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ABSTRACT 

Integration of small-scale wind energy system to residential buildings for a target to achieve net-zero CO2 emissions is a 
revolutionary step to reduce the dependency on the national grid. In this paper, a predictive 20 kVA permanent magnet 
synchronous generator (PMSG) based small scale wind turbine is investigated at dynamic wind speed with a sensing control system 
to manage and monitor the power flow for a supply to a typical residential building. A control system is applied that regulates the 
power from the wind turbine. Results indicate that the proposed control system maximizes the power efficiency within the system. 
The maximum power generation capacity of the wind turbine is 20 kWh with 415 VAC and 50 Hz frequency. A storage system of 
19.2 kWh that supplies the energy to the load side. The applied control unit improves the energy management and protects the 
power equipment during the faults. The research is conducted using MATLAB/SIMULINK and mathematical formulations. 

Keywords:  
Wind energy; PMSG; UPS; MPPT control 
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1. Introduction 
 

Under all emission scenarios studied by IPCC in their published sixth assessment report 2021 [1], 
global surface temperature will continue to rise until at least the mid-century. Unless substantial 
reductions in carbon dioxide (CO2) and other greenhouse gas emissions occur in the following 
decades, global warming of 1.5 °C and 2 °C will be exceeded throughout the twenty-first century. In 
2018, final energy accounted for 36%, and CO2 emissions accounted for 39% in the worldwide 
building and construction sector [2-3]. The British Government revised the Climate Change Act in 
2019 to commit the UK to reach net-zero emissions by 2050, up from an earlier aim of an 80% 
reduction in emissions by 2050 [3]. As a result, attaining net-zero energy building is critical and 
requires several progressive technologies such as vacuum glazing [6-12], triple vacuum glazing [13-
23], and translucent vacuum insulation panel [24-26] to minimize heat loss or cooling loss through 
the building fabric. For hot water, the use of solar thermal collectors [27], and nowadays the use of 
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advanced vacuum based photovoltaic thermal collectors [28] with thermoelectric generator for 
harvesting waste heat energy into useful electrical energy [29-32], these provide hot water and 
electrical energy generation throughout a year at higher thermal and electrical efficiency. This is 
insufficient on its own. For this, a small-scale wind energy system can play a larger part in attaining 
net-zero energy building.  

Small scale wind energy is suitable for the residential sector and offices as it will reduce 
dependency on the utility sources [33]. It is required to investigate the small-scale wind energy 
system to discover the best equipment and monitoring system to maximise the energy efficiency 
[34]. The energy storage system needs to be investigated for small-scale wind energy systems that 
improve the energy flow [35]. Parallel UPS based configuration is found suitable for this type of 
configuration. The parallel UPS based system transmits and stores the energy efficiently as compared 
to other UPS systems. The UPS can be integrated into photovoltaic modules but require 
environmental temperature control for optimal long-term operation of converters, such as water 
flow cooling [36] or microchannel heat sinks [37] as cost-effective measures for monocrystalline type 
PV modules [38,39]. 

The efficiency of a wind turbine depends on the design of turbine blades and striking wind speed. 
Due to changing wind speed, it is impossible to generate nominal power all the time because variable 
torque applies at changing wind speed. Smaller changes in the wind speed create a significant effect 
on the energy generation because power generation increases 8 times by a doubling wind speed [40]. 
Hence, it is imperative to correctly install the wind blades to extract maximum power from the wind 
energy system. Wind speed attacking angle and blades pitch angle is important to consider that 
impacts the power generation. The major parameters to improve the energy efficiency are pitch 
angle control, rated wind speed, and tip speed ratio. Wind turbine pitch angle adjustment also 
controls the rotor speed at high wind speed and captures more wind at lower wind times. By applying 
the correct pitch angle, a balance between turbine power and electrical power can be maintained 
[41]. The operating speed of the wind turbine is chosen between 3ms to 15ms. Fig. 1 shows the 
direction of wind flow in the UK and the yearly average wind speed. Power efficiency increases by 
wind speed increment to a nominal level. When the wind speed is above the rated speed, then the 
wind turbine still generates the nominal power, but a braking system is required to reduce the 
overspeeding of the wind turbine rotary system. 

 
(a) 
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(b) 

Fig. 1. (a) shows the yearly wind direction in the UK (b) yearly average wind speed in the UK [42]. 

In this research, a sensing system is designed to monitor voltage, current, and power to link with 
the control unit and power converters. The sensing systems also protect the components by isolating 
them at power fluctuations. The simulated maximum power point tracking (MPPT) algorithm-based 
control system regulates the power supply from a permanent magnet synchronous generator (PMSG) 
integrated into the wind energy system. This control system enables the power generation to be 
connected directly to the load and the storage system via rectifier/inverter. The system balances the 
power generation and the energy consumption to manage the power supply in the premises. It 
charges the storage system and supplies power to the load by using an inverter. The control system 
consists of stator side converters and inverters. Low pass filters are applied to remove the harmonics. 
The system consists of uncontrolled rectifiers, DC/DC buck-boost converters, and DC capacitor links. 
The voltage and current sensors are installed to maintain the power flow correctly. The inverter is 
used to converts the DC voltage to AC voltage connected directly to the load side. Pulse width 
modulation (PWM) strategies are set to maintain the switching frequency of IGBT based power 
converters. The Power flow is analysed by applying the variable wind speed. The power electronic 
converters are used to convert electrical power to connect it with the grid and storage system and 
voltage spikes. The simulation is completed on MATLAB/SIMULINK.  

2. Methodology 
 
2.1. Wind turbine modelling 
 

The terminal output power from the wind turbine is given in Eq. (1) [43]. 
 

𝑃𝑡 =
1

2
𝜌𝜋𝑅2𝐶𝑝(ʎ, 𝛽)𝑣3                                                                                        (1) 

 
Where R is the wind turbine blade radius, v is the wind speed, 𝜌 is air density, 𝐶𝑝 is the turbine 

performance coefficient, 𝛽 is blade pitch angle, and ʎ is the tip speed ratio describe in Eq. (2). 
 

ʎ =
𝜔𝑚𝑅

𝑣
               (2) 
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where R is the blade length and 𝜔𝑚 wind turbine rotor speed. The turbine output mechanical 
torque is described 𝑇𝑚 as [44]. 

 

𝑇𝑚 =
1

2
𝜌𝐴𝐶𝑝 (ʎ, 𝛽)𝑣3 1

𝜔𝑚
                                                                                  (3) 

The power coefficient of the wind turbine is given in Eq. (4). 
 

𝐶𝑝 =
1

2
(

116

ʎ𝑖
− 0.4𝛽 − 5)𝑒

−(
21

ʎ𝑖
)
                                                                             (4) 

 
1

ʎ𝑖
=

1

ʎ+0.08𝛽
−

0.035

𝛽3+1
                                                                                            (5) 

 
The parameters of nominal power parameters for the wind energy model are shown in the Table. 

1. 
 

Table 1 
Parameters of the wind energy based system 

PMSG  415/50HZ 
PMSG Nominal Power 20kVA 
Storage system 20kWh 
Converters  AC/DC/AC 
Wind speed 3m/s -15m/s 
Maximum applied load 9.2kWh 
Utility  230VAC/50HZ 
UPS Configuration 
Control system 

Parallel system 
P&O (MPPT) 

 

 
 

Fig. 2. Schematic diagram of the proposed model. 
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Variations in tip speed ratio occur by changes in wind speed or generator speed that affect the 
power generation. The maximum power can be extracted using appropriate control systems such as 
the maximum power point tracking algorithm (MPPT) [45,46].  In this research, different wind speed 
values were chosen to observe and suitably control the output power. The wind speed values 
fluctuate with time, repeating every second. The voltage level is not constant with the varying wind 
speed where the control system is applied to fix the output voltage from the wind turbine. The 
schematic diagram of the proposed model is shown in Fig. 2. 
 
2.2. Modelling of Permanent Magnet Synchronous Generator (PMSG) 
 

PMSG is feasible for low scale wind energy systems because it provides constant output 
frequency at variable wind speed and has better energy efficiency. It has higher reliability with less 
weight and operates efficiently at a variable wind speed. It consists of permanent magnet on the 
rotor instead of windings that reduces generator complexity and improves generator life scale [47]. 
A gearbox can be incorporated in the PMSG based wind turbine to maintain the revolution per minute 
of the generator speed. Mainly gearbox is used to achieve the required high rotor revolution. This 
generator also operates without the needing for a gearbox. PMSG is excited by permanent magnets 
that stop the exchange of power between generators and converters.  The revolution per minute in 
PMSG can be maintained by increasing the number of poles. The simulation of permanent magnet-
based wind energy system is shown in Fig. 3. 

 
Fig. 2. Modelling of permanent magnet synchronous generator-based wind unit. 

 
The modelling of the permanent magnet synchronous generator is defined as [48]. 

𝑉𝑔𝑞 = (𝑅𝑔 + 𝑝. 𝐿𝑞)𝑖𝑞 + 𝜔𝑒𝐿𝑑𝑖𝑑 + 𝜔𝑒₩𝑓                                                          (6) 

𝑉𝑔𝑑 = (𝑅𝑔 + 𝑝. 𝐿𝑑)𝑖𝑑 + 𝜔𝑒𝐿𝑞𝑖𝑞                                                                       (7) 

𝑉𝑔𝑞 and 𝑉𝑔𝑑 are direct stator and quadrature stator voltage. 𝑖𝑞 and 𝑖𝑑 are the quadrature stator 

current and direct stator current,  𝑅𝑔 represent the stator resistance and 𝐿𝑑 and 𝐿𝑞 are the 

inductance, 𝜔𝑒 is the rotational speed of the rotor and ₩𝑓 is the magnetic flux. The rotating speed 

of the generator is given by Eq. (8). 

𝜔𝑒 = 𝑝𝑛𝑤𝑚                                                                                                    (8) 
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𝜔𝑚 is the angular speed of he generator and 𝑝𝑛 defines the number of poles pair of the generator.  

The electromagnetic torque of the PMSG is described as. 

𝑇𝑒 =
3

2
𝑝𝑛[₩𝑓𝑖𝑞 − (𝐿𝑑 − 𝐿𝑞)𝑖𝑑𝑖𝑞]                                                                      (9) 

If 𝑖𝑑 = 0 then the electromagnetic torque is given by 

𝑇𝑒 =
3

2
𝑝𝑛₩𝑓𝑖𝑞                                                                                                        (10) 

The dynamic term for the wind turbine is as follows. 

𝑗
𝑑𝜔𝑚

𝑑𝑡
= 𝑇𝑒 − 𝑇𝑚 − 𝐹𝜔𝑚                                                                                    (11) 

F is the coefficient of viscous friction, J is the moment of inertia and  𝑇𝑚 is the developed 
mechnical torque from the wind turbine.  

Table 2 
Specifications of permanent magnet synchronous generator (PMSG). 

Voltage  415V/50HZ 
Nominal Power 20kVA 
Rotor type Round 
Wind speed 3m/s -15m/s 
Stator phase resistance 2.875Ω 
Armature inductance  0.000835Ω 
Output voltage 
Mechanical input 

Variable 
Torque Tm 

 
3. Results and discussion 
 
3.1. Simulated PMSG at dynamic wind speed analysis 
 

Fig. 4 shows the energy generation at variable wind speed. At 3 m/s, the output voltage is lower, 
but voltage increments is noticed with the wind speed.  
 

 
(a)                                                               (b) 
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(c)                                                                             (d) 

 
(e) 

Fig. 4. (a) Voltage at 3 m/s wind speed. (b) voltage at 6 m/s wind speed. (c) Voltage at 9 m/s wind speed (d) 
Voltage at 12 m/s wind speed. (e) Voltage at 15 m/s wind speed. 

 
3.2. Simulation of control unit on the stator side converters 
 

The power flow from the PMSG fluctuates AC type, and it needs to be regulated before 
connecting it to the load side and the storage system. It is converted to DC type to achieve the 
regulation by using six insulated gate bipolar transistors (IGBT) [49,50]. The two diodes are connected 
in every three rows to achieve the voltage conversion to DC type. The upper diodes are connected to 
the live terminal, and the lower diodes are connected to the neutral terminal of the PMSG output. 
These six diodes convert the power from the wind turbine unit to DC type in a controlled way. Fig. 5 
demonstrates the voltage rectification from the variable wind speed. This voltage is then regulated 
to 60VDC to charge up the storage system.  
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(a)                                                                                          (b) 

 

(c)                                                                                    (d) 

Fig. 5. AC/DC voltage conversion at variable wind speed in an uncontrolled AC/DC rectification. 

Buck-Boost converter is applied to maintain the variable voltage from the PMSG uncontrolled 
rectifiers. These converters maintain the voltage according to the reference voltage. The basic 
components used in the converters are insulated gate bipolar transistors, chopper circuits, 
capacitors, and inductive elements. The frequency of the IGBT switches is low, so a new controlled 
frequency is applied to control the speed of the switches. The desired voltage is achieved by adjusting 
the duty cycle from the control system. The voltage is boosted by increasing the duty cycle. Capacitors 
are used to remove the oscillations from the system. Perturb, and observation techniques are applied 
to control the voltage on the stator side of PMSG based wind energy system.  
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Fig. 6. Shows the perturb and observes algorithm used to investigate the regulation in wind energy. 

This system senses the voltage and power by using sensors. It maintains the output voltage from 
PMSG at a variable wind speed. The regulated voltage to charge up the storage system is shown in 
Fig. 7. It also boosts the voltage to achieve the reference voltage. This method is suitable for changing 
windy conditions, specifically for PMSG [51]. The oscillations are observed by using P and O and are 
removed by using filters. This method is better economically, achieves better efficiency, and can be 
applied with reduced hardware equipment. A DC chopper circuit is also installed in the DC link stator 
side conversion system. This chopper circuit will protect the DC link circuit in the case of imbalances 
in the system. When the imbalances happen, the system observes a voltage reduction on the grid 
terminals [52,53], which reduces the power flow in the system and increases the load on the stator 
side converters. The chopper circuit will dissipate the excess power by the applied resistance systems. 

 

                            (a)                                                                                  (b) 

Fig. 7. (a).16VDC voltage to charge up the storage systems, (b) 16VDC voltage without oscillations. 

3.3. Simulation of Sensing System to the power flow 

Simulation is performed on MATLAB/SIMULINK to investigate the improvement in power flow 
from small scale wind turbine units. The proposed system improved the power flow efficiency and 
reduces losses by drawing maximum power from wind units. It supplies regulated voltage irrespective 
of variations in the wind speed. The system can deliver power to the load all the time. The control 
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system senses the unregulated voltage from the wind turbine and generates the correct duty cycle 
to maintain the voltage, as shown in Fig. 8.  

 

Fig. 8. Buck-Boost converter to regulate DC/DC voltage. 

Oscillations are noticed in the power flow that is reduced by applying low pass filters. Inductance 
and switching frequency affect the power flow in the system. Higher inductance and higher switching 
frequency of the insulated gate bipolar transistor reduces the ripples in current and vice versa. The 
losses in the system are negligible due to the shorter transmission system. The inverter supplies 230 
VAC power to the load. The inverter receives power from the storage system and directly from the 
wind turbine system at rated wind speed. The sensing system is applied at every point of the system 
to measure and maintain the power flow, as shown in Fig. 9. A circuit breaker is installed to protect 
the power components at every section of the system. The applied maximum power point tracking 
algorithm stabilised the power flow and maintained the voltage to charge up the batteries.  
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Fig. 9. Sensing systems to monitor the power flow across different points of the design model. 

The DC/AC inverter aims to transfer the regulated AC power to the load, as shown in Fig. 10. It 
converts DC/AC voltage in a stabilised way. There are four IGBT switches used to convert DC voltage 
into AC voltage. The PWM waveform is applied to achieve the correct voltage and frequency. The 
stabilised 230 VAC is then directly connected to the residential sector. The technique used to convert 
DC voltage into AC voltage is SPWM, where the duty cycle is applied between 0 and 1 by switching 
ON and OFF to generate AC voltage, as shown in Fig. 11.  

 
Fig. 10. illustrate the complete circuit of AC/DC/AC power conversion. 
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Fig. 11. Applied pulses to achieve the reference voltage. 

The generated harmonics in the output are removed by using a filter. The power quality of the 
wind energy generation system depends on whether the output voltage and frequency are close to 
the nominal values because PMSG is a variable power generation system, so it is required to balance 
the output power variables [54]. The output voltage and frequency should be kept constant before 
connecting it to the load side or the grid in the changing environmental conditions. The controller 
applies the correct pulses to achieve the desired output at the load side. The output signal from the 
applied control system is shown in Fig.12. There are sensors installed to monitor the power flow to 
the load side.  

 
Fig. 12. Output signal from the controller to apply correct pulses. 

 
The protection system shown in Fig. 13 is used to protect the load and the grid synchronisation 

when fluctuating voltage from the inverter. Harmonics components are noticed because of PWM 
switching elements. These harmonics components reduce the working efficiency of the loads so a 
filter is placed between the load and the converter to minimise the effect of these harmonics.  
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Fig. 13. illustrates the protection systems used to protect the power components during the fluctuations in 
voltage or short circuits. 

 

3.4. Importance of UPS systems 
 

Selection of a correct UPS configuration is essential for this type of energy flow system. Different 
types of UPS configurations are investigated to choose the suitable configuration. The factors that 
are considered during the design of UPS systems are reliability, fault clearance times, human errors, 
and maintenance timings. It is also considered that all UPS system has to be maintained regularly; 
therefore, it is crucial to design a system with high reliability [55]. After investigating different types 
of UPS modules, it is found that parallel UPS modules are more efficient because failure of one 
component in this type of system will not cause failure of the entire system and can still supply energy 
to the load. This type of design makes it possible to drive the loads under fluctuated wind energy 
generation systems. If the available power from the wind system is low, then loads can be transferred 
to the main grid. 
 

Table 3 
The battery storage specifications. 

Rated Voltage  48V 
Current Capacity (A) 200Ah 
Nominal Power  9.6kWh 
Converters  AC/DC/AC 
Float charge 54VDC 
Absorption charge 58.8VDC 

 
This system will allow to eliminate the single point of failure in the system and increase reliability, 

and it operates as a standalone system to meet most of the energy demands for the residential 
sectors and offices. Two separate power paths in this design will ensure continuity of power supply 
to the loads, as shown in Fig. 14.  
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Fig. 14. The model of the parallel UPS design. 

Parallel UPS configuration allows the system to continuously supply power to the load from the 
variations and outages in the wind speed. If the loads capacity grows, then more UPS can be installed 
in parallel to meet the energy demand. The charging features of the battery storage system is shown 
in Fig. 15. 

 

Fig. 15. Shows the state of charge curve. [56] 

During the normal operations, both UPS supplies energy evenly to the load. When one of the 
modules is failed, then the remaining system should supply energy to the load. The efficiency of the 
parallel UPS system is much better because all modules are operational all the time, and fewer circuit 
breakers are installed. This reduces the cost and complexity of the entire wind energy system [57]. It 
is also possible to install multiple units in the same configurations. The rectifier receives the DC power 
from wind energy and charges up the battery. The inverter receives the power from the rectifier and 
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converts it into AC power to supply the load [58]. During normal conditions, it directly receives power 
from the rectifier and from the battery when there is no power coming from the rectifier.   

 

Fig. 16. Illustrates the power load receiving power from the UPS/utility 

 

3.5. Understanding the risk and reliability analysis of wind energy storage systems 

Risk analysis is carried out to discover the consequences caused by changing environmental 
conditions. Suitable methods such as the bath curve shown in Fig. 17 ensure the continuity of energy 
supplies to the load [59]. Risk is viewed as the failure of any components and how these components 
can reduce the energy supplies and possible consequences during this time. There is an alternative 
measure taken to improve the energy efficiency if the risk level is not acceptable. Reliability of applied 
uninterruptible power (UPS) is paramount where many UPS designs are focused, and a parallel 
redundant system is chosen to meet the energy demands [60]. The wind energy is to be stored in the 
parallel UPS modules. If one of the modules goes faulty or needs maintenance, the other UPS module 
will supply power to the load. If there is no power available from the UPS, the utility will fully energize 
the load. Regular testing and the use of high-quality components will improve the quality and 
reliability of the entire system. A bath curve is used to visualise the reliability of the wind energy 
system and UPS module [61]. 
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Fig. 17. Bath curve used to analyse the failure rate of wind energy components [62]. 

The first part of the curve shows the early failure rate of the components which are decreasing 
with time. The middle part shows the constant failure rate while the last part is ware out failure, 
increasing with time [63]. 

 

4. Conclusion  

This paper investigated improvements in small scale wind energy system for a potential 
residential net-zero energy building. A 20 kVA PMSG is used at variable wind speed to manage and 
monitor the power flow at variable wind speed. The simulation results show the improved efficiency 
of the power flow parameters such as voltage, current, and power. MPPT based Perturb and observe 
method regulated the voltage closer to nominal values. The parallel UPS system could increase the 
system's reliability as it stores and supplies the power efficiently all the time. Buck-boost converter 
provided a constant voltage of 60 VDC to charge the battery in the storage system irrespective of the 
variations in wind speed. This system is environmentally friendly and cost effective on a small-scale 
level. This type of design is easy to implement, cost effective, and simple.  To store additional energy, 
future development should include adding solar modules and more UPS in a parallel arrangement. 
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Nomenclature  Abbreviations  
 

𝑇𝑠 Switching frequency (Hz)  PWM Pulse width 
modulation 

𝑉𝑠 Storage system terminal voltage 
(V) 

PMSG  Permanent magnet 
synchronous generator 

𝑉𝑝𝑚𝑠𝑔 Terminal voltage from PMSG VDC DC voltage 

𝐼𝑠 Storge current (A) MPPT  Maximum power point 
tracking algorithm 

𝑅𝑔 Stator resistance UPS Uninterruptible power 
supply 

𝑇𝑚 Mechanical torque P&O Perturb and observe 
technique 

𝜔𝑒 Rotational speed kWh Kilo watt hour 
𝑃𝑡 Wind turbine power IGBT Insulated gate bipolar 

transistor 
𝛽 Blade pitch angle PDU Power distribution unit 
𝑣 Wind speed ATS Automatic transfer 

switch 
𝐶𝑝 Power coefficient  CU Control unit 
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