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Abstract

A two-level framework is demonstrated for stochastic model updating. At the first level, variance-based global
sensitivity analysis is carried out with the purpose of identifying those parameters with significant uncertainty
and those that might be considered deterministic and can be eliminated as inputs to the metamodel. Then,
at the second level, an inverse problem is solved to determine the statistics of the parameters of a modifica-
tion that causes numerical metamodel results to converge on experimental data. Model updating is carried
on a second metamodel with only the significant parameters retained. The methodology makes use of the
Woodbury formula, resulting in a set of nonlinear characteristic equations in the unknown terms. The frame-
work methodology is applied to a simulated three degrees of freedom representation of an experimental rig.
Complex-eigenvalue data is generated from known parameter distributions and bivariate output probability
density functions are produced using kernel density estimation. By sampling from this data, estimates of the
generating parameters and their distributions are recovered.

Keywords: Stochastic model updating, polynomial chaos expansion, global sensitivity analysis, kernel den-
sity estimation.

1. Introduction
Aircraft structures are becoming lighter and more flexible as a consequence of the extended use of
composite materials. The adoption of such materials is beneficial in terms of both the aerodynamics
and the fuel efficiency, but their application leads to new problems of structural safety in assembled
systems with unexpected dynamics [9]. The structural dynamics of overall systems and individual
components is greatly influenced by the behaviour of joints and interfaces; their behaviour, often
nonlinear, is intrinsically uncertain, therefore the dynamic response of an assembled structure is
probabilistic [4]. However, the aerospace industry is still to a large extent reliant on linear and deter-
ministic design methods that may not be accurate enough in representing the dynamic behaviour of
real-world aero-structural systems.
During the design, the models are updated (or calibrated) to match experimental measurements.
Deterministic model updating techniques [6] are widely used in the industry, but more recently prob-
abilistic techniques have been introduced. Khodaparast et al. [8, 7] used perturbation methods,
whereas Beck and his colleagues [2, 5] developed and applied the Bayesian methodology in model
updating. The significant advantage of the probabilistic approach is that it provides a measure of
confidence in the updated model. An important issue in any model updating scheme is the selection
of parameters considered to be erroneous and in need of correction. Deterministic model updat-
ing is often based on local sensitivities computed from finite element models [6] whereas stochastic
model updating makes use of global sensitivities [12, 11] that may be computed efficiently using the
polynomial chaos (PC) expansion [13]. The outputs, often termed quantities of interest (QoIs), are
expressed in terms of a truncated system of orthogonal polynomials in the inputs, i.e. the uncertain
parameters, according to an assumed probabilistic distribution. The global sensitivity is essentially a
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measure of the fractional contribution of each input to variance of the output. Yuan et al. [18] formu-
lated a global-sensitivity based parameter selection method that was able to discriminated between
correctly modelled probability distributions on parameters not in need of updating and incorrectly
modelled ones that should be updated.
This work proposes a PC and global-sensitivity based framework that includes metamodeling (for
model reduction) and the selection of updating parameters. Use is made of the Woodbury formula
[16] in updating to obtain characteristic equations at known eigenvalues. Probabilistic distributions
on such eigenvalues with sampling by Sobol sequence and kernel density estimation enables the
updating of selected system parameters.

2. Framework
The proposed framework, shown in Figure 1, consists of two levels. The purpose of the first level
is to reduce the number of model inputs (uncertain physical parameters) by the application of global
sensitivity analysis (GSA). This involves choosing the quantities of interest (measurable outputs) and
making a GSA-informed judgement on the significance of the inputs. Initially, one should include all
feasible inputs and ultimately reduce this number by removing those inputs that are shown to make
only very small contributions to the variances of the QoIs.
In the second level those inputs deemed by GSA to be insignificant are eliminated. This results in a
reduced-order surrogate model (or metamodel). Then using the metamodel, model updating may be
carried out with the purpose of converging the model outputs onto experimentally observed results.

Figure 1 – Framework scheme.

3. Experimental setup
The research described in this article is based upon the experimental three degree of freedom system
shown in Figure 2a. However, for the purposes of illustrating the procedure, the present work is
restricted to simulated experimental data.
The system consists in three masses supported and connected by a set of thin plate-like springs:
three springs link each mass to the ground, two coupling springs join them, as shown in Figure 2a.
A coupling spring is made by two plate springs connected by a top (almost rigid) element that can
be moved up and down to change the stiffness of the coupling spring. The higher the top connector
the softer the spring. A mass-damper-spring model is shown in Figure 2b, defined by the equation of
motion,

Mü(t)+Cu̇(t)+Ku(t) = F(t) (1)

where M, C, K∈R3×3 are the structural mass, damping and stiffness matrices, respectively. u(t)∈R3

is the vector of displacement. F(t) ∈ R3 is the external force applied to the system. The structural
matrices may be written as,

M = diag
(
m1 m2 m3

)
K =

2kg1 + k12 −k12 0
−k12 2kg2 + k12 + k23 −k23

0 −k23 2kg3 + k23

 C = βK (2)
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(a) Test-rig.
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(b) Schematic of the system.

Figure 2 – Three DOFs lumped mass-dumper-spring system.

where β is the damping coefficient, defined in Table 1.
The eigenvectors are considered to be mass-normalised such that,

I = Φ
T MΦ Λ = Φ

T KΦ (3)

Λ is the diagonal spectral matrix of eigenvalues and Φ is the modal matrix. The system described in
Eq. (3) may be expressed in modal coordinates q by means of the transformation,

u = Φq (4)

4. Polynomial chaos expansion – metamodel and global sensitivity
The use of a metamodel is essential in the uncertainty quantification of large scale engineering
systems. One such metamodel is provided by the PC expansion and is chosen in the present case,
not for reasons of large size (the system has only three degrees of freedom), but because the PC
expansion provides for the efficient computation of global sensitivities.
The PC expansion provides a functional approximation of a computational model through its spectral
representation on a basis of polynomial functions [15]. The random variables must be independent
while the basis consists of univariate polynomials that are orthonormal to the marginal distributions
of the inputs. The univariate polynomial families that are orthonormal to the most common statistical
distributions are listed in several papers in literature, e.g. Xiu [17].
A random input x = ( x1,x2, . . . ,xp)

T , p is the dimension of the set that is usually scale to unit cube
[0,1]p to simplify the mathematics. The ist output sample (QoI sample) may be represented as a
truncated sum,

yi =
n−1

∑
j=0

α jΨ j(x) i = 1,2, . . .m (5)

where α j is a deterministic coefficient and Ψ j an orthonormal polynomial in the random input x,
thereby forming a basis for the random yi (the QoI). The Least Angle Regression (LAR) algorithm is
applied to estimate the coefficients α j of the PCE for the given basis. Recasting the terms in Eq. (5)
in matrix-vector form, the sparse L1 norm solution is determined as,

α̂ = argmin
α

E
[(

α
T

Ψ(x)−Y (x)
)2
]
+η‖α‖1 (6)

where Ψ ∈ Rm×n in the matrix that assemble the values of all orthonormal polynomials in x, α ∈ Rn×1

is a containing the deterministic coefficients y ∈ Rm×1 in the vector of the outputs. m is the number
of QoI output and n = (m+ q)!/(m!q!) is the number of coefficients, q is the truncated order of the
PC expansion. The first term in Eq. (6) is the least squares minimisation while η‖α‖1 favours the
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sparse L1 solution. Several algorithms exist, in particular UQLab applies the algorithm developed by
Blatman and Sudret [3]. The mean and variance of the resulting metamodel may be expressed as,

E
[
y(X)

]
= α0 (7)

Var
[
y(X)

]
=

n−1

∑
n=0

α
2
j (8)

where y0 is the coefficient of the constant basis term Ψ0 = 1 and the sum is over the coefficients of
the non-constant basis element only.
The first-order global sensitivity of an output with respect to a specific input is then given by bringing
together as a fraction of the total variance, all the variance terms in Eq. (7)-(8) that are polynomial
functions of that input alone. The total global sensitivity of an output is given by the sum of all the
variance contributions that include that specific input, both singly and in combination with other inputs,
again as a fraction of the total variance.
The three eigenvalues of the system,

(
λ1, λ2, λ3

)
, are known to be sensitive to small changes in

the system parameters, whereas the eigenvectors,
(
φ1, φ2, φ3

)
, are usually quite insensitive. Thus

the three eigenvalues are chosen as QoIs. The number of inputs should be inclusive of as many
candidate parameters as possible, but care must be taken in defining their distributions. For example,
the values of the three masses (and the masses of the plate-like springs) are very well known, so that
the distributions on the masses should be very restricted. The stiffnesses of the supporting spring
are also considered to be accurately modelled, but uncertainty in the connecting spring stiffnesses,
which are adjustable, is significantly greater. The damping coefficient β , which is small is considered
to be constant. Table 1 shows the input parameters, their statistical distributions and nominal values.
Global sensitivity analysis was carried out with parameter uncertainties defined in Table 1 .

Table 1 – Statistical distribution of random variables

Random variable Distribution Nominal value
kg1 [N/m] Uniform U[ 2825 2875] 2853.2
kg2 [N/m] Uniform U[ 2915 2965] 2931.0
kg3 [N/m] Uniform U[ 2790 2940] 2817.0
k12 [N/m] Uniform U[ 1322.5 1422.5] 922.5
k23 [N/m] Uniform U[ 1475.5 1557.5] 1207.5

m1 [kg] Uniform U[ 1.58 1.60] 1.59
m2 [kg] Uniform U[ 2.66 2.67] 2.67
m3 [kg] Uniform U[ 1.16 1.17] 1.16

β Constant 5.5508e−05

The polynomial of dimension 8 (the number inputs), truncated at the 3rd order, gives n = 165 as the
number of coefficients in Eqs. (5) and (6). The number of samples was 200 and Sobol sampling
applied. The moments of the three metamodels are shown in Table 2. The first order sensitivities
with respect to the three eigenvalues of the system are shown in Table 2 and in the form of pie-
charts in Figure 3. It is seen that the second and third eigenvalues are predominantly sensitive to
springs k12 and k23 respectively. Uncertainty on the other parameters has only a small effect on these
two eigenvalues. They are each predominantly sensitive to a different single parameter. Since the
parameters are statistically independent, the second and third eigenvalues may be considered also
to be statistically independent. The first-order and total sensitivities are found to be identical in the
cases of all three of the eigenvalues, thereby confirming that there is no interaction between the
parameters.
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Table 2 – Statistical moments and Sobol indices of the quantities of interest.

Parameter Result λ1 λ2 λ3

E(Y ) [rad/s] 52.83 68.34 79.79
Var(Y ) 10.69 30.45 49.80

kg1 S1 = ST 1 0.05 0.26 −
kg2 S2 = ST 2 0.68 − −
kg3 S3 = ST 3 0.01 − 0.21
k12 S4 = ST 4 0.03 0.68 −
k23 S5 = ST 5 0.16 − 0.71
m1 S6 = ST 6 − 0.06 −
m2 S7 = ST 7 0.05 − −
m3 S8 = ST 8 − − 0.08
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Figure 3 – Pie charts Sobol total indices of the quantities of interest.

5. Data
Data in the form of simulated ‘experimental’ results, takes the form of the complex eigenvalues of
the system and are generated from the system described in Eq. 2 with uncertainty distributions on
k12 and k23 are ∆k12 = U [−50 50] [N/m] and ∆k23 = U [−50 50] [N/m] - the other parameters (masses
and grounded stiffnesses) are considered to be deterministic with nominal values. The purpose is
to reconstruct the distributions on the two uncertain parameters using complex eigenvalue data (in
the form of PDFs) generated by the same parameters. It is the simplest exercise possible, but more
complicated than might be thought initially.
Figure 3 shows the three frequency response functions (FRFs) generated by (1) the nominal sys-
tem, grey line, and (2) the ‘experimental’ system with the means of the two uncertain parameters
(k12 = 1372.5 N/m and k23 = 1507.5 N/m), black line. It is seen from the figures and from Table 3
that the second and third eigenvalues are in error to a greater extent than the first eigenvalue. Re-
call from the sensitivity analysis that the second eigenvalue is sensitive to k12 and the third to k23.
Therefore, complex eigenvalue data was produced by Sobol sampling from ∆k12 and ∆k23. The num-
ber of samples was 500, these being used to generate independent bivariate PDFs for each of the
two eigenvalues, bivariate because the real and imaginary parts are considered as two correlated
variables, using a kernel density estimator [14].

Table 3 – Confront between computational and experimental poles before the structural modification.

Nominal parameter values Experimental mean parameter values
λ1,2 −0.337±52.04i −0.324±52.81i
λ3,4 −0.128±65.49i −0.093±68.40i
λ5,6 −0.0186±77.70i −0.0118±79.93i

5
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Figure 4 – Frequency response functions – nominal and mean ‘experimental’ parameters.

Let X = x1, . . . ,xn be a sample of d-variate random vectors drawn from a density function f . The
KDE f̂ , for x ∈ R2, is defined as

f̂ (x,H) =
1
n

n

∑
i=1

KH( x−Xi) (9)

where n denotes the number of samples and K is a kernel function, which is often defined as a
multivariate symmetric probability function, H is a positive definite 2×2 symmetric matrix, it is called
bandwidth matrix, that controls the amount and orientation of smoothing induced. KH is the scaled
kernel function, its choice does not influence the accuracy of the estimation as the bandwidth matrix
does. For this reason, the standard multivariate normal kernel is usually used

KH = (2π)−1H−1/2 exp( −1
2

xT H−1x) (10)

The bandwidth matrices imposed for the kernel density estimate of the two sets of data are:

Hλ2 =

[
8.77e−4 0

0 7.73e−2

]
Hλ3 =

[
1.60e−4 0

0 8.49e−2

]
The contribution of each sample of the set is smoothed into the region around it, then aggregating
all the contributions, the bi-variate PDF of the data is defined. A disadvantage of the KDE is that
variables are assumed to be independent, requiring the application of a copula [1] to describe the
statistical interactions between the components of a bivariate distribution. In the present case a t-
family (t-distribution) pair-cupola was applied with zero rotation and parameter θ2 = [−0.999 0.1001]
for the λ2 distribution and θ3 = [0.9978 0.6303] for the λ3 distribution. The resulting bi-variate PDFs
are shown in Figure 5. The inter-dependence between the real and imaginary parts is clearly visible,
with rather ‘uniform’ appearance in the central section, as might be expected since the generating
distributions on ∆k12 and ∆k23 were uniform.
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Figure 5 – Bivariate PDFs for λ2 and λ3.

The data is of exceptionally high quality, having been generated from precise knowledge of the uncer-
tainty we intend to estimate. In real systems, in industry, only very vague knowledge of eigenvalue
distributions would be expected, with somewhat better understanding of natural frequencies than
of damping. In the following section the distributions on stiffness k12 and k23 will be estimated by
stochastic model updating.

6. Stochastic Model Updating
There are numerous ways in which stochastic model updating may be carried out [10, 8], but the
present case use is made of the Woodbury formula [16], for the modification of an inverse matrix.
The matrix in question is the dynamic stiffness matrix, whose inverse is the matrix of receptances,

H(s) = Z−1(s) = ( Ms2 +Cs+K) −1 (11)

The Woodbury formula takes the form,

( Z(s)+VP(s)VT ) −1 = Z−1(s)−Z−1(s)V( I+P(s)VT Z−1(s)V) −1P(s)VT Z−1(s) (12)

where specifically,

P =

[
∆k12(1+β s) 0

0 ∆k23(1+β s)

]
V =

−1 0
1 −1
0 1


P is a diagonal matrix whose terms are the parameters of the modification, V is a matrix whose terms
are the coordinates of the modifications.
The characteristic equation of the modified system is then given by,

det( I+P(λi)VT Z(λi)
−1V) = 0 i = 2,3 (13)

and may be solved for ∆k12 and ∆k23 when cast in modal coordinates, whereupon

V =
[
(φ1−φ2) (φ2−φ3)

]
(14)

The coordinate transform is necessary for the updating of a second metamodel with inputs, ∆k12 and
∆k23, and outputs λ2 and λ3 – the eigenvectors are assumed constant.
The two eigenvalues are assigned to the characteristic equation and the nonlinear system is solved
using a Gauss-Newton algorithm. Sobol sampling is applied with 200 points from the bivariant eigen-
value distributions developed (in Section 4). PDFs for the two stiffness k12 and k23 are produced by
univariate KDE, as shown in Figure 6. As can be seen in the figure the estimated PDFs compare
very favourably with original (generating) uniform distributions. The means and standard distributions
are provided in Table 3.
Clearly the estimates of the means are perfect and there are small errors in the standard deviations.
This may be due to inaccuracy in the bivariant eigenvalue PDFs obtained by KDE, resulting from the
assumption of independence of the eigenvalue distributions and the choice of copula.
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Table 4 – Statistics of the generating and estimated PDFs (N/m).

Generating Distribution Estimated Distribution
Parameter Mean STD Mean STD

∆k12 450 28.87 450 30.45
∆k23 300 28.87 300 28.77
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Figure 6 – Generating and estimated PDFs for ∆k12 and ∆k23.

7. Conclusion
A framework for stochastic model updating has been demonstrated in a simulated experiment of a
three degree of freedom damped mass-spring system. The procedure makes use of the PC ex-
pansion, global sensitivity, KDE and Woodbury formula for structural modification. The methodology
results in close agreement between the generating-parameter and estimated PDFs, especially the
first two statistical moments. In a realistic application, such as an industrial structure, the eigenvalue
distributions are likely to be known only vaguely, with better understanding of frequencies (perhaps
within upper and lower bounds) than damping, which might be considered constant. Further devel-
opment and proving of the methodology are planned, including an industrial application.
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