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Extended frequency range of transverse-electric surface plasmon polaritons in graphene
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The dispersion relation of surface plasmon polaritons in graphene that includes optical losses is often obtained
for complex wave vectors while the frequencies are assumed to be real. This approach, however, is not suitable
for describing the temporal dynamics of optical excitations and the spectral properties of graphene. Here we
propose an alternative approach that calculates the dispersion relation in the complex frequency and real wave
vector space. This approach provides a clearer insight into the optical properties of a graphene layer and allows
us to find the surface plasmon modes of a graphene sheet in the full frequency range, thus removing the earlier
reported limitation (1.667 < h̄ω/μ < 2) for the transverse-electric mode. We further develop a simple analytic
approximation which accurately describes the dispersion of the surface plasmon polariton modes in graphene.
Using this approximation, we show that transverse-electric surface plasmon polaritons propagate along the
graphene sheet without losses even at finite temperature.
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I. INTRODUCTION

Surface plasmon polaritons (SPPs) are collective excita-
tions of charge density coupled to electromagnetic waves
that can travel along a conductor-dielectric interface [1]. In-
terestingly, even an atomically thin conducting layer, such
as a graphene sheet, can support SPPs [2]. In a graphite
intercalated compound that contains multiple noninteracting
two-dimensional (2D) graphene layers, SPPs were modeled
theoretically and observed experimentally [3]. The first dis-
covery of graphene [4] triggered more theoretical studies on
SPPs in this material [5–7]. Since the first experimental ob-
servation of SPPs in graphene [8], more efforts have been
made to use the SPPs for controlling the optical properties
of graphene, such as electronically tuned extraordinary trans-
mission [9], mode confinement by gap plasmons [10], and
resonant absorption by an antidot array [11].

Although most studies of SPPs have focused on transverse-
magnetic (TM) polarization, a single graphene layer, unlike
normal-metal sheets, can also support transverse-electric (TE)
SPP modes [12]. Technically, the existence of each type of
SPP mode can be confirmed by solving a dispersion rela-
tion between the frequency and the wave vector following
from Maxwell’s equations and the conductivity model. For
instance, the SPP dispersion for a dielectic/metal interface or
a thin film of a Drude metal allows only TM modes which
have zero magnetic field components normal to the interface
and along the propagation direction. By analyzing the disper-
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sion relation for complex wave numbers and real frequencies,
Mikhailov and Ziegler have shown [12] that TE SPP modes
in graphene exist only in the range 1.667 < h̄ω/μ < 2 at
zero temperature, where ω and μ are, respectively, the light
frequency and the chemical potential. Here, the lower limit
corresponds to the zero of the imaginary part of the optical
conductivity, while the upper limit is given by the minimum
of the interband transition energy at zero temperature.

Importantly, the lower limit (≈ 1.667) for the normalized
frequency h̄ω/μ of the TE SPP mode can vary because the
imaginary part of the optical conductivity of graphene may
change depending on temperature and gate voltage. In addi-
tion, the range for the TE SPP mode frequency ω itself can
be tuned by changing the chemical potential μ which in turn
may be controlled by applying gate voltage or external mag-
netic field [13]. In the literature, the TE SPP mode solution
has been studied for a graphene layer sandwiched between
two dielectric media, and it was found that the range of the
TE SPP mode frequencies can be modified by changing the
permittivity contrast [14]. Furthermore, the range of TE SPP
modes can be reversed when the surrounding material has a
negative refractive index [15]. TE SPP modes in a graphene
sheet placed on top of a nonlinear material substrate were also
found to be limited to a similar frequency range [16].

In this paper, we focus on the dispersion of SPP modes in
a graphene layer with finite temperature and nonzero chem-
ical potential and show that the complex-frequency analysis
developed in this work removes both the upper and the lower
limits for the TE SPP mode in graphene.

While it is well-known how to calculate the dispersion rela-
tions of SPPs in graphene for given optical conductivities [12],
this has been done assuming that any SPP mode has a real
frequency but complex wave number q = q′ + iq′′ [12,16,17].
This corresponds to a continuous-wave excitation of a SPP
which has a finite propagation length within the graphene
layer of the order of 1/q′′. This picture is more suited for
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describing electromagnetic waves propagating in inhomoge-
neous waveguides not conserving the in-plane component of
the wave number q. In contrast, uniform waveguides conserve
q, which can naturally be taken real. In our approach, assum-
ing the excitation of the system is limited in time, the temporal
evolution of SPP modes is described by a complex frequency
ω = ω′ + iω′′, with typically ω′′ < 0 corresponding to a tem-
poral decay due to radiative losses or absorption. The main
advantage of this approach is that it provides direct access to
the optical spectra of the system where the imaginary parts of
complex frequencies of isolated modes usually correspond to
the half width at half maximum of the resonance peaks. Page
et al. [18,19] have recently shown that the complex frequency
approach can be used to describe optical gain (for ω′′ > 0)
in a nonequilibrium inverted graphene system where TM SPP
modes were considered.

The complex-frequency approach has recently become
widespread and broadly used in optics, owing to the useful
concept of resonant states [20,21], also known in the litera-
ture as quasinormal modes [22]. These are the eigensolutions
of Maxwell’s equations satisfying outgoing wave boundary
conditions. They present a rigourous and powerful tool for
analyzing optical spectra, such as scattering and transmission
[23,24], with the real part of the complex frequency of the
resonant state typically corresponding to the frequency posi-
tion of a spectral line and the imaginary part to the half of its
linewidth. Physically, resonant states form as a result of con-
structive interference of multiply reflected electromagnetic
waves from the boundaries or inhomogeneities within optical
systems. They have been studied in the literature both in finite
optical systems, such as dielectric [25–27] and plasmonic
nanoparticles [28–30], and in infinitely extended systems,
such as planar waveguides [31] and photonic crystals [32–34].

Although in atomically thin films, such as a single graphene
layer, these states do not normally exist, the formalism of
complex-frequency modes can still be very useful, as we show
in this paper.

The paper is organized as follows. Section II introduces the
optical conductivity of a single graphene layer. Section III A
describes the secular equations determining the dispersion of
SPPs in TM and TE polarizations. Sections III B and III C
present the main results of the paper, including both exact
numerical and approximate analytical solutions of the secular
equations in the complex frequency plane, their dependence
on the propagation constant, temperature, and the chemical
potential, and elimination of both the lower and the upper
boundaries for the TE SPP mode frequencies. The tempera-
ture dependence of the threshold frequencies is discussed in
Sec. III D. Section IV summarizes the results of the paper.
Appendices A–E provide details on derivations of the optical
conductivity of graphene and secular equations for the TM
and TE SPP modes, and supply an additional material on our
study of the TE mode near the lower threshold frequency and
on the SPP dispersion at a finite damping.

II. OPTICAL CONDUCTIVITY OF GRAPHENE

The conductivity of graphene has an interband term in
addition to the usual metallic Drude term, also referred to as
intraband. It is the interband term of the conductivity which
gives rise to TE SPP modes found in a graphene layer in con-
trast to a Drude-metal layer where such modes do not exist.
Following Refs. [12,17,35], we derive in Appendices A and B
the 2D optical conductivity of a homogeneous graphene sheet.
In the long-wavelength limit, the expression for the 2D optical
conductivity is given as a function of the light frequency ω by

σ (ω) = iα

{
2 ln (2 + 2 cosh μβ )

μβ(� + i�)
+

∫ ∞

0
dE [N (−E ; μβ ) − N (E ; μβ )]

(
1

� + i� − 2E
+ 1

� + i� + 2E

)}
, (1)

where

N (E ; ξ ) = 1

eξ (E−1) + 1
(2)

is the Fermi-Dirac distribution, � = h̄ω/μ is the normal-
ized frequency, β = (kBT )−1 is the inverse temperature, α =
e2/(h̄c) is the fine-structure constant, and � is a phenomeno-
logical damping. The first term in the curly bracket in Eq. (1)
arises from intraband transitions, whereas the second one
comes from interband transitions near the Dirac point in
graphene dispersion. Importantly, Eq. (1) has an analytic de-
pendence on � which can be continued into the complex
�-plane without changing the formula. Note that for real �

and � = 0, the integrand encounters a pole on the integration
path. This requires that the diverging integral is split into
a principal-value part and a half-pole contribution that can
technically be achieved by keeping � positive infinitesimal
in Eq. (1). For Im � �= 0, this is no longer needed. However,
the interband term is represented by a multivalued function
having a logarithmic nature. Therefore, for the analytic con-

tinuation, one has to choose the right Riemann sheet which
provides the proper values of the integral at real �.

Figures 1(a) and 1(b) show the graphene conductivity as a
function of normalized real frequency � = h̄ω/μ and damp-
ing � at zero temperature. Increasing temperature smoothes
out the Fermi distribution, which is reflected by smearing of
the steplike feature in the real part and the logarithmic diver-
gence in the imaginary part of the interband conductivity at
� = 2. The intraband Drude-like component of Eq. (1) has a
zero-frequency pole which is moving away from the real axis
as the damping increases. Figures 1(c) and 1(d) show cross
sections of the surface plots at fixed values of � and finite
(μβ = 10) and almost zero (μβ = 105) temperatures. Due
to the functional dependence of the conductivity Eq. (1) on
� + i�, Fig. 1 can also be understood as complex-frequency
plots of the conductivity, treating � as the real and � (or its
portion) as the imaginary part of frequency.

In the following, we will be using, where it is convenient,
the frequency �, wave number Q, and temperature (μβ )−1

normalized with respect to the chemical potential μ, treat-
ing the latter as a natural scaling parameter for, respectively,
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FIG. 1. Surface plots of (a) the real part σ ′ = Re σ and (b) the
imaginary part σ ′′ = Im σ of the 2D optical conductivity of graphene
σ shown in units of the πα/2, where α is the fine-structure constant,
for near zero temperature (μβ = 105) as functions of normalized real
frequency � and damping �. Dependence of σ ′ and σ ′′ on frequency
only (c) without and (d) with damping, for μβ = 105 and μβ = 10.

the frequency ω, wave number q, and temperature T . The
chemical potential itself can be controlled, e.g., by charge
carrier concentration of graphene [36] and is also linked to
the damping �. In the absence of voltage or in an undoped
graphene layer, the valence band is fully filled and the conduc-
tion band is empty at zero temperature, implying that μ = 0
and � = 0. The concentration of free carriers—electrons in
the conduction band and holes in the valence band—is zero,
n0 = 0. In a doped graphene layer or in the presence of
voltage, the concentration of free carriers n0 determines the
chemical potential via the following equation [36,37]:

n0 = 2μ2

π (h̄V )2

∫ ∞

0
[N (E ; μβ ) − N (E + 2; μβ )]EdE , (3)

where V is the electron Fermi velocity in graphene. At zero
temperature, the above integral is equal to 1/2, which gives
n0 = μ2/(π h̄2V 2). At a nonzero temperature, this integral
depends on μ and T , in accordance with Eq. (2), thus in-
troducing a temperature-dependent correction to the above
expression for n0. The damping � contributing to Eq. (1)
increases with density of impurities [17].

III. SPP MODES IN GRAPHENE

A. Secular equations for SPP modes

In this subsection, we present the secular equations deter-
mining in each polarization the dispersion relation between
the SPP mode frequency ω and the propagation wave number
q. We briefly describe their derivation for an infinitely thin
graphene sheet. To gain physical insight into SPP modes in

graphene, we discuss, at the end of this subsection, a compar-
ison between SPP modes in graphene and in a Drude metal.

For a very thin planar conducting layer, the dispersion rela-
tion of SPP modes can be obtained in two ways. One may start
deriving from Maxwell’s equations and boundary conditions
a secular equation for the SPP modes for a finite-thickness
conducting material with a bulk conductivity. This secular
equation can then be simplified in the limit of an infinitesimal
film thickness. Alternatively, one may obtain the secular equa-
tion and SPP dispersion relation by assuming an infinitesimal
layer with a surface conductivity σ (ω). The two ways lead to
identical results. We follow the second approach and derive
in Appendix C the secular equations for both polarizations,
assuming the conducting layer is placed at z = 0 and is sur-
rounded by vacuum, which is expressed by the permittivity in
the entire space

ε(ω; z) = 1 + 2iσ (ω)

ω
δ(z), (4)

where δ(z) is the Dirac delta function. Using for brevity the
units in which the speed of light in vacuum c = 1, the secular
equations for SPP modes in both polarizations are given by

ω + k(ω)σ (ω) = 0 (TM), (5)

k(ω) + ωσ (ω) = 0 (TE), (6)

where k(ω) =
√

ω2 − q2 and q are, respectively, the normal
and in-plane components of the light wave vector in vacuum
and ω is the complex light frequency. The dimensionless
surface conductivity σ (ω) of a graphene layer to be used in
the above equations is given by Eq. (1). Secular equations (5)
and (6) determine the dispersion relations between the real in-
plane wave number q and complex frequency ω. Note that the
same equations were used in the literature [12,38] for finding
SPP modes at a fixed real frequency of light, thus determining
instead from Eqs. (5) and (6) complex propagation constants
of SPPs.

Now, before moving on to graphene, we briefly describe
the solutions to the secular equations (5) and (6) for a Drude
metallic sheet. In this case, the conductivity would only con-
sist of the first term in Eq. (1), so σ (ω) ∝ i/ω, and Eq. (5)
results in a TM mode having a square-root dispersion, ω ∝√

q. We find in the next subsection a similar SPP mode for
graphene in the frequency range dominated by the Drude
conductivity. It can be seen that Eq. (6) for TE polarization
has no solution with a nonzero real part of frequency for
Drude conductivity. We found, however, a TE mode of a
Drude metallic sheet which has a purely imaginary frequency:
Re ω = 0. This TE mode is also purely decaying in time:
Im ω < 0. However, with the full graphene conductivity, there
is also a propagating SPP mode in TE polarization [12], with
Re ω �= 0, which we discuss in more depth in the rest of this
section.

B. SPP dispersion: Exact results and analytic approximations

In this subsection, we present graphene SPP dispersion
for both TM and TE modes which are found by solving the
secular equations (5) and (6) numerically and comparing with
a developed analytic approximation. We show, in particular,
that the mode spectral linewidth (given by Im ω) is controlled
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FIG. 2. (a), (b) Complex eigenfrequency � = h̄ω/μ of TM sur-
face plasmon mode of a graphene layer shown in the complex
frequency plane as function of the real in-plane wave number of
light Q = h̄qc/μ given by the color code. Real and imaginary parts
of (c), (d) the eigenfrequency � and (e), (f) the normal component
of the light wave number K = h̄kc/μ calculated by solving Eq. (5)
exactly (solid lines) and using the approximation Eqs. (7) and (8)
(dashed lines). The data is presented for (a), (c), (e) low temperature
(μβ = 105) and (b), (d), (f) high temperature (μβ = 10), and � = 0.

by the temperature μβ contributing via the Fermi function
Eq. (2). We analyze the earlier reported [12] limited frequency
range 1.667 < h̄ω/μ < 2 for the TE mode and remove both
the upper and the lower boundaries for this mode.

Figure 2 shows the dispersion of the TM mode, which
includes both the complex ω plots and dependencies on q
of the real and imaginary parts of ω and k, all shown at
high (μβ = 10) and low (μβ = 105) temperatures. The TM
dispersion lies well below the light line, ω = q, as can be seen
from Figs. 2(c) and 2(d) by comparing magnitudes of Re ω

and q. In this frequency regime, the conductivity is dominated
by intraband transitions within graphene band structure, de-
scribed by the Drude-like term in Eq. (1). At low temperature,
both Im ω and Re k are exponentially small, i.e., proportional
to exp(−μβ ). Note that Re ω asymptotically approaches the
temperature-dependent limit �TM

up for large q. The magnitude
of Im ω increases swiftly with q, with the rate determined by
temperature, as more charge carrier vacancies become avail-
able below the Fermi level, compare Figs. 2(a) and 2(b). The

FIG. 3. As Fig. 2 but for the TE mode determined by Eq. (6) and
the approximation given by Eqs. (9) and (10). Dots show the posi-
tion of the lower threshold �TE

low. Insets: Sketches of the electronic
dispersion in graphene.

normal component of the wave number k shown in Figs. 2(e)
and 2(f) demonstrates that the SPP mode is localized in the
z direction, due to Im k ≈ q > 0. At the same time, since
Re k < 0 there is a propagation of light toward the conduct-
ing sheet, although the propagation constant |Re k| is much
smaller than q.

We also show in Figs. 2(d) and 2(f) by dashed lines the
following approximate relations derived in Appendix C 1:

ω(q) ≈ √
ω0q − iqσ ′/2, (7)

k(q) ≈ −√
ω0q σ ′/2 + iq, (8)

where σ ′ is the real part of the conductivity (taken at the mode
frequency, ω ≈ √

ω0q) and ω0 = 2α ln(2 + 2cosh μβ )/(h̄β ).
The approximation is based on the fact that in this frequency
range, the conductivity is dominated by the Drude term, so its
imaginary part is given by σ ′′ ≈ ω0/ω whereas the real part
can be treated as a small correction, i.e., |σ ′| � |σ ′′|.

Figure 3 presents a dispersion of the TE mode in graphene,
again showing both the complex ω plots and dependencies
ω(q) and k(q). The SPP mode in this polarization of light is
unique to the graphene conductivity [12] due to the interband
part of Eq. (1) and does not exist in a normal (e.g., Drude)
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metallic sheet. The real part of the dispersion curve, Re ω,
lies close to the light line ω = q, while the imaginary part,
Im ω, is a few orders of magnitude smaller than the real part,
as is clear from Figs. 3(c) and 3(d). Interestingly, both the real
and imaginary parts of k, albeit being small compared to q,
are now comparable to each other, in contrast to the TM SPP
mode [compare Figs. 2(f) and 3(f)].

An approximate analytic solution was also obtained for the
TE mode by using the fact that away from the ω = 0 pole, the
graphene conductivity is small, |σ (ω)| � 1, as it is propor-
tional to the fine-structure constant which is a small number,
α � 1. In this limit, the solution to Eq. (6) takes the form

ω(q) ≈ q + iqσ ′σ ′′, (9)

k(q) ≈ −qσ ′ − iqσ ′′, (10)

where σ ′ and σ ′′ are both taken at ω = q, see Appendix C 2
for derivation. The approximate complex frequency ω(q) and
wave number k(q) are plotted as dashed curves in Figs. 3(d)
and 3(f), showing excellent agreement with the exact solution.

For completeness, we also show in Appendix E the SPP
mode dispersion both in TM and TE polarizations for the
graphene conductivity at a nonzero damping of � = 0.05.

C. Removing the boundaries for the TE mode

The TE mode dispersion in graphene has been studied
in Ref. [12] at zero temperature, with the mode frequency
reaching but never exceeding the upper boundary at �TE

up = 2.
Our complex-frequency analysis allows us to eliminate this
boundary, even for low temperatures. In fact, we see from
Fig. 3 that the TE mode exists both below (Re � < �TE

up ) and
above (Re � > �TE

up ) the threshold. Furthermore, we observe,
by comparing Figs. 3(c) and 3(d), that the temporal loss,
which is given by −Im �, increases (decreases) with tem-
perature below (above) the threshold. This can be understood
simply as a smearing effect of the electronic distribution over
the graphene band structure as temperature rises. Note that
the threshold frequency is exactly twice the Fermi level EF of
graphene, see the insets in Figs. 3(c) and 3(d) which provide
sketches of the electronic dispersion. At zero temperature,
interband absorption only takes place above �TE

up since no
charge carriers occupy the electronic bands above the Fermi
level, and so the losses are high for Re � > �TE

up and zero
for Re � < �TE

up . When temperature is finite, some charge
carriers occupy energy states above the Fermi level, thus the
interband absorption decreases for Re � > �TE

up , in this way
reducing the losses. At the same time, vacancies of charge
carriers are formed below the Fermi level at finite temperature
and interband absorption can take place also for Re � < �TE

up ,
so for this region the losses increase with temperature. This
increase of losses is also reflected by the real part of the
conductivity. In fact, it is clear from Fig. 1(c) that the real part
is smeared around Re � = �TE

up as the temperature increases.
No similar effects are observed for the TM mode.

Figure 3 also demonstrates the earlier reported in the lit-
erature [12] lower threshold �TE

low for the TE mode, which
was observed at �TE

low ≈ 1.667 at zero T . It is shown in
Fig. 3 by the dots in the complex frequency plane, on the
imaginary part of the mode frequency ω and the normal

component of the wave number k. Both imaginary parts
change their sign at this threshold due to the change of sign
of σ ′′ [see Eqs. (9) and (10) and also Fig. 1(c)]. Physically,
this threshold frequency corresponds to a condition that the
intraband and interband electronic transitions are in balance.
From a technical viewpoint, however, a positive imaginary
part of the frequency, Im ω > 0, observed below the threshold,
implies an exponential growth in time of the electric and mag-
netic fields (at any given point in space), whereas a negative
imaginary part of the wave number, Re k < 0, also observed
below the threshold, means an exponential growth of the field
in space away from the graphene layer. While the latter is
typical for radiative modes [21] and thus seems acceptable, the
former usually corresponds to a gain [30], which is obviously
not present in this system. One could therefore conclude that
the TE mode does not exist below the threshold. However, the
complex-frequency analysis allows us again to understand the
properties of the SPP mode near the threshold and to eliminate
this lower boundary.

To see that the TE mode exists both above and below the
lower threshold at �TE

low, we consider the spatial and temporal
behavior of the electric field together, having the following ex-
plicit form E (x, z; t ) = E0ei(qx+kz−ωt ), where E0 is a constant,
and we have taken z > 0 for definiteness (see Appendix C
for the analytic form of the fields). Now, separating the real
and imaginary parts of the frequency, ω = ω′ + iω′′, and of
the normal component of the wave number, k = k′ + ik′′, and
using the fact that the in-plane component of the wave number
q is real, we can separate the oscillating part of the field,
E0ei(qx+k′z−ω′t ), from its amplitude,

|E (x, z; t )| = |E0|e−(k′′z−ω′′t ), (11)

which is either exponentially decaying or exponentially grow-
ing in time and space. Using the fact that σ ′ > 0, which is
equivalent to the positive imaginary part of the permittivity,
we find from Eq. (10) that k′ < 0, which physically corre-
sponds to a plane wave propagating in vacuum toward the
graphene sheet. The in-plane wave number q is, however,
much larger, q 	 |k′|, so the direction of the electromagnetic
wave is almost parallel to the sheet. At the same time, the z
coordinate of any point sitting on the wavefront and moving
together with it can be approximately described as a function
of time by z(t ) = z(0) + k′t/q. Substituting this into Eq. (11),
we find the amplitude of the field at the selected point on the
wavefront to be

A(t ) = A(0)e−k′′z(t )+ω′′t = Ã(0)e−γ t , (12)

where we have introduced a temporal decay rate:

γ = k′′k′

q
− ω′′. (13)

Now, substituting here the dispersion for the TE mode given
by Eqs. (9) and (10), we find

γTE = 0, (14)

which implies that the TE mode has no losses in reality. In
contrast, for the Drude-like TM mode, the decay rate found
from Eq. (13) and the approximation Eqs. (7) and (8) is
given by

γTM = σ ′(q − √
ω0q)/2 > 0, (15)
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FIG. 4. Lower threshold frequency �TE
low for the TE mode (red

dashed line) and upper real frequency limit �TM
up for the TM

mode (blue solid line) as functions of the normalized temperature
(μβ )−1 = kBT/μ.

which implies an absorption, since the amplitude A(t ) of the
wave front decays with time in this case. However, for a Drude
conductivity without damping, we obtain γTM = 0, since the
real part of the conductivity σ ′ vanishes, again implying that
there are no losses in the system. The same is true for the
graphene conductivity at zero temperature, since in this case
σ ′ = 0 for � < 2. We would like to emphasize, however, that
Eq. (14) is obtained for the TE mode at a nonzero tempera-
ture when losses are present in the conductivity, since σ ′ > 0
(equivalent to Im ε > 0).

We see that the result for the TE mode, Eq. (14), is the
same below and above the lower threshold at �TE

low, and the
TE mode demonstrates a fully physical behavior from the
energy conservation viewpoint on both sides of the threshold,
as discussed above. Note, however, that below the threshold,
the TE mode demonstrates a unique behavior, not usually
observed in open systems: With no gain in the system, the
electromagnetic field exponentially grows with time, albeit at
a very small rate compared to the mode frequency.

D. Temperature dependence of the threshold frequencies

Finally, we study the temperature dependence of the TE
threshold frequency, �TE

low. As discussed earlier in relation to
Eqs. (9) and (10), this frequency threshold corresponds to a
simultaneously change of sign of the imaginary part of the
conductivity and the mode frequency. The red dashed line in
Fig. 4 showing the threshold frequency �TE

low as a function
of temperate is thus a solution of the equation Im σ (ω) = 0.
Figure 4 clearly demonstrates that the threshold frequency has
a minimum, taking the value of �TE

low = 1.6225 at 1/μβ =
0.0824, which is the result of a trade-off of the two terms
in the graphene conductivity, corresponding to the intraband
and interband transitions. More details on the properties of the
TE mode near the lower threshold are provided in Appendix
D, where an analytic equation determining its value at zero
temperature (�TE

low = 1.667) is derived.
Interestingly, the TM modes has an upper threshold �TM

up

which coincides with �TE
low at zero temperature but deviates for

nonzero temperatures. It is also shown in Fig. 4 by a blue solid
curve. This threshold, however, has a different physical mean-
ing as it plays the role of an asymptote for the TM mode fre-
quency in the limit of q → ∞. It can be seen that in this limit,

Eq. (5) simplifies to σ (ω) = 0. Clearly, at zero temperature
and frequencies below �TE

up = 2, this coincides with the equa-
tion Im σ (ω) = 0 for �TE

low, as can be seen also from Fig. 1(a),
demonstrating that Re σ (ω) = 0 in this frequency range.

IV. CONCLUSIONS

In summary, we have numerically calculated the complex-
frequency dispersion of the SPP modes in a homogeneous
graphene layer both in TM and TE polarizations of light. We
have further developed a simple analytic approximation which
agrees well with the numerically exact solution of the secular
equations for the modes in both polarizations.

We have shown that the TM SPP mode is determined by the
Drude-like intraband part of the optical conductivity, demon-
strating a square-root dispersion of the mode frequency with
respect to the propagation wave number. In this polarization,
the temporal decay of the electromagnetic field, which is given
by the imaginary part of the mode frequency, monotonously
increases with temperature. The TE SPP mode is, in turn,
determined by both the intraband and the interband part, the
latter being crucial for its existence. Unlike the TM mode, its
dispersion is close to the light line, and the temporal decay
demonstrates a nontrivial dependence on temperature and the
propagation wave number. We have observed, in particular,
that at finite temperature and chemical potential the TE mode
exists above the upper threshold for the normalized frequency
at �TE

up = 2, posed by an asymptotic behavior of the disper-
sion at zero temperature. The temporal decay rate of the TE
mode increases below the threshold and decreases otherwise
as the temperature increases. This is explained by considering
occupation of electronic energy bands in graphene near the
K-point at different temperatures.

We have also proven that the TE mode exists both above
and below the lower threshold � = �TE

low (taking the value
of �TE

low = 1.667 at zero temperature) and have studied its
behavior near the threshold. This threshold is caused by a
change of the sign of the imaginary part of the graphene
conductivity which, in turn, causes a simultaneous change of
the sign of the imaginary part of the SPP complex eigen-
frequency and the normal component of the wave number.
By investigating its spatial and temporal evolution, we have
shown that the TE SPP in graphene presents a unique optical
mode, as it can have below the threshold a positive imaginary
part of the eigenfrequency without introducing gain into the
material. Furthermore, we have demonstrated that in spite of
the positive real part of the conductivity implying the positive
imaginary part of the permittivity and hence an absorption, the
TE SPP mode propagates along the graphene sheet without
losses even at nonzero temperatures. This is correct at least up
to second order in the conductivity.
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APPENDIX A: INTRABAND CONDUCTIVITY
OF GRAPHENE

Following Refs. [12,17,35], one can derive the 2D optical
conductivity of a homogeneous graphene sheet by using the
Kubo formula [6,39–41], namely, by expanding the thermo-
dynamic average of the current to first order in the amplitude
of an external electric field. In the long wavelength limit,
i.e., for a small light wave number compared to that of the
electron, one may neglect effects of the spatial dispersion. The
intraband conductivity is then given by [12]:

σ intra
αβ (ω) = − ie2gsgv

h̄2ωS

∑
kl

∂Ekl

∂kα

∂ f (Ekl )

∂Ekl

∂Ekl

∂kβ

, (A1)

where gs = 2 and gv = 2 are, respectively, the spin and valley
degeneracies, S is the sample area,

Ekl = (−1)l h̄V k = (−1)l h̄V
√

k2
x + k2

y (A2)

is the electron dispersion in graphene, with l = 1 and 2,

f (E ) = 1

1 + eβ(E−μ)
(A3)

is the Fermi-Dirac distribution function, and V is the electron
Fermi velocity. Since we neglect the spatial dispersion, the
conductivity tensor has a diagonal symmetric form, σxx =
σyy = σ with σxy = σyx = 0. The expressions for the partial
derivatives are given by

∂Ekl

∂kα

= (−1)l h̄V
kα

k
, (A4)

which we substitute into Eq. (A1) to obtain

σ intra(ω) = −4ie2

h̄2ω(2π )2

∫ ∫
dkxdkyh̄2V 2 k2

x

k2

2∑
l=1

∂ f (Ekl )

∂Ekl

= − ie2

π h̄2ω

∫ ∞

0

∂g(E )

∂E
EdE , (A5)

after introducing g(E ) = f (E ) − f (−E ) and performing in-
tegration over the angle in polar coordinates. The last integral
can be evaluated analytically using integration by parts,∫ ∞

0

∂g(E )

∂E
EdE = Eg(E )|∞0 −

∫ ∞

0
g(E )dE = G(E )|∞0 ,

(A6)
where

G(E ) = E [ f (E ) − f (−E )] − 1

β
ln[ f (E ) f (−E )], (A7)

which follows from the fact that for the Fermi function,

∂ f (E )

∂E
= β f (E )[ f (E ) − 1]. (A8)

Applying the limits of integration, we obtain

G(0) = 1

β
ln(1 + e−βμ)2, (A9)

G(∞) = lim
E→∞

[
−E + 1

β
ln eβ(E−μ)

]
= −μ, (A10)

so

G(∞) − G(0) = − 1

β
ln [2 + 2 cosh(βμ)] (A11)

and, finally,

σ intra(ω) = ie2 ln[2 + 2 cosh(βμ)]

π h̄2βω
. (A12)

At zero temperature, μβ → ∞, the intraband conductivity
simplifies to

σ intra = ie2μ

π h̄2ω
. (A13)

APPENDIX B: INTERBAND CONDUCTIVITY
OF GRAPHENE

The interband conductivity is derived in a similar way,
i.e., again using the Kubo formula, which leads in the long
wavelength limit to the following expression [12]:

σ intra
αβ (ω) = ie2h̄gsgv

S

∑
k,l �=l ′

f (Ekl ′ ) − f (Ekl )

Ekl ′ − Ekl − h̄(ω + i0+)

× 1

Ekl ′ − Ekl
〈kl|v̂α|kl ′〉〈kl ′|v̂β |kl〉, (B1)

where 0+ is a positive infinitesimal, and

v̂α = V σ̂α, (B2)

with σ̂α being the Pauli matrix. |kl〉 are the eigenstates of the
electronic Hamiltonian near the K-point in the Brillouin zone,

Ĥ = V σ̂ · p̂, (B3)

corresponding to its eigenvalues Eq. (A2) and having the
following explicit form:

|kl〉 = 1√
2k

(
kx − iky

(−1)l k

)
. (B4)

The matrix elements in Eq. (B1) then take the form

〈k1|v̂x|k2〉 = iky

k
V, 〈k1|v̂y|k2〉 = − ikx

k
V. (B5)

Again using the symmetry of the conductivity tensor in the
absence of the spatial dispersion, we obtain with the help of
Eq. (A2) and after integration over the angle in polar coordi-
nates:

σ inter(ω) = 4ie2 h̄

(2π )2

∫ ∫
dkxdkyV

2
k2

y

k2

2∑
l=1

1

Ekl ′ − Ekl

× f (Ekl ′ ) − f (Ekl )

Ekl ′ − Ekl − h̄(ω + i0+)

= ie2

2π h̄

∫ ∞

0
dE [ f (−E ) − f (E )]

×
[

1

h̄(ω + i0+) − 2E
+ 1

h̄(ω + i0+) + 2E

]
.

(B6)
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APPENDIX C: SPP MODES OF A THIN CONDUCTING
SHEET IN VACUUM

To derive the secular equations (5) and (6) for the SPP
modes in a graphene layer, let us consider a model of an
infinitely thin sheet with 2D optical conductivity σ (ω) placed
at z = 0. Choosing x as the propagation direction of light,
so the parallel components of the wave number are kx = q
and ky = 0, Maxwell’s equations are split into two blocks of
first-order partial differential equations, separating TM and
TE polarizations [34],

TM:

⎛
⎝ωμ(ω; z) −∂z iq

∂z ωε(ω; z) 0
−iq 0 ωε(ω; z)

⎞
⎠

⎛
⎝iHy

Ex

Ez

⎞
⎠ = 0, (C1)

TE:

⎛
⎝ωε(ω; z) −∂z iq

∂z ωμ(ω; z) 0
−iq 0 ωμ(ω; z)

⎞
⎠

⎛
⎝ Ey

iHx

iHz

⎞
⎠ = 0, (C2)

where the speed of light in vacuum is taken c = 1 for brevity,
∂z ≡ ∂/∂z, ε(ω; z) and μ(ω; z) are, respectively, the frequency
and spatially dependent permittivity and permeability, E =
A0(Ex, Ey, Ez ) and H = A0(Hx, Hy, Hz ) are, respectively, the
electric and magnetic fields, ω is the light frequency, and
A0(x, t ) = ei(qx−ωt ) is a common factor representing the tem-
poral behavior and the spatial dependence of the fields in
the propagation direction. Clearly, Eqs. (C1) and (C2) can be
obtained from each other by simultaneous swapping ε ↔ μ

and E ↔ iH [34].
Let us further assume that

μ(ω; z) = 1, (C3)

ε(ω; z) = 1 + χ (ω)δ(z), (C4)

where

χ (ω) = 2iσ (ω)

ω
(C5)

is a 2D susceptibility and σ (ω) is the 2D electrical conductiv-
ity of the graphene sheet,

σ (ω) = 2π [σ intra(ω) + σ inter(ω)], (C6)

consisting of the intraband and interband components cal-
culated in Appendices A and B. Note that the factor of 2
affecting the definition of σ is introduced in Eq. (C5) for
convenience.

1. TM polarization

The set of equations (C1) for TM polarization then simpli-
fies to

iωHy − ∂zEx + iqEz = 0, (C7)

i∂zHy + ωεEx = 0, (C8)

qHy + ωεEz = 0. (C9)

For z �= 0, we find the wave equation for Hy and relations
between the field components:

∂2
z Hy + (ω2 − q2)Hy = 0, (C10)

Ex = − i

ω
∂zHy, (C11)

Ez = − q

ω
Hy. (C12)

To include the z = 0 point, we use Eq. (C4) and integrate
Eqs. (C7), (C8), and (C9) over an infinitesimal interval in-
cluding z = 0. Then we obtain

Ex(0+) − Ex(0−) = 0, (C13)

−Hy(0+) + Hy(0−) + iωχEx(0) = 0, (C14)

ωχEz(0) = 0, (C15)

where 0+ (0−) is a positive (negative) infinitesimal. From the
above Eqs. (C10) – (C15) we find

Hy = A sgn(z)eik|z|, (C16)

Ex = A
k

ω
eik|z|, (C17)

Ez = −A
q

ω
sgn(z)eik|z|, (C18)

after applying outgoing wave boundary conditions to the elec-
tromagnetic field. Here A is a normalization constant,

sgn(z) =
⎧⎨
⎩

1, z > 0,

0, z = 0,

−1, z < 0,

(C19)

and k is the normal component of the wave number in vacuum
satisfying the light dispersion:

ω2 = k2 + q2. (C20)

Finally, using Eq. (C14), we obtain a secular equation for the
SPP mode,

ikχ = 2, (C21)

which can be written more explicitly, using Eq. (C5), as

kσ (ω) + ω = 0, (C22)

identical to Eq. (5).
To obtain an approximate analytic solution to Eq. (C22),

let us first consider the limiting case of very small frequencies
when the conductivity is dominated by intraband transitions.
This results in the standard SPP mode of an undamped Drude
metal sheet. In fact, in this case,

σ (ω) ≈ 2πσ intra (ω) = iω0

ω
, (C23)

where

ω0 = 2α
ln(2 + 2 cosh μβ )

h̄β
, (C24)

see Eq. (1) (at zero temperature ω0 simplifies to just ω0 =
2αμ/h̄). Then the solution of Eq. (C22) takes the form

k̄ = iκ, ω̄ = √
κω0, (C25)

where

κ =
√

q2 + ω2
0/4 − ω0/2. (C26)
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Now, taking the full 2D conductivity of graphene, Eq. (C6),
and treating �σ = 2πσ inter as a correction to the Drude con-
ductivity, Eq. (C23), results in a refinement of the SPP mode
wave number and frequency, k = k̄ + �k and ω = ω̄ + �ω.
We find in particular from Eqs. (C20) and (C22):

−(iκ + �k)(iω0 + ω�σ ) = ω2 = (iκ + �k)2 + q2,

(C27)

and keeping in the above equation only terms linear in �k and
�σ , obtain

�k ≈ − κω̄

2κ + ω0
�σ. (C28)

Then, from Eq. (C20) we find

ω̄�ω ≈ k̄�k, (C29)

which results in

�ω ≈ −i
κ

2

2κ + ω0
�σ. (C30)

Finally, in the limit q 	 ω0, we obtain

κ ≈ q, ω̄ ≈ √
qω0, (C31)

ω′ ≈ ω̄, ω′′ ≈ −q

2
σ ′(ω̄), (C32)

k′ ≈ − ω̄

2
σ ′(ω̄), k′′ ≈ q, (C33)

separating the real and imaginary parts of k = k′ + ik′′, ω =
ω′ + iω′′, and σ = σ ′ + iσ ′′ and neglecting Im σ inter which is
small compared to the Drude term.

2. TE polarization

The secular equation for TE polarization is obtained in a
similar way. Using Eqs. (C3) and (C4), the TE block given by
Eq. (C2) can be written as

ωεEy − i∂zHx − qHz = 0, (C34)

∂zEy + iωHx = 0, (C35)

−qEy + ωHz = 0. (C36)

For z �= 0, we obtain

∂2
z Ey + (ω2 − q2)Ey = 0, (C37)

Hx = i

ω
∂zEy, (C38)

Hz = q

ω
Ey, (C39)

and for z = 0, we integrate Eq. (C34) around this point, ob-
taining

Hx(0+) − Hx(0−) = −iωχEy(0), (C40)

at the same time having both Ey and Hz continuous across z =
0. A solution satisfying outgoing or incoming wave boundary
conditions then takes the form

Ey(z) = Aeik|z|, (C41)

FIG. 5. Imaginary part of (a) the TE mode frequency � and
(b) the normal component of the light wave number K , as functions
of the real part of �, calculated for μβ = 10 for changing in-plane
light wave number Q given by the color code.

Hx(z) = −A
k

ω
sgn(z)eik|z|, (C42)

Hz(z) = q

ω
Aeik|z|, (C43)

and Eq. (C40) provides a secular equation for the SPP mode,

2ik = −ω2χ, (C44)

which can be written more explicitly, using Eq. (C5), as

k + ωσ (ω) = 0, (C45)

identical to Eq. (6). To obtain an approximate analytic solu-
tion of Eq. (C44), let us use the fact that |σ (ω)| � 1 if the
frequency is not too small. This is due to the fact that σ is
proportional to the fine-structure constant α which is a small
number. Combining Eqs. (C20) and (C44), we obtain

ω ≈ q + q

2
σ 2(q), k ≈ −qσ (q). (C46)

Extracting the real and imaginary parts, we then find

ω′ ≈ q, ω′′ ≈ qσ ′(q)σ ′′(q), (C47)

k′ ≈ −qσ ′(q), k′′ ≈ −qσ ′′(q). (C48)

Interestingly, k′ < 0, since σ ′(ω) > 0, at least for a real
frequency—the same as in TM polarization. This implies that
the light in the SPP mode propagates both along and toward
the graphene sheet. At the same time, the amplitude of the
wave exponentially decreases (increases) with distance from
the sheet when σ ′′(ω) < 0 (σ ′′(ω) > 0). We also see that
the sign of k′′ and ω′′ changes simultaneously at the lower
threshold frequency as we discuss in detail in Sec. III C.
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FIG. 6. As Fig. 2 but for � = 0.05 and without using the analytic
approximation.

APPENDIX D: LOWER THRESHOLD FREQUENCY
FOR TE POLARIZATION

In this Appendix, we discuss in more detail the condition
for the lower threshold frequency �TE

low of the TE mode and
derive an equation determining the threshold value of �TE

low ≈
1.667 at zero temperature.

Let us first note that, in deriving Eq. (6), the electro-
magnetic field of the wave coupled to charge oscillations is
proportional to

eik|z|, (D1)

where k =
√

ω2 − q2, q is the in-plane wave number in the
direction of travel, and z is distance to the graphene sheet. For
a bounded solution, we therefore assert that

Im k > 0. (D2)

In the opposite case, Im k < 0, the electromagnetic field
would grow exponentially away from the graphene layer, and
the threshold frequency is defined as a value at Im k = 0. As
an example for finite temperature μβ = 10, we see in Fig. 5
that the signs of both Im k and Im ω change simultaneously at
the threshold frequency of �TE

low ≈ 1.625. This is in agreement
with the analytic approximation given by Eqs. (9) and (10).

The value of the threshold frequency depends on the tem-
perature (and the chemical potential) as demonstrated by

FIG. 7. As Fig. 3 but for � = 0.05 and without using the analytic
approximation.

Fig. 4. It satisfies a general equation

Im σ (ω) = 0, (D3)

which can be easily obtained from Eq. (6) by using the fact
that the mode frequency ω is real at the threshold, and hence
Im k = 0. Then taking the imaginary part of Eq. (6) results in
k′′ + ωσ ′′(ω) = 0 which, in turn, gives Eq. (D3).

Finally, we consider the limit of zero temperature (and � =
0), in which case the imaginary part of the conductivity takes
the form

Im σ = α

(
2

�
+ 1

2
ln

2 − �

2 + �

)
, (D4)

following from Eq. (1), after performing the analytic integra-
tion in the interband part. Applying the threshold condition
Eq. (D3) then leads to

2 + �TE
low = (

2 − �TE
low

)
exp

(
4

�TE
low

)
. (D5)

The numerical solution of this equation gives �TE
low ≈ 1.667.

Figure 4 shows that �TE
low approaches this value in the limit

T → 0.
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APPENDIX E: SPP MODES WITH NON-ZERO DAMPING

In this Appendix, we show the SPP dispersion relation
with nonzero phenomenological damping for both TM and TE
polarizations. Figures 6(a)–6(d) show the dispersion of TM
SPP mode for � = 0.05. Here we observe that, compared to
zero damping, Im ω is mainly lifted up by �/2 throughout the
range of q. Whereas Im k, shown as red curves in Figs. 6(e)
and 6(f), is unchanged compared to the case of � = 0 (Fig. 2),
Re k, shown as blue curves in the same figures, changes its

behavior and its values significantly, increasing fast around
q = 0 and then gradually decreasing with q.

In contrast, the TE SPP mode shown in Figs. 7(a)–7(d)
demonstrates more changes in Im ω. In comparison with
the dispersion for zero � (Fig. 3), the TE SPP mode now
has smoother dependencies of Im ω and k. Im k, shown in
Figs. 7(e) and 7(f), starts from a negative value at q = 0, and
the TE SPP mode frequency still has a positive imaginary part
in the range below the threshold frequency �TE

low, similar to
what we have seen for � = 0.
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