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ABSTRACT Antimicrobial resistance (AMR) is becoming one of the largest threats to
public health worldwide, with the opportunistic pathogen Escherichia coli playing a major
role in the AMR global health crisis. Unravelling the complex interplay between drug re-
sistance and metabolic rewiring is key to understand the ability of bacteria to adapt to
new treatments and to the development of new effective solutions to combat resistant
infections. We developed a computational pipeline that combines machine learning with
genome-scale metabolic models (GSMs) to elucidate the systemic relationships between
genetic determinants of resistance and metabolism beyond annotated drug resistance
genes. Our approach was used to identify genetic determinants of 12 AMR profiles for
the opportunistic pathogenic bacterium E. coli. Then, to interpret the large number of
identified genetic determinants, we applied a constraint-based approach using the GSM
to predict the effects of genetic changes on growth, metabolite yields, and reaction
fluxes. Our computational platform leads to multiple results. First, our approach corrobo-
rates 225 known AMR-conferring genes, 35 of which are known for the specific antibiotic.
Second, integration with the GSM predicted 20 top-ranked genetic determinants (includ-
ing accA, metK, fabD, fabG, murG, lptG, mraY, folP, and glmM) essential for growth, while
a further 17 top-ranked genetic determinants linked AMR to auxotrophic behavior. Third,
clusters of AMR-conferring genes affecting similar metabolic processes are revealed,
which strongly suggested that metabolic adaptations in cell wall, energy, iron and nucle-
otide metabolism are associated with AMR. The computational solution can be used to
study other human and animal pathogens.

IMPORTANCE Escherichia coli is a major public health concern given its increasing
level of antibiotic resistance worldwide and extraordinary capacity to acquire and
spread resistance via horizontal gene transfer with surrounding species and via
mutations in its existing genome. E. coli also exhibits a large amount of metabolic
pathway redundancy, which promotes resistance via metabolic adaptability. In this
study, we developed a computational approach that integrates machine learning
with metabolic modeling to understand the correlation between AMR and metabolic
adaptation mechanisms in this model bacterium. Using our approach, we identified
AMR genetic determinants associated with cell wall modifications for increased per-
meability, virulence factor manipulation of host immunity, reduction of oxidative
stress toxicity, and changes to energy metabolism. Unravelling the complex interplay
between antibiotic resistance and metabolic rewiring may open new opportunities
to understand the ability of E. coli, and potentially of other human and animal
pathogens, to adapt to new treatments.
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Antimicrobial resistance is a major threat to global health. Worryingly, a growing number
of pathogens exhibit an extraordinary capacity for acquiring new antibiotic resistance

traits in the bacterial population worldwide (1). New multidrug resistance mechanisms have
emerged and spread globally, resulting in current treatments becoming less effective against
common bacteria that cause severe and often deadly infections. Consequently, the develop-
ment of new drugs and novel treatment strategies is urgently needed (2, 3).

The opportunistic pathogen Escherichia coli plays a major role in the antimicrobial
resistance (AMR) global health crisis. First, the ability of E. coli to acquire resistance via
single nucleotide polymorphisms (SNPs) in its existing genome (4–7) and via acquisition of
resistance genes through horizontal gene transfer (HGT) from surrounding species (8–10)
has resulted in increased levels of resistance to many antibiotic classes, including penicillins,
carbapenems, cephalosporins, fluoroquinolones, aminoglycosides, and tetracyclines (11–15).
Second, the ease of its transmission from humans and environmental sources has resulted
in alarming numbers of multidrug-resistant E. coli strains being reported worldwide (16, 17).
Third, the ease by which the bacteria can transfer genetic material via HGT, combined with
the bacterium’s ability to colonize different environments, including the gut where it has par-
ticularly close interaction with many other species, allows E. coli to act as a reservoir of AMR
genes for other opportunistic pathogens, while also acquiring further resistance (18–21). For
these reasons, the World Health Organization (WHO) has recently classified E. coli as a critical
priority pathogen for which the development of a new treatment is high priority (22).

Recent advances in data generation and data mining, combined with machine
learning (ML), have led to invaluable results in the identification of specific genomic
markers which could be used to effectively predict resistant strains and to detect AMR
genes (23–30). Most of these methods work to identify known AMR mutations giving
rise to phenotypic resistance. This has great potential for fast diagnostic evaluation of
bacteria compared to laboratory methods. Furthermore, ML-based approaches offer
further powerful opportunities compared to conventional methods, as they allow for
the genome-wide identification of truly novel features (i.e., k-mers and SNPs) ranked
on their strength of correlation with the resistance phenotype. Recently, several studies
have used these approaches (29, 30), which not only allow the identification of genes
with known functional relationship with the resistance phenotype but also allow the
identification of genes which have no prior association with a specific resistance phe-
notype. This creates a path for generating nonintuitive testable hypotheses about the
association of antibiotic resistance to a wider repertoire of genes, including deletions
and functional mutations altering metabolism, and therefore provides a significant
advantage in comparison with the conventional use of annotated gene databases.

Recent findings have shown the interconnectivity of antibiotic resistance with metabolism
and emphasize the importance of considering this relationship in the design of new antibiotic
regimens (31–33). Through its ease of HGT, E. coli has been able to adopt a highly flexible car-
bon and energy metabolism for adaptation against stresses in niche environments (34, 35).
For this reason, the bacterium is an ideal organism for investigating the interplay between
AMR and metabolic adaptation mechanisms. Connecting antimicrobial genes and specific
mutations and alleles to metabolic phenotypes, however, still remains a significant challenge
(36, 37). Black-box ML predictions lack biological interpretation of the genetic determinants
(30), and therefore, previous methods have often not accounted for the characterization of
new advantageous genetic variants occurring in targets beyond annotated drug resistance
genes (29, 38), therefore neglecting important metabolic adaptations that allow resistance
and tolerance to antibiotic stress (39–41).

A genome-scale metabolic model (GSM) offers a way of mechanistically evaluating the
genetic determinants identified using ML. A GSM is a computational model of metabolism,
which includes all known biochemical reactions and their corresponding gene-protein-reac-
tion (GPR) rules. The GPR rules provide important information linking genes to the reactions
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that are catalyzed by the enzymes they encode and provide a means of simulating the meta-
bolic system-level behavior of the bacteria to perturbations in the gene. While GSMs have
proven invaluable tools for predicting genotype-phenotype relationships (42), they lack the
power of machine learning algorithms (30). Recent studies have therefore been developing
new approaches that integrate the power of ML with GSMs to allow for a mechanistic inter-
pretation of the genetic associations discovered by machine learning, which offers a signifi-
cant advantage over ML approaches alone (30, 43).

In this study, we developed a computational solution integrating the discriminant
power of ML with GSM models to reveal the systemic relationships connecting the
genetic determinants of AMR to important metabolic evolutionary adaptations in E.
coli. Using our approach, first we were able to accurately predict AMR resistant and sus-
ceptible phenotypes against 11 out of 12 different antibiotics, as well as identifying
225 (35 of which matched the specific antibiotic class reported in AMR-related data-
bases) known AMR-conferring genes in 3,616 E. coli strains. Second, by elucidating the
effects of genetic discriminants on bacterial growth, metabolite yields, and biochemi-
cal fluxes using the GSM, we were able to relate genetic determinants to a number of
metabolic adaptation mechanisms, including reduced growth, alternative carbon
source utilization, changes to energy metabolism, iron metabolism, nucleotide metab-
olism, and modifications to cell wall metabolism.

RESULTS
Framework of the computational pipeline that combines machine learning with

genome-scale metabolic models. To identify the genomic features correlated with
the selected AMR phenotypes and to interpret the systemic relationships between
genetic determinants of resistance and metabolism, we developed a computational
pipeline that combines ML with genome-scale metabolic models (see Fig. S1 in the
supplemental material). A set of unique E. coli genomes for which AMR testing and
metadata were available from public databases was selected. To efficiently analyze the
AMR phenotypic variability that is likely to arise from a combination of SNPs and
changes in gene content, we used an integrated k-mer and SNP-based ML approach. A
gradient boosting classifier (GBC) (44, 45) was chosen as it is a powerful approach to
quickly and efficiently scan entire genomes against selected phenotypes, allowing for
the identification of arbitrary numbers of genomic features ranked on strength of cor-
relation with the antimicrobial-resistant and -susceptible phenotype. The ML approach
offers the opportunity to identify genes and/or mutations which, individually or in
combinations, feature a strong correlation with resistance to antibiotics. A set of
thresholds were applied to select only the top-ranked AMR genetic determinants
strongly contributing to the performance of the ML classifier. The interconnectivity of
antibiotic resistance, antimicrobial genes, and specific mutations and alleles to meta-
bolic phenotypes, as well as the identification of new advantageous genetic variants
occurring in targets beyond annotated drug resistance genes was determined using
the GSM (Fig. S1). Flux balance analysis (FBA), a constraint-based approach, was used
to predict the effects of the genetic determinants on the metabolic network.
Importantly, we considered the protein-coding regions only in the ML classifiers, and
therefore, the genetic variants are potentially increasing or decreasing enzymatic activ-
ity, or in some cases completely block the function of the gene. Here, we evaluated the
effect of each genetic determinant by blocking the flux through its corresponding
enzyme and assessed the propagation of this “loss of function” through the entire met-
abolic network. Specifically, we used the GSM to predict the effect of each genetic de-
terminant on bacterial growth, production of individual metabolites, and the feasible
flux range through individual reactions. Changes to metabolic phenotype capabilities
in each gene knockout model (i.e., reduction in growth rate, reduced metabolite pro-
duction or reduction in flux span through a reaction) were assessed using the wild-
type model of E. coli K-12 MG1655.

Genomic and metadata characteristics of the E. coli cohort. Our first goal was to
characterize the genetic content and diversity of E. coli strains. We selected a set of
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3,616 unique E. coli genomes for which AMR testing and metadata were available from
the Pathosystems Resource Integration Centre (PATRIC) (46).

Importantly, the genome sequences of these strains were all listed in PATRIC as
“good” quality assemblies, had less than 250 contigs, and were labeled as either “WGS”
(for whole genome sequenced) or “Complete” as the genome status in PATRIC. The
genomes have experimentally measured AMR phenotypes, which are annotated as ei-
ther “susceptible” or “resistant.”

These isolates included a wide variety of geographic locations (see Fig. S2a) and
AMR phenotypes for a diverse set of antibiotic classes, including penams (ampicillin),
carbapenems (meropenem), monocyclic beta-lactam (aztreonam), cephalosporins
(cefoxitin, cefepime, and cefuroxime), fluoroquinolones (ciprofloxacin and levofloxa-
cin), aminoglycosides (gentamicin and tobramycin), diaminopyrimidines (trimetho-
prim), and tetracyclines (tetracycline). The number of resistant strains for each of the
12 individual antibiotics ranged between 427 (levofloxacin) and 2,600 (ciprofloxacin) of
the 3,616 strains (see Fig. S2b).

Next, the pan-genome was extracted for the selected strains using the default parameters
in Roary version 3.13.0 (47), which classified the catalogue of annotated genes as either core
(i.e., occurring in.99% of strains) or accessory (i.e., occurring in,99% of strains).

k-mer-based genomic feature selection through a gradient boosting classifier
model identifies AMR-conferring genes. The next goal of this analysis was to identify
features in the genome sequence of each isolate which strongly correlated with resist-
ance or susceptibility to each of the 12 antibiotics described above. To this aim, we
implemented a gradient boosting classifier model for each antibiotic studied. DNA seg-
ments (k-mers) of 13 bp long were used as features in the classifiers, with the AMR phe-
notype used as the model labels (resistant or susceptible). For each classifier, 10,000
features were selected based on the chi-square test. We used the performance metrics
accuracy, area under the receiver operator characteristic curve (AUC), precision, and
recall to evaluate each model. A synthetic minority oversampling technique (SMOTE)
was used to reduce the impact of unbalanced classes in the antimicrobial label groups
and achieve robust classification results. The performance metrics were calculated as
the mean of 50 simulations (Fig. 1). The performance metrics for the 12 antibiotics
ranged from 90% to 99% for accuracy, 75% to 98% for precision, 62% to 95% for recall,
and 88% to 98% for AUC. All antibiotics except meropenem and cefuroxime achieved
an AUC of.95%. Features were selected from the remaining 10 AMR classifiers based
on this AUC threshold.

The maximum importance in the 50 runs was captured for each k-mer. To identify
important genes, the k-mers with a maximum importance score greater than 0 for
each antibiotic model (as assigned by the GBC), were cross-referenced to the pan-ge-
nome of the 3,616 genomes. The identified k-mers, their corresponding genes, and
maximum importance scores obtained by the GBC are shown in Table S1 and Fig. S3 in
the supplemental material. When mapped to the CARD (48) and MutationDB databases
(49), 84 unique AMR genes were identified in the top 10% of features (ranked accord-
ing to the maximum weight found in the 50 runs), 25 of which had evidence of the
AMR gene for the specific antibiotic class (Table 1).

SNP-based machine learning approach uncovers additional and different AMR
genetic determinants. Together with the k-mer-based approach, we also analyzed
the contribution of SNPs to the acquisition of drug resistance phenotypes by using
them as features in a ML approach to find correlations with resistance or susceptibility
to specific antibiotics. The variant sites (SNPs) in the protein-coding genes of the core
genome of the pan-genome were identified using the SNPsites tool (www.github.com/
sanger-pathogens/snp-sites) and used as the features in the GBC model for fitting AMR
labels. A synthetic minority oversampling technique was applied to oversample data of
the minority class, compensating for unbalanced classes. The performance metrics
were calculated as the mean of 50 simulations (Fig. 2). Performance metrics were calcu-
lated for each model as the mean of 50 simulations. The performance metrics for the
12 antibiotics ranged from 75% to 98% for accuracy, 75% to 99% for precision, 71% to

Pearcy et al.

July/August 2021 Volume 6 Issue 4 e00913-20 msystems.asm.org 4

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 2

6 
A

ug
us

t 2
02

1 
by

 3
1.

11
1.

88
.2

43
.

http://www.github.com/sanger-pathogens/snp-sites
http://www.github.com/sanger-pathogens/snp-sites
https://msystems.asm.org


98% for recall and 75% to 98% for AUC. The best predicted antibiotic was ciprofloxacin
with a mean accuracy of 98% (61%), precision of 99% (61%), recall of 97% (61%), and
AUC of 98% (61%). This suggests that SNPs in ciprofloxacin may have significant impli-
cations for the evolution of resistance, which is consistent with the study of K.
Bhatnagar and A. Wong (50). The levofloxacin and meropenem models also achieved
high performances, with an AUC of.95%.

The maximum importance in the 50 runs was captured for each SNP. To understand
the relationship between AMR phenotype and genotype, we cross-referenced the
SNPs that acted as predictors for AMR phenotype for each antibiotic to the pan-ge-
nome for each model data set and identified the corresponding genes. The identified
SNPs, their corresponding genes, and the maximum importance scores obtained by
the GBC are shown in Table S2. Importantly, the SNP-based approach could identify
additional AMR genes that were not identified by the k-mer-based approach. By com-
parisons with the CARD and MutationDB databases, we identified 146 unique AMR
genes associated with at least one antibiotic (Table 2) that were in the top 10% of fea-
tures (ranked according to the maximum feature importance in the 50 runs). Out of
these 146 genes, 8 had evidence in the database of the AMR gene for the specific anti-
biotic class (Table 2). Note, however, that the MutationDB database does not include
entries for AMR genes for the levofloxacin and meropenem antibiotics.

The AMR-related signatures occur in targets beyond annotated drug resistance
genes and are associated with a wide range of metabolic systems. To understand
the systemic relationships connecting the identified AMR genetic signatures on a
mechanistic level and to elucidate their mechanistic effects beyond genes encoding
proteins targeted by drugs (i.e., positive selection in basal biosynthetic, regulation, and
repair pathways), we integrated the genetic determinants with the GSM iML1515 (51)
of E. coli K-12 MG1655. We limited our GSM analysis to the top 10% ranked genetic
determinants identified, for each antibiotic classifier with an AUC of .95%, by the k-
mer and SNP ML-based methods.

FIG 1 k-mer-based supervised machine learning prediction of antibiotic resistance signature profiles to 12
antibiotics in the E. coli cohort. Boxplots showing the prediction performance results of the gradient boosting
classifier for the 50 iterations. The performance indicators (y axis) are accuracy, precision, recall, and AUC.
Predictive models were generated to classify the resistance versus susceptibility profiles of 12 different
antibiotics (x axis).
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The ratio of metabolic genes to total genes corresponding to the top-ranked 10%
of important features was considerably higher for the SNP-based models than the k-
mer-based models (Fig. 3a and Fig. S3). The percentage of metabolic genes accounted
for in iML1515 from the top features, for example, ranged from 43% (ciprofloxacin) to
48% (levofloxacin) in SNP-based AMR models. The percentage of metabolic genes
identified by the k-mer-based approach and present in iML1515 were considerably
lower, ranging from 5% (tobramycin) to 19% (levofloxacin). A large number of genes
identified by the k-mer-based approach, however, were from the accessory genome,
which currently lack many functional annotations, as shown in Fig. S3 (see the
decrease in cyan bars to yellow bars). Additionally, since the GSM is based on the K-12
strain, accessory genes missing from this reference genome will not be included in the

FIG 2 SNP-based supervised machine learning prediction of antibiotic resistance signature profiles to 12 antibiotics in
the E. coli cohort. Boxplots showing the prediction performance results of the gradient boosting classifier of the 50
iterations. The performance indicators (y axis) are accuracy, precision, recall, and AUC. Predictive models were
generated to classify the resistance versus susceptibility profiles of 12 different antibiotics (x axis).

TABLE 2 Known AMR genes identified by the SNP-based AMR classifiersa

Antibiotic Known AMR genes to the antibioticb Known AMR genes associated with other antibioticsb

Ciprofloxacin gyrA**, parC**, parE*, typA*, hofN,
valS, pnp, gyrB

speB**, yegU*, ugpB*, ampH*, fhuB*, poxB*, gss*, hybB*, phoE, speC, bglX, ftnA, pphA,
yjfF, yjaB, yjjV, hofQ, yidC, prmB, hisF, plaP, truC, gcvP,mltC, rstB,mtlD, folA,metH,
rnd, waaA, upp, putP, yohK, aidB, yegQ, uvrB, trmH, ulaG, yqjG, cpxA, proC, uvrA, recJ,
hflX, tamB, cysK,metC, nrdB,mutM,mpl, osmF,mrcA, dcd, ravA, pepD, yejA, ribC, cstA,
yeiQ, nusA, hemA, yaiZ, hybF,mglA, ysaA, potA, hemY, yjjP, recG, yebY, aroC

Levofloxacin parC**, gyrA**, hemF*, recG*,mysB*,metC*, tktA*, aceF*, yicR*, blgX*, fabD*,mutS*,
chaA*,msyB*, rbsA*, gcvP, glnE, pcnB,mdtB, hisF, purT,menD, nikC, ftnA, frwB, yjiN,
nadR, cyoB, fumC,mdtD, citG, glgX, valS, ldcC, yebQ, adiA

Meropenem parC**, gyrA**, creC**, yrfF**, valS**, bglX**, fucI*, hisF*, parE*, plaP*, nikA*, pykF*, aidB*,
yjjG*, gcvP*, yjfF*, dsbD*, lepA*, thrA*, hybB, yccS,mdtB,murC, yegR, ravA, yjjV, yjjK,
mscM,menD,mutS,metF,mglA, yjcD, nuoL, nadR, rplL, dusB, yegU, sufB, nudI, ulaG,
ccmD, rnr, tamB, pdxA, dld, asd, ychO, soxR, yebK, nrdB, argD, baeS, glgX, osmF, trmI,
yegS, dnaX, yejH, waaC, fhuE, aroP, folA, ycbZ, rbbA, polA, recJ, speC

aGenes in the top 10% features, ranked according to their maximum contribution to the classifier, are presented.
bSymbols: **, gene was associated with feature in the top 10% features; *, gene was associated with feature in the top 50% features.
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analysis. Nevertheless, a total of 289 genes present in iML1515 were identified by com-
bining the genes that were associated with the top-ranked 10% of genes in the two
machine learning models, which motivates the integration with GSM analysis.

The contribution of genes from each AMR classifier ranged between 1 (tobramycin)
and 123 (ciprofloxacin), with a small number of genes overlapping between antibiotic
AMR models (Fig. 3b and Table S3). These 289 important metabolic genes were associ-
ated with a wide range of metabolic systems (Fig. 3c), including transport metabolism,
cofactor and prosthetic group metabolism, cell wall metabolism, alternative carbon
metabolism, nucleotide metabolism, and amino acid metabolism were particularly
prevalent across the diverse antibiotic classes (Fig. 3c and d). We performed gene path-
way enrichment tests using the 40 metabolic subsystems included in iML1515 and also
using the 352 gene-pathway annotation list downloaded from EcoCyc (52) (see
Materials and Methods). The significant pathways with a false discovery rate (FDR) of
less than 1% are provided in Table S3.

We found genes enriched in amino acid metabolism (histidine and arginine), the
pyrimidine salvage pathway, putrescine biosynthesis pathway, and transport metabo-
lism. Importantly, histidine metabolism has been found to play an important role in
stress resistance in E. coli (53, 54), while putrescine, which is a polyamine, has been
found to relieve the effects of oxidative stress in E. coli (55). Additionally, changes to
genes involved in the pyrimidine salvage pathway have been found linked to the pro-
duction of important biofilm components in E. coli (56), and therefore induce persist-
ence (57). Furthermore, transport reactions are known to play a role in multidrug resist-
ance by restricting the uptake of the antibiotic to reduce the toxicity (58, 59).

Next, using the GSM, we investigated the system-level effect of each important
gene on metabolism, beyond the pathways they are encoded for. To this aim, we
blocked the flux through reactions associated with an important gene (gene knockout)
and evaluated the metabolic processes that were affected. In doing so, we can infer
potential metabolic adaptation mechanisms that can be linked to a change in gene
function (i.e., downregulation, overexpression, or deletion).

GSM knockout analysis reveals genes related to growth limitation, auxotrophic
behavior, and alternative carbon source utilization. Next, to investigate further the
metabolic processes involved in adaptation to antibiotic stresses, we considered the
effects of the 289 genes on bacterial growth. The ability of bacteria to adjust their me-
tabolism to slow down growth has for example been found to be advantageous for
reducing the damage that occurs as a result of being the primary target of antibiotics
(60–62). Identifying those that are essential for growth, while also being highly impor-
tant in the ML models, may therefore provide a novel opportunity for selecting targets
with dual mechanism.

To this aim, the GSM was used to simulate the behavior of E. coli with mutations in
the 289 genes. Single gene deletions under rich environmental conditions were carried
out in iML1515 to mimic the effect of a “loss of function”mutation on the entire system
(see Materials and Methods). Importantly, we found a total of 20 gene knockouts that
were lethal to the bacteria. These genes show a high level of agreement with in vivo
gene essentiality results (63), as shown in Table 3. The lethal genes with the highest
contribution (i.e., associated with the top 50 features) to the ML models, and therefore
of greatest interest, included the following: accA and metK for ciprofloxacin, fabD and
fabG for levofloxacin, murG, lptG, and mraY for meropenem, folP for ampicillin and tri-
methoprim, and glmM for gentamicin. These genes play essential roles in fatty acid
elongation (fabD, fabG, and accA), peptidoglycan metabolism (murG, mraY, and glmM),
lipolysaccharide biosynthesis (lptG), S-adenosyl-L-methionine metabolism (metK), and
folate metabolism (folP) (Fig. 4). Importantly, folP, lptG, fabG, and murG are already
known AMR-conferring genes, as shown by Tables 1 and 2.

Next, we considered genes that were growth limiting when the bacteria were
grown on minimal medium with glucose as the carbon source. We found an additional
26 genes that were essential under these conditions (Table 3), which again showed
high agreement with the in vivo results (64). Under poor nutrient conditions of the
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FIG 3 Number of metabolic genes occurring in the 11 AMR classifiers. (a) Bar chart showing proportions of metabolic
genes compared to the entire set of genes found in each AMR model. The blue bars represent gene proportions from
the k-mer AMR models, whereas the red bars represent gene proportions from the SNP AMR models (AUC. 95%). (b)
Heatmap showing the Jaccard index comparing the gene sets between two antibiotic classes. (c) Pie chart showing
the proportions of genes associated with 10 metabolic systems (outer ring presented using the “tab10” color theme in
Matplotlib). The inner ring shows the proportion of genes from each antibiotic class associated with each metabolic
system and is presented using the “Set3” color theme in Matplotlib. Note that genes contributing to multiple
antibiotic classifications will contribute multiple times in the pie chart, and therefore, the total area of the pie chart
does not amount to 289. (d) Heatmap showing the normalized number of genes associated with each metabolic
system. Note that the number of genes was normalized via column standardization. Hierarchical clustering was applied
to both rows (metabolic systems) and columns (antibiotic classes) using the single linkage method and Euclidean
distance as the metric. Each panel shows the results for the top 10% of genes identified in each AMR classifier. Panels
b, c, and d show the results for the 289 genes found by combining the genes that correspond to the features in the
top 10% of the k-mer and SNP classifications.
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host, changes in the function of these genes may contribute to slowing the growth
rate, as before. However, if the environment is rich in nutrients, then a loss of function
of these genes may have led to advantageous auxotrophic behavior. To test this hy-
pothesis, we reran the knockout simulations for growth on glucose, while also allowing
for individual metabolites to be utilized. Importantly, we found that 17 of these genes
could be linked to auxotrophic behavior to amino acids, including cysteine (merope-
nem and gentamicin), histidine (levofloxacin, ciprofloxacin, and meropenem), phenylal-
anine (ciprofloxacin), and proline (ciprofloxacin) (Table 4). Auxotrophy for the vitamins
thiamine (levofloxacin, tobramycin, and meropenem) and pantothenate (ciprofloxacin) was
also found. Auxotrophy to peptidoglycan precursors was also found for the antibiotics cipro-
floxacin and meropenem, while purine and pyrimidine precursors were found for ciprofloxa-
cin and cefepime. Importantly, auxotrophy for histidine and thiamine has previously been
found to elevate fitness (65).

Additionally, gene modifications that affect the utilization of alternative carbon sour-
ces was also investigated. Alternative carbon source utilization has been found advanta-
geous for pathogenic survival of bacteria, including E. coli, Salmonella, Vibrio cholerae, and
Campylobacter jejuni (66–68). To this aim, we used the GSM to test the effect of the 289
genes on the 297 different carbon sources in the iML1515 model. Single gene knockouts
were repeated for each individual carbon source, under minimal medium conditions. We
found 39 genes whose deletion blocked growth on a variety of alternative carbon sources
(Table 5). The carbon sources that were blocked by the genes with the highest impor-
tance (i.e., associated with the top 50 features) in the ML models included the following:
fucose (cefoxitin and meropenem), galactonate (cefoxitin), tartrate (levofloxacin), agma-
tine (ciprofloxacin), galacturonate (ciprofloxacin and levofloxacin), methyl-beta-D-glucuro-
nate (cefoxitin), and a variety of nucleosides (ciprofloxacin).

Flux balance analysis elucidates the effects of AMR-conferring genes on
metabolite yields and reaction fluxes and suggests important metabolic adaptations
in cell wall, energy metabolism, purine and pyrimidine metabolism and iron
metabolism that increase antibiotic resistance. Next, the GSM was used to investi-
gate whether the genetic determinants could be linked to additional metabolic adap-
tation mechanisms, beyond those affecting the growth rate and alternative carbon uti-
lization. For this analysis, we examined the effect of each gene on metabolite
reproducibility and reaction fluxes. More specifically, we simulated single gene knock-
outs as before, however this time, we captured the effect on metabolite yields and flux
spans (i.e., the variation of possible flux values for a given reaction) for all metabolites
and reactions in the iML1515 model. The output of this analysis is twofold: (i) to iden-
tify clusters of genes that have similar metabolic phenotypes and (ii) to elucidate the
metabolic adaptations that are most important in providing bacteria with possible re-
sistance to antibiotic stress. Genes that confer a similar phenotype could give rise to
higher variation of strains, while providing similar advantages for resistance (69).

TABLE 3 In silico-predicted gene lethality from the top-ranked discriminant genes in k-mer-based and SNP-based classifiers listed for each
antibiotic

Antibiotic Essential genes (rich media)a Essential genes (glucose minimal medium only)a

Ampicillin folP*
Aztreonam asd, purL
Cefepime pyrF
Cefoxitin
Ciprofloxacin murJ*, lptG, hemG, ribC, accA*, cysG, aroC,

waaA, hemA, metK*, lptF
purA, pheA, hisD, hisG, purL*, hisF, dapE, panD, purM, hisI*, ilvD, iscS,
thiD, hisA, hisB*, hisH*, proC, purD

Levofloxacin fabG*, fabD* hisF*, purL*, thiD*
Gentamicin glmM*, cysG cysH
Meropenem lptG*, mraY*, murG*, ispA cysJ, hisD*, pdxA, hisC*, asd, hisF*, metF, murC, iscS, hisA, hisB, hisH*, hisG
Tetracyline folP, murB
Tobramycin iscS
Trimethoprim folP*, ftsI
aSymbol: *, genes associated with top 50 ranked features of the antibiotic AMR model. Boldface genes have not been found essential in experimental studies.
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FIG 4 An overview of the metabolic pathways involving potential gene targets for E. coli. The genes accA, lptG, fabD, fabG, murG, mraY, folP, glmM,
and metK were all found to be essential in the GSM of E. coli, whereas knockout of the genes hisA and thiD all resulted in auxotrophic behavior.
The genes fucK, fucI, nupG, speB, uxaA, uxaB, dgoD, uidB, and ttdB were all found to be essential to the growth on alternative carbon sources. Note
that all genes presented corresponded to the top 50 features of the AMR models. Note that the antibiotic that each of these genes were found
important to by the AMR models are provided. Abbreviations: 2-dehydro-3-deoxy-D-galactonate (2-DH3DGAL), 2-dehydro-3-deoxy-D-galactonate 6-
phosphate (2-DH3DGAL-6P), fuculose 1-phosphate (fuculose-1P), dihydroxyacetone phosphate (DHAP), glyceraldehyde 3-phosphate (glyceraldehyde-3P),
tagaturonate (TAG), altronate (ALTR), 2-dehydro-3-deoxy-D-galactonate 6-phosphate (2-DH3DGLUC-6P), 2-dehydro-3-deoxygluconate (2-DH3DGLUC), 1-O-
methyl-beta-D-glucuronic acid (MG), oxalacetate (OXA), citrate (CIT), isocitrate (ICIT), alpha-ketoglutarate (AKG), succinyl-CoA (SUC-CoA), succinate (SUC),
fumarate (FUM), malate (MAL), tetrahydrofolate (THF), glucose 6-phosphate (glucose-6P), fructose 6-phosphate (fructose-6P), guanosine-triphosphate (GTP),
ribulose 5-phosphate (ribulose-5P), 5-phospho-alpha-D-ribose 1-diphosphate (PRPP), phosphoribosyl-ATP (PRBATP), phosphoribulosyl-formimino-5-

(Continued on next page)

E. coliMetabolic Adaptations to Antibiotic Resistance

July/August 2021 Volume 6 Issue 4 e00913-20 msystems.asm.org 11

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 2

6 
A

ug
us

t 2
02

1 
by

 3
1.

11
1.

88
.2

43
.

https://msystems.asm.org


Determining the most important metabolic adjustments that provide resistance to an-
tibiotic stress may inform the development of novel treatments. The genetic determi-
nants that have the largest system-level impact, i.e., an increase or decrease in their
functionality (modeled here via gene knockouts) disrupts the largest number of metab-
olite yields and/or reaction fluxes, could provide promising new targets.

Maximum theoretical yields of metabolites affected by AMR-conferring genes.
The lethality of each genetic determinant on all metabolites in the iML1515 model
was determined using FBA. A gene knockout was considered lethal to the produc-
tion of a specific metabolite if it results in blocking the biosynthesis of the metabo-
lite (see also Materials and Methods). The results are represented as a bipartite
graph of 98 genes and 508 metabolites. A gene is connected to a metabolite via an
edge if its knockout results in preventing the metabolite’s production. Using the
Clauset-Newman-Moore greedy modularity maximization algorithm, we clustered
the genes and metabolites into groups of similar phenotypes (Table S3). The largest
six clusters are shown in Fig. 5. The metabolites within each cluster are involved in a
variety of metabolic processes, including cell wall metabolism, nucleotide metabo-
lism, transport metabolism, alternative carbon metabolism, amino acid metabolism,
and cofactor and prosthetic group metabolism (Fig. 5b). To test which of these met-
abolic systems was significantly affected, we performed a pathway enrichment
hypergeometric test on the metabolites in each cluster (see Materials and Methods).
The most significant pathways associated with each cluster (FDR, 0.01) are shown
in Fig. S4a and b.

A number of clusters could be linked to cell wall metabolites (Fig. S4 and S5). First, all
12 genes in cluster 5 affect the production of metabolites involved in lipopolysaccharide
(LPS) metabolism. LPS are important compounds on the outer membrane and therefore
have been found to play an important role in virulence (70, 71). Additionally, the genes
murC, ftsI, dapE, glmM, murB, murG, mraY, and mpl in cluster 2 had a significant effect on
the production of the metabolites involved in peptidoglycan (PG) metabolism.
Peptidoglycan is a mesh-like structure that provides the strength and shape of the outer
cell membrane, as well as providing protection against osmotic pressure. Modifications to
PG can prevent the release of cell wall components, which initiate the host immune
response (72), while also protecting the cell against antibiotic uptake (73). Similarly,
changes to metabolites involved in fatty acid oxidation and phospholipids, specifically

FIG 4 Legend (Continued)
aminoimidazole-4-carboxamide ribonucleotide phosphate (PRFAR), 59- 5-aminoimidazole ribonucleotide (AIR), 4-amino-2-methyl-5-phosphomethylpyrimidine
(4AMPM), 2-methyl-4-amino-5-hydroxymethylpyrimidine diphosphate (2MAHMP), thiamine phosphate (thiamine-P), phosphoribosylaminoimidazolecarboxamide
formyltransferase(AICAR), D-erythro-imidazole-glycerol-phosphate (IGP), imidazole acetol-phosphate (IMIDAZOLE-ACETOL-P), histidinol-phosphatase (HISTIDINOL-
P), glucosamine-6-phosphate (GlcN-6P), UDP N-acetylglucosamine (UDP-GlcNAc), UDP-N-acetylmuramyl-pentapeptide (UDP-MurNac-Pentapeptide), S-adenosyl-L-
methionine (SAM), methionine (MET), homocysteine (HCYS).

TABLE 4 In silico-predicted gene knockouts that lead to auxotrophy from the top-ranked discriminant genes in k-mer-based and SNP-based
classifiers listed for each antibiotic

Antibiotic Gene(s) leading to specific auxotrophya

Ampicillin
Aztreonam
Cefepime Pyrimidine compounds (pyrF)
Cefoxitin
Ciprofloxacin Phenylalanine (pheA), histidine (hisA, hisB*, hisD, hisF, hisG, hisI*, hisH*), pantothenate (panD), thiamine (iscS, thiD), proline (proC),

nucleosides (purA), peptidoglycan precursors (dapE)
Levofloxacin Histidine (hisF), thiamine (thiD*)
Gentamicin Cysteine-derived compounds (cysH)
Meropenem Histidine (hisA, hisB, hisD*, hisC*, hisF*, hisH*), S-methyl-L-methionine (metF), thiamine (iscS), pyridoxine (pdxA), cysteine (cysJ),

peptidoglycan precursors (murC)
Tetracycline
Tobramycin Thiamine (iscS)
Trimethoprim
aSymbol: *, genes associated with the top 50 ranked features of the antibiotic AMR model.
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CDP-diaglycerol, whose production is affected by the six genes purM, purD, ilvD, panD,
purA, and purL in cluster 1, may also provide protection against the immune response.
The immune system, for instance, has been found to take advantage of the antimicrobial
properties of long-chain fatty acids, which disrupt cell wall permeability when in excess in
the extracellular environment (74). Pathogens have been found capable of modifying the
biophysical properties of the cell membrane via changes to fatty acid structure, to increase
the resistance to these antimicrobial peptides produced by the immune system (74).

In addition to cell wall metabolism, the genes in cluster 1 and cluster 4 are associ-
ated with a large number of pathways involved in purine and pyrimidine metabolism.
Purine and pyrimidine metabolism is involved in the generation of DNA and RNA pro-
duction; therefore, changes to the genes in this cluster may be important in repairing
DNA from reactive oxygen species (ROS) (75). Importantly, metabolomics analysis
showed purine metabolism pathways were highly enriched in multidrug-resistant E.
coli strains (76). The genes involved in purine metabolism in cluster 1, purL, purD, purM,
and purA in particular also have a downstream effect on many other metabolic path-
ways, including nitrogen metabolism, ppGpp metabolism, and allantoin biosynthesis,
all of which can be linked to the regulation of the stringent response (77–79).
Importantly, changes in ppGpp concentration play an important role in controlling cel-
lular growth, and depletion of this metabolite has been found to trigger a dormant cell
metabolic state, promoting antibiotic-tolerant persistence cells (80, 81). E. coli cells
starved of nitrogen have been found to have increased ppGpp, which again has been
found to induce tolerance to ciprofloxacin (78). Allantoin degradation has been found
as an important adaptive response to recovery after nitrogen starvation (77).
Furthermore, these genes, as well as the folP gene, also affect metabolites involved in
folate metabolism, tetrahydrofolate (THF) biosynthesis in particular. Importantly, point
mutations in folP have been identified to prevent sulfonamides from inhibiting THF
production (82). We identified folP in the trimethoprim, tetracycline, and ampicillin ML
models. Folate metabolism, including THF, however, are again important for nucleotide
biosynthesis and have in fact been found important for persistence in E. coli cells
exposed to ampicillin (83). The production of coenzyme A (CoA) is also affected by
these genes, as well as the ilvD and panD genes. CoA is an important cofactor in many
metabolic processes, including fatty acid biosynthesis, which are used in LPS, and the
tricarboxylic acid (TCA) cycle. The concentration of acetyl-CoA, an important derivative
of CoA, has also been found to play a key role in assessing the cell metabolic state,
which, in turn, determines the fate of either cell growth, survival, or death (84).

The production of metabolites relating to iron metabolism were affected by genes
in both clusters 2 and 6. The four genes in cluster 6 affect metabolites involved in
heme biosynthesis. The capability (or improved capability) for heme synthesis may
provide pathogens with a competitive advantage for colonization, since heme is the

TABLE 5 In silico-predicted essential genes on specific carbon sources from the top-ranked
discriminant genes in k-mer-based and SNP-based classifiers listed for each antibiotic

Antibiotic Lethal genes for growth on specific carbon sources important in AMR modela

Ampicillin gatC,mhpB
Aztreonam adiC, yihP, cpdB, garD, mngB, paaK
Cefepime
Cefoxitin garD, kgtP, fucK*, ulaC, putA, fecA, mngB, uidB*, dgoD*
Ciprofloxacin malF, ulaG, nupG*, nanE, deoA, pepD, deoC, tonB, nanA, mtlD, xylA, uxaA*, putP,

speB*, mngB, cpdB, lamB
Levofloxacin adiC, ttdT, uxuB, uxuA*, ttdB*
Gentamicin hcaB
Meropenem manZ, adiC, ulaG, exuT, fucI*
Tetracyline
Tobramycin
Trimethoprim putP, emrE
aSymbol: *, genes associated with top 50 ranked features of the antibiotic AMR model.
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largest source of iron for the cell. Excess heme, however, increases the level of ROS
and therefore is extremely toxic to the cell, so the regulation of heme concentration
is essential (85). The genes menD, entS, aroC, dxr, pheA, menC, menE, ispA, and entD in
cluster 2 all affect enterobactin biosynthesis, either directly or via the chorismate biosyn-
thesis pathway. Enterobactin is an iron-scavenging siderophore and has been found im-
portant for pathogen virulence (86–88). An important response of the immune system is
to use nutrient immunity by limiting iron availability, which has an important function in
energy metabolism and DNA replication (89, 90). Changes to genes affecting iron metab-
olism may therefore enhance the resistance by improving their ability to scavenge iron
from the environment. Additionally, however, genes menD, dxr, aroC, menE, ispA, and
menC also affect metabolites involved in the electron transport chain (ETC). Importantly,
previous work has found reduced respiration via the ETC resulted in mutant strains
highly resistant against ampicillin and gentamicin (91). The ETC reduces the proton

FIG 5 Effects of genetic determinants on metabolite yields. (a) Bipartite network with genes and metabolites as nodes. Labeled nodes represent genes,
whereas unlabeled nodes represent metabolites. A gene and metabolite are connected by an edge if the deletion of the gene blocks the metabolite
production. Genes and metabolites are highlighted according to the cluster they were assigned to via the Networkx modularity algorithm. The number of
clusters in the figure was reduced by considering only those of size greater than 10. (b) Heatmap showing the metabolic systems associated with each of
the six clusters. A gene was associated with a metabolic system, if at least one metabolite correlated with the system could no longer be produced after
the gene was deleted. (c) Heatmap showing the antibiotics associated with each cluster. Note that genes occurring in multiple antibiotics were accounted
for twice. Hierarchical clustering was applied to the rows of each heatmap (metabolic systems or antibiotic class) using the single linkage method and
Euclidean distance as the metric. The gene counts have been normalized by the total number of genes in each cluster in each heatmap.
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motive force that is necessary for gentamicin uptake. Reduced flux through ETC, how-
ever, also reduces the growth rate, which as previously discussed enables multidrug level
persistence (60–62).

The genes in cluster 3 are also affecting metabolites involved in electron carrier me-
tabolism. The eight genes cysJ, metK, asd, gss, cysH, cydC, metF, and gshB for instance
are all affecting metabolites involved in glutathionylspermidine (GSP) biosynthesis.
Importantly, GSP can be recycled back to glutathione and spermidine. Glutathionine is
an important antioxidant metabolite required for detoxifying ROS (92, 93), while sper-
midine is a polyamine also found to provide protection against ROS exposure (94). A
subset of these genes, cysJ, metK, asd, cysH, and metF, are also affecting biotin produc-
tion. Importantly, biotin has been identified as important for the virulence of enteropa-
thogenic E. coli (EPEC) strains, due to its involvement in the regulation of the locus of
enterocyte enfacement (LEE). The LEE system is essential to these pathogenic bacteria
in order to attach and infect host epithelium cells (95). Increased biotin concentrations
have been shown to limit enterohemorrhagic E. coli (EHEC) infections in mice (96).

In general, the metabolic processes described here are affected by genes identified
in the ML models for diverse antibiotic classes (Fig. 5c and Fig. S4c). This is not too sur-
prising, however, since these processes are suggested to increase antibiotic resistance
via protection from the immune response, oxidative stress, and/or the stringent
response, which are multidrug adaptation mechanisms for enhancing fitness, persist-
ence, and/or virulence (97–99).

Flux variability analysis identifies the biochemical reactions whose flux span
was affected by AMR-conferring genes. Next, we investigated the system-level effect
of the AMR-conferring genes on metabolic fluxes. Specifically, flux variability analysis
(FVA) was used to identify the biochemical reactions whose flux span was affected by
mutations in the genetic determinants. The results are represented as a bipartite graph
of 145 genes and 861 affected reactions (Table S3). A gene is connected to a reaction
via an edge if its knockout results in reduced flux span through the reaction. As before,
the Clauset-Newman-Moore greedy modularity maximization algorithm was used to
cluster the genes and reactions into groups of similar phenotypes (Table S3). The larg-
est nine clusters are shown in Fig. 6a, i.e., those with greater than 10 nodes (genes and
metabolites). A variety of metabolic processes were enriched in the clusters (Fig. 6b),
similar to the gene-metabolite clusters. To test which of these metabolic systems was
significantly being affected, we performed a pathway enrichment hypergeometric test
on the reactions in each cluster. The most significant pathways associated with each
cluster (FDR, 0.01) are shown in Fig. S6a and b.

The gene-reaction network was clustered into similar groups of genes to the
gene-metabolite network. Again, the clusters were enriched with metabolic proc-
esses, including cell wall metabolism (LPS, PG, fatty acids, and phospholipids), nucle-
otide metabolism (purine, pyrimidine, and folate metabolism), amino acid metabo-
lism (histidine and methionine), and iron metabolism (heme). The main differences
between networks involve the set of genes in cluster 1. Unlike before, this analysis
reveals the genes gmhB, waaC, waaP, accA, lptG, lptF, waaA, hldD, fabG, lpxL, hldE,
fabD, and glmM are affecting the biosynthesis of nucleotide sugars. These sugars are
incorporated into the O-antigen region of LPS, which is located in immunodominant
part of LPS (100). Furthermore, the genes accA, nuoL, nuoN, fabG, tesA, and fabD are
affecting fatty acid biosynthesis, as well as biotin biosynthesis. As discussed previ-
ously, both fatty acids and biotin metabolites can affect the host immune response
and bacterial virulence.

Furthermore, the FVA analysis also revealed that the genes in cluster 7 all affect iron
transport, which, as previously discussed, may be important for scavenging iron from
the host. Additionally, disruptions to the genes in cluster 2, specifically asd, gcvP, gcvT,
serA, metF, cysH, cysJ, and serB, were found to affect amino acid metabolism (cysteine,
serine, glycine, aspartate and/or methionine), all of which are involved in folate trans-
formation of E. coli. As previously discussed, folate metabolism can affect persistence
to antibiotic exposure. Alternatively, however, sulfur amino acid residues in proteins,
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including methionine and cysteine, are found to be extremely reactive with ROS; there-
fore, changes to the genes specifically affecting these amino acids may play a role in
ROS detoxification (101).

Again, these metabolic pathways could be associated with a diverse set of antibiotic
classes (Fig. 5c and Fig. S5c), suggesting the changes in these genes are linked to sec-
ondary multidrug adaptation mechanisms.

DISCUSSION

Machine learning provides powerful and robust means for predicting AMR pheno-
types and their genetic determinants. ML methods have proven successful in identify-
ing known AMR mechanisms (23–29). Interpreting ML models, however, remains a
challenge due to their complexity and large number of contributing features. Current
approaches mostly consider only the genes with known AMR associations in AMR

FIG 6 Effect of genetic determinants on reaction fluxes. (a) Bipartite network with genes and reactions as nodes. Labeled nodes represent the genes,
whereas unlabeled nodes represent reactions. A gene and reaction are connected by an edge if the deletion of the gene reduces the reaction flux by at
least 10%. Genes and reactions are highlighted according to the cluster they were assigned to via the Networkx modularity algorithm. Note that to reduce
the initial size of the network, we only included clusters of size greater than 10. (b) Heatmap showing the metabolic systems associated with each of the
nine clusters. A gene was associated with a metabolic system, if the flux span of at least one reaction correlated with the system was reduced after the
gene was deleted. (c) Heatmap showing the antibiotics associated with each cluster. Genes occurring in multiple antibiotics were accounted for twice.
Hierarchical clustering was applied to the rows of each heatmap (metabolic systems or antibiotic class) using the single linkage method and Euclidean
distance as the metric. The gene counts have also been normalized by the total number of genes in each cluster in each heatmap.
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databases and neglect genetic determinants relating to important metabolic pheno-
types, which are known to play a role in antibiotic resistance. Kavvas et al. (30) have
recently developed the first computational pipeline that combines machine learning
with genome-scale metabolic models to enable biochemical interpretation of genetic
determinants. In their pipeline, the effect of alleles on the flux solution space was used
to successfully classify AMR phenotypes of Mycobacterium tuberculosis strains. In our
work, we take an alternative two-step approach. First, a combination of a k-mer- and
SNP-based machine learning approach is used to identify genetic determinants.
Second, a genome-scale metabolic model is used to assess the effect of genetic deter-
minants on metabolite producibility and biochemical fluxes to elucidate possible meta-
bolic adaption mechanisms. Our approach produced AMR models of E. coli that
achieved performance accuracies competitive with the current approaches. Moreover,
we were able to reveal novel biomarkers based on the systemic effect the genetic
determinants have on growth, metabolite yields, and metabolic fluxes.

The competitiveness of our ML approaches is that two methods were applied in
parallel: a k-mer-based approach and a SNP-based approach, and only the genes iden-
tified in either the top 10% of the k-mer or SNP classifiers with an AUC of .95% were
used for the GSM. Notably, the k-mer-based approach outperformed the SNP-based
approach for 8 of the 11 antibiotics (AUC. 0.95), specifically, 8% higher for aztreonam,
17% higher for ampicillin, 2% higher for cefepime, 5% higher for cefoxitin, 6% higher
for gentamicin, 28% higher for trimethoprim, 10% higher for tobramycin, and 21%
higher for tetracycline. A possible reason for this is due to the inclusion or exclusion of
accessory genes in the two approaches. That is, the k-mer-based approach allows for
discriminating between resistance and susceptibility according to both the core and
accessory genome, whereas the SNP-based approach is restricted to the core genome
only. The antibiotics that performed well only via the k-mer-based approach may
therefore be highly dependent on acquired resistance genes, such as the highly dis-
criminant beta-lactamases. The SNP-based approach, however, successfully predicted
AMR resistance for the two fluoroquinolone antibiotics ciprofloxacin and levofloxacin,
and for the beta-lactam antibiotic meropenem. Importantly, the SNP-based approach
performed extremely well (AUC. 0.98) for ciprofloxacin, suggesting that the antibiotic
induces mutations, which is consistent with the literature (50). Importantly, the k-mer-
and SNP-based approaches identified different known AMR genes, validating the
advantage of combining the important features from both approaches. The combined
approaches identified 225 known AMR genes corresponding to the top 10% of ranked
features recognized as discriminant by the AMR classifiers. Out of these 225 genes, 35
matched the specific antibiotic class that has been reported in the databases.

Importantly, a number of the genes identified by both the k-mer- and SNP-based
models were associated with metabolic reactions. Using the GSM iML1515, we found a
total of 289 metabolic genes from the top 10% of features from both the k-mer- and
SNP-based models. The number of metabolic genes from the SNP-based models was
considerably higher than the number of metabolic genes from the k-mer-based models.
This is not too surprising, however, since the k-mer-based approach included the impor-
tant accessory genes responsible for drug target modifications, drug efflux, and enzymatic
inhibition. Metabolic-gene-specific mutations provide a secondary adaptation mechanism
to reduce the antibiotic efficacy. Importantly, previous studies have also found that meta-
bolic-gene-specific mutations are present in the core genes of E. coli (102).

The 289 total metabolic genes were significantly enriched in various metabolic
pathways, including transport metabolism, nucleotide metabolism, and amino acid
metabolism. To understand the mechanistic effects of these 289 genes, we used flux
balance analysis to predict the system-level metabolic changes that result from genetic
variants of the genes (i.e., mutations or absence). More specifically, we predicted meta-
bolic phenotypes of genetic variants via gene knockouts and identified the metabolic
processes that were being affected. Importantly, using our new ML-FBA integrated
approach, we could reveal interesting links between genes and potential metabolic
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adaptation mechanisms that, importantly, were not identified using standard gene
pathway enrichment analysis.

Using the GSM, we found 20 genes essential for growth under rich environmental
conditions. The essential genes with the highest importance in the ML models may be
promising targets for generating dual-mechanism antibiotics. That is, the antibiotic tar-
gets pathways that would lead to inhibition of an essential metabolic process, while
simultaneously reducing the ability of the pathogen to adapt. The most promising
new candidates as targets included the following: accA and metK for ciprofloxacin;
fabD and fabG for levofloxacin; murG, lptG, and mraY for meropenem; folP for ampicil-
lin; and glmM for gentamicin. Modifications to these genes may result in slower
growth, which has previously been found advantageous to pathogenic bacteria,
including E. coli and Salmonella, for reducing the damage that occurs as a result of
being the primary target of antibiotics (60–62, 103). Alternatively, however, the genes
accA, fabG, fabD, lptG, murG, and mraY affect biosynthesis of cell wall components and
therefore may have had an effect on membrane properties for antibiotic uptake or
manipulation of the host’s immune response (73, 74). The gene folP, which is involved
in folate metabolism, has previously been identified to prevent sulfonamide drugs
from inhibiting folate metabolism (82). Importantly, however, we identified folP in the
trimethoprim, tetracycline, and ampicillin ML models. Folate metabolism, including tet-
rahydrofolate (THF), however, are again important for nucleotide biosynthesis and
have in fact been found important for persistence in E. coli cells exposed to ampicillin
(83). Importantly, a number of additional genes affecting folate metabolism were also
identified in the metabolite reproducibility analysis and flux variability analysis.

Interestingly, we also found a number of gene knockouts which resulted in auxotro-
phic behavior to a number of amino acids, including histidine, cysteine, phenylalanine,
and proline, as well as auxotrophy to the vitamins thiamine and pantothenate. The pro-
duction of these metabolites are particularly energy intensive, and therefore, their acqui-
sition from the host may provide pathogens with a competitive fitness advantage
against commensal bacteria (104). Alternatively, auxotrophy may have developed due to
the critical role the metabolite plays in host-pathogen interactions. Using these genes as
new drug targets has the disadvantage that the pathogen may be able to utilize exoge-
neous nutrients from the host environment.

Additionally, we identified 39 genes whose knockout affected the growth of E. coli on
alternative carbon sources. The genetic determinants with the highest importance in the
ML models affected growth on various carbohydrates. Interestingly, a previous study
found that various carbohydrates, including fucose, promote natural transformation of E.
coli, therefore potentially contributing to the acquisition of antibiotic resistance and viru-
lence (105). Fucose is particularly interesting as it has also been found to positively regu-
late microbiome bacterial colonization and host immune activation (106).

Furthermore, clustering of genes according to metabolic phenotypes also revealed
a strong link to cell wall metabolism adaptations. Genes were found to affect phospho-
lipids, lipolysaccharides, fatty acid, and peptidoglycan metabolism, all of which can be
associated with increased antibiotic tolerance via increased permeability of the mem-
brane, as well as playing a role in virulence by manipulating the host immune response
(73). Pathogens have been found to modify the cell wall components, for instance,
that are usually recognized by the host’s innate immune response (74, 107). Changes
to a number of genes that were affecting cofactor biosynthesis may also be involved in
immune response manipulation, including the biosynthesis of biotin and iron.
Increased biotin concentrations, for example, have been found to reduce the ability of
EHEC to attach and infect host epithelium cells (95, 96). Furthermore, genes affecting
both enterobactin metabolism and heme metabolism were also found, both of which
may improve resistance to nutrient immunity by increasing the pathogen’s ability to
scavenge iron from the environment (108, 109). Iron is important for many enzymes in
bacteria, particularly those involved in oxidative phosphorylation and DNA synthesis;
therefore, it is essential for the bacterium’s survival.
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Purine and pyrimidine metabolism was also enriched in the gene clusters.
Modifications to these genes may limit the inhibitory effect of antibiotics that target
DNA replication, such as ciprofloxacin and levofloxacin. Importantly, however, the
genes encoding purine and pyrimidine biosynthesis enzymes have a large system-level
effect involving many different metabolic processes. The genes purL, purD, purA, and
purM in particular affect the production of DNA building blocks, which may be impor-
tant for DNA repair against antibiotic-induced ROS (75). Furthermore, these genes also
affect ppGpp metabolism, which is important for regulating cellular growth and induc-
ing antibiotic-induced persistence (80, 81). Additionally, these genes also affect the
production of important cofactors of energy metabolism, such as ATP, NAD, and
NADPH, which are important for the electron transport chain (ETC). Other ETC metabo-
lites, including ubiquinone, menaquinone, and flavin, were also being affected by the
important genetic determinants. Changes in the flux through ETC may contribute to
antibiotic resistance in a number of ways. Reduced ETC reduces the proton motive
force (PMF) required for aminoglycoside uptake (110), while also reducing the growth
rate for increased persistence (60–62). Furthermore, the ETC reactions are also respon-
sible for ROS production. A related study that applied gene knockout simulations on
an extended GSM of E. coli, which included specific ROS-producing reactions, identified
genes associated with the ETC as ROS-inducing targets for improved antibiotic killing
(111). Further evidence to suggest adaptation to ROS was found by a number of addi-
tional genes, whose knockout was found to affect glutathionine, spermidine, methio-
nine, or cysteine biosynthesis. Importantly, these metabolites have all previously been
found to provide protection of E. coli cells by acting as antioxidants (92, 93, 101).

Importantly, the genetic determinants associated with the metabolic adaptation
mechanisms described here were identified in the ML models for diverse antibiotic
classes. Changes in these genes are therefore suggested to be contributing to second-
ary resistance mechanisms via a generic response against toxicity and stress, but it is
nonetheless essential for their survival (97–99).

In summary, we have demonstrated that our new approach is capable of identifying
several metabolic adaptation mechanisms, including reduced reactive oxidative stress
toxicity, reduced proton motive force, increased colonization via utilization of alterna-
tive nutrients, increased persistence via reduced growth and host immunity defense
mechanisms. These metabolic adjustments occur downstream of the initial drug target
inhibition and are suggested here to play a role in antibiotic resistance. Targeting the
most important genetic determinants with the highest effect on these secondary adap-
tation mechanisms while simultaneously targeting essential metabolic processes, how-
ever, may provide novel new treatments that increase antibiotic efficacy (112).

Our new approach can be applied to study genetic determinants of any pathogen
of interest, providing a large cohort of AMR phenotypes are available and a genome-
scale metabolic model exists for a reference genome. The second step of our approach
depends only on the GSM, and therefore, precomputing the metabolic changes (e.g.,
effects on metabolite yields or metabolic fluxes) for the entire set of genes in the
model is possible, which could be readily available for future AMR studies to draw
insights on potential new AMR genes. Future efforts may precompute all of these
deeper metabolic effects for each gene in a given GSM(s). Such future endeavors will
offer the possibility to future AMR genome-wide association studies (GWAS) to readily
draw insights from potential AMR gene metabolic effects as predicted by these meth-
ods without needing to set-up and solve all the GSM problems independently.

While this information is useful, this new approach has many other areas of future
development that could lead to deeper understanding of the metabolic changes that
facilitate antibiotic resistance. The k-mer-based AMR models, for example, included the
primary mechanisms of resistance, and while these strong genetic determinants pro-
vide highly accurate models and a means of validation, other resistance mechanisms
may be diluted or “washed out” (25). Additionally, many of the genes corresponding to
the important k-mers in the AMR models had unknown functional annotation,
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therefore limiting the power of integration with the GSM. Furthermore, our approach
was limited to protein-coding genes only, and therefore lacks the ability to identify im-
portant non-protein-coding regions, which have previously been found to confer re-
sistance, such as eis and rrs (113). Likewise, we are not considering synonymous
changes in the protein that also have been related to resistance (114). However, as also
pointed out by Kavvas et al. (29), these types of computational platforms are open to
account for non-protein-coding genes and synonymous SNPs in future work.
Additionally, using more advanced GSM frameworks, such as regulatory FBA (115) and
GEM-PRO (116), for example, would allow us to investigate the effects of genetic deter-
minants on metabolic phenotypes via changes to gene regulation and protein struc-
ture. The characterization of the AMR-associated SNPs, in respect to a reference ge-
nome such as E. coli K-12 MG1655, would allow us to link the specific amino acid
substitutions or deletions to antibiotic resistance. One-dimensional (1D)2three-dimen-
sional (3D) structure-function prediction analysis may then enable us to determine
whether the SNPs result in a loss or gain of function, which is directly integrated as
constraints into models such as GEM-PRO. The effects of the SNPs on the genes (i.e.,
loss of function or gain of function) is not determined in our approach and if consid-
ered would allow further insights into the biological interpretation. Finally, our
approach was applied to a GSM model of the E. coli K-12 MG1655 strain, and therefore
was limited to the genes in this genome. Developing a GSM of the pan-genome of the
3,616 strains used may reveal additional metabolic genes that are important for resist-
ance. Furthermore, an extended version of iML1515 has been developed that includes
ROS-specific reactions (111). Applying the approach developed here to this model
would therefore be useful future work for exploring the most important genetic deter-
minants for improving antibiotic efficacy via ROS-associated cell death (111).

Taken together, our new pipeline was able to determine known AMR genes and sug-
gest new ones that may weaken the pathogen’s resistance to antibiotics. Continued
improvement to the approach by increased availability of AMR phenotype data, the fur-
ther enhancement of ML tools, further development of GSM representations of patho-
genic bacteria, and improved functional annotation of genes will provide a means to con-
fidently predict the metabolic responses that facilitate AMR resistance.

MATERIALS ANDMETHODS
Data collection and antimicrobial susceptibility phenotypes. Resistance phenotypes and isolation

country data for E. coli genomes were downloaded from the PATRIC database (https://www.patricbrc
.org/). We selected genomes that were annotated as either “susceptible” or “resistant” to a single antibi-
otic. These AMR phenotypes were derived from laboratory analyses only and included a mixture of both
Clinical and Laboratory Standard Institute (CLSI) and European Committee on Antimicrobial
Susceptibility Testing (EUCAST) AMR standards. The list of the laboratory method standards used to
determine the AMR phenotypes is detailed for each isolate in the supplemental Excel file
“Ecoli_genomes_metadata.xlsx,” which is provided on https://github.com/tan0101/GSM_mSystems
_2021. All the genome sequences of the isolates that were used in this study were listed in PATRIC as
“good” quality assemblies. Isolates labeled “good” quality in PATRIC meet the criteria set by Parrello et
al. (117) that contamination is less than 10%, fine consistency is greater or equal to 87%, and the com-
pleteness of the sequence is greater or equal to 80%. We have also included only isolates that were la-
beled “WGS” (for whole genome sequenced) or “Complete” in the genome status in PATRIC, which
removes any cases that are “plasmid-only.” Finally, we also included an additional filtering that removed
any isolates with a contig number greater than 250, as previously done by Hyun et al. (25). The 12 antibi-
otics chosen to be studied had at least 200 genomes annotated as “susceptible” or “resistant.” These
antibiotics were ampicillin, aztreonam, cefepime, cefoxitin, cefuroxime, ciprofloxacin, gentamicin, levo-
floxacin, meropenem, tetracycline, tobramycin, and trimethoprim. These antibiotics encompass a range
of classes, including beta-lactams, aminoglycosides, and carbapenems, as well as multiple generations
of antibiotics.

Genome assembly and annotation, in silico subtyping identification, pangenome construction,
and core genome alignment. The genomes of all selected isolates were annotated with Prokka v1.13
(118) using default parameters. All annotated files by the antibiotic model were taken as input for pan-
genome analysis with core gene alignments through Roary v3.13.0 (47). SNP sites 2.5.12 was then used
for extracting the core gene variant sites from the core gene multiple alignment obtained for each dif-
ferent antibiotic. The variants were used as features for the machine learning classifiers (119). Each core
gene nucleotide sequence was further aligned, and single nucleotide variants were identified. The posi-
tion of a SNP in a gene was selected as a feature in the machine learning if the nucleotide varied in
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more than 5% of strains (i.e., was constant in less than 95% of strains). Such variation could be deter-
mined only if including genes present in 100% of isolates (core genome) within the study population
and by aligning the core genome (the genes present in all isolates). This is why we considered only the
core genome of the pan-genome for this analysis.

k-mer counting and dimensionality reduction. Lists of k-mers of length 13 which occurred in at
least one of the genome files were generated for each antibiotic using all the genomes for each antibi-
otic with GenomeTester4 (https://github.com/bioinfo-ut/GenomeTester4). These k-mers were then
counted in each individual genome. All the counts were compiled into an n samples � n-k-mers1 1 ma-
trix with the additional column for the resistance phenotype (0 for susceptible, 1 for resistant).

Because the number of k-mers was on average over 2 million for each antibiotic, we performed an
initial downsampling of the k-mers to be used as features using pairwise testing between any given k-
mer and the resistance phenotype. We used the chi-square test to find the 10,000 features most associ-
ated with the resistance phenotype.

SNP counting. The variant sites (SNPs) in the core genome alignment were extracted using a SNP
sites tool (www.github.com/sanger-pathogens/snp-sites) based on homologous gene groups produced
by Roary (https://github.com/sanger-pathogens/Roary). Each strain was processed according to its AMR
phenotype for each antibiotic as follows. (i) First, the genome sequences were used to obtain the core
gene sets, which are present in $99% of each set, ranging from 1,627 to 2,903 depending on the strain
sets in each antibiotic. (ii) Each core gene nucleotide sequence was further aligned, and single nucleo-
tide variants were identified. The position of a SNP in a gene was selected as a feature in the machine
learning if the nucleotide varied in more than 5% of strains (i.e., was constant in less than 95% of strains).
(iii) The data set of SNPs was assigned (1 for “A,” 2 for “G,” 3 for “T,” and 4 for “C”) for each allele of the
strain as the matrix for machine learning.

Machine learning. The k-mers and SNPs (features) were analyzed using the gradient boosting classi-
fier (GBC) model in scikit-learn (120) (v0.19.1) in Python (v3.6) using the default parameters. For both
analyses, initially, the features were standardized by removing the mean and scaling to unit variance.
The synthetic minority oversampling technique (SMOTE) (121) was applied to oversample data of minor-
ity class, compensating for unbalanced classes. For the k-mer analysis, the data were split randomly
using a fivefold stratified cross-validation, while for the SNP analysis, the data were split in 70% for train-
ing and 30% for testing. In both analyses, 50 iterations were carried out, and the following four perform-
ance metrics were recorded for each classifier, P and N indicating positive and negative cases, respec-
tively, and T indicating true (correct) and F indicating false (wrong) predictions:

� Recall (true positive rate [TPR]) = TP/P

� Precision (positive predictive value [PPV]) = TP/(TP1 FP)

� Accuracy (ACC) = (TP1 TN)/(P1N)

� Area under the receiver operator characteristic curve (AUC)

The mean of these 50 iterations was then used as the result statistic for the performance. Boxplots
from the Seaborn (122) package were used to show the final prediction metrics. While the model was
being simulated, we captured the maximum importance of each k-mer or SNP, as well as the number of
times each k-mer or SNP was assigned an importance greater than zero. The features were ranked using
the maximum importance, that is, the maximum weight that the feature contributes to the GBC in the
50 runs. Features that had a maximum importance of zero were removed from the results.

k-mer searching and SNP filtering. The GBC assigns an importance score between 0 and 1. This does
not indicate which phenotype the k-mer is more associated with. To work out which phenotype the impor-
tant k-mers were associated with, we compared the number of times a k-mer occurred in the susceptible
condition to the number of times it occurred in the resistant condition. Next, we performed a chi-square
test on these counts to determine whether there was a significant (P. 0.05) difference between the num-
ber of times a k-mer occurred in the susceptible or resistant condition. The k-mers found by the GBC were
searched against the pan-genome of all our genomes using BLAST. The parameters for the search were as
follows: E-value, 1,000; word size, 13 (same size as the k-mers); gap opening penalty, 5; and gap extension
penalty, 2. The search hits were annotated by searching a gene transfer format (GTF) file corresponding to
the pan-genome and by retrieving the information about each hit.

Genome-scale metabolic model and flux balance analysis. The cobra toolbox in python was used
for all simulations. The model iML1515 (51) of E. coli K-12 MG1655 strain was downloaded from the BiGG
database (123) using the cameo python toolbox (124). Flux balance analysis (FBA) and its variants were
used to predict optimal flux distributions. FBA, based on linear programming, identifies the flux distribu-
tion that either minimizes or maximizes some objective function given a set of constraints (125). All sim-
ulations assumed M9 minimal medium (unless stated otherwise), such that the sulfate, phosphate, and
ammonium were allowed to freely enter the system. Oxygen uptake was constrained to have a maxi-
mum uptake of 18.5 mmol/g (dry cell weight [DCW])/h to mimic aerobic conditions (126). A knockout
model for each gene of interest was constructed by blocking all corresponding reactions to zero, given
that the reaction is not catalyzed by an isozyme.

Gene essentiality under various nutritional environments. FBA was used with maximization of
growth rate as the objective function to predict the lethality of each gene of interest (i.e., those associated
with the important features from the SNPs and k-mers). We considered the essentiality of a gene under
both rich medium conditions and M9 minimal medium conditions. To mimic rich medium conditions, the
model was constrained to allow all carbon sources into the system, with a fixed uptake rate of 1mmol/
gDCW/h. If a feasible solution exists, while maximizing the biomass equation as the objective function, then
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the knockout of the gene was not essential. To mimic M9 minimal medium conditions, the model was con-
strained so one individual carbon source had a maximum uptake of 10mmol/gDCW/h. This simulation (min-
imal medium condition) was repeated for each carbon source in the model. The genes whose correspond-
ing knockout model achieved a growth rate of 0.0001 h21 or less were considered essential.

Calculating metabolite yields and construction of the gene-metabolite bipartite network. A
drain reaction was added to iML1515 for each metabolite in the model (i.e., a reaction that consumes
the metabolite of interest). The maximum theoretical yield of each metabolite was calculated by setting
its corresponding drain reaction as the objective function, with glucose as the only carbon source in aer-
obic minimal M9 medium conditions. The simulations were carried out for the wild-type model and
each gene knockout model. The maximum theoretical yield of metabolite i for the wild type (wt) and
the jth gene knockout model is denoted as yi;wt and yi;j , respectively.

The networkx package (127) in python was then used to construct a bipartite graph G ¼ ðU; V; EÞ,
such that the nodes, N, represent genes (U) and metabolites (V), and the edges, E, connect a gene in U to a
metabolite in V. The ith metabolite is connected by an edge to the jth gene, if yi; j = 0, given that yi;wt.0.
Networkx’s greedy modularity algorithm was applied to the network to assign genes and metabolites to
clusters that were densely connected. The algorithm minimizes the number of interconnections between
clusters, while maximizing the number of intraconnections. Cytoscape v3.7.1 was used for visualization of
the clusters in the bipartite network (128).

Flux balance impact degree and construction of the gene-reaction bipartite network.We adapted
the method by Zhou et al. (129) to model the effects of genetic mutations on metabolic fluxes. Here,
flux variability analysis (FVA) was applied to the wild-type model and each knockout model using the co-
bra toolbox in python (130). FVA calculates the minimum and maximum flux through each reaction in
the model, given a set of constraints, resulting in the range of possible fluxes for each reaction (flux
span). FVA was simulated using glucose as the only carbon source in aerobic minimal M9 medium condi-
tions. Note that reaction loops in the solution were not allowed.

Similar to before with metabolite yields, a bipartite graph G ¼ ðU; W; EÞ was constructed using net-
workx, such that the nodes represent genes (U) and reactions (W), and the edges (E) connect a gene in U
to a reaction in W. The ith gene is connected by an edge to the jth reaction, if the knockout of the ith
gene reduces the flux span by at least 10% compared to the wild type. As before, networkx’s greedy
modularity algorithm was applied to assign genes and metabolites to a cluster in order to identify
groups of genes that have a similar impact on the metabolic fluxes. As with the metabolite yields,
Cytoscape v3.7.1 was used to then visualize the clusters in the bipartite network.

Gene pathway enrichment analysis. We identified metabolic pathways that were enriched in each
cluster of the bipartite networks using hypergeometric enrichment tests using the scipy function hyper-
geom (131). We considered a pathway as significantly enriched in a cluster if the false discovery rate
(FDR) was less than 1% and used the Benjamini-Hochbery method for correction against multiple test-
ing. We considered two sets of pathway lists for the enrichment. The first used the 40 subsystems as
defined in the iML1515 GSM. A second list of pathways was downloaded from the BioCyc database using
the SMART tables for E. coli (52), which provided a more extensive list of specific metabolic pathways.

Data availability. The accession numbers of the 3,616 E. coli genomes and the metadata available
from PATRIC and used in this study, as well as the code used for the machine learning analysis and
Jupyter notebooks for the genome-scale model analysis (including bipartite network generation and
plotting of results and the Cytoscape networks), are available on https://github.com/tan0101/GSM
_mSystems_2021.
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