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RNA viruses interact with a wide range of cellular RNA-binding proteins (RBPs)
during their life cycle. The prevalence of these host-virus interactions has been
highlighted by new methods that elucidate the composition of viral ribonucleo-
proteins (VRNPs). Applied to 11 viruses so far, these approaches have revealed
hundreds of cellular RBPs that interact with viral (vVYRNA in infected cells. However,
consistency across methods is limited, raising questions about methodological
considerations when designing and interpreting these studies. Here, we discuss
these caveats and, through comparing available vRNA interactomes, describe
RBPs that are consistently identified as vVRNP components and outline their
potential roles in infection. In summary, these novel approaches have uncovered
a new universe of host-virus interactions holding great therapeutic potential.

The importance of cellular RNA-binding proteins in virus infection

Pathogenic RNA viruses pose important public health and socioeconomic challenges. As
obligate intracellular parasites, viruses rely heavily on host cell proteins for their life cycle, and
the scope of these host-virus interactions remains under extensive investigation. Viral (vyRNA
(see Glossary) has a central role in RNA virus infection because it must act as both mRNA and
a viral genome. It is therefore unsurprising that vVRNA hijacks a plethora of cellular RNA-
binding proteins (RBPs) to promote viral replication [1]. Cellular RBPs are involved in virtually
every step of the viral life cycle, including genome replication, viral protein synthesis, and assem-
bly of virus progeny [2-5]. Moreover, VRNA is the target of the antiviral innate immune response
because it typically contains unusual molecular signatures that can be recognised by specialised
RBPs. These pathogen-associated molecular patterns include triphosphate ends, unmethylated
caps, sequence biases, and long double-stranded (ds)RNA tracts produced during viral replica-
tion [6--8]. Through identifying the complement of cellular proteins that interact with VRNA, it will
be possible to discover a new universe of crucial host—virus interactions with potential as targets
for host-based antiviral therapies.

Our knowledge of cellular RBPs has expanded dramatically in recent years due to the emergence
of novel proteomics-based approaches [9-14]. RBPs range from proteins with well-established
roles in RNA biology that harbour canonical RNA-binding domains (RBDs) to others that inter-
act with RNA in unconventional ways, many of which do not have well-characterised biological
functions [10]. Several canonical RBPs have been mechanistically linked with viral infection
[1,5]. However, the recent discovery of hundreds of novel unconventional RBPs suggests that
the breadth of interactions that vRNA can establish with the host cell might be broader than
previously anticipated [1,5]. As an illustrative example, the E3 ubiquitin ligase TRIM25 participates
in the antiviral response mediated by the pattern recognition receptors RIG-I and ZAP [15-17],
and it was recently identified as an RBP by proteome-wide approaches [9,18-21]. It has since
been found that TRIM25’s E3 ubiquitin ligase activity is dependent on its interaction with RNA
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RNA viruses interact with many RNA-
binding proteins (RBPs) over the course
of their life cycle in both pro- and antiviral
capacities.

The true extent of viral (vyJRNA-host RBP
interactions has only recently become
clear as a result of developments in
mass spectrometry and methods for
specifically studying RBPs.

There are now several methods available
for directly studying the VRNA interac-
tome; these use different approaches to
specifically capture proteins interacting
with vVRNA and often yield very different
results.

When well designed and correctly
interpreted, these methods have the
potential to greatly enhance our under-
standing of viral infection by providing
an unbiased insight into viral ribonucleo-
protein composition.

Proteins identified in the VRNA
interactomes of multiple viruses might
have panviral regulatory roles and could
be promising targets for developing
broad-spectrum antiviral therapies.
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Figure 1. Approaches to elucidate the viral RNA (vVRNA) interactome. (A) Schematic representation of the
critical steps of the methods to elucidate vVRNA-protein interactions and the altematives for each step. The name
and workflow of each approach are detailed in (B). Abbreviations: 4SU, 4-thiouridine; ActD, actinomycin D;
ChIRP-MS, comprehensive identification of RNA-binding proteins by mass spectrometry; CLAMP, crosslink-
assisted messenger ribonucleoprotein purification; Fvo, flavopiridol; HyPR-MS, hybridization purification of RNA-
protein complexes followed by mass spectrometry; mRNP, messenger ribonucleoprotein; RAP-MS, RNA
antisense purification and quantitative mass spectrometry; SPRI, solid-phase reversible immobilisation; TUX-MS,
thiouracil cross-linking mass spectrometry; VIR-CLASP, viral cross-linking and solid-phase purification; vRIC, viral
RNA interactome capture. See also [25-27,40-46,50-53].
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[22]. Recent methodological developments have enabled the proteome-wide discovery of novel
RBDs present in unconventional RBPs (reviewed in [10]). For example, RBDmap combines
protein—-RNA crosslinking, partial proteolysis, and proteomics to identify the protein segments
that engage with RNA on a global scale [19]. RBDmap revealed that, beyond classical RBDs,
intrinsically disordered regions, enzymatic cores, and protein—protein interaction domains can
be platforms for RNA binding.

In recent years, important efforts have been undertaken to elucidate the interactomes of specific
RNA species. The different approaches taken to capture and characterise the protein-RNA inter-
actions occurring on specific RNAs have been extensively reviewed [23]. In this review, we focus
on how these methods have been adapted, and how others have been developed, to uncover
the complement of proteins that interact with vRNA (i.e., the VRNA interactome).

Approaches to uncover the viral RNA interactome

Although protein—vRNA interactions are fundamental for the viral life cycle, the complement of
cellular RBPs that engage with VRNA remains poorly characterised. Over the past decade,
several approaches have been developed to identify these critical host-virus interactions.
These methods comprise four critical steps: (i) infection, (i) protein—-RNA crosslinking, (iii) RNA
isolation, and (iv) proteomic analysis. Although these methods share similar workflows, each
one approaches these steps in a distinct manner, as summarised in Figure 1. The success of
these approaches relies on their ability to capture proteins that interact with vVRNA while excluding
those that do not (Box 1). Through understanding both the advantages and potential limitations of

Box 1. Identifying and controlling for sources of ‘noise’ in VRNA interactome studies

Any VRNA interactome method will inevitably copurify contaminants or nonspecific/nonfunctional interactors (Figure ). It is
therefore important that protocols (both experimental and analytical) are optimised to maximise signal-to-noise ratio and
that appropriate controls are in place to account for sources of noise that cannot be eliminated. Here, we outline some
such sources of noise (illustrated in Figure |) and the strategies that can be used to address them.

(A) Approaches that rely on formaldehyde crosslinking will isolate not only proteins binding directly with vVRNA but also
indirect protein interactors. It is thus possible that functionally unrelated long-distance interactors might be isolated
due to protein—protein bridges or stabilisation of stochastic short-lived interactions. This can be mitigated by keeping
formaldehyde concentration and incubation time to a minimum.

(B) All methods can copurify proteins binding noncovalently to target vVRNA or its covalently bound proteins. To disrupt
noncovalent interactions, stringent lysis and washing conditions with high-salt buffers, chaotropic detergents, and/or
other denaturing agents should be used. A non-crosslinked control can help in determining the extent of noncovalent
interactions following pulldown.

(C and D) Nontarget cellular RNAs can form partial hybrids with vVRNA or probes during lysis and can be copurified due to
the use of high—ionic strength buffers. If crosslinking is not limited to the target vVRNA, contaminant RNAs will carry proteins
covalently linked to them. Additional washes with low-salt buffers and a high-temperature pre-elution step can be included
to disrupt nonspecific RNA-RNA interactions. Off-target interactions of probes can be accounted for with an uninfected
control, and the nature and incidence of nontarget RNAs can be assessed by RNA sequencing.

(E) For methods that rely on 4SU labelling, it is important to minimise 4SU incorporation into nontarget RNAs. The dose of
transcriptional inhibitor should be titrated to maximise inhibition of cellular transcription while minimising cytotoxicity. A
mock-infected control incubated with 4SU and the inhibitor should be included to assess the extent of contamination
derived from leaky transcription. If incorporation of 4SU into cellular RNAs is substantial, a specific VRNA capture method
should be implemented.

(F) In CLAMP, capture relies on biotinylation of sulfhydryl groups in 4SU. Sulfhydryl groups are also present in other
molecules in the cell, including cysteines, representing a source of contamination. This likely explains why there is a low
incidence of proteins GO annotated as ‘RNA binding’ (~25%) in CLAMP studies compared with other methods (average
of ~63%). RNase elution can reduce the incidence of these contaminants by eluting mostly RNA-associated proteins.
Moreover, an uninfected control is critical to estimate the incidence of proteins that are isolated in a vRNA-independent
manner.

(G) Proteins can bind directly to beads, probes, or resins. Stringent washing conditions and the inclusion of a non-
crosslinked control are critical in reducing the incidence of contaminants. Choosing an elution method that only releases
RNA-associated proteins, such as toehold or RNase elution, can also enhance methods’ specificity.
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Glossary

4-Thiouridine (4SU): a photoreactive
uridine analogue that is taken up by
cells and incorporated into nascent
RNA. 4SU-mediated protein—-RNA
crosslinking is induced by irradiation with
UV light at 365 nm.

5'-to-3' Exoribonuclease: an enzyme
that removes nucleotides from the
5"end of RNA.

Antisense probe: a single-stranded
(ss)DNA oligonucleotide with a
sequence complementary to a region of
the RNA of interest. They can vary in
length (from 10 to ~100 nucleotides) and
can be used singly or as a set, spanning
the length of the VRNA. Probes can be
hybridised to magnetic beads (generally
through biotin-streptavidin interaction),
which are used for pulldown.

DNA damage response (DDR): a
general term for the various processes
involved in detecting and responding to
DNA damage.

False discovery rate (FDR): an
adjusted p value that corrects for multi-
ple testing when calculating the signifi-
cance of hits in proteomic analysis.
Gene ontology (GO): a formal repre-
sentation of knowledge relating to the
properties of gene products, focusing on
three aspects: molecular function, bio-
logical process, and cellular component.
Mass spectrometry (MS): an analyti-
cal approach for measuring the mass-
to-charge ratio (m/z) of molecules pres-
ent in a sample that can be applied for
the high-throughput analysis of proteins
(proteomics).

Motor protein: proteins able to move in
an ATP-dependent manner along cyto-
skeletal networks and that are important
for transport within cells.

Multiplicity of infection (MOI): the
number of viral particles per cell in an
infection assay.

Oligo(dT) probe: an ssDNA
oligonucleotide made of ~25 thymine
nucleotides. This is complementary
to the poly(A) tail found in cellular
mRNAs and many vVRNAs. The
probes are hybridised to magnetic
beads to facilitate pulldown.
Riboregulation: the process by which
a protein’s function is altered through
its interaction with RNA.

RNA-binding domain (RBD): region
of an RBP that engages in direct inter-
action with RNA. RBPs are often mod-
ular and harbour several RBDs to
expand selectivity and affinity. Canonical
RBDs include an RNA recognition motif,
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RNA-binding protein (RBP): a protein
that interacts with RNA. ‘Conventional’
RBPs interact with RNA through well-
characterised RNA-binding domains
(RBDs) and are generally involved in
regulation of gene expression or RNA
metabolism. ‘Unconventional’ RBPs use
noncanonical modes of RNA binding
such as RNA-binding surfaces in enzy-
matic cores, protein—protein interaction
domains, or intrinsically disordered
regions. They serve a wide range of
functions, the full extent of which have
yet to be elucidated.

Stress granules (SGs): aggregates of
protein and RNA that form in the cyto-
plasm of cells under stress and contain
stalled replication complexes.
Tunnelling nanotubes (TNTs): mem-
branous bridges that can form between
cells over relatively long distances,
allowing intracellular communication and
transport of cellular components.

Viral replication factory: an intracellu-
lar compartment formed during infection
that houses the viral replication machin-
ery and is the site of viral replication.
Viral RNA (vVRNA): a term to refer to all
the RNA species generated by a virus
during its life cycle. This includes both
positive and negative strands, as well as
subgenomic RNAs.

Viral RNA interactome: the full com-
plement of proteins that interact with
VRNAin a cell.

capture bead
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Figure I. Sources of ‘noise’ in a viral (vV)JRNA interactome experiment. (A-G) Schematic representation of
contaminants that may affect the different vVRNA interactome approaches.

each method, it will be possible to evaluate their performance, interpret their results in light of
case-specific experimental pitfalls, and choose the most appropriate workflow for a given
experimental goal or system.

The infection model

The experimental design of a VRNA interactome experiment should consider the properties and
life cycle of the virus under study. RNA viruses generate positive and negative sense RNAs to
enable replication. In positive sense single-stranded (ss)RNA viruses, the genome also acts as
an mRNA, and therefore its capture will reveal host factors involved in virtually all steps of the
viral life cycle [3]. Conversely, in negative sense ssRNA viruses, the negative strand is the genome,
and the positive strand acts as an mRNA [24]. Therefore, it is expected that positive and negative
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sense VRNAs may interact with a substantially different set of host proteins, and both should be
captured to achieve a comprehensive VRNA interactome [25]. Moreover, other viruses generate
more complex RNA expression patterns. For example, coronaviruses and alphaviruses produce
subgenomic RNAs [20,26], whereas retroviruses produce alternatively spliced mRNAs encoding
accessory proteins [27]. Given the diversity of VRNA species present in the infected cell, it is also
of interest to generate species-specific VRNA interactomes. To this end, antisense probes can
be designed that target features specific to particular vVRNA species, such as splice sites. Such an
approach was recently used to compare the interactomes of HIV type 1 (HIV-1) splice variants,
identifying 212 proteins that potentially associate with specific HIV-1 RNAs [27].

Another important consideration is the time points after infection at which crosslinking and
harvesting are performed. The choice of time points can be instrumental in enriching for host-
virus interactions involved in particular steps of the viral life cycle. For example, proteins involved
in replication and translation will be prominent early in infection, whereas viral particle assembly
will grow in prevalence as infection progresses. Viral infection dynamics differ across viruses,
so intracellular and extracellular vVRNA, as well as viral protein abundance, should be measured
to identify the most suitable time points [26] (Box 2). For these temporal analyses of the vVRNA
interactome, it is important to synchronise the infection so that cells become infected simulta-
neously. Synchronisation can be achieved by removing the virus-containing media after infection,
followed by extensive washes and controlled trypsin treatment to inactivate remaining viral
particles.

‘Freezing’ protein-RNA complexes with UV or chemical crosslinking

Atfter infection of cultured cells, vVRNA will undergo its replication cycle and will engage with cellular
proteins. Once the infection has reached the desired stage, protein—vRNA interactions must be
covalently immobilised to enable subsequent stringent purification of viral ribonucleoprotein
(VRNP) complexes. The two most common protein—-RNA crosslinking approaches rely on UV light
and formaldehyde, both of which have benefits and drawbacks, as discussed in the following text.

UV irradiation of cells at 254 nm induces the formation of covalent bonds between RNA and
proteins present at ‘zero’ distance (<2 ,&) [28]. Because amino acid absorption is relatively low

Box 2. 4SU incorporation approaches facilitate the study of the viral life cycle

VIR-CLASP makes use of viral particles collected from cells cultured in 4SU-containing media and that thus have incorpo-
rated 4SU into their encapsidated VRNA [25]. Infection of cells in the absence of 45U allows the study of the interactions
that the incoming (4SU-labelled) VRNA establishes in the newly infected cell prior to the burst in viral replication. Although
very valuable for studying early infection, one limitation is that this approach requires a very high multiplicity of infection
(MOI) to maximise the proportion of 4SU-labelled vVRNA molecules entering the cell. The use of high MOl is not amenable
for all viruses and, in some cases, can alter the kinetics of infection [99].

Other methods, such as VRIC [26], TUX-MS [50,51], and CLAMP [52,53], combine 4SU RNA labelling with the use of an
inhibitor of cellular transcription [actinomycin D (ActD) or flavopiridol (Fvo)] to study the interactions that VRNA establishes
with the cell after the replication burst. Because the VRNA-dependent RNA polymerase (RDRP) is insensitive to these
compounds, 4SU is mainly incorporated into nascent VRNASs. By altering the timing of inhibitor and 4SU addition, it might
be possible to study specific stages in the viral life cycle and achieve a greater degree of temporal resolution. The success
of these methods depends on maximising the efficiency of the transcriptional inhibition, 4SU vRNA labelling, and RNA
isolation while minimising the labelling of nontarget RNAs and the toxic effects on the cell and the virus. It is therefore
important to optimise the dose and incubation time of the transcription inhibitor and 4SU to minimise side effects. TUX-MS
and CLAMP use ActD, which affects all cellular RNA polymerases (RNA pol). ActD-mediated inhibition allows exclusive
incorporation of 4SU into VRNA but at the cost of substantial side effects on viral replication and cytotoxicity [100]. vRIC uses
Fvo, which specifically inhibits RNA pol Il and has no detectable effect on viral replication [26]. Because RNA pol | and Il are
not inhibited, Fvo must be combined with a downstream RNA isolation approach that does not isolate RNA transcribed by
these polymerases, such as oligo(dT) or specific antisense probe capture.
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at 254 nm, UV crosslinking does not induce detectable levels of protein—protein crosslinking
[19,28]. Although UV»s4 crosslinking has the benefit of being very selective, it suffers from low
efficiency. Indeed, although its efficiency can reach nearly 40% for certain proteins, such as
CELF1/CUGBP1, it averages 1-5% for most RBPs [9,29]. Proteins with high crosslinking
efficiency are likely to establish long-lived interactions with RNA at sites with optimal nucleotide
and amino acid composition and favourable geometry at the protein—-RNA interface. UV
crosslinking occurs preferentially at pyrimidines (especially uridines) and basic and aromatic
residues [30]. Interactions between amino acids and nucleotide bases will also be favoured
over those involving the ribose—-phosphate backbone. This explains why UV crosslinking is
more efficient for interactions with ssRNA than with dsRNA [9,10]. Another challenge for UV
crosslinking is achieving high penetration in thick tissues, because UV will be absorbed at the
sample’s surface. However, recent studies reported effective UVsos4 crosslinking in intact plant
leaves by using repeated bursts of irradiation [31] and neuronal tissues through snap freezing
and grinding prior to irradiation [14].

Another way to achieve UV crosslinking is by labelling RNA with 4-thiouridine (4SU), a nucleo-
tide analogue that is taken up by mammalian cells and is incorporated into nascent RNA when
added to culture media [32]. 4SU has an additional absorbance peak spanning 312-370 nm
and so promotes protein—-RNA crosslinking upon irradiation with UV345_370, With UV3zg5 being
the most commonly used wavelength [9,33-35]. Although initially reported to have higher
efficiency than UVas,4 crosslinking, this is not evident when the two approaches are compared
side by side. In general, the biases in amino acid and nucleotide preference are similar to UVosy
crosslinking [30], although there are a few dozen RBPs favoured by one or another approach,
reflecting differences in crosslinking chemistries [9]. The efficiency of crosslinking at UVzgs is
also heavily dependent on the level of incorporation of 45U into the RNA. 4SU can be used to
label de novo synthesised VRNAs and specifically study their interactomes, because natural
bases exhibit negligible absorbance/crosslinking with UVsgs. Pulse labelling of vVRNA with 45U
is a powerful approach to elucidate the VRNA interactome (Box 2) and can be paired with either
nonspecific or specific RNA capture methods, increasing adaptability.

An alternative to UV crosslinking is the chemical crosslinker, formaldehyde, which has
higher efficiency and tissue permeability than UV. Formaldehyde can form methylene
bridges between amino/imino groups found across all proteins and nucleic acids, making
it amenable for protein—protein, protein—-DNA, and protein—-RNA interaction studies [36].
Although all amino acids contain an amide group that can theoretically form crosslinks,
most crosslinks occur at lysines due to the presence of the considerably more nucleo-
philic amino group in its side chain. Crosslinking also generally occurs between pro-
teins/nucleic acids in close proximity as the methylene group has a span of ~2.3-2.7 A
[371.

The extent of formaldehyde crosslinking is highly dependent on the concentration and timing of
treatment. When applied at high concentrations and over long periods of time (e.g., 4% for
30 min), it can stabilise organelles and large cellular macrostructures, making it a useful fixative
for a broad range of applications, including microscopy. Even when lower concentrations and
shorter crosslinking times are used, formaldehyde will inevitably induce the formation of pro-
tein—-RNA, protein-DNA, and protein—protein bridges. In vVRNA interactome studies, therefore, it
will not only ‘freeze’ direct protein-RNA interactions but also protein—protein interactions formed
by proteins bound to the vVRNA [38,39], making formaldehyde crosslinking useful for studies
where the experimental goal involves assessment of protein complexes instead of direct pro-
tein—-RNA interactors.

28  Trends in Biochemical Sciences, January 2022, Vol. 47, No. 1
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Isolation of protein—vRNA complexes

After ‘freezing’ protein-RNA interactions, VRNA and its covalently linked proteins are isolated. A
common strategy to achieve this is to capture the VRNA specifically using antisense probes,
which can be single probes [hybridization purification of RNA—protein complexes followed by
mass spectrometry (HyPR-MS)] [27,40] or multiprobe sets [RNA antisense purification-quanti-
tative MS (RAP-MS)] [41-43], comprehensive identification of RNA-binding proteins by MS
(ChIRP-MS) [44-46]. Although multiprobe sets maximise VRNA recovery due to multiple simulta-
neous probe-target hybridisation events, each probe will have its own set of off-target interactions
that will add to the overall experimental noise (Box 1). Conversely, single-probe approaches min-
imise noise at the cost of less efficient capture because they rely heavily on the accessibility of a
single region of the vVRNA. The inclusion of locked nucleotides into DNA probes [i.e., locked
nucleic acids (LNAs)] can be used to improve the signal-to-noise ratio through maximising
hybridisation strength and dsRNA invasion [47]. The specificity of the RNA capture can also be
enhanced through the specific elution of target RNA (Box 1). For example, with LNA probes, it
is possible to perform a first elution step at a relatively high temperature (~50°C) to remove con-
taminant RNAs that are captured via partial hybrids. This is followed by a second elution step at a
higher temperature (70-90°C) that releases the target RNA captured through perfect base pairing
[47-49]. Alternatively, HyPR-MS uses toehold-mediated elution, where probe—-RNA target
interactions are displaced by a higher-affinity antisense probe [27,40].

An alternative to sequence-specific capture is to use bulk RNA purification in combination
with VRNA-specific 4SU labelling and crosslinking (Box 1). Oligo(dT) probes enrich for
polyadenylated [poly(A)] RNA and have been applied to study the RBP responses to severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Sindbis virus (SINV) infection
[20,26]. Importantly, vRNA represents ~20% and ~70% of the RNA isolated by oligo(dT) in
extracts from cells infected with SARS-CoV-2 [26] and SINV [20], respectively. This is because
SARS-CoV-2 and SINV genomes and subgenomes have poly(A) tails and are very abundant in
infected cells. Therefore, the combination of 4SU-labeled VRNA and oligo(dT) capture results in
a high level of enrichment of vVRNA-interacting proteins and has been successfully used by viral
RNA interactome capture (VRIC) [26] and thiouracil cross-linking MS (TUX-MS) [50,51] (Figure 1
and Box 2).

Viral cross-linking and solid-phase purification (VIR-CLASP) also exploits 4SU labelling of VRNA
(Box 2), but in combination with total RNA purification using solid-phase reversible immobilisation
beads [25]. Alternatively, other recently developed total RNA isolation methods use organic
phase separation [11,12,14] or silica columns [13] and can be applied to 4SU-labelling
approaches, although this has not yet been applied in the context of viral infection. The benefit
of total RNA capture methods is that they are not limited to polyadenylated VRNAs. However,
this approach comes at a cost of copurifying a large proportion of non-vRNAs, with rRNA,
small nucleolar (sno)RNA, tRNA, and small nuclear (sn)RNA being extremely abundant in eluates.
The impact of these ‘contaminants’ on the quality of the vVRNA interactome remains to be tested.
Crosslink-assisted messenger RNP purification (CLAMP) combines formaldehyde crosslinking
with another capture strategy, which consists of labelling VRNA with 4SU, followed by in vitro
biotinylation of 4SU’s sulfhydryl group with an HPDP-biotin conjugate and purification of the
biotinylated VRNA using streptavidin beads. Because biotinylation is performed in cellular
extracts, biotin molecules can also bind to the sulfhydryl group present in the cysteine residues
within proteins, likely contributing to high false-positive rates (Box 1) [52,53].

RNA tags, such as MS2 or tobramycin aptamers, have also been used extensively to study
specific regions of viral genomes [54-57]. These ‘tags’ are RNA sequences that are known to
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form high-affinity interactions with a protein or small molecule, which can be used for specific
affinity pulldown. The pitfall of these approaches is that vVRNA must be genetically modified to
incorporate the molecular tag, a process that is technically challenging and has the potential to
disrupt viral replication. A limitation that applies specifically to the MS2 system is that it relies on
an interaction between the MS2 bacteriophage coat protein and its target stem-loop structure
derived from the bacteriophage’s RNA genome. This reliance on a native protein-RNA interaction
makes it incompatible with the denaturing purification conditions required to remove nonspecific
binders and contaminants [58].

Proteomic analysis of vVRNA interactomes

Once VRNP complexes have been isolated, proteins interacting with the VRNA are identified via
MS. Although often overlooked, ensuring that the proteomics and the subsequent data analysis
steps are robust is key to generating high-quality vVRNA interactomes [59] (Box 3). Proteomic
analysis of VRNA interactomes can be qualitative, where there is no comparison with a control
group, or, as in the majority of cases, semiquantitative or quantitative, where a comparison of
some type is performed. Semiquantitative analyses rely on present/absent comparisons between
the infected sample and a control. Although present/absent comparisons are straightforward and
quick to perform, the depth of comparison between samples is limited because any protein
present in both samples is removed from the dataset. Quantitative analyses assign an abundance
value to each protein in each sample, allowing enrichment analyses for all the identified proteins
and increasing coverage [60]. However, appropriate statistical tests must be applied to assess
the significance of the observed enrichments, because true hits are expected to be consistent

Box 3. Quantitative proteomic analyses applied to VRNA interactome studies

Many of the studies discussed in this review rely on label-free quantification. In label-free applications, peptide quantitation
is typically performed by analysing the signal (intensity) associated with the peptide or the number of sequencing events
(spectral counts) for each peptide [58]. Although intensity and spectral count data are equally valid quantification
approaches, it is important to ensure that spectral counts are handled using an appropriate processing method, such
as that applied by SAINT [59]. Using intensity values offers the benefit of greater flexibility and depth in downstream
analyses because intensity operates linearly over a much wider range of values than spectral counts.

One of the limitations of label-free analyses is that samples are analysed in separate mass spectrometer runs, which can be
subject to additional technical sample-to-sample variability. Label-based quantitative approaches can be used to reduce
technical variability. Stable isotope labelling allows multiple samples to be combined in a single run and can be performed
during cell culture [stable isotope labelling by amino acids in cell culture (SILAC)] [60] or sample preparation (dimethy!
labelling [61], TMT [64], iTRAQ [63]). Each label-based quantification approach has benefits and drawbacks. SILAC, for
example, is compatible with any MS method at any depth and is very precise, but it is limited to only two- or three-way
comparisons. Because the labelling is performed in the cultured cells, samples can be combined after lysis to reduce
technical noise by performing the RNA capture in the combined sample [20,49]. The postelution labelling approaches
TMT/ITRAQ allow multiplexing of up to 18 samples [64]. However, combining so many samples in the same MS run comes
at a price of fewer peptide sequencing events per sample, which reduces the depth of the analysis. Fractionation is
therefore recommended because it increases sequencing events per sample while maintaining the quantitative advantage
of multiplexing [65]. Selecting the most appropriate label-free or label-dependent quantitative proteomic approach will
depend on the experimental goal, the level of depth, and the need for multiplexing.

The performance of both label-free and label-based quantitative approaches is compromised if there is a lack of signal in
one condition (‘zero value’), because these ‘zeros’ lead to ‘infinite’ or ‘zero’ ratios that cannot be analysed by statistical
methods. There are semiquantitative approaches that deal with these scenarios by examining the distribution of ‘signal’
and ‘zeros’ across conditions and replicates. Conversely, imputation substitutes the ‘zeros’ for a value, which is often
the ‘noise’ level in the experiment. Other imputation approaches account for other factors, such as intensity distribution,
when calculating the ‘zero’ replacement value. Semiquantitative analyses provide a bidirectional (yes-or-no) answer that
lacks quantitative information (amplitude of the effect). By contrast, imputation methods will generate protein intensity
ratios between the two conditions at a cost of introducing potential artefacts. Despite drawbacks to either method, both
semiquantitative and imputation approaches are particularly important for vVRNA capture experiments because negative
controls are often devoid of proteins, leading to a high incidence of ‘zero’ values.
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across replicates [59]. Moreover, p values must be corrected using false discovery rate (FDR)
estimation, which accounts for the false positives expected when testing the significance of mul-
tiple comparisons simultaneously.

Biological insights into viral infection from established vVRNA interactome studies
The methods outlined above have thus far been used to generate 21 vRNA interactome datasets
across 11 viruses from six viral families (Supplementary Table 1). When combined, these datasets
comprise more than 2000 unique cellular proteins (Supplementary Table 2). Of these, 45% were
identified in only a single study, highlighting the degree of heterogeneity across datasets. Indeed,
when comparing datasets from viruses within the same family, the overlap is relatively poor
(Figure 2A=C). Only 2.8%, 19.1%, and 5.8% of the RBPs were found in three or more of the
Togaviridae (Figure 2A), Coronaviridae (Figure 2B), and Flaviviridae (Figure 2C) datasets, respectively.

The divergence between datasets is most likely caused by a combination of biological and
technical factors, including the virus, cell line, experimental conditions, and method of choice.
The influence of technical aspects is apparent in the fact that datasets generated using the
same method applied to different viruses overlap to a greater extent than datasets for the same
virus generated with different methods (Figure 2A-C). This variation might be introduced because
of intrinsic limitations and biases of each VRNA interactome method or downstream at the
proteomic data acquisition and analysis steps. The exact proteomic approach used and the
depth of analysis achieved will have a major impact on the level of observed overlap. A study
that lacks proteome depth will not detect low copy number proteins, leading to poor overlap
with other datasets. Improving the depth and quality of proteomic analyses will therefore likely
increase the overlap between high-quality datasets. It is also important to characterise the
performance of each method through systematic validation of hits. A first level of validation
would be to confirm VRNA-protein interactions via orthogonal strategies, such as crosslinking
and immunoprecipitation (CLIP)-based and localisation approaches [20]. Moreover, the func-
tional relevance for viral fithess of identified proteins should be comprehensively evaluated. Sys-
tematic assessment of dataset quality, along with identification of method-specific biases, should
aid in identifying the most appropriate method for a given experimental goal. It could also allow the
design of combinatorial approaches that take advantage of the strengths of multiple methods to
provide a more holistic picture of the vRNA interactome.

Alongside this extensive heterogeneity, there are also important commonalities across viral
families that may hint at conserved regulators of viral infection. Close to 200 proteins were present
in VRNA interactomes from all three of the best-represented viral families (Coronaviridae,
Togaviridae, and Flaviviridae), and we refer to these proteins here as the ‘core VRNA interactome’
(Figure 2D). Interestingly, proteins within the core VRNA interactome are identified, on average, in
a higher number of datasets than proteins outside the core interactome (Figure 2E). This suggests
that core VRNA interactome proteins interact with a wide range of vVRNAs and/or are abundant
enough in the eluates to be robustly identified, regardless of the method and the proteomic
approach used. Moreover, 68% of the core interactome proteins have been previously linked
to infection, either through gene ontology (GO) annotation or in peer-reviewed articles. It is
important to stress that the other 32% lack established links to infection, representing potential
unexplored avenues of research (Figure 2F).

The vast majority of the proteins within the core vVRNA interactome are annotated by the GO
term ‘BNA binding’ (Figure 2G), which is expected, given that these methods enrich for
RBPs. Some of these proteins (~37%) contain classical RBDs, such as RNA recognition motifs
(RRMs), K-homology domain (KH), or DEAD-box helicase domains [61]. These proteins are
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Figure 2. Defining the core viral RNA (VRNA) interactome. (A-C) Venn diagrams comparing the VRNA interactome datasets for the three viral families with multiple
available datasets: (A) Togaviridae [25,54; W. Kamel, unpublished)], (B) Coronaviridae [26,43,45,46], and (C) Flaviviridae [42,44,51]. Only datasets with at least two
biological replicates were included. Cell type and capture method are listed under virus name. (D) Venn diagram comparing the Togaviridae, Coronaviridae, and
Flaviviridae supersets. The overlap (195 proteins) between them is referred to here as the ‘core viral interactome.’ (E) Density plot showing the occurrence of proteins
included and excluded in the core VRNA interactome in individual vVRNA interactome datasets. (F) Proportion of the core VRNA interactome that has been linked to viral
infection, either through gene ontology (GO) annotation or in the literature. PubMed was searched using the R package Rismed with the search terms [(protein) AND
(virus OR viral)]. Any linked to viruses six or more times was classified as virus-linked. GO term annotation was extracted using the R package biomaRt. (G) Proportion
of proteins in the VRNA interactome that are annotated with the GO term ‘RNA binding.” (H) Proportion of proteins with classical RNA-binding domains (RBDs),
nonclassical RBDs, and no known RBDs. This is shown for the core VRNA interactome, as well as its components that have been linked to infection and those without
links (panel f). Individual protein-level information relating to panels f, g, and h is available in Supplementary Table 3. Abbreviations: CHIKV, Chikungunya virus; ChIRP-
MS, comprehensive identification of RNA-binding proteins by mass spectrometry; CLAMP, crosslink-assisted messenger ribonucleoprotein purification; DENV, dengue
virus; RAP-MS, RNA antisense purification and quantitative mass spectrometry; RBD, RNA-binding domain; SARS-CoV-2, severe acute respiratory syndrome
coronavirus 2; SINV, Sindbis virus; TUX-MS, thiouracil cross-linking mass spectrometry; VRIC, viral RNA interactome capture; ZIKV, Zika virus.
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generally involved in canonical RNA processing pathways, such as translation and RNA splicing.
Indeed, there are ten translation initiation and elongation factors in the core VRNA interactome, as
well as 12 heterogeneous ribonucleoproteins (HNRNPs). HNRNPs have a modular architecture
that often includes several RBDs [61] and serve a wide range of relatively well-characterised
roles in RNA metabolism. HNRNPs have been extensively studied in the context of viruses and
are ‘usual suspects’ in VRNA interactome analyses [1,2]. They establish long-lived and optimal
interactions with RNA and often oligomerise, which likely leads to the crosslinking of multiple
proteins to each RNA molecule. What is perhaps more exciting is that many RBPs display uncon-
ventional modes of RNA binding. For example, 25% of proteins have nonclassical RBDs, which
are domains whose interaction with RNA has been experimentally proved but not characterised
mechanistically. This is the case for the heat shock proteins HSP90AB1 and HSPAS that harbour
well-defined RNA-binding regions with unknown functional roles [1,19]. There are also 73 core
VRNA interactome RBPs whose interactions with RNA have not yet been characterised. Interest-
ingly, many of these unorthodox RBPs have not been linked to viral infection (Figure 2H),
representing unexplored host-virus interactions.

Many of the cellular RBPs within the core VRNA interactome have been shown to support or
restrict virus infection, participating in key steps in the viral replication cycle, such as recruitment
of vRNA to viral replication factories, VRNA replication, and translation [2,3] (Figure 3). In the
following section, we describe some interesting examples of core VRNA interactome members
that speak to important and emerging themes in vVRNA biology.

Innate immunity

Among the core VRNA interactome proteins, many have been linked to the cellular antiviral
response. These include several helicases involved in VRNA sensing (DDX3X, DHX9, MOV10)
and proteins involved in stress granule (SG) formation (G3BP1, TIA1). SGs are proposed to
sequester VRNA to suppress viral replication and protein synthesis [62], so the presence of
these proteins in the core VRNA interactome might be a reflection of the central role of this antiviral
function in virus infection. These antiviral RBPs can be repurposed to support infection, and,
indeed, the subgenomic RNA (sfRNA) of certain flaviviruses can sequester SG proteins to restrict
SG formation [63]. This is an example of ‘riboregulation’ (Figure 3), which is an emerging
concept in RNA biology that is likely to be an important part of many of the interactions taking
place between VRNAs and host RBPs [10]. Riboregulation represents an inversion of the conven-
tional paradigm that the role of RBPs is to regulate RNA function, instead positing that RNA is
regulating RBP function. In recent years, an increasing number of examples of RNAs that regulate
RBP function have been discovered, suggesting that this phenomenon is more broadly relevant
than previously anticipated [10,64]. The idea that both protein and vRNA might be active
players adds another level of complexity to understanding the roles of protein-RNA interac-
tions in viral infection. For example, the enzymatic activities of the antiviral proteins TRIM25
[22] and protein kinase R (PKR) [65] are activated upon interaction with vVRNA. These antiviral
riboregulatory events can be disrupted by the virus. Indeed, HIV-1 has structural features
within its genome that bind to PKR without causing activation, sequestering it to attenuate
the antiviral response [66]. Although TRIM25 and PKR are powerful examples, we foresee
that they represent the tip of the iceberg, and that there are dozens of riboregulatory events involv-
ing VRNA awaiting discovery.

RNA stability and decay

Several proteins within the core VRNA interactome are involved in RNA stability and decay. These are
well-characterised RBPs that harbour classical RBDs and include stability factors, such as PCBP2
and ELAVL1 [67], and antiviral factors, such as ZC3HAV1 (ZAP) [68], the nonsense-mediated
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Figure 3. Cellular RNA-binding proteins (RBPs) participate in virtually all stages of viral infection. Schematic representation of the viral life cycle, highlighting the

processes involved in viral (vyRNA metabolism. The members of the core VRNA interactome involved in these processes are highlighted in the coloured boxes. RBPs can

regulate VRNA fate; however, emerging data suggest that vRNA may, in some instances, regulate protein function, as outlined in the grey box. This alternative regulatory
process is referred to as ‘riboregulation.” RNP, ribonucleoprotein; ssRNA, single-stranded RNA.

decay factor UPF1 [69,70], and the exonuclease XRN2. XRN2 is a 5'-to-3' exoribonuclease
involved in transcription termination, and, as a consequence, it exhibits mainly nuclear localisation
[71,72]. However, a small cytoplasmic pool of this protein was shown to play an antiviral role in
hepatitis C virus infection through inducing VRNA degradation [73]. Although its cytoplasmic
counterpart, XRN1, has been better studied in the context of viral infection [20,74-77], the interplay
between XRN2 and viruses remains largely unexplored. Interestingly, XRN1 is only present in one
VRNA interactome dataset, whereas XBN2 is found in seven (Supplementary Table 3). These results

highlight the importance of XRN2 in viral infection and call for further research to uncover its roles in
the viral life cycle.

Cytoskeleton-mediated transport

The cellular cytoskeleton is critical during infection in establishing appropriate localisation of
viral particles, proteins, and vVRNPs within cells [78]. The movement of vRNPs is thought to be
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promoted by the interaction between protein components of these complexes and motor
proteins. However, dyneins, kinesins, and myosins have all been found to have RNA-binding
activity [10,19]. The interaction of motor proteins with vVRNA suggests a role for these protein—
RNA interactions at regulating VRNP localisation. VRNA might act as a scaffold to recruit motor
proteins and VRNP components into transport-active complexes. Alternatively, vRNA could
play a more active role, such as through allosterically ‘riboregulating’ motor proteins [79].

MYH9 is a nonmuscle myosin present in the core VRNA interactome that has been linked to RNA
transport [80]. It also plays an important role in cell-to-cell spread via tunnelling nanotubes
(TNTs) in porcine reproductive and respiratory syndrome virus [81]- and infectious pancreatic
necrosis virus [82]-infected cells. Several of the viruses whose RNA interacts with MYH9 are
known to exploit TNTs for cell-to-cell spread [83-85]. It will be interesting to establish whether
VRNA is transported between cells in a capsid-free fashion and whether direct interaction
between RNA and MYH9 might be involved in this process. Although a direct RNA-binding
role for MYH9 has yet to be established, this protein is found in eight vVRNA interactomes
(Supplementary Table 3), using both UV and formaldehyde crosslinking, as well as in 17
cellular interactomes [86]. Furthermore, RBDmap revealed the presence of high-confidence
RNA-binding surfaces at the myosin head of the MYH9 homologue, MYH14 [19]. The myosin
head region of MYH14 has 80% homology with that of MYH9, and the RNA-bound peptide
itself contains only conservative substitutions that would be unlikely to impair RNA-binding
activity.

Although some proteins associated with the cytoskeleton promote matility, there are others
whose roles are to inhibit it. Microtubule-associated protein 4 (MAP4) is involved in stabilising
microtubule filaments and is known to be co-opted by some viruses, including human papilloma-
virus [87] and HIV-1 [88]. Although in these cases spindle stabilisation promotes viral replication, it
can also restrict infection for viruses that rely on dynamic cytoskeleton networks. Depletion of
MAP4 promotes influenza A virus (IAV) infection, suggesting that microtubule stabilisation impairs
the transport of VRNPs to the nucleus [89]. Interestingly, MAP4 interacts with the RNA of eight
viruses, including 1AV [25] and HIV-1 [27,40], although the mechanism of this protein-RNA
interaction in regulating infection remains to be elucidated. On the basis of RBDmap, MAP4
interacts with RNA via its tubulin-binding domain [19], raising the possibility that this interaction
could allosterically regulate its microtubule-stabilising activity analogously to the inhibition of the
autophagy factor p62 through its interaction with Vault 1-1 RNA (Figure 3) [10,22,64].

DNA damage response

An unexpected set of proteins found recurrently in vVRNA interactomes are those involved in
DNA damage response (DDR). These proteins include the single-strand break repair protein
PARP-1 and all three components of the DNA-dependent protein kinase (DNA-PK) complex
(XRCC5, XRCC6, and PRKDC), which serves a crucial role in nonhomologous end joining
[90]. The link between the DDR and viral infection has been extensively studied for DNA viruses
[91] but remains poorly understood for RNA viruses [92]. DNA-PK has been linked to the
immune response to DNA viruses as both ‘proviral’ [93] and antiviral [94] factors. It is plausible
that DNA-PK mediates the DNA/RNA sensing role analogously to IFI16 [20,25,95,96]. The
individual components of DNA-PK have been linked to various processes of RNA metabolism,
including control of cellular transcription and translation [97,98]. Therefore, it is possible that
DNA-PK components also contribute to vVRNA metabolism. In agreement, XRCC5 depletion
attenuates SARS-CoV-2 infection, hinting at a proviral role for this DNA-PK component [45].
In summary, the exact roles of DNA-PK and, more broadly, DDR in the life cycle of RNA viruses
awaits better characterisation.
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Concluding remarks

The development of new proteome-wide methods to elucidate the composition of VRNPs has
expanded our knowledge of the interactions that VRNA establishes with the host cell. These
methods have been applied to 11 viruses and have both ‘rediscovered’ known regulators of
infection and uncovered new host-virus interactions. However, our understanding of vRNP
composition, function, and dynamics is still in its infancy. We envision that in coming years
VRNP profiling approaches will be applied to (i) a broader range of viruses to shed light on
compositional diversity; (i) different times after infection to profile VRNP plasticity and dynamics
throughout the virus life cycle; (i) different cell types and hosts to explore the adaptability of
VRNA interactions to different environmental conditions; and (iv) more physiological systems,
such as primary cells, organoids, and tissues (see Outstanding questions). Moreover, we foresee
a burst in our understanding of the molecular mechanisms underpinning the regulatory roles
of cellular RBPs in virus infection. Together, global and mechanistic analyses of the vVRNA
interactome can lead to the discovery of new therapeutic targets, with potential for broad-spectrum
antiviral activity.
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Outstanding questions

Technical divergence between viral
ribonucleoprotein  (VRNP)  profiling
methods often results in differences
between datasets, even when these
methods are applied to the same
virus. How can we make use of the
complementary strengths of each
method to generate a near-complete
viral (vJRNA interactome?

Dozens of RNA-binding proteins (RBPs)
are consistently identified in the RNA
interactomes of different viruses. Do
these proteins represent panviral reg-
ulators of infection? How could we
exploit these widespread host-virus
interactions to generate broad-
spectrum antivirals?

Current VRNA interactomes have been
performed with non-synchronised infec-
tions and at time points at which most
processes of the viral cycle are
taking place simultaneously. Can we
improve the temporal resolution of
available methods to enrich for
interactions at specific viral life cycle
stages? Can we also increase specificity
to isolate single VRNA species
(e.g., genomic and subgenomic RNAs,
as well as positive and negative sense
strands)?

It is also critical to elucidate how
cellular RBPs detect and bind to
VRNA and exert their function to
provide mechanistic insights into these
host-virus interactions. Do cellular
RBPs use known or novel RNA-binding
domains (RBDs)? Do they recognise
sequence and/or structural motifs? Are
they subject to riboregulation or do
they control vRNA fate?

While cell lines are a useful
experimental tool, they do not fully
recapitulate the complex network
of host-virus interactions occurring
in vivo. How can we adapt RBP
studies to systems that are closer
to a real infection, such as primary
cells, organoids, tissues, or even
whole organisms (e.g., mosquito)?
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