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Abstract

Background: Third-generation cephalosporin-resistant Gram-negatives (3GCR-GN) and vancomycin-resistant
enterococci (VRE) are common causes of multi-drug resistant healthcare-associated infections, for which gut
colonisation is considered a prerequisite. However, there remains a key knowledge gap about colonisation and
infection dynamics in high-risk settings such as the intensive care unit (ICU), thus hampering infection prevention
efforts.

Methods: We performed a three-month prospective genomic survey of infecting and gut-colonising 3GCR-GN and
VRE among patients admitted to an Australian ICU. Bacteria were isolated from rectal swabs (n = 287 and n = 103
patients ≤2 and > 2 days from admission, respectively) and diagnostic clinical specimens between Dec 2013 and
March 2014. Isolates were subjected to Illumina whole-genome sequencing (n = 127 3GCR-GN, n = 41 VRE). Multi-
locus sequence types (STs) and antimicrobial resistance determinants were identified from de novo assemblies.
Twenty-three isolates were selected for sequencing on the Oxford Nanopore MinION device to generate completed
reference genomes (one for each ST isolated from ≥2 patients). Single nucleotide variants (SNVs) were identified by
read mapping and variant calling against these references.

Results: Among 287 patients screened on admission, 17.4 and 8.4% were colonised by 3GCR-GN and VRE, respectively.
Escherichia coli was the most common species (n = 36 episodes, 58.1%) and the most common cause of 3GCR-GN
infection. Only two VRE infections were identified. The rate of infection among patients colonised with E. coli was low,
but higher than those who were not colonised on admission (n = 2/33, 6% vs n = 4/254, 2%, respectively, p = 0.3).
While few patients were colonised with 3GCR- Klebsiella pneumoniae or Pseudomonas aeruginosa on admission (n = 4),
all such patients developed infections with the colonising strain. Genomic analyses revealed 10 putative nosocomial
transmission clusters (≤20 SNVs for 3GCR-GN, ≤3 SNVs for VRE): four VRE, six 3GCR-GN, with epidemiologically linked
clusters accounting for 21 and 6% of episodes, respectively (OR 4.3, p = 0.02).
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Conclusions: 3GCR-E. coli and VRE were the most common gut colonisers. E. coli was the most common cause of
3GCR-GN infection, but other 3GCR-GN species showed greater risk for infection in colonised patients. Larger studies
are warranted to elucidate the relative risks of different colonisers and guide the use of screening in ICU infection
control.
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Introduction
Healthcare associated infections (HAI) result in consider-
able morbidity and mortality, with the total burden in high
income countries exceeding that of influenza, tuberculosis
and other major communicable diseases combined [1].
The emergence and spread of antimicrobial resistant
(AMR) organisms, including difficult-to-treat multi-drug
resistant (MDR) strains, has further exacerbated this prob-
lem [2], and as a consequence several MDR healthcare-
associated bacterial pathogens are now recognised by the
World Health Organization (WHO) as urgent threats to
public health [3]. Among the WHO’s top priorities are
carbapenem-resistant Gram-negatives (GNs, specifically
Enterobacteriaceae, Acinetobacter baumannii and Pseudo-
monas aeruginosa) as well as vancomycin-resistant entero-
cocci (VRE).
In Australia, it is estimated that one in ten hospitalised pa-

tients suffers an HAI, and the most common MDR organ-
isms are VRE, methicillin-resistant Staphylococcus aureus
and extended-spectrum beta-lactamase (ESBL) producing
Enterobacteriaceae [4]. Fortunately carbapenem-resistance
has so far remained rare, although the prevalence has been
slowly increasing [5]. Notably, Australia suffers a particularly
high rate of vancomycin resistance among enterococcal in-
fections (~ 45% of Enterococcus faecium bacteremias [5]), pri-
marily due to the endemic spread of healthcare-associated E.
faecium sequence types (STs) 17, ST80 and ST796 [5–8].
Asymptomatic gut colonisation is considered a key risk

factor for enterococcal, Enterobacteriaceae and other GN
infections [9–13] and in the case of VRE has been associ-
ated with longer ICU stay and treatment costs [12, 14]. A
number of hospitals have implemented rectal screening
programs to identify patients colonised with VRE and/or
carbapenemase-producing Enterobacteriaceae in high-risk
wards such as intensive care units (ICUs), oncology and
hematology wards [7, 8, 15, 16]. However, few facilities
conduct routine screening for ESBL-Enterobacteriaceae or
other high-risk carbapenem-susceptible GNs in part due
to a lack of evidence to inform the interpretation of these
results and to appropriately target infection control mea-
sures. For example, only a small number of studies have
investigated the risks associated with ESBL-Enterobacteri-
aceae colonisation at a species-specific level [9, 11, 12,
17–20], but there is emerging evidence to suggest import-
ant variation, both in terms of the risk of infection and the
risk of transmission in the hospital setting. We propose

that a better understanding of these risks, as well as the
broader colonisation and infection dynamics of AMR or-
ganisms in these settings, will facilitate better targeting of
infection prevention and control practices.
Here we report a genome-resolved snapshot of high-

risk AMR bacteria from rectal swabs and clinical speci-
mens collected in an Australian ICU over a three-month
period. We focus on GN organisms resistant to third-
generation cephalosporins (including ESBL-Enterobacte-
riaceae) in addition to VRE. We leverage the genome
data to perform high-resolution analysis of these bacter-
ial populations to; i) compare infecting and colonising
organisms isolated form the same patient; ii) characterise
population diversity at the strain level; and iii) identify
putative nosocomial transmission clusters.

Methods
Recruitment and specimen collection
The Alfred Hospital, Melbourne, Australia is a 350-bed
tertiary referral hospital including a 45-bed ICU provid-
ing care for general medical and surgical patients plus
specialist cardiac and trauma services. We conducted a
prospective surveillance study for rectal colonisation of
third generation cephalosporin-resistant GN (3GCR-
GN) organisms and VRE in patients admitted to the
ICU from 21 Dec 2013 to 7 April 2014. This study was
approved by the Alfred Health Human Research Ethics
Committee, Project numbers #550/12 (19 February
2013) and #526/13 (10 December 2013). Patients aged
≥18 years and considered by nursing staff as likely to re-
main in the ICU > 2 days were eligible for inclusion. The
requirement for informed consent to participate was
waived by the same ethics committee (Alfred Health Hu-
man Research Ethics Committee) as screening for AMR
organisms is considered an infection control and surveil-
lance activity, however patients were given the option to
refuse screening. Rectal swabs were collected at time of
recruitment (day 0–2 of ICU admission) and subse-
quently each 5–7 days during ICU stay. Information on
age, sex, dates of hospital and ICU admission/s, surgery
in the last 30 days, and antibiotic treatment in the last 7
days were extracted from hospital records when swabs
were taken. Dates of discharge and/or death were ex-
tracted from hospital records at the conclusion of the
study. All clinical isolates recovered from ICU patients
and identified as 3GCR-GN or VRE by the diagnostic
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laboratory as part of routine care were also stored for
inclusion.

Bacterial culture and sequencing
Gut colonising 3GCR-GN and VRE were identified by
culture on ceftazidime and chromID VRE agar plates
(BioMérieux, Marcy L’Etoile, France), respectively. Pre-
sumptive 3GCR-GN and VRE colonies were subjected to
species identification via matrix-assisted laser desorption
ionization time-of-flight analysis with a Vitek MS (Bio-
Mérieux). Clinical isolates were collected and identified
via standard diagnostic protocols [10]. Genomic DNA
was extracted and sequenced on the Illumina platform.
Twenty-three isolates were selected for sequencing on
the Oxford Nanopore MinION platform as described
previously [21]. See Supplementary Methods, Add-
itional File 1 for full details.

Genomic analyses
Genomes were assembled using Unicycler v0.4.7 [22] and
subjected to quality control (Supplementary Methods,
Additional File 1). Species were identified using Kraken
v1.0 [23] and multi-locus sequence types (STs) were iden-
tified from assemblies using mlst (github.com/tseemann/
mlst) where schemes were available (accessed from
pubmlst.org [24]).
AMR genes were identified from final assemblies using

Kleborate (https://github.com/katholt/Kleborate) [25]
which performs nucleotide and protein BLAST against a
curated version of the CARD database, and results were
interpreted in a species-specific manner (i.e. to distin-
guish intrinsic from acquired genes). These data were
used to calculate the predicted number of acquired
AMR classes per isolate (defined for each species as de-
scribed in [26], Supplementary Methods, Additional File
1). MDR was defined as predicted acquired resistance
for ≥3 drug classes [26].
Single nucleotide variants (SNVs) were identified by

mapping Illumina reads to the relevant completed
chromosomal reference genomes (ST-specific, Supple-
mentary Table 1, Additional File 2) using Bowtie2 v2.2.9
[27] and SAMtools v1.9 [28], as implemented in the
RedDog pipeline (github.com/katholt/RedDog) [29].

Statistical analyses
Statistical analyses were performed using R v3.6.3 [30]
and the tidyverse package [31]. Fisher’s Exact test and
proportion test were used to test for differences in count
data in two-by-two contingency tables (proportion test
was applied where any single count was ≤5, otherwise
Fisher’s Exact test was used). The Wilcoxon rank sum
test was used to test for differences in age distributions,
wherein the data did not fit a normal or other distribu-
tion appropriate for parametric testing. Univariate and

multivariate logistic regression models were used to test
risk factors for 3GCR-GN and VRE colonisation at ICU
admission.

Results
During the study period there were 716 patients admitted
to the ICU, 31 (4.3%) patients had one or more 3GCR-GN
infections (n = 41 isolates), and two (0.3%) had VRE infec-
tions (n = 2 isolates, both E. faecium, Fig. 1). Of 430 pa-
tients eligible for participation in rectal screening, 66
declined to participate and 311 contributed one or more
rectal swabs (72.3% of eligible non-refusers). The majority
of participants were swabbed within the first 2 days of
ICU admission (baseline screening swabs, n = 287, 92.3%),
including 79 with ≥1 additional follow-up swab (Fig. 1).
Participants with baseline swabs were 64.5% male (n =
185), aged 18–93 years (median 57 years; IQR, 44–71
years, Supplementary Table 2, Additional File 1), and the
majority (n = 218, 76.0%) were known to have had recent
healthcare exposure prior to ICU admission (surgical pro-
cedure within the last 30 days, transferred from another
ward with first admission > 2 days prior, or transferred
from another hospital).
Third generation cephalosporin-resistant (3GCR) GN

organisms were isolated from baseline screening swabs
of 50 patients (17.4%, n = 56 isolates), while VRE were
isolated from 24 (8.4%, n = 24 E. faecium isolates, no E.
faecalis were identified; Supplementary Figure 1, Add-
itional File 1). Co-colonisation with 3GCR-GN and VRE
was identified in 12 patients (4.2%), indicating a signifi-
cant association between these organisms (OR 5.6, 95%
CI 2.2–15.5, p = 0.0001 using Fisher’s Exact Test). There
were no significant differences in colonisation rates be-
tween males and females, and no association between
age and colonisation status, with the exception of VRE
in females (median age 73.5 years amongst carriers ver-
sus 55.5 years amongst non-carriers, p = 0.04 using Wil-
coxon Rank Sum test; Fig. 1). Neither surgery within the
last 30 days, recent healthcare exposure (defined as
above), or antibiotic treatment within the last 7 days,
were significantly associated with 3GCR-GN or VRE col-
onisation at baseline (using univariate and multivariate
logistic regression, with age and sex as covariates; Sup-
plementary Table 3, Additional File 1).
A total of 138 rectal swabs were collected from 103

patients between 3 days and 12 weeks after ICU admis-
sion (Supplementary Table 4, Supplementary Figure 2,
Additional File 1). Twenty-five swabs (18.1%) from 18
patients (17.5%) were positive for ≥1 3GCR-GN organ-
ism (n = 30 isolates); 15 swabs (10.9%) from ten patients
(9.7%) were positive for VRE (n = 15 isolates). Notably,
3GCR-GN organisms were cultured from 15/61 patients
(24.6%) who were culture-negative for 3GCR-GN colon-
isation at baseline, and VRE were cultured from 13/75
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(17.3%) patients who were culture-negative for VRE col-
onisation at baseline, consistent with acquisition and/or
overgrowth of the organisms during ICU stay.
Among the 127 3GCR-GN and 41 VRE isolates cul-

tured from ICU patients, 112 (88.2%) and 41 (100%) re-
spectively were successfully revived and sequenced
(Supplementary Methods, Supplementary Figure 1, Add-
itional File 1). We combined clinical and genome data to
identify distinct colonisation and infection episodes, de-
fined as unique combinations of species and ST (derived
from whole-genome sequences (WGS)), per patient and
specimen type. This identified 33 3GCR-GN and two
VRE infection episodes (Table 1). The latter included
one urinary tract infection for which the patient was
prescribed amoxycillin (as recommended for treatment
of VRE in the urinary tract, where a high concentration
of amoxycillin can be achieved) and one respiratory in-
fection treated with teicoplanin. 3GCR-GN infections
were mainly respiratory (n = 19, 57.6%), wound (n = 5,

15.2%) and bloodstream (n = 4, 12.1%) infections, and
the most common agents were Escherichia coli (10 epi-
sodes, 30.3%) and Klebsiella pneumoniae (6 episodes,
18.2%; Table 1, Fig. 2). E. coli was also the most com-
mon 3GCR-GN gut coloniser (36/62 3GCR-GN colon-
isation episodes, 58%), followed by Enterobacter
hormaechei, K. pneumoniae, Klebsiella aerogenes, and
Klebsiella oxytoca (four episodes, 6.5%, each, Table 1).
Thirty-three unique VRE colonisation episodes were
identified. Overall, 88 patients were colonised and/or in-
fected with 3GCR-GN and/or VRE. Most (62, 70.5%) ex-
perienced a single episode of either 3GCR-GN (n = 61)
or VRE (n = 1), however 17 patients (20.2%) had two ep-
isodes (16 patients with two different species/STs, 13
with one VRE and one 3GCR-GN species) and nine pa-
tients (10.1%) had ≥3 episodes (seven with ≥3 different
species/STs, including five with VRE).
The majority of 3GCR-GN colonisation and infection

isolates were predicted to be MDR (see Methods): n =

Fig. 1 Prevalence of 3GCR-GN and VRE gut colonisation on admission to the ICU. Prevalence of third generation cephalosporin-resistant Gram-
negative (3GCR-GN) organisms (A) and VRE (vancomycin-resistant enterococci) organisms (C) among males and females for whom rectal swabs
were collected within two days of ICU admission. Age distributions are shown for culture-confirmed 3GCR-GN (B) and VRE (D) carriers and non-
carriers, stratified by sex. ns, non-significant using Fisher’s Exact Test (A, C) or Wilcoxon Rank Sum test (B, D); *, p < 0.05
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44/61 (72%) distinct colonisation episodes and n = 18/29
(62%) distinct infection episodes. MDR was particularly
common among E. coli (n = 44 episodes, 96%), K. pneu-
moniae (n = 9, 90%) and Serratia marcescens (n = 3,
100%). WGS identified acquired ESBL genes in 20 repre-
sentative 3GCR-GN colonisation (32.3%) and 12 repre-
sentative 3GCR-GN infection (36.4%) isolates. These
were mostly MDR K. pneumoniae carrying blaCTX-M-15

(n = 8) or MDR E. coli carrying diverse blaCTX-M genes
(n = 19, including n = 6 blaCTX-M-14, n = 5 blaCTX-M-15,
n = 3 blaCTX-M-27, n = 3 blaCTX-M-62, n = 2 blaCTX-M-24--

like). Carbapenemase genes were rare: two patients had
wound or tissue infections with K. pneumoniae ST231
carrying blaOXA-48, one of whom was also colonised by
K. pneumoniae ST231 with blaOXA-48. A third patient
was colonised with S. marcescens carrying blaIMP-4. One
of the patients with K. pneumoniae ST231 wound /
tissue infections received a course of meropenem (this
patient also had 3GCR P. aeruginosa and 3GCR Burkhol-
deria cenocepacia infections), while the second received
meropenem, ciprofloxacin and tigecycline. The S. mar-
cescens rectal colonisation episode was not treated.
Most VRE isolates representing distinct episodes (n =

32, 91%) carried the vanB vancomycin resistance operon

and the remainder (n = 3, 9%) the vanA operon, which
confers resistance to vancomycin plus teicoplanin [32].
Additionally, 32 of these isolates (91%) were predicted to
be MDR due to the presence of genes conferring resist-
ance to tetracyclines and/or high-level resistance to gen-
tamicin, streptomycin and/or streptogramins.
We assessed species-specific infection rates amongst

patients testing culture-positive at baseline screening,
versus those testing culture-negative, for all species with
≥2 infections identified amongst patients with baseline
screening data (E. coli, K. pneumoniae, P. aeruginosa).
Infection rates were higher amongst baseline-culture-
positive patients, although the difference was statistically
significant only for K. pneumoniae and P. aeruginosa
(Table 1). There were few patients for whom WGS data
were available for isolates of the same species detected
in baseline screening and infections (two patients for
each species). For n = 2/2 such cases with K. pneumo-
niae (ST231, ST323) and n = 1/2 with P. aeruginosa
(ST357), the WGS data confirmed the infections were
caused by the colonising strain (0–7 pairwise SNVs),
whereas both E. coli infections were caused by different
strains to those detected on baseline screening swabs
(different STs; Table 1, Supplementary Results,

Table 1 Colonisation and infection episodes by species

Species Total colonisation episodes
(n baseline)

Infection episodes

Total Pt colonised with same
strain (n baseline)

Pt colonised at
baseline (%)

Pt not colonised at
baseline (%)

VRE

Enterococcus faecium 33 (25) 2 0 0 1 (0.4%)

3GC-resistant GN

Escherichia coli 36 (33) 10 1 (0) 2 (6%) 4 (2%)

Klebsiella pneumoniae 4 (2) 7 3 (2) 2 (100%) 3 (1%)*

Pseudomonas aeruginosa 3 (2) 2 1 (1) 2 (100%) 0 (0%)*

Enterobacter hormaechei 4 (3) 3 0 0 1

Klebsiella aerogenes 4 (1) 3 0 0 1

Enterobacter asburiae 0 2 0 0 1

Stenotrophomonas maltophilia 0 2 0 0 1

Serratia marcescens 1 (0) 2 0 0 0

Achromobacter xylosoxidans 0 1 0 0 1

Burkholderia cenocepacia 0 1 0 0 1

Citrobacter freundii 2 (2) 1 0 0 0

Citrobacter portucalensis 1 (1) 0 0 0 0

Enterobacter kobei 1 (0) 0 0 0 0

Escherichia marmotae 1 (1) 0 0 0 0

Klebsiella oxytoca 4 (4) 0 0 0 0

Morganella morganii 1 (0) 0 0 0 0

* p < 0.00005 for association between colonisation at baseline and infection with same species (proportion test). Distinct episodes of colonisation and infection
were defined as those with a unique combination of patient ID, specimen type, species and multi-locus sequence type. Colonisation episodes are expressed as
total detected and number detected at baseline (within first 2 days after ICU admission). Strains were defined on the basis of chromosomal SNVs (≤7 SNVs
between isolates). Pt patient, VRE vancomycin-resistant enterococci
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Additional File 1). A further two patients tested culture-
negative on baseline screening, but subsequently tested
positive on follow-up screening for the same strain that
was isolated from their diagnostic specimens (K. pneu-
moniae ST323, E. coli ST393; Supplementary Results,
Additional File 1).
Finally, we assessed strain level diversity and evidence

for nosocomial transmission using WGS and patient
data. The isolates were diverse, with 62 STs identified
amongst 3GCR-GN (24 amongst E. coli alone, including
n = 6 ST131 episodes, n = 4 ST10 and n = 3 episodes
each of ST38, ST69, ST176, ST648 and ST963) and 8
amongst VRE (including n = 14 ST796, n = 10 ST17 and
n = 5 ST203 episodes). Most 3GCR-GN STs (n = 48,
77%) were unique to a single patient; however, ten E. coli
STs (42%), two K. pneumoniae (40%), one K. oyxtoca
(33%), one Enterobacter hormachaei (17%) and five VRE
STs (63%) were found in multiple patients (Fig. 3a). We
defined probable strain transmission events on the basis
of chromosomal SNVs (see Methods, Fig. 3b-c). Using a
threshold of ≤20 SNVs for transmission of 3GCR-GN
(based on recent studies [10, 15, 16, 33]) we identified
six putative 3GCR-GN transmission clusters each involv-
ing 2–3 patients (maximum 8 SNVs, Table 2). With a
single exception, all patients within clusters were epide-
miologically linked (overlapping ICU stays or ≤ 14 days
between stays). Assuming one patient in each epidemio-
logically linked cluster was the index patient, the data
suggest only six (6.3%) 3GCR-GN episodes resulted from

recent nosocomial transmission (n = 2, 6.1% of infec-
tions; n = 4, 6.5% of colonisation). We also identified K.
pneumoniae ST323 isolates from two patients that dif-
fered by 45–47 SNVs, notably many fewer than the ma-
jority of comparisons (Fig. 3a) and within the range
expected for K. pneumoniae subject to wider circulation
in the healthcare network rather than those subject to
community-transmission [33]. Consistent with this, we
have previously shown that K. pneumoniae ST323 were
circulating more broadly within the hospital during the
study period [34].
Interpretation of VRE pairwise SNVs is more complex

because several healthcare-associated lineages are known
to be circulating in Melbourne and the regional hospital
network. Consequently, it is not uncommon to find
near-identical isolates in patients from different wards,
hospitals or cities without epidemiological links [7, 8,
15]. We therefore used a more conservative threshold of
≤3 SNVs to define putative recent VRE transmissions
(based on empirical distribution, see Supplementary Fig-
ure 3), which identified four clusters of 2–7 patients
each (Table 2). Two clusters were ST17 (both epidemio-
logically linked clusters, separated by ≥2900 SNVs) and
two were the locally emerged ST796 [35, 36] (clusters
separated by 4–6 SNVs, one was epidemiologically
linked). Assuming one patient in each epidemiologically
linked cluster is the index patient, we estimate eight
(28.6%) VRE episodes resulted from recent transmission
(n = 1 infection and n = 7, 21.2% of colonisation epi-
sodes). This should be considered a conservative esti-
mate considering the difficulty in distinguishing clusters,
particularly for ST796. Nevertheless, the transmission
burden is significantly greater than that estimated for
3GCR-GN organisms (OR = 4.3, 95% CI 1.2–16.6, p =
0.02 using Fisher’s Exact test).

Discussion
We have presented a holistic investigation of 3GCR-GN
and VRE colonising and infecting patients in an Austra-
lian ICU over a three-month duration. Approximately
17% patients were colonised by at least one 3GCR-GN
at ICU admission. Just under 40% of these isolates were
detected as ESBL-Enterobacteriaceae, hence our data are
comparable to reports from Europe where 7–13% of
ICU-admitted patients were colonised with these organ-
isms [17, 19, 37], and indicate a lower prevalence of
ESBL-Enterobacteriaceae colonisation than reported
among patients admitted to ICUs in China (32%) [38]
and Thailand (62%) [39]. Additionally, 9% of patients in
our study were colonised with VRE at ICU admission; a
similar prevalence to that reported recently for patients
in a hospital network in Singapore [40], higher than that
reported for patients admitted to an ICU in Sri Lanka
(2%) [41], and lower than reported in Brazil (15%) [42]

Fig. 2 Infections caused by 3GCR-GN organisms. Bar chart shows
the number of distinct respiratory, wound, blood, urine and other
infections by species as indicated in the legend. Distinct infections
were defined as those represented by unique combinations of
species, multi-locus sequence type, patient and specimen type
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and India (31%) [43]. Notably, the VRE colonisation
prevalence was lower than the 17.5% (95% CI 13.7–21.9)
indicated in a previous point-prevalence survey of pa-
tients in our hospital [44].

E. coli was the dominant colonising and infecting or-
ganism, and has been previously reported as the most
common cause of GN blood-stream infections in
Australia [5]. These findings are consistent with the

Fig. 3 3GCR-GN and VRE strain diversity. (A) Bar plot showing the number of unique multi-locus sequence types (STs) identified for each third-
generation cephalosporin-resistant Gram-negative (3GCR-GN) species plus vancomycin-resistant E. faecium (VRE) Bars are coloured as indicated in
the legend. (B, C) Pairwise single nucleotide variants (SNVs) for pairs of isolates assigned to the same ST for 3GCR-GN species (B) and VRE (C).
Grey points indicate pairs of isolates from the same patient (pt), pink and blue points indicate pairs of isolates from different patients for 3GCR-
GN and VRE isolates, respectively. Grey dashed lines indicate the SNV thresholds used to define putative transmissions (n ≤ 20 SNVs for 3GCR-GN
and n ≤ 3 SNVs for VRE, see Results for details). *E. hormaechei multi-locus sequence typing was performed using the Enterobacter cloacae
scheme, which covers both species
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notion of colonisation as a prerequisite for disease and
the logic of scales, whereby the most common colonisers
have more opportunities to cause infection and therefore
contribute the greatest burden of disease. Our data indi-
cated a higher prevalence of infections among patients
colonised at admission with 3GCR E. coli, K. pneumo-
niae or P. aeruginosa than those who were not colo-
nised. However, there were differences in the rate of
infection; just 6% for E. coli, versus 100% (n = 2/2 each)
for K. pneumoniae and P. aeruginosa. While these data
must be interpreted with caution due to the small sam-
ple size, we note that the trends are consistent with pre-
vious reports [9, 17] including a large study of 2386
patients colonised by ESBL-K. pneumoniae or ESBL-E.
coli, which found that the former were twice as likely as
the latter to develop an infection with the same organ-
ism (6.8% versus 3.2% [9]).
At the time of this study our hospital infection prevention

and control (IPC) policy stated that all patients known to
have a clinical VRE and/or carbapenemase-producing En-
terobacteriaceae (metallo-beta-lactamases only) infection or
colonisation were isolated and subject to contact precautions
during their hospital admission. Nevertheless, our WGS ana-
lysis identified four putative VRE transmission clusters (in-
cluding three that were epidemiologically linked) and
indicated that 21.2% of VRE episodes were attributable to
transmission. In contrast, we estimated that just 6.3% of
3GCR-GN episodes were attributable to transmission (21.2%
VRE vs 6.3% 3GCR-GN, OR 4.3, p = 0.0209), resulting from
six putative 3GCR-GN transmission clusters (all

epidemiologically linked). However, no specific IPC policies
were applied for patients known to be colonised or infected
with 3GCR-GN organisms beyond standard care.
The putative VRE transmission clusters involved ST17 and

ST796, which are considered healthcare-adapted lineages
and are widely distributed in Australia [5–8, 36, 45]. While
four of the six 3GCR-GN transmission clusters involved E.
coli, these included just four of 24 distinct E. coli STs, and
did not include the globally distributed ST131, ST10 or
ST38. This is consistent with a recent report showing that
these E. coli STs were commonly identified from patients in
other Melbourne hospitals, but rarely associated with noso-
comial transmission [15]. Hence our data adds to the grow-
ing evidence base [15, 18–20, 46] that ESBL-E. coli are
mainly spread in the community setting.
While the risk of ESBL-E. coli transmission in hospi-

tals may be low, there is emerging evidence that the risk
may be 2–4 times greater for other ESBL-Enterobacteri-
aceae such as K. pneumoniae and Enterobacter sp. [19,
20]. In our study, 2/11 (18.2%) ESBL-K. pneumoniae epi-
sodes were attributed to recent transmission, with one
additional episode attributed to broader transmission
within the hospital as reported previously [34]; however,
a larger sample size is required to make a definitive
comparison.
The inclusion of contemporaneous rectal screening

and clinical isolates is a key strength of this study, which
in combination with the breadth of species sampling and
use of WGS, has allowed high-resolution analysis of the
dynamics of AMR organisms in the ICU. Notably, the

Table 2 Putative nosocomial transmission clusters

# Organism Cluster size (n pt) Pairwise
SNVs

Days
between
pt. stays

Episodes
attributed to
transmission
(n total (n
very likely)) c

Genomic a Genomic + epi b

1 E. coli ST48 2 2 4 8 1 (0)

2 E. coli ST69 2 2 1 0 1 (1)

3 E. coli ST176 3 2 1–8 0–31 1 (1)

4 E. coli ST354 2 2 0 6 1 (0)

5 K. pneumoniae ST231 2 2 0–2 0 1 (1)

6 K. oxytoca ST340 2 2 0 0 1 (1)

7 E. faecium ST17 2 2 1 11 1 (0)

8 E. faecium ST17 7 7 0–2 0 6 (6)

9 E. faecium ST796 2 2 1 1 1 (0)

10 E. faecium ST796 3 0 1–2 20–62 0 (0)

Pt, patient; SNVs, single nucleotide variants
aPatient cluster identified by genomic analysis; ≤ 20 single nucleotide variants between isolates (Gram-negative species), or ≤ 3 single nucleotide variants between
isolates (E. faecium)
bPatient cluster identified by genomic analysis (as defined above) and supported by epidemiological data (≤ 14 days between patient ICU stays or
overlapping stays)
cNumber of colonisation and infection episodes likely or very likely attributed to transmission; likely, patient was part of the genomic cluster (as defined above)
with ≤14 days between the patient ICU stay and that of another patient in the genomic cluster; very likely, patient was part of the genomic cluster (as defined
above) and ICU stay overlapped with ≥1 other patient in the genomic cluster
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majority of putative transmissions we identified would
have been missed if not for the inclusion of rectal
screening. However, the study also has several limita-
tions: firstly, we were not able to screen all eligible pa-
tients, nor to follow our patients beyond the three-
month study period, thus we likely underestimate the
true burdens of infection and transmission. Secondly,
due to its short duration this study was underpowered
for the assessment of patient risk factors (e.g. recent sur-
gery or antibiotic use), which we expect to impact the
risk of infection and onwards transmission. Thirdly, our
focus on the ICU as a high-risk setting for HAI fails to
capture the additional burden of 3GCR-GN and VRE in
other wards. Finally, as noted above our assessment of
infection risk among patients colonised with 3GCR-GN
species other than E. coli was limited due to sample size.
Nevertheless, in combination with the small number of
existing reports our results highlight and contrast several
key features of 3GCR-GN and VRE dynamics, and the
importance of understanding species-specific risk(s).

Conclusions
Our data show that 3GCR-GN and VRE causing gut col-
onisation and infections in the ICU are highly diverse,
and that the most common AMR colonisers (VRE and
E. coli) do not necessarily pose the greatest risk to pa-
tients (in terms of incident infection, or onward trans-
mission) in comparison to other gut colonising species.
A more detailed assessment of species-specific risks (es-
pecially attack rate and risk of transmission) is needed to
guide the efficient use of rectal screening programs and
targeted approaches to IPC aimed at limiting the MDR
disease burden.
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