to 

acquire the information required about the shop floor. The frequency of questions based on the category 

is also mentioned in table 6. These questions are designed based on the job roles of the participants. The 

participants are supplied with those questions that he/she has knowledge, competence, and experience. 

Developing the questions based on job roles is undertaken to record meaningful information without 

overwhelming the participants with scores of questions to answer outside their area of expertise and 

capture detailed insights into the problems encountered while performing their respective jobs (Macdonald 

and Headlam, 2008). For this proposed research, four job roles were considered: research and 

development, production manager, production supervisor, and operator.  

Table 6 Categories of the proposed questions 

Category Questions 

Enterprise name 1 

General information  25 

Respondent information 3 

Mission and goals 27 

Production 21 

Performance assessment  23 

KPIs 35 

KPI monitoring 32 

Quality management 5 

PMS implementation 23 

Human resource 15 

Summary 210 

To simplify working with a large set of questions (210 in total), this research employs a simple coding 

technique (Haradhan, 2017) to assign unique codes to each question. Figure 17 explains the coding style 

consisting of a string of seven variables. The first three variables are used to highlight the category to 

which the question belongs; for instance, ENT is used for the category enterprise name (essentially the 
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first three letters in most cases). The next two variables refer to the sequence number of the question in a 

particular category. The last two variables are used to identify the question's uniqueness, which is either 

00 if the question is unique or 01 if it is a clone. The questions were framed so that they can support in 

achieving the objectives of the given research. Clone questions help to make sure the data collected from 

the participants are consistent and reliable.  

 

 

 

 

 

The questionnaires are grouped into two types: facts-based questions; and situational based questions. 

Fact-based questions are later used to compare the answers directly with the extensive literature review 

containing similar reported trends/ surveys/ opinions and analyze them. The answers to these questions 

are multiple choices; for example, one of the questions modeled for the research and development team 

is:  

What were the main challenges faced in implementing the current KPIs for measuring the performance of 

the manufacturing shop floor?  

Tick all relevant 

o Lack of available data   

o Fragmentation and incompatibility of data 

o Lack of finance/funding 

o Lack of staff resources 

o Lack of knowledge/skills  

o Lack of guidance / best practice 

o Lack of co-operation with interested parties 

o None 

o Other (please specify__________________________________________________) 

ENT0100

Category name Sequence 

no. in the 

category

Uniqueness 

Figure 17 Coding used for designed questions 
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Whereas the situational based question is focused on recording the problems appearing inside the 

manufacturing shop floor facility and the manufacturers' actions to resolve them. The situational based 

question will help the manufacturers and the personnel involved in conducting the survey (i.e., interested 

in selecting and implementing KPIs) to understand the specific problems or issues within the shop floor 

and the ways employed to overcome them. The questionnaires' response is collected manually or based 

on the participants' preference. Still, when the whole survey is concluded, all the data collected is 

transferred to a university secured web server. The online data available is much easier to analyze, 

manipulate, and access than the data available on paper. Also, data available in the database will increase 

the possibility of making quick decisions in less time.  

Moving forward from questionnaires, structured interviews were conducted to scrutinize further the data 

collected through questionnaires, emphasize the problems faced specific to the job roles while delivering 

their task, understand the existing performance measures, and link to achieving business objectives. An 

example question modeled for a production supervisor working within the manufacturing facility is: Are 

the existing KPIs helpful in monitoring the current production performance to achieve the production 

target? This question aimed to know from the supervisors’ perspective on the effectiveness of the existing 

KPIs in achieving business objectives. Questions for the structured interviews are focused and targeted 

for a few participants from each job role. 

The structured interviews are categorized into three main themes set out by Gabriele Beissel-Durrant, with 

each theme containing a set of structured questions (Gabriele Beissel-Durrant, 2015). The first theme 

covers the business context, helping to ascertain the manufacturing company's key business objectives and 

aligning them with the data acquired through the questionnaires needed for validation purposes. It also 

enables the personnel surveying to ensure the accuracy and quality of the information collected through 

questionnaires. The second theme is about manufacturing shop floor exploration, assisting the person in 

realizing the state of the art of current shop floor operations, various KPIs employed for performance 

measurements, and underlying weak spots that need attention. The emphases of the third theme are KPI 

selection, design, and implementation. This theme will investigate relevant approaches, methods, 

techniques, and models. The results generated from the structured interviews benefit this research in 

comprehending the main underlying problems within the manufacturing facility, investigating the 

usefulness of the existing KPIs and challenges faced by manufacturers in analyzing and implementing 

various performance measures.  
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The questions are designed to cover most of the shop floor's critical areas such as inventory, workforce, 

energy consumption, performance monitoring, environmental, and sustainability, distributed into various 

categories (refer to table 6). However, it does not cover financial, health and safety, which is well thought-

out as future work (or limitation) for this research. To summarize, the questionnaires are intended to 

highlight key business objectives, identify the weak spots, problems, and challenges the manufacturers to 

face, and list the KPIs employed to monitor the performance. In comparison, structured interviews are 

used to capture a detailed understanding of the manufacturing shop floor performance assessments and 

link the existing KPIs with the current business objectives to monitor the shop floor performance better.  

Besides, real-time data related to production collected directly from the shop floor MES helps highlight 

the weak spots within the shop floor facility and check the validity of the data collected through 

questionnaires and structured interviews. The real-time data includes production time, cycle time, 

production capacity, OEE, etc., mainly depending upon the business objectives. The real-time data can 

help validate the data collected through questionnaires and interviews, as mentioned in the case study 

mentioned in chapter 4, section 4.4.5. To provide additional effectiveness to the given research and 

eliminate any misinterpretations, right from designing the questions to analyzing the data, the study is 

carried out under the guidance of an expert group comprising professionals from academia and industry. 

The group consists of five experts from academia and five from the industry; the information is mentioned 

in table 7.  

Table 7 Expert group information 

Expert  Experience  Role  

1 33 Professor at University of Warwick 

2 25 Associate Professor at University of Warwick 

3 21 Associate Professor at University of Warwick 

4 19 Researcher at the University of Warwick 

5 11 Specialist in the field of production, design, and implementation  

6 33 Specialist in the field of production, design, and process development 

7 27 Specialist in the field of production optimization  

8 17 Specialist in the field of production development  

9 15 Research and development officer for production design and implementation  

10 13 Production manager  
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Once the raw data is collected through questionnaires and structured interviews, the procedure for 

analyzing the answers is outlined below:  

1. Acquiring the data (answers) from the university webserver 

2. Applying weight to the answers based on their significance  

3. Sorting the data 

4. Modifying the weight by multiplying it with the reliability index 

5. Forming new groups and using Cronbach Alpha to test the consistency  

Outliers in the data arise due to inconsistencies in responses, for example, inconsistencies in answers to 

unique and clone questions. These outliers can also occur due to incorrect responses filled in by the 

participants. These outliers can have a critical impact on research outcome, therefore using the procedure 

mentioned above for analyzing the raw data, these outliers are removed. The first step in analyzing the 

raw data is by applying weights to the responses based on their significance to the study by the person 

conducting the survey. To determine each response's effect on the situation defined in the question, the 

index of significance using a 1-5-point scale is applied. In the 1-5-point scale, 1 represents highly 

insignificant, and 5 donates highly significant (Emerson, 2017). In simple words, the questions with the 

highest average significance value should be analyzed first. The full scale is publicized in table 8. The 

significance of the questions varies from one study to another and depends on conducting the survey. For 

instance, if the study's definition does not deal with shop floor inventory-related issues, then the questions 

related to it are considered insignificant and vice-versa.   

Table 8 Point scale 

1 Highly insignificant 

2 Slightly insignificant 

3 Neutral  

4 Slightly significant 

5 Highly significant 

In the next step, sorting the data based on clone questions is carried out. If the clone and original question's 

response differs, then those questions' data are not considered. One of the central notions behind setting-

up clone questions is to check if the participants fully understand the concepts described in the questions. 

Since clone questions are the reworded question, if the participants fail to answer both the original and 
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clone questions, all the participants' responses will be unreliable and deleted from further data analysis. 

The data related to any incomplete questionnaires is also deleted in this step.  

After sorting, the next step is to introduce a reliability index. Depending on the participant’s position 

within the manufacturing facility and his/her experience and influence on the decision-making, the 

reliability index is introduced. In this research, the reliability index is used to define the trustworthiness 

of the answers and is calculated as: 

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 =  
𝑃𝐸𝐶𝑃 ∗ 𝑃𝑌𝐸𝐶 ∗ 𝑃𝑇𝐺𝐴

100
 

Where, 𝑃𝐸𝐶𝑃 −participant’s experience in the current position; 𝑃𝑌𝐸𝐶 −participant’s years of experience in 

the current manufacturing facility; 𝑃𝑇𝐺𝐴 −Participants’ total experience in the given area, respectively. 

The reliability index is multiplied with weights to get the modified weights for each answer. The next step 

in analyzing the raw data is grouping the data after applying modified weights to perform the consistency 

test. The data is grouped into four groups, with an equal number of respondents. These groups were asked 

similar questions but structured differently, for instance, ‘production did stop due to downtime,’ 

‘downtime did cause production delays,’ and ‘production delays are caused due to downtime.’ A similar 

answer is expected to these questions; a consistency test is carried out to check the collected data's 

evenness based on the groups. Cronbach Alpha is calculated to confirm the data's reliability and 

consistency; if Cronbach Alpha's coefficient is above 0.7, then the responses are acceptable. The group 

with a Cronbach Alpha value coefficient of less than 0.7 is not selected for further data analysis (Taber, 

2018). 

Since the manufacturing shop, floor exploration model supports acquiring all the essential information 

about the manufacturing facility, the results generated through this model identify: key business 

objectives, problems, and challenges that negatively impact the throughput and a list of KPIs used for 

monitoring the performances. The model should be seen as a vital tool that can help the manufacturers 

reduce their time required to conduct similar shop floor analyses and moderating the research group's size. 

Combining this model with the proposed KPI guidelines (section 3.3) can help the manufacturers make 

accurate decisions. Simultaneously, select appropriate KPIs for their shop floor operations, link their 

business objectives with the KPIs, improve their manufacturing performance, and effectively monitor 

weak spots. 
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3.3 Developing KPI Guidelines 

To address the research gap mentioned in the literature review that there is no framework or methodology 

to systematically, methodically, and/or scientifically select KPIs for a manufacturing facility, a KPI 

guidelines approach is developed to guide the manufacturers, analyze and select appropriate KPIs 

systematically. Table 9 lists the current problems and industrial needs addressed through this research 

(Woolliscroft et al., 2013; Almeida and Azevedo, 2016; Collins et al., 2016; Kibira et al., 2018; Khan and 

Bilal, 2019). The guidelines are developed by considering every possible KPI measure and their 

corresponding elements from the extensive literature conducted in Chapter 2. These KPI measures and 

elements are already discussed in Chapter 2. To avoid repetition, only the importance of using those 

measures and their elements is provided in this section. Elements are the relevant measurements used for 

categorizing KPIs.  

Table 9 Problems and industrial need addressed through this research 

Problems related to KPIs  Industry need Gaps addressed through 

the research 

1. Lack of KPI understanding, which leads to failure 

in reporting and monitoring critical performance 

measures 

 

Need a methodology that can 

guide them to select 

appropriate KPIs for their 

shop floor operations 

assessment systematically 

 

Development of a holistic KPI 

selection approach that can 

systematically guide the 

manufactures and decision-makers 

to understand, analyze, and select 

appropriate KPIs 

2. Selected KPIs fails to establish a connection with 

the business objectives 

3. Excessive KPIs selected for monitoring purposes, 

further weakening the main focus on business 

objectives 

The proposed KPI guidelines are presented as a step-by-step guide consisting of five stages, namely: 

information stage, discernment stage, scheming stage, the origin of the data stage, and assisting technology 

stage. Every stage consists of different measures and corresponding elements which provide indicative 

information about the KPIs. The proposed KPI guidelines are illustrated in figure 18. The idea behind 

choosing a step-by-step approach is to lay a strong foundation of KPI understanding without 

overwhelming the manufacturers with all the guiding information simultaneously. Moreover, to 

effectively address the current industrial needs, it is deemed necessary for the manufacturers to acquire a 

basic (general) understanding of the KPIs before sequentially obtaining detailed aspects (i.e., by following 
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different stages). The approach will help impart KPIs' knowledge, starting from providing essential to 

precise details as needed by the manufacturers.  

Information Stage

Name Description Unit of measure Range Trend

Content Stage

Timing Audience Production methodology Entity relationship model

Context Stage

Real-time

On-demand

Periodical

Operator

Supervisor

Manager

Discrete 

Batch 

Continous

Discernment Stage

Type Dimension Form

Product 

Process 

Resource

Time 

Cost

Quality

Safety

Environmental

Sustainability

Lagging

Leading

Nature

Fundamental

Derived

Scheming Stage

Formula Equation Equation Variables

Origin of data Stage

Assisting technology Stage

Figure 18 KPI guidelines 
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3.3.1 Information Stage 

The purpose of this stage is to enable manufacturers to acquire necessary information, which is also 

regarded as fundamentals of KPIs from the relevant international standards and literature review (chapter 

2). This stage is further divided into two sub-stages: content and context stage, as shown in table 10 and 

table 11. The reason for dividing the information stage into two sub-stages is to support the manufacturers 

by first guiding them in knowing what a KPI encompasses (contain stage). Its explanation comprises a list 

of measures, such as name, description, unit of measure, range, and trend. The detailed explanation of 

each of these measures is provided in table 10 and then proceeds by providing an accurate understanding 

of various applicable situations for KPIs contemplation. These contemplations are the KPI measures listed 

in the context stage, such as timing, audience, production methodology, and an Entity-Relationship (ER) 

model. The measures consist of corresponding elements that are explained in table 11. The purpose of 

selecting these measures for the information stage is mentioned in chapter 2. 

Table 10 Information-content stage 

Content Stage 

Measure  Detail 

Name Name of the KPI 

Description A brief description of the KPI 

Unit of measure The basic unit or dimension in which the KPI is stated (Kg, Nm, sec, %, etc.) 

Range Specifies logical limits (upper and lower) of the KPI 

Trend Is the statistics about the improvement direction, for instance, higher is better or lower is 

better 

According to ISO 22400-2 guidelines, in the beginning stage of understanding a KPI, manufacturers must 

comprehend the fundamental concepts about KPI of their interest (International Standard ISO 22400-2, 

2014; ISO British Standards Institution, 2018). From the literature, it is witnessed that more than 80 

percent of the manufacturers fail to improve their shop floor performance due to failure in understanding 

the necessary concepts of KPIs or fail to realize their business objectives (Iuga, Kifor, and Rosca, 2015; 

Almeida and Azevedo, 2016; Badawy et al., 2016; Kang et al., 2016; Stricker, Echsler Minguillon and 

Lanza, 2017). Having fundamental knowledge through this stage will help the manufacturers familiarise 

themselves with relevant KPIs before further consideration.   
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Table 11 Information-context stage 

Context Stage 

Measure Detail 

Timing A KPI can be calculated either in 

Real-time- after each new data acquisition event 

On-demand- after a specific data selection request 

Periodical- done at a specific interval, e.g., once per day 

Audience  The audience is the user group typically using this KPI. Typically, the audience is: 

Operators- personnel responsible for the direct operation of the equipment 

Supervisors- personnel responsible for directing the activities of the operators 

Manager- personnel responsible for the overall execution of production 

Production methodology  Specifies the production methodology that the KPI is generally applicable for: discrete, 

batch, and/or continuous 

ER model The effect model diagram is a graphical representation of the dependencies of the KPI 

elements that can be used to drill down and understand the source of the element values 

For illustration, an example of one of the most used KPI ‘availability’ is provided in table 12. The 

information stage, as mentioned in table 12 about availability KPI delivers the fundamental knowledge 

needed by a manufacturer to know before moving to the next stage.  

Table 12 Availability KPI-information stage study 

Information Stage 

Content stage 

Name Availability 

Description It is the ratio between Actual Production Time (APT) to the Planned Busy Time (PBT) 

Unit of Measure % 

Range Min: 0% 

Max: 100% 

Trend The higher, the better 

Context stage 

Timing Periodical, on-demand 

Audience  Supervisor, management 

Production 

Methodology  

Discrete, batch, continuous 

Effect Model 

Diagram 
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3.3.2 Discernment Stage 

The discernment stage covers process specific aspects of KPIs. This stage encourages manufacturers to 

critically comprehend new or existing KPI's applicability to achieve their desired business objectives. 

Every critical measure and its corresponding elements covered in this stage provides a high-level mapping 

of KPIs to set business objectives. The list of measures covered by this stage is type, dimension, form, and 

nature. Description of each measure is mentioned in table 13 and covered at a stretch in chapter 2. This 

stage facilitates them to think and question the KPIs cogency in achieving astounding performance by 

providing their detailed aspects. This stage further aids the manufacturers to know (specifically) which 

type of measure, for instance, product, process, and/or resource of the manufacturing shop floor, can be 

improved using specific KPIs. The literature has observed that most managers are unaware of the KPI 

relevance, resulting in poor KPI selection (Andrej Rakar, Sebastjan Zorzut, 2004; Borsos, Iacob Calefariu, 

2016; Taylor, 2016; ISO British Standards Institution, 2017). This stage will help address the KPI 

relevance issues by providing detailed process-specific insights into the KPIs as underlined in table 13.   

Table 13 Discernment stage 

Discernment Stage 

Measure  Detail 

Type Identification of the element that the KPI is relevant for- 

Product, process, and/or resource 

Dimension Identification of the element that the KPI is relevant for- 

Time, cost, quality, quantity, environmental, sustainability, and other 

Form  Specifies the form of KPI- 

Availability 

Site Product 

Work centre 

Calendar 

day 
Planned 

operation time 

Production order 

Operation 

sequence 

Area 

Work unit Actual production 

time 

Operation 

calendar 
Planned unit 

busy time 
Work 

unit 
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Lagging- are typical “output” oriented, easy to measure but hard to improve 

Leading- typically input-oriented, hard to measure, and easy to influence  

Nature  Specifies the nature of the KPI- 

Fundamental or derived  

Identifying the elements present in each measure to which the KPI is pertinent to an appropriate dimension, 

form, and nature can benefit manufacturers precisely map their business objectives with the selected (or 

candidate) KPIs. Additionally, it will allow the manufacturer to focus on an element that can enable them 

to make quick and informed decisions. For example, suppose the key business objective is improving the 

quality of the production process. In that case, only the KPIs that have the quality element in dimension 

measure and process element in type measure can be mapped to achieve the key business objectives. 

Therefore, this stage gives the high-level mapping of the KPIs with the business objectives. A worked-out 

availability KPI example for the discernment stage is mentioned in table 14. 

Table 14 Availability KPI-discernment stage study 

Discernment Stage 

Type Process 

Dimension Time 

Form  Lagging 

Nature  Derived  

3.3.3 Scheming Stage 

After acquiring a vital and thorough knowledge of fundamental, detailed, and process specific aspects of 

the KPIs using the information and discernment stage, the scheming stage provides additional measures 

such as equation and equation variable (usually known as data) obtained from the formulae used for KPI 

calculation, as shown in table 15. This stage will guide manufacturers to understand the data (also known 

as equation variable) required to calculate the necessary KPIs. For example, the equation variables needed 

to calculate availability KPI are operating time and the loading time. The stage is essentially seen as 

exploring the data stage for what type of data needs to be collected to measure a KPI. This stage provides 

answers to some of the commonly asked and critical questions related to the manufacturing facility's data 

to calculate a KPI. Responses to ‘what type of data would be required to measure a certain KPI’ and ‘what 

type of data needs to be collected to measure a KPI’ can be answered through this stage.  



 

86 
 

Table 15 Scheming stage 

Scheming Stage 

Measure  Detail 

Formula The mathematical formula required to calculate a KPI  

Equation It resembles the formulae used for KPI calculation 

Equation variable The variables present in the equation are termed equation variables 

For example, figure 19 elucidates that in order to calculate availability KPI, manufacturers need to know 

the equation variables such as reference time, loading time, operating time, net operating time, and 

downtime. Knowing these equation(s) and equation variable(s) will guide the manufacturers to identify if 

these variables' data exists within their shop floor data model. This stage helps the manufacturers to link 

their data model(s) with the KPIs of interest, which is, in turn, connected with their business objectives. 

A worked-out availability KPI example for the scheming stage is mentioned in table 16. 

Table 16 Availability KPI- scheming stage study 

Scheming Stage 

Formula Availability = APT / PBT 

Equation APT, PBT 

Equation Variable AUBT, ADOT, AUPT, ADET, AUST 

 

 

Figure 19 Equation variables for calculating availability KPI 

3.3.4 Origin of Data Stage 

The origin of the data stage helps manufacturers identify the point of origin data within their shop floor. 

For example, the point of origin can be a Programmable Logic Controller (PLC) used for collecting the 
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data from a station or an energy monitor installed for recording readings of a particular robot. 

Manufacturers need to identify the origin of the data because it is difficult for data extraction under 

unexpected circumstances, such as legacy systems. Collecting data from legacy systems remains a 

challenge. However, with numerous KPIs available, manufacturers may switch to alternative KPIs with 

different equation variables that do not require data to be extracted from the legacy system (Iuga, Kifor 

and Rosca, 2015; Rødseth, Strandhagen, and Schjølberg, 2015; Badawy et al., 2016; Kaganski, Majak, 

and Karjust, 2018). By knowing the origin of the data, manufacturers can decide whether to proceed with 

data extraction of an individual KPI or look for an alternative.  

3.3.5 Assisting Technology Stage 

This stage helps manufacturers know the assisting technology applicable for data capturing to collect data 

swiftly and efficiently. Since cost is a critical factor while deploying technology into the shop floor, this 

stage aids the manufacturers to decide and then select an appropriate KPI with a reasonable investment in 

supporting technology (Haponava and Al-Jibouri, 2009; International Standard ISO 22400-2, 2014). For 

example, to calculate worker efficiency KPI, capturing the worker’s operating and idle time is necessary. 

The worker presence can be captured using various assisting technologies such as RFID readers, camera 

systems, and motion detectors. Manufactures’ can choose a technology that can be quickly and 

economically deployed and integrated. A worked-out example for worker efficiency using the proposed 

approach is mentioned in table 17.  

Table 17 Worked out an example for worker efficiency KPI using the proposed approach 

Information Stage 

Content stage 

Name Worker Efficiency 

Description The worker efficiency considers the relationship between the actual personnel work time 

(APWT) related to production orders and the actual personnel attendance time (APAT). 

Unit of Measure % 

Range Min: 0% 

Max: 100% 

Trend The higher, the better 

Context stage 

Timing Periodical 

Audience  Supervisor, management 

Production Methodology  Discrete, batch, continuous 
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Effect Model Diagram  

 

 

 

 

 

 

 

 

 

 

 

Discernment Stage 

Type Resource 

Dimension Time 

Form  Lagging 

Nature  Derived  

Scheming Stage 

Formula Worker efficiency = APWT / APAT 

Equation APAT, APWT 

Equation Variable APAT, APWT, Break time, and no work time 

 

 

 

 

Origin of Data Stage 

Manufacturing Execution System (MES) 

Assisting Technology Stage 

RFID reader, camera system, barcode scanners   

After developing the KPI guidelines, the next step is comparing the set of KPIs, as highlighted in the 

manufacturing shop floor exploration model, with KPI guidelines. It is a simple type of comparison and 

is conducted in three phases. In phase one, the set of existing KPIs (as known from the manufacturing 

shop floor exploration model) used for monitoring the manufacturing shop floor facility are studied in the 

light of the proposed KPI guidelines. Studied means the existing KPIs are elucidated using the five 

different stages presented in KPI guidelines. In phase two, phase one's study results are equated with the 

APAT 

APWT Breaks,  

No work time 

Worker efficiency 

Site Product 

Work centre 

Production order 

Operation 

sequence 

Area 

Work unit 

Actual personnel 

work time 

Workgroup Worker 
Actual personnel 

attendance time 
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manufacturers' operational and strategic objectives. In phase three, the effectiveness of the existing KPIs 

towards monitoring the critical manufacturing performance is highlighted. The outcome of the comparison 

is to obtain a set of relevant KPIs from existing ones. The relevant KPIs are those KPIs which, when 

studied in the light of KPI guidelines, each measure contained within the guidelines when equated should 

help to achieve set business objectives. Underline the effectiveness of existing KPIs in monitoring the 

weak spots and addressing the problems that have a negative effect on throughput.  

Once relevant KPIs that essentially helps the manufacturers are figure-out from the previous comparison 

step. The researcher taking advantage of the immense information available in the literature related to 

KPIs and the data analyzed from the manufacturing shop floor exploration model, recommends a set of 

KPIs that can effectively monitor the shop floor performance accounting for the current challenges of the 

manufacturers. The recommended KPIs are studied using the KPI guidelines making sure that they are 

indeed helpful to address current business objectives. The recommended set of KPIs along with relevant 

KPIs forms the appropriate KPIs. The appropriate KPIs are exclusively developed based on a given 

manufacturing facility, making it more specific and manufacturer centric. The appropriate KPIs are 

selected in such a way that it helps to monitor all the challenges, problems and future goals addressed by 

the manufacturers. Also, all those inherent challenges and problems that are gone unnoticed and need 

attention. SMART criteria are employed to prioritize the appropriate KPIs based on their significance in 

manufacturing shop floor performance (Mittal et al., 2019).  

3.4 Prioritization of Objectives and KPIs using SMART Criteria  

Within the complex manufacturing environment, the manufacturers can continue to remain competitive 

by improving their shop floor performances. The best tactic for enhancement is establishing significant 

objectives that can foster responsibility and ownership—in basic terms, establishing significant objectives 

that closely emphasize realizing the desired outcome (Yang, Chang and Choi, 2018). To be substantial 

and meaningful, this outcome should ideally include five characteristics, namely, SMART, which stands 

for: Specific, Measurable, Attainable, Relevant, and Time-based (Ezell, 2018). With a holistic approach 

for selecting appropriate KPIs for the manufacturing shop floor facility, this research also prioritizes those 

appropriate KPIs based on SMART criteria. The reason for prioritizing is to simplify the efforts of 

deciding which KPIs should be followed in the first place, to reach the desired shop floor performance 

effortlessly.  
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SMART criteria are the best way to keep track of KPIs' planning and implementation phases in the 

manufacturing facility. It helps in objective setting, i.e., differentiating between realistic and unrealistic 

business objectives (Sanders, Elangeswaran and Wulfsberg, 2016). The KPIs involved in monitoring 

realistic business objectives are given higher preference than unrealistic or too difficult to achieve. The 

goal is to guide the manufacturers to understand, analyze, and implement appropriate KPIs and rank these 

objectives and KPIs to improve current shop floor performance.      

SMART criteria comprise of five steps: 

Specific: the objective should be clear, detailed, and as precise as possible. No vague descriptors, uncertain 

or unclear objectives are not desirable. When these objectives are specified, it becomes convenient for the 

manufacturers to make informed decisions and perform necessary actions to accomplish desired targets 

(Kibira, Morris, and Kumaraguru, 2016). A number should be provided, if possible, to specify the 

objectives. For instance, the example provided in table 18 below provides the best clarity on levels of 

objective specificity. Example 3 reflects the best way of specifying an objective as it clarifies the 

production lines and the percentage of improvement needed. 

Table 18 Level of specificity examples 

Example 1 Example 2 Example 3 

Increase manufacturing facility output  Increase manufacturing facility: 

production lines 1, 2 & 3 output 

Increase manufacturing facility: 

production lines 1, 2 & 3 output by 5% 

Unclear Better Best 

Measurable: the objectives, targets, or KPIs should be measurable. It offers a means of providing 

comparative data analysis over a given period. The measure can be qualitative or quantitative, enabling 

the manufacturers to track their progress in achieving their objectives. Measures should be easily 

obtainable and accurately reflect present performance. In perspective to measurable KPIs, both leading 

and lagging indicators should be used to monitor business performance because it will help the 

manufacturers evaluate the current and future measures to be incorporated in achieving the given 

objectives (U.S. Department of Health and Human Services, 2018). 

Attainable: This is an action-oriented step. It involves creating an action list that reflects all the steps 

needed to progress from the present state to the desired result. These steps need to be realistic and more 

straightforward in implementation (MacDonald, 2012). If these steps do not support accomplishing the 

desired objective, it needs to be re-evaluated and made attainable. For instance, if the manufacturer wants 
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to improve the manufacturing line performance by ultimately reducing the downtime within a week. This 

will be far too ambitious for the specified time frame, even if the manufacturers establish a Vendor 

Managed Inventory (VMI) program (Initiative, 2020). To make it attainable, reducing the downtime by 

50% or increasing the time frame can help realize this objective. Once this objective has been achieved, 

and the manufacturers can further reduce the downtime as a part of the continuous improvement effort.   

Relevant: the objective should be appropriate, suitable, and useful in improving manufacturing shop floor 

operations. For example, providing training to all the operators to run every machine installed on the shop 

floor increases resource availability. Irrelevant objectives are unlikely to be accepted and are considered 

a waste of effort and time. Evaluating the run-time of a rarely used machine can be viewed as an example 

of an irrelevant objective (Eleganttheme, 2020). Moreover, every person working within the 

manufacturing unit should compare and understand how the objectives are relevant to their job roles in 

improving the shop floor performance. Manufacturers should use relevant KPIs for measuring 

performance. 

Time-specific: objectives defined without time frames makes it unlikely to be achievable. The objectives 

with a defined time scale provide a possibility for manufacturers to analyze and monitor the progress. It 

ensures that every person working knows the time scale in which the objective is planned to be measured 

and realized to develop an appropriate plan (Karl, Roman and Agnes, 2010).  

The procedure for prioritizing the key business objectives and KPIs based on SMART criteria: 

1. List out all the key business objectives highlighted in the manufacturing shop floor exploration 

model 

2. Implement the SMART criteria and assign weights based on expert group advice and rank the 

objectives in descending order of their total effective weights  

3. Separate the KPIs based on their significance to monitoring the key business objectives 

4. Implement the SMART criteria separately to each set of KPIs divided based on their significance 

to monitoring the key business objectives 

The procedure is based on giving preference to the KPIs of key objectives that are realistically achievable 

in a specified time frame, followed by those that might be unattainable in a given time frame. This 

procedure's first step is listing all the key business objectives highlighted in the manufacturing analysis 

model. The next step is implementing the SMART criteria mentioned in section 3.4.1 and assigning 
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weights to each objective, respectively. The weights are assigned using a five-point weight factor, as 

mentioned in table 19. For instance, a given objective fulfills all the five SMART criteria, the weight 

assigned to it is the highest. The objective fulfillment using SMART criteria is based on the way they are 

defined. It is witnessed that sometimes the manufacturers' objectives can be too ambitious and practically 

unrealistic to differentiate them and give preference to the once achievable weights to each objective.  

Table 19 SMART weighing scale 

Objectives SMART Criteria Applied weights 

S M A  R T 

1 ✓ ✓ ✓ ✓ ✓ 5 (if the objective fulfills all the five criteria) 

2 ✓ ✓ ✓ ✓  4 (if the objective fulfills any four criteria) 

3 ✓ ✓ ✓   3 (if the objective fulfills any three criteria) 

4 ✓ ✓    2 (if the objective fulfills any two criteria) 

5 ✓     1 (if the objective fulfills any one criteria) 

6      0 (if the objective cannot fulfill any of the five criteria) 

After assigning weights, experts are asked to fill in the SMART criteria form (as shown in table 20) for 

the given objectives. Once the experts fill in the effective weights for each objective, the total effective 

weight is calculated. Based on the effective weight's decreasing order, the objectives are ranked, meaning 

the objective with the highest total effective weight is ranked, followed by the next with the second highest 

weight.  

Table 20 SMART criteria weight calculation 

Objectives 

Effective Weight 
Total eff. 

Weight 
Rank 

Ex-1 Ex -2 Ex -3 Ex -4 Ex -5 Ex -6 Ex -7 Ex -8 Ex -9 Ex -10 

1 3 3 3 3 3 3 3 3 3 3 30 1 

2 2 2 2 2 2 2 2 2 2 2 20 2 

3 1 1 1 1 1 1 1 1 1 1 10 3 

In the implementation step, the appropriate KPIs are made available to the manufacturers for their 

deployment in the manufacturing shop floor facility. All of the above steps are repeated to test the 

effectiveness of the proposed approach. This approach is cyclic. After implementing the KPIs into the 

manufacturing shop floor facility, the complete procedure should be frequently repeated. It is to 

understand the impact of changes in internal and external business factors (due to ever-changing business 

situations) on the proposed approach's effectiveness. There is a possibility of adjustments in operational 

and strategic objectives due to a change in the business environment. The appropriate KPIs used to monitor 
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the business performance should also be altered based on the changing business scenario. Therefore, the 

proposed systematic and holistic approach provides an opportunity for manufacturers to be adaptive and 

flexible during business situations.   
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CHAPTER 4 CASE STUDY: IMPLEMENTATION AND 

EVALUATION 

 

4.1 Introduction 

This chapter demonstrates the procedure of applying the proposed approach as described in chapter 3 for 

understanding, analyzing, and implementing appropriate KPIs within company X. Company X is an 

automotive seat manufacturer. The case study is conducted on the L494 assembly line within this facility. 

Firstly, by employing the manufacturing shop floor exploration model, the company X’s key business 

objectives, list of KPIs, bottlenecks, problems, and challenges are acknowledged. Secondly, company X's 

list of KPIs is evaluated using KPI guidelines to realize the existing KPI's applicability and effectiveness. 

Thirdly, a set of appropriate KPIs that can enable the company X to effectively monitoring their key 

performances and achieving business objectives are proposed and evaluated using KPI guidelines. Lastly, 

the prioritization of key business objectives and appropriate KPIs is offered using SMART criteria.  

4.2 Background of Company X 

Company X global was founded in 1917 as a manufacturer of welded, tabular, and stamped assemblies 

for the aircraft and automotive industries. It has grown into a large multinational company providing 

electrical systems and complete seating worldwide, with an annual turnover of $35.9 billion, company X 

global ranks among the top 150 in the fortune 500. Company X UK is leading the smart manufacturing 

initiative for the company globally, focusing on car seats. Company X manufactures approximately 200 

support staff and 2000 workers across three UK plants in the UK. This company's success is due to its 

strong commitment to providing outstanding services to the world’s automakers and customers. It 

manufactures seats for various car brands, with its primary customer being Jaguar Land Rover (JLR) in 

the UK. In company X, every component required to produce a seat is pre-assembled in sub-assembly 

lines. The final seat is primed and assembled on the assembly line within their manufacturing facilities.  

Figure 20 presents a block diagram representation of an assembly line with a list of inputs and output. The 

assembly line inputs are fetched from the sub-assembly lines, and inputs to this sub-assembly line are the 

raw materials that are initially assembled based on the seat requirements before their final assembly. 
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Figure 20 Snapshot of an assembly line with a list of inputs and output 

Every seat that is manufactured in these assembly lines includes various seat features and identifiers, such 

as model number, drive type, model year, country name, the carpet type, rear frame type, heater type, 

articulation type, screen type, speakers type, armrest type, lumbar type, headrest type, and foot-well lamp 

type. These seat features are based on the customers’ requirements. The detailed product process flow is 

mentioned in section 4.3. The master layout of company X consists of sub-assemblies, assembly, test and 

inspection, and rework lines, as illustrated in figure 21. Where A denotes sub-assembly lines, B denotes 

final assembly lines, C denotes test and inspection line, and D denotes rework line. Sub-assembly lines 

are responsible for manufacturing the parts passed to the final assembly lines to produce the finished seat.  

Each finished seat is transferred to test and inspection stations, where various electrical and resistance 

tests are conducted to certify that the seat meets the necessary quality and safety standards. Seats that are 

not able to pass these tests are moved to the rework line for rectification. The case study is conducted on 

one of the final assembly lines (B), the L494 assembly line. This line assembles seats for Jaguar and Land 

Rover models such as the Land Rover Discovery, Range Rover Evoque, Range Rover Sport, Jaguar XE, 

XJ I-Pace.  
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4.3 L494 Assembly Line Process Flow 

The L494 assembly line consists of 13 stations, with each station having a specific task to be undertaken 

in assembling the final seat. These stations involve manual processes, machines for material-handling, 

conveyors for continuous movement of pallets and components, and buffers conveyors to link stations. 

This assembly line is a typical example of a sequential and intermittent line that does not produce identical 

products due to the highly customized nature and a wide variety of seat options. Intermittent assembly 

lines are primarily known for facilitating quick assembly of equal parts while leaving room for 

Figure 21 Company X production line layout 
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customization. Every station in this assembly line has a process to undertake based on its requirement. 

Due to the high level of complexity involved in seat manufacture, the operations carried out at the stations 

are mostly manual and vary with seat specifications. The purpose of each station, with quick process steps, 

is mentioned in table 21.  

Table 21 Process flow of L494 assembly line stations 

Stations Purpose Process steps 

STN1 Cushion finesse  

1. Lift sequenced track from the input buffer and transfer to mainline. Carefully 

place the track in a pallet (RH seats on LHS and LH seats on RHS) 

2. Lock track into place using locking mechanism of build pallet  

3. Remove build ticket and aside to center of the pallet 

4. Steam finesse cushion 

5. Wipe dry cushion cover 

6. Finesse cushion cover fit 

STN2 Squab frame  

1. Get next sequence squab frame from WIP 

2. Present the SQB frame to the LH seat track, align the tabs on either side to the 

locators on the track and drop the frame into position 

3. Scan squab frame sub ticket and then squab frame 

4. Position and hand-tighten rear outboard marriage bolt with five wrist turns 

5. Grab the squab harness, run and untangle the recline motor lead; connect to 

the recline motor 

STN3 Marriage  

1. Secure the fir tree clip on the squab recline lead onto the gutter pressing, above 

the first one 

2. On the airbag lead, secure the center fir tree clip (with tab) to the back of the 

gutter pressing 

3. Secure the third fir tree clip to the lower outboard side of the gutter pressing   

4. Get the DC angle tool and fasten the front outboard marriage bolt to 

50.0±2.5N.m; confirm tool status for OK fixing 

STN4 Squab trim  

1. When the four marriage bolts are completed in LPS using the DC Angle tool, 

there is an over the check of these bolts using a clicker wrench. 

2. Grab 50 Nm clicker wrench and over-check front outboard marriage bolt; 

mark with chinagraph pen 

3. With 50 Nm clicker wrench over-check rear outboard marriage bolt; mark 

with chinagraph pen 
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4. With the right hand, grab and hold the airbag chute, and with the left hand, 

grab the outer side of the foam; lift squab trim above the frame and partially slide 

it down 

5. Guide the top end of the squab foam over the top of the frame, pushing down 

on the top of the squab 

6. Guide the outboard side of the foam over the frame together with the airbag 

and continue arranging the foam over the frame. Ensure the outboard pull chord 

is clear and drops in front of the suspension mat 

7. Grab the top end of the inboard pull chord, pull it upwards, and feed hook end 

through inside the hole on the squab frame  

STN5 Heater/ connections 

1. Grab the heater mat connector on the squab and manually attach it to the heater 

connector 

2. Guide the connection down the gutter, pressing and clip the anti-rotation fir 

tree clips into place on the inside of the gutter pressing 

3. Grab the fir tree clip adjacent to the heater mat connection and secure it to the 

inside of the gutter pressing 

4. Locate bellows in foam sub-assembly through the squab suspension mat, 

connecting it to the upper and lower wires as shown 

5. Guide the massage connector down the gutter and into the location for 

connection 

6. Push the webbing through the bite line and feed it through; pull the bottom J 

out through the back of the seat 

STN6 Airbag  

1. Grab the DC tool and place the bit onto the upper airbag nut. Fasten the upper 

nut to 7.0 ± 1.0Nm and confirm tool status for OK fixing 

2. Position the DC tool bit onto the lower airbag nut. Fasten the lower nut to 

7.0±1.0N.m and confirm tool status for OK fixing; place the tool back in the 

holder 

3. Grab metal trimming hook and pass it through the eyelet on the outboard pull 

chord (bottom end) - leave hanging 

4. Release the metal trimming hook and fit it to the bottom end of the inboard 

pull chord; leave hanging 

STN7 Valance fit  

1. Release the fixture rotation lock and rotate the seat 90 deg (the inboard side 

facing towards you) 

2. Pick the next sequenced pair of inner valances, valance carrier (with wire), 

and BTS cover. Temporarily place the valance carrier on the seat 

3. Fit the inner valance to the seat and ensure the inner hook fits over the squab 

recline mechanism 
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4. Ensure excess leather or nylon is not exposed over the seat recliner wheel 

5. Get 4 off screws and valance carrier 

STN8 Valance fixings  

1. Release the fixture rotation lock and rotate the seat 90 deg (the inboard side 

facing towards you) 

2. Remove T30 bit from tool and place on the bit holding plate 

3. Grab the T25 bit and fit it to the DC tool 

4. Grab the buckle lead, remove the clip holding the cable, dispose of it in the 

bin and extend the lead 

5. Grab the T30 bit and fit it to the pistol type DC tool 

STN9 
Headrest/PLP 

connect/backboard  

1. Finesse the squab/cushion cover as required 

2. Release the fixture rotation lock and rotate the seat 90 deg (seat facing away 

from you) 

3. With 2 fingers, grab the RH headrest bezel and perform a light pull check to 

confirm it's firmly engaged 

4. Check the visual aid on the monitor to confirm the headrest specification; tap 

the monitor to acknowledge 

STN10 
Switch pack/ footwell 

lamp  

1. Using DC tool fit wire to track to 8.5Nm -0.5 +1Nm 

2. Using DC tool complete armrest fixing 25.0Nm ± 1.0Nm 

3. Grab both track locks and pull them forward to release the seat 

4. Grab the seat by the front of the cushion, move it forward slightly and tilt it 

back, so it rests on the 'T' bar 

5. Clip the cover into position by lining upfront and then rotating into place, 

ensuring clips locate correctly into recess 

STN11 Finesse2  

1. The blow-down ball valve must be locked with the safety bow after blow-

down 

2. Never point the steam jet at anybody. The danger of inflicting scalding 

3. Do not touch the steam valve at the front of the machine. The danger of 

inflicting burns 

STN12 Backboard fit  

1. With 40+/-0.6Nm clicker wrench over-check buckle bolt, mark with 

chinagraph pen 

2. Check that the orange tab is fully in using the "Push-Click-Push" check 

method 

3. With both hands located on the lower portion of the backboard behind the 

retaining clips, firmly push the backboard to engage the clips 

4. Repeat the process for RH backboard 

STN13 Finesse1 
1. The blow-down ball valve must be locked with the safety bow after blow-

down 
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2. Never point the steam jet at anybody. The danger of inflicting scalding 

3. Do not touch the steam valve at the front of the machine. The danger of 

inflicting burns 

4.4 Applying Manufacturing Shop Floor Exploration Model to Collect 

Complete Information about L494 Assembly Line 

Using the set of questionnaires and structured interviews and L494 assembly line production data, the 

manufacturing shop floor exploration model is used to conduct the survey and collect the complete 

information of the L494 assembly line, including crucial performance details and key business objectives 

challenges, problems, bottlenecks, and KPIs. To ensure quick and easy handling of the data, the questions 

are stored and analyzed on a webserver. The survey consists of 210 questions, as mentioned in section 3.2. 

Details of the number of participants taking part in the survey are mentioned in table 22.  

Table 22 Participant statistics 

Participant statistics Number 

No. of participants contacted to take part in the survey  50 

No. of participants took part in the survey 45 

No. of participants that completed the whole survey 40 (2-manager, 8- research and development team, 4- line 

supervisors, 26- operators) 

The procedure of analyzing the raw data collected for the L494 assembly line is outlined below (please 

refer section 3.2 for complete details):   

1. Data acquisition from the webserver 

2. Weight calculation (section 3.2) 

2.1. Apply weight to the responses depending on their significance 

2.2. Adjust the weight by multiplying with a reliability index 

2.3. Sort the responses for the unique and clone questions  

3. Create groups for the consistency test 

4. Compute Cronbach Alpha to test the consistency  

5. Analyze the L494 assembly line production data (MES) 

6. Generate of L494 assembly line detailed information  

Table 23 represents a final sample matrix of the first 50 responses from the 40 respondents, their reliability 

index, and applied weights for further data analysis. Implementation of the sorting process on the final 
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matrix's responses is the next step in analyzing the data collected to confirm its accuracy. The collected 

data's accuracy is higher if the response to the same questions (unique and clone questions) is comparable. 

These clone questions are also highlighted in table 23. 

Table 23 Final matrix for further data analysis 

 

The sorting process was 95.63% accurate, meaning that almost all the respondents recorded similar 

responses to unique and clone questions. The 3.37% inaccurate data is removed from the final matrix for 

further data analysis. The data collected in the final matrix is distributed into four groups, with ten 

respondents in each group. The respondents within each group are evenly divided based on their job role 

to check the consistency of the data collected by calculating the Cronbach Alpha, as illustrated in table 

ID 1 6 3 4 3 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Reliability 

index 0.48 21.8 1.28 9.6 3.86 14.4 0.64 0.8 3.6 3.24 2.1 0.96 1.2 6.3 7.8 9.2 6.3 11.2 12.6 12.8 12.3 0.21 0.36 12.3 21.2 0.24 0.69 1.36 3.36 9.65 7.85 3.6 3.24 2.1 0.96 1.2 6.3 11.2 2.3 0.02

Questions

ENT0100 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

GEN0100 5 4 5 6 2 5 4 5 7 5 7 6 5 7 2 3 6 5 4 3 6 7 7 3 7 7 6 7 4 3 7 6 7 4 7 6 7 3 6 4

GEN0200 7 7 3 7 7 6 7 4 3 7 6 7 4 7 6 7 3 6 4 5 4 5 6 2 5 4 5 7 5 7 6 5 7 2 3 6 5 4 3 6

GEN0300 7 4 3 7 6 7 4 7 6 7 3 6 4 5 4 5 6 2 5 4 5 7 5 7 6 5 7 2 3 7 6 5 7 2 3 6 5 4 3 6

PAS0100 7 5 6 2 5 4 5 4

PAS0200 7 2 3 7 7 6 7 7 7 7 6 7

PAS0300 2 6 7 4 7 7

PAS0400 6 7 7 7 4 7 7 7 3 6 7 7 2 3 7 2

PAS0500 4 7 4 7 2 7 4 7 7 3 5 7 2 3 2 3 6

PAS0601 2 7 2 3 7 7 7 3 7 6 3 2 3

KPI0100 7 7 2 3 7 2 2 6 2 1 4 2 3 6

KPI0200 7 7 3 7 4 6 4 2 6 7 3

KPI0300 7 1 2 4 5 6 2 7 7

KPI0400 7 4 2 3 1 2 3 7 3 2 7 6

KPI0500 5 2 5 6 2 5 4 2 3 4 1 7 2 7 2 6

KPI0601 1 3 3 7 7 6 7 2 4 7 6 7 4

KPI0700 4 6 2 3 3 2 2 5 4 2 4

KPI0801 7 2 2 3 7 7 3 7 6 7 6 2

KPI0900 2 3 1 2 2 6 7 7 4 7 5 6 2 5

KPI1000 6 6 4 6 6 7 4 7 2 3 2 1 3 7 7 6

KPI1100 4 5 1 2 4 4 7 2 7 2 3 7 4

KPI1200 2 4 4 3 2 2 7 2 2

KPI1300 7 7 2 6 7 7 7 3

KPI1401 5 6 2 5 4 2 3 7 2 5 6 2 5 4 2 5 4 6

KPI1500 3 7 7 6 7 2 3 7 5 6 3 7 7 6 7 7 6 7

KPI1600 2 1 4 4

KPI1701 2 2 6 6 4 4 2 7 2 3 6

PMS0100 3 7 4 4 2 7 1 7 7 7 7 7 6 7 3 7

PMS0200 7 2 3 4 4 2 3 5 2

HRM0100 2 7 6 7 2 7 6 3 6 7 7 6 6

PMS0300 6 2 3 4 4 7 3 5 1 5 2 2 3

KPM0100 4 5 7 2 3 6 7 2 3 6 2 4 2 2 2 3

KPM0200 2 4 7 6 7 3 5 2 3 7 2 3 7 7

KPM0300 7 7 2 7 2 3 3 1

KPM0401 7 7 7 7 7 7 2 3 6 4 5 4

KPM0500 5 6 2 5 4 7 4 7 7 4 7 7 2 7 6 7

KPM0600 3 7 7 6 7 7 7 2 3 2 2 3 2 3 2

KPM0701 7 2 2 3 3 6 2 3 6 6 7 7

KPM0800 1 7 6 2 3 4 4 2 2

KPM0900 4 3 4 1 2 3 6 7 2 2 3 6 7 1

KPM1000 2 6 7 2 2 6 4 7 7 3 5 7 2 3 4 4 4

KPM1101 3 7 3 7 4 2 6 3 6 7 7 4 7 2 6 2 7 2

KPM1200 6 7 2 3 3 7 3 5 7 2 7 7 3 7 4 3

KPM1300 7 2 3 6 5 7 7 3 6

KPM1400 5 6 2 5 4 4 2 6 1 3 7 2 3 2

KPM1501 3 7 7 6 7 3 7 4 6 6 2 5 4 6

PRO0100 4 2 3 1 2 3 7 4 7 7 4 7 7 2 7 6 7 7 2 2 3 6

PRO0200 2 5 6 2 5 4 2 3 4 1 7 7 2 3 2 2 3 2 3 2 7 2 6 7 3

Weights
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24. According to Cronbach Alpha's theory, the data is consistent and reliable if Cronbach Alpha's 

coefficient is 0.7 and above.  

Table 24 Cronbach Alpha coefficients for each group 

Group No. Questions asked  Number of respondents  Cronbach Alpha 

Group 1  65 10 0.897 

Group 2 65 10 0.866 

Group 3 67 10 0.877 

Group 4 63 10 0.929 

Table 24 shows that the results of groups 1, 2, 3, and 4 are consistent as Cronbach Alpha's coefficient is 

above 0.7. As a result, the responses recorded by all the participants are consistent and reliable. The results 

of the survey conducted are presented in sections 4.4.1-4.4.4.  

4.4.1 Crucial L494 Assembly Line Performance Details 

The current production rate of L494 is 230-245 seats per shift. This production rate is flexible for up to 5 

extra seats per production shift to accommodate unpredictability in production orders. The production rate 

is calculated theoretically based on the sequence of the operations that need to be undertaken to complete 

a given order. Since this assembly line is sequential, the takt-time is set to about 98.5 seconds. The duration 

of takt-time is based on the longest cycle time recorded by any station amongst a total of 13. Due to the 

assembly line's intermittent nature, the total number of operators required is 26, i.e., two operators per 

station: a line supervisor and a manager per shift. The line is operational 15 hours per day and comprises 

2 shifts per day, with each shift works for 7.5 hours. From the total finished seats manufactured per 

production shift, 1-2 seats were expected as a variance for further rework for failing the standard safety 

tests. Currently, 17-23 seats are ending up in the rework station. This highlights the number of problems 

occurring at sub-assemblies and assembly lines, severely impacting the production order fulfillment 

window.   

The assembly line can make up to 57 different seats based on the customers’ demands, and the cost 

incurred in manufacturing single-seat ranges from £450-£750. The total time taken for manufacturing a 

seat is about 6.5 hours, measured from the sub-assemblies to clearing the test and inspection station. The 

fulfillment of a production order takes about 8 hours, starting from when the production order reaches the 

manufacturing facility, making it exceptionally challenging for the company to deal with any production 

delays. To avoid production delays, the managers are presently employing additional operators to keep up 
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with the takt-time and increase the rework station's capacity. In summary, the current L494 assembly line 

fails to cope with the daily production rate and maintain the seats manufactured. The production data 

collected for this study is for six months (1/09/2019 – 01/03/2020). The reason for selecting this period is 

to gather enough data to conduct considerable data analysis. 

4.4.2 Key Business Objectives 

The questions related to company X's key business objectives concerning the L494 assembly line were 

posed only to the managers, supervisors, and the research and development team. From the data collected, 

the key business objectives are stated as follows:  

Objective 1: Improve the current production rate to 98% to fulfill production orders on time 

without involving additional workers 

At present, the assembly line production rate (83.5%) is much lower than the set production rate (98%), 

affecting the fulfillment of production orders on time. The set production rate is about 230-245 seats per 

shift, but the L494 assembly line produces 205-223 seats per shift, 14.5% below target. The research and 

development team employs line balancing and optimization techniques to calculate the set production rate 

for order fulfillment based on the production capacity. To maintain the production rate and promptly fulfill 

the production order, supervisors are often forced to request managers to employ additional operators to 

finish the orders due to several bottlenecks in achieving the target production rate.  

Since the improvement of production rate is critical, line supervisors are continually looking for the causes 

behind the decrement of the production rate by constantly monitoring several reoccurring problems such 

as the station(s) unable to complete the process within the set takt-time due to waiting for the seat parts, 

the operator(s) unavailable, machine breakdown or missing seat parts/tools, etc. With the existing 

performance indicators, the managers still find it challenging to maintain the production rate and highlight 

the potential root causes. Therefore, company X requires an appropriate set of KPIs to effectively monitor 

the production rate and highlight the possible root causes, convincingly helping them achieve their key 

business objective.  

Objective 2: Improvement in seat quality 

The quality decides the customer’s faith in purchasing the seat. If company X fails to maintain the highest 

standards of quality, it will lose valuable customers. As a result, company X must maintain the seat's high 
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quality and retain the customer’s gratification. In numbers, the L494 assembly line is producing 17-23 bad 

quality seats against 1-2 seats per production shift, incurring a total loss of £11,250-£13,650 per production 

shift. The managers and line supervisors want to link a seat's problems failing the quality inspection to 

specific assembly line station(s) in the assembly line. Swift decisions can be taken to carefully monitor 

those station(s) to improve seat quality. These problems are listed in section 4.4.4. The current solution 

employed to enhance the quality of the seat is a reactive, offline measure. Company X waits for the 

inspection test reports after the production order is complete. It then starts to link the causes of bad quality 

seats to the station(s) and focuses on improving the next production order but fails to see considerable 

improvement.    

Objective 3: Real-time monitoring of the stations to increase visibility and quick decision-making 

capability 

The L494 assembly line is a sequential intermittent line consisting of 13 stations, with most station-based 

operations undertaken manually. Real-time monitoring of the stations is considered necessary because any 

delay(s) caused by the station(s) can make the whole assembly line stop, affecting the production rate and 

overall line performance. Currently, company X does not have complete visibility of their assembly line. 

Real-time monitoring can help the company make quick decisions without causing substantial 

interruptions in production. Deploying appropriate shop floor technology can benefit the company X in 

the real-time monitoring of the stations to increase visibility, focus on critical areas that need attention, 

and make quick decisions.  

Objective 4: Identifying the bottleneck process within the stations (visibility)  

Seeing it as a tactical objective, the line supervisors want to find the bottleneck process within a station, 

which can then be precisely monitored. In the given L494 assembly line, every station has a series of 

operations (process or tasks) that must be accomplished within the set takt-time. If a delay arises due to a 

station, it will be useful to know the process that caused it. Using an appropriate set of KPIs to monitor 

station-level performance closely will help the manufacturer identify bottleneck processes. More attention 

can be given to these bottleneck processes arising within any stations and address any potential delays in 

time. Identifying the bottlenecks is achievable with increased L494 assembly line visibility using industry 

4.0, enabling technologies, and an appropriate set of station-level KPIs.  

 



 

105 
 

Objective 5 (additional): Workforce wellbeing  

With most of the operations performed in this assembly line being manual, it becomes essential for 

company X to pay attention to workforce wellbeing. Operators who feel engaged and satisfied in their 

work tend to be more efficient and productive at work. Real-time monitoring of the employee 

performance, providing training facilitates, and introducing a robust employee development plan to 

improve the overall performance is one of the long-term objectives set out by company X. Currently, 

company X has not taken any initiative to address workforce wellbeing. Therefore, this objective is marked 

as additional.   

4.4.3 Challenges  

The challenges faced by company X are listed below: 

1. Labour intensive/ shortage of skilled workforce 

L494 line is a typical example of a semi-automatic intermittent assembly line wherein many seat variants 

are assembled at any given production order/ shift. Presently, this line needs 26 operators to assemble a 

single finished seat, making it labor-intensive. Managers realize a need for implementing automation and 

robotics technology solutions that can fill the labor gap. The research and development team finds it 

challenging to select a particular technological solution due to the nature of the work undertaken within 

the line. Moreover, the nature of work undertaken to produce a seat won't be easily replaced by machines. 

An alternative solution is deploying the right performance indicators to monitor and measure workforce 

performance, and effective workforce management can be attained.  

2. Improving productivity  

Depending upon this assembly line's nature, managers are bound to function under reduced productivity 

due to consistent problems arising from workforce engagement, failing to keep up with the set takt-time, 

etc. At present, the productivity of the line is around 73% causing substantial financial losses. The L494 

assembly line produces 205-235 seats per shift against 230-245 seats per shift in terms of seats. One of 

the evident reasons for the reduced productivity, as mentioned by the managers, is that some stations fail 

to complete their task within the given takt time, affecting the overall takt-time. The challenge is 

monitoring real-time productivity using existing KPIs that are incapable of immediately highlighting 

productivity loss.   
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3. Maintaining the right inventory level  

The stock required to assemble seats at the L494 assembly line comes from the sub-assembly lines and is 

manually checked by the line supervisors before commencing every shift. The manually checking of the 

stock by supervisors is incompetent and likely to cause errors leading to shortages, inaccuracies, and 

overstock of raw materials. Company X understands that the existing inventory's existing manually 

challenging and laborious procedure is prone to errors. This assembly line needs online resource 

management software such as Fishbowl Manufacturing, NetSuite, E2 Shop System, IQMS ERP Software, 

Henning Visual Esti, Track ERP, Prodsmart, JobBOSS Katana that can provide production visibility and 

maintain the right inventory. This L494 assembly line needs a shift from manual inventory checking by 

the supervisors to online management that can seemingly keep the inventory in check.  

4. Improving production quality and accuracy  

The L494 assembly line production quality is lower than the set expectations. Every production shift is 

set with an acceptance of 1-2 bad quality seats. However, on average, 17-23 bad quality seats have been 

produced every shift. With limited shop floor visibility, it becomes challenging for line supervisors to 

know in real-time the stations accountable for making the bad seats. There is a constant push to increase 

the shop floor visibility for managers, supervisors, and operators to improve the productivity, production 

quality, and accuracy that is currently deteriorating. It becomes challenging to enhance the quality of seats 

with no real-time indicators for quality measurement linked between test and inspections station to the 

L494 line.  

5. Increasing health and safety awareness 

In total, 245 major and minor health and safety-related incidents occurred at company X from the six 

months of data collected, of which 71 occurred at the L494 line. Company X had to spend £32 million to 

settle the disputes and maintain high health and safety standards. The challenge is always to find a way to 

improvise the existing health and safety protocol and keeping it updated.   

6. Using the latest technology  

To remain competitive, managers need to utilize the latest industry 4.0, enabling technologies such as 

IoTs, IIoTs, CCPS, AI, and cloud computing. The major challenge is how best to implement these 

technologies and necessary skills requirements to accomplish key objectives such as improving the seats' 
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efficiency and quality, reducing cost, and increasing safety. Besides, it is not enough to implement these 

technologies into the line without a strategy (collect, analyze, and find patterns).  

4.4.4 Problems  

From the data collected, the list of problems faced by operators, line supervisors, managers, and research 

and development team while working on the L494 assembly line is listed below: 

1. Due to no process visibility within the stations, the operators find it difficult to construe the time 

required to execute specific tasks within each station (refer to section 4.3). Process visibility 

essentially means knowing the time needed for each sub-process completion within the station. 

Knowing cycle time to complete each process will benefit operators in completing their work on-

time. Currently, operators are being displayed by production takt-time, which is not efficient 

enough to monitor and improve station level performance. 

2.  Inventory related problems such as missing seat cushion, faulty components such as heater head 

specification, erroneously arranged materials in the racks, etc., cause difficulties for operators in 

managing inventory.  

3. Constantly changing work shifts for operators from one station to another means that it takes time 

to familiarise themselves with new station processes.  

4. Apart from station cycle-time (as discussed above), no appropriate performance indicators are 

provided to the operators that show real-time station process cycle time, equipment availability, 

inventory, and tool management to help them compete for their dedicated task on-time.  

5. Ineffective monitoring of the workforce is seen as the major problem that the line supervisors are 

currently facing. The workforce-related problems include operators absent from their stations and 

operators not performing their job correctly. The line supervisors require indicators to help monitor 

operator performance (efficiency) in real-time and avoid production delays. Due to limited shop 

floor visibility, the supervisors cannot efficiently monitor and improve the real-time seat quality. 

The current performance indicators provided to the line supervisors and managers cannot 

effectively monitor the real-time production rate, quality, highlight bottlenecks, and operator 

efficiency, therefore, compromising on overall assembly line performance.   

4.4.5 Bottlenecks 

The production data collected from the Sorion MES database helps to identify the bottlenecks and drill 

down to investigate the bottlenecks befalling at the L494 assembly line. The data collected from the line 
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contains several parameters, for example, the average cycle time of each station, Unique Seat Identifier 

Number (USIN), seat option, Standard Jobs Per Day (SJPD), and number of Seats In Rework (SIR). A 

sample of the dataset is shown in table 25. Cycle time data related to stations 10 and 13 is not populated 

because they act as buffer stations. Buffer stations are installed to stabilize any fluctuations arising during 

the assembly line's normal working, so data related to buffer stations are not accounted for further data 

exploration.  

Table 25 Assembly line manufacturing sample data for November 2019 

Date Station average cycle time per day (seconds)  

SJPD 

 

SIR 1 2 3 4 5 6 7 8 9 11 12 

1/10 54.8 86.1 85 91.2 86.2 88 99 91 87.2 82.6 85.5 767 31 

2/10 63.6 85.5 85 89.8 91.3 78 91 78.3 86.2 87.3 78 781 04 

3/10 87.7 95.3 91 92.3 85.2 84 86 85.2 81.1 74.7 84.4 782 04 

4/10 85.6 88 91 91.2 85.5 85 78 85.3 86.1 71.3 74.6 781 05 

5/10 59.4 89.1 86 78.2 75.6 78 105 78.9 84.5 89.6 85.8 783 28 

6/10 78.7 91.3 82 85.6 74.1 74 105 85.1 85 85.8 76.1 785 08 

7/10 78.6 86.5 75 75.6 73.2 86 89 91.5 90.6 86.7 84.6 773 17 

8/10 99.3 76.5 83 90.2 78.5 89 86 78.2 90.6 74.8 75.1 771 11 

9/10 85.2 86.8 91 79.6 86.8 90 111 87.8 91.2 93.3 91.5 779 13 

10/10 88.4 90.2 74 86.1 84.5 91 91 84.5 89.2 91.5 87.1 781 10 

The takt time of 98.5 seconds is set throughout the production process, implying that every station should 

complete its operations within the set takt time. The highlighted red values in table 25 signpost the stations 

whose average cycle time is over the takt time. Station 7 is seen with four highlighted values in table 25, 

indicating that it was the main reason behind the whole assembly line delays during this production period. 

The assembly line produced two-seat models (A and B) with three sub-types/variants (sub-types 1, 2, and 

3) based on customer specifications in the recorded data timeframe. 

To understand the cause of decreased productivity and target the bottleneck stations, it is crucial to monitor 

these stations' performance individually over a given period. Box and whisker plots are used to show the 

summary of the data distribution, its variability, and its central value. These plots are the quickest way to 

ascertain whether the dataset is symmetric or skewed. Figure 22 shows that station 7 is the root cause of 

the overall decreased production line performance. The average cycle time of station seven during the 

whole period of data collection is 99.6 seconds against the set production takt time of 98.5 seconds.  
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Apart from station 7, the rest of the stations performed consistently within the takt time assigned to the 

production line. Next, the three evident outliers seen across station 5 are carefully investigated. The 

investigation realized that operators at station 5 failed to stop the process recording during the break times 

and shift change. Hence, these outliers are treated as lousy data points because they are caused due to 

human errors and unlikely to appear under normal circumstances. Note that these outliers are eliminated 

from further data processing.  

 

Figure 22 Box and whiskers plot for stations CT over a given period (01/09/2020) 

Another inference that is derived from figure 22 is that the station 3 average cycle time is 54.8 seconds. 

The station 5 average cycle time is 9.9 seconds, considerably lower than the set takt time. This 

considerable cycle time difference points towards exploring the uneven task distribution across stations. 

Table 26 gives an insight into the average day cycle time of every station for 1/10/2020, showing that the 

task distribution over different stations is non-uniform. For instance, the average cycle time for station 5 

is 16.2 seconds, followed by station 1 and station 3 with 54.8 seconds and 75.2 seconds, meaning these 

stations had the shortest cycle time compared to all other stations.  

Table 26 Average station cycle time (sec) for a day (01/10/2020) 

Station 1 2 3 4 5 6 7 8 9 11 12 

Avg. cycle time  54.8 86.1 75.2 91.2 16.2 51.9 99.6 90.1 87.2 82.6 85.5 

The next step is to drill down into station 7 to discover which seat model and its variants are the increased 

cycle time sources. By further time study data analysis, it is evident that model B with an average cycle 
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time of 101.67 seconds (4.67 seconds more than the set production takt time) is the reason behind the 

increased cycle time (as shown in figure 23 (a)). Whereas, model A with an average cycle time of about 

67.32 seconds, did not contribute to any production delays. Therefore, it is apparent that model B in station 

7 is the main reason behind the increased cycle time. In the final step, station 7 model B is further 

investigated to examine which sub-process (sub-type) is responsible for the delays. Figure 23 (b) 

represents the different model B sub-type processes carried out at station 7. Sub-type 1 process with an 

average cycle time of about 165.33 seconds is the reason behind poor model B line performance, followed 

by the sub-type 2 processes with a cycle time of about 99.1 seconds. The sub-type 3 processes averaged a 

cycle time of about 90.3 seconds, under the production takt time. 

 

Table 27 Average process cycle time for station 7 (actual vs. theoretical) 

Station 7 Actual time (sec) Theoretical time (sec) 

Main operation 

Completing the airbag installation 

 

103.6 

 

98.5 

Type 

Model A 

Model B 

 

67.5  

101.3 

 

98.5 

98.5 

Sub-type 

Sub-type 1 

Sub-type 2 

Sub-type 3  

 

165.5 

99.6 

90.2 

 

98.5 

98.5 

98.5 

Figure 23 (a) Box and whisker plot for station 7 model A and model B. (b) Box and whisker plot for station 7 model B with sub-type1,2 and 3 
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The production data study aims to spot the bottlenecks and enhance the company X seat manufacturing 

assembly line's production rate using time-study data analysis. By performing the time-study data analysis, 

it is seen that station 7 cycle time exceeds the takt time. With further drilling down, it is evident that model 

B with a cycle time of 101.67 seconds and sub-type 1 with a cycle time of 165.33 seconds is the leading 

cause of the delayed production. Due to sub-type 1, model B at station 7, the company X can produce only 

18850 seats against a set target of 19080 seats that month.  

Therefore, knowing the root causes behind the decreased production, the immediate suggestion that can 

be inferred to company X is line re-balancing, line optimization, and splitting the bottleneck process into 

sub-processes to meet the standard takt time and enhance the manufacturing process, as the best solution. 

It needs to be noted that gathering the data and identifying the bottlenecks is a continual process. Once the 

solution is suggested, it needs to be implemented and tested to confirm enhanced performance and check 

for any further possible improvements.  

4.4.6 Existing Performance Measures 

The company X's existing performance measures to monitor the L494 assembly line's performance can be 

reflected from the dashboards' snapshots shown in figures 24 and 25. The company X employs two 

different sets of KPIs, one for the supervisors and managers and another for the operators. The set of KPIs 

displayed to supervisors and managers to monitor the L494 production line's performance is takt-time, 

rework, production count, production loss ratio, and availability. These KPIs are shown in the L494 

assembly line master dashboard (figure 24). The sequence of process steps that need to be undertaken 

within the station and the takt-time KPI is displayed to the operators, as shown in figure 25. In total, five 

KPIs are used to monitor the current assembly line's performance to achieve key business objectives. The 

effectiveness of the existing KPIs can be evaluated through the proposed KPI guidelines in section 4.5. 

 

 

  



 

112 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24 L494 assembly line master dashboard- accessible by the supervisors and managers 

Figure 25 L494 assembly line master dashboard- accessible by operators 
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4.5 Assessing the Effectiveness of Existing KPIs using KPI Guidelines 

In this section, company X's list of KPIs, such as takt-time, rework, production count, production loss 

ratio, and availability, to monitor the L494 assembly line is analyzed and compared with the set business 

objectives, problems, and challenges using the proposed KPI guidelines. Each existing KPI is assessed 

separately using KPI guidelines. The assessment results are illustrated to underline the effectiveness (or 

applicability) of the existing KPIs in monitoring and improving the current assembly line performance 

from table 28 32. 

Table 28 Evaluating takt-time KPI using proposed KPI guidelines 

Information Stage 

Content stage 

Name Takt-time 

Description The rate at which a finished seat needs to be completed in order to meet customer demand 

Unit of Measure Seconds 

Range Decided based on the production time and customer demand (currently set at 90.5 seconds) 

Trend Lower, the better  

Context stage 

Timing Real-time 

Audience  Supervisor, manager 

Production 

Methodology  

Discrete, batch, continuous 

Discernment Stage 

Type Process 

Dimension Time 

Form  Leading 

Nature  Derived  

Scheming Stage 

Formula Takt-time = total available production time/ average customer demand 

Equation Total available production time, average customer demand 

Equation Variable Cycling time, blocked time, starving time, waiting for auxiliary time and  bypass time, and customer 

demand 

Origin of Data Stage 

Station PLCs, local historian, Sorion  
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Station PLC: the purpose of station level PLCs is to control station motor drives, sensors, motion detectors, etc., using an 

automated tailored control logic mechanism.  

Local historian: this is a local database that resides on the shop floor (level 1-2 according to the ISA-95 model). This local 

historian is used to collect the data from all station level PLCs (belonging to a particular assembly line) to monitor and 

control station level performances.  

Sorion: this is an MES level (level 3, according to the ISA-95 model) database used by company X to monitor and document 

the transformation of raw materials to finished seats. It collects the data from every data-driven device present on the shop 

floor to ensure effective manufacturing operations execution from start to finish.  

Assisting Technology Stage 

Motion detectors, proximity sensors 

By evaluating the takt-time KPI, it is apparent that the right audience for this KPI is supervisors and 

managers. Displaying this KPI to operators will not support the company X effectively monitoring the 

production rate because takt-time is explicit to the whole assembly line rather than the individual station. 

The operators need a performance indicator such as cycle-time specific to the station, process, and sub-

process and can help monitor and maintain station-level production rate. Nevertheless, takt-time can be 

observed in real-time, enabling the line supervisors and managers to make swift decisions. This KPI is 

process-centric. Two of company X's key business objectives, namely real-time monitoring of stations 

and improving the production rate, can be undeniably measured and monitored using this KPI at the higher 

level (supervisors and managers);. In contrast, quality aspects of the assembly line cannot be measured 

through it. Therefore, company X will benefit from displaying this KPI to supervisors and managers but 

not the operators for production monitoring and improvement.  

Table 29 Evaluating rework ratio KPI using proposed KPI guidelines 

Information Stage 

Content stage 

Name Rework ratio 

Description The rework ratio is the relationship between Rework Quantity (RQ) and Produced Quantity (PQ) 

Unit of Measure % 

Range 0-100 

Trend The lower, the better 

Context stage 

Timing On-demand, periodical, real-time 

Audience  Operator, supervisor, manager 
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Production 

Methodology  

Discrete, batch, continuous 

ER Model  

 

 

 

 

 

 

 

 

Discernment Stage 

Type Product  

Dimension Quality 

Form  Leading 

Nature  Derived 

Scheming Stage 

Formula Rework ratio = RQ / PQ 

Equation RQ, PQ 

Equation Variable Scrap quality, RQ, total PQ  

Origin of Data Stage 

Local historian, LPQS, Sorion  

LPQS: stands for Lear Production Quality System. It is responsible for storing the quality-related production information 

from the test and inspection line within the company X production facility 

Assisting Technology Stage 

Laser scanners, sensors  

By analyzing the rework ratio KPI, it is apparent that this KPI can effectively measure the seat quality in 

real-time, on-demand, and periodical. With the improvement in seat quality being one of company X's key 

business objectives, this KPI can effectively monitor and maintain the seat quality. One point to note from 

the analysis is that the rework ratio is a derived KPI, meaning that it requires quite a few equation variables 

(also known as the data) for its calculation. They make it complicated and costly (due to the technology 

used for extracting the data from the shop floor). There is a various quality associated KPIs that can 

measure the real-time seat quality using minimal equation variables and/or cost-effective technologies. 

One such example is a quality count KPI that can measure and monitor the quality of seats without 

Rework ratio Site Product 

Work centre 

Production order 

Operation 

sequence 

Area 

Work unit Produced quantity 

Rework quantity 
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involving several equation variables, unlike various other KPIs that need complex and sophisticated 

technologies to get the right equation variables. As rework ratio KPI is solely used to measure the quality 

(product-centric), the production process cannot be monitored. The ER models depict where the data can 

be obtained within the assembly line. 

Table 30 Evaluating production count KPI using proposed KPI guidelines 

Information Stage 

Content stage 

Name Production count  

Description The amount of seat produced per shift 

Unit of Measure - 

Range Decided based on the production order per shift 

Trend The higher, the better 

Context stage 

Timing On-demand, periodical, real-time  

Audience  Supervisor, manager 

Production 

Methodology  

Discrete, batch, continuous 

Discernment Stage 

Type Product 

Dimension Quantity 

Form  Leading 

Nature  Fundamental 

Scheming Stage 

Formula - 

Equation - 

Equation Variable - 

Origin of Data Stage 

Local historian, Sorion 

Assisting Technology Stage 

Motion detectors, RFID readers, scanners 

Production count KPI is displayed for computing the number of seats produced in real-time, on-demand, 

and periodically based on the user (audience) requirements. This KPI helps supervisors and managers 

know the status of seat production and aids in comparing it with the set production target. To fulfill 
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customer demands on time, it becomes critical to track the production count's status during every 

production shift/order (illustrated in section 4.4.4). As seen in table 30, this KPI's nature is fundamental, 

meaning that no other equation variables are needed to calculate it, making it the most suitable KPI for 

real-time monitoring seat production. Overall, this KPI is very beneficial for company X to monitor real-

time production performance.   

Table 31 Evaluating availability KPI using proposed KPI guidelines 

Information Stage 

Content stage 

Name Availability 

Description It is the ratio between Actual Production Time (APT) to the Planned Busy Time (PBT) 

Unit of Measure % 

Range Min: 0% 

Max: 100% 

Trend The higher, the better 

Context stage 

Timing On-demand, periodical 

Audience  Supervisor, manager 

Production 

Methodology  

Discrete, batch, continuous 

ER Model  

 

 

 

 

 

 

 

 

 

 

Discernment Stage 

Type Process 

Dimension Time 

Form  Lagging 

Availability 

Site Product 

Work centre 

Calendar 

day 
Planned 

operation time 

Production order 

Operation 

sequence 

Area 

Work unit Actual production 

time 

Operation 

calendar 
Planned unit 

busy time 
Work 

unit 
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Nature  Derived  

Scheming Stage 

Formula Availability = APT / PBT 

Equation APT, PBT 

Equation Variable AUBT, ADOT, AUPT, ADET, AUST 

Origin of Data Stage 

Sorion 

Assisting Technology Stage 

RFID reader, camera system, barcode scanners   

Availability KPI is process-centric and used to monitor the seat production rate per shift/ order, as 

highlighted in table 31. This KPI can only monitor the production rate on-demand and periodical (a lagging 

KPI); thus, it cannot make quick decisions. Supervisors and managers use availability KPI to know for 

how long the station(s) were available during the previous shift/order aiding them to identify the 

problematic station(s) and focusing on them during the next shift. This action is characterized as corrective 

because it is not applicable for determining the challenging station(s) in real-time production. Moreover, 

with the form of this KPI is derived, it cannot be used in real-time monitoring and improvement of the 

production of seats. It means that the results generated from this KPI are only available after the process 

has been ended and cannot be used by the company X to fulfill their key business objectives 

instantaneously.  

Table 32 Evaluating production loss ratio KPI using proposed KPI guidelines 

Information Stage 

Content stage 

Name Production loss ratio  

Description The production loss ratio is the relationship of quantity lost during production (PL) to the Consumed 

Material (CM) 

Unit of Measure % 

Range 0-100 

Trend The higher, the better 

Context stage 

Timing On-demand, periodical, real-time 

Audience  Supervisor, manager 

Production 

Methodology  

Batch, continuous 
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ER Model  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discernment Stage 

Type Product 

Dimension Quantity 

Form  Leading 

Nature  Derived 

Scheming Stage 

Formula Production loss ration = PL / CM 

Equation PL, CM 

Equation Variable CM, production count, production target, scrap count, good quality count 

Origin of Data Stage 

LPQS, Sorion  

Assisting Technology Stage 

Motion detectors, counters, sensors, laser scanners 

Production loss ratio KPI is used to measure the amount of material that is lost during production. This 

KPI can be monitored in real-time, periodical, and on-demand, as illustrated in table 32. With the 

production methodology applicable to batch and continuous manufacturing, this KPI cannot be used in 

discrete manufacturing (i.e., production of seats) to efficiently measure the production loss for the given 

L494 assembly line and derive useful results. The reason behind that is the nature of the process 

undertaken within this assembly line, constantly changing production orders and raw materials, making it 

difficult to calculate, analyze and interpret the results after measuring this KPI. By analyzing the 

production loss KPI from the perspective of company X’s business objectives, it was apparent that this 

KPI is not beneficial (section 4.2.2). Based on the literature review findings (section 2.4), in discrete 

manufacturing, KPIs such as scrap ratio, first-time yield, or scrap-to-rework ratio can be used if the aim 

is to measure the production loss as perceived in a given case-study.   

Production process ratio Site 
Product 

Work centre 

Production order 

Operation 

sequence 

Area 

Work unit 
Actual production 

time 

Actual order execution 

rate 
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After evaluating all the existing KPIs using the proposed KPI guidelines, the following main conclusion 

are drawn: 

1. There are no useful KPI measures currently provided to the operators, which can help them monitor 

and improve production performance and achieve the key business objectives. The takt-time KPI 

supplied to the operators does not fully help in improving actual production performance.   

2. To measure the quality of the seats assembled, a derived KPI (rework ratio) is employed when 

several other KPIs are available in the literature review, which can be straightforwardly deployed 

based on the easily accessible shop floor data cost-effective technology. Also, the rework ratio 

data is not fetched back to the operators, improving seat quality.  

3. One real-time KPI, production count, and one periodical KPI, availability, are used to measure the 

line's production rate.  

4. An inadequate KPI (production loss ratio) is currently used with zero added value to monitor the 

assembly line performance. 

4.6 Proposed KPIs 

By considering the current business objectives; understanding the challenges, problems, and bottlenecks, 

along with the conclusions drawn from the evaluation of existing KPIs using KPI guidelines, a list of KPIs 

is proposed to company X. These proposed KPIs are based on the findings of the literature review (section 

2.4), expert advice and assessments using proposed KPI guidelines in addition to dividing them based on 

the job roles. To avoid overwhelming operators, supervisors, and managers with many KPIs, only a few 

best fit KPIs for each job role is proposed. Proposing the KPIs is an iterative process. It involves finding 

similar challenges, problems, and bottlenecks within the manufacturing shop floor domain and assessing 

the proposed KPIs' effectiveness. It is evaluated using the proposed KPI guidelines. The assessment results 

proved that the proposed KPIs could effectively monitor the overall assembly line performance and help 

achieve key business objectives and address the current challenges and problems (as elucidated in section 

4.7). In a nutshell, the process for selecting proposed (suggested) KPIs for operators, supervisors, and 

managers is: 

1. Identify similar objectives, problems, and challenges from the literature review  

2. Think through the expert group  

3. Consider KPI standards guidelines 

4. Evaluate the proposed KPIs using KPI guidelines 
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The operator's proposed KPIs are cycle-time, utilization efficiency, and first-pass yield; supervisors are 

allocation efficiency, technical efficiency, and quality; for the manager, they are OEE, throughput rate, 

and scrap ratio. The combination of proposed KPIs and applicable existing KPIs gives the appropriate 

KPIs and is illustrated in table 33. From the existing KPIs, it should be noted that KPIs' production loss 

ratio is not included in table 33 because of its zero added value as concluded from section 4.5. The takt-

time KPI previously displayed to the operators is not considered as this KPI is suitable for supervisors and 

managers as the audience. It should be noted that the appropriate KPIs are focused on efficiently 

monitoring the current state of the assembly line. In case of any changes, the proposed KPIs need to be 

revised. The detailed evaluation of these KPIs is illustrated in section 4.7.  

Table 33 Appropriate KPIs based on job roles 

Appropriate KPIs Operator Supervisor Manager 

Proposed KPIs Cycle time Allocation efficiency OEE 

Utilization efficiency Quality Throughput rate 

First pass yield Technical efficiency Scrap ratio 

Existing KPIs  Production count Production count 

 Rework ratio Rework ratio  

 Availability  Availability  

 Takt-time Takt-time 

 

4.7 Assessing the Effectiveness of Proposed KPIs Employing KPI Guidelines 

To test the effectiveness of the proposed KPIs, it is evaluated using KPI guidelines. All the key KPI 

measures and elements that can help company X monitor their business objectives ingeniously, problems 

and challenges are underlined, making it evident that their implementation can improve overall shop floor 

performance and yield rewarding outcomes in the form of improved productivity and quality. To simplify 

the evaluation results, they are studied independently based on job roles. The proposed KPIs for operators 

are cycle time, utilization efficiency, and first-pass yield. The evaluation of these proposed KPIs is 

illustrated in table 34, 35, and 36.  

Currently, company X has employed takt-time KPI for the operators to monitor station performance. From 

literature, it can be established that the takt-time KPI is only useful for monitoring assembly-level 

performances, which means that company X does not have any KPI to monitor station level performances 
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during the production of seats. The proposed cycle time KPI can help monitor the station level 

performances and support the operators in knowing the exact time required to finish their sub-tasks and 

overall task completion time. Moreover, cycle time KPI is process-centric and can be displayed on-

demand, periodical, and real-time, making it convenient for the operators to identify the bottleneck 

processes in real-time within the station(s) the potential causes of the drop in production rate. The cycle 

time reports can further help the company X rethink the line balancing and scheduling procedures 

undertaken at the L494 assembly line.  

Often labor-intensive semi-automatic lines are prone to process delays arising due to several human and 

machine-related glitches. Cycle time supports identifying the error-prone processes, thus increasing the 

station's visibility, process, and/or sub-process within the given assembly line. Cycle time helps to directly 

address three out of five company objectives, such as improving production rate, real-time monitoring of 

stations, and identifying the stations' bottleneck processes.  

Table 34 Evaluating cycle time using KPI guidelines 

Information Stage 

Content stage 

Name Cycle time 

Description The total time from the beginning to the end of your process as defined by the production manager 

or customer  

Unit of Measure Seconds 

Range It depends on the manager and/ or customer 

Trend The lower, the letter 

Context stage 

Timing On-demand, periodical, real-time 

Audience  Operator, supervisor 

Production 

Methodology  

Discrete, batch, continuous  

Discernment Stage 

Type Process 

Dimension Time 

Form  Leading 

Nature  Derived  

Scheming Stage 
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Formula The average time between the completion of processes  

Equation APT, PBT, NOT, OPT, PRI 

Equation Variable AUBT, ADOT, AUPT, ADET, AUST 

Origin of Data Stage 

Station PLC, local historian  

Assisting Technology Stage 

Sensors, motion detectors, RFID, camera detectors  

The next KPI proposed to operators is utilization efficiency; it enables the operators to know the difference 

between the actual production time and actual station busy time. This KPI displays the right time for which 

the station was operating compared with the actual production time. For intermittent lines that are typically 

operated on a set takt-time basis, any interruptions caused by one or several stations can negatively affect 

the whole production rate, utilization efficiency KPI helps to highlight both the under-performing and 

over-performing stations in real-time, on-demand, and periodical, enabling the operators to know how 

their specific station is performing throughout the production of seats.  

As this KPI is process-centric, it can effectively address the key objectives, which are time-dependent. 

With the company X's current problems and challenges concerning the station, performance is reduced 

productivity. This KPI can identify the station(s) that requires an additional or reduced workforce 

compared to the existing workforce plan.  

Table 35 Evaluating utilization efficiency using KPI guidelines 

Information Stage 

Content stage 

Name Utilization efficiency 

Description The utilization efficiency is the ratio between the Actual Production Time (APT) and the Actual Unit 

Busy Time (AUBT) 

Unit of Measure % 

Range Min: 0 

Max: 100 

Trend The higher, the better 

Context stage 

Timing On-demand, periodical, real-time 

Audience  Operator, supervisor, manager 
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Production 

Methodology  

Discrete, batch, continuous 

ER Model  

 

 

 

 

 

 

 

Discernment Stage 

Type Process 

Dimension Time 

Form  Leading 

Nature  Derived 

Scheming Stage 

Formula APT / AUBT 

Equation APT, AUST, ADET, ADOT 

Equation Variable AUPT, ADET, APT, AUST 

Origin of Data Stage 

Sorion  

Assisting Technology Stage 

Sensors  

The third KPI proposed to operators is the first-pass yield as assessed in table 36. This KPI is focused on 

the quality aspect of seat production. It helps the operators know the good or bad quality of seats produced 

in real-time, on-demand, and periodical. With a consistent decrement in the quality of seats produced by 

the L494 assembly line, this KPI can assist the company X, especially operators, in familiarizing 

themselves with the quality of seats produced so that precautionary measures can be initiated to stop the 

further drop in seat quality in-time. If displayed to the operators during the production, these three 

proposed KPIs will support the company X to address key business objectives, problems, and challenges 

by monitoring the critical performance measures.  

 

Utilization 

efficiency 

Site 

Product 

Work centre 
Production order 

Operation 

sequence 

Area 

Work unit 

Actual production 

time 

Actual unit 

busy time 



 

125 
 

Table 36 Evaluating first pass yield using KPI guidelines 

Information Stage 

Content stage 

Name First pass yield 

Description It is the ratio between Good Parts (GP) and Inspected Parts (IP). 

Unit of Measure % 

Range Min: 0 

Max: 100 

Trend The higher, the better 

Context stage 

Timing On-demand, periodical, real-time 

Audience  Operator, supervisor, manager 

Production 

Methodology  

Discrete, batch 

ER Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discernment Stage 

Type Product 

Dimension Quality 

Form  Leading 

Nature  Derived 

Scheming Stage 

Formula GP / IP 

Equation GP, IP 

Equation Variable GP, IP. Q 

Origin of Data Stage 

Local historian, LPQS 

Assisting Technology Stage 

First pass yield Site 

Product 

Work centre 

Production order 

Operation 

sequence 

Area 

Work unit Good parts 

Inspected parts 
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Counters, T&I scanners 

Similarly, the proposed KPIs for supervisors and managers are assessed in table 37- 42. The aim behind 

presenting these tailor-made KPIs to supervisors and managers is to address every problem, challenge, 

highlight the bottleneck, and enable effective monitoring of L494 production performance. The 

effectiveness of these KPIs is also illustrated in table 37-42.  

Table 37 Evaluating allocation efficiency using KPI guidelines 

Information Stage 

Content stage 

Name Allocation efficiency 

Description It is the ratio between the actual allocation time of a work unit expressed as the Actual Unit Busy 

Time (AUBT) and the planned time for allocating the work unit defined as the Planned Unit Busy 

Time (PUBT) 

Note: the unit here can be referred to as equipment or station based on the user requirement.  

Unit of Measure % 

Range Min: 0 

Max: 100 

Trend The higher, the better 

Context stage 

Timing On-demand 

Audience  Operator, supervisor, manager 

Production 

Methodology  

Discrete, batch, continuous 

ER Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discernment Stage 

Allocation efficiency 

Site Product 

Work centre 

Calendar 

day 

Planned 

operation 

time 

Production order 

Operation 

sequence 

Area 

Work unit Actual unit busy 

time 

Operation 

calendar 
Planned 

unit busy 

time 
Work 

unit 
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Type Product, Process 

Dimension Time 

Form  Lagging 

Nature  Derived 

Scheming Stage 

Formula AUBT / PUBT 

Equation AUBT, ADOT, PBT 

Equation Variable APT, AUST, ADOT, PBT 

Origin of Data Stage 

Local historian  

Assisting Technology Stage 

Sensors, RFID, motion sensors 

 

Table 38 Evaluating quality using KPI guidelines 

Information Stage 

Content stage 

Name Quality 

Description The quality ratio is the relationship between the Good Quantity (GQ) and the Produced Quantity 

(PQ) 

Unit of Measure % 

Range Min: 0 

Max: 100 

Trend The higher, the better 

Context stage 

Timing On-demand, periodical, real-time 

Audience  Operator, supervisor, manager 

Production 

Methodology  

Discrete, batch, continuous 

ER Model  
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Discernment Stage 

Type Product 

Dimension Quality 

Form  Leading 

Nature  Derived 

Scheming Stage 

Formula GQ / PQ 

Equation GQ, PQ 

Equation Variable GQ, PQ 

Origin of Data Stage 

Local historian, LPQS 

Assisting Technology Stage 

Counters, T&I scanners 

 

Table 39 Evaluating scrap ratio using KPI guidelines 

Information Stage 

Content stage 

Name Scrap ratio 

Description It is the relationship between Scrap Quantity (SQ) and Produced Quantity (PQ) 

Unit of Measure % 

Range Min: 0 

Max: 100 

Trend The lower, the better 

Context stage 

Timing On-demand, periodically, real-time 

Audience  Operator, supervisor, manager 

Quality 

ratio 
Site 

Product 

Work centre 

Production 

order 

Operation 

sequence 

Area 

Work 

unit 

Produced quality 

Good quality 
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Production 

Methodology  

Discrete, batch, continuous 

ER Model  

 

 

 

 

 

 

 

 

 

 

Discernment Stage 

Type Product 

Dimension Quantity 

Form  Leading 

Nature  Derived 

Scheming Stage 

Formula SQ / PQ 

Equation SQ, PQ 

Equation Variable Q, SQ, PQ 

Origin of Data Stage 

Local historian, LPQS 

Assisting Technology Stage 

Counters, T&I scanners 

 

Table 40 Evaluating OEE using KPI guidelines 

Information Stage 

Content stage 

Name OEE 

Description It is the multiplication of availability, effectiveness, and quality  

Unit of Measure % 

Range Min: 0 

Max: 100 

Scrap ratio 

Site 

Product 

Work centre 

Production order 

Operation sequence 

Operation cluster 

Work unit Produced quantity 

Scrap quantity 
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Trend The higher, the better 

Context stage 

Timing On-demand, periodical, real-time 

Audience  Operator. supervisor, manager 

Production 

Methodology  

Discrete, batch, continuous 

ER Model  

 

 

 

 

 

 

 

 

 

 

Discernment Stage 

Type Product, process, resource  

Dimension Time, quality 

Form  Lagging 

Nature  Derived 

Scheming Stage 

Formula Availability*effectiveness*quality 

Equation APT, PBT 

Equation Variable AUBT, ADOT, AUPT, ADET, AUST 

Origin of Data Stage 

Sorion, LPQS 

Assisting Technology Stage 

Motion detectors, sensors, counters, camera detectors  

 

Table 41 Evaluating throughput using KPI guidelines 

Information Stage 

Content stage 

Name Throughput rate 

OEE 
Site 

Product 

Work centre 

Calendar 

day 
Planned 

operation time 

Production order 

Operation 

sequence 

Area 

Work unit 

Actual production time 

Operation 

calendar 

Planned unit busy time Work unit 

Produced quality 

Good quality 

Planned run time per item 
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Description It is the measure of process performance in terms of the Produced Quantity of an order (PQ) and the 

Actual Execution Time of an Order (AOET) 

Unit of Measure Seconds 

Range Min: 0 

Max: specific to production shift/order (product-centric) 

Trend The higher, the better 

Context stage 

Timing On-demand, periodical 

Audience  Supervisor, manager 

Production 

Methodology  

Discrete, batch 

ER Model  

 

 

 

 

 

 

 

 

 

Discernment Stage 

Type Product, process 

Dimension Time 

Form  Lagging 

Nature  Derived 

Scheming Stage 

Formula PQ/AOET 

Equation APT, ADET, AUST, PQ 

Equation Variable APT, ADET, AUST, PQ 

Origin of Data Stage 

Local historian, Sorion  

Assisting Technology Stage 

Counters, RFID, motion sensors  

 

Throughput rate 

Site 

Product 

Work centre 

Production order 

Operation 

sequence 

Area 

Work unit Produced quality 

Actual order execution rate 
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Table 42 Evaluating technical efficiency using KPI guidelines 

Information Stage 

Content stage 

Name Technical efficiency 

Description It is the relationship between the Actual Production Time (APT) and the sum of APT and ADET 

Unit of Measure % 

Range Min: 0% 

Max: 100% 

Trend The higher, the better 

Context stage 

Timing On-demand, periodical, real-time 

Audience  Operator, supervisor, manager 

Production 

Methodology  

Discrete, batch, continuous  

ER Model  

 

 

 

 

 

 

 

Discernment Stage 

Type Process 

Dimension Time 

Form  Leading 

Nature  Derived  

Scheming Stage 

Formula APT / (APT + ADET) 

Equation APT, PBT, NOT, OPT, PRI 

Equation Variable AUBT, ADOT, AUPT, ADET, AUST 

Origin of Data Stage 

Station PLC, local historian  

Assisting Technology Stage 

Sensors, motion detectors, RFID 

Technical efficiency Site 
Product 

Work centre 

Production order 

Operation 

sequence 

Area 

Work unit 

Actual production time 

Actual unit delay time 
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Other critical KPI measures that can be resulting by assessing the effectiveness of the proposed KPIs using 

KPI guidelines are:  

1. The ER-model illustrates data (equation variables) that is required to calculate the KPIs within the 

manufacturing facility 

2. The origin of the data stage highlights where the data can readily be available for extraction within the 

shop floor 

3. The assisting technology stage indicates the tools required to extract the data from the shop floor 

4.8 Prioritizing Key Business Objectives and Appropriate KPIs  

Prioritizing key business objectives: Using the procedure as described in section 3.4, the SMART criteria 

is applied to the key business objectives, and results are illustrated in table 43. From the results shown in 

table 43, it is evident that objective 1 has the highest total effective weight, therefore ranked top in the 

prioritization list. This means that the company X needs to focus its attention more on achieving objective 

1 before the rest because this objective fulfills all the criteria of being SMART (implicating that this 

objective can be the quickest to accomplish by company X).     

Table 43 Prioritizing key business objectives using SMART criteria calculation 

Objectives 

Effective Weight calculation 
T. eff 

Weight 
Rank 

Ex-1 Ex -2 Ex -3 Ex -4 Ex -5 Ex -6 Ex -7 Ex -8 Ex -9 Ex -10 

1 5 5 4 5 4 4 5 5 5 5 47 1 

2 4 4 4 4 3 4 4 4 3 4 38 2 

3 3 3 3 4 3 3 3 3 4 3 32 3 

4 2 3 3 3 2 2 3 2 2 3 25 4 

5 2 2 3 2 2 2 2 2 3 2 22 5 

Prioritizing KPIs: prioritizing KPIs is done by dividing KPIs based on their relevance/ significance on the 

critical business objectives. In simple words, splitting the KPIs based on the objectives and then 

implementing SMART criteria for prioritization. Since the appropriate KPIs are distributed based on the 

job roles, the separation of KPIs will also be done individually before prioritization, as illustrated in table 

44. It should be noted that objective 4 has been achieved by identifying the bottlenecks in section 4.4.5, 

and KPIs for objectives 5 is out of this research scope.    
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Table 44 Dividing KPIs based on key business objectives 

Operator Supervisor Manager 

Objective1: 

Cycle time 

Utilization efficiency 

 

Objective 1: 

Takt-time 

Availability 

Allocation efficiency  

Technical efficiency  

Objective1: 

Takt-time 

OEE 

Availability 

Throughput rate 

Objective 2: 

First pass yield 

Objective 2: 

Quality 

Rework ratio 

 

Objective 2: 

OEE 

Rework ratio 

Scrap ratio 

Objective 3: 

Cycle-time 

Utilization efficiency 

First pass yield 

 

Objective 3: 

Quality 

Production count 

Rework ratio 

Technical efficiency  

Objective 3: 

Production count 

Rework ratio 

Scrap ratio 

Throughput rate 

 

Once the KPIs are separated based on their relevance to the objectives, the next step is to implement the 

SMART criteria like the one used for prioritization of key business objectives, as shown in table 44. The 

results of implementing the SMART criteria are illustrated in table 45. 

Table 45 Prioritization of KPIs based on SMART criteria 

Operator Supervisor Manager 

1. Cycle time 

2. Utilization efficiency 

3. First pass yield 

 

1. Takt-time 

2. Availability 

3. Allocation efficiency 

4. Quality 

5. Technical efficiency  

6. Rework ratio 

7. Production count 

1. Takt-time 

2. OEE  

3. Availability 

4. Throughput rate  

5. Rework ratio 

6. Scrap ratio 

7. Production count 
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4.9 Implementation and Evaluation of Appropriate KPIs within L494 Assembly 

Line 

In this section, the implementation and evaluation of appropriate KPIs within the L494 assembly line of 

company X's manufacturing facility is elucidated. At first, the following steps are conducted for successful 

implementation.  

Step 1- Gathering required data for implementing appropriate KPIs: stage 4 (origin of data stage) and 

stage 5 (assisting technology stage) of KPI guidelines highlighting the data needed (equation variables) 

and the technology required to extract the data from the L494 assembly line is identified in section 4.8. 

Using this information, figure 26 highlights how the flow of data right from the local historian and Sorion 

databases to appropriate KPIs takes place. All the relevant PLC memory bits from the local historian and 

Sorion database are marked by dark and light grey colors in figure 26. The respective PLC data block 

helps track all of the equation variables, which are later used for calculating appropriate KPIs. 

 



 

136 
 

 

1.1-
65535

2.1-
65535

3.1-
65535

4.0 4.1 4.2
Good
Cycle

4.3 
Bad

Cycle

4.4
Cycle 
Start

4.5
Cycle 
End

4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 4.14 4.15 5.0
Block

ed

5.1
Starve

d

5.2
Waiti

ng
Aux

5.3 5.4
Auto

5.5 5.6
Manu

al
Contr
olled
Stop

5.7
Manu

al 
E-Stop

5.8
Manu

al 
Interv
ention

5.9
Tool

Chang
e

6.9 6.10 6.11 6.12 6.13 6.14 6.15 7 8 9 10 11
Tool 

Chang
ing

12 13 14
Fault 
Code

1

15
Fault 
Code 

2

16
Fault
Code 

3

17 18.0 18.1 18.2 18.3 18.4 18.5 18.6 18.7 18.8 18.9 18.10

0.1-
16553

5

2.1-
16553

5

4.1-
65535

6.1-
255

8.0-9 9.0-9 10.0-9
In 

fault

11.0-9 12 32 52
Break

64.0 64.1
By 

pass

64.2 64.3
Set up

64.4 64.5 64.6 64.7
Manu

al 
Contr
olled 
Stop

65.0 65.1 65.2 65.3 65.4 
Machi
ning 

Abort

65.5 65.6 65.7 66.0 66.1

70 71

Waiting 
Attention

Repair in 
Progress

Tool 
Change

Shutdown E-StopSetup Break Time No Comms

Cycling Starved Blocked
Waiting 

Aux
Bypass

Standard Cycle 
Time

Good Cycles

Minutes 
Scheduled

Productive 
Minutes

Time in 
Downtime

Bad Cycles

Time in Auto
Time Waiting in 

Aux Time on break

Good Units
Completed 

Parts
Bad Units

Number of Parts 
Started

Repair in Progress 
Time

Tool Change Time
Shutdown 

Time

Waiting Attention 
Time

Setup Time E-Stop Time

Time in 
Starved

Time in 
Blocked

Time in Bypass
Time in 
Cycling

Time planned for 
Downtime

Blocked 
Duration

Starved 
Duration

Quality % Good JPH Starved JPH 
Lost

Waiting Aux 
JPH Lost

Standard 
JPH

Cycling JPH Down TimeCycling Loss/
Gain

Standard 
JPH

Hourly JPH FTT %RTY %Performance 
Efficiency %

Availability 
%

C
y

c
le

 t
im

e

U
t
il
iz

a
t
io

n
 e

ff
ic

ie
n

c
y

F
ir

s
t
 p

a
s
s
 y

ie
ld

T
a

k
t-

ti
m

e

P
r
o

d
u

c
ti

o
n

 c
o

u
n

t

A
ll
o

c
a

ti
o

n
 e

ff
ic

ie
n

c
y

A
v
a

il
a
b

il
it

y

Q
u

a
li
t
y

R
e

w
o

rk
 r

a
t
io

S
c
ra

p
 r

a
ti

o

O
E

E

T
h

r
o

u
g

h
p

u
t 

r
a
t
e

E
q

u
a

ti
o

n
s

E
q

u
a

ti
o

n
 V

a
r
ia

b
le

s
K

P
Is

S
ig

n
a

l 
S

t
a

tu
s

L
o

c
a

l 
h

is
to

ri
a

n
/
S

o
r
io

n

Dark grey are local historian signals
Light grey are Sorion signals

Figure 26 local historian and Sorion to KPIs-data flow 



 

137 
 

Step 2- Displaying appropriate KPIs to the audience: three dashboards are proposed for the audiences 

(operators, supervisors, and managers) working on the L494 assembly line. The dashboard is an essential 

visualization tool that tracks, analyzes, and displays KPIs to monitor a production process's health. The 

dashboard designs are minimal and scalable, as well as easy for the audience to understand. The design of 

these dashboards displaying essential KPIs for various audiences is shown in figures 27, 28, and 29.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27 Dashboard designed for operators 

Figure 28 Dashboard designed for supervisors 
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Step 3-Recording new data: the last step in the implementation phase is to record the L494 assembly line's 

performance soon after the proposed dashboards are replaced with the existing ones. The data is set to be 

registered from 03/06/2020 to 03/09/2020. But due to the current on-going uncertainty causing by the 

Covid-19 pandemic, Company X production was drastically affected, resulting in no further approval of 

undertaking any research work from 01/07/2020 - 01/06/2021. Therefore, only a month (01/07/20) of data 

was recorded for evaluating the effectiveness of the proposed approach through the implementation of the 

proposed dashboards for the current L494 assembly line. The comparison of the assembly line 

performance is recorded in table 46.  

Table 46 Comparison of L494 assembly line performance 

Criteria  Theoretical 

performance  

Previous performance 

(01/09/2019-

01/03/2020) 

Performance recorded 

on 01/07/2020 

Seat production (per shift) 230-245 205-223 233-237 

Overall production rate (per shift) 98 83.5 91.5 

Rework seats (per shift) 1-2 17-23 7-9 

Acceptable production loss limit 

(per order) 

£200-£250 £11250-£13500 £4900-£6900 

Figure 29 Dashboard for managers 
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Percentage of orders delivered on-

time without involving additional 

resources  

100 81.7 92.5 

The requirement of extra workers 

to fulfil production order on-time 

0 2 0 

Number of breakdowns reported 

during a production shift  

0 23-25 2-3 

Number of times the stations failed 

to complete assigned operations 

with the set takt time (per 

production order) 

0 1350-1360 60-90 

Table 46 shows that with the implementation of the appropriate KPIs, the L494 assembly line performance 

is considerably elevated. For instance, the seat production rate (per shift) improved from 205-233 to 233-

237 per shift. The acceptable production loss also noticeably reduced from £11250-£13500 to £4900-

£6900, making a substantial saving of £8350-£9600 per production order. The additional workers' 

requirement to fulfill the production orders on-time was no more needed as well, as the percentage of 

production orders delivered timely increased from 81.7% to 92.5%. The number of breakdowns reported 

per production shift reduced from 23-25 to 2-3. Lastly, the number of times the stations failed to complete 

their operations within the set takt-time improved from 1350-1360 to 60-90.  

To better realize how the numerical figures mentioned in table 46 have improved by the implementation 

of the proposed dashboards with appropriate KPIs; comparisons highlighting the significant differences 

between proposed dashboard with appropriate KPIs (To-Be KPIs and dashboards) and existing KPIs 

dashboard (As-Is KPIs and dashboard) are tabulated table 47, 48 and 49. These comparisons are the 

essential points that stand out in favor of the proposed dashboard with appropriate KPIs supporting 

effectively monitoring the company X L494 assembly line performance. Table 47, 48, and 49 show these 

comparisons concerning company X objectives from the viewpoint of operators, supervisors, and 

managers, respectively.  
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Table 47 Comparisons between proposed dashboards with appropriate vs. existing KPIs dashboard- operators perspective 

Company X L494 assembly 

line objectives  

Proposed dashboard with 

appropriate KPIs (To-Be KPIs 

and dashboard) 

Existing KPIs dashboard (As-

Is KPIs and dashboard) 

Improve the current production rate to 

98% to fulfill production orders on time 

without involving additional workers 

By effectively monitoring production 

rate using the cycle time and utilization 

efficiency KPIs, the operators can spot 

the station's most complicated process, 

assisting the operators in completing 

the process and analyzing potential 

bottlenecks on time. 

For example, cycle time displays the 

production process's status in real-time, 

enabling the operators to take proactive 

measures rather than reactive measures. 

The presentation of cycle-time KPI on 

the dashboard makes the operators 

aware of the time needed to complete 

every process within the desired station 

simpler and easier to deduce. 

Utilization efficiency enables the 

operators to know the difference 

between the actual production time and 

actual station busy time. This KPI 

displays the right time for which the 

station was operating compared with 

the actual production time. For 

intermittent lines that are typically 

operated on a set takt-time basis, any 

interruptions caused by one or several 

stations can negatively affect the whole 

production rate, utilization efficiency 

KPI helps to highlight both the under-

performing and over-performing 

stations in real-time, on-demand, and 

Takt-time is the only KPI available on 

the dashboard for the operators that 

have been used by company X for 

monitoring the L494 assembly line 

performance.  

After evaluating takt-time KPI (section 

4.5), it is apparent that the right 

audience for this KPI is supervisors and 

managers. Displaying this KPI to 

operators will not support the company 

X effectively monitoring the 

production rate because takt-time is 

explicit to the whole assembly line 

rather than the individual station. 

Calculating the takt time depends on 

various internal and external factors 

beyond the control of company X. 

Having cycle time instead of takt time 

can be a better option for monitoring 

the L6494 assembly line production 

rate.  

Also, the existing dashboard presents 

information that is irrelevant for the 

operators working within different 

stations.  
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periodical, enabling the operators to 

know how their specific station is 

performing throughout the production 

of seats.   

Improvement in seat quality The first pass yield KPI is focused on 

the quality aspect of seat production. It 

helps the operators know the good or 

bad quality of seats produced in real-

time, on-demand, and periodical. With 

a consistent decrement in the quality of 

seats produced by the L494 assembly 

line, this KPI can assist the company X, 

especially operators, in familiarizing 

themselves with the quality of seats 

produced so that precautionary 

measures can be initiated to stop the 

further drop in seat quality in-time. 

There is no KPIs that can help the 

operators in monitoring the quality of 

seat produced. So, company X does not 

have any performance measures 

available for the operators to monitor 

the seat quality, thereby improving seat 

quality.  

Real-time monitoring of the stations to 

increase visibility and quick decision-

making capability 

The proposed cycle time KPI can help 

monitor the station level performances 

and support the operators in knowing 

the exact time required to finish their 

sub-tasks and overall task completion 

time. Moreover, cycle time KPI is 

process-centric and can be displayed in 

real-time, making it convenient for the 

operators to identify the bottleneck 

processes in real-time within the 

station(s) that are the potential causes 

of the drop-in production rate. 

Thus, enabling quick decision-making 

capability with increased visibility.  

Currently, there are no performance 

measures that can help company X to 

monitor the L494 assembly line 

performance to increase visibility and 

quick decision-making capability 
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Table 48 Comparisons between proposed dashboards with appropriate vs. existing KPIs dashboard- Supervisors perspective 

Company X L494 assembly 

line objectives  

Proposed dashboard with 

appropriate KPIs (To-Be KPIs 

and dashboard) 

Existing KPIs dashboard (As-

Is KPIs and dashboard) 

Improve the current production rate to 

98% to fulfill production orders on time 

without involving additional workers 

KPIs such as allocation efficiency and 

technical efficiency are proposed to the 

supervisors for effectively monitoring 

production rate. The benefits of these 

KPIs in monitoring production rates are 

illustrated in section 4.7.  

These KPIs can be displayed in real-

time, on-demand, and periodical based 

on the process. Supervisors need to 

enable them to analyze the production 

performance and take proactive 

measures in-time.  

These KPIs' information highlights the 

root causes that degrade the assembly 

line performance and help find a 

suitable solution. For example, 

technical efficiency is the effectiveness 

with which a given set of inputs is used 

to produce a seat. If the technical 

efficiency drops, it means that the 

assembly line performance is degrading 

and needs attention. 

Supervisors have four KPIs (takt-time, 

availability, production loss ratio, and 

production count) to monitor 

production performance. In section 4.5, 

only two KPIs (takt-time and 

production count) help deliver relevant 

information for real-time performance 

monitoring. The data from production 

loss ratio KPI is not applicable for seat 

assembly (discrete manufacturing). The 

reason behind that is the nature of the 

process undertaken within this 

assembly line, constantly changing 

production orders and raw materials, 

making it difficult to calculate, analyze 

and interpret the results after measuring 

this KPI. 

The availability KPI is useful for 

undertaking proactive measures as this 

KPI cannot be displayed in real-time to 

spot the production anomalies.  

Improvement in seat quality Having real-time quality information 

about the seats using quality KPI helps 

the supervisors take necessary actions 

before further degrading. The quality 

KPI displayed on the dashboard also 

allows the supervisors to locate the 

station responsible for the decline in 

seat quality.  

Rework ratio KPI can measure the seat 

quality in real-time, on-demand, and 

periodical. This KPI can effectively 

benefit them in monitoring and 

maintaining the seat quality. One point 

to note from the analysis (section 4.5) 

is that the rework ratio is a derived KPI. 

Meaning that it requires quite a few 

equation variables (also known as the 
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It helps to locate the seat defect with the 

relevant station where that process was 

undertaken. Knowing the station where 

seat defects arise enables the 

supervisors to take necessary actions to 

improve the seat quality.  

data) for its calculation, making it 

problematic and costly (due to the 

technology used for extracting the data 

from the shop floor). 

There is a various quality associated 

KPIs that can measure the real-time 

seat quality using minimal equation 

variables and/or cost-effective 

technologies. One such example is a 

quality KPI that can measure and 

monitor seats without involving several 

equation variables, unlike various other 

KPIs that need complex and 

sophisticated technologies to get the 

right equation variables. 

Real-time monitoring of the stations to 

increase visibility and quick decision-

making capability 

The proposed KPIs, such as allocation 

efficiency, technical efficiency, and 

quality, can present production line 

performance in real-time, providing 

increased visibility for the supervisors 

to achieve quick decision-making 

capability.  

All the necessary information needed 

by the supervisors to actively monitor 

every individual station in real-time is 

displayed on the dashboard to identify 

the causes of any unnecessary 

stoppages in the production and 

degrade in the seat quality.  

With the existing KPIs and dashboard, 

the company X does not have complete 

visibility of the L494 assembly line, 

and hence quick decisions cannot be 

made.  

For instance, KPI such as availability is 

a lagging KPI, meaning that the 

information obtained from this KPI 

cannot be displayed in real-time to 

make informed decisions. Whereas, 

takt-time KPI can help to show station 

performance in real-time but fails to 

track the station's process that causes 

delay offering partial visibility. 
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Table 49 Comparisons between proposed dashboards with appropriate vs. existing KPIs dashboard- managers perspective 

Company X L494 assembly 

line objectives  

Proposed dashboard with 

appropriate KPIs (To-Be KPIs 

and dashboard) 

Existing KPIs dashboard (As-

Is KPIs and dashboard) 

Improve the current production rate to 

98% to fulfill production orders on time 

without involving additional workers 

Managers are provided with OEE and 

throughput rate KPIs for monitoring the 

performance of the L494 assembly line. 

The figures displayed by these KPIs 

provide managers with invaluable data 

that can be used as a tool to improve the 

production rate and enable them to 

fulfill the production orders on time.   

Based on the class of user, bespoke 

high-level KPIs are selected and 

displayed. The managers proposed the 

KPIs to provide them with complete 

information (product, process, and 

resource) of the production line 

performance. For example, OEE KPI 

multiplicates availability, performance, 

and quality providing managers with 

complete information.  

To monitor a given L494 assembly 

line's performance and achieve the set 

objectives, company X employs the 

same set of KPIs and dashboards 

presented to the supervisors (shown in 

figure 24). 

The disadvantages of using the existing 

KPIs and dashboard is already 

mentioned in table 48; they are the 

same with the supervisors.  

Improvement in seat quality KPIs such as OEE and scrap ratio 

enable the managers to know the 

quality of seats produced in real-time, 

on-demand, and periodical.  

The dashboard further lists the top 3 

stations with seat failure, which can 

help the managers improve seat quality 

by addressing these failures. 

Real-time monitoring of the stations to 

increase visibility and quick decision-

making capability 

After assessing the deficiencies with 

the existing KPIs regarding company X 

needs, the proposed KPIs fill the gap of 

lack of information needed for real-
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time monitoring of the stations by 

providing full station level activity 

through KPIs OEE throughput rate.  

The proposed dashboard presents 

relevant information without 

overloading the managers with 

information.  

As the KPIs provided to the managers 

are high-level (demonstrating the 

company's overall performance). The 

figures displayed using these KPIs can 

help in decision-making.   

 

During the month (01/07/2020) when these KPIs were presented to the operators, the following 

bottlenecks (hindrances) were identified:  

1. Task allocations: cycle time for stations 2 and 8 theoretically calculated through task allocation for 

various seat orders (3SJXCH1, 75SSTD7, 8QWE54L, etc.) significant than the set takt-time resulting in 

overall production delays.  

2. Station wait times: high difference in task allocation resulted in few stations (station 1 and 5) always 

completing their task well within the cycle time. Station 1 and station 5 cycle time was 65.3 and 56.5 

seconds (30-40 seconds lesser than the production takt time) respectively throughout the production.  

3. Seat Quality: 89 out of 137 seat quality defects identified were due to L494X1 and L494X6 seat variants. 

With the increased visibility of the production line, these defects in the seats were due to armrest 

installation. The armrest installation process can be directly linked to stations 5 and 6, where it is 

undertaken.  

Promptly addressing these bottlenecks using line balancing techniques, the production rate was improved.  

To further understand the source of improvement in the L494 assembly line performance from the 

company X staff themselves, several operators, line supervisors, and managers were asked to reflect their 

opinions about the new dashboards displaying appropriate KPIs. Several operators mentioned the visibility 

of the operations and sub-operations within each station as the key to this improvement that helped them 
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deliver their tasks timely. The cycle time KPI played a critical role in keeping the operators informed 

about the operations' status. With the cycle time KPI, it was easier for the operators to familiarize 

themselves with the processes that need attention, time-consuming from the more manageable, and 

completes operations in the least amount of time. They further stated that the first pass yield KPI helped 

them know the standard of the produced seat, which they have never been displayed in the previous 

dashboard. It facilitated them to watch specific procedures so that several seats can be saved from further 

rework. As all the KPIs showed to operators were real-time, this was coined as one of the significant 

factors for improving overall assembly line performance.  

From the perspective of line supervisors and managers, they cited that the dashboards supported them in 

making informed and quick decisions. It displayed which stations, operations, and sub-operations were 

the root cause for overall performance decrement. The generated KPI reports helped them think and work 

on the existing line balancing and optimization techniques and modify them accordingly. The line 

supervisors were able to take preventative rather than corrective actions in breakdowns by providing 

insights into the current performance. Line supervisors also reported that the number of breakdowns had 

significantly improved after implementing new dashboards due to the increased visibility within each 

station. The line supervisors and managers agreed that the KPI reporting dashboards helped them discover 

the current assembly line's strengths and weaknesses and swiftly allocate the operator(s) based on the 

nature of operations within each station. It also helped them set new strategic plans and effectively monitor 

the current business objectives, problems, and challenges and highlight the bottlenecks.   
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CHAPTER 5 CONCLUSION AND FUTURE WORK  

 

This chapter concludes the research work reported in this thesis. A comprehensive summary of the 

research achievements and contributions are outlined, and future recommendations are stated. 

5.1 Achievements of Research Objectives  

Manufacturers are pushed to engineer highly flexible, robust, and efficient manufacturing processes to 

produce high-quality goods at a reduced cost to combat evolving challenges and attain full economic 

potential in the current industrial revolution. As a result, manufacturing industries in the present time have 

realized the significance of shop floor data analysis. They are implementing performance measurement 

systems to assess and improve the performance of their manufacturing operations continually. To quantify 

the effectiveness and efficiency of shop floor operations, this research work develops a holistic approach 

that enables manufacturers to understand, analyze, select, and implement appropriate KPIs for their shop 

floor operations assessment. Few research objectives are defined in section 1.6 of this thesis, highlighting 

this holistic approach's development. This section elucidates the achievements of those objectives.  

Objective 1: develop a manufacturing shop floor exploration model to identify the key business objectives, 

problems and challenges, crucial performance details, bottlenecks, and list of KPIs within the given 

manufacturing shop floor facility by using questionnaires and structured interviews along with shop floor 

production data. 

A detailed review of existing frameworks and models within literature and industry is presented in Chapter 

2, particularly in the manufacturing sector. A comprehensive literature on performance measurement 

assessments emphasizing these models' strengths and limitations is presented in section 2.3. From the 

assessments conducted in section 2.3, it was established that the manufacturing shop floor exploration 

model could successfully overcome the limitations of existing frameworks and models by making use of 

questionnaires, structured interviews along shop floor production data. In-depth development of 

manufacturing shop floor exploration model to identify the key business objectives, problems and 

challenges, crucial performance details, bottlenecks, and list of KPIs for manufacturing shop floor facility 

is presented in section 3.2.  
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2. Develop KPI guidelines by extracting every essential guiding performance measure needed for the 

manufacturer to understand, analyze, select, and implement appropriate KPIs. The KPI guidelines consist 

of five stages, namely: information stage, discernment stage, scheming stage, the origin of the data stage, 

and assisting technology stage. Each stage consists of measures dedicated to providing vital information 

to help manufacturers better monitor their shop floor operations and improve decision-making 

capabilities. 

A detailed review of existing KPI performance measures within the literature and manufacturing industry 

is presented in Chapter 2. Comprehensive literature highlighting KPI measures along with relevant KPI 

elements is presented in section 2.4. A level of granularity throughout the process of developing novel 

KPI guidelines that unifies every possible KPI measure alongside the elements needed for manufacturers 

to understand, analyze, select and implement appropriate KPIs within their shop floor facility is illustrated 

in section 3.3. These guidelines help to bridge the gap between industrial needs and current research.   

3. Conduct a case study on a tier 1 automotive manufacturing suppliers’ shop floor facility to evaluate the 

proposed manufacturing shop floor exploration model's effectiveness and practicality combined with the 

KPI guidelines. The case study will mainly concentrate on analyzing the usefulness of the existing KPIs 

generated from the manufacturing shop floor exploration model in monitoring the key business objectives 

using KPI guidelines.  

Chapter 4 demonstrates the detailed process of implementing the proposed methodology within Company 

X, a tier 1 automotive manufacturing suppliers’ shop floor facility in the UK. Section 4.4 outlines the 

crucial L494 performance details, key business objectives, challenges, problems, and bottlenecks because 

of applying the manufacturing shop floor exploration model. Section 4.5 evaluates the effectiveness of the 

existing KPIs using proposed KPI guidelines. The conclusions are drawn for the L494 assembly line. 

There are no beneficial KPI measures currently provided to the operators, which can help them monitor 

and improve production performance and achieve the key business objectives. The takt-time KPI supplied 

to the operators does not fully help in improving actual production performance. To measure the quality 

of the seats assembled, a derived KPI (rework ratio) is employed when several other KPIs are available in 

the literature review, which can be straightforwardly deployed based on the easily accessible shop floor 

data cost-effective technology. One real-time KPI, production count, and one periodical KPI, availability, 

are used to measure the line's production rate. An inadequate KPI (production loss ratio) is currently 

employed with zero added value to monitor line performance. 
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4. From the data collected through the manufacturing shop floor exploration model and coalescing it with 

the focused literature review on KPIs, opinions from industrial and academic experts, and evaluating it 

using KPI guidelines, a set of appropriate KPIs is suggested. The benefits of implementing the appropriate 

KPIs in the manufacturing shop floor facility is explained. 

The comprehensive evaluation of the appropriate KPIs and their possible benefits on company X's overall 

manufacturing shop floor performance improvement are discussed in sections 4.5 and 4.7. Some of the 

key benefits including real-time production and quality monitoring, tailor-made performance measures 

for operators, supervisors, and managers, early bottleneck detection, enabling proactive rather than 

reactive decision-making, and providing a cost-effective solution to deploy new performance measures. 

Section 4.9 explains the results of implementing the appropriate KPIs within the L494 assembly line; it 

also includes operators, line supervisors, and managers about the new dashboards designed to monitor 

production performance effectively.  

5. Prioritizing key business objectives and the appropriate KPIs using SMART criteria. 

Various prioritization techniques available from the literature are discussed in section 2.5. The existing 

prioritization techniques are compared depending on their scalability, easy-use, time-complexity, 

accuracy, robustness, and customer satisfaction. Based on the results generated, by comparison, SMART 

criteria were selected because each element in these criteria works together to create a goal that is sensibly 

planned, transparent, and trackable. The goal is to rank key business objectives and appropriate KPIs in 

order of their importance in improving current shop floor performance. The detailed process of prioritizing 

key business objectives and KPIs are discussed in section 3.4. The result of implementing SMART criteria 

in company X manufacturing facility is illustrated in section 4.8.  

5.2 Research Benefits  

The case study, implementation, and evaluation in Chapter 4 highlighted several benefits of adopting the 

proposed methodology. Below is an outline of these benefits. 

1. Capturing overall shop floor performance details 

By employing questionnaires, structured interviews, and shop floor production data, the manufacturing 

shop floor exploration model can capture through production information such as crucial performance 

details, key business objectives, problems, challenges, and bottlenecks. These details enable the 
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manufacturers and the person conducting the study to familiarise themselves with specific reasons for any 

decrement and/or improvement in the shop floor's current performance.  

2. Enabling the manufacturers to understand, analyze, select and implement appropriate KPIs 

The proposed KPI guidelines are presented as a step-by-step guide consisting of five stages, namely: 

information stage, discernment stage, scheming stage, the origin of the data stage, and assisting technology 

stage. Every stage consists of different measures and corresponding elements which provide indicative 

information about the KPIs. The idea behind choosing a systematic approach is to lay a strong foundation 

for understanding KPIs without overwhelming manufacturers. Moreover, to effectively address the current 

industrial needs, it is deemed necessary for the manufacturers to acquire basic (general) knowledge about 

KPIs before sequentially obtaining detailed aspects (i.e., by following different stages). The approach will 

help impart KPIs knowledge, starting from providing necessary to precise details as needed by the 

manufacturers.  

3. Evaluating the effectiveness of performance indicators 

Compared with the KPI guidelines, the manufacturing shop floor exploration model results provide 

manufacturers with the effectiveness of the existing performance indicators. For instance, KPI guidelines 

break down details of every performance indicator needed by manufacturers to confirm existing 

performance measures' applicability in achieving their key business objectives. It enables manufacturers 

to know if the existing performance indicators assist in monitoring the right performances.  

5.3 Novelty of the Research 

1. Developing a manufacturing shop floor exploration model capable of identifying key business 

objectives, problems, challenges, crucial performance details, bottlenecks, and a list of KPIs within the 

given manufacturing shop floor facility.  

2. Developing KPI guidelines for the manufacturers to understand, analyze, select, and implement 

appropriate KPIs. 

3. Combining manufacturing shop floor exploration model with KPI guidelines to determine the 

effectiveness of the proposed approaches.  



 

151 
 

5.4 Further Research 

The complete methodology of selecting appropriate KPIs and reviewing the manufacturing shop floor 

performance is a continuous process. The results, which were obtained in the current study, can be used, 

extended in future works as follows: 

1. Application of the proposed methodology to several manufacturing facilities to confirm its 

effectiveness and applicability.   

2. Development of web interface which can offer appropriate KPIs instantly without additional 

resources for research. 

3. Integration of KPI measures such as financial, health and safety, and energy-related and 

corresponding elements to KPI guidelines. 
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Appendix 2: List of manufacturing shop floor KPIs identified from the literature 

Serial no. List of Manufacturing Shop Floor KPIs 

1 Allocation Ratio 

2 Availability 

3 Average Time to Competence 

4 Blocking Time 

5 Build To Schedule 

6 Busy Time 

7 Capacity Utilization 

8 Changeover Time 

9 Corrective Maintenance Time 

10 Critical Machine Capability Index 

11 Cycle Time 

12 Defect Count 

13 Downtime 

14 Downtime in Proportion to Operating Time  

15 Emergency Stop Time 

16 Employee Available Time 

17 Employee Satisfaction with Training 

18 Employee Scheduled Time 

19 Equipment Failure Rate 

20 Equipment Unavailability, Hours per year - Planned maintenance 

21 Equipment Unavailability, Hours per year - Sustained fault 

22 Equipment Unavailability, Hours per year - Temporary fault 

23 Equipment Unavailability, Hours per year - Unplanned maintenance 

24 Faults Detected Prior to Failure 

25 First Aid Visits 

26 First Time Through 

27 First Time Yield 

28 Forecasts of Production Quantities 

29 Good Cycles Counter 

30 Idle Time 

31 Increase/decrease in Plant Downtime 

32 Industry Benchmark Performance 

33 Integration Capabilities 

34 Interaction Level Inventory 

35 Labor Performance  

36 Labor Productivity 

37 Machine Capability Index 

38 Machine Downtime 

39 Machine Modules Reuse 



 

170 
 

40 Machine Set Up Time      

41 Maintenance Backlog 

42 Maintenance Technician's Skill Level Improvement 

43 Manufacturing Uptime 

44 Mean Time Between Failure 

45 Mean Time To Repair 

46 Operating Time 

47 Order Execution Time  

48 Outage Time per Event 

49 Overall Equipment Effectiveness 

50 Overall Production Rate         

51 Overtime as a Percentage of Total Hours 

52 Percentage of Maintenance Work Orders Requiring Rework 

53 Percentage of Man-Hours used for Proactive Work 

54 Percentage of Scheduled Man-hours to Total Man-hours 

55 Percentage of Spare Manufacturing Capacity  

56 Percentage of Tasks Completed 

57 Percentage Planned vs. Emergency Maintenance Work Orders 

58 Percentage Reduction in Defect Rates 

59 Percentage Reduction in Downtime 

60 Percentage Reduction in Inventory Levels 

61 Percentage Reduction in Manufacturing Lead Times 

62 Percentage Reduction in Number of Employee Injuries 

63 Percentage Reduction in Number of Equipment Failures 

64 Perfect Order Measure 

65 Performance 

66 Personnel Work Time 

67 Planned Hours of Work vs. Actual Situation 

68 Planned Maintenance Time 

69 Planned Work to Total Work Ratio 

70 Predictive Maintenance Monitoring 

71 Preventive Maintenance Time 

72 Process Capability Index 

73 Processing Time 

74 Product/Service Usage Everyday 

75 Production Attainment 

76 Production Downtime 

77 Production Target 

78 Production Volume 

79 Productivity 

80 Project Resource Utilization 
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81 Quality 

82 Quality Improvement  

83 Quality Tracking-Six Sigma 

84 Ratio of Internal versus External Training 

85 Reduced Time to Productivity 

86 Reject Cycles Counter 

87 Repair in Progress Time 

88 Reportable Health & Safety Incidents 

89 Resource Utilization 

90 Response time to gas or water leaks 

91 Rework 

92 Right First Time 

93 Risk Analysis Ratio 

94 Schedule Variance  

95 Scheduled Production 

96 Scrap 

97 Setup Time 

98 Shutdown Time 

99 Staffing Efficiency 

100 Standard Operating Efficiency 

101 Starving Time 

101 Station Unavailability - Planned Maintenance 

102 Station Unavailability - Sustained Fault 

103 Station Unavailability - Temporary Fault 

104 Stop Time 

105 Takt Time  

106 Technical Efficiency 

107 Technology used to Execute Inventory Strategies 

108 Throughput 

109 Time on Floor to be Packed 

110 Time to Fill 

111 Tool Change Time 

112 Total Factor Productivity 

113 Training Penetration Rate 

114 Unplanned Capacity Expenditure 

115 Unscheduled Down Time 

116 Utilization 

117 Utilization Efficiency 

118 Waiting for Attention Time 

119 WIP Inventory       

120 Worker Efficiency 
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121 Workforce Stability 

122 Work-In-Process 
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Abstract—In the era of globalization, manufacturing industries 

are compelled to continuously monitor their manufacturing 

operations to maintain competitiveness. As a result, 

manufacturers have integrated several measurement models to 

inspect their manufacturing operations. These models comprise 

of a set of Key Performance Indicators (KPIs), which are 

capable to enumerate the effectiveness, competence, efficiency 

and proficiency of manufacturing operations. This paper 

presents a review of manufacturing shop floor operation KPIs 

that has been studied in the recent literature. Based on the 

reviewed literature author proposes various KPI elements such 

as: description, category, scope, formula, unit of measure, 

range, trend, mode of display, viewers and manufacturing 

approach. These elements can help manufacturers to better 

describe, classify, analyze and measure the appropriate KPIs for 

their shop floor operations. Thus, enabling manufacturers to 

accomplish and uphold great quality, increased productivity 

and throughput. 

Keywords-performance enhancement; KPIs; manufacturing 

operations KPIs and manufacturing industries 

INTRODUCTION  

The performance of equipment, process, production line 
or the whole manufacturing industry is principally measured 
in two ways: result indicators and performance indicators. 
Result indicators are used to measure the effects of the 
operations activities but ignoring the cause. While 
performance indicators are used to generate the next plan of 
action to be taken based on the results [1]. According to 
International Standard ISO 22400-1 (2014) [2] and 
International Standard ISO 22400-2 (2014) [3], KPIs plays a 
vital role in swiftly and effectively providing precise and 
detailed statistics of a whole manufacturing industry by 
equating real-time performance alongside with their nominal 
performance to accomplish set objectives. A manufacturing 
industry is composed of a number of operational areas, for 
instance manufacturing, sales, marketing and many other 
related functional areas. Based on the operational areas, 
manufacturing industries can have diverse sets of KPIs [4].  

Centred on the operational area, within the manufacturing 
industries functional hierarchy model: discrete, continuous or 
batch control of the manufacturing process is at level 1-2 [4]. 
Whereas, manufacturing operations management is at level 3 
and business planning and logistics is at level 4. Figure 1, 
illustrates the different levels of manufacturing industries 

hierarchy model. As mentioned in IEC 62264-1 [5], 
manufacturing shop floor operations can further be 
categorised into sub operations, such as: production, 
maintenance, quality, inventory and other manufacturing 
related operations. KPIs based on each of these sub operations 
can be defined independently or depending on combinations 
of these sub operations. In this paper, level 1-3 of the below 
mentioned hierarchy model, predominantly focusing on 
manufacturing shop floor operation KPIs is addressed. 

 
Functional hierarchy model [5]. 

Several manufacturing industries that uses KPIs to 
improve their shop floor operations often detracts from their 
objectives because they measure numerous KPIs, which leads 
to fading the emphasis on primary goals [6]. Also, many 
manufacturers have limited understanding about the right 
KPIs that can help them to enhance their manufacturing 
operations [7], [8]. Equally, some of the KPIs have no links 
related to objectives defined by the manufacturers, and a lot of 
them monitors one part of process not targeting other 
imperative processes [9], [10]. In a nutshell, many 
manufacturers are still struggling to find the required guiding 
KPI elements to enable design, measure and improve their 
shop floor performance. Intuiting the difficulties faced by the 
manufacturing industries, this paper presents a list of KPIs 
covering all the essentials elements required by a 
manufacturer before selecting the right KPIs for their 
manufacturing shop floor operations. 

From the set standards on manufacturing KPIs so as to 
achieve the best industry practices, the key 
determinants/elements of an ideal KPI should include: 
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description, category, scope, formula, unit of measure, range, 
trend, mode of display, viewers and manufacturing approach. 
Some of the manufacturing shop floor KPIs presented in this 
paper are shown in table I. 

TABLE I.  LIST OF MANUFACTURING SHOP FLOOR KPIS 

Allocation Ratio Production Process Ratio 
Availability Quality 
Corrective Maintenance Ratio Rework Ratio 
Cycle Time Scrap Ratio 
First Time Pass Yield Standard Jobs Per Hour 
Mean Time To Failure Setup Ratio 
Mean Time To Repair Technical Efficiency 
Overall Equipment Effectiveness Throughput Rate 
Performance Utilization Efficiency 
Production Effectiveness Worker Efficiency 
Production Loss Ratio  

 
The rest of the paper is structured as follows: literature 

review, followed by explaining the elements of KPIs. Then, 
list of KPIs is presented. Finally, conclusions are drawn. 

 LITERATURE REVIEW 

To search more on this research area, a meticulous 
exploration of the literature linked to manufacturing industries 
shop floor KPIs was conducted over longitudinal basis. This 
literature review covers materials from the last 20 years. The 
notion behind setting up this time frame is: during the initial 
literature search on manufacturing industries shop floor KPIs 
via google scholar and researchgate, it was seen that this term 
arouse and gained popularity after the year 1998 (with only 7 
publications registered during that year). Followed by 10, 11 
and 13 publications in the upcoming years 1999, 2000 and 
2001 respectively.  The literature was examined by means of 
the following electronic databases: ABI/INFORM Global, 
ACM Digital Library, British Standards Online, Engineering 
Village, IEEE Xplore Digital Library, Science Direct and 
Scopus. Moreover, University of Warwick library search was 
also conducted in order to take into account all related books 
and dissertations.  

KPIs plays an important role in assessing the effectiveness 
and efficiency of any given performance area within 
manufacturing industries. From the year 1980’s, efforts in the 
manufacturing industries and academia have headed towards 
achieving high performances in the manufacturing shop floor 
operations [11]. Research papers, that highlights commonly 
used manufacturing industries shop floor KPIs are discussed 
below: Rahman [12], calculated CT to figure out the key 
downtime causes during total productive maintenance 
practices in a semi-automated manufacturing company. These 
downtimes were considered as non-value added undertakings, 
so minimising these downtimes helped to increase 
manufacturing performance, and improve the volume of 
production. Cao et al. [13], Meidan et al. [14] and Wang et al. 
[15], considered CT vital for multi-objective optimization in a 
semiconductor manufacturing industry to reach the set 
manufacturing targets on time by reducing the downtime. 
Thus, enabling industries to maintain a competitive advantage 
in global market. In order to reduce the CT, Bayesian neural 
model, selective naïve Bayesian classifier and adaptive 

logistic regression based correlation analysis models 
respectively, were generated to predict any variations in CT.  

Lingam et al. [16], used CT to improve current production 
rate of t-shirt manufacturing in a textile industry using lean 
tools. The main focus was to decrease CT using a number of 
lean tools such as time and motion study, kaizen, failure mode 
effect analysis and value stream mapping. By doing so, the 
industry was able to save 82 seconds per product that was 20% 
reduction in CT, resulting in improved production rate along 
with increased savings. Ablad [17], worked on optimizing CT 
and UE in a multi-robot assembly cells. Working with 
multiple robots often creates collision glitches, which can be 
minimized by introducing synchronization schemes. These 
schemes has negative impact on CT and UE, and hence 
surrogate models were designed that optimises the impact and 
creates collision free environment inside assembly cells. 
Lepratti et al. [18], aimed at reducing the dynamic CT in order 
to deal with highly flexible manufacturing operations in 
automotive industries. Results proved that reducing dynamic 
CT by integrating scheduling and sequencing algorithms, 
improved the manufacturing effectiveness and material 
handling capabilities. 

Kolte et al. [19], implemented effective preventive 
maintenance scheduling to enhance A, P, Q PLR, PPR and 
OEE of leading automobile manufacturing industry. 
Enhancing these KPIs, lead to the increase in continuous 
productivity and also, attaining higher production rate. This 
further lead to decrease in the maintenance cost and helped the 
industry to survive in the highly complex market competition. 
The case study which was carried on automobile engine 
cylinder block manufacturing line proved that by 
implementing the preventive maintenance scheduling: uptime 
was incremented, MTBF was increased and average MTTR 
was convincingly reduced. Juaregui Becker et al. [20], 
developed a new OEE method coined as machining 
equipment effectiveness (MEE) that focuses on optimising A, 
P, Q and OEE to improve routing flow, frequency of orders, 
production time and stability of demands. By taking an 
example of a high-mix-low-volume manufacturing industry, 
wherein both the materials and processes are varying, this 
method was implemented and the results proved to be feasible 
and effective.  

Relkar et al. [21], analyzed the OEE of a leading 
automobile manufacturing company. By determining the 
performance of a present system, reference values were 
acquired; and then using regression analysis and various 
design experiments, ideal equation of OEE was developed. 
This equation was then used to boost the present OEE, so as 
to improve the A, P and Q of the company. Roriz et al. [22], 
demonstrated an industrial case that was concentrated on 
increasing the Q and OEE of production processes, using 
single minute exchange of die methodology. By employment 
of this methodology, the industry was able to efficiently 
organise their industry shop floor and reduce the setup time. 
Due to reduction in the setup time, the A of the machines 
increased and hence production rate significantly improved. 
Sowmya et al. [23], looked at the capacity problems in 
manufacturing industries to better A, P and OEE. The main 
emphasis was to improve utilization of resources and 
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proliferate the performance of present machines using total 
productive maintenance tools. Similarly, Baluch et al. [24], 
heightened OEE of a Malaysian palm oil mills using total 
productive maintenance techniques. As a result there was 
decrease in overall downtime, improved equipment 
performance, reduced setup time and improved workers 
performance.  

Meier et al. [25], evaluated KPIs related to planning and 
delivery of industrial services such as MTBF, UE and WE. 
This helped manufacturer to efficiently deliver the services by 
considering and managing these disruptions and uncertainties 
that causes these delays on-time.  Gonzalez et al. [26], listed 
KPIs (A, MTBF, MTTR, P, RR and TE) covering operation 
and maintenance phase for efficient wind farm operations. 
This list was based on the literature review and interviews 
with stakeholders involved within wind farm operations. It 
concluded that more in depth revisions are needed within this 
domain for implementing right KPIs in wind farms operation 
and maintenance phase. Jovan et al. [27], suggested a method 
to measure and present the execution of production objectives 
in the form of introducing production KPIs such as Q, CMR 
and FTP yield. This KPIs enabled to minimize the production 
cost and increase the production rate by minimizing downtime 
and improving product quality. 

Stylidis et al. [28], compared the manufacturing quality 
with the perceived quality and proposed an integrated quality 
framework that can improve the product quality and benefit 
customers. Similarly, Jain et al. [29] and Elzahar et al. [30], 
studied the various quality management systems practices like 
quality plan, supplier assessments and evaluations, customers 
satisfactions implemented in manufacturing industries to 
improve the product quality and benefit customers. Several 
other papers: used a various prediction methodology for 
continuous predicting CT, PLR, PPR and PE KPIs in a 
semiconductor manufacturing industry [30]. Few 
concentrated on measuring CT, MTTR, MTTF, TR and 
cycling loss KPIs to assess the impact of total productive 
maintenance practises on semi-automated manufacturing 
companies [31]. Few used selective naïve Bayesian classifier 
for continuous predicting CT in semiconductor manufacturing 
industry [32]. Heightened KPIs that are used to measure and 
monitor Q performance in oil and gas industry [33].  Showed 
how the variation of functional speeds both in material, and 
manufacturing handling processes leads to dynamic CTs, 
which enhances the system performance [34]. 

Chen et al. [35], mentioned the challenges that 
manufacturing industries are facing in measuring and deciding 
KPIs for increasing machine performance. Andrej et al. [36], 
looked after the short-term and long-term production strategic 
challenges through production KPIs. Garretson et al. [37], 
concentrated on the terminology that supports manufacturing 
process characterization and assessment. Borsos et al. [38], 
explored the relationship between the KPIs and the objectives 
set by the manufacturing industries in order to determine the 
waste in the production process. Muhammed et al. [39], cited 
few manufacturing KPIs and implemented them on multi 
robot line simulator to improve its performance from the 
results obtained by the KPIs. Iuga et al. [40], listed few shop 

floor KPIs for automotive industries based on the interviews 
conducted with various automotive manufacturers.   

Literature review also shows that KPIs are generated 
mainly based on specific type of industries and only few KPI 
sets exists based on manufacturing shop floor operations [41]–
[45]. Industrial norms for selecting, composing, defining and 
identifying a required set of KPIs for manufacturing shop 
floor operations is lacking. Every manufacturer dealing with 
same shop floor operations has their personalised KPI list that 
they are interested to evaluate, which are relatively 
inconsistent. This paper intends to club all these KPIs together 
with their elements, in order for manufacturers to understand, 
explore and consider the right KPIs to achieve their desired 
objectives. By employing the right KPIs industries can 
achieve increased production efficiency, uniform and high 
product quality and enhance their throughput. In total, more 
than 40 KPIs were determined in the above literature. But only 
21 KPIs are presented in this paper because these KPIs are 
sufficient, interrelated and covers the rest of the KPIs. For 
instance, calculating CT, covers cycling loss as well as cycling 
gain. CT is a constant value fixed for a machine, station, 
process or whole manufacturing line. So, values below the 
fixed CT gives you the cycling gain and values above the fixed 
CT gives you the cycling loss. 

ELEMENTS OF MANUFACTURING OPERATION KPIS 

These elements are based on the problems highlighted in 
the literature review as well as considering manufacturing 
industry best practices. Elements of the KPI can be divided 
into several sub classes: description, categories, scope, unit of 
measure, viewers, mode of display, range and manufacturing 
approach. Table V lists all symbols with their description used 
in calculating the KPIs. 

Description 

This section aims for describing the KPI as specific as 
possible, and must be clearly understood by everyone working 
in the manufacturing industries. Considering the International 
Standards ISO 22400-1&2 report [2], [3] and literature review 
a list of 21 KPIs have been defined, but a more specific 
definition based on manufacturing industrial operations is 
required to clearly differentiate them. Hence, table IV 
mentions this KPIs list with a clear manufacturing grounded 
description. 

Categories 

KPIs are categorised in several ways, subjected to the 
purpose of use: time, cost, quality, sustainability and 
flexibility; operations, control, maintenance, planning and 
inventory; qualitative and quantitative; product, process and 
resource; inventory, assembly and maintenance. Depending 
upon the nature of manufacturing shop floor operation and the 
set objective to be achieved, selecting the right category will 
be crucial. For example, in a packaging industry, KPIs of 
interest to operators, and supervisors are time and cost. So, 
directly monitoring those KPIs will be of interest rather than 
looking at product or inventory side of KPIs. Furthermore, 
considering product, process and resource categorisation into 
account the list of 21 KPIs mentioned in table IV can be 
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divided as shown in table II. Similarly, table III categorises the 
KPIs based on operations, control, maintenance, planning and 
inventory. 

These categories are mainly based on the area of 
manufacturing shop floor operations. So, readily finding KPIs 
that are categorized based on the manufacturers demands can 
help them to employ those sets of KPIs without being 
concerned about other KPIs. These categorization is done 
critically based on the literature surveyed. For instance, the 
research papers that are concentrated on product related KPIs 
were studied and all the list of KPIs related to this category 
were mentioned in the product related KPI list. Similarly, all 
the research papers that are focused on the resource area, were 
listed in resource category list. 

 

TABLE II.  CATEGORISATION OF KPIS BASED ON PRODUCT, PROCESS 

AND RESOURCE  

Product Process Resource 

FTP yield A AR 
Q CMR PE 

RR CT PLR 

SCR JPH PPR 
 MTTF STR 

 MTTR TE 

 OEE TR 
 P WE 

  UE 

TABLE III.  CATEGORISATION OF KPIS BASED ON OPERATIONS, 
CONTROL, MAINTENANCE, PLANNING AND INVENTORY 

Operations Control Maintenance Planning Inventory 

A  FTP yield CMR AR TR 

CT PLR MTTF PE  
JPH PPR MTTR STR  

OEE RR  TE  

P SCR  UE  
Q   WE  

TABLE IV.  LIST OF KPIS AND THEIR ELEMENTS 

KPI Description Scope Formula Unit of 

measure 

Range Trend Manufacturing 

Approach 

Viewers Mode 

of 

display 

Allocation ratio 

(AR) 

It’s the ratio between the actual busy 

times to the actual execution time for 

any manufacturing operations  

Pr, 

PO, 

Pl 

 
∑ Aubt

Auet
 

% 0-100 

(possibility 

of more 

than 100 in 

case of 

overlapping 

operations) 

Close 

to 100 

D,  

C,  

B 

S, M Pd 

Availability 

(A) 

A for a machine, station, process, or 

whole manufacturing line takes into 

account all the events that stops 

planned production 

WU 
 

Tr

Tpd
 

% 0-100 Close 

to 100 

C,  

B 

S, M Od,  

Pd 

Corrective 

maintenance 

ratio (CMR) 

CMR is used to indicate the time that 

has been spent on corrective tasks on 

the work unit 

WU 
 

Tcm

Tcm + Tpm
 

% 0-100 Close 

to 0 

D,  

C,  

B 

S, M Od,  

Pd 

Cycle time 

(CT) 

It is the total time elapsed from the 

beginning to the end of the process as 

defined by the manufacturer or user. 

CT to move a part from one station to 

another station inside the shop floor is 

calculated in the given formulae 

WU, 

WC, 

WO, 

Pr,  

Pe 

CC
y

= CD
y,Sn

− CD
y−1,Sn 

Time  Once the 

CT is 

defined its 

value 

remains 

fixed 

The 

closer 

to the 

set 

value, 

the 

better 

D,  

C,  

B 

S, M, O Rt,  

Od,  

Pd 

First time pass 

yield (FTP 

yield) 

It indicates the quality of the order 

manufactured, and is expressed as the 

percentage of good products 

manufactured by the inspected 

products 

WU, 

Pr,  

PO,  

Dt 

 
Gp

Ip
 

% 0-100 Close 

to 100 

D, 

B 

S, M, O Rt,  

Od,  

Pd 

Mean time to 

failure (MTTF) 

It is used to indicate the reliability of 

the given machine, station, process, or 

whole manufacturing line grounded on 

the basis of the know failures rates 

WU ∑ Ttf(i)
Tfi
i=1

Tfi + 1
 

Time Depends on 

the nature 

of failure 

The 

higher, 

the 

better 

D,  

C, 

B 

S, M Od,  

Pd 

Mean time to 

repair (MTTR) 

It is used to show how quickly a 

machine, station, process, or whole 

manufacturing line can be restored 

after occurrence of an failure 

WU 
 
∑ Ttr(i)

Ttfi

i=1

Ttfi
+ 1

 
Time Depends on 

the nature 

of failure 

The 

higher, 

the 

better 

D,  

C,  

B 

S, M Od,  

Pd 

Overall 

equipment 

effectiveness 

(OEE) 

OEE is multiplication of A, P and Q. It 

gives the difference between the 

theoretical calculated production 

capacity to the actual production 

capacity of a manufacturing process 

WU, 

Pr,  

Dt 

A × P × Q 

 

% 0-100 Close 

to 100 

C,  

B 

S, M Od,  

Pd 

Performance 

(P) 

P takes into account whatever causes 

the manufacturing process to operate 

at less than the maximum possible 

WU, 

Pr,  

Pl, 

Tcd

Tad
 

 

% 0-100 Close 

to 100 

C,  

B 

S, M, O Rt,  

Od,  

Pd 
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operating speed. In other words, it 

shows how efficiently a manufacturing 

process is performing under the 

influence of disturbances (slow cycles 

and small stops). 

TP 

Production 

effectiveness 

(PE) 

The ability of the manufacturing 

system to produce the highest number 

of good parts (units) by consuming 

least amount of resources. It helps to 

find the symmetry between the rate of 

production and the quality of parts 

being manufactured.  

WU, 

WC, 

TP,Pr, 

Dt, Pl 

P̂c ∗ bop

bP
 

% 0-100 The 

higher, 

the 

better 

D, 

B 

S, M Od,  

Pd 

Production loss 

ratio (PLR) 

It is used to indicate the amount of 

quantity lost during production 

WU, 

Dt 

Qlp

Qm
 

% 0-100 The 

higher, 

the 

better 

C, 

B 

S, M Rt,  

Od,  

Pd 

Production 

process ratio 

(PPR)  

It is generally used to depict the 

efficiency of manufacturing 

production. It is expressed as the ratio 

of actual production time to the actual 

order execution time.  

Pr,  

PO,  

Pl 

 
∑ Apt

Aoet
 

% 0-100 Close 

to 100 

D,  

C,  

B 

S, M Od,  

Pd 

Quality (Q) Q is evaluated as the number of good 

pieces or products produced (pieces 

that passes quality and inspection test) 

to the total of pieces produced 

WU, 

WC, 

Pr, 

TP,  

Dt, Pl 

ρp − ρd

ρp
 % 0-100 Close 

to 100 

D,  

C, 

B 

S, M, O Od,  

Pd 

Rework ratio 

(RR) 

RR is used to indicate the quality that 

has not passed the quality and 

inspection test 

WU, 

Pr, 

PO, 

Dt 

 
RQ

PQ
 

% 0-100 Close 

to 0 

D,  

C,  

B 

S, M Rt,  

Od,  

Pd 

Scrap ratio 

(SCR) 

It is relationship between the scrap 

quality and the produced quality   

WU, 

Pr, 

PO, 

Dt 

 
SQ

PQ
 

% 0-100 Close 

to 0 

D,  

C,  

B 

S, M Rt,  

Od,  

Pd 

Setup ratio 

(STR) 

It identifies the proportion of time used 

for arrangement or setting up of a 

system equated to the actual time used 

for processing  

WU, 

Pr,  

PO 

 
Aust

Aupt
 

% 0-100 Close 

to 0 

D,  

C,  

B 

S, M Od,  

Pd 

Standard jobs 

per hour (JPH) 

It is used to indicate the number of jobs 

executed per hour, against the 

standards jobs 

 

WU, 

WC, 

Pr,  

Pe,  

TP 

3600

Cst

∗ units per  
cycle 

Units/Time Depends on 

the type of 

operation 

The 

closer 

to the 

set 

value, 

the 

better 

D,  

C, 

B 

S, M Od,  

Pd 

Technical 

efficiency (TE) 

It is calculated for a work unit. It is the 

ratio between actual production time to 

the actual production time and sum of 

all the malfunctions and delays that 

caused disruptions 

WU Apt

Apt + Adt
 

% 0-100 Close 

to 100 

D,  

C,  

B 

S, M, O Rt,  

Od,  

Pd 

Throughput 

rate (TR) 

It is used to indicate the efficiency of 

the processes; and is expressed in 

terms of produced quantity of an order 

to the actual order completion time 

Pr, 

PO,  

Pl 

 
Pq

Aoet
 

Quantity/Time Once the 

TR is 

defined its 

value 

remains 

fixed 

The 

closer 

to the 

set 

value, 

the 

better 

D,  

B 

S, M Od,  

Pd 

Utilization 

efficiency (UE) 

It’s an indicator that detects the 

productivity of the operational work 

units, and is identified as the ratio 

between actual manufacturing time to 

the actual busy time 

WU 
 
Aumt

Aubt
 

% 0-100 Close 

to 100 

D,  

C,  

B 

S, M, O Rt,  

Od,  

Pd 

Worker 

efficiency 

(WE) 

It’s the ratio between the actual worker 

operating time to the actual worker 

attendance time related to the 

manufacturing orders 

W, 

WG, 

WU 

 
Awot

Awat
 

% 0-100 Close 

to 100 

D,  

C,  

B 

S, M Pd 

WU- Work Unit, WC- Work Centre, WO- Work Order, W- Worker, WG- Work Group, Pr- Product, Pe- Personnel, Pl- Plant, PO- Production Order, Dt- 
Defect types, TP- Time Period, D- Discrete, C- Continuous, B- Batch, S- Supervisor, M- Manager, O- Operator, Rt- Real-time, Od- On-demand, Pd- Periodical 
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Scope and Unit of Measure 

In general, scope is used to identify the part for which the 
KPI is most applicable in the manufacturing industry. For 
instance, product, worker, work centre (corresponds to 
production unit, process cell, storage zone or production line), 
work order or work unit. The unit of measure of KPIs can be 
any of following: rate, ratio, efficiency, utilisation, capability 
index and effectiveness (refer table IV). Based on the formula 
used to calculate the KPI, the unit of measurement changes. 
For example, unit of measure to calculate A is ratio. Whereas, 
unit of measure to calculate MTTR is utilization.  

Viewers  

It is imperative to know the viewers for whom the KPIs 
are being designed. Typically, KPIs are generated for: shop 
floor workers, supervisors and managers. Based on the type of 
viewer, the KPI list is designed (refer table IV). For example, 
PE will be helpful for manger and supervisor to make future 
decisions. While, for the workers PE would produce nothing 
fruitful. 

Mode of Display, Range and Manufacturing Approach 

Frequency with which KPIs has to be displayed to 
generate useful information is vital. For instance, displaying 
the KPIs for a process, station or the whole manufacturing line 
depends on the nature of the manufacturing operations. 
Therefore, KPIs that have severe impact on the manufacturing 
operations are often displayed in real-time. Typically, KPIs 
are displayed in: real-time, on-demand or periodically (refer 
table IV). For instance, Q KPI are often displayed on-demand 
or periodical. Whereas, CT KPI is displayed in real-time, on-
demand and periodical.  

From the industry best practices, it is recommended that 
before obtaining the KPI results, one must know the range of 
the KPI (upper bound and lower bound). Without prior 
understanding of the KPI outcome, the resulted value would 
just be a number. So, understanding the range is important in 
order to enhance the manufacturing performance. Lastly, 
manufacturing approach identifies the method of 
manufacturing operation for which the KPI is largely related: 
discrete, continuous or batch (refer table III). 

TABLE V.  LIST OF SYMBOLS USED TO CALCULATE MANUFACTURING 

SHOP FLOOR KPIS 

Symbol Description 

𝐴𝑑𝑡 actual delay time 

𝐴𝑝𝑡 actual production time 

𝐴𝑜𝑒𝑡 actual order execution time 

𝐴𝑢𝑏𝑡 actual unit busy time 

𝐴𝑢𝑒𝑡 actual unit execution time 

𝐴𝑢𝑚𝑡 actual unit manufacturing time 

𝐴𝑢𝑝𝑡 actual unit processing time 

𝐴𝑢𝑠𝑡 actual unit setup time 

𝐴𝑤𝑜𝑡 actual worker operating time 

𝐴𝑤𝑎𝑡 actual worker attendance time 

𝑏𝑜𝑝 overall parts produced in the batch 

𝑏𝑃 amount of time required in producing the batch 

 𝐶𝐶
𝑦
 CT of part y 

𝐶𝐷
𝑦,𝑆𝑛 departure timestamp of part y at station 𝑆𝑛 

𝐶𝐷
𝑦−1,𝑆𝑛 departure timestamp of part y-1 at station 𝑆𝑛. 

𝐶𝑠𝑡 standard CT 

𝑓𝑖 failure period end time 

𝐺𝑝 number of good parts 

𝐼𝑝 number of inspected parts 

𝑃̂𝑐  predicted cycle-time between the completed parts 

𝑃𝑄 produced quality 

𝑄𝑙𝑝 quantity lost during production 

𝑄𝑚 quantity consumed during production 

𝑅𝑄 rework quality 

𝑆𝑄 scrap quality  

𝑇𝑎𝑑 actual production time 

𝑇𝑐𝑑 calculated production time 

𝑇𝑐𝑚 total corrective maintenance time 

𝑇𝑝𝑑 planned production time 

𝑇𝑝𝑚 total planned maintenance time 

𝑇𝑟 run time (machine, station, process, or whole 

manufacturing line) 

𝑇𝑡𝑓 total time in failure 

𝑇𝑡𝑟 total time in repair 

𝜌𝑝 total production parts 

𝜌𝑑 defect parts 

CONCLUSIONS 

In this paper, a list of manufacturing shop floor operation 
KPIs were congregated based on the literature review. This 
literature review covered the most recent research articles and 
white papers; whose interest was to enhance the performance 
of manufacturing shop floor operations. Later, few challenges 
faced by the manufacturers related to selecting the right KPI 
for their shop floor operations were discussed. A list of KPIs 
with their detailed elements: such as description, categories, 
scope, unit of measure, viewers, mode of display, range and 
manufacturing approach were discussed. This list can help 
manufacturers to better describe, classify, analyze and 
measure the appropriate KPIs for their shop floor operations. 
Because, it clearly states every single details (KPI elements) 
about manufacturing shop floor KPIs. Thus enabling the 
manufacturers to accomplish and uphold great quality, 
increased productivity and throughput, with adequate 
flexibility, rapid response and negligible downtime. However, 
the research remains open for further exploration with the 
purpose of understanding manufacturing shop floor KPIs 
clearly.   
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Abstract— Within the complex and competitive automotive 

manufacturing industry, manufacturing Cycle Time (CT) 

remains one of the Key Performance Indicators (KPIs). Its 

reduction is of strategic importance as it contributes to time-to-

market shortening, faster bottleneck detection, achieving 

throughput targets and improving production-resource 

scheduling. This paper presents a case study on CT analysis for 

early stage identification of the bottleneck stations and the 

processes in a manual assembly line that is responsible for 

increased manufacturing CT. The case study is conducted on an 

automotive seat manufacturing plant in the UK. For detailed CT 

analysis, CT of each station is recorded. Results of the case study 

shows that bottlenecks identification at an early stage can 

significantly enhance the overall performance of the production 

line. 

Keywords— automotive industry, cycle time and production 

line 

INTRODUCTION 

In automotive industry, there is a constant pressure to 
reduce CT and maintain required production takt time. 
Manufacturing CT can be defined as the time required to 
complete one cycle of manufacturing operation(s) at a station 
level to produce a product. Whereas, takt time refers to the 
frequency of a product that must be produced to meet 
customers’ demand. Takt time can be typically split into CT, 
waiting time, idle time and starved time. Measuring CT of a 
manufacturing processes is critical to manufacturers; so as to 
evaluate job execution rate at a station level. CT of a typical 
manufacturing process is reliant upon various factors that 
include: product mix, components used, machinery involved, 
inventory, scheduling practices and process technology. Due 
to high complexity and constant change in these factors, its 
challenging to conduct comprehensive production analysis for 
CT reduction [1]. 

 Simulation software are extensively used for carrying out 
comprehensive CT exploration but a number of issues impede 
their everyday use.  For instance, with more than 65 
commercial simulation software’s available in the market, 
manufacturers finds it challenging to choose an appropriate 
software that fits their requirement. Additionally, due to 
absence of strong simulation standards or languages it 
becomes difficult for manufacturers to maintain these 
software’s and requires additional simulation specialists for 
their support [2]. When a model is developed using these 
simulation software’s for CT analysis, it may take from 
several hours and numerous repetitions to find out optimal 
solution to reduce CT [3]. The data fed into simulation models 
is mostly based on assumptions made during the design stage. 

The actual assembly process time is often different than the 
predicted by simulation. As a result, time-study statistical 
techniques are readily adopted by the manufacturers as a 
complementary solution to simulation software to help in 
reduction of manufacturing CT [4].  

KPIs of a production line can be measured in two ways: 
online or real-time KPIs and offline KPIs. Online KPIs are 
used to report the status and performance of a production line. 
Offline KPIs are used to report the performance of a 
production line based on historical data. Online KPIs are used 
by operators as well as managers to make quick judgements 
on how to improve their current performance by rectifying 
problems straightaway. Offline reports are typically used by 
managers to assess the performance, identify problems and 
make necessary plans to avoid such problems in the future. 
Offline reports give an opportunity to compare historical data 
from various perspectives. This paper will be focusing on both 
online and offline KPI monitoring as the combination of both 
is significantly beneficial to identify problems and put 
necessary plans in place to resolve them.  

Manufacturing of seats is usually characterized by linear 
sequence of operations which means the sequence of 
operations remains the same (typically increasing or 
decreasing by a known common difference). Due to this 
linearity, if any operation fails or delays, it effects the whole 
manufacturing process. The paper is aimed at identifying the 
stations that are responsible for causing the delays in the seat 
production, and then drilling down to investigate the processes 
that are responsible for the delays. Since, the line is 
characterized as linear sequential, the takt time plays a critical 
role in measuring the line performance [5], [6]. Takt time is 
calculated based on the available time divided by the demand 
(per production order or shift) [7]. Factors such as premature 
purchasing of raw materials; retrieval and storage of goods; 
and other cost related issues; which are encountered in 
producing ahead of demand can be totally eliminated by 
producing on demand.  

Takt time is assigned for the whole production line and its 
value is decided based on the processes breakdown between 
each stations. Therefore, measuring and keeping up with the 
takt time is of great importance within automotive 
manufacturing industries [8]. Failing to keep up with the takt 
time results in reduced productivity, increased time-to-market 
and has negative impact on the overall manufacturing 
performance. The case study presented in this paper focuses 
on addressing the challenges faced by Company X in 
maintaining its takt time during production.  
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The methodology presented in the paper identifies the root 
causes of the increased manufacturing CT through step by step 
drill down approach. It aims to provide the specific process 
within the processes which is responsible for increased CT. 
The paper is organized as follows: section II presents literature 
review, section III gives an overview of the company X, its 
product process flow, problems with their existing assembly 
line and the structure of current assembly line data. Section IV 
describes the methodology adopted to tackle the existing 
problems in the company X. Section V provides the 
conclusion. 

LITERATURE REVIEW 

In the era of fourth industrial revolution, it is critical for 
the manufacturers to live up to on-time customers’ demands 
and ensure customers satisfaction. Hence, manufacturers are 
constantly finding ways to reduce the CT of the manufacturing 
processes with increased performance and productivity of the 
whole manufacturing plant, along with maintaining high 
standards of product quality [9]. In a highly complex 
automotive industry, reducing CT is of great importance, since 
it contributes to faster fault detection, time-to-market 
shortening and realizing throughput targets [10]. There are 
numerous methods, tools and techniques developed to tackle 
CT related problems. A few of them are listed below: Sada et 
al. [11], used a simple spreadsheet technique to decrease CT 
in a semiconductor fabrication plant. The spread sheet is used 
to compare the theoretical CT with actual CT for each process 
involved in the fabrication. This comparison is done to detect 
the bottleneck process and by doing so the CT is improved by 
24%.  

Silva et al. [12], adopted statistical analysis to record every 
moments of parts throughout the IBM’s multi-layer ceramics 
line. The purpose is to find all the meaningful dimensions that 
can allow to detect and round CT glitches. By implementing 
statistical analysis, IBM’s microelectronic production line 
saw an improvement of 15% in overall CT. Yih-yi et al. [13], 
designed an algorithm that is used to find the shortest CT for 
the production process in semiconductor fabrication industry. 
The algorithm is based on the where-to-dispatch and what-to-
dispatch mechanism. This mechanism is grounded on 
calculating minimal waiting time and transportation time, by 
embedding this mechanism it is evidenced to reduce 32.5% 
waiting time in the current semiconductor manufacturing 
industry. Chung-Jen et al. [14], proposed an Manufacturing 
Intelligence (MI) method to exploit the value of production 
data to reduce CT. The MI is based on neural networks that 
predicts the Work In Process (WIP) for CT reduction. To 
verify the method, it is tested in an integrated device 
manufacturer production line in Taiwan and the result is 
considerable improvement in CT.  

Tamas et al. [15], proposed a dynamic CT setting 
algorithm to improve CT of an industrial open station 
conveyor. The algorithm is developed taking into account the 
complexity of the production process and product variability. 
Indoor positioning system along with smart wireless sensors 
were installed to track and record each movement of 
production to figure out bottlenecks and improve CT. David 
et al. [16], used ManSim/X manufacturing line simulator to 
examine the effect on CT by varying the percentage of 
different products on the semiconductor production line. The 
results proved that factors such as process complexity, 
operator availability, production rate and factory shut downs 
effected the CT. However, these results were limited to the 

given production line. Dharun et al. [17], worked on reducing 
CT of a T-shirt manufacturing plant. By employing several 
lean tools, namely: failure mode effect analysis, time and 
motion study, kaizen and value stream mapping, the plant 
overall CT is reduced to 20%. 

Lerdlekha [5], adopted standard time analysis to reduce 
CT in wood product manufacturing industry. By comparing 
the standard times of assembling and polishing required for 
the manufacturing of the product with the set takt time, 
production capacity is increased from 560 units/month to 1200 
units/month. Dinesh et al. [18], proposed a vendor 
rationalization strategy for streamlining the supplies to reduce 
manufacturing CT in an engineer-to-order Indian company. 
Kraljic’s matrix-based model is implemented which reduced 
the manufacturing CT of feeder hopper from 43 days to 21 
days. Similarly, various research articles discussed the CT 
related problems and suggested possible solutions to 
efficiently tackle it [19]–[21].  

From the intensive literature review it is apparent that 
solutions pertaining to CT were resolved either using time-
study analysis or developing simulations models. Papers 
which were based on deploying simulation models for CT 
reduction mainly discussed about the difficulties in 
understanding software language, suffered with number of 
software glitches and consumed ample time for generating, 
testing and implementing those models. Moreover, most of 
these articles were specific to a particular production line or 
manufacturing plant where the case study is carried out. For a 
seat manufacturing industry that develops highly customized 
products, developing, training, testing and implementing these 
simulations models can be time consuming. So, manufacturers 
are finding complementary solutions that can monitor their 
production performance before these models are generated. 
Plus, due to constantly changing customer demands, models 
developed with the help of simulation software’s becomes 
redundant sooner and requires constant redevelopment.  

Likewise, all the aforementioned research papers 
concluded by mentioning the bottleneck equipment, station or 
line responsible for the decreased manufacturing productivity 
and poor performance of the production plant. Bottleneck in 
manufacturing process perspective is identified by 
determining maximum CT in the production line. For 
example, if the maximum CT of a station is greater than the 
takt time, then the customers’ demands are not fulfilled and 
vice-versa. They failed to mention precisely which process is 
the reason behind the poor throughput of the equipment, 
station or production line. Knowing the exact process could 
have benefitted the production line operators, engineers, 
supervisors as well as the managers to rethink on that 
particular process not the whole processes involved.  

The purpose of identifying the exact process is critical to 
improve and enhance manufacturing efforts. For example, 
within a given station depending on the task distribution, 
station has to execute several processes. In case of CT related 
issues, not every process is the reason for poor line 
performance. So, identifying the specific process becomes 
vital for the manufacturer to better understand the definite 
cause and develop a solution to minimize the cause of 
increased CT. Company X where the case study is performed 
comprises of sequential assembly lines consisting of various 
operating stations. Maintaining takt time for sequential 
assembly lines are crucial for the manufacturers because a 
delay at any station can stop the whole assembly line leading 
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to reduced productivity and effecting the overall production 
performance. So it is important to maintain with the takt time 
assigned to the production process. As a result it becomes 
increasingly important to specifically mention the exact 
process causing the CT delays. 

CASE STUDY 

The time-study data analysis presented in this case study 
is conducted on the data obtained from the company X final 
assembly line. To scrutinise the cause of poor production line 
CTs, step by step drill down is performed to specify the 
precise origin of the cause, i.e., the sub-process within the 
process. Based on the findings of time-study data, a number 
of solutions are suggested that can enhance the production 
performance. In this section, background of the company X, 
its product process flow and the problem faced by their 
existing production line is discussed.  

Company background 

The evolution of automotive products towards 
electrification and autonomy combined with data analytics is 
driving the development of innovative car components. Seats 
is one of the most complex components in a car that must 
integrate complex electronics systems to create safer, more 
connected and adaptable products built from advanced 
lightweight and sustainable materials. Company X UK is 
leading the smart manufacturing initiative for company X 
globally, which deals with car seat manufacturing. Company 
X’s manufacturing UK employs 200 staff and 2000 workers 
across three UK plants. It manufactures seats for various cars 
brands, with its major customer being Jaguar Land Rover 
(JLR). In company X, every component that is required to 
manufacture a seat is pre-assembled in sub-assembly lines and 
final seat is primed in assembly lines within their 
manufacturing plants. Figure 1, is a block diagram 
representation of an assembly line with a list of key inputs and 
output. The inputs to the assembly line are fetched from the 
sub-assembly lines; and inputs to this sub-assembly lines are 
the raw materials based on the seat requirements. 

 

 

 

 

 

 

Snapshot of a assembly line with list of inputs and output 

Product Process Flow 

To produce a seat in this company it has to go through a 
final assembly line, which consist of thirteen stations 
excluding those stations which are dedicated for test and 
inspection operations and further rework. Each station 
involves human for process undertaking; machines for 
material handling; conveyors for continuous movement of 
production operations and buffers to link stations. This 
assembly line is typically an intermittent line that does not 
produce identical products due to highly customised and huge 
variety of seat options. Intermittent assembly lines are 
primarily know for facilitating quick assembly of comparable 
parts while leaving the room for customization. Every station 

in this assembly line has different process to undertake based 
on the customers requirement.  

Due to high complexity involved in manufacturing, the 
operations carried out at the stations are mostly manual and 
varies with every seat based on its specifications. Various 
operations that takes place at different stations are mentioned 
in table I. Every seat that is manufactured includes various seat 
features, such as: model number, drive type, model year, 
country name, carpet type, rear frame type, heater type, 
articulation type, screen type, speakers type, armrest type, 
lumbar type, headrest type and foot-well lamp type. In 
addition, customers can also select the colour of the seat 
features. Figure 2 represents the layout of the company X, 
where ‘A’ denotes subassemblies, ‘B’ denotes final assembly 
line, ‘C’ denotes test and inspection line and ‘D’ denotes 
rework line. 

It is necessary to inspect the reasons behind the reduced 
productivity of seats. As a result, to understand and investigate 
the bottlenecks and constraints within the final assembly line, 
time-study data exploration is conducted. 

 

 
Company X manufacturing plant layout 

OPERATIONS CARRIED OUT AT VARIOUS STATIONS IN THE FINAL ASSEMBLY 

LINE 

Station Process 

1 placing and handling cushion finesse 

2 setting up squab frame with cushion finesse 

3 fixing marriage bolts on the cushion finesse 

4 fixing marriage bolts on the squab trim 

5 installing heaters and its connections 

6 placing airbags and its components 

7 completing the airbag installation 

8 mounting the valance fit with its required components 

9 completing the valance fixings 

10 buffer station 

11 
fixing headrest, backboard and other necessary 

components 

12 installing switch-pack and foot-well lamp 

13 buffer station 

Problems with the existing assembly line 

The major problems faced by this company in the final 
assembly line are abrupt increase in the station CTs leading to 
reduced standard Job Per Hour (JPH); reduced productivity; 
increased blocked and starved time for various stations and 

Headrest 

Final finished 

seat 

Cushion finesse 

Squab frame     

   Carpet 

Armrest 

Heater 

Screen 
Assembly  

A 

A 

A 

B C 
D 
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poor Overall Equipment Effectiveness (OEE). The JPH for the 
line at full capacity is set at 98 seats but due to increased CTs, 
the JPH is reduced to 96 seats. To understand the root causes 
of reduced JPH, this study aims to analyze CT of the 
manufacturing processes of all stations.  

The required CT data is recorded from the final assembly 
line starting from 1st July 2018 up to 30th July 2018. The 
production window (shift hours) is set to 8 hours per day 
excluding the operators break times. The data collected from 
the line contains several parameters, for example: average CT 
of each station, Unique Seat Identifier Number (USIN), seat 
option, Standard Jobs Per Day (SJPD) and number of Seats In 
Rework (SIR). A sample of the dataset is shown in table II.  

CT data related to station 10 and 13 is not populated 
because these are buffer stations. Buffer stations are installed 
to stabilize any fluctuations arising during normal working of 
assembly line, so data related to buffer stations are not 
accounted for further data exploration. The takt time of 98.5 
seconds is set throughout the production process, implicating 
that every station should complete its operations within the set 
takt time. The highlighted red values in table II signposts the 
stations whose average CT is over the takt time. Station 7 is 
seen with 4 highlighted values in table II indicating the main 
reason behind the whole assembly line delays during that 
production period.  

ASSEMBLY LINE MANUFACTURING SAMPLE DATA FOR JULY 2018  

Date Station average CT per day (seconds)  

SJP

D 

 

SI

R 
1 2 3 4 5 6 7 8 9 11 12 

1/10 54.

8 

86.

1 

8

5 

91.

2 

86.

2 

8

8 

99 91 87.

2 

82.

6 

85.

5 

767 31 

2/10 63.

6 

85.

5 

8

5 

89.

8 

91.

3 

7

8 

91 78.

3 

86.

2 

87.

3 

78 781 04 

3/10 87.

7 

95.

3 

9

1 

92.

3 

85.

2 

8

4 

86 85.

2 

81.

1 

74.

7 

84.

4 

782 04 

4/10 85.

6 

88 9

1 

91.

2 

85.

5 

8

5 

78 85.

3 

86.

1 

71.

3 

74.

6 

781 05 

5/10 59.

4 

89.

1 

8

6 

78.

2 

75.

6 

7

8 

10

5 

78.

9 

84.

5 

89.

6 

85.

8 

783 28 

6/10 78.

7 

91.

3 

8

2 

85.

6 

74.

1 

7

4 

10

5 

85.

1 

85 85.

8 

76.

1 

785 08 

7/10 78.

6 
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5 

7

5 

75.

6 

73.

2 

8

6 

89 91.

5 
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6 
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7 

84.

6 

773 17 

8/10 99.

3 
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5 

8

3 
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2 

78.

5 

8

9 

86 78.

2 
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6 

74.

8 

75.

1 

771 11 
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2 

86.

8 

9

1 

79.

6 
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8 

9

0 

11

1 

87.

8 

91.

2 

93.

3 

91.

5 

779 13 

10/1

0 

88.

4 
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2 

7

4 

86.

1 

84.

5 

9

1 

91 84.

5 

89.

2 

91.

5 

87.

1 

781 10 

In the recorded data timeframe, the assembly line 
produced 2 seat models (model A and model B) with 3 sub-
types/variants (sub-type 1, sub-type 2 and sub-type 3) based 
on customer specifications. The rate of seat production is 
setup at 785 seats per day (SJPD-785) with no more than 5 
seats in rework (per day). The number of operators required 
for the whole assembly line is 26 for the final assembly line. 
Two operators are required per station, each operator dealing 
with different type of seat, namely, right hand seat and left 
hand seat. The total number of seats that are manufactured 
during the given time period is 18850 against set target of 
19080 seats; which means that the assembly line is running 
short of 230 seats during that month. 

METHODOLOGY 

Once the order is received, according to build to sequence 
operators starts gathering the required raw material needed to 
fulfil the order from their warehouse. The raw material then 
gets pre-assembled in the sub-assembly lines. The pre-
assembled parts are fed as inputs to final assembly line 
(typically in boxes alongside the final assembly line) where 
the seat gets its complete shape. To investigate the root cause 
of the increased production takt time, the following 
methodology (figure 3) is employed. Implementation of the 
solution is not in the scope of this paper and is considered as 
the future work. 

Data pre-processing 

The raw historical production data from the final assembly 
line contained numerous parameters including CT data from 
all the stations, SJPH, SIR, RR and USID. The parameters 
which are not needed for further data processing are filtered 
and only CT data of assembly stations is considered. This CT 
data is abundant with missing data and outliers. In the data 
pre-processing phase, all the missing data is filtered out, next 
outlier-detection and replacement scheme is carried out for 
effective data analysis [22]. This scheme replaces those data 
points which deviates drastically from the given norm or 
average value, and subsequently interchanges it with normal 
data points. Average CT of all the stations at 01/10/2018 
instant is shown in table III and during that instant it is noticed 
that station 7 CT is 99.6 seconds (higher than the set 
production takt time). 

 

Methodology implemented in the current assembly line 

Figure 4 (a) represents a snapshot of the raw data that is 
captured from the production line which consists of various 
missing data redundancies. Figure 4 (b) presents the snapshot 
of the data after filtering out redundant data using outlier-
detection and replacement schemes. 

 

(a) 

University of Warwick 
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(b) 

(a) Snapshot of the raw data captured from the production line. (b) 

Snapshot of the filtered production line data 

Identify the bottlenecks and drill down to investigate the 

cause 

In order to understand the cause of decreased productivity 
and to target the bottleneck stations, it is important to monitor 
the performance of these stations individually over a given 
period of time. Box and whisker plots is used to show the 
summary of the data distribution, its variability and its central 
value. These plots are the quickest way to show whether the 
dataset is symmetric or skewed.  

From figure 5, it is evident that station 7 is the root cause 
for the overall decreased production line performance. The 
average CT of station 7 during the whole time period of data 
collection is 99.6 seconds against the set production takt time 
of 95.5 seconds. Apart from station 7, rest of the stations 
performed consistently within the takt time assigned to the 
production line. Next, the 3 evident outliers seen across station 
5 is carefully investigated. From the investigation it is realized 
that operators at the station 5 failed to stop the process 
recording during the break times. Hence, these outliers are 
treated as bad data points because they are caused due to 
human errors and unlikely to appear under normal 
circumstances. Note that these outliers are eliminated from the 
further data processing.  

 Few other inference that is be derived from figure 5 is: 
station 1 average CT is 57.8 seconds and station 3 average CT 
is 52.3 seconds which is nearly half of the assembly takt time. 
This huge CT difference pointed towards exploring the 
uneven task distribution within the stations. Table III gives an 
insight into average day CT of every station for 1/10/2018, 
showing that the task distribution over different stations is 
non-uniform. For instance, average CT for station 1 is 54.8 
seconds followed by station 3 and station 6 with 65.2 seconds 
and 61.9 seconds, meaning these station had the longest 
waiting time when compared to all other stations.  

Next step is to drill down station 7 to discover which seat 
model and its variants are the sources of the increased CT. By 
further time study data analysis, it is obvious that model B 
with an average CT of 101.67 seconds (4.67 seconds more 
than the set production takt time) is the reason behind the 
increased CT (as shown in figure 6 (a)). Whereas, model A 
with average CT of about 67.32 seconds didn’t contribute to 
any production delays. Now it is apparent that model B in 
station 7 is the main reason behind increased CT. 

In final step, station 7 model B is further investigated to 
examine which sub-process (sub-type) is responsible for the 
delays. Figure 6 (b), represents the different model B sub-type 
processes carried out at station 7. Sub-type 1 process with 
average CT of about 165.33 seconds is the reason behind the 

model B to perform poorly, followed by sub-type 2 process 
with CT of about 99.1 seconds. Whereas, sub-type 3 process 
averaged CT of about 90. 3 seconds which is the under the 
production takt time. 

AVERAGE STATION CT (SEC) FOR A DAY (01/07/2018)  
Station 1 2 3 4 5 6 7 8 9 11 12 

Averag

e CT  

54.

8 

86.

1 

65.

2 

91.

2 

86.

2 

61.

9 

99.

6 

90.

1 

87.

2 

82.

6 

85.

5 
 

Suggest solutions 

Sub-type 1, model B at station 7 is the bottleneck in the 
studied assembly line. It is due to this station that the SJPD, 
productivity and performance of the overall production line is 
effected. Based on intensive research on how to reduce CT 
and the results from data analysis, the author suggests few 
solutions which can help to improve the current state of the 
production line. Installing buffer stations well-thought-out the 
line and considering a change from traditional sequential 
conveyor line to parallel conveyor line can help the 
manufacturer to reduce the operations delays. But this change 
can be costly and will require additional resources for its 
normal working.  

Line balancing is suggested as the best fit solution for the 
given problem because from the table II it is witnessed that 
there is a huge unbalanced task distribution between various 
stations. Rethinking about the current state of tasks 
distribution between the stations and splitting most frequent 
interrupted processes can help to reduce the waiting time, 
blocked time and starved time; thereby increasing the line 
throughput. By exploring the processes carried out by all the 
stations in the assembly line, several processes were shifted 
within the stations for better line balancing. Particularly, the 
processes undertaken at the station 7 (bottleneck station) of 
the assembly line is shifted to other stations and few were split 
within the station itself.  

Furthermore, table IV shows the variations in the actual 
time taken to complete various operations at station 7 with the 
theoretical time. By comparing theoretical time with the actual 
time of the processes carried out at station 7 it is obvious that 
the Company X current assembly line needs line optimization 
apart from line balancing. If this bottleneck could have been 
identified at an early stage, it would have significantly 
enhanced the overall performance of the production line. 

 

 

Box and whiskers plot for stations CT over a given period 
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(a) 

 

(b) 
(a) Box and whisker plot for station 7 model A and model B. (b) Box and 

whisker plot for station 7 model B with sub-type1,2 and 3 
 

AVERAGE PROCESS CT FOR STATION 7 (ACTUAL VS THEORETICAL) 

Station 7 Actual 

time (sec) 

Theoretical 

time (sec) 

Main operation 

Completing the airbag installation 

 

103.6 

 

90.5 

Type 

Model A 

Model B 

 

67.5  

101.3 

 

90.5 

90.5 

Sub-type 

Sub-type 1 

Sub-type 2 

Sub-type 3  

 

165.5 

99.6 

90.2 

 

90.5 

90.5 

90.5 

CONCLUSION 

The study aims to spot the bottlenecks and enhance the 
production rate of company X seat manufacturing assembly 
line using time-study data analysis. By performing the time-
study data analysis, it is seen that station 7 CT exceeds the takt 
time. With further drilling down, it is evident that model B 
with CT of 101.67 seconds and in particular sub-type 1 with 
CT of 165.33 seconds is the main cause of the delayed 
production. It is due to sub-type 1, model B at station 7; the 
company X is able to produce only 18850 seats against set 
target of 19080 seats that month. Therefore, knowing the root 
causes behind the decreased production, the author suggests 
line re-balancing, line optimization and splitting the 
bottleneck process into sub-process in order to maintain 
standard takt time and enhance manufacturing process, as the 
best solution to the tackle CT problem.  
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Abstract—This paper presents a holistic approach that 

enables manufacturers to systematically select appropriate Key 

Performance Indicators (KPIs) for their shop floor operations 

assessment. The approach is based on the contemplation that 

KPIs can be selected on the basis of a set of measures that are 

theoretically grounded. The approach consists of five layers 

namely: information layer, discernment layer, scheming layer, 

origin of data layer and assisting technology to capture the data 

layer. Each layer consists of set of measures dedicated to provide 

vital information that will assist manufacturers in better 

monitoring of their shop floor operations and improve decision-

making capabilities. The practicality of the proposed approach 

is demonstrated through its application to an automotive seat 

manufacturing company. 

Keywords— key performance indicators, KPIs, manufacturing 

industries, shop floor, holistic model 

INTRODUCTION 

In order to survive in the current industrial revolution, 
manufacturers are pushed to engineer highly flexible, robust 
and efficient manufacturing process to produce high quality 
goods at reduced cost to combat evolving challenges and 
attain full economic potential [1]. As a result, manufacturing 
industries in the present time have realized the significance of 
shop floor data analysis and are implementing performance 
measurement systems to continually assess and improve the 
operational state of their manufacturing operations [2]. With 
the aim of quantifying the effectiveness and efficiency of shop 
floor operations, a set of comprehensive indicators are defined 
by International Standards Organization (ISO) to comprehend 
tactical goals of performance management and improvement 
often referred to as KPIs [3]–[6]. 

KPIs are critical part of an organization’s capability to 
monitor its business performance health, facilitating to make 
certain that the premeditated goals of organizations are 
achieved. A number of researchers and think tank experts 
emphasises on significance of selection of right KPIs to 
provide business performance measure and identify 
bottlenecks [2], [7]–[10]. KPIs provide managers, supervisors, 
operators and various other decision makers with a snapshot 
of the business performance, highlighting the bottlenecks 
encountered in attaining its set business objectives [11]. Right 
selection and appropriate implementation of KPIs has a 
significant potential to assist manufacturers in improving 
business performance. 

There is copious literature related to organizational 
performance measurements. Despite this, it is estimated that 
more than 80% of organizations fail to achieve their business 
objectives [5], [12], [13]. The reason for this failure is limited 
understanding of the business operations and associated KPIs, 
abundance of KPIs present in the literature for selection 
purposes, unnecessary large number of KPIs used by 
businesses for performance measurement, and technological 

issues that hinders its implementation [2], [7], [14], [15]. Most 
of the traditional methods for KPI selection are consultant-
driven and ad-hoc, which lack scientific foundation essential 
for generalizability and repeatability approach for KPI 
selection [2], [16].  

Selection of right KPIs is one of the major challenge faced 
by manufacturers in the current era of industrialization. Often 
managers select KPIs without accurate understanding of the 
shop floor operations. Selecting right KPIs from the literature 
can be inferred as a complex decision making process also 
termed as Multi Criteria Decision Making (MCDM) problem 
because it involves numerous factors and associated 
interdependencies [17], [18]. Undeniably, it is observed that a 
set (finite) of KPIs can be estimated and carefully chosen by 
means of predetermined conditions [18], [19].  

ISO offers a set of KPIs, ISO 22400 (ISO 22400-
2:2014+A1:2017) focusing on KPIs for manufacturing 
operations management also referred to as Manufacturing 
Execution System (MES) [20], [21]. The MOM is a term used 
in International Electrotechnical Commission (IEC) 62264 to 
address a particular level in the manufacturing enterprise 
functional hierarchy model as shown in figure 1 [22].  

 

ANSI/ISA-95 functional hierarchy model [22] 

KPIs mentioned in the ISO standard are described through 
name, description, formulae, unit of measure, production 
methodology and other characteristics. This standard attempts 
to generalise its applicability to all industries but in few 
statements it clearly states that ‘the indicators are suitable only 
for discrete manufacturing’ and ‘limited to managers as 
audience’. These statements are often equivocal and imprecise 
and the information provided at times are fragmented. Thus, 
ISO standards may not be largely considered for KPI selection 
and deciding KPI applicability [20], [22]. Furthermore, 
essential KPIs required for measuring the manufacturing shop 
floor performances are ambiguously covered [1], [4], [7], [23].  

In this context, main challenges encountered by the 
manufacturers in achieving their business objectives are: 1. 
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too many KPIs selected for monitoring which weakens the 
main focus on objectives. 2. KPIs selected fail to establish 
connection with the objectives to be achieved. 3. Lack of 
understanding of the KPIs, which leads to failure in reporting 
and monitoring of measures. With more than 1700 KPIs 
available in the literature, it becomes difficult for any 
manufacturer to understand, analyze and implement the right 
KPIs for monitoring their shop floor operations [16], [24]. 

Therefore, the author developed a KPI selection approach 
that guides the manufactures to understand, analyze and 
implement the right KPIs. The approach consists of 5 layers: 
information layer, discernment layer, scheming layer, origin 
of data layer and assisting technology layer. This approach 
enables decision makers to link their business objectives with 
appropriate KPIs. The paper is organized as follows: Section 
II describes the literature review and explains all the set of 
measures required for selecting the KPIs. Section III 
introduces the proposed holistic approach and discusses 
different layers of it. Section IV mentions the case study 
company wherein this proposed approach is tested and based 
on the company’s set objectives a new set of KPIs are 
suggested and later tested. Finally, conclusion for the research 
is provided.  

LITERATURE REVIEW 

The performance of manufacturing industries is typically 
measured at MES or Enterprise Resource Planning (ERP) i.e. 
level 3 and 4 of ANSI/ISA 95 model [20]. The heart of 
manufacturing i.e. the shop floor occupies level 0, 1 and 2 of 
ANSI/ISA 95 model, any problems (mechanical, electrical 
and technological etc.) occurring at this level will severely 
impact the whole production. Additionally, problems such as 
reduced production rate, capacity and quality calculated at the 
higher levels of ANSI/ISA model are connected with the poor 
monitoring of the shop floor activities. Thus, selecting KPIs 
for monitoring and controlling performance of the shop floor 
will greatly help manufacturers to analyze their business 
objectives swiftly and enable them to make quick decisions 
[25]. Understanding the importance of an efficient working 
shop floor, the literature focuses on development of holistic 
approach for selecting appropriate manufacturing shop floor 
KPIs. 

Level 5 Enterprise Planning: external relationships and 

product life cycle  

Level 4 Business Planning: the basic schedule and batch 

management 

Level 3 Operations: workflows to produce desired end 

product  

Level 2 Control and monitoring of production process 

Level 1 Laboratory equipment and testing instrumentation 

Level 0 The plant: actual production process 

Abstracted hierarchal layers of ANSI/ISA-95 model [22] 

By combining the contributions from various literature 
articles [3]–[5], [9], [16], [24], it was possible to ascertain 
subsequent features for KPIs measurement: Significance: it 
provides important information which can make a difference 
in decision by facilitating manufacturers to either approve, 
update aforementioned expectations or to formulate 
predictions about the present and future measures. One of the 
vital features of significance is timeliness, meaning that 
information should reach the decision makers before they lose 
the ability to make informed decisions. Reliability: it deals 
with the quality of KPIs assuring that it is equitably free from 
inaccuracies and truly indicates its purpose. Similarly, other 

criteria like consistency, understandability, comparability, 
predictive, quantifiable, traceable, inexpensive and 
verifiability are critical when selecting and measuring optimal 
KPIs [18], [26]–[28]. The manufacturing shop floor holistic 
approach is carefully developed considering all of the above 
mentioned measurement features.  

It is perceived in [29]–[32] that the most critical factor to 
monitor for every manufacturing industry is time. Thus, many 
manufacturing industries often use time related KPIs such as 
cycle time, takt time, shutdown time, stop time, setup time, 
availability and production time etc. While continuing to 
monitor time related KPIs, manufacturing industries failed to 
keep up with monitoring the overall shop floor performance. 
From literature it was revealed that various other factors, such 
as: cost, quality, safety, environment and sustainability should 
also be considered for monitoring overall shop floor 
performance [6], [33], [34]. 

Due to inadequate familiarity with KPIs, several 
manufacturing industries tend to measure and display a same 
set of KPIs throughout their shop floor. In fact, KPIs are job 
role specific i.e. management, supervisor and operator [30]. 
For instance, total production loss KPI is considered as 
manager specific as it gives the overall production losses 
throughout the production line, displaying this KPI may be of 
no use for operators. Cycle time KPI which enables the 
operators to monitor and improve the operations time will be 
useful. Furthermore, several manufacturers fail to realize KPI 
trend, i.e., the improvement direction (higher the better or 
lower the better). For example, availability KPI trend is higher 
the better and rework ratio trend is lower the better. Without 
complete understanding about the KPI trend, the KPIs 
measured and displayed will only remain a number [35]–[37].  

KPIs in manufacturing industries are displayed in real-
time, on-demand and periodical based on the audience [13], 
[35], [36]. It is observed that the KPI display timing plays a 
crucial part in KPI selection process [30]–[32]. Shop floor 
operations which needs to be monitored constantly, so as to 
identify the instant bottlenecks should be monitored using 
real-time KPIs [38], [39]. Selecting a periodical KPI which 
cannot be updated after every data acquisition event will not 
help the manufacturers to detect the bottleneck and make 
quick decisions [29].  

Mohammed et al. [23] mentions that after selecting KPIs 
for monitoring purposes, the manufacturers should also 
identify the equation variables needed to calculate those KPIs. 
It is due to the fact that not every equation variable data needed 
to calculate the KPI would be readily available at the shop 
floor. The nature of KPI will help the manufacturers to decide 
the origin of data inside the manufacturing industry. Mostly, 
KPIs are of fundamental or derived in nature. From 
manufactures perspective, it is important to know the equation 
variables needed to calculate a KPI because extracting data for 
a certain variable on the shop floor might be challenging, 
costly and sometimes unfeasible due to working with legacy 
systems and silo systems. Knowing the equation and equation 
variables (equation and equation variables are part of the 
formulae required for its calculation) needed to calculate a 
KPI will benefit the manufacturers to either employ the KPI 
or search for an alternative [8], [40].  

Lastly, many researchers’ and think tank experts inclines 
to further reason on the technology employed for extracting 
the required data to calculate the KPIs [4], [7], [8], [28]. If the 
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technology engaged for calculation is sophisticated and 
expensive then deploying those KPIs on the shop floor would 
not be recompensing. A KPI that can be deployed on the shop 
floor with an unpretentious technology can help manufactures 
to easily monitor their KPIs without spending heavily on the 
technology. However, the type of technology that needs to be 
deployed is dependent on the kind of shop floor operations 
undertaken.  

After critically considering all the factors, criteria and 
methods that are required for appropriate KPI selection, the 
author has established that there is a need of developing a 
holistic and systematic approach. The approach that can 
account all the deemed aspects of KPIs available in the 
literature and which can guide the manufacturers to select 
appropriate KPIs. It is based on the contemplation that KPIs 
can be selected on the basis of set of measures that are 
theoretically grounded. The approach consists of five layers, 
with each layer consisting of set of measures dedicated to 
disclose vital information that will inspire the manufacturers 
to better monitor and improve decision-making capabilities 
within their shop floor operations. 

PROPOSED HOLISTIC APPROACH 

This paper proposes a holistic approach to select right 
KPIs for measuring performance of shop floor operations. The 
proposed approach consists of five layers namely: information 
layer, discernment layer, scheming layer, origin of data layer 
and assisting technology to capture the data layer. The reason 
for dividing the approach into five layers is to make it logical 
and systematic for the manufacturers. The first layer (i.e. 
information layer) covers the fundamentals of a KPI which is 
subdivided into content and context layers. After acquiring the 
essential information about KPIs from the first layer, the 
manufacturers can then proceed towards obtaining detailed 
aspects for a certain KPI from the second layer (discernment 
layer). Being satisfied by obtaining detailed aspects of KPIs, 
manufacturers can then advance to third layer which will then 
explain equation variables needed for KPI calculations.  The 
fourth layer will guide manufacturers to know the origin of 
data required for the equation variables within their shop floor. 
Lastly, fifth layer will help them to know the technologies 
available for data capturing. 

Information layer 

The purpose of this layer is to enable manufacturers to 
acquire basic information about the KPIs. This layer is further 
divided into two sub-layers namely: content and context layers 
as shown in table I and table II. Content layer comprises of list 
of measures, such as: name, description, formulae, unit of 
measure, range and trend. The detailed explanation of each of 
this measures is explained in table I. Whereas, context layer 
comprises of list measures, such as: timing, audience, 
production methodology and Entity-Relationship (ER) model 
with detailed explanation mentioned in table II.  

INFORMATION- CONTENT LAYER 

Content Layer 

Measure  Detail 

Name Name of the KPI 

Description A brief description of the KPI 

Formula The mathematical formula to calculate a KPI  

Unit of measure The basic unit or dimension in which the KPI is stated 

Range Specifies logical limits (upper and lower) of the KPI 

Trend Is the statistics about the improvement direction, for instance, higher 

is better or lower is better 

 

Information layer allows manufacturers to carefully 
realize KPI basics before moving forward with its selection, 
implementation and visualization. In the initial stages of KPI 
selection it is critical for manufacturers to comprehend the 
fundamental concepts about KPI of their interest. From the 
literature it is witnessed that more than 80 percent of the 
manufacturers fails to realise their business objectives or fail 
to improve their shop floor performance due to the failure of 
understanding the necessary concepts of KPIs [7]. Having 
basic knowledge about the KPIs can help the manufacturers to 
familiarise themselves about KPIs before further 
consideration.     

INFORMATION- CONTEXT LAYER 

Context Layer 

Measure  Detail 

Timing A KPI can be calculated either in 

Real-time- after each new data acquisition event 

On demand- after a specific data selection request 

Periodically- done at a certain interval, e.g. once per day 

Audience  Audience is the user group typically using this KPI. Typically, the 

audience are 

Operators- personnel responsible for the direct operation of the 

equipment 

Supervisors- personnel responsible for directing the activities of the 

operators 

Manager- personnel responsible for the overall execution of 

production 

Production 

methodology  

Specifies the production methodology that the KPI is generally 

applicable for: 

discrete, batch and/or continuous 

ER model The effect model diagram is a graphical representation of the 

dependencies of the KPI elements that can be used to drill down and 

understand the source of the element values 

Discernment layer 

Discernment layer of the proposed approach covers 
thorough (detailed) aspects of KPI. The list of measures 
covered by this layer are: type, dimension, form and nature; 
explanation of each measure is mentioned in table III. This 
layer encourages manufacturers to critically comprehend the 
applicability of new or existing KPI with their desired 
business objectives. It facilitates them to think and question 
their current KPIs cogency in achieving astounding 
performance by providing their detailed aspects. This layer 
further aids the manufacturers to know (specifically) which 
measure i.e. product, process and/or resource of 
manufacturing shop floor can be improved using certain KPIs. 
Since, it has been observed from the literature that most 
managers are unaware of the KPI relevance, resulting in poor 
KPI selection [40]. This layer will help to address the KPI 
relevance issues by providing detailed insights of the KPIs as 
underlined in table II.   

By identifying parameter (i.e. the elements present in each 
measure) to which the KPI is pertinent to with an appropriate 
dimension, form and nature can benefit manufacturers to 
accurately link their business objectives with the selected 
KPIs. Additionally, it will allow manufacturer to focus on 
particular parameters which can enable them to make quicker 
and informed decisions.    

DISCERNMENT LAYER 

Discernment Layer  

Measure  Detail 

Type Identification of the element that the KPI is relevant for- 

Product, process and/or resource 

Dimension Identification of the element that the KPI is relevant for- 

Time, cost, quality, safety, environmental, sustainability and other 

Form  Specifies the form of KPI- 

Lagging- are typically “output” oriented, easy to measure but hard to improve 

Leading- typically input oriented, hard to measure and easy to influence  

Nature  Specifies the nature of the KPI- 

Fundamental or derived  
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Scheming layer 

After acquiring vital and thorough knowledge on 
fundamental and detailed aspects of the KPIs. Scheming layer 
provides additional measures such as equation and equation 
variable (usually known as data) which resembles the 
formulae used for KPI calculation as shown in table IV. This 
layer will guide manufacturers to know the variables (data) 
that will be required to calculate their desired KPIs. For 
example, the equation variables required to calculate 
availability KPI are operating time against the loading time. 

SCHEMING LAYER 

Scheming Layer 

Measure  Detail 

Equation It resembles the formulae used for KPI calculation 

Equation 

variable 

The variables present in the equation are termed as equation variables 

 
For example, figure 3 elucidates that in order to calculate 

availability KPI, manufacturers need to know the equation 
variables such as: reference time, loading time, operating time, 
net operating time and valued operating time. Knowing these 
equation(s) and equation variable(s) will guide manufacturer’s 
to effortlessly link their business objectives with the KPIs 
selected and also discern if the data for these variables subsists 
within their shop floor data model.  

 

 

Equation variable for calculating availability KPI 

Origin of data layer 

After knowing the equation variable(s) required to 
calculate the KPI, origin of data layer helps manufactures to 
identify the point of origin of these variables within their shop 
floor. The point of origin can be a Programmable Logic 
Controller (PLC) used for collecting the data from a station or 
an energy monitor installed for recording readings of a 
particular robot. It is essential for manufacturers to identify the 
origin of the data because under some circumstances, such as 
presence of legacy systems makes it difficult for data 
extraction. Extracting data from legacy systems remains a 
challenge but with numerous KPIs available, it becomes easier 
for manufacturers to switch to alternative KPIs with different 
equation variables that might not depend on data extraction 
from legacy system. By knowing the origin of the data, 
manufacturers can decide whether to proceed with data 
extraction of a certain KPI or else look for an alternative. 

 

Assisting technology to capture the data layer 

In order to collect data swiftly and efficiently, this layer 
helps manufacturers to know the assisting technology 
applicable for data capturing. Since, cost is a critical factor 
while deploying technology into the shop floor, this layer aids 
the manufacturers to decide and then select optimal KPI which 
will increase the overall shop floor performance with 
reasonable investment in supporting technology. For example, 

in order to calculate worker efficiency KPI it is necessary to 
capture the worker’s operating and idle time inside the shop 
floor. The worker presence can be captured using assisting 
technologies such as: RFID readers, camera systems and 
motion detectors. It will now be up to the manufacturers to 
decide and select the technology that economically suits them. 
Table V illustrates an example of worker efficiency using the 
proposed approach.  

KPI HOLISTIC APPROACH: WORKED OUT EXAMPLE FOR WORKER 

EFFICIENCY KPI 

INFORMATION LAYER 

Content layer 

Name Worker Efficiency 

Description The worker efficiency considers the relationship between the actual 

personnel work time (APWT) related to production orders and the actual 

personnel attendance time (APAT). 

Formula Worker efficiency = APWT / APAT 

Unit of Measure % 

Range Min: 0% 

Max: 100% 

Trend The higher the better 

Context layer 

Timing Periodical 

Audience  Supervisor, management 

Production 

Methodology  

Discrete, batch, continuous 

Effect Model 

Diagram 

 
DISCERNMENT LAYER  

Type Resource 

Dimension Time 

Form  Lagging 

Nature  Derived  

SCHEMING LAYER 

Equation APAT, APWT 

Equation 

Variable 

APAT, APWT, Break time and no work time 

 

 

 

 

 

 

 

ORIGIN OF DATA LAYER 

Manufacturing Execution System (MES) 

ASSISTING TECHNOLOGY LAYER  

RFID reader, camera system, barcode scanners   

CASE STUDY  

The case study is conducted on a set of KPIs obtained from 
the company X (automotive seat manufacturing company). 
Based on the set objectives to be achieved by company X, 
existing KPIs are studied through the proposed holistic 
approach. Results generated by implementing the holistic 
approach is compared with the set objectives to realize the 
existing KPIs applicability, effectiveness and performance. 

 

Company X background  

Company X UK is leading the smart manufacturing 
initiative for company X globally, which deals with car seat 
manufacturing. Company X’s manufacturing UK employs 
200 staff and 2000 workers across three UK plants. It 
manufactures seats for various cars brands, with its major 
customer being Jaguar Land Rover (JLR). In company X, 
every component that is required to manufacture a seat is pre-
assembled in sub-assembly lines and final seat is primed in 
assembly lines within their manufacturing plants. Figure 4, is 

APAT 

APWT Breaks,  

No work time 
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a block diagram representation of an assembly line with a list 
of key inputs and output. The inputs to the assembly line are 
fetched from the sub-assembly lines; and inputs to this sub-
assembly lines are the raw materials based on the seat 
requirements. 

 

Snapshot of an assembly line with list of inputs and output 

Company X objectives  

After analyzing company’s priority intents as well as 
interviewing managers, line supervisors and research and 
development teams, it was established that the main objectives 
of company X (w.r.t their shop floor performances) is real-
time monitoring of seat production rate while maintaining 
high quality. Company X mainly focuses on real-time 
monitoring of seats production and enhancing the seat quality. 
Company X are producing 98 seats/hour against 100 seats/hr, 
with around 5 seats failing to clear the quality inspection 
against 3 seats per given production window. Currently, the 
KPIs used in order to monitor their production line are: 
Allocation Ratio (AR), Availability (A), Takt-Time (TT), 
Rework Ratio (RR), Production Process Ratio (PPR) and 
Production Target (PT). These KPIs were selected by 
company’s management team. The dashboard display that the 
company presently use is shown in figure 5. Furthermore, 
there is no separate dashboard based on the job roles 
(manager, supervisor and operator).  

 

Dashboard layout for company X seat production line  

Analyzing KPI’s of company X through proposed holistic 

approach 

Since, company X objectives are real-time monitoring the 
production rate and improving quality of the production line, 
the KPI’s selected for that purpose should reflect the same. 
Table VI highlights company’s objectives via KPI measures 
based on the proposed approach. It should be noted that only 
few measures of the proposed approach are mentioned by the 
author for establishing critical understanding and developing 
the clarity of set objectives.  

KPI OBJECTIVE AND COMPANY X OBJECTIVE 

KPI measure Company X objective  

Timing   Real-time  

Type Product and process 

Dimension  Time and quality  

Form Leading  

Evaluating these KPIs (AR, A, PPR, PT, RR and TT) using 
the proposed approach is mentioned in table VII. It is observed 
from table VII that four out of six KPI’s used by the company 
X does not support real-time monitoring of production 
performances. For example, KPI such as AR, A, PPR and PT 
does not support real-time visualization i.e. these KPI cannot 
be updated after every data acquisition event. These KPIs 
supports on-demand and periodical visualization. Therefore, 
company X will be unable to monitor real-time shop floor 
performance using the given set of KPIs. Only one KPI (RR) 
is selected to monitor the seat quality. RR is relationship 
between rework quantity and produced quantity, this KPI 
helps to monitor number of products that has not passed 
quality inspection. The red highlighted boxes in table VII 
gives a clear indication of KPIs that will not support the 
company X to monitor their business objectives. Therefore, 
company X is in need of KPIs which can effectively monitor 
real-time production rate and quality of the product. 

 REALIZING EXISTING COMPANY X KPIS USING PROPOSED APPROACH 

 Pe- Periodical, Od- On-demand, Rt- Realtime, Po- Product, Pr- Process, Re-Resources, S- Supervisor, 
M- Manager, O- Operator, T-time, Q- Quality, La- Lagging, Le- Leading 

By further investigating table VII, it is apparent that there 
is no KPI focusing on resource aspect, with production rate 
and quality being the main objective for monitoring, not 
involving resource related KPIs will impact company X’s 
ability to fully improve the production rate. Additionally, with 
the current dashboard design installed throughout the 
production line, only RR KPI can help operators to monitor 
the performance of the line in real-time. Rest of the KPI are 
helpful for supervisors and management to timely track the 
production performance. Hence, the current dashboard design 
also shows limitations when viewed as a shop floor operator. 

To sum up, by scrutinizing the current KPIs of company 
X through the proposed holistic approach, it has been viewed 
that only 1 KPI (RR) is directly aligned to monitor company’s 
set objectives. Rest of the KPIs does not completely align with 
the set objectives and henceforth needs revision.  

Company X suggested KPIs 

Table VIII shows the list of KPIs which can help company 
X to better monitor and fulfil their set objectives. Since, there 
are more than 1700 KPIs available in the literature, author has 
carefully chosen a set of five appropriate KPIs that are directly 
aligned to monitor and achieve company’s objectives. Unlike 
the existing KPIs which mostly deviates from the set 
objectives, the suggested KPIs directly measures their 
objectives. The suggested KPIs are: Cycle Time (CT), Good 
Quality (GQ), Overall Equipment Effectiveness (OEE), Takt 
Time (TT) and Utilization Efficiency (UE). The reason for 
selecting these KPIs can be clearly interpreted from table VIII, 
where all of the suggested KPIs are well aligned with the 
company’s objectives. 

SUGGESTED KPIS USING PROPOSED APPROACH  

KPI 

measure 

Suggested X KPIs  

CT GQ OEE TT UE 

Timing   Od, Pe, Rt Od, Pe, Rt Od, Pe, Rt Od, Pe, Rt Od, Pe, Rt 

Type Pr Po, Pr, Re Po, Pr, Re Pr Pr 

Audience S, M, O S, M, O S, M, O S, M S, M, O 

Dimension  T Q T, Q T T  

Form Le  Le Le Le Le 

KPI 

measures 

Existing company X KPIs  

AR A  PPR PT RR TT 

Audience S, M S, M S, M S, M S, M, O S, M 

Dimension  T  T T T Q T 

Form La  La La  La  Le  Le 

Timing   Pe Od, Pe Od, Pe Od, Pe Od, Pe, Rt Od, Pe, Rt 

Type Po  Po Po, Pr Po Po Pr 

s subsi
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Since, the chosen KPIs are based on the author’s 

experience both in the field KPIs as well as working with 
company X, in future this approach can be used to develop a 
model (encoded as a software package) which can list out the 
appropriate KPIs based on the companies’ objectives.  

I. CONCLUSION 

Currently, standard approaches to select appropriate KPIs 
for manufacturing shop floor do not exist. The paper has 
proposed a holistic approach required for selecting appropriate 
KPIs for monitoring manufacturing shop floor performances 
based on set of measures which are theoretically grounded. To 
examine effectiveness of the given approach, it was 
implemented on company X assembly line. The proposed 
approach revealed that five out of six KPIs used by company 
X were not aligned with their business objectives. A set of five 
KPIs were suggested to company X which can help them to 
better monitor their shop floor performances. This approach 
not only enabled manufacturers to comprehend their existing 
KPIs w.r.t their business objectives but also guided them in 
knowing the appropriate KPIs for their shop floor 
performances.  
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