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Abstract 

Lassa fever (LF), a zoonotic illness, represents a public health burden in West African countries where the Lassa virus 
(LASV) circulates among rodents. Human exposure hinges significantly on LASV ecology, which is in turn shaped 
by various parameters such as weather seasonality and even virus and rodent‑host genetics. Furthermore, human 
behaviour, despite playing a key role in the zoonotic nature of the disease, critically affects either the spread or control 
of human‑to‑human transmission. Previous estimations on LF burden date from the 80s and it is unclear how the 
population expansion and the improvement on diagnostics and surveillance methods have affected such predictions. 
Although recent data have contributed to the awareness of epidemics, the real impact of LF in West African commu‑
nities will only be possible with the intensification of interdisciplinary efforts in research and public health approaches. 
This review discusses the causes and consequences of LF from a One Health perspective, and how the application of 
this concept can improve the surveillance and control of this disease in West Africa.
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Background
The Coronavirus Infectious Disease 2019 (COVID-19) 
emergence since December 2019, and the subsequent 
pandemic, has highlighted that over recent decades 
changes in human and domestic animal demograph-
ics and their associated impacts on the environment 
have fundamentally affected ecosystem dynamics [1]. 
The One Health concept and its 12 “Manhattan Princi-
ples” [2], elaborated in the 2000s, have been warning 
stakeholders how anthropic actions affect global health 
and the urgency of measures to prevent Emerging Infec-
tious Diseases (EIDs) and, ultimately, a pandemic. Path-
ogenic viruses, bacteria and fungi continue to evolve 
under changing natural selection pressures and have 

become an existential threat, with a huge socio-eco-
nomic burden, such as the HIV and COVID-19 pandem-
ics. Moreover, humanity is still struggling with endemic 
high-consequence pathogens (e.g. Plague, Hantaviruses), 
which seem invisible for most of the world and are 
increasingly neglected in the face of novel pandemics.

There is an epidemiological link to domestic animals 
and/or captive wildlife in food systems, farms or trade, 
which incubate or vector evolving pathogens and bring 
them into close contact with humans. Free-living ani-
mals (wildlife) are not typically a direct zoonotic source 
of human disease, except for rare cases when the wildlife 
has adopted a peri-domestic behaviour, exploiting food 
and habitat created by humans [3]. For instance, Lassa 
fever (LF) is a viral haemorrhagic infection for which 
the main reservoir is the Natal multimammate mouse 
(Mastomys natalensis), a now semi-domesticated Afri-
can rodent associated with human settlement in forested 
environments [4–6].
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The infectious agent of LF is the Lassa mammarenavi-
rus (LASV), an enveloped single-stranded RNA member 
of the Arenaviridae family [7]. Its genome is segmented 
into Small (3.4 Kb) and Large (7 Kb) RNA fragments. The 
L RNA segment encodes the viral polymerase (L protein) 
and a zinc-binding protein (Z). The S segment encodes 
the nucleoprotein (NP), and the glycoprotein precursor 
(GPC) which will be cleaved into the membrane pro-
teins GP1 and GP2 [8]. Both NP and GP1/GP2 proteins 
are the main targets for diagnostics and phylogenetics 
approaches.

This disease is endemic to West Africa with outbreaks 
reported from Nigeria, Sierra Leone, Liberia, Benin and 
Togo in recent years [9]. Nigeria, with annual outbreaks, 
continues to report the greatest number of cases in the 
region with peak incidence of LF cases reported in Janu-
ary to March [10]. However, the increased numbers may 
in part be due to the dramatic improvement in testing 
capacity under a dedicated program by the Nigerian Cen-
tre for Disease Control (NCDC) [11].

Zoonotic transmission of LF caused by spillover from 
the reservoir species is the primary driver of human cases 
of the disease, however, human-to-human transmission 
chains have been described [12–14]. These chains, while 
relatively uncommon, are typically associated with noso-
comial settings and many of these were related to a small 
number of ‘super-spreading’ events. Hence, the zoonotic 
origin of LF and its transmission requires a One Health 
approach with sustained commitment to its control. This 
review provides a One Health perspective of LF, outlining 
how human health, peri-domestic animal ecology (facili-
tated by the virus and rodent-host genetics) and environ-
mental factors affect outbreaks of this disease in West 
Africa.

Geographical distribution of Lassa fever
Lassa fever is endemic in several countries of West 
Africa, primarily the Mano River Region states of Sierra 
Leone, Guinea, and Liberia [15]. However, Nigeria con-
tinues to suffer the greatest burden of disease in terms of 
number of reported cases [16, 17]. Sporadic human cases 
of disease have been also reported from Togo, Benin 
Republic, Cote d’Ivoire, and Mali [18, 19].

Molecular epidemiology has so far revealed seven dis-
tinct lineages of the LASV, including four confirmed and 
three proposed lineages [20–24] suggesting localisation 
of infection around specific human-rodent communities 
and socioecology. Lineages I, II and III are found in Nige-
ria [22]. Lineage I was described from the surrounding 
areas of Lassa village in north-eastern Nigeria, where the 
first LF case was reported in 1969 but has not since been 
detected. Lineages II and III are common in southern 
and north-central Nigeria respectively [22]. Lineage IV, 

which includes the Josiah strain, comprises the subclades 
IVa and IVb, predominant in the Mano River Union area 
(Sierra Leone, Liberia and Guinea) [20]. In Sierra Leone, 
LF is endemic in the Eastern Province, particularly Ken-
ema District [24], but has been reported in almost all 
districts of the country. In Liberia, LF is predominant in 
the Lofa, Grand Cape Mount and Nimba Counties [13], 
but several other counties have had cases of LF in the 
recent past [13, 24, 25]. Lineage V is a proposed lineage 
for LASV strains from Côte d’Ivoire and Mali. The sixth 
lineage, associated with Nigeria, comprises the “Kako” 
strains, while the seventh proposed lineage is linked to 
Togo [20].

Increasing numbers of reported cases in the West 
African endemic region has raised concerns over the 
export of LF to countries outside the region [7]. From the 
first case in 1969 until 2020, at least 35 exported cases 
of LF have been reported. These cases were exported 
from seven West African countries to nine countries in 
Europe, Asia, South Africa and North America [21, 26] 
and several individuals have been repatriated due to the 
risk of LF transmission during outbreaks in endemic 
areas, or exposure during medical procedures [27, 28].

It is noteworthy that LF cases exported from West 
Africa have been reported in various parts of the world. 
However, no local transmission has been recorded in 
the countries where the cases were identified [7, 19, 29]. 
Recent modelling work suggests that the countries out-
side of West Africa at greatest risk of importation of an 
individual with LF are the United States of America, 
United Kingdom, United Arab Emirates and South 
Africa. In models of the risk of disease export, the major-
ity (61%) of simulated outbreaks had no exported cases, 
with a single imported case in 30% of simulations [30]. 
These simulations are sensitive to the total number of 
annual cases and the peak number of cases during sea-
sonal outbreaks. This work did not incorporate the age or 
socio-economic position of individuals infected with LF 
in risk calculation.

Rodent dynamics and Lassa fever outbreaks
Delineating LASV occurrence and lineage assortment in 
rodent populations across West Africa is important for 
anticipating emergence at the regional level, but deter-
mining how strains of this virus circulate among several 
sites and localities within a specific hotspot can help 
chart transmission during outbreaks. One of the early 
studies on LASV microevolution in its natural reservoir 
[31] analysed 132 partial nucleoprotein sequences of 
LASV from M. natalensis trapped in 12 villages in the 
Faranah area Upper Guinea, over 12  years (Fig.  1). The 
investigators found that viruses circulating in a specific 
locality were diverse and polyphyletic to viruses from 
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neighbouring villages. Yet there were monophyletic clus-
ters formed by viruses from a village at specific points 
in time, indicating that the temporal and spatial pattern 
of LASV evolution in the natural reservoir was charac-
terised by a combination of stationary circulation within 
a village and virus movement between villages [31]. 
Extending this study in Faranah, it was observed that the 
majority of infected M. natalensis were trapped in only 
a few houses, and the LASV sequences from individu-
als within the same house were genetically more similar 
than LASV sequences from rodents captured in different 
houses of the same village. This suggests a predominance 
of human-to-human transmission in this particular area, 
rather than multiple rodent-to-human exposures [32].

Although whole viral genome sequencing is already a 
common practice for LASV diagnosed in humans [16, 
33, 34] the approach also needs to be adopted as a fea-
ture to enhance phylogenetic resolution in rodent stud-
ies. Indeed, an overriding aspiration in generating LASV 
sequences from rodents is to be able to link them to 
those from humans. In an early attempt at direct com-
parison, Olayemi et  al. found intriguingly that human-
derived LASV sequences from two highly endemic 
localities (Ekpoma in Nigeria and Kenema in Sierra 
Leone) were more ancient phylogenetically in relation 
to those detected in rodents from the same respective 
towns, indicating the possibility of reverse zoonosis in LF. 

The authors suggested that future studies in places like 
Ekpoma (which is situated within the Edo-Ondo hotspot 
of Nigeria, Fig. 1) should aim to link human and rodent 
data more directly at a finer scale. They also recom-
mended that longitudinal sampling regimes be supported 
by opportunistic rodent screening at home addresses 
where humans test LASV-positive [35].

Furthermore, indications of the seasonality of LF 
outbreaks were documented early on in the descrip-
tion of this disease [36]. Increased recognition of LASV 
cases and improved local testing capacity since the early 
2000s has provided further understanding of a seasonal 
link to zoonotic spillover events and outbreaks [37, 38]. 
Data from Guinea showed that in the dry season, when 
the food supply is restricted, M. natalesis tend to aggre-
gate within houses. However, the number of LASV-pos-
itive rodents was two to three-fold higher in the rainy 
season than in the dry season. Although transmission 
from rodents to humans occurs throughout the year, 
the increased risk of exposure to rodents’ contaminated 
excreta in the dry season potentially drives the higher 
rate of human LF cases [12, 39]. A similar effect has 
been observed with data from Irrua Specialist Teaching 
Hospital in Nigeria, where the number of LF cases and 
admissions were consistently higher in the dry season 
(January-March) throughout seven years [37]. Interest-
ingly, in Sierra Leone, two peaks of LF cases have been 

Fig. 1 LASV lineage distribution across West Africa in relation to rodent host species. Virus lineages appear in red. Rodent taxa are abbreviated as 
Mn Mastomys natalensis, Me Mastomys erythroleucus, Hp Hylomyscus pamfi; Musb Mus baoulei. Brackets toward the bottom describe the geographical 
ranges of Mastomys natalensis mitochondrial lineage A‑I (across West Africa) and A‑II (extending into Central Africa). Red boxes indicate examples of 
LASV hotspots mentioned in this review where fine‑scaled genetic studies have already begun
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reported in both dry (January–March) and rainy (June–
August) seasons [24, 40]. Although recent Ebola epidem-
ics, civil conflicts and poor house hygiene have been 
implicated as driving increased rates of LF cases [24], 
early observations also showed the lack of correlation of 
LF outbreaks and dry season in Sierra Leone [40].

The primary driver for LF seasonal pattern is proposed 
to be the rodent host. Reproduction of the multimam-
mate mouse occurs throughout the year with higher 
levels of fecundity closely tied to rainfall. Vertical trans-
mission of LF is predicted to occur as LASV can be found 
in animals of all ages, although horizontal transfer is 
likely the predominant route of infection [41]. A model of 
rodent reproduction and population abundance suggests 
peak population levels being reached between April and 
May [42], which would correlate with a peak prevalence 
of LASV in the rodents between March and April.

The precise location of the rodent host within the 
ecosystem has been observed to vary during the year 
dependent on the availability of food, with a general 
migration from agricultural settings to areas of human 
habitation during the dry season [43]. In Guinea, it has 
been shown that M. natalensis abundance increased 
within human habitations during the dry season [39]. 
In Nigeria, on the other hand, Mastomys spp. were cap-
tured mostly indoors throughout the year, with popula-
tion peaks occurring for M. natalensis at the height of the 
rains and for M. erythroleucus during the dry period [44]. 
Further, changes in human activity and behaviour may be 
simultaneously contributing to an increased incidence of 
LF [45]. Activities such as farming and forestry during 
the dry season may be exposing individuals to a greater 
level of risk of viral infection during these periods [46]. 
Additionally, activities that increase risk such as trapping 
and hunting rodents may also have seasonal variation 
that contribute to these observed patterns.

Therefore, understanding of seasonal dynamics of LF 
may lead to greater rates of testing or increased clini-
cal vigilance of the presentation of this disease in areas 
where it is known to be endemic [47]. For example, test-
ing capacity and clinician education have been dramati-
cally increased by the NCDC. This expansion in testing 
capacity in Nigeria likely explains the year-on-year 
increase in reported LF cases [11]. Despite this, the sea-
sonal differences in cases remain, suggesting a true phe-
nomenon that requires further investigation.

The effect of future changes on the frequency of out-
breaks and the impact of climate and land-use change on 
seasonality is even less clear. Human populations in West 
Africa continue to grow at an annual rate of 2.7% [48] and 
despite increasing urbanisation [49], large numbers of the 
population will remain at risk of LF outbreaks. Increas-
ing agricultural intensification and use of monoculture 

practices may lead to an increased abundance of gener-
alist rodent pest species such as the reservoir species of 
LASV [50]. Livestock production and domestic animals 
such as dogs and cats may have a role in driving outbreaks 
if they can act as hosts for LASV. Currently, no system-
atic testing of domestic animals has been performed. Cli-
mate and land-use change in the West African region are 
modelled to lead to intensification and a northward shift 
of the monsoon system [51] which could lead to a greater 
abundance of generalist rodent species. Together, these 
factors could continue to drive and amplify the observed 
seasonal outbreaks of LF in the region.

Lassa mammarenavirus reservoirs
LASV was isolated from peri-domestic rodents for 
the first time in 1974, during an LF outbreak in Sierra 
Leone. The virus was isolated from the Natal multimam-
mate mouse (Mastomys natalensis) trapped in residents’ 
houses and surrounding gardens and fields [52]. LASV 
rodent-to-human transmission occurs directly when 
humans are exposed to rodent fluids or indirectly through 
exposure to foodstuff and surfaces contaminated with 
rodent excreta [53]. Rodent urine has been suggested to 
be a major risk for human infections [54]. Although M. 
natalensis was first described in South Africa, it is now 
known to be the most widespread rodent species across 
sub-Saharan Africa [55–58]. They are rodents with usu-
ally 8 to 12 pairs of nipples (Fig. 2); hence the common 
name ‘multimammate’ which means many-breasted 
mouse [58]. Mastomys spp. occur in many types of habi-
tat. They breed frequently, produce large numbers of 
offspring, and are numerous in open grassland, mixed 
savannah and clearings in forests. They are also highly 
adaptable and can be expected to display variation in 
their ecology and behaviour, thriving in agricultural fields 
and human dwellings [59, 60]. Due to their behavioural 
plasticity, Mastomys are also considered commensals and 
are often captured indoors [60].

LASV has also been detected in the Guinea multi-
mammate mouse (Mastomys erythroleucus) in certain 
localities within Nigeria and Guinea, the African wood 
mouse (Hylomyscus pamfi) in Nigeria, and the Pygmy 
mouse (Mus baoulei) in Ghana and Benin, suggesting 
these species as viable hosts of the virus [61–63]. Other 
species may have been erroneously named as reservoirs 
as a result of uncertain taxonomy [64]. There are also 
small mammals that, at some point, showed seropositiv-
ity but have consistently tested negative for active LASV 
infection in multiple investigations over the years. It is 
believed that these taxa, such as Dalton’s mouse (Prao-
mys daltoni) and Olivier’s shrew (Crocidura olivieri), are 
involved in incidental, spill-over infections because of 
their proximity to LASV-positive M. natalensis [65, 66].



Page 5 of 12Arruda et al. Ann Clin Microbiol Antimicrob           (2021) 20:29  

A One Health approach to understanding the ecol-
ogy of LF will lead to an improved ability to assess the 
zoonotic risk to humans. Fundamental to this ecology is 
an accurate depiction of the occurrence of various LASV 
lineages and strains circulating among reliably identified 
rodent species and subtaxa. Currently, molecular analy-
sis has provided a broad regional picture of which LASV 
lineages are distributed across key rodent populations 
within West Africa (Fig. 1) [67]. This has helped map out 
hotspots of rodent-borne circulation with the potential 
for emergence.

M. natalensis is distributed all over SSA. Across West 
Africa, it co-occurs with M. erythroleucus. Questions 
remain concerning why the virus is endemic only in 
certain populations of these Mastomys rodents within 
West Africa. Mitochondrial Cytochrome b DNA is fre-
quently used for species and lineage level designations 
among murid rodents across Africa and it has also been 
the marker of choice for the molecular taxonomy of 
small mammals in many of the LASV ecology studies 
[68]. Although LASV has not yet been detected in M. 
natalensis in Central Africa, LASV-positive individuals 
detected within Nigeria indicate that mitochondrial line-
age A-II of this rodent, which extends from Nigeria into 

Central Africa (Fig.  1), is not immune to infection [69]. 
Mitochondrial lineages, nevertheless, have not been able 
to explain the patchy occurrence of LASV in Mastomys 
populations across West Africa.

Lalis et  al. (2012) used nine unlinked microsatel-
lite loci to assess M. natalensis population structure 
in Guinea. They demonstrated that populations of this 
rodent in the Faranah and Denguedou areas belonged 
to a distinct clade compared to those from other parts 
of the country. Within this clade, however, they were 
unable to provide genetic evidence that differenti-
ated LASV-positive rodents from the LASV-negative 
ones [70]. Future studies, combining neutral micros-
atellites with immunogenetic markers such as those of 
the Major Histocompatibility Complex (MHC), could 
provide added insight regarding the role of adaptive 
genetic diversity in the susceptibility of rodents to 
LASV infection [71]. Such investigations would illus-
trate the potential (beyond factors like kinship and geo-
graphic proximity to other virus-positive rodents) that 
a Mastomys individual constitutes a competent LASV 
host. MHC genes code for cell surface glycoproteins 
that recognise, bind to, and present foreign antigens 
to T cells, initiating the appropriate immune response. 

Fig. 2 Different aspects of a Mastomys natalensis rodent (a–d). Speciments were captured during a LASV ecological survey in Nigeria, 2015. Images 
c and d show the distinctive high number of nipples (8–12 pairs) present in mature, lactating females. Photo credits: Olayemi et al., Nigeria, 2015
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MHC is the most variable part of the genome among 
vertebrates. It is believed this diversity is important for 
hosts to recognise antigens presented by a wide array 
of pathogens and parasites. The MHC also plays a part 
in sexual mate selection, promoting genetic diversity in 
subsequent generations [72]. MHC class I loci present 
antigens from intracellular pathogens (such as viruses) 
while MHC II binds to those from extracellular para-
sites, although certain studies have sought to compare 
MHC II genetic constitution to virus occurrence in 
rodents [71, 73].

MHC typing of key Mastomys populations across 
West Africa could be carried out together with concur-
rent neutral microsatellite characterisation to tease apart 
patterns caused by genetic drift from those shaped by 
pathogen-mediated selection. This would improve our 
understanding relevant to topics such as whether there 
are specific MHC alleles or MHC supertypes (i.e., alleles 
with similar characteristics in the functional important 
antigen-binding sites) associated with LASV infection 
status [74]. For instance, several MHC II DQA alleles 
were detected to be likely involved in the susceptibility 
or the resistance of bank vole rodents Myodes glareolus 
to Puumala and Cowpox viral infections [75]. In fact, 
genotyping of MHC II DQB exon 2 in M. natalensis 
revealed 21 different alleles with strong signals of balanc-
ing selection on the peptide-binding sites, showing that 
DQB seems to be a good marker to investigate pathogen-
driven selection [76].

Another point of interest would be to find out whether 
there is trans-species polymorphism between M. natal-
ensis and M. erythroleucus concerning alleles connected 
to LASV infection status. Phylogenetic analysis of MHC 
II DRB variability in two murid rodents which are sym-
patric in European forests, the Wood mouse Apodemus 
sylvaticus and the Yellow-necked mouse Apodemus flavi-
collis, showed that the sequences did not separate accord-
ing to species, consistent with trans-species evolution of 
the MHC in these taxa [77].

A broad overview of LASV lineage patterns in rodents 
across the West African region now allows us to conduct 
more intricate investigations on spatio-temporal strain 
circulation within specific hotspots, and to more closely 
compare virus sequences between rodents and humans. 
Accomplishing this will involve the continuation of 
intensive, longitudinal rodent sampling in localities 
where this has already begun, supplemented by ad hoc 
trapping to fill in the gaps where connectivity to human 
data is required. When possible, whole-genome sequenc-
ing of the LASV to enhance phylogenetic rigour should 
be effected. Furthermore, beyond mitochondrial DNA 
to designate rodent species, additional markers should 
be typed; such as neutral microsatellites for population 

structure and MHC to throw light on susceptibility to 
LASV.

Lassa fever burden in West Africa
A study conducted in Sierra Leone and published in 1987 
evaluated the LASV serology in humans and rodents. The 
study estimated that annually, 100,000–300,000 people 
are infected with LASV with around 5000 deaths in West 
Africa [53]. However, in the last 35 years, the population 
of Sub-Saharan Africa (SSA) has doubled [78] and crop 
production has intensified in the entire region resulting 
in severe damage to forests and ecosystems [79]. Updated 
models of LASV infection have estimated an annual inci-
dence of 897,700 across West Africa with Nigeria, Ghana 
and Ivory Coast having the greatest number of infections 
and Sierra Leone, Nigeria and Guinea having the great-
est rate per 100 people [80]. Although is still unclear 
how this anthropic action will impact on LF ecology, the 
estimated burden of LF is currently being investigated 
through a grant awarded in 2019 by the Coalition for Epi-
demic Preparedness Innovations [81].

Approximately 80% of LF infections are asympto-
matic, while symptomatic cases present with a variety of 
symptoms ranging from milder flu-like symptoms, fever, 
muscle aches, sore throat, nausea, vomiting, chest- and 
abdominal pain, to severe haemorrhagic manifestations 
of the liver, spleen or kidneys which often result in death 
[8, 82]. The survivors of LF also have a high risk of devel-
oping neurological sequelae such as encephalopathy, 
paraparesis and, in approximately one-third of the cases, 
sensorineural hearing loss [83–87].

Studies have suggested that LF outbreaks are likely 
due to independent zoonotic transmission events from 
infected rodent hosts, whilst approximately 20% of cases 
result from secondary human-to-human transmission 
especially through nosocomial transmission in hospi-
tal settings [15, 88]. Figure  3 depicts recent outbreaks 
reported by the WHO Regional Office for Africa, show-
ing that Nigeria and Liberia have had ongoing LF out-
breaks since 2017 [89–92]. Although Nigeria presents 
the largest burden in the number of cases, Liberia shows 
a higher case fatality ratio. This is potentially due to the 
efforts of the NCDC in improving LF diagnostics, allow-
ing early treatment and healthcare management [11], 
in addition to many cases from Liberia and other coun-
tries not being detected or reported. For instance, the 
Program for Monitoring Emerging Diseases (ProMED, 
supportedby the International Society for Infectious Dis-
eases (ISID) identified LF cases in Togo and Burkina Faso 
that were not included in WHO Afro reports [93].

Hence, the number of LF cases is challenging to accu-
rately determine, as diagnostics tests are crucial for dif-
ferential diagnoses [37, 88]. Asymptomatic or mild LF 
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cases usually remain undiagnosed or misdiagnosed and 
unreported. These individuals may show symptoms 
that are similar to other endemic diseases and often do 

not seek formal medical attention. Furthermore, from 
the symptomatic cases who seek health care services 
only 20% may be captured by the surveillance systems. 

2017 2018 2019 2020
0
5

10
15

50

100
1000
2000
3000
4000

00

7

000

7

000

7

0

985

3276

812 1177985

3276

812 1177985

3276

812 1177

70

28

79

51
70

28

79

51
70

28

79

51

00 0 100 0 100 0 10

13

000

13

000

13

00

N
um

be
ro

fc
as

es

2017 2018 2019 2020
0
5

10
15
20
25
50

100
150
200
250
300

00
4

000
4

0

126
166 181

241

126
166 181

241

21

14

20 2221

14

20 22

00 0 100 0 100 0000 00

N
um

be
ro

fd
ea

th
s

2017 2018 2019 2020
0

20

40

60

80

100

00

57.1

0

12.8
5.1

22.3 20.5
30.0

50.0

25.3

43.1

00 0

100.0

0 000

C
as

e
fa

ta
lit

y
ra

tio
%

Benin Guinea Liberia Nigeria Sierra Leone
Fig. 3 Lassa fever outbreaks from 2017 to 2020 eported by the WHO Regional Office for Africa. Nigeria and Liberia have had ongoing LF outbreaks 
since 2017. Although Nigeria reported a significantly higher number of cases, Liberia presented a proportionally higher number of deaths. High 
case fatality ratios for Sierra Leone and Guinea might be biased due to the low number of cases reported



Page 8 of 12Arruda et al. Ann Clin Microbiol Antimicrob           (2021) 20:29 

A fraction of the cases is missed due to atypical clinical 
presentation of the disease and lack of diagnostic capac-
ity [19, 88, 94, 95]. LF is responsible for up to 10–16% 
of annual hospital admissions in some regions of Sierra 
Leone and Liberia [88, 96]. In Nigeria, a study evaluating 
admission and deaths among adults in a tertiary health 
facility and treatment centre showed that the proportion 
of admissions associated with LF increased ten-fold (0.3–
3.4%) between 2001 and 2018 [37].

West Africa peri-urban areas have been witnessing an 
annual increase in the number of LF cases [19, 25, 37, 
97–99]. A review of 102 outbreaks of the human disease 
reported a median seroprevalence of 13% in the commu-
nities studied. The study also reported a heterogenous 
seroprevalence despite the magnitude of the infection 
rate, including countries with fewer reported cases of the 
disease [100]. Systematic sampling to detect seropreva-
lence across the endemic region is currently planned but 
not yet completed [81]. A retrospective study performed 
on 675 samples obtained from suspected LF patients at 
the Kenema GovernmentHospital Lassa Diagnostic Lab-
oratory (Sierra Leone) between 2007 and 2014 identi-
fied a seroprevalence of 50.2% [101]. A study carried out 
in Mali, following the first diagnosis of LF in a foreign 
national in 2009, provided evidence of ongoing transmis-
sion, where anti- LASV IgG seroprevalence ranged from 
14.5 to 44% in three studied communities, even though 
no previous case of LF has been reported [102, 103]. In 
Liberia, the prevalence of antibody against LASV has 
been found to range from 15 to 20% [25].

The impact of LF in West Africa is believed to be 
underestimated and compounded by a paucity of data in 
many countries [37]. The case fatality ratio (CFR) from 
recent outbreaks in Africa, showed a mean CFR of 15% 
(Fig.  3), similar to the overall CFR of 1–15% shown in 
available epidemiological studies [10, 98, 104]. Although 
CFR tends to be higher among hospitalised patients, a 
study from a Nigerian hospital between 2001 and 2018 
has shown a decline in the annual CFR from 94 to 15% 
[37].

Human-to-human transmission is most pronounced 
in healthcare settings, resulting in healthcare work-
ers (HCW) having a high risk of infection and mortality 
[25, 29, 105, 106]. In the Nigerian LF outbreak in 2018, 
this occupational group represented 8% of all confirmed 
cases [25, 96, 105]. Atypical clinical presentation, low-
suspicion of viral haemorrhagic fevers among those pre-
senting to hospital, limited experience of LF specifically, 
inadequate availability of personal protective equipment 
and poor infection prevention and control practices are 
some of the factors associated with HCW infection. Con-
sequently, HCWs caring for individual LF patients may 
reduce direct contact with patients, compromising these 

patients’ management and influencing disease-associated 
morbidity and mortality [106, 107].

A common complication/sequelae of LF is sensorineu-
ral hearing loss (SNHL), although its the prevalence and 
impact in endemic regions may be underestimated. Stud-
ies have shown that approximately one-third of survivors 
suffer from SNHL [37, 86]. Hearing loss has a socio-eco-
nomic impact on survivors and public health, especially 
in endemic countries with limited capacity and resources 
for the support of individuals with sensory difficulties.

Treatment costs for LF infection may stretch the lim-
ited financial resources of patients who typically come 
from lower socio-economic positions within the com-
munity in endemic regions [11]. Prevention and control 
of LF would therefore significantly reduce the burden 
placed on those most affected. The public response to 
LF outbreaks is often a challenge to local authorities and 
national and international support is often required dur-
ing a large outbreak [98, 108]. Thus, LF remains a pub-
lic health challenge requiring continuous management 
effort by all stakeholders.

Conclusions
LF infection may be considered a neglected tropical dis-
ease due to its localised occurrence in West Africa. How-
ever, its morbidity and mortality in the region represent a 
significant socio-economic and global health concern. In 
2018, LF was added to the “WHO Research and Develop-
ment Blueprint” portfolio, a global initiative for prepar-
edness and rapid research on severe emerging diseases. 
The strategy promotes research and development on lab-
oratory diagnostic tests, vaccines and treatment for epi-
demic threats [109]. A recent review reported the LASV 
vaccines under development, of which over 20 candi-
dates were under preclinical phase in 2019 [110]. On this 
direction, Coalition for Epidemic Preparedness Innova-
tions (CEPI) is currently promoting the development of 
six LASV vaccine candidates, two of which have entered 
phase I clinical trials: Themis Bioscience is testing a mea-
sles vector (MV) vaccine platform, while Inovio Pharma-
ceuticals is evaluating a DNA vaccine [111].

While a LASV vaccine is still unavailable, increas-
ing insight into LF ecology, particularly where LASV 
rodent hosts are concerned, can provide a more depend-
able assessment of zoonotic risk. In this regard molecu-
lar analysis as a tool has proven useful, driving a series 
of advances in the mapping of LASV occurrence, line-
age clustering and more accurate identification of rodent 
hosts [35]. Most of the findings so far have enabled virus 
and rodent genetic categorisation across the West Afri-
can region at the ‘lineage’ level. As the overall quantity of 
molecular sequences grows, this review addresses ave-
nues for future research connected with characterisation 
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at a finer scale. These lines of investigation are directed 
at determining rodent genotypes especially susceptible to 
LASV infection and delineating virus strain assortments 
across space and time to improve tracking of rodent-
human transmission and human-to-rodent transmission 
[35].

Furthermore, this review demonstrated that it is vital 
to incorporate system dynamics components in a broader 
One Health approach in order to identify appropriate 
interventions to control the critical driver of LF out-
breaks. The integration of interdisciplinary method-
ologies including virologists, clinicians, veterinarians, 
epidemiologists, ecologists among others has shown how 
interconnected are human actions, climate and reser-
voir behaviour and how each of them affects the emer-
gence and persistence of the disease in West Africa. Such 
approaches have also provided evidence and strategies 
that may be applied to restrain other zoonotic infections. 
Although humans are unable to control natural events 
associated with the (re)emergence of infectious diseases, 
embracing the responsibility of the anthropic impact will 
support well-elaborated and sustainable actions directed 
to prevent and control EID outbreak events.
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