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Abstract 

This study presents a novel method for modelling of Eulerian incompressible fluid flow by 
using peridynamic differential operator. The peridynamic differential operator is used to 
calculate partial derivatives in the Navier-Stokes equations. The pressure Poisson equation is 
used to obtain the pressure field whereas the velocity field is obtained by solving momentum 
equations. The numerical procedure to solve Navier-Stokes equations in peridynamics for the 
incompressible fluid is also provided. The capability of the proposed peridynamic 
incompressible fluid model is demonstrated by considering problems of two-dimensional 
cavitation, a flow inside an open channel, and a flow over a cylinder. Moreover, to demonstrate 
the capabilities of the proposed model, the problems of two-dimensional cavitation and a flow 
over a cylinder are investigated for different Reynolds numbers. The vortex shedding is also 
captured for the problem of a flow over a cylinder at Reynolds number of 𝑅𝑒 = 100. For 
verification purposes, the peridynamic results are compared with the results obtained by 
ANSYS Fluent, a commercial fluid dynamics software. 

Keywords: Peridynamics; Peridynamic differential operators; incompressible fluid; Eulerian 
approach; vortex shedding. 
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Nomenclature 

Latin Letters 

𝐚  Matrix stores coefficients 𝑎1, 𝑎2, ⋯ , 𝑎25 that are used to calculate 
peridynamic orthogonal functions. 

𝑎1, 𝑎2, ⋯ , 𝑎25  coefficients that are used to calculate peridynamic orthogonal functions. 
𝐴(𝑗)  Area of node 𝑗 
𝐀  Matrix that is used on the left-hand side of equation 𝐀𝐚 = 𝐛 to obtain 𝐚 
𝐛  Matrix that is used on the right-hand side of equation 𝐀𝐚 = 𝐛 to obtain 𝐚 
𝐷  Diameter of the cylinder. 
𝐝(𝑛−1)  Dot product of 𝐮(𝑛−1) and ∇𝐮(𝑛−1): 𝐝(𝑛−1) = 𝐮(𝑛−1) ⋅ ∇𝐮(𝑛−1) 
𝐅  Force vector acting on the circular cylinder. 
𝐹𝐷  Drag force acting on the circular cylinder. 
𝐹𝐿  Lift force acting on the circular cylinder. 
𝑓1(𝑘), 𝑓2(𝑘) Components of vector 𝐟(𝑘) in 𝑥 and 𝑦 directions, respectively. 
𝑓,𝑥(𝑘)  First order derivative at node 𝑘 of 𝑓 with respect to 𝑥 coordinate. 
𝑓,𝑦(𝑘)  First order derivative at node 𝑘 of 𝑓 with respect to 𝑦 coordinate. 
𝑓,𝑥𝑥(𝑘)  Second order derivative at node 𝑘 of 𝑓 with respect to 𝑥 coordinate. 
𝑓,𝑦𝑦(𝑘)  Second order derivative at node 𝑘 of 𝑓 with respect to 𝑦 coordinate. 
𝑓,𝑥𝑦(𝑘)  Second order derivative at node 𝑘 of 𝑓 with respect to 𝑥, 𝑦 coordinates. 
𝑔2(𝑘)(𝑗)

10   Peridynamic orthogonal function for first order derivative 𝑓,𝑥(𝑘) 
𝑔2(𝑘)(𝑗)

01   Peridynamic orthogonal function for first order derivative 𝑓,𝑦(𝑘) 
𝑔2(𝑘)(𝑗)

20   Peridynamic orthogonal function for second order derivative 𝑓,𝑥𝑥(𝑘) 
𝑔2(𝑘)(𝑗)

02   Peridynamic orthogonal function for second order derivative 𝑓,𝑦𝑦(𝑘) 
𝑔2(𝑘)(𝑗)

11   Peridynamic orthogonal function for second order derivative 𝑓,𝑥𝑦(𝑘) 
𝐊𝐿  Matrix that represents the Laplace operator ∇2𝐏(𝑛) = 𝐊𝐿𝐏

(𝑛) 
𝑘  Node 𝑘 
𝑗  Node 𝑗 
𝐋(𝑛−1)  Laplace operator of the velocity field: 𝐋(𝑛−1) = ∇2𝐮(𝑛−1) 
𝑁𝑝  Total number nodes in the discretized model.  
𝑁𝑡  Total number of time steps. 
𝐧  Normal unit vector of a solid boundary. 
𝐧𝐿   Normal unit vector of a left boundary of the fluid domain. 

𝐧𝑅   Normal unit vector of a right boundary of the fluid domain. 

𝑝  Fluid pressure  
𝑝(𝑛)  Fluid pressure at 𝑛𝑡ℎ time step. 
𝐏(𝑛)  Pressure vector for the fluid domain at the 𝑛𝑡ℎ time step. 
𝑝,𝑥(𝑘)

(𝑛)   First order derivative of velocity 𝑝(𝑘)
(𝑛−1) with respect to 𝑥 coordinate. 

𝑝,𝑦(𝑘)
(𝑛)   First order derivative of velocity 𝑝(𝑘)

(𝑛−1) with respect to 𝑦 coordinate. 

𝑝,𝑥𝑥(𝑘)
(𝑛)   Second order derivative of velocity 𝑝(𝑘)

(𝑛−1) with respect to 𝑥 coordinate. 

𝑝,𝑦𝑦(𝑘)
(𝑛)   Second order derivative of velocity 𝑝(𝑘)

(𝑛−1) with respect to 𝑦 coordinate. 
𝐑(𝑛)  Vector on right-hand side of pressure Poisson equation.  
𝑟(𝑘)
(𝑛)  Component 𝑘𝑡ℎ of vector 𝐑(𝑛) which corresponds to node 𝑘. 

Modelling of Eulerian incompressible fluid flows by using peridynamic differential operator

2



3 
 

𝑅𝑒  Reynolds number. 
𝐮(𝑛−1)  Velocity vector at (𝑛 − 1)𝑡ℎtime step. 
𝐮(𝑛)  Velocity vector at 𝑛𝑡ℎtime step. 
𝑢 Velocity component in 𝑥 direction. 
𝑢,𝑥(𝑘)

(𝑛−1)  First order derivative of velocity 𝑢(𝑘)
(𝑛−1) with respect to 𝑥 coordinate. 

𝑢,𝑦(𝑘)
(𝑛−1)  First order derivative of velocity 𝑢(𝑘)

(𝑛−1) with respect to 𝑦 coordinate. 
𝑢,𝑥𝑥(𝑘)

(𝑛−1)   Second order derivative of velocity 𝑢(𝑘)
(𝑛−1) with respect to 𝑥 coordinate. 

𝑢,𝑦𝑦(𝑘)
(𝑛−1)   Second order derivative of velocity 𝑢(𝑘)

(𝑛−1) with respect to 𝑦 coordinate. 
𝑣  Velocity component in 𝑦 direction. 
𝑣,𝑥(𝑘)

(𝑛−1)  First order derivative of velocity 𝑣(𝑘)
(𝑛−1) with respect to 𝑥 coordinate. 

𝑣,𝑦(𝑘)
(𝑛−1)  First order derivative of velocity 𝑣(𝑘)

(𝑛−1) with respect to 𝑦 coordinate. 
𝑣,𝑥𝑥(𝑘)

(𝑛−1)  Second order derivative of velocity 𝑣(𝑘)
(𝑛−1) with respect to 𝑥 coordinate. 

𝑣,𝑦𝑦(𝑘)
(𝑛−1)   Second order derivative of velocity 𝑣(𝑘)

(𝑛−1) with respect to 𝑦 coordinate. 
𝑥 and 𝑦 𝑥 and 𝑦 coordinates. 

Greek Letters 

Γ Solid boundary. 
𝛿  Horizon size. 
Δ𝑡  Time step size. 
Δ𝑥  Mesh size in 𝑥 direction. 
Δ𝑦  Mesh size in 𝑦 direction. 
Δ𝑟  Mesh size in the radial coordinate. 
Δ𝜃  Mesh size in the angular coordinate. 
𝜇  Dynamic viscosity of the fluid. 
𝛏  Vector of relative coordinates between two nodes. 
𝜉1  Component of vector 𝛏 in 𝑥 direction. 
𝜉2  Component of vector 𝛏 in 𝑦 direction. 
|𝛏|  Bond length or the distance between two nodes. 
𝜌  Fluid density. 
𝛔  Stress tensor acting on surface 𝑆 
𝜎𝑥𝑥, 𝜎𝑥𝑦, 𝜎𝑦𝑦  Components of stress tensor 𝛔. 
𝜔(|𝛏|)  Peridynamic weight function. 
∇ ⋅ ()  Divergence operator. 
∇()  Gradient operator. 
∇2()  Laplace operator. 

Acronyms 

CFD Computational fluid dynamics  
SPH Smoothed particle hydrodynamics  
MPS Moving particle semi-implicit method  
PD  Peridynamics/Peridynamic. 
PDDO Peridynamic differential operator(s) 
FSI Fluid-structure interaction  
WSPH Weakly compressible smoothed particle hydrodynamics  
ISPH Incompressible smoothed particle hydrodynamics  
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1. Introduction 

Computational fluid dynamics (CFD) is the analysis of systems involving fluid flow, heat 
transfer and associated phenomena such as chemical reactions utilizing computer-based 
simulation. With a long-term history of development, the technique has become a very 
powerful tool with a wide range of industrial and non-industrial application areas. To perform 
CFD simulations, either mesh-based or meshfree methods can be used. The traditional mesh-
based methods prefer the Eulerian approach which is widely used in many fluid dynamics 
related areas. Meanwhile, the meshfree methods such as smoothed particle hydrodynamics 
(SPH) or moving particle semi-implicit method (MPS) often use the Lagrangian approach in 
which the locations of fluid particles need to be updated during simulations (Benz, 1990; 
Meister et al., 2014; Monaghan, 1992; Morris, 1996; Shakibaeinia and Jin, 2011, 2012; Xie et 
al., 2005). Recently, fluid flow problems have also been simulated by using peridynamic 
differential operator (PDDO) (Gao and Oterkus, 2019b, 2020, 2021), which is a mathematical 
technique to represent field variables and their spatial derivatives in nonlocal form (Madenci 
et al., 2019a; Madenci et al., 2016; Madenci et al., 2017; Madenci et al., 2019b). PDDO can 
represent the original peridynamic equations of motion by recasting Navier’s displacement 
equilibrium equations into their nonlocal form.  

The original peridynamic theory was first introduced by Silling (2000) and the theory has been 
mainly used for problems in solid mechanics. To represent equations of motion of a node, 
peridynamics uses integro-differential equations instead of partial differential equations 
(Madenci and Oterkus, 2014; Silling, 2000; Silling and Askari, 2005; Silling et al., 2007; 
Silling and Lehoucq, 2010). Therefore, peridynamics (PD) is highly suitable for predicting 
progressive damages. Over 20 years of development, peridynamics has become applicable for 
many fields such as elastic and plastic deformations (Foster et al., 2010; Huang et al., 2019; 
Kružík et al., 2018; Madenci and Oterkus, 2016; Mitchell, 2011; Nguyen and Oterkus, 2019a), 
beam and shell structures (Chowdhury et al., 2016; Diyaroglu et al., 2019; Diyaroglu et al., 
2015; Nguyen and Oterkus, 2019b, c, 2020, 2021; O’Grady and Foster, 2014a, b; Tien Nguyen 
and Oterkus, 2020; Yang et al., 2019), corrosion and fatigue (Chen and Bobaru, 2015; Chen et 
al., 2021; De Meo et al., 2016a; De Meo and Oterkus, 2017; Nguyen et al., 2020; Rokkam et 
al., 2019; Shojaei et al., 2020; Silling and Askari, 2014; Zhang et al., 2016), multiphysics and 
multiscale modeling (Askari et al., 2008; Bobaru and Ha, 2011; Gao and Oterkus, 2019c; 
Oterkus, 2015; Oterkus et al., 2017), composite and polycrystalline materials (De Meo et al., 
2016b; Gao and Oterkus, 2019a; Ghajari et al., 2014; Hu et al., 2012; Hu et al., 2015; Oterkus, 
2010; Oterkus et al., 2012). Recently, peridynamic differential operators (PDDO) for the 
approximation of field variables and their spatial derivatives were developed (Madenci et al., 
2019a; Madenci et al., 2016; Madenci et al., 2017; Madenci et al., 2019b). The development 
of PDDO opened a wide range of applications in engineering (Haghighat et al., 2020; Madenci 
et al., 2019a; Madenci et al., 2016; Madenci et al., 2017). Shojaei et al. (2019) developed a 
generalized finite difference method based on the PDDO for the solution of problems in 
bounded and unbounded domains. Moreover, PDDO can also be used to represent Navier-
Stokes equations in a nonlocal form Gao and Oterkus (2019b, 2020, 2021). Therefore, using 
peridynamics and peridynamic differential operators to simulate both structural dynamics and 
fluid dynamics problems will become highly possible. This will be a very important step that 
can allow simulating complex fluid-structure interaction (FSI) problems including structural 
damages that current local techniques are still facing significant difficulties to deal with.  
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To date, the development of PDDO in the field of fluid dynamics is very limited. Bazazzadeh 
et al. (2018) applied PDDO to incompressible inviscid fluid flow with moving boundaries for 
the solution of sloshing problems in tanks. Recently, Gao and Oterkus (2019b, 2020, 2021) 
represented Navier-Stokes equations in the nonlocal form by using peridynamic differential 
operators. The fluid model developed by Gao and Oterkus (2019b); (Gao and Oterkus, 2020, 
2021) is the weakly compressible fluid model which is similar to the weakly compressible 
smoothed particle hydrodynamics (WSPH) (Benz, 1990; Monaghan, 1992; Morris, 1996). The 
weakly compressible fluid model employs an artificial equation of state that specifies pressure 
as an algebraic function of density. Therefore, a high speed of sound needs to be used to 
maintain an acceptable density variation (Cummins and Rudman, 1999). As a result, small time 
step sizes need to be used to ensure a stable solution in weakly compressible fluid models. In 
addition, due to the use of the artificial equation of state, the pressure can have large and non-
physical fluctuations which can cause numerical instability (Hosseini and Feng, 2011). 
Therefore, the weakly compressible fluid models often face difficulties when dealing with 
problems where pressure is of physical interest such as FSI problems (Hosseini and Feng, 2011; 
Lee et al., 2008). 

In smoothed particle hydrodynamics, to overcome difficulties faced by the WSPH, Cummins 
and Rudman (1999) introduced truly incompressible SPH (ISPH) algorithms based on the 
projection scheme. The truly incompressible fluid model produces more accurate predictions 
of velocity and forces on solids, and it is more efficient than weakly compressible fluid models 
since larger time step sizes can be used (Cummins and Rudman, 1999; Hosseini and Feng, 
2011; Lee et al., 2008; Yildiz et al., 2009). Therefore, in this study, a peridynamic model for 
truly incompressible fluid based on the Eulerian approach is proposed. Specifically, the Navier-
Stokes equations for incompressible fluid based on the Eulerian approach are represented in a 
nonlocal form by using the peridynamic differential operator. The pressure Poisson equation is 
used to obtain the pressure field, meanwhile, the velocity field is obtained by solving 
momentum equations. In this study, the proposed model is also called the Eulerian 
incompressible PDDO model.  

This paper is organized as follows. Section 2 presents Navier-Stokes equations and the pressure 
Poisson equation for incompressible fluid based on the Eulerian approach. Section 3 presents 
the proposed Eulerian incompressible fluid PDDO model. The numerical procedure for the 
proposed Eulerian incompressible fluid PDDO model is also provided in this section. Section 
4 presents various boundary conditions that are implemented in this study. Sections 5 and 6 
presents numerical results and the conclusion. 
 

2. Navier-Stokes equations for a two-dimensional incompressible fluid 

According to Versteeg and Malalasekera (2007), the Navier-Stokes equations for an 
incompressible fluid in the 2D domain can be written by using the Eulerian approach as 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 (1a) 

𝜌
𝜕𝑢

𝜕𝑡
+ 𝜌 (𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = −

𝜕𝑝

𝜕𝑥
+ 𝜇 [

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2] (1b) 

𝜌
𝜕𝑣

𝜕𝑡
+ 𝜌 (𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) = −

𝜕𝑝

𝜕𝑦
+ 𝜇 [

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2] (1c) 
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where 𝑥 and 𝑦 represent two components of the Cartesian coordinates, and 𝑡 represents time. 
The terms 𝑢 and 𝑣 represent the velocity components in 𝑥 and 𝑦 directions, respectively. The 
parameter 𝑝 represents the fluid pressure. The parameters 𝜌 and 𝜇 represent the constant density 
and dynamic viscosity of the fluid. In the above equations, Eq. (1a) is known as the continuity 
equation or mass conservation equation. Meanwhile, Eq. (1b) and Eq. (1c) are the momentum 
equations in 𝑥 and 𝑦 directions, respectively. 

The Navier-Stokes equations for incompressible fluid given in Eq. (1) can be written in a 
compact form as 

∇ ⋅ 𝐮 = 0   (2a) 

𝜕𝐮/𝜕𝑡 = −𝐮 ⋅ ∇𝐮 −
1

𝜌
∇𝑝 +

𝜇

𝜌
∇2𝐮   (2b) 

with 

𝐮 = [𝑢 𝑣]𝑇   (2c) 

where 𝐮 is the 2D velocity vector.  

Pressure Poisson equation 

In many particle-based methods, the pressure field can be obtained by solving the pressure 
Poisson equation. This pressure field is then used to correct the velocity field to make it 
divergence-free (Fourtakas et al., 2018; Hosseini and Feng, 2011; Lind and Stansby, 2016; 
Nasar et al., 2020; Shadloo et al., 2012; Shao and Lo, 2003; Solenthaler and Pajarola, 2009). 
The pressure Poisson equation is obtained by taking the divergence of momentum equation 
given in Eq. (2b) as 

∇ ⋅ (
𝜕𝐮

𝜕𝑡
) = −∇ ⋅ (𝐮 ⋅ ∇𝐮) −

1

𝜌
∇2𝑝 +

𝜇

𝜌
∇ ⋅ (∇2𝐮)  (3a) 

which can be rearranged as 

∇2𝑝 = −𝜌∇ ⋅ (𝜕𝐮/𝜕𝑡) − 𝜌∇ ⋅ (𝐮 ⋅ ∇𝐮) − +𝜇∇ ⋅ (∇2𝐮)  (3b) 

Eq. (3b) is known as the pressure Poisson equation in the continuum level. In a discretized 
model, to obtain the Eulerian form of the pressure Poisson equation, first, the continuity and 
momentum equations given in Eq. (2) for incompressible fluid is written in the numerical form 
as (Fourtakas et al., 2018; Lind and Stansby, 2016; Nasar et al., 2020) 

∇ ⋅ 𝐮(𝑛) = 0   (4a) 

(𝐮(𝑛) − 𝐮(𝑛−1))/Δ𝑡 = (−𝐮(𝑛−1) ⋅ ∇𝐮(𝑛−1) −
1

𝜌
∇𝑝(𝑛) +

𝜇

𝜌
∇2𝐮(𝑛−1))  (4b) 

The momentum equation in Eq. (4b) can be rewritten as 

𝐮(𝑛) = 𝐮(𝑛−1) + Δ𝑡 (−𝐮(𝑛−1) ⋅ ∇𝐮(𝑛−1) −
1

𝜌
∇𝑝(𝑛) +

𝜇

𝜌
∇2𝐮(𝑛−1))  (5) 

where 𝐮(𝑛−1) represents the known velocity field at the previous time step, and 𝐮(𝑛) represents 
the unknown velocity field at the current time step. The term 𝑝(𝑛) represents the unknown 
pressure field at the current time step and Δ𝑡 represents time step size.  
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Taking the divergence of momentum equation given in Eq. (5) results in 

∇ ⋅ 𝐮(𝑛) = ∇ ⋅ 𝐮(𝑛−1) + Δ𝑡 (−∇ ⋅ (𝐮(𝑛−1) ⋅ ∇𝐮(𝑛−1)) −
1

𝜌
∇2𝑝(𝑛) +

𝜇

𝜌
∇ ⋅ (∇2𝐮(𝑛−1)))  (6) 

By enforcing ∇ ⋅ 𝐮(𝑛) = 0 due to the continuity equation given in Eq. (4a), Eq. (6) reduces to 

∇2𝑝(𝑛) =
𝜌

Δ𝑡
∇ ⋅ 𝐮(𝑛−1) − 𝜌∇ ⋅ (𝐮(𝑛−1) ⋅ ∇𝐮(𝑛−1)) + 𝜇∇ ⋅ (∇2𝐮(𝑛−1))  (7) 

Eq. (7) is known as the pressure Poisson equation which can be used to obtain the pressure 
field (Matsuno et al., 2003; Shirokoff, 2011; Sohn and Heinrich, 1990). Note that compared to 
the pressure Poisson equation for the Lagrangian approach as presented in (Hosseini and Feng, 
2011; Shadloo et al., 2012; Shao and Lo, 2003; Solenthaler and Pajarola, 2009), Eq. (7) has 
two additional terms, 𝜌∇ ⋅ (𝐮(𝑛−1) ⋅ ∇𝐮(𝑛−1)) and 𝜇∇ ⋅ (∇2𝐮(𝑛−1)), which arise from Eulerian 
approach. 

In this study, the Navier-Stokes equations are solved by two steps. First, the pressure field at 
time 𝑡 is obtained by solving the pressure Poisson equation given in Eq. (7) (Fourtakas et al., 
2018; Hosseini and Feng, 2011; Lind and Stansby, 2016; Nasar et al., 2020; Shadloo et al., 
2012; Shao and Lo, 2003; Solenthaler and Pajarola, 2009). The pressure is subjected to 
boundary conditions described in Section 4. 

Next, by using the obtained pressure at current time 𝑡, the velocity field at the current time 𝑡 
can be calculated as 

𝐮(𝑛) = 𝐮(𝑛−1) + Δ𝑡 (−𝐮(𝑛−1) ⋅ ∇𝐮(𝑛−1) −
1

𝜌
∇𝑝(𝑛) +

𝜇

𝜌
∇2𝐮(𝑛−1))  (8) 

The velocity boundary conditions are described in Section 4. The above two steps are repeated 
for every time step until the final solution is obtained. 

 

3. Eulerian incompressible fluid model using peridynamic differential operators 

In this section, first, the formulations of peridynamic differential operators introduced by 
(Madenci et al., 2019a); Madenci et al. (2016) are summarized in Section 3.1. Second, the 
peridynamic differential operators for momentum equations and pressure Poisson equation as 
given in Eqs. (6-7) are presented in Section 3.2. Next, an implicit solution for the pressure 
Poisson equation in the Eulerian incompressible PDDO model is presented in Section 3.3. 
Finally, the numerical procedure to solve Navier-Stokes equations using the proposed Eulerian 
incompressible PDDO model is presented in Section 3.4. 

3.1. Peridynamic differential operators in two-dimensional space 

In this section, the peridynamic differential operators for the first and second-order derivatives 
in a two-dimensional (2D) space are presented. First, let 𝑓 be a function in a 2D space as 

𝑓 = 𝑓(𝑥, 𝑦)   (9) 

According to (Madenci et al., 2019a); Madenci et al. (2016), the first and second order 
derivatives of 𝑓 at point 𝑘 can be presented as 
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𝑓,𝑥(𝑘) = ∑ (𝑓(𝑗) − 𝑓(𝑘))𝑔2(𝑘)(𝑗)
10 𝐴(𝑗)

𝑁
𝑗=1    (10a) 

𝑓,𝑦(𝑘) = ∑ (𝑓(𝑗) − 𝑓(𝑘))𝑔2(𝑘)(𝑗)
01 𝐴(𝑗)

𝑁
𝑗=1    (10b) 

and 

𝑓,𝑥𝑥(𝑘) = ∑ (𝑓(𝑗) − 𝑓(𝑘))𝑔2(𝑘)(𝑗)
20 𝐴(𝑗)

𝑁
𝑗=1    (10c) 

𝑓,𝑦𝑦(𝑘) = ∑ (𝑓(𝑗) − 𝑓(𝑘))𝑔2(𝑘)(𝑗)
02 𝐴(𝑗)

𝑁
𝑗=1   (10d) 

𝑓,𝑥𝑦(𝑘) = ∑ (𝑓(𝑗) − 𝑓(𝑘))𝑔2(𝑘)(𝑗)
11 𝐴(𝑗)

𝑁
𝑗=1    (10e) 

where 𝑓,𝑥(𝑘) and 𝑓,𝑦(𝑘) are first-order derivatives of 𝑓 with respect to coordinates 𝑥 and 𝑦, 
respectively. In Eq. (10), 𝑗 is a family member of particle (node) 𝑘. The term 𝐴(𝑗) represents 
the area of node 𝑗. The terms 𝑓(𝑗) and 𝑓(𝑘) represent the values of function 𝑓 at the coordinates 
of nodes 𝑘 and 𝑗, respectively, as 

𝑓(𝑘) = 𝑓(𝑥(𝑘), 𝑦(𝑘))   (11a) 

𝑓(𝑗) = 𝑓(𝑥(𝑗), 𝑦(𝑗))   (11b) 

In Eqs. (10a, b), the terms 𝑔2(𝑘)(𝑗)
10  and 𝑔2(𝑘)(𝑗)

01  represent the peridynamic orthogonal functions 
for first-order derivatives. Meanwhile, the terms 𝑔2(𝑘)(𝑗)

20 , 𝑔2(𝑘)(𝑗)
02 , and 𝑔2(𝑘)(𝑗)

11  in Eqs. (10c-e) 
represent the peridynamic orthogonal functions for second-order derivatives. These 
peridynamic orthogonal functions can be expressed as (Madenci et al., 2019a; Madenci et al., 
2016) 

𝑔2(𝑘)(𝑗)
10 (𝛏) = 𝜔(|𝛏|)(𝑎1𝜉1 + 𝑎2𝜉2 + 𝑎3𝜉1

2 + 𝑎4𝜉2
2 + 𝑎5𝜉1𝜉2) (12a) 

𝑔2(𝑘)(𝑗)
01 (𝛏) = 𝜔(|𝛏|)(𝑎6𝜉1 + 𝑎7𝜉2 + 𝑎8𝜉1

2 + 𝑎9𝜉2
2 + 𝑎10𝜉1𝜉2) (12b) 

𝑔2(𝑘)(𝑗)
20 (𝛏) = 𝜔(|𝛏|)(𝑎11𝜉1 + 𝑎12𝜉2 + 𝑎13𝜉1

2 + 𝑎14𝜉2
2 + 𝑎15𝜉1𝜉2) (12c) 

𝑔2(𝑘)(𝑗)
02 (𝛏) = 𝜔(|𝛏|)(𝑎16𝜉1 + 𝑎17𝜉2 + 𝑎18𝜉1

2 + 𝑎19𝜉2
2 + 𝑎20𝜉1𝜉2) (12d) 

𝑔2(𝑘)(𝑗)
11 (𝛏) = 𝜔(|𝛏|)(𝑎21𝜉1 + 𝑎22𝜉2 + 𝑎23𝜉1

2 + 𝑎24𝜉2
2 + 𝑎25𝜉1𝜉2) (12e) 

with 

𝛏 = 𝐱(𝑗) − 𝐱(𝑘) = (𝑥(𝑗) − 𝑥(𝑘), 𝑦(𝑗) − 𝑦(𝑘))  (12f) 

𝜉1 = 𝑥(𝑗) − 𝑥(𝑘)  (12g) 

𝜉2 = 𝑦(𝑗) − 𝑦(𝑘)  (12h) 

|𝛏| = √𝜉1
2 + 𝜉2

2  (12i) 

𝜔(|𝛏|) = 𝑒−(
2|ξ|

𝛿
)
2

  (12j) 

where 𝜉1 and 𝜉2 are the relative coordinates between nodes 𝑘 and 𝑗, and 𝜔(|𝛏|) represents the 
peridynamic weight function (Madenci et al., 2019a; Madenci et al., 2016). 
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In Eqs. (12a-e), the terms, 𝑎1, 𝑎2, ⋯ , 𝑎25, represent the components of matrix 𝐚 that can be 
defined as (Madenci et al., 2019a; Madenci et al., 2016) 

𝐚 =

[
 
 
 
 
𝑎1 𝑎6 𝑎11 𝑎16 𝑎21

𝑎2 𝑎7 𝑎12 𝑎17 𝑎22

𝑎3 𝑎8 𝑎13 𝑎18 𝑎23

𝑎4 𝑎9 𝑎14 𝑎19 𝑎24

𝑎5 𝑎10 𝑎15 𝑎20 𝑎25]
 
 
 
 

  (13) 

The matrix 𝐚 in Eq. (13) can be obtained by solving the following equation as (Madenci et 
al., 2019a; Madenci et al., 2016) 

𝐀𝐚 = 𝐛  (14a) 

with 

𝐀 = ∑ 𝜔(|𝛏|)

[
 
 
 
 
 
𝜉1
2 𝜉1𝜉2 𝜉1

3 𝜉1𝜉2
2 𝜉1

2𝜉2
𝜉1𝜉2 𝜉2

2 𝜉1
2𝜉2 𝜉2

3 𝜉1𝜉2
2

𝜉1
3 𝜉1

2𝜉2 𝜉1
4 𝜉1

2𝜉2
2 𝜉1

3𝜉2
𝜉1𝜉2

2 𝜉2
3 𝜉1

2𝜉2
2 𝜉2

4 𝜉1𝜉2
3

𝜉1
2𝜉2 𝜉1𝜉2

2 𝜉1
3𝜉2 𝜉1𝜉2

3 𝜉1
2𝜉2

2
]
 
 
 
 
 

𝐴(𝑗)
𝑁
𝑗=1  (14b) 

and 

𝐛 =

[
 
 
 
 
1 0 0 0 0
0 1 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 1]

 
 
 
 

  (14c) 

By using the first-order derivatives given in Eqs. (10a, b), the peridynamic gradient operator 
for function 𝑓 can be represented as 

∇𝑓(𝑘) = [
𝑓,𝑥(𝑘)

𝑓,𝑦(𝑘)
] = ∑ 𝐴(𝑗) [

−𝑔2(𝑘)(𝑗)
10 𝑔2(𝑘)(𝑗)

10

−𝑔2(𝑘)(𝑗)
01 𝑔2(𝑘)(𝑗)

01 ] [
𝑓(𝑘)

𝑓(𝑗)
]𝑁

𝑗=1  (15) 

By using the second-order derivatives given in Eqs. (10c, d), the peridynamic Laplace operator 
for function 𝑓 can be represented as 

∇2𝑓(𝑘) = 𝑓,𝑥𝑥(𝑘) + 𝑓,𝑦𝑦(𝑘) = ∑ (𝑔2(𝑘)(𝑗)
20 + 𝑔2(𝑘)(𝑗)

02 )𝐴(𝑗)[−1 1] [
𝑓(𝑘)

𝑓(𝑗)
]𝑁

𝑗=1  (16) 

Similarly, by using the first-order derivatives given in Eqs. (10a-b), the peridynamic gradient 
operator and peridynamic divergence operator for a vector 𝐟 = [𝑓1 𝑓2]

𝑇 can be represented 
as 

∇𝐟(𝑘) = [
𝑓1,𝑥(𝑘)

𝑓2,𝑥(𝑘)

𝑓1,𝑦(𝑘) 𝑓2,𝑦(𝑘)
] = ∑ 𝐴(𝑗) [

−𝑔2(𝑘)(𝑗)
10 𝑔2(𝑘)(𝑗)

10

−𝑔2(𝑘)(𝑗)
01 𝑔2(𝑘)(𝑗)

01 ] [
𝑓1(𝑘)

𝑓1(𝑗)

𝑓2(𝑘)

𝑓2(𝑗)
]𝑁

𝑗=1  (17) 

∇ ⋅ 𝐟(𝑘) = 𝑓1,𝑥(𝑘) + 𝑓2,𝑦(𝑘) = ∑ 𝐴(𝑗)[−𝑔2(𝑘)(𝑗)
10 𝑔2(𝑘)(𝑗)

10     −𝑔2(𝑘)(𝑗)
01 𝑔2(𝑘)(𝑗)

01 ]

[
 
 
 
 
𝑓1(𝑘)

𝑓1(𝑗)
𝑓2(𝑘)

𝑓2(𝑗)]
 
 
 
 

𝑁
𝑗=1   (18) 
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By using the second-order derivatives given in Eqs. (10c-d), the PD Laplace operator for a 
vector 𝐟 = [𝑓1 𝑓2]

𝑇 can be represented as 

∇2𝐟(𝑘) = [
𝑓1,𝑥𝑥(𝑘) + 𝑓1,𝑦𝑦(𝑘)

𝑓2,𝑥𝑥(𝑘) + 𝑓2,𝑦𝑦(𝑘)
] = ∑ (𝑔2(𝑘)(𝑗)

20 + 𝑔2(𝑘)(𝑗)
02 )𝐴(𝑗) [

−1 1 0 0
0 0 −1 1

]

[
 
 
 
 
𝑓1(𝑘)

𝑓1(𝑗)
𝑓2(𝑘)

𝑓2(𝑗)]
 
 
 
 

𝑁
𝑗=1  (19) 

As given in Eq. (14b) and (12j), the formulations of 𝐀 and weight function 𝜔(|ξ|) include 
length-scale, 𝛿, which is the horizon size in PDDO. Therefore, the terms, 𝑎1, 𝑎2, ⋯ , 𝑎25 given 
in Eq. (13) and Eq. (14a), and the PDDO orthogonal functions, 𝑔2(𝑘)(𝑗)

10 , 𝑔2(𝑘)(𝑗)
01 , 𝑔2(𝑘)(𝑗)

20 , 
𝑔2(𝑘)(𝑗)

02 , 𝑔2(𝑘)(𝑗)
11  given in Eq. (12) include length-scale, 𝛿. Thus, the length-scale, 𝛿, still exists 

in the PDDO for the first order and second order derivatives given in Eq. (10). A discussion 
about the effects of horizon size 𝛿 on the accuracy of PDDO estimations was also presented in 
(Madenci et al., 2019a; Madenci et al., 2016). 

3.2. Peridynamic differential operators for Navier-Stokes equations 

In this section, the PDDO for the calculations of the terms, ∇𝐮(𝑛−1), ∇2𝐮(𝑛−1), ∇2𝑝(𝑛), ∇𝑝(𝑛) 
in Eqs. (6-7) are presented. First, by using the operators given in Eq. (17) and Eq. (19), the 
gradient, ∇𝐮(𝑛−1) and Laplace, ∇2𝐮(𝑛−1), of the velocity 𝐮(𝑛−1) in Eqs. (6-7) can be calculated 
as 

∇𝐮(𝑘)
(𝑛−1)

= [
𝑢,𝑥(𝑘)

(𝑛−1)
𝑣,𝑥(𝑘)

(𝑛−1)

𝑢,𝑦(𝑘)
(𝑛−1)

𝑣,𝑦(𝑘)
(𝑛−1)

] = ∑ 𝐴(𝑗) [
−𝑔2(𝑘)(𝑗)

10 𝑔2(𝑘)(𝑗)
10

−𝑔2(𝑘)(𝑗)
01 𝑔2(𝑘)(𝑗)

01 ] [
𝑢(𝑘)

(𝑛−1)

𝑢(𝑗)
(𝑛−1)

𝑣(𝑘)
(𝑛−1)

𝑣(𝑗)
(𝑛−1)

]𝑁
𝑗=1  (20) 

∇2𝐮(𝑘)
(𝑛−1)

= [
𝑢,𝑥𝑥(𝑘)

(𝑛−1)
+ 𝑢,𝑦𝑦(𝑘)

(𝑛−1)

𝑣,𝑥𝑥(𝑘)
(𝑛−1)

+ 𝑣,𝑦𝑦(𝑘)
(𝑛−1)

] = ∑ (𝑔2(𝑘)(𝑗)
20 + 𝑔2(𝑘)(𝑗)

02 )𝐴(𝑗) [
−1 1 0 0
0 0 −1 1

]

[
 
 
 
 
 𝑢(𝑘)

(𝑛−1)

𝑢(𝑗)
(𝑛−1)

𝑣(𝑘)
(𝑛−1)

𝑣(𝑗)
(𝑛−1)

]
 
 
 
 
 

𝑁
𝑗=1  (21) 

Second, by using Eq. (18), the divergence of the velocity vector, ∇ ⋅ 𝐮(𝑛−1), in Eq. (7) can be 
represented as 

∇ ⋅ 𝐮(𝑘)
(𝑛−1)

= 𝑢,𝑥(𝑘)
(𝑛−1)

+ 𝑣,𝑦(𝑘)
(𝑛−1)

= ∑ 𝐴(𝑗)[−𝑔2(𝑘)(𝑗)
10 𝑔2(𝑘)(𝑗)

10     −𝑔2(𝑘)(𝑗)
01 𝑔2(𝑘)(𝑗)

01 ]

[
 
 
 
 
 𝑢(𝑘)

(𝑛−1)

𝑢(𝑗)
(𝑛−1)

𝑣(𝑘)
(𝑛−1)

𝑣(𝑗)
(𝑛−1)

]
 
 
 
 
 

𝑁
𝑗=1   (22) 

To calculate the divergence ∇ ⋅ (𝐮(𝑛−1) ⋅ 𝛻𝐮(𝑛−1)) in Eq. (7), the term 𝐮(𝑛−1) ⋅ ∇𝐮(𝑛−1) can be 
represented as 

𝐝(𝑛−1) = 𝐮(𝑛−1) ⋅ ∇𝐮(𝑛−1) = [
𝑢(𝑛−1)𝑢,𝑥

(𝑛−1) + 𝑣(𝑛−1)𝑢,𝑦
(𝑛−1)

𝑢(𝑛−1)𝑣,𝑥
(𝑛−1)

+ 𝑣(𝑛−1)𝑣,𝑦
(𝑛−1)

]  (23) 

Therefore, the divergence ∇ ⋅ (𝐮(𝑛−1) ⋅ 𝛻𝐮(𝑛−1)) in Eq. (7) can be represented as 
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∇ ⋅ (𝐮(𝑛−1) ⋅ 𝛻𝐮(𝑛−1)) = ∇ ⋅ 𝐝(𝑛−1) = 𝑑1,𝑥
(𝑛−1) + 𝑑2,𝑦

(𝑛−1) (24a) 

with  

𝑑1
(𝑛−1)

= 𝑢(𝑛−1)𝑢,𝑥
(𝑛−1)

+ 𝑣(𝑛−1)𝑢,𝑦
(𝑛−1)   (24b) 

𝑑2(𝑘)
(𝑛−1) = 𝑢(𝑛−1)𝑣,𝑥

(𝑛−1) + 𝑣(𝑛−1)𝑣,𝑦
(𝑛−1)   (24c) 

In the discretized model, by using Eq. (18), the divergence ∇ ⋅ (𝐮(𝑛−1) ⋅ ∇𝐮(𝑛−1)) in Eq. (7) 
can be represented as 

∇ ⋅ (𝐮(𝑘)
(𝑛−1) ⋅ 𝛻𝐮(𝑘)

(𝑛−1)) = ∇ ⋅ 𝐝(𝑘)
(𝑛−1) = 𝑑1,𝑥(𝑘)

(𝑛−1) + 𝑑2,𝑦(𝑘)
(𝑛−1) =

∑ 𝐴(𝑗)[−𝑔2(𝑘)(𝑗)
10 𝑔2(𝑘)(𝑗)

10     −𝑔2(𝑘)(𝑗)
01 𝑔2(𝑘)(𝑗)

01 ]

[
 
 
 
 
 𝑑1(𝑘)

(𝑛−1)

𝑑1(𝑗)
(𝑛−1)

𝑑2(𝑘)
(𝑛−1)

𝑑2(𝑗)
(𝑛−1)

]
 
 
 
 
 

𝑁
𝑗=1   (25a) 

with 

𝑑1(𝑘)
(𝑛−1) = 𝑢(𝑘)

(𝑛−1)𝑢,𝑥(𝑘)
(𝑛−1) + 𝑣(𝑘)

(𝑛−1)𝑢,𝑦(𝑘)
(𝑛−1)   (25b) 

𝑑2(𝑘)
(𝑛−1) = 𝑢(𝑘)

(𝑛−1)𝑣,𝑥(𝑘)
(𝑛−1) + 𝑣(𝑘)

(𝑛−1)𝑣,𝑦(𝑘)
(𝑛−1)   (25c) 

𝑑1(𝑗)
(𝑛−1) = 𝑢(𝑗)

(𝑛−1)𝑢,𝑥(𝑗)
(𝑛−1) + 𝑣(𝑗)

(𝑛−1)𝑢,𝑦(𝑗)
(𝑛−1)   (25d) 

𝑑2(𝑗)
(𝑛−1) = 𝑢(𝑗)

(𝑛−1)𝑣,𝑥(𝑗)
(𝑛−1) + 𝑣(𝑗)

(𝑛−1)𝑣,𝑦(𝑗)
(𝑛−1)   (25e) 

Similarly, to calculate the divergence ∇ ⋅ (∇2𝐮(𝑛−1)) in Eq. (7), first, the Laplace operator of 
the velocity field, ∇2𝐮(𝑛−1) can be calculated by using Eq. (21) as 

𝐋(𝑛−1) = ∇2𝐮(𝑛−1) = [
𝑢,𝑥𝑥

(𝑛−1) + 𝑢,𝑦𝑦
(𝑛−1)

𝑣,𝑥𝑥
(𝑛−1) + 𝑣,𝑦𝑦

(𝑛−1)
]   (26) 

Therefore, the divergence ∇ ⋅ (∇2𝐮(𝑛−1)) in Eq. (7) can be represented as 

∇ ⋅ (∇2𝐮(𝑛−1)) = ∇ ⋅ 𝐋(𝑛−1) = 𝐿1,𝑥
(𝑛−1) + 𝐿2,𝑦

(𝑛−1)   (27a) 

with  

𝐿1
(𝑛−1) = 𝑢,𝑥𝑥

(𝑛−1) + 𝑢,𝑦𝑦
(𝑛−1)   (27b) 

𝐿2
(𝑛−1) = 𝑣,𝑥𝑥

(𝑛−1) + 𝑣,𝑦𝑦
(𝑛−1)   (27c) 

In the discretized model, by using Eq. (18), the divergence ∇ ⋅ (∇2𝐮(𝑛−1)) in Eq. (7) can be 
represented as 
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∇ ⋅ (∇2𝐮(𝑘)
(𝑛−1)) = ∇ ⋅ 𝐋(𝑘)

(𝑛−1) = 𝐿1,𝑥(𝑘)
(𝑛−1) + 𝐿2,𝑦(𝑘)

(𝑛−1)
=

∑ 𝐴(𝑗)[−𝑔2(𝑘)(𝑗)
10 𝑔2(𝑘)(𝑗)

10     −𝑔2(𝑘)(𝑗)
01 𝑔2(𝑘)(𝑗)

01 ]

[
 
 
 
 
 𝐿1(𝑘)

(𝑛−1)

𝐿1(𝑗)
(𝑛−1)

𝐿2(𝑘)
(𝑛−1)

𝐿2(𝑗)
(𝑛−1)

]
 
 
 
 
 

𝑁
𝑗=1   (28a) 

with 

𝐿1(𝑘)
(𝑛−1) = 𝑢,𝑥𝑥(𝑘)

(𝑛−1) + 𝑢,𝑦𝑦(𝑘)
(𝑛−1)    (28b) 

𝐿2(𝑘)
(𝑛−1) = 𝑣,𝑥𝑥(𝑘)

(𝑛−1) + 𝑣,𝑦𝑦(𝑘)
(𝑛−1)    (28c) 

𝐿1(𝑗)
(𝑛−1) = 𝑢,𝑥𝑥(𝑗)

(𝑛−1) + 𝑢,𝑦𝑦(𝑗)
(𝑛−1)   (28d) 

𝐿2(𝑗)
(𝑛−1) = 𝑣,𝑥𝑥(𝑗)

(𝑛−1) + 𝑣,𝑦𝑦(𝑗)
(𝑛−1)   (28e) 

Finally, by using Eqs. (15-16), the gradient and Laplace of pressure, ∇𝑝(𝑛) and ∇2𝑝(𝑛), in Eqs. 
(6-7) can be represented as 

∇𝑝(𝑘)
(𝑛)

= [
𝑝,𝑥(𝑘)

(𝑛)

𝑝,𝑦(𝑘)
(𝑛)

] = ∑ 𝐴(𝑗) [
−𝑔2(𝑘)(𝑗)

10 𝑔2(𝑘)(𝑗)
10

−𝑔2(𝑘)(𝑗)
01 𝑔2(𝑘)(𝑗)

01 ] [
𝑝(𝑘)

(𝑛)

𝑝(𝑗)
(𝑛)

]𝑁
𝑗=1  (29) 

∇2𝑝(𝑘)
(𝑛)

= 𝑝,𝑥𝑥(𝑘)
(𝑛)

+ 𝑝,𝑦𝑦(𝑘)
(𝑛)

= ∑ 𝐴(𝑗)(𝑔2(𝑘)(𝑗)
20 + 𝑔2(𝑘)(𝑗)

02 )[−1 1] [
𝑝(𝑘)

(𝑛)

𝑝(𝑗)
(𝑛)

]𝑁
𝑗=1  (30) 

 

3.3. Implicit solution for pressure Poisson equation 

In this study, the pressure Poisson equation given in Eq. (7) is solved by using the implicit 
solution. First, Eq. (7) can be rewritten in a matrix form for all the particles in the fluid domain 
as 

𝐊𝐿𝐏
(𝑛) = 𝐑(𝑛)  (31a) 

with 

𝐏(𝑛)  = [𝑝(1)
(𝑛)

⋯ 𝑝(𝑘)
(𝑛)

      ⋯ 𝑝(𝑁𝑝)
(𝑛)

 ]
𝑇
   (31b) 

and 

𝐊𝐿 = ∑ (∑ 𝐴(𝑗)(𝑔2(𝑘)(𝑗)
20 + 𝑔2(𝑘)(𝑗)

02 )[−1 1]𝑁
𝑗=1 )

𝑁𝑝

𝑘=1  (31c) 

where 𝐏(𝑛) represents the pressure vector for the fluid domain at the current time step, 𝑛. This 
vector has a size of (𝑁𝑝 × 1), where 𝑁𝑝 is the total number of particles (nodes) in the fluid 
domain. In Eqs. (31a, c), 𝐊𝐿 is a matrix that can be used to represent the Laplace operator as 

∇2𝐏(𝑛) = 𝐊𝐿𝐏
(𝑛)  (32) 

Modelling of Eulerian incompressible fluid flows by using peridynamic differential operator
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Matrix 𝐊𝐿 is a square matrix with a size of (𝑁𝑝 × 𝑁𝑝). The numerical procedure for the 
calculation of 𝐊𝐿 is presented in Fig. 4. 

In Eq. (31a), the parameter 𝐑(𝑛) is a vector with a size of (𝑁𝑝 × 1). This vector represents the 
right-hand side terms in Eq. (7) as 

𝐑(𝑛)  = [𝑟(1)
(𝑛)

⋯ 𝑟(𝑘)
(𝑛)

      ⋯ 𝑟𝑁𝑝

(𝑛)
 ]

𝑇
   (33a) 

with 

𝑟(𝑘)
(𝑛)

=
𝜌

Δ𝑡
∇ ⋅ 𝐮(𝑘)

(𝑛−1)
− 𝜌∇ ⋅ (𝐮(𝑘)

(𝑛−1)
⋅ ∇𝐮(𝑘)

(𝑛−1)
) + 𝜇∇ ⋅ (∇2𝐮(𝑘)

(𝑛−1)
)  (33b) 

where 𝐮(𝑘)
(𝑛−1) is the velocity vector of particle 𝑘 at the previous time step (𝑛 − 1). The 

calculation of 𝐑(𝑛) at each time step is presented in Fig. 5. 

The pressure Poisson equation in Eq. (31a) is subjected to the boundary conditions presented 
in Section 4. In this study, the numerical simulations are implemented in MATLAB version 
R2018b and the pressure field, 𝐏(𝑛), is obtained by using the backslash (\) operator as 

𝐏(𝑛) = 𝐊𝐿\𝐑
(𝑛)  (34) 

 

3.4. Numerical procedure 

First, the fluid domain is discretized into particles and the family member search for each 
particle is conducted with a horizon size of 𝛿. Next, the orthogonal functions 𝑔2(𝑘)(𝑗)

10 , 𝑔2(𝑘)(𝑗)
01 , 

𝑔2(𝑘)(𝑗)
20 , 𝑔2(𝑘)(𝑗)

02 , and 𝑔2(𝑘)(𝑗)
11  for each interaction are calculated using Eq. (12). Details of the 

calculation for these orthogonal functions are presented in Fig. 2. Next, the matrix 𝐊𝐿 given in 
Eq. (31c) is calculated as shown in Fig. 4. 

At each time step, the right-hand side term, 𝐑(𝑛), of the pressure Poisson equation given in Eq. 
(31a) are calculated by using Eq. (33). Details of the calculation for these terms are presented 
in Fig. 5. Next, the pressure Poisson equation given in Eq. (31a) is solved by using the implicit 
method as presented in Eq. (34) to obtain the pressure field, 𝐏(𝑛). Finally, the velocity field at 
the current time step, 𝐮(𝑛) is calculated by using Eq. (8). Details of this step are presented in 
Fig. 6.  

The numerical procedure in numerical simulations includes the following steps: 

Step 1: Create geometry for the fluid domain and provide the fluid parameters including fluid 
density, 𝜌, and fluid viscosity, 𝜇. 

Step 2: Discretize the fluid domain.  

Step 3: Find family members for each particle within a horizon size of 𝛿.  

Step 4: Calculate orthogonal functions 𝑔2(𝑘)(𝑗)
10 , 𝑔2(𝑘)(𝑗)

01 , 𝑔2(𝑘)(𝑗)
20 , 𝑔2(𝑘)(𝑗)

02 , 𝑔2(𝑘)(𝑗)
11  for each 

interaction by using Eq. (12). Details of this step are presented in Fig. 2. 

Step 5: Calculate matrix 𝐊𝐿 which represents the Laplace operator for the pressure field (see 
Fig. 4). 
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Step 6: Initialize velocity and pressure vectors. 

Step 7: Loop over time steps: 𝑛 = 1,2, … ,𝑁𝑡, where 𝑁𝑡 is the total number of time steps. 

Step 7.1: Apply boundary conditions for the inlet, outlet, and no-slip boundary 
conditions for stationary walls. 

Step 7.2: Using the known velocity field at the previous time step, 𝐮(𝑛−1), to calculate 
the terms on the right-hand side of the Pressure Poisson equation given in Eq. (7) and 
Eq. (31a): ∇𝐮(𝑘)

(𝑛−1), ∇2𝐮(𝑘)
(𝑛−1), ∇ ⋅ 𝐮(𝑘)

(𝑛−1), 𝐝(𝑘)
(𝑛−1), ∇ ⋅ (𝐮(𝑘)

(𝑛−1) ⋅ ∇𝐮(𝑘)
(𝑛−1)), ∇ ⋅

(∇2𝐮(𝑘)
(𝑛−1)), 𝐑(𝑛) (see Fig. 5) 

Step 7.3: Solving Eq. (31a) to obtain pressure field at current time step, 𝐏(𝑛) by using 
Eq. (34): 𝐏(𝑛) = 𝐊𝐿\𝐑

(𝑛) 

Step 7.4: Calculate velocity at current time step, 𝐮(𝑛), by using Eq. (8) (see Fig. 6): 

 𝐮(𝑘)
(𝑛)

= 𝐮(𝑘)
(𝑛−1) + Δ𝑡 (−𝐮(𝑘)

(𝑛−1) ⋅ ∇𝐮(𝑘)
(𝑛−1) −

1

𝜌
∇𝑝(𝑘)

(𝑛)
+

𝜇

𝜌
∇2𝐮(𝑘)

(𝑛−1))  (35) 

Step 7.5: Go to next time step if 𝑛 < 𝑁𝑡. 

Step 8: Output results for pressure and velocity field. 

The detailed numerical procedure in numerical simulations for 2D incompressible fluid is 
shown in Fig. 1. 
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Fig. 1. Numerical procedure 

Start

Initialize geometry and fluid parameters: 𝜌, 𝜇

Discretize the fluid domain

Find family member for each particle

Loop: over time steps
𝑛 = 1,2, … , 𝑁𝑡

𝑛 = 𝑛 + 1

Output results

End

Calculate the velocity at current time step 𝐮(𝑛) by using pressure 𝑝(𝑛) and 𝐮(𝑛−1) for Eq. (8) (See Fig. 6):

𝐮(𝑛) = 𝐮(𝑛−1) + Δ𝑡 −𝐮(𝑛−1) ⋅ 𝛻𝐮(𝑛−1) −
1

𝜌
𝛻𝑝(𝑛) +

𝜇

𝜌
𝛻2𝐮(𝑛−1)

𝑛 < 𝑁𝑡 
False

True

Calculate orthogonal functions 
(𝑔2 𝑘 𝑗

10 , 𝑔2 𝑘 𝑗
01 , 𝑔2 𝑘 𝑗

20 , 𝑔2 𝑘 𝑗
02 , 𝑔2 𝑘 𝑗

11 ) for 
each interaction using Eq. (12). (See Fig. 2-3)

Apply boundary conditions: velocity inlet, 
pressure outlet, no-slip boundary conditions, etc.

Using velocity at previous time step 𝐮(𝑛−1) to calculate the terms on the right hand side of the 
pressure Poisson equation given in Eq. (7) and Eq. (31a) (See Fig. 5):

𝛻𝐮
𝑛−1 , 𝛻2𝐮

𝑛−1
, 𝛻 ⋅ 𝐮

𝑛−1
, 𝛻 ⋅ (𝐮

𝑛−1
⋅ 𝛻𝐮

𝑛−1
),  𝛻 ⋅ (𝛻2𝐮

𝑛−1
) and 𝐑(𝑛)

Solving Eq. (31a) to obtain pressure field at current time step by 
using Eq. (34): 𝐏(𝑛) = 𝐊𝐿\𝐑

(𝑛)

Calculate matrix 𝐊𝐿 which represents the 
Laplace operator of pressure field

(see Fig. 4)

Initialize velocity and pressure vectors
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Fig. 2. Calculate orthogonal functions 𝑔2(𝑘)(𝑗)

10 , 𝑔2(𝑘)(𝑗)
01 , 𝑔2(𝑘)(𝑗)

20 , 𝑔2(𝑘)(𝑗)
02 , 𝑔2(𝑘)(𝑗)

11  for each 
interaction. 

Loop: over particles
𝑘 = 1,2, … , 𝑘  𝑁𝑝

𝑗 =            
       

Output  2
10 ,  2

01 ,  2
20 ,  2

02 ,  2
11

Calculate distance between material points 𝑘     𝑗:

|𝛏| = 𝑥 𝑗 − 𝑥 𝑘
2
+ 𝑦 𝑗 − 𝑦 𝑘

2

𝑗        (𝑁) 
False

True

Initialize  2
10 ,  2

01 ,  2
20 ,  2

02 ,  2
11 matrices to store values for orthogonal functions 

𝑔2 𝑘 𝑗
10 , 𝑔2 𝑘 𝑗

01 , 𝑔2 𝑘 𝑗
20 , 𝑔2 𝑘 𝑗

02 , 𝑔2 𝑘 𝑗
11 of each interaction. The 

 2
10 ,  2

01 ,  2
20 ,  2

02 ,  2
11 matrices have size of (𝑁𝑝      × 𝑁   𝑥         ). 

𝑁   𝑥 is the maximum number of family members of a material point.

Loop: over family members of particle
𝑗 =       (1) ,       (2), … ,  𝑒  𝑒𝑟(𝑁)

Calculate weigth function:  𝜔 𝛏 = 𝑒− 2 𝛏 / 2

𝑘 < 𝑁𝑝 

𝑘 = 𝑘 + 1

False

True

𝐚1,5 = 𝐚 (𝑟  = 𝑘,   𝑢 𝑛 = 1   )

𝐚6,10 = 𝐚 (𝑟  = 𝑘,    𝑢 𝑛 =   10)

𝐚11,15 = 𝐚 (𝑟  = 𝑘,    𝑢 𝑛 = 11  1 )
𝐚16,20 = 𝐚 𝑟  = 𝑘,    𝑢 𝑛 = 1  20

𝐚21,25 = 𝐚 (𝑟  = 𝑘,    𝑢 𝑛 = 21  2 )

 (𝑘)(𝑗) = 𝜉1     𝜉2    𝜉1
2    𝜉2

2    𝜉1𝜉2

Calculate orthogonal functions by using Eq. (12):
 2
10(𝑟  = 𝑘,    𝑢 𝑛 = 𝑛𝑗) = 𝑔2 𝑘 𝑗

10 = 𝜔 𝛏 𝐚1,5   (𝑘)(𝑗)

 2
01(𝑟  = 𝑘,    𝑢 𝑛 = 𝑛𝑗) = 𝑔2 𝑘 𝑗

01 = 𝜔 𝛏 𝐚6,10   (𝑘)(𝑗)

 2
20(𝑟  = 𝑘,    𝑢 𝑛 = 𝑛𝑗) = 𝑔2 𝑘 𝑗

20 = 𝜔 𝛏 𝐚11,15   (𝑘)(𝑗)

 2
02(𝑟  = 𝑘,    𝑢 𝑛 = 𝑛𝑗) = 𝑔2 𝑘 𝑗

02 = 𝜔 𝛏 𝐚16,20   (𝑘)(𝑗)

 2
11(𝑟  = 𝑘,    𝑢 𝑛 = 𝑛𝑗) = 𝑔2 𝑘 𝑗

11 = 𝜔 𝛏 𝐚21,25   (𝑘)(𝑗)

Calculate orthogonal functions 𝑔2 𝑘 𝑗
10 , 𝑔2 𝑘 𝑗

01 , 𝑔2 𝑘 𝑗
20 , 𝑔2 𝑘 𝑗

02 for each interaction using Eq. (12) 

𝑛𝑗 = 0

𝑛𝑗 = 𝑛𝑗 + 1

Calculate matrix 𝐚 to store 25 components of matrix 𝐚 for each material point.
Matrix 𝐚 has a size of (𝑁𝑝      × 2         ) (see Fig. 3). 
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Fig. 3. Calculate matrix 𝐚  to store 25 components of matrix 𝐚 for each node. 

 

Calculate matrix 𝐚 to store 25 components of matrix 𝐚 for each material point.

Loop: over particles
𝑘 = 1,2, … , 𝑘  𝑁𝑝

𝑗 =            
       

Output 𝐚 

Calculate distance between material points 𝑘     𝑗:

|𝛏| = 𝑥 𝑗 − 𝑥 𝑘
2
+ 𝑦 𝑗 − 𝑦 𝑘

2

𝑗        (𝑁) 
False

True

Loop: over family members of particle
𝑗 =       (1) ,       (2), … ,  𝑒  𝑒𝑟(𝑁)

Calculate weigth function:  𝜔 𝛏 = 𝑒− 2 𝛏 / 2

𝑘 < 𝑁𝑝 

𝑘 = 𝑘 + 1

False

True

Calculate matrix A by using Eq. (14b):

Initialize matrix 𝐚 with a size of (𝑁𝑝      × 2         ) to store 25 
components of matrix 𝐚 for each material point.

𝐚 = 𝐀\𝐛

Store components of a into matrix 𝐚 for current material point:
𝐚    = 𝑘,        = 1   = 𝐚(   = 1,        = 1   )
𝐚    = 𝑘,        =   10 = 𝐚(   = 2,        = 1   )
𝐚    = 𝑘,        = 11  1 = 𝐚(   =  ,        = 1   )
𝐚    = 𝑘,       = 1  20 = 𝐚(   =  ,       = 1   )
𝐚    = 𝑘,        = 21  2 = 𝐚(   =  ,        = 1   )
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Fig. 4. Calculate matrix 𝐊𝐿 to represent Laplace operator of the pressure field. 

 

Loop: over particles
𝑘 = 1,2, … , 𝑘  𝑁𝑝

𝑗 =            
       

Output 𝐊𝐿

Calculate Laplace operator for current interaction between materials 𝑘     𝑗:
 𝐿(𝑘)(𝑗) = 𝑔2(𝑘)(𝑗)

20 + 𝑔2(𝑘)(𝑗)
02 𝐴(𝑗) −1 1

𝑗        (𝑁) 
False

True

Initialize matrix 𝐊𝐿 with the size of (𝑁𝑝 × 𝑁𝑝)

Loop: over family members of particle
𝑗 =       (1) ,       (2), … ,  𝑒  𝑒𝑟(𝑁)

Add  𝐿(𝑘)(𝑗) to matrix 𝐊𝐿 :
𝐊𝐿 𝑟  = 𝑘,   𝑢 𝑛 = 𝑘, 𝑗 = 𝐊𝐿 𝑟  = 𝑘,    𝑢 𝑛 = 𝑘, 𝑗 +  𝐿(𝑘)(𝑗)

𝑘 < 𝑁𝑝 

𝑘 = 𝑘 + 1

False

True

Calculate matrix 𝐊𝐿 which represents the Laplace operator of pressure field
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Fig. 5. Calculate the terms on the right-hand side of the pressure Poisson equation. 

 

Calculate 𝛻𝐮
𝑘

𝑛−1 by using Eq. (20):               𝛻𝐮(𝑘)
(𝑛−1)

=
𝑢
,𝑥 𝑘

(𝑛−1)
𝑣
,𝑥 𝑘

(𝑛−1)

𝑢
,𝑦 𝑘

(𝑛−1)
𝑣
,𝑦 𝑘

(𝑛−1)
= ∑ 𝐴(𝑗)

−𝑔2(𝑘)(𝑗)
10 𝑔2(𝑘)(𝑗)

10

−𝑔2(𝑘)(𝑗)
01 𝑔2(𝑘)(𝑗)

01

𝑢(𝑘)
(𝑛−1)

𝑢(𝑗)
(𝑛−1)

𝑣(𝑘)
(𝑛−1)

𝑣(𝑗)
(𝑛−1)

𝑁
𝑗=1

Loop: over particles
𝑘 = 1,2, … , 𝑘  𝑁𝑝

𝑗 =            
       

Output:   𝐚𝐝 ,  𝐚  ,𝐝   ,  , 𝐝   , 𝐝    𝐚  , 𝐑 to store information of 𝛻𝐮
𝑛−1 ,𝛻2𝐮

𝑛−1 ,

𝛻 ⋅ 𝐮
𝑛−1

, 𝐝
𝑘

𝑛−1
, 𝛻 ⋅ 𝐮 𝑛−1 ⋅ 𝛻𝐮 𝑛−1 , 𝛻 ⋅ 𝛻2𝐮

𝑛−1
, 𝐑(𝑛), respectively

𝑗        (𝑁) 
False

True

Initialize matrices:
  𝐚𝐝 with a size of (𝑁𝑝 ×  ) to store values for 4 components (𝑢,𝑥

𝑛−1
, 𝑢,𝑦

𝑛−1
, 𝑣,𝑥

𝑛−1
, 𝑣,𝑦

𝑛−1
) of 𝛻𝐮

𝑛−1

 𝐚  with a size of (𝑁𝑝 × 2) to store values for 2 components (𝑢,𝑥𝑥
𝑛−1

+ 𝑢,𝑦𝑦
𝑛−1

, 𝑣,𝑥𝑥
𝑛−1

+ 𝑣,𝑦𝑦
𝑛−1

) of 𝛻2𝐮
𝑛−1

𝐝   with a size of (𝑁𝑝 × 1) to store values for 𝛻 ⋅ 𝐮
𝑛−1

 with a size of (𝑁𝑝 × 2) to store values for 2 components for 𝐝
𝑘

𝑛−1
= 𝐮

𝑘

𝑛−1
⋅ 𝛻𝐮

𝑘

𝑛−1

𝐝   with a size of (𝑁𝑝 × 1) to store values for 𝛻 ⋅ (𝐮 𝑛−1 ⋅ 𝛻𝐮 𝑛−1 ) = 𝛻 ⋅ 𝐝 𝑛−1

𝐝    𝐚  with a size of (𝑁𝑝 × 1) to store values for 𝛻 ⋅ 𝛻2𝐮
𝑛−1

𝐑 with a size of (𝑁𝑝 × 1) to store values for 𝐑(𝑛)

Loop: over family members of particle
𝑗 =       (1) ,       (2), … ,  𝑒  𝑒𝑟(𝑁)

𝑘 < 𝑁𝑝 

𝑘 = 𝑘 + 1

False

True

Using velocity at previous time step 𝐮(𝑛−1) to calculate the terms on the right hand side of the 
pressure Poisson equation given in Eq. (7) and Eq. (31a):

𝛻𝐮
𝑛−1 , 𝛻2𝐮

𝑛−1
, 𝛻 ⋅ 𝐮

𝑛−1
, 𝛻 ⋅ (𝐮

𝑛−1
⋅ 𝛻𝐮

𝑛−1
),  𝛻 ⋅ (𝛻2𝐮

𝑛−1
) and 𝐑(𝑛)

Calculate by using Eq. (21):           

Calculate 𝐝
𝑘

𝑛−1 by using Eq. (23) and Eq. (24b, c):  

𝑑
1 𝑘

𝑛−1
= 𝑢(𝑘)

𝑛−1
𝑢,𝑥(𝑘)

𝑛−1
+ 𝑣(𝑘)

𝑛−1
𝑢,𝑦(𝑘)

𝑛−1 ;    𝑑
2 𝑘

𝑛−1
= 𝑢(𝑘)

𝑛−1
𝑣,𝑥(𝑘)

𝑛−1
+ 𝑣(𝑘)

𝑛−1
𝑣,𝑦(𝑘)

𝑛−1 ;    𝐝
𝑘

𝑛−1
= 𝑑

1 𝑘

𝑛−1
𝑑
2 𝑘

𝑛−1

Calculate 𝛻 ⋅ (𝐮 𝑛−1 ⋅ 𝛻𝐮 𝑛−1 ) = 𝛻 ⋅ 𝐝 𝑛−1 by using Eq. (25):

Calculate by using Eq. (28):    

with:    𝐿1(𝑘)
𝑛−1

= 𝑢,𝑥𝑥(𝑘)
𝑛−1

+ 𝑢,𝑦𝑦(𝑘)
𝑛−1 ;   𝐿2(𝑘)

𝑛−1
= 𝑣,𝑥𝑥(𝑘)

𝑛−1
+ 𝑣,𝑦𝑦(𝑘)

𝑛−1 ;   𝐿1(𝑗)
𝑛−1

= 𝑢,𝑥𝑥(𝑗)
𝑛−1

+ 𝑢,𝑦𝑦(𝑗)
𝑛−1 ;   𝐿2(𝑗)

𝑛−1
= 𝑣,𝑥𝑥(𝑗)

𝑛−1
+ 𝑣,𝑦𝑦(𝑗)

𝑛−1

Calculate by using Eq. (22):         

  𝐚𝐝 𝑟  = 𝑘,    𝑢 𝑛 = 1   = 𝑢
,𝑥 𝑘

(𝑛−1)
      𝑢

,𝑦 𝑘

(𝑛−1)
      𝑣

,𝑥 𝑘

(𝑛−1)
      𝑣

,𝑦 𝑘

(𝑛−1)

 𝐚  𝑟  = 𝑘,    𝑢 𝑛 = 1  2 = 𝑢,𝑥𝑥(𝑘)
𝑛−1

+ 𝑢,𝑦𝑦(𝑘)
𝑛−1

           𝑣,𝑥𝑥(𝑘)
𝑛−1

+ 𝑣,𝑦𝑦(𝑘)
𝑛−1

 

𝐝   𝑟  = 𝑘,    𝑢 𝑛 = 1 = 𝑢
,𝑥 𝑘

𝑛−1
+ 𝑣

,𝑦 𝑘

𝑛−1

 𝑟  = 𝑘,    𝑢 𝑛 = 1  2 = 𝑑1(𝑘)
𝑛−1

           𝑑2(𝑘)
𝑛−1

 

𝐝   𝑟  = 𝑘,    𝑢 𝑛 = 1 = 𝛻 ⋅ 𝐝(𝑘)
𝑛−1

𝐝    𝐚  𝑟  = 𝑘,    𝑢 𝑛 = 1 = 𝛻 ⋅ 𝐋
𝑘

𝑛−1

𝐑 𝑟  = 𝑘,    𝑢 𝑛 = 1 =
𝜌

Δ𝑡
𝐝   𝑟  = 𝑘,    𝑢 𝑛 = 1 − 𝜌𝐝   𝑟  = 𝑘,    𝑢 𝑛 = 1             

 + 𝜇𝐝    𝐚  𝑟  = 𝑘,    𝑢 𝑛 = 1
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Fig. 6. Calculate the velocity at current time step 𝐮(𝑛) 

 

4. Boundary conditions 

In this study, for solid boundaries, no-slip boundary conditions are used. Details of the no-slip 
boundary conditions are described in Section 4.1. The inlet and outlet boundary conditions are 
described in Section 4.2 and Section 4.3, respectively. 

4.1. No-slip boundary conditions 

To apply no-slip boundary conditions for solid walls, three layers of fictitious particles are used 
as shown in Fig. 7. In Fig. 7, the fictitious solid particles are shown in blue. Particles located 
on the boundary are shown in red. Meanwhile, the fluid particles inside the fluid domain are 
shown in pink. 

To apply no-slip boundary conditions for a stationary wall, the velocities of particles on the 
boundary and the velocities of solid particles are set equal to zero as 

𝐮(𝑛)(𝐱, 𝑡)|Γ = 0   (36) 

where Γ represents the solid boundary as shown in Fig. 7. 

For the pressure Poisson equation given in Eq. (7), the homogeneous Neumann boundary 
condition is applied for the solid walls as (Hosseini and Feng, 2011) 

𝐧 ⋅ ∇𝑝(𝑛)|
Γ
= 0   (37) 

Calculate 𝛻𝑝
𝑘

𝑛 by using Eq. (29):               𝛻𝑝(𝑘)
(𝑛)

=
𝑝
,𝑥 𝑘

(𝑛)

𝑝
,𝑦 𝑘

(𝑛)
= ∑ 𝐴(𝑗)

−𝑔2(𝑘)(𝑗)
10 𝑔2(𝑘)(𝑗)

10

−𝑔2(𝑘)(𝑗)
01 𝑔2(𝑘)(𝑗)

01

𝑝
𝑘

(𝑛)

𝑝
𝑗

(𝑛)
𝑁
𝑗=1

Loop: over particles
𝑘 = 1,2, … , 𝑘  𝑁𝑝

𝑗 =            
       

Output 𝐮(𝑘)
𝑛 for all material points, 𝑘 = 1  𝑁𝑝

𝑗        (𝑁) 
False

True

Loop: over family members of particle
𝑗 =       (1) ,       (2), … ,  𝑒  𝑒𝑟(𝑁)

𝑘 < 𝑁𝑝 

𝑘 = 𝑘 + 1

False

True

Calculate the velocity at current time step 𝐮(𝑘)
𝑛

:

𝐮(𝑘)
𝑛

= 𝐮(𝑘)
(𝑛−1)

+ Δ𝑡 −𝐮(𝑘)
(𝑛−1)

⋅ 𝛻𝐮(𝑘)
(𝑛−1)

−
1

𝜌
𝛻𝑝(𝑛) +

𝜇

𝜌
𝛻2𝐮(𝑘)

(𝑛−1)

where: 𝐮(𝑘)
(𝑛−1)

⋅ 𝛻𝐮(𝑘)
(𝑛−1), 𝛻2𝐮(𝑘)

(𝑛−1) are calculated from previous step (see Fig. 5)

Calculate the velocity at current time step 𝐮(𝑛) by using pressure 𝑝(𝑛) and 𝐮(𝑛−1) for Eq. (8):

𝐮(𝑛) = 𝐮(𝑛−1) + Δ𝑡 −𝐮(𝑛−1) ⋅ 𝛻𝐮(𝑛−1) −
1

𝜌
𝛻𝑝(𝑛) +

𝜇

𝜌
𝛻2𝐮(𝑛−1)
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where 𝐧 represents the normal vector of the solid boundary Γ as shown in Fig. 7.  

 

Fig. 7. No-slip boundary condition for a solid boundary. 

Details of implementing no-slip boundary conditions for solid boundaries as well as the 
obstacle cylinder used in this study are described in Sections 4.1.1 and 4.1.2, respectively. 

4.1.1. Implementation of no-slip boundary conditions for vertical and horizontal boundaries 
in the discretized model 

In this study, the considered solid boundaries used in Section 5 are either vertical or horizontal 
walls as shown in Fig. 8. In Fig. 8, blue points represent fictitious particles in solid regions, red 
points represent the fluid particle along the solid walls, and pink points represent fluid particles 
inside the fluid domain. For the vertical walls, the normal vector can be either 𝐧 = [1 0]𝑇 or 
𝐧 = [−1 0]𝑇 as shown in Fig. 8(a). Therefore, the no-slip velocity boundary conditions given 
in Eq. (36) can be written for these vertical walls as  

𝐮(𝑛)|
𝐿
= 𝐮(𝑛)|

fictitious particles on the left
= 0   (38a) 

and 

𝐮(𝑛)|
𝑅
= 𝐮(𝑛)|

fictitious particles on the right
= 0   (38b) 

where 𝐿 and 𝑅 represent solid boundaries on the left and right edges of the fluid domain as 
shown in Fig. 8(a). 

For the horizontal walls, the normal vector can be either 𝐧 = [0 1]𝑇 or 𝐧 = [0 −1]𝑇 as 
shown in Fig. 8(b). Therefore, the no-slip velocity boundary conditions given in Eq. (36) can 
be written for these horizontal walls as 
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𝐮(𝑛)|
𝑇
= 𝐮(𝑛)|

fictitious particles on the top
= 0   (39a) 

and 

𝐮(𝑛)|
𝐵

= 𝐮(𝑛)|
fictitious particles on the bottom

= 0   (39b) 

where 𝑇 and 𝐵 represent solid boundaries on the top and bottom edges of the fluid domain as 
shown in Fig. 8(b). 

In this study, the pressure boundary conditions in Eq. (37) for the vertical walls are applied by 
setting pressures of the solid particles equal to the pressures of their image particles inside the 
fluid domain with the same 𝑦 coordinates. Specifically, the pressure boundary conditions in 
Eq. (37) for the left vertical boundary can be implemented as 

𝑝(𝑥𝐿 − Δ𝑥, 𝑦, 𝑡) = 𝑝(𝑥𝐿 + Δ𝑥, 𝑦, 𝑡)   (40a) 

𝑝(𝑥𝐿 − 2Δ𝑥, 𝑦, 𝑡) = 𝑝(𝑥𝐿 + 2Δ𝑥, 𝑦, 𝑡)   (40b) 

𝑝(𝑥𝐿 −  Δ𝑥, 𝑦, 𝑡) = 𝑝(𝑥𝐿 +  Δ𝑥, 𝑦, 𝑡)   (40c) 

where 𝑥𝐿 is the location in 𝑥 direction of the left vertical boundary and Δ𝑥 represents the mesh 
size in 𝑥 direction. 

Similarly, the pressure boundary conditions in Eq. (37) for the right vertical boundary can be 
implemented as 

𝑝(𝑥𝑅 + Δ𝑥, 𝑦, 𝑡) = 𝑝(𝑥𝑅 − Δ𝑥, 𝑦, 𝑡)   (41a) 

𝑝(𝑥𝑅 + 2Δ𝑥, 𝑦, 𝑡) = 𝑝(𝑥𝑅 − 2Δ𝑥, 𝑦, 𝑡)   (41b) 

𝑝(𝑥𝑅 +  Δ𝑥, 𝑦, 𝑡) = 𝑝(𝑥𝑅 −  Δ𝑥, 𝑦, 𝑡)   (41c) 

where 𝑥𝑅 is the location in 𝑥 direction of the right vertical boundary. 

On the other hand, the pressure boundary conditions in Eq. (37) for the horizontal walls are 
applied by setting pressures of the solid particles equal to the pressures of their image particles 
inside the fluid domain with the same 𝑥 coordinates. Specifically, the pressure boundary 
conditions in Eq. (37) for the top horizontal boundary can be implemented as 

𝑝(𝑥, 𝑦𝑇 + Δ𝑦, 𝑡) = 𝑝(𝑥, 𝑦𝑇 − Δ𝑦, 𝑡)   (42a) 

𝑝(𝑥, 𝑦𝑇 + 2Δ𝑦, 𝑡) = 𝑝(𝑥, 𝑦𝑇 − 2Δ𝑦, 𝑡)   (42b) 

𝑝(𝑥, 𝑦𝑇 +  Δ𝑦, 𝑡) = 𝑝(𝑥, 𝑦𝑇 −  Δ𝑦, 𝑡)   (42c) 

where 𝑦𝑇 is the location in 𝑦 direction of the top horizontal boundary and Δ𝑦 represents the 
mesh size in 𝑦 direction. Similarly, the pressure boundary conditions in Eq. (37) for the bottom 
horizontal boundary can be implemented as 

𝑝(𝑥, 𝑦𝐵 − Δ𝑦, 𝑡) = 𝑝(𝑥, 𝑦𝐵 + Δ𝑦, 𝑡)   (43a) 

𝑝(𝑥, 𝑦𝐵 − 2Δ𝑦, 𝑡) = 𝑝(𝑥, 𝑦𝐵 + 2Δ𝑦, 𝑡)   (43b) 

𝑝(𝑥, 𝑦𝐵 −  Δ𝑦, 𝑡) = 𝑝(𝑥, 𝑦𝐵 +  Δ𝑦, 𝑡)   (43c) 

where 𝑦𝐵 is the location in 𝑦 direction of the bottom horizontal boundary.  
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(a) 

 
(b) 

Fig. 8. No-slip boundary conditions for (a): vertical walls, (b): horizontal walls. 

4.1.2. Implementation of no-slip boundary conditions for circular stationary walls in the 
discretized model 

To investigate the problem of flow over the obstacle circular cylinder as presented in Section 
5.3, the nodes surrounding the cylinder are arranged in the cylindrical coordinates as shown in 
Fig. 9. In this figure, blue points represent fictitious particles in solid regions, red points 
represent the fluid particle along the solid walls, and pink points represent fluid particles inside 
the fluid domain. To apply no-slip boundary conditions and pressure boundary conditions for 
the cylinder wall, Eqs. (36-37) can be rewritten with respect to the cylindrical coordinate 
system attached with the cylinder as 
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𝐮(𝑛)|
cylinder wall

= 0   (44) 

(𝑛𝑟
𝜕𝑝(𝑛)

𝜕𝑟
+ 𝑛𝜏

𝜕𝑝(𝑛)

𝜕𝜏
)|

cylinder wall
= 0   (45) 

where 𝑟 represents the radius coordinate. Meanwhile, 𝜏 represents the tangential coordinate.  

Since the tangential component of the normal vector is zero, 𝑛𝜏 = 0, Eq. (45) can be simplified 
as 

𝜕𝑝(𝑛)

𝜕𝑟
|
cylinder wall

= 0   (46) 

In the discretized model, the zero-velocity condition given in Eq. (44) can be implemented as 

𝐮(𝑆1)
(𝑛)

= 𝐮(𝑠2)
(𝑛)

= 𝐮(𝑠3)
(𝑛)

= 𝐮(𝑓0)
(𝑛)

= 0   (47) 

where  1, s2, s3 are fictitious particles in the solid domain and  0 is a node located on the 
cylinder wall as shown in Fig. 9. 

Meanwhile, the pressure boundary condition given in Eq. (46) can be applied by setting 
pressures of the solid particles equal to the pressures of their image particles inside the fluid 
domain as 

𝑝(S1)
(𝑛)

= 𝑝(f1)
(𝑛)    (48a) 

𝑝(S2)
(𝑛)

= 𝑝(f2)
(𝑛)    (48b) 

𝑝(S3)
(𝑛)

= 𝑝(f3)
(𝑛)    (48c) 

where  1, f2, f3 are the fluid particles that are respectively images of  1, s2, s3, as shown in Fig. 
9. 
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Fig. 9. No-slip boundary conditions for obstacle circular cylinder. 

4.2. Boundary conditions at the inlet 

In Sections 5.2 and 5.3, the constant velocity is applied for the inlet boundary at the location 
of 𝑥 = 0 as 

𝑢(𝑥 = 0, 𝑦, 𝑡) = 𝑢0    (49a) 

𝑣(𝑥 = 0, 𝑦, 𝑡) = 𝑣0    (49b) 

In the discretized model, three fictitious layers of nodes are added for the inlet. The velocities 
in 𝑥 direction of these fictitious particles and the particles located at 𝑥 = 0 are set equal to 𝑢0. 
Meanwhile, the velocities in 𝑦 direction of these fictitious particles and the particles located at 
𝑥 = 0 are set equal to 𝑣0. In addition, the pressures of these fictitious particles are set equal to 
the pressure of the particles at 𝑥 = 0 with the same 𝑦 coordinates (Hosseini and Feng, 2011; 
Lee et al., 2008; Shao and Lo, 2003). 
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4.3. Boundary condition at the outlet 

In Sections 5.2 and 5.3, the zero-pressure condition is applied for the outlet boundary at the 
location of 𝑥 = 𝐿𝑥 as 
𝑝(𝑥 = 𝐿𝑥, 𝑦, 𝑡) = 0   (50) 

In the discretized model, the pressure of the exit layer, shown in black in Fig. 10, is set equal 
to zero. Meanwhile, the pressures of the fictitious particles, shown in blue in Fig. 10, are 
defined as 
𝑝(𝑖)

(𝑛)
= 0   (51a) 

𝑝(𝑗)
(𝑛)

= −𝑝(𝑟)
(𝑛)   (51b) 

𝑝(𝑘)
(𝑛)

= −𝑝(𝑞)
(𝑛)   (51c) 

𝑝(𝑙)
(𝑛)

= −𝑝(𝑝)
(𝑛)   (51d) 

where 𝑖 in Eq. (51a) is a particle located on the exit layer as shown in Fig. 10. In Eqs. (51b-d), 
𝑗, 𝑘,   are three fictitious particles that have the same 𝑦 coordinate with particle 𝑖. Meanwhile, 
𝑟, 𝑞, 𝑝 are three fluid particles that are images of fictitious particles 𝑗, 𝑘,  , respectively, as 
shown in Fig. 10. 
 
Moreover, the velocities of the fictitious (dummy) particles downstream are set equal to the 
velocity of the particle with the same y coordinate located on the exit layer as shown in Fig. 10 
as 
𝐮(𝑗)

(𝑛)
= 𝐮(𝑘)

(𝑛)
= 𝐮(𝑙)

(𝑛)
= 𝐮(𝑖)

(𝑛)   (52) 

 

Fig. 10. The zero-pressure boundary condition for the outlet 

5. Numerical results 

In this section, first, a 2D cavitation problem for Reynolds numbers, 𝑅𝑒 = 1 and 𝑅𝑒 = 200, is 
investigated in Section 5.1. Next, in Section 5.2, a 2D fluid flow inside an open channel is 
investigated for 𝑅𝑒 =   .02. Finally, a problem of a fluid flow over an obstacle cylinder for 
Reynolds numbers, 𝑅𝑒 = 10 and 𝑅𝑒 = 100, is investigated in Section 5.3. In these examples, 
the horizon size of 𝛿 =  Δ𝑥 is used. To verify the accuracy of the Eulerian incompressible 
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PDDO model, the results predicted by the Eulerian incompressible PDDO model are compared 
with those obtained by ANSYS Fluent.  

5.1. 2D cavitation 

In this section, a 2D square fluid domain with a size of 𝐿 = 0.001   is investigated as shown 
in Fig. 11(a). The fluid has a density of 𝜌 = 1000 kg/ 3 and viscosity of 𝜇 = 0.001 P .  . On 
the top boundary at 𝑦 = 𝐿, the fluid is subjected to velocity and pressure boundary conditions 
as 
𝑢(𝑥, 𝑦 = 𝐿, 𝑡) = 𝑢0   (53a) 

𝑣(𝑥, 𝑦 = 𝐿, 𝑡) = 0   (53b) 
𝜕𝑝

𝜕𝑦
(𝑥, 𝑦 = 𝐿, 𝑡) = 0   (53c) 

The fluid is subjected to no-slip boundary conditions on the three boundaries as shown in red 
in Fig. 11(a) as 
𝑢(𝑥 = 0, 𝑦, 𝑡) = 𝑣(𝑥 = 0, 𝑦, 𝑡) = 0   (54a) 

𝑢(𝑥 = 𝐿, 𝑦, 𝑡) = 𝑣(𝑥 = 𝐿, 𝑦, 𝑡) = 0   (54b) 

𝑢(𝑥, 𝑦 = 0, 𝑡) = 𝑣(𝑥, 𝑦 = 0, 𝑡) = 0   (54c) 

The fluid domain is uniformly discretized with a mesh size of Δ𝑥 = 10−5  . To implement 
boundary conditions, three layers of fictitious particles are used as shown in red and black in 
Fig. 11(b). The implementation of no-slip boundary conditions for the left and right walls, as 
shown in red in Fig. 11(b), is presented in Section 4.1.1 for a vertical wall. The implementation 
of no-slip boundary conditions for the bottom wall, as shown in red in Fig. 11(b), is presented 
in Section 4.1.1 for the horizontal wall. Meanwhile, the velocity conditions on the top 
boundary, shown in black in Fig. 11(b), are represented as 
 
𝑢(𝑥, 𝑦 ≥ 𝐿, 𝑡) = 𝑢0   (55a) 

𝑣(𝑥, 𝑦 ≥ 𝐿, 𝑡) = 0   (55b) 

Moreover, as shown in Fig. 11(c), the pressures of the fictitious particles on the top boundary 
are set equal to the pressures of their image particles inside the fluid domain as 
𝑝(𝑗) = 𝑝(𝑟)   (56a) 

𝑝(𝑘) = 𝑝(𝑞)   (56b) 

𝑝(𝑙) = 𝑝(𝑝)   (56c) 

where 𝑗, 𝑘,   are three particles located on three fictitious boundary layers on top as shown in 
black in Fig. 11(c). Meanwhile, 𝑟, 𝑞, 𝑝 are three image particles inside the fluid domain of 
particles 𝑗, 𝑘,  , respectively, as shown in Fig. 11(c). 
 
The problem is investigated in two cases of different Reynolds numbers as 
 

• Case 1: 𝑢0 = 0.001 ( / ), 𝑅𝑒 = 𝜌𝑢0𝐿/𝜇 =1 
 

• Case 2: 𝑢0 = 0.2 ( / ), 𝑅𝑒 = 𝜌𝑢0𝐿/𝜇 =200 
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For verification purposes, the results predicted by the Eulerian incompressible PDDO model 
are compared with the results obtained by using ANSYS Fluent. In ANSYS Fluent, the mesh 
size of Δ𝑥 = 10−5 is used. The problem is solved using a steady solution with the SIMPLE 
(Semi-Implicit Method for Pressure Linked Equations) scheme. In the Eulerian incompressible 
PDDO model, the transient analysis using the numerical procedure presented in Section 3.3 is 
used. The time step size of Δ𝑡 = 10−4 is used for Case 1 and Δ𝑡 = 10−5 is used for Case 2.   
 

 
 
 

 

 
(a) (b) 

 
(c) 

Fig. 11. Two-dimensional cavitation (a): geometry, (b): the discretized model, (c): pressure 
boundary conditions for the fictitious layers on the top boundary 

Case 1: 𝑢0 = 0.001 ( / ), 𝑅𝑒 = 1 

Fig. 12-Fig. 15 show the converged solution results of velocity and pressure fields for case 1 
with R = 1. It can be observed from Fig. 12 and Fig. 13 that the distributions of velocities 
𝑢     𝑣 captured by the Eulerian incompressible PDDO model agree very well with those 
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captured by ANSYS Fluent. Fig. 14(a) shows the variation of the relative velocity 𝑢/𝑢0 versus 
the relative coordinate 𝑦/𝐿 along the central line 𝑥 = 𝐿/2. Fig. 14(b) shows the variation of 
the relative velocity 𝑣/𝑢0 versus the relative coordinate 𝑥/𝐿 along the central line 𝑦 = 𝐿/2. 
As can be observed from these figures, the results obtained by the Eulerian incompressible 
PDDO model and ANSYS Fluent agree very well. Moreover, as shown in Fig. 15,  the pressure 
fields predicted by the Eulerian incompressible PDDO model and ANSYS Fluent have also a 
good agreement. 

  
(a) (b) 

Fig. 12. Variations of velocity 𝑢 ( / ) captured by (a): Eulerian incompressible PDDO 
model, (b): ANSYS Fluent for Case 1 with 𝑅𝑒 = 1 

  
(a) (b) 

Fig. 13. Variations of velocity 𝑣 ( / ) captured by (a): Eulerian incompressible PDDO 
model, (b): ANSYS Fluent for Case 1 with 𝑅𝑒 = 1 
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(a) (b) 

Fig. 14. Variations of relative velocities along central lines captured by the Eulerian 
incompressible PDDO model and ANSYS Fluent (a): 𝑢/𝑢0 versus 𝑦/𝐿 at 𝑥 = 𝐿/2, (b): 𝑣/𝑢0 

versus 𝑥/𝐿 at 𝑦 = 𝐿/2 for Case 1 with 𝑅𝑒 = 1 

 

  
(a) (b) 

Fig. 15. Variations of pressure 𝑝 (P ) captured by (a): Eulerian incompressible PDDO model, 
(b): ANSYS Fluent for Case 1 with 𝑅𝑒 = 1 

Case 2: 𝑢0 = 0.2 ( / ), 𝑅𝑒 = 200 

Fig. 16-Fig. 18 show the converged results of velocity and pressure fields for Case 2 with 𝑅𝑒 =

200. As can be seen from Fig. 16-Fig. 18, the velocities predicted by the Eulerian 
incompressible PDDO model agree well with those in ANSYS Fluent. Similarly, as shown in 
Fig. 19, the pressure fields captured by the Eulerian incompressible PDDO model and ANSYS 
Fluent have a very good agreement. Both results show two critical regions on the top-left and 
top-right corners of the fluid domain.  
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(a) (b) 

Fig. 16. Variations of velocity 𝑢 ( / ) captured by (a): Eulerian incompressible PDDO 
model, (b): ANSYS Fluent for Case 2 with 𝑅𝑒 = 200 

 

  
(a) (b) 

Fig. 17. Variations of velocity 𝑣 ( / ) captured by (a): Eulerian incompressible PDDO 
model, (b): ANSYS Fluent for Case 2 with 𝑅𝑒 = 200 
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(a) (b) 

Fig. 18. Variations of relative velocities along central lines captured by the Eulerian 
incompressible PDDO model and ANSYS Fluent (a): 𝑢/𝑢0 versus 𝑦/𝐿 at 𝑥 = 𝐿/2, (b): 𝑣/𝑢0 

versus 𝑥/𝐿 at 𝑦 = 𝐿/2 for Case 2 with 𝑅𝑒 = 200 

  
(a) (b) 

Fig. 19. Variations of pressure 𝑝 (P ) captured by (a): Eulerian incompressible PDDO model, 
(b): ANSYS Fluent for Case 2 with 𝑅𝑒 = 200 

 

5.2. Flow inside an open channel 

In this section, the proposed Eulerian incompressible PDDO model is used to investigate a 2D 
fluid flow inside an open channel as shown in Fig. 20(a). The open channel has a length of 
𝐿𝑥 = 0.00    and a width of 𝐿𝑦 = 𝐷 = 0.001  . The fluid has density of 𝜌 = 997.1 kg/ 3 
and viscosity of 𝜇 = 0.00089 P .  .  

The fluid is subjected to velocity inlet boundary condition on the left side as 

𝑢(𝑥 = 0, 𝑦, 𝑡) = 𝑢0   (57a) 

𝑣(𝑥 = 0, 𝑦, 𝑡) = 0   (57b) 
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where 𝑢0 = 0.0   / . 

Thus, the Reynolds number for this problem can be estimated as 

𝑅𝑒 =
𝜌𝑢0𝐷

𝜇
=   .02  (58) 

On the top and bottom boundaries, the fluid is subjected to no-slip boundary conditions as 

𝑢(𝑥, 𝑦 = 𝐿𝑦, 𝑡) = 𝑣(𝑥, 𝑦 = 𝐿𝑦, 𝑡) = 0   (59a) 

𝑢(𝑥, 𝑦 = 0, 𝑡) = 𝑣(𝑥, 𝑦 = 0, 𝑡) = 0   (59b) 

Meanwhile, on the right edge, the fluid is subjected to the zero-pressure boundary condition as 

𝑝(𝑥 = 𝐿𝑥, 𝑦, 𝑡) = 0   (60) 

The domain is uniformly discretized with a mesh size of Δ𝑥 = 𝐿𝑥/200 and the time step size 
of Δ𝑡 = 10−5 is used. To apply boundary conditions, three layers of fictitious particles are 
added on four edges of the fluid domain as shown in red and black in Fig. 20(b). The 
implementation of the zero-pressure boundary condition for the outlet is presented in Section 
4.2. The implementation of no-slip boundary conditions for the top and bottom boundaries is 
presented in Section 4.1.1 for the horizontal walls. 

To apply the velocity conditions for the inlet as given in Eq. (57), three layers of fictitious 
particles are used as shown in black in Fig. 20(b). The velocities of these fictitious particles 
and the particles located at 𝑥 = 0 are set as 

𝑢(𝑥  0, 0  𝑦  𝐿𝑦, 𝑡) = 𝑢0   (61a) 

𝑣(𝑥  0, 0  𝑦  𝐿𝑦, 𝑡) = 0   (61b) 

Meanwhile, the pressures of these fictitious inlet particles are set equal to the pressure of the 
particles at 𝑥 = 0 with the same 𝑦 coordinates as (Hosseini and Feng, 2011; Lee et al., 2008; 
Shao and Lo, 2003) 

𝑝(𝑥 = − Δ𝑥, 𝑦, 𝑡) = 𝑝(𝑥 = −2Δ𝑥, 𝑦, 𝑡) = 𝑝(𝑥 = −Δ𝑥, 𝑦, 𝑡) = 𝑝(𝑥 = 0, 𝑦, 𝑡) (62) 

 
(a) 
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(b) 

Fig. 20. Flow inside an open channel (a): geometry, (b) discretized model 
 
Similar to the previous example, the results predicted by the Eulerian incompressible PDDO 
model are compared with the results obtained by using ANSYS Fluent. In ANSYS Fluent, the 
mesh size of Δ𝑥 = 10−5 and the steady solution with the SIMPLE scheme is used. 
 
Fig. 21-Fig. 24 show the converged results of velocity and pressure fields obtained by using 
the Eulerian incompressible PDDO model and ANSYS Fluent. As can be seen from Fig. 21 
and Fig. 22, the velocities predicted by the Eulerian incompressible PDDO model agree very 
well with those in ANSYS Fluent. For further comparison, the relative velocity 𝑢/𝑢0 versus 
the relative coordinate 𝑦/𝐿𝑦 for different cross sections of the channel are shown in Fig. 23. 
As can be observed from Fig. 23, the results obtained from the Eulerian incompressible PDDO 
model and ANSYS Fluent have a good agreement. 
 
Fig. 24 shows the variation of the pressure field obtained by using the Eulerian incompressible 
PDDO model and ANSYS Fluent. As can be seen from the figure, the pressure fields in the 
Eulerian incompressible PDDO model and ANSYS Fluent have a good agreement. Both results 
show peak values of pressure at two corners on the left side of the channel. In the Eulerian 
incompressible PDDO model, the highest value of pressure at two corners on the left side of 
the channel is 7.19 Pa. Meanwhile, the highest value of pressure at two corners on the left side 
of the channel in ANSYS Fluent is 7.58. Pa.  
 

 
(a) 
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(b) 

Fig. 21. Variations of velocity 𝑢 ( / ) captured by (a): Eulerian incompressible PDDO 
model, (b): ANSYS Fluent  

 

 
(a) 

 
(b) 

Fig. 22. Variations of velocity 𝑣 ( / ) captured by (a): Eulerian incompressible PDDO 
model, (b): ANSYS Fluent  
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Fig. 23. Relative velocity 𝑢/𝑢0 versus relative coordinate 𝑦/𝐿𝑦 at different cross sections of 
the channel 

 

 
(a) 
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(b) 

Fig. 24. Variations of pressure 𝑝 (P ) captured by (a): Eulerian incompressible PDDO model, 
(b): ANSYS Fluent  

 

5.3. Flow over a circular cylinder 

In this section, a 2D fluid domain with 𝐿𝑥 = 1   , 𝐿𝑦 =     passing over a cylinder is 
investigated as shown in Fig. 25. The diameter of the obstacle cylinder is 𝐷 = 1  . The 
cylinder is located at 𝑥𝑐 =    , 𝑦𝑐 =     as shown in Fig. 25. The fluid density and viscosity 
are chosen as 𝜌 = 1 kg/ 3 and 𝜇 = 1 P .  .  

Similar to the previous example, the fluid is subjected to velocity inlet boundary conditions at 
the left edge as 

𝑢(𝑥 = 0, 𝑦, 𝑡) = 𝑢0   (63a) 

𝑣(𝑥 = 0, 𝑦, 𝑡) = 0   (63b) 

where 𝑢0 is a constant velocity. In this example, two different values of 𝑢0 are investigated as 

𝑢0 = {
10      C    1
100     C    2

   (64) 

Thus, the Reynolds number for this problem can be estimated as 

𝑅𝑒 =
𝜌𝑢0𝐷

𝜇
= {

10  /       C    1
100  /      C    2

  (65) 

where 𝐷 = 1   is the diameter of the cylinder.  

On the right side, the fluid is subjected to the zero pressure boundary condition as 

𝑝(𝑥 = 𝐿𝑥, 𝑦, 𝑡) = 0   (66) 

On the top and bottom boundaries, the fluid is subjected to no-slip boundary conditions as 

𝑢(𝑥, 𝑦 = 𝐿𝑦, 𝑡) = 0, 𝑣(𝑥, 𝑦 = 𝐿𝑦, 𝑡) = 0  (67a) 

𝑢(𝑥, 𝑦 = 0, 𝑡) = 0, 𝑣(𝑥, 𝑦 = 0, 𝑡) = 0   (67b) 
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On the cylinder boundary, the fluid is also subjected to no-slip boundary conditions as 

𝐮(𝑛)|
cylinder wall

= 0   (68) 

𝜕𝑝(𝑛)

𝜕𝑟
|
cylinder wall

= 0   (69) 

 

Fig. 25. Flow over a cylinder 

In the Eulerian incompressible PDDO model, the fluid domain is discretized using two 
different mesh sizes for two regions as shown in Fig. 26(a). Specifically, the fluid domain far 
from the obstacle cylinder is uniformly discretized in Cartesian coordinates with a mesh size 
of Δ𝑥 = 𝐿𝑥/ 00. Meanwhile, the fluid domain surrounding the obstacle cylinder is discretized 
in cylindrical coordinates, (𝑟, 𝜃), with the mesh size of Δ𝜃 = 0.01 9     and Δ𝑟 = 0. 9Δ𝑥. 

To apply boundary conditions, three layers of fictitious particles are added on four sides of the 
fluid domain as well as inside the circular cylinder as shown in red and black in Fig. 26(a). 
Therefore, there are 137156 particles in the PD discretized model including fictitious particles.  

In ANSYS Fluent, the fluid domain is also discretized using different mesh sizes for two 
regions as shown in Fig. 26(b). Specifically, the fluid domain far from the cylinder is 
discretized with an average mesh size of 0.1 m. Meanwhile, the fluid domain surrounding the 
cylinder is discretized in cylindrical coordinates, (𝑟, 𝜃), with the mesh size of Δ𝜃 =

0.0 21     and Δ𝑟 = 1. × 10−2  . Therefore, there are 16233 nodes in the discretized model 
in the Fluent model.  

In the Eulerian incompressible PDDO model, the implementation of the no-slip boundary 
conditions in Eq. (67) for the top and bottom walls is presented in Section 4.1.1. Meanwhile, 
the zero-pressure condition in Eq. (66) for the right side is presented in Section 4.3.  

To apply velocity conditions given in Eq. (63) for the inlet boundary, three layers of fictitious 
particles are used as shown in black in Fig. 26(a). The velocities of these fictitious particles are 
defined as 

𝑢(𝑥  0, 0  𝑦  𝐿𝑦, 𝑡) = 𝑢0   (70a) 

𝑣(𝑥  0, 0  𝑦  𝐿𝑦, 𝑡) = 0   (70b) 

Meanwhile, the pressures of these fictitious particles are set equal to the pressure of the particles 
at 𝑥 = 0 with the same 𝑦 coordinates as 
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𝑝(𝑥 = − Δ𝑥, 𝑦, 𝑡) = 𝑝(𝑥 = −2Δ𝑥, 𝑦, 𝑡) = 𝑝(𝑥 = −Δ𝑥, 𝑦, 𝑡) = 𝑝(𝑥 = 0, 𝑦, 𝑡) (71) 

 
(a) 

 
(b) 

Fig. 26. Model discretization (a): particles in the Eulerian incompressible PDDO model, (b): 
nodes in ANSYS Fluent  
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Case 1: 𝑢0 = 10  / , 𝑅𝑒 = 10 

For case 1 with 𝑅𝑒 = 10, the time step size used in the Eulerian incompressible PDDO model 
is Δ𝑡 = 10−4  . In FLUENT, the transient analysis with the same time step is used. The 
transient analyses in both the Eulerian incompressible PDDO model and ANSYS Fluent are 
run for 40000 time steps, and both simulations in the Eulerian incompressible PDDO model 
and ANSYS Fluent are converged. 

Fig. 27-Fig. 28 show the variation of velocity components, 𝑢 and 𝑣, for the converged solution 
results in the Eulerian incompressible PDDO model and ANSYS Fluent at time of 𝑡 =    . As 
can be seen from the figures, the results obtained by the Eulerian incompressible PDDO model 
and ANSYS Fluent match very well. Fig. 29 shows the variation of pressure in the fluid domain 
for the converged solution results at time of 𝑡 =    . As can be seen from Fig. 29, the pressure 
values obtained by the Eulerian incompressible PDDO model and ANSYS Fluent agree very 
well. Both results show the critical locations of the pressure field are at two corners on the left 
side as well as the location in front of the cylinder. 

 
(a) 

 
(b) 

Fig. 27. Variations of velocity 𝑢 ( / ) captured by (a): Eulerian incompressible PDDO 
model, (b): ANSYS Fluent for Case 1 with 𝑅𝑒 = 10 
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(a) 

 
(b) 

Fig. 28. Variations of velocity 𝑣 ( / ) captured by (a): Eulerian incompressible PDDO 
model, (b): ANSYS Fluent for Case 1 with 𝑅𝑒 = 10 

 

 
(a) 
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(b) 

Fig. 29. Variations of pressure 𝑝 (P ) captured by (a): Eulerian incompressible PDDO model, 
(b): ANSYS Fluent for Case 1 with 𝑅𝑒 = 10 

For further comparison, the variations of velocity magnitude and pressure along the lines at 
𝑦 = 0 and 𝑥 =     are presented as shown in Fig. 30 and Fig. 31. As shown in Fig. 30(a), 
because no-slip boundary condition is applied at the circular cylinder, the velocity magnitude 
reduces to zero at the locations right before and right after the cylinder. At the right end of the 
fluid domain, the velocity magnitude reaches the fully developed value at around 1 .81  / . 
Similarly, as shown in Fig. 30(b), because of no-slip boundary conditions, the velocity 
magnitude reduces to zero at the locations adjacent to the circular cylinder, the top and bottom 
boundaries. Meanwhile, at the locations of (𝑥 =    , 𝑦 = ±1.2  ), the velocity magnitude is 
around 1 .9  / . As can be seen from Fig. 30, the variations of velocity magnitude along the 
lines at 𝑦 = 0 and 𝑥 =     captured by the Eulerian incompressible PDDO model and ANSYS 
Fluent agree very well.  

As shown in Fig. 31(a), both results show that at the location right before the cylinder, the 
pressure is around 220 P . Meanwhile, at the location right after the cylinder, the pressure is 
zero. As shown in Fig. 31(b), both results give nearly the same value of pressure at around 
− 7 P  at the locations next to the cylinder. As can be observed from the figures, both results 
show a good agreement for the variation of pressure.  

  
(a) (b) 

Fig. 30. Variation of velocity magnitude along the lines at (a): 𝑦 = 0, (b): 𝑥 =      
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(a) (b) 

Fig. 31. Variation of pressure along the lines at (a): 𝑦 = 0, (b): 𝑥 =      

 

Case 2: 𝑢0 = 100  / , 𝑅𝑒 = 100 

For case 2 with 𝑅𝑒 = 100, the time step size used in the Eulerian incompressible PDDO model 
is Δ𝑡 =  × 10−5  . In ANSYS Fluent, the transient analysis with the same time step is used. 
The transient analyses in both the Eulerian incompressible PDDO model and ANSYS Fluent 
are run for 40000 time steps to capture vortex shedding phenomena. 

Fig. 32-Fig. 33 show the vortex shedding contours of velocity magnitude and pressure for the 
case of vortex tail up in the Eulerian incompressible PDDO model and ANSYS Fluent. As can 
be seen from the figures, the velocity magnitude and pressure fields obtained by the Eulerian 
incompressible PDDO model and ANSYS Fluent match very well. For further comparison, the 
variations of velocity magnitude and pressure along the lines at 𝑦 = 0 and 𝑥 =     are 
investigated as shown in Fig. 34 and Fig. 35. As shown in Fig. 34(a) and Fig. 35(a), because 
of the vortex, the values of the velocity magnitude and pressure fluctuate along the region 
behind the cylinder. As shown in Fig. 34(b), in the case of vortex tail up, the values of the 
velocity magnitude on the positive 𝑦 direction are slightly higher than those on the negative 𝑦 
direction. On the other hand, as shown in Fig. 35(b), the values of pressure on the positive 𝑦 
direction are slightly lower than those on the negative 𝑦 direction. Moreover, as can be seen 
from Fig. 34 and Fig. 35, the results obtained by the Eulerian incompressible PDDO model and 
ANSYS Fluent agree very well.   
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(a) 

 
(b) 

Fig. 32. The comparison of velocity magnitude for the case of vortex tail up obtained by (a): 
Eulerian incompressible PDDO model, (b): ANSYS Fluent  

 
(a) 
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(b) 

Fig. 33. The comparison of pressure values for the case of vortex tail up obtained by (a): 
Eulerian incompressible PDDO model, (b): ANSYS Fluent  

 

  
(a) (b) 

Fig. 34. Variations of velocity magnitudes at (a): 𝑦 = 0, (b): 𝑥 =     for the case of vortex 
tail up captured by the Eulerian incompressible PDDO model and ANSYS Fluent  

  
(a) (b) 

Fig. 35. Variations of pressure at (a): 𝑦 = 0, (b): 𝑥 =     for the case of vortex tail up 
captured by the Eulerian incompressible PDDO model and ANSYS Fluent 
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Fig. 36 and Fig. 37 show the vortex shedding contours of velocity magnitude and pressure for 
the case of vortex tail down in the Eulerian incompressible PDDO model and ANSYS Fluent. 
As can be seen from the figures, the velocity magnitude and pressure fields obtained by the 
Eulerian incompressible PDDO model and ANSYS Fluent match very well. Similar to the case 
of vortex tail up, the variations of velocity magnitude and pressure along the lines at 𝑦 = 0 and 
𝑥 =     are investigated as shown in Fig. 38 and Fig. 39. Similar to the case of vortex tail up, 
the values of the velocity magnitude and pressure fluctuate along the region behind the cylinder 
as shown in Fig. 38(a) and Fig. 39(a). As shown in Fig. 38(b), in the case of vortex tail down, 
the values of the velocity magnitude on the positive 𝑦 direction are slightly lower than those 
on the negative 𝑦 direction. Meanwhile, as shown in Fig. 35(b), the values of pressure on the 
positive 𝑦 direction are slightly higher than those on the negative 𝑦 direction. As can be seen 
from these figures, the results obtained by the Eulerian incompressible PDDO model and 
ANSYS Fluent also agree very well.   

 
(a) 

 
(b) 

Fig. 36. The comparison of velocity magnitude for the case of vortex tail down obtained by 
(a): Eulerian incompressible PDDO model, (b): ANSYS Fluent  
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(a) 

 
(b) 

Fig. 37. The comparison of pressure values for the case of vortex tail down obtained by (a): 
Eulerian incompressible PDDO model, (b): ANSYS Fluent 

  
(a) (b) 

Fig. 38. Variations of velocity magnitudes at (a): 𝑦 = 0, (b): 𝑥 =     for the case of vortex 
tail down captured by the Eulerian incompressible PDDO model and ANSYS Fluent 
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(a) (b) 

Fig. 39. Variations of pressure at (a): 𝑦 = 0, (b): 𝑥 =     for the case of vortex tail down 
captured by the Eulerian incompressible PDDO model and ANSYS Fluent  

 

For further validation, the drag and lift forces acting on the circular cylinder are calculated 
and compared with the results obtained in ANSYS Fluent. In 2D space, the drag and lift 
forces acting on the circular cylinder can be calculated as (Hosseini and Feng, 2011) 

𝐅 = [
𝐹𝐷

𝐹𝐿
] = ∫ 𝛔𝐧𝑑 

𝑆
   (72a) 

with 

𝛔 = [
𝜎𝑥𝑥 𝜎𝑥𝑦

𝜎𝑥𝑦 𝜎𝑦𝑦
] = 𝜇[∇⨂𝐮 + (∇⨂𝐮)𝐓] − 𝑝𝐈   (72b) 

𝐧 = [
𝑛𝑥

𝑛𝑦
]   (72c) 

where 𝐹𝐷 and 𝐹𝐿 represent the drag force and lift force, respectively. The parameter 𝑆 represents 
the circle which is the cylinder boundary, 𝐧 represents the normal vector on 𝑆, 𝛔 represents the 
stress tensor acting on 𝑆. The stress tensor 𝛔 given in Eq. (72b) can be rewritten as 

𝛔 = [
𝜎𝑥𝑥 𝜎𝑥𝑦

𝜎𝑥𝑦 𝜎𝑦𝑦
] = [

2𝜇𝑢,𝑥 − 𝑝 𝜇(𝑢,𝑦 + 𝑣,𝑥)

𝜇(𝑢,𝑦 + 𝑣,𝑥) 2𝜇𝑣,𝑦 − 𝑝
]   (73) 

Therefore, by substituting Eq. (73) and Eq. (72c) into Eq. (72a), the drag and lift forces acting 
on the circular cylinder can be calculated as  

𝐹𝐷 = ∫ [(2𝜇𝑢,𝑥 − 𝑝)𝑛𝑥 + 𝜇(𝑢,𝑦 + 𝑣,𝑥)𝑛𝑦]𝑑 𝑆
  (74a) 

𝐹𝐿 = ∫ [𝜇(𝑢,𝑦 + 𝑣,𝑥)𝑛𝑥 + (2𝜇𝑣,𝑦 − 𝑝)𝑛𝑦]𝑑 𝑆
   (74b) 

In the Eulerian incompressible PDDO model, to calculate the drag and lift forces using Eq. 
(74), all the particles located along the boundary of the circular cylinder are determined. The 
normal vector 𝐧 = [𝑛𝑥 𝑛𝑦]𝑇 associated with each particle is determined based on its relative 
position with the center of the cylinder. Therefore, the drag and lift forces acting on the circular 
cylinder given in Eq. (74) can be rewritten in the discretized form as 
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𝐹𝐷 = ∑ [(2𝜇𝑢,𝑥(𝑖) − 𝑝(𝑖))𝑛𝑥(𝑖) + 𝜇(𝑢,𝑦(𝑖) + 𝑣,𝑥(𝑖))𝑛𝑦(𝑖)]Δ (𝑖)
 
𝑖=1   (75a) 

𝐹𝐿 = ∑ [𝜇(𝑢,𝑦(𝑖) + 𝑣,𝑥(𝑖))𝑛𝑥(𝑖) + (2𝜇𝑣,𝑦(𝑖) − 𝑝(𝑖))𝑛𝑦(𝑖)]Δ (𝑖)
 
𝑖=1   (75b) 

where 𝑖 represents a particle located on the circle 𝑆 and   represents the total number of 
particles located on circle 𝑆. The parameter 𝑝(𝑖) represents the pressure at particle 𝑖. The 
parameter Δ (𝑖) represents the length of the circular segment associated with particle 𝑖 which 
can be calculated as 

Δ (𝑖) = (𝐷/2)Δ𝜃   (76) 

The terms 𝑢,𝑥(𝑖), 𝑢,𝑦(𝑖), 𝑣,𝑥(𝑖), 𝑣,𝑦(𝑖) are the derivatives of velocity components of node 𝑖 with 
respect to 𝑥 and 𝑦 coordinates. These derivatives are attracted from the calculation of 𝛻𝐮(𝑘)

(𝑛−1) 
given in Eq. (20). 

Fig. 40 shows the variations of drag force and lift force captured by the Eulerian incompressible 
PDDO model and ANSYS Fluent. As shown in Fig. 40(a), the mean value of drag force 
captured by ANSYS Fluent is 9  8.  N. Meanwhile, the mean value of drag force captured by 
the Eulerian incompressible PDDO model is 9 01 N, which is 0.  % different than the result 
obtained by ANSYS Fluent. However, due to the use of different numerical algorithms, it is 
observed that the simulation in ANSYS Fluent captures the fully periodic vortex shedding 
sooner than the simulation in the Eulerian incompressible PDDO model. In ANSYS Fluent, 
the SIMPLE scheme with the under-relaxation factors of 0.7 for momentum and 0.3 for 
pressure are chosen based on the recommendation of the software. Meanwhile, in the Eulerian 
incompressible PDDO model, the numerical procedure presented in Section 3.4 is used without 
the under-relaxation factor. As a result, the time points that the lift forces reach the maximum 
values and minimum values captured by ANSYS Fluent and the Eulerian incompressible 
PDDO model are slightly different. Therefore, to have a better comparison, the time points that 
the lift forces reach the peak values captured by ANSYS Fluent and the Eulerian 
incompressible PDDO model are shifted to the same time point 𝑡0 as shown in Fig. 40(b). 

As can be observed from Fig. 40(b), the magnitude of lift force captured by ANSYS Fluent is 
222  N. Meanwhile, the magnitude of lift force captured by the Eulerian incompressible 
PDDO model is 21   N, which is  .2% different than the value obtained by ANSYS Fluent. 
Moreover, as shown in Fig. 40(b), both the Eulerian incompressible PDDO model and ANSYS 
Fluent results give nearly the same value of 0.0  7   for the period of the vortex shedding, 
which is also the frequency of the lift force. 
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(a) 

 
(b) 

Fig. 40. Variations of (a): drag force, 𝐹𝐷 (N), (b): lift force 𝐹𝐿 (N) captured by the Eulerian 
incompressible PDDO model and ANSYS Fluent 

6. Conclusion 

In this study, a novel PDDO model for incompressible fluid based on the Eulerian approach is 
developed. The peridynamic differential operators are used to represent Navier-Stokes 
equations in the nonlocal forms. The numerical procedure for solving Navier-Stokes equations 
using the Eulerian incompressible PDDO model is presented. The pressure is obtained by 
solving the Poisson equation and is then used to update the velocity field to ensure that it is 
divergence-free. Details of implementing the pressure boundary conditions, no-slip and zero-
pressure boundary conditions are also presented.  

The accuracy of the developed Eulerian incompressible PDDO model is verified by 
considering various 2D fluid flow problems with different Reynolds numbers. The results 
predicted by the Eulerian incompressible PDDO model are compared with the results obtained 
by ANSYS Fluent with very good agreement. The capability of the developed Eulerian 
incompressible PDDO model is further demonstrated by capturing vortex shedding phenomena 
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for a flow over a cylinder with a Reynolds number of 𝑅𝑒 = 100. The results in terms of velocity 
and pressure fields, drag and lift forces predicted by the Eulerian incompressible PDDO model 
and ANSYS Fluent show a good agreement. The developed Eulerian incompressible PDDO 
model can be further extended for 3D formulations to consider 3D fluid flows. 
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