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Simple Summary: This study pursued the proteomic analysis of primary uveal melanoma (pUM) 

for insights into the mechanisms of metastasis and protein biomarkers. Liquid chromatography tan-

dem mass spectrometry quantitative proteomic technology was used to analyze 53 metastasizing 

and 47 non-metastasizing pUM. The determined proteome of 3935 proteins was very similar be-

tween the metastasizing and non-metastasizing pUM, but included the identification of 402 differ-

entially expressed (DE) proteins. Bioinformatic analyses suggest significant differences in the im-

mune response between metastasizing and non-metastasizing pUM. Immune protein profiling re-

sults were consistent with transcriptomic studies, showing the immune-suppressive nature and low 

abundance of immune checkpoint regulators in pUM, and suggest CDH1, HLA-DPA1, and several 

DE immune kinases and phosphatases as potential targets for immune therapy checkpoint block-

ade. Prediction modeling of the proteomic data identified 32 proteins capable of predicting metas-

tasizing versus non-metastasizing pUM with 93% discriminatory accuracy. 

Abstract: Uveal melanoma metastases are lethal and remain incurable. A quantitative proteomic 

analysis of 53 metastasizing and 47 non-metastasizing primary uveal melanoma (pUM) was pur-

sued for insights into UM metastasis and protein biomarkers. The metastatic status of the pUM 

specimens was defined based on clinical data, survival histories, prognostic analyses, and liver his-

topathology. LC MS/MS iTRAQ technology, the Mascot search engine, and the UniProt human da-

tabase were used to identify and quantify pUM proteins relative to the normal choroid excised from 

UM donor eyes. The determined proteomes of all 100 tumors were very similar, encompassing a 

total of 3935 pUM proteins. Proteins differentially expressed (DE) between metastasizing and non-

metastasizing pUM (n = 402) were employed in bioinformatic analyses that predicted significant 

differences in the immune system between metastasizing and non-metastasizing pUM. The im-

mune proteins (n = 778) identified in this study support the immune-suppressive nature and low 

abundance of immune checkpoint regulators in pUM, and suggest CDH1, HLA-DPA1, and several 

DE immune kinases and phosphatases as possible candidates for immune therapy checkpoint 

blockade. Prediction modeling identified 32 proteins capable of predicting metastasizing versus 

non-metastasizing pUM with 93% discriminatory accuracy, supporting the potential for protein-

based prognostic methods for detecting UM metastasis. 

Citation: Jang, G.-F.; Crabb, J.S.;  

Hu, B.; Willard, B.; Kalirai, H.;  

Singh, A.D.; Coupland, S.E.;  

Crabb, J.W. Proteomics of Primary 

Uveal Melanoma: Insights into  

Metastasis and Protein Biomarkers. 

Cancers 2021, 13, 3520. https:// 

doi.org/10.3390/cancers13143520 

Academic Editor: Ellen Kapiteijn 

Received: 21 May 2021 

Accepted: 9 July 2021 

Published: 14 July 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2021 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://cre-

ativecommons.org/licenses/by/4.0/). 



Cancers 2021, 13, 3520 2 of 21 
 

 

Keywords: bioinformatics; immune profiling; iTRAQ; metastasis; prediction modeling; quantitative 

proteomics; uveal melanoma 

 

1. Introduction 

Uveal melanoma (UM), the most common primary malignancy of the eye in adults 

[1], is a relatively rare but aggressive cancer that progresses to fatal metastasis in about 

50% of patients [2,3]. The median survival time for UM patients is about 9 months after 

the detection of metastasis [4]. Primary UM (pUM) originates predominantly in the capil-

lary-rich uveal tract (i.e., the iris, ciliary body, and choroid), which facilitates metastasis 

through hematogenous dissemination of the tumor cells. UM metastases usually target 

the liver, but multiple metastases in other organs (e.g., lung and bone) also occur [5], with 

micrometastases capable of lying dormant and undetected for decades [6]. While immu-

notherapy has been beneficial for treating metastatic skin melanoma, it is well known that 

uveal and cutaneous melanomas differ in many ways [7,8], and no treatments currently 

exist to effectively treat metastatic UM [9]. 

The mechanisms of UM metastasis remain poorly understood but involve multiple 

gene mutations and tumor dormancy [10]. Predominant gene mutations associated with 

UM metastasis include BAP1 [11], GNAQ, and GNA11 [12,13]. Other mutations have been 

found in PLCB4 [14], CYSLTR2 [15], SF3B1 [16], and EIF1AX [17]. In addition, chromoso-

mal abnormalities, including loss on chromosomes 1p, 3, 6q, 8p, and 9p and gain on chro-

mosomes 1q, 6p, and 8q [1,3,18], as well as disruption of epigenetic regulators [19], have 

been associated with UM metastasis. Recent transcriptomic studies have implicated im-

mune suppression in the mechanisms of UM metastasis [20–22]. Current UM prognostic 

methods rely on cyto- or molecular-genetic [23–25] and gene expression analyses [26–28] 

of pUM biopsies [1,29,30]. An urgent need exists for improved prognostic methods [31], 

including an effective liquid assay for circulating pUM cells, which could facilitate earlier 

detection and treatments [32]. 

This study pursued quantitative proteomic analysis of pUM for insights into the 

mechanisms of UM metastasis and biomarkers for protein-based methods of UM progno-

sis. This is the largest proteomic study of UM to-date and involves the characterization of 

53 metastasizing and 47 non-metastasizing pUM using LC MS/MS iTRAQ technology. 

Previous proteomic studies of pUM tissues from our laboratory [33] and others [34–36] 

have been limited by small sample sizes. Previous in vitro UM proteomic studies have 

characterized the secretome and proteome of primary UM cell lines, cultured choroid mel-

anocytes, cultured liver metastases [37–43], and have identified cargo in extracellular ves-

icles from cultured pUM [44]. This study identifies a significant number of differentially 

expressed pUM proteins that provide bioinformatic insights into the differences between 

metastasizing and non-metastasizing pUM, and a foundation for protein-based assays for 

UM metastasis. 

2. Results 

2.1. Primary UM Tumor Samples 

The tumor specimens (n = 100) used in this study were collected at the Cleveland 

Clinic, Cleveland, OH, USA, and at the Ocular Oncology Biobank, University of Liver-

pool, Liverpool, UK. The specimens were derived from 53 metastasizing and 47 non-me-

tastasizing pUM; donors included 53 males and 47 females, with an average age of 63 

years old. The metastatic status of the pUM was established by a combination of detailed 

clinical data, as well as survival and prognostic analyses including gene expression, mul-

tiplex ligation-dependent probe amplification, fluorescent in situ hybridization, and ge-

nome wide single nucleotide analysis. Histopathology examinations of liver biopsies or 

liver metastasis resection specimens confirmed the metastatic status of all metastasizing 
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pUM. Detailed properties of each pUM specimen are described in Table S1, including de-

mographic and clinical characteristics, prognostic analyses, metastasis and survival sta-

tus, chromosome 3 status, cell type, histopathology, and associations with same-eye cho-

roid control specimens. 

2.2. Proteomic Characterization of the Choroid Controls  

The suitability of 13 choroid specimens from UM eyes to serve as control tissue was 

evaluated by histology and LC MS/MS iTRAQ analysis relative to the choroid pooled from 

nine disease-free eyes [33]. The results of these analyses are itemized in Table S2 and re-

vealed no significant differences between the choroid specimens from metastasizing (n = 

6) and non-metastasizing (n = 7) UM eyes, as illustrated by the flat distribution of protein 

ratios in the volcano plot in Figure 1A. The 13 choroid control tissues exhibited similar 

proteomes, consistent with the level of similarity observed in other normal tissues [45,46]. 

All 13 choroid specimens were accepted as controls based on (i) no significant differences 

between the specimens from metastasizing and non-metastasizing UM eyes and (ii) near-

to-normal protein distribution (Figure S1).  

 

Figure 1. Volcano Plots. (A) Volcano plot for 2504 proteins from choroid specimens excised from 6 

metastasizing and 7 non-metastasizing UM eyes (B) Volcano plot for 3935 proteins from 53 metas-

tasizing pUM and 47 non-metastasizing pUM. Blue represents DE (differentially expressed) pro-

teins and gold represents all other proteins not satisfying DE criteria. No significantly altered pro-

teins were found in the choroid controls from UM eyes; 402 DE proteins were identified in the 

pUM. 

2.3. pUM Quantitative Proteomics Overview 

As summarized in Table 1, a total of 3935 proteins were identified with two or more 

unique peptides using LC MS/MS and quantified by iTRAQ technology relative to a cho-

roid control pooled from pUM-containing eyes. Very similar numbers of proteins were 

quantified from the metastasizing and non-metastasizing pUM, with 2555 proteins on av-

erage quantified per pUM specimen. The distribution of the protein ratios from 

metastasizing and non-metastasizing pUM was near-to-normal and statistically 

appropriate for comparative analyses (Figure S1). The quantitative results for each of the 

100 pUM specimen are itemized in Table S3, including protein ratios, standard deviation 

(SD), and the total number of proteins quantified. The average relative abundance of the 

proteins quantified in the 53 metastasizing and 47 non-metastasizing pUM are presented 

in Tables S4 and S5, respectively. Significantly elevated or decreased proteins were de-

fined as those exhibiting average protein ratios (pUM/control) above or below the mean 

by at least 1 SD with adjusted p-values ≤ 0.05 and containing ≤ 20% imputation of missing 

data. Significantly altered pUM proteins are highlighted by color coding in Tables S4 and 

S5 and illustrated by volcano plot in Figure 1B. The average determined proteomes of 

metastasizing and non-metastasizing pUM were very similar, with only about 11% of the 
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total proteins significantly altered in abundance relative to the choroid control. As sum-

marized in Table 1, metastasizing and non-metastasizing pUM exhibited similar numbers 

of significantly altered proteins, with each tumor group exhibiting slightly more elevated 

than decreased proteins. The significantly elevated proteins in metastasizing and non-me-

tastasizing pUM differed in composition by about 65% (n = 148 proteins), while the sig-

nificantly decreased proteins in the two tumor groups differed by about 25% (n = 52 pro-

teins) in composition. Nevertheless, the proteomes of the metastasizing and non-metasta-

sizing pUM appear to be about 89% similar over the 3935 identified proteins. 

Table 1. Summary: pUM Quantitative Proteomic Results. 

 Metastasizing Non-Metastasizing 

Total pUM specimens 53 47 

Total Proteins Quantified with ≥2 peptides 3935 3934 

Average number proteins quantified per tumor 2567 2541 

Proteins Elevated ≥ 1SD from Mean, adjusted p ≤ 0.05, imputation ≤ 20% 232 224 

Proteins Decreased ≥ 1SD from Mean, adjusted p ≤ 0.05, imputation ≤ 20% 206 201 

2.4. Independent Evidence Supporting the iTRAQ Protein Quantitation 

Western blot analysis was used to independently evaluate the abundance of 12 pro-

teins in 8 metastasizing pUM and 8 non-metastasizing pUM, relative to 8 normal choroid 

control tissues from pUM-containing eyes. Densitometric analysis of SDS-PAGE  

Coomassie blue staining (Figure S2) was used to demonstrate the equal sample load-

ing of all tissues prior to electroblotting to the PVDF membrane. Target protein immuno-

reactivity in each of the 12 Western blots (Figure S3) was quantified by densitometry and 

supported the iTRAQ protein quantitation. An overview of the immunoreactivity for each 

of the proteins is presented in Figure 2, along with the average iTRAQ ratios determined 

by LC MS/MS for 53 metastasizing and 43 non-metastasizing pUM. 

 

Figure 2. Western blot analysis. Fluorescence immunoblot reactivity is shown for 12 proteins 

quantified by LC MS/MS iTRAQ technology in choroid control tissues (lanes 2–9), metastasizing 

pUM (lanes 10–17), and non-metastasizing pUM (lanes 18–25). Prior to blotting, sample amounts 

applied to SDS-PAGE (~10 μg) were equalized based on Coomassie blue staining intensities (see 

Supplementary Figure S2). Western blot immunoreactivity (Supplementary Figure S3) supports 

the average iTRAQ protein ratios shown for metastasizing pUM (Met/control), non-metastasizing 

pUM (NoMet/control), and Met pUM/NoMet pUM. 

2.5. Identification of Differentially Expressed Proteins 

Differentially expressed (DE) proteins were sought through statistical comparison of 

the average protein ratios from metastasizing and non-metastasizing pUM. From the 3935 

pUM proteins quantified, 583 proteins were identified with an adjusted p-value ≤ 0.05 for 

the average protein ratios (metastasizing pUM/non-metastasizing pUM), of which several 

exhibited low sample frequencies. From the 583 proteins, a total of 402 DE proteins were 
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selected (Table S6) that contained no more than 20% imputed missing data and met the 

criteria of a minimum fold-change of one standard deviation (SD) from the mean, in ad-

dition to an adjusted p-value ≤ 0.05. Notably, 326 (81%) of the 402 DE proteins were de-

tected in all 100 pUM with no missing data. Among the 402 DE proteins, 191 proteins were 

more abundant in metastasizing pUM and 211 proteins were more abundant in non-me-

tastasizing pUM. Of potential utility in a future liquid assay for UM metastasis, 119 were 

predicted by gene ontology (GO) to be cell surface (plasma membrane) proteins. The most 

abundant and least abundant DE proteins in metastasizing pUM are shown in Table 2. 

Table 2. Differentially Expressed pUM Proteins. 

UniProt Accession 
Gene 

Name 

Protein (Sorted by Decreasing Protein 

Ratio) 

Protein 

Ratio 

Met/NoMe

t 

Adjusted             

p-value 

Frequency 

Metastasizin

g pUM 

Non-

Metastasizing 

pUM 

DE Proteins Most Abundant in Metastasizing pUM      

P23381 WARS1  Tryptophan--tRNA ligase, cytoplasmic 1.906 4.6 × 10−6 53 47 

P04439 HLA-A  
HLA class I histocompatibility antigen, A 

alpha chain 
1.818 1.6 × 10−6 53 47 

P61769 B2M  Beta-2-microglobulin 1.768 2.7 × 10−5 47 39 

P01903 HLA-DRA 
HLA class II histocompatibility antigen, 

DR alpha chain 
1.727 9.2 × 10−5 53 47 

Q03518 TAP1  Antigen peptide transporter 1 1.630 3.2 × 10−5 53 47 

P10321 HLA-C  
HLA class I histocompatibility antigen, C 

alpha chain 
1.624 1.8 × 10−5 52 46 

Q8IVF2 AHNAK2 Protein AHNAK2 1.616 8.8 × 10−4 44 36 

O95816 BAG2  
BAG family molecular chaperone regulator 

2 
1.595 2.3 × 10−7 42 39 

P07686 HEXB  Beta-hexosaminidase subunit beta 1.589 1.9 × 10−4 53 47 

P33121 ACSL1  Long-chain-fatty-acid--CoA ligase 1 1.562 1.4 × 10−5 53 47 

P17931 LGALS3  Galectin-3 1.549 4.6 × 10−5 52 47 

P19971 TYMP  Thymidine phosphorylase 1.534 9.4 × 10−4 53 47 

P51810 GPR143  G-protein coupled receptor 143 1.530 4.6 × 10−4 53 47 

Q06210 GFPT1  
Glutamine--fructose-6-phosphate 

aminotransferase [isomerizing] 1 
1.505 3.8 × 10−5 53 47 

Q9H3G5 CPVL  Probable serine carboxypeptidase CPVL 1.486 7.4 × 10−4 53 47 

DE Proteins Least Abundant in Metastasizing pUM     

P04792 HSPB1  Heat shock protein beta-1 0.726 1.4 × 10−5 53 47 

Q9UBI6 GNG12  
Guanine nucleotide-binding protein 

G(I)/G(S)/G(O) subunit gamma-12 
0.722 1.6 × 10−3 45 40 

Q9BZQ8 NIBAN1  Protein Niban 1 0.720 1.2 × 10−3 53 47 

Q8NC51 SERBP1  
Plasminogen activator inhibitor 1 RNA-

binding protein 
0.718 1.6 × 10−2 53 47 

P28161 GSTM2  Glutathione S-transferase Mu 2 0.710 5.4 × 10−4 53 47 

Q9P0M6 
MACROH

2A2  
Core histone macro-H2A.2 0.708 1.1 × 10−5 47 39 

Q9NUJ1 ABHD10  
Mycophenolic acid acyl-glucuronide 

esterase, mitochondrial 
0.707 6.8 × 10−7 53 47 

Q14240 EIF4A2  Eukaryotic initiation factor 4A-II 0.697 2.3 × 10−7 53 47 

P05387 RPLP2  60S acidic ribosomal protein P2 0.697 4.1 × 10−5 53 47 

P34913 EPHX2  Bifunctional epoxide hydrolase 2 0.688 8.4 × 10−5 53 47 

Q02252 ALDH6A1 
Methylmalonate-semialdehyde 

dehydrogenase [acylating], mitochondrial 
0.681 1.3 × 10−6 53 47 

P21266 GSTM3  Glutathione S-transferase Mu 3 0.676 2.6 × 10−3 53 47 

P09211 GSTP1  Glutathione S-transferase P 0.673 5.5 × 10−3 53 47 

Q02338 BDH1  
D-beta-hydroxybutyrate dehydrogenase, 

mitochondrial 
0.672 1.4 × 10−5 50 44 
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O75891 ALDH1L1 
Cytosolic 10-formyltetrahydrofolate 

dehydrogenase 
0.604 4.6 × 10−6 46 42 

The above proteins were selected from 402 total differentially expresssed (DE) proteins identified by LC MS/MS iTRAQ 

technology (see Supplementary Table S6). Note that the protein ratio is expressed as metastasizing pUM (Met)/non-me-

tastasizing pUM (noMet); DE proteins least abundant in metastasizing pUM are most abundant in non-metastasizing 

pUM. 

2.6. Bioinformatic Differences between Metastasizing and Non-Metastasizing pUM 

Bioinformatic differences between metastasizing and non-metastasizing pUM were 

sought for insights into the mechanisms of UM metastasis. Reactome pathway analysis of 

the DE proteins elevated in metastasizing pUM (n = 191) predicted significant over-repre-

sentation of immune system pathways, and, to a lesser extent, the pathways associated 

with vesicle-mediated trafficking, extracellular matrix organization, metabolism of pro-

teins, and hemostasis. In contrast, the Reactome pathway analysis of the DE proteins ele-

vated in non-metastasizing pUM (n = 211) predicted a significant over-representation of 

the pathways involving metabolism, including metabolism of proteins and RNA, and to 

a lesser extent, cellular response to external stimuli and developmental biology. A ge-

nome-wide overview illustrating these predicted pathway differences is shown in Figure 

3, with pathway details provided in Tables S7 and S8 for DE proteins elevated in metas-

tasizing and non-metastasizing pUM, respectively. Consistent with the Reactome anal-

yses, the ingenuity pathway analysis (IPA) predicted the top functions for DE proteins 

elevated in metastasizing pUM to be associated with cellular compromise, molecular 

transport, cellular assembly and organization, cellular function and maintenance, and cell 

morphology. The top functions predicted by IPA for DE proteins elevated in non-metas-

tasizing pUM involved protein synthesis, RNA damage and repair, RNA post-transcrip-

tional modification, gene expression, and carbohydrate metabolism. IPA also predicted 

the regulator effects network, shown in Figure 4, from the 191 DE proteins elevated in 

metastasizing pUM. All 13 target genes shown in Figure 4 were detected in the proteomic 

analysis, as well as 4 of the 6 upstream regulators, namely SMARCA4, IgG, SAFB, and 

SYNV1. The target genes impact a number of cancer-related functions including invasion 

of tumor cells, endocytosis, and engulfment of cells. 

 

Figure 3. Genome-wide overview of bioinformatic pathways in metastasizing and non-metastasizing pUM. Reactome 

pathway analysis results are illustrated in network view for DE proteins elevated in metastasizing pUM (n = 191, red) and 

for those elevated in non-metastasizing pUM (n = 211, green). Top level Reactome pathways are labeled and displayed in 

circular bursts, with each step away from the center representing a lower level in pathway hierarchy. The color coding 

reflects over-representation of the pathway and no color signifies little, if any, pathway representation. See Supplementary 

Tables S7 and S8 for pathway details. 
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Figure 4. Regulatory effects network. The above upstream regulator effects network was predicted by the IPA bioinfor-

matic analysis of the 191 DE proteins elevated in metastasizing pUM. Symbols: circle, complex/group; square—cytokine; 

vertical oval—transmembrane receptor; horizontal oval—transcription regulator; trapezoid—transporter. Solid lines rep-

resent direct interactions; dashed lines represent indirect interactions. IPA predicted no regulatory effects network for DE 

proteins elevated in non-metastasizing pUM. 

2.7. Immune Protein Profiling 

Recent transcriptomic investigations have reported that the tumor microenviron-

ment (TME) in UM is immunosuppressive and contains relatively low amounts of con-

ventional immune checkpoint regulators (ICRs) [20–22]. Toward the corroboration of 

these transcriptomic results and a better understanding of the UM immune response, we 

sought the identity of immune proteins within the determined pUM proteome. Our im-

mune protein profiling corroborated the transcriptomic findings and resulted in the de-

tection of 778 pUM immune proteins, including 15 ICRs, 27 immunosuppressive proteins, 

and 143 DE immune proteins (Table S9). Among the 143 DE immune proteins, 83 proteins 

were more abundant in metastasizing pUM and 60 proteins were more abundant in non-

metastasizing pUM; all are tabulated with quantitation, frequency, and immune func-

tional themes in Table S10. The detected ICRs (CDH1, FYN, HLA-DPA1, HLA-DPB1, HLA-

DQB1, HMGB1, LYN, PPP2CA, PPP2CB, PPP2R1A, PPP2R5A, PPP2R5C, PPP2R5E, 

PTPN11, and PTPN6) were all of average to low abundance (Table S9), except for CDH1 

and HLA-DPA1. CDH1 and HLA-DPA1 were more abundant in metastasizing pUM than 

the choroid control (Table S9). Five DE immune proteins were among the 27 immunosup-

pressive proteins (Tables S9 and S10), including four elevated in metastasizing pUM 

(HLA-DRA, LGALS3, STAT1, and TMED2) and one (PDHB) more abundant in non-metas-

tasizing pUM. 

With the aim of better understanding the UM immune response, we pursued the 

identification of pathways associated with DE immune proteins. Reactome pathway anal-

ysis results for the 83 DE immune proteins elevated in metastasizing pUM and the 60 DE 

immune proteins elevated in non-metastasizing pUM are illustrated in Figure 5 and de-

tailed in Tables S11 and S12, respectively. These results reinforce the major predicted dif-

ference between metastasizing and non-metastasizing pUM regarding immune system 

pathways, as addressed in the Discussion. 
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Figure 5. Immune System Pathways Associated with DE Immune Proteins. Reactome pathway analysis results are illus-

trated by Voronoi view for DE immune proteins elevated in metastasizing pUM (n = 83, Panel A) and for those elevated 

in non-metastasizing pUM (n = 60, panel B). Increased pathway over-representations are reflected by brighter colors. See 

Supplementary Tables S11 and S12 for details. 

2.8. Prediction Modeling 

Because improved UM prognostic methods are needed, we explored multiple statis-

tical prediction models for UM metastasis using DE proteins with no missing data as pre-

dictors. Our final multivariate prediction model (Table 3) utilized 32 proteins selected by 

LASSO from 354 proteins with an adjusted p-value ≤ 0.05 and no missing data. In this 

model, 17 proteins were positively correlated with metastasis (i.e., elevated in metastasiz-

ing pUM), where eukaryotic translation initiation factor 4H had the strongest effect (OR = 

2.02 per one unit increase in expression), followed by voltage-dependent anion-selection 
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channel protein (OR = 1.73). Fifteen proteins were negatively correlated with metastasis 

(i.e., decreased in metastasizing pUM), where the odds ratios were 0.60 for Testis-ex-

pressed protein 10 and 0.63 for protein niban. Notably over 50% of the proteins in this 

model are predicted cell surface proteins (n = 18). The discriminatory accuracy of the 

model based on the corrected area under the ROC curve is 0.93 (Figure 6). At the optimal 

cut-off that maximizes the Youden index, the sensitivity of the model is 0.91 (95% CI = 

(0.79, 0.96)), and the specificity is 0.81 (95% CI = (0.66, 0.90)). These results support the 

feasibility of protein-based methods for a high accuracy detection of UM metastasis. 

Table 3. Selected Proteins in the Final Prediction Model for UM Metastasis. 

Uniprot Accession Gene Nmae Protein 
Regression 

Coefficients 
Odds Ratio 

Protein Ratio 

Met/NoMet 

Cell Surface 

Localization 

P04439 HLA-A 
HLA class I histocompatibility antigen, A 

alpha chain 
0.436 1.547 1.818 X 

Q86UX7 FERMT3 Fermitin family homolog 3 0.028 1.029 1.419  

P04062 GBA Lysosomal acid glucosylceramidase 0.499 1.647 1.412  

P67936 TPM4 Tropomyosin alpha-4 chain 0.061 1.063 1.330  

P21796 VDAC1 
Voltage-dependent anion-selective channel 

protein 1 
0.546 1.727 1.225 X 

A0FGR8 ESYT2 Extended synaptotagmin-2 0.497 1.643 1.216 X 

P13674 P4HA1 Prolyl 4-hydroxylase subunit alpha-1 −0.310 0.733 1.211  

P23368 ME2 
NAD-dependent malic enzyme, 

mitochondrial 
0.050 1.051 1.201  

Q15056 EIF4H Eukaryotic translation initiation factor 4H 0.702 2.017 1.190  

P50570 DNM2 Dynamin-2 0.131 1.140 1.175 X 

Q99829 CPNE1 Copine-1 0.072 1.075 1.174 X 

Q9HD67 MYO10 Unconventional myosin-X 0.252 1.287 1.160 X 

P49748 ACADVL 
Very long-chain specific acyl-CoA 

dehydrogenase, mitochondrial 
0.072 1.075 1.154  

Q00341 HDLBP Vigilin 0.485 1.623 1.122 X 

P48729 CSNK1A1 Casein kinase I isoform alpha 0.030 1.031 1.121  

P53621 COPA Coatomer subunit alpha 0.490 1.632 1.116  

P11142 HSPA8 Heat shock cognate 71 kDa protein 0.018 1.018 1.096 X 

P54920 NAPA Alpha-soluble NSF attachment protein 0.050 1.051 1.095 X 

Q13616 CUL1 Cullin-1 −0.178 0.837 0.903 X 

Q9BPX5 ARPC5L 
Actin-related protein 2/3 complex subunit 5-

like protein 
−0.102 0.903 0.895  

P38606 ATP6V1A V-type proton ATPase catalytic subunit A −0.124 0.883 0.885 X 

Q9BR76 CORO1B Coronin-1B −0.110 0.896 0.874 X 

Q96TA1 NIBAN2 Protein Niban 2 −0.448 0.639 0.864 X 

Q14344 GNA13 
Guanine nucleotide-binding protein subunit 

alpha-13 
−0.213 0.808 0.844 X 

P01024 C3 Complement C3 −0.124 0.883 0.840 X 

Q8N1G4 LRRC47 Leucine-rich repeat-containing protein 47 −0.391 0.677 0.838  

Q14624 ITIH4 Inter-alpha-trypsin inhibitor heavy chain H4 −0.380 0.684 0.836 X 

Q9NXF1 TEX10 Testis-expressed protein 10 −0.512 0.599 0.802  

P62899 RPL31 60S ribosomal protein L31 −0.094 0.911 0.795  

Q96I99 SUCLG2 
Succinate--CoA ligase [GDP-forming] subunit 

beta, mitochondrial 
−0.254 0.775 0.789 X 

Q9BZQ8 NIBAN1 Protein Niban 1 −0.095 0.910 0.720 X 

P28161 GSTM2 Glutathione S-transferase Mu 2 −0.171 0.843 0.710  

The above 32 protein prediction model for UM metastasis was generated with the LASSO modeling method and provided 

93% discriminatory accuracy based on the AUC of the ROC curve in Figure 6. Cell surface localization reflects GO analysis 

prediction results for plasma membrane proteins. 
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Figure 6. Receiver operating characteristic curve for the UM metastasis prediction model in Ta-

ble3. Corrected area under the ROC curve = 0.93. 

3. Discussion 

In order to achieve a better understanding of the mechanisms of UM metastasis and 

protein biomarkers for UM metastasis, we pursued quantitative proteomics analysis of 

pUM using LC MS/MS iTRAQ technology. This is the largest quantitative proteomic study 

of this rare cancer to date and encompassed 100 pUM specimens, including 53 metasta-

sizing and 47 non-metastasizing pUM. The specimens were collected at academic oncol-

ogy centers in the UK and USA and all exhibited well-defined metastatic status from do-

nor clinical records, health and survival histories, and genetic prognostic analyses. The 

status of all metastasizing specimens was confirmed by histopathology analysis of either 

liver biopsies or liver metastasis resection tissues. Metastatic deaths are most common in 

the first 10 years following UM diagnosis, with rare occurrences beyond 20 years [47]. 

Accordingly, it remains possible that some of the tumors classified as non-metastasizing 

in this study may become metastasizing melanoma over time, as proportions of the cured 

fraction evolve [48]. 

Quantitation of pUM protein was determined relative to pooled normal choroid tis-

sue excised from six metastasizing and seven non-metastasizing pUM donor eyes, and 

each normal choroid specimen was validated by proteomic analysis to be a suitable cho-

roid control component. A total of 3935 pUM proteins were quantified with at least two 

unique peptides, and the quantitation was independently supported by Western blot anal-

ysis. Overall, the average determined proteomes of the metastasizing and non-metasta-

sizing pUM were very similar, with only about 11% of the total proteins exhibiting signif-

icant quantitative differences relative to the choroid control, as well as to each other. Based 

on rigorous statistical criteria, a total of 402 DE proteins were identified, including 191 DE 

proteins elevated in metastasizing pUM and 211 DE proteins elevated in non-metastasiz-

ing pUM. Our DE criteria includes a minimum fold change requirement of ± 1 SD from 

the mean, without which an additional 28 proteins could be classified as DE based on an 

adjusted p-value  0.05 and no missing data. 

Although extensive gene expression analyses were not pursued, we did compare the 

100 pUM proteomic dataset with transcriptomic results from The Cancer Genome Atlas 

(TCGA) study of 80 UM patients [49] for possible insights into the mechanisms of UM 

metastasis. The TCGA study divided UM patients into four biological subsets of metasta-

sis risk (cluster one with the lowest risk to cluster four with the highest risk) based on 

genomic aberrations, transcriptional features, and clinical outcomes. The TCGA study 

also incorporated data from an independent gene expression study of 63 UM patients re-

ported by Laurent et al. [50]. Table 4 provides a comparison of our proteomic data with 

TCGA and Laurent coding mRNA, including quantitative comparisons of transcripts 

grouped by somatic copy number alteration (SCNA) or by mRNA features in the two 

highest metastasis risk clusters, namely three and four. Table 4 shows that a majority (87–

90%) of the 3935 proteins quantified in our study were detected in the TCGA and Laurent 
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gene expression studies, including 91–94% of the DE proteins we identified, and with cor-

relation levels of gene and protein expression (17–32%) consistent with literature values 

[51]. Table 4 also shows that TCGA and Laurent transcripts differentially abundant (DA) 

in clusters three versus four and grouped based on the somatic copy number alteration 

(SCNA) correlate well with 17 DE proteins more abundant and 2–3 DE proteins less abun-

dant in metastasizing pUM. DE proteins associated with TCGA transcripts identified as 

up or down in cluster three versus cluster four and grouped based on mRNA correlate 

less well. Only ~28% of the DE proteins corresponding to transcripts up in cluster three 

were elevated in metastasizing pUM and only ~36% of the DE proteins corresponding to 

transcripts down in cluster three were decreased in metastasizing pUM. The DE proteins 

associated with these TCGA transcripts are provided in Table S13. Table 3 shows an ex-

cellent agreement between the DE proteins associated with TCGA and Laurent transcripts 

grouped by SCNA in clusters three versus four. Table 3 also shows the specific differences 

in DE proteins elevated or decreased in metastasizing pUM that are associated with the 

TCGA transcripts grouped by mRNA expression levels in clusters three versus four. These 

comparative analyses may be helpful for future studies, but also reinforce the value of 

coordinated protein and gene expression analyses of the same specimens. 

Table 4. Comparison of UM Proteomic Results with TCGA and Laurent Gene Expression Data. 

 
TCGA 

Coding 

mRNA 

Laurent 

Coding 

mRNA 

TCGA 

Transcripts   

DA SCNA 

Cluster 3 v 4 

TCGA + 

Laurent 

Transcripts    

DA SCNA 

Cluster 3 v 4 

TCGA 

Transcripts Up 

in mRNA 

Cluster 3 v 4 

TCGA 

Transcripts  

Down in mRNA 

Cluster 3 v 4 

Number transcripts * 12,319 13,142 591 510 338 2172 

Transcripts Identified at protein level 

* 
3433 3524 133 128 109 373 

Fraction of transcript detected as 

proteins 
27.9% 26.8% 22.5% 25.1% 32.2% 17.2% 

Total DE proteins 378 364 20 19 18 28 

DE proteins Elevated in Mets 181 181 17 17 5 18 

DE proteins Decreased in Mets 197 183 3 2 13 10 

* From Robertson et al. 2017 Cancer Cell 32, 204. 

In light of the significant proteomic similarities between metastasizing and non-me-

tastasizing pUM, biological differences possibly contributing to metastasis were sought 

through bioinformatic analyses of 402 DE proteins. Two well-established bioinformatic 

analysis platforms (i.e., Reactome and IPA) suggested the most significant difference be-

tween metastasizing and non-metastasizing pUM was the over-representation of path-

ways in the immune system for proteins elevated in metastasizing pUM as opposed to 

proteins elevated in non-metastasizing pUM, which over-represented housekeeping path-

ways largely involving metabolism. DE proteins elevated in metastasizing pUM were pre-

dicted to function in processes involving the cytotoxicity of cells, stress response, disrup-

tion of the Golgi apparatus, degranulation (of neutrophils, lymphocytes, and platelets), 

transport, organization of organelles, endocytosis, homeostasis, and autophagy. In con-

trast, DE proteins elevated in non-metastasizing pUM were predicted to function in pro-

cesses involving protein synthesis; translation of proteins; nonsense-mediated mRNA de-

cay; and metabolism of RNA, proteins, and carbohydrates. IPA predicted an upstream 

regulator effects network for DE proteins elevated in metastasizing pUM that suggests 

hypotheses for testing regarding immune cell and tumor cell functions. 

Bioinformatic analyses of 143 DE immune proteins identified in pUM support the 

notion that immune system pathways are strongly over-represented in metastasizing 

pUM, while housekeeping pathways are emphasized in non-metastasizing pUM. Reac-

tome analysis of the 83 DE immune proteins elevated in metastasizing pUM (Table S11) 
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provided several significant immune system pathway additions to those listed in Table 

S7, including MHC class II antigen presentation, STING mediated induction of host im-

mune responses, IRF3-mediated induction of type I IFN, signaling by interleukins, gene 

and protein expression by JAK-STAT signaling after interleukin-12 stimulation, interleu-

kin-35 signaling, and interleukin-6 signaling. Pathway analysis of the 60 DE immune pro-

teins elevated in non-metastasizing pUM (Table S12) generated a few significant immune 

system pathways not listed in Table S8, including neutrophil degranulation, activation of 

C3 and C5, alternate complement activation, and signaling by interleukins. However, 

many other over-represented pathways were predicted for these 60 DE immune proteins, 

the most significant being associated with metabolism, signal transduction, hemostasis, 

and the transport of small molecules. Two limitations of our bioinformatic results warrant 

noting. First, the relatively small number of DE immune proteins (n = 143) available for 

analysis limited the pathways exhibiting both significant p-values and significant false 

discovery rates. Second, bioinformatic predictions generally evolve over time as the rele-

vance of genes and proteins becomes better understood and the biological knowledgebase 

expands. Nevertheless, the bioinformatics results in this study suggest the immune sys-

tem plays a significant role in metastasizing pUM. It will be important to localize the DE 

proteins within pUM and the TME to determine the degree of immune infiltration in me-

tastasizing versus non-metastasizing pUM, and to facilitate the identification of therapeu-

tic targets. This will be achievable, yet challenging, as only a fraction of the 402 DE pro-

teins have so far been localized by immunohistochemical analyses. DE proteins localized 

to pUM cells include HSP1 [52], HLA-A [53], HLA-DRA [53], 2M [53], SDCBP [54], ATM 

[55], and those localized to the TME include LGALS3 [22] and HLA-DRA [56]. 

The apparent over-representation of immune system pathways in metastasizing 

pUM suggests an active immune response, despite metastatic UM patients being largely 

unresponsive to immunotherapy. Over-representation of immune system pathways in 

metastasizing pUM may be a compensatory mechanism to one or more malfunctioning 

immune components, as yet unknown. Evidence consistent with a compromised immune 

system can be found among the identified DE immune proteins (Table S10) and includes 

decreased amounts of key immune proteins in metastasizing pUM such as complement 

C3, complement factor B, and CD81 antigen. Other DE immune proteins decreased in 

abundance in metastasizing pUM such as programmed cell death 6-interacting protein, 

cell death interacting protein 4, and heat shock protein beta-1 further suggest a compro-

mised immune system in UM metastasis. Identifying key molecular weaknesses within 

the UM immune system remains a major challenge.  

UM patients show a limited response to immunotherapy, in contrast to patients with 

other cancers, such as cutaneous melanoma, where the immune checkpoint regulator 

(ICR) blockade has improved patient outcomes. Transcriptomic investigations have re-

ported that conventional ICRs are in low abundance in pUMs [20,21], and our im-

munoprofiling results support this finding, despite the low correlation (~20%) between 

protein and gene expression in mammals [51]. Seven of the 16 ICRs we detected (Figure 

7) were among the 38 ICRs also detected by Figueiredo et al. [21], including CDH1, FYN, 

HLA-DPA1, HLA-DQB1, HMGB1, LYN, and NT5E. Overall, we detected 22% of the 264 

immune transcripts Figueiredo et al. [21] reported to be up or down regulated in the 80 

pUM TCGA donor cohort [49]. Durante et al. [20] investigated both pUMs and liver me-

tastases (mUMs) and reported over 2700 immune genes, of which we detected about 12% 

at the protein level (Figure 7). The Durante et al. study [20] reported a strong ICR gene 

expression of LAG3; variable expression of TIGIT; and minimal expression of PDCD1, 

CTLA4, HAVCR2, and TNFRSF9, none of which we detected at the protein level. We did 

detect 10 of the 38 ICRs in the Durante et al. [20] dataset (FYN, HLA-DPA1, HLA-DPB1, 

HLA-DQB1, HMGB1, LYN, PPP2CA, PPP2R1A, PPP2R5C, and PTPN6), all of which were 

of low to average abundance, except HLA-DPA1. Only two ICRs in our pUM proteomic 

dataset, namely HMGB1 and NT5E, were among the 60 immune transcripts identified in 

the liver mUMs by Krishna et al. [22]. Overall, we detected 24 immune proteins in pUM 
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in common with the liver mUM transcripts detected by Krishna et al. [22] and Figueiredo 

et al. [21]. 

 

Figure 7. Immune Checkpoint Regulators and Immunosuppressive Proteins. The number of ICRs, 

immunosuppressive proteins, and total immune proteins quantified by proteomics in pUM is 

compared with similar immune transcripts reported in three recent transcriptomic studies. Tran-

scriptomic Study 1 (Figueiredo et al. 2000) data is from pUM only; Transcriptomic Study 2 (Du-

rante et al. 2000) includes data from both pUM and liver mUM; and Study 3 (Krishna et al. 2000) 

data is from liver mUM only. 

Our proteomic results suggest two possible conventional ICR candidates for immune 

checkpoint blockades. We detected CDH1 in all 100 specimens, and although not a DE 

protein, CDH1 was significantly elevated in metastasizing pUM relative to the choroid 

control, and is an upregulated component of the widely used gene expression assay for 

UM metastasis [27]. HLA-DPA1 was significantly more abundant in metastasizing pUM 

relative to both the choroid control and non-metastasizing pUM, and lacked DE status 

because it was detected in only 70% rather than 80% of the pUM. These results suggest 

CDH1 and HLA-DPA1 be considered as possible immunotherapy targets for blockade. 

A final note is warranted regarding non-conventional ICRs. A majority of the 15 con-

ventional ICRs (67%) detected in this study are enzymes functioning in phosphorylation 

and dephosphorylation, and include two kinases and eight phosphatases. Only two of 

these enzymes (PPP2R1A and PTPN11) were detected in all 100 pUMs and neither were 

significantly altered in abundance. Although not classified as ICRs, we detected 15 other 

kinases and phosphatases as DE immune proteins (Table S10). These enzymes include 

four kinases (PDXK, ATM, PRKDC, and CSNK1A1) and two phosphatases (ACP2 and 

PTPN1) elevated in metastasizing pUM and seven kinases (RPS6KA3, PGK1, PRKRA, 

RACK1, OXSR1, PPKAR2A, and PRHAR1A) and two phosphatases (PPP2R2A and 

PTPN23) decreased in metastasizing pUM. Future investigations might consider evaluat-

ing the potential of these regulatory enzymes as ICRs in UM. More broadly, UM exhibits 

a high level of oxidative phosphorylation [57], and global phosphoproteomic studies are 

warranted to better understand the metabolic switches controlling pUM proliferation and 

to identify therapeutic targets. 

Our proteomic results also support the recently reported immune-suppressive na-

ture of UM tissues [20–22]. Ten of the 28 immunosuppressive proteins we detected in 

pUMs were among the 64 immunosuppressive genes reported by Figueiredo et al. [21], 
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including four DE proteins (HLA-A, HLA-DRA, LGALS3, and STAT1). Seventeen of the 67 

immunosuppressive genes identified in Durante et al. [20] were also detected at the pro-

tein level in this study, including five DE proteins (HLA-A, HLA-DRA, LGALS3, STAT1, 

and TMED2). Relative to liver mUM, the proteins we identified in pUMs were among the 

23 immunosuppressive transcripts reported Krishna et al. [22] and Figueiredo et al. [21] 

in mUMs, including four DE proteins (CD14, HLA-A, HLA-DRA, and LGALS3). 

Prediction modeling of the pUM proteomic dataset yielded 93% discriminatory ac-

curacy in identifying metastasizing and non-metastasizing pUM, providing proof-of-con-

cept that a high accuracy prediction of UM metastasis is possible based on protein expres-

sion. Current UM prognostic methods could and should be improved, as they poorly dis-

criminate patients with the lowest metastatic risk from those with longer-term risk. Our 

proteomic results demonstrate that on a molecular level, protein-based UM prognostic 

methods would complement gene expression methods, as only 3 of the 12 genes used for 

the prognosis of UM metastasis based on gene expression [27] were detected in this study, 

namely CDH1, FXR1, and LTA4H. We used 32 pUM protein predictors in the current pre-

diction model, but anticipate this number can be reduced further with additional research. 

While we used mass spectrometric technology to quantify proteins, the pUM protein ex-

pression could be measured rapidly with high sensitivity and specificity with a multiplex 

immunoassay. Our prediction modeling results provide a foundation for antibody selec-

tion for developing such an immunoassay, a technology with emerging potential in the 

analysis of UM serum and vitreous specimens [58,59]. About 56% of the predictors in our 

model are probable cell surface proteins, a property that can facilitate the development of a 

liquid assay for blood-borne pUMs. A liquid assay would provide a non-intrusive method 

for earlier detection of UM metastasis and monitoring of the disease progression and thera-

peutic efficacy. Our prediction modeling results, the continued detectability of pUM circulat-

ing tumor cells and DNA [32,60–63], and improved isolation methods [64] all provide sup-

port and encouragement for the future development of a liquid assay for UM metastasis. 

4. Materials and Methods 

4.1. Specimens 

Primary uveal melanoma (pUM) samples were collected from UM patients undergo-

ing ocular enucleation at the Cole Eye Institute, Cleveland Clinic (n = 37), and at the De-

partment of Molecular and Clinical Cancer Medicine, University of Liverpool (n = 63). The 

UM eyes were from 53 males and 47 females and ranged in age from 28–86 years (average 

age of 63 years). Thirteen choroid specimens used in a pooled reference control for the 

proteomic analysis of the pUM were excised far from tumors in enucleated UM eyes col-

lected at the University of Liverpool and are identified in Table S1. These choroid control 

specimens included six from metastasizing and seven from non-metastasizing pUM-con-

taining eyes, of which eight were males and five were females, and exhibited an average 

donor age of about 65 years. Choroid tissues from nine disease-free postmortem eyes were 

obtained from the Cleveland Clinic Eye Bank, Cleveland, OH, and from the National Dis-

ease Research Interchange, Philadelphia, PA [33]; these tissues were used in a pooled con-

trol for proteomic analysis of the choroid excised from UM eyes. The metastatic status of 

the pUM specimens was established by a combination of detailed patient health histories 

and clinical survival data, and by fluorescent in situ hybridization analyses (FISH), ge-

nome-wide single-nucleotide polymorphism analysis (SNP), multiplex ligation-depend-

ent probe amplification (MLPA), and/or gene expression analyses. Cytogenetic analyses 

for chromosomes 3 and 8 abnormalities by FISH were performed in the Department of 

Molecular Pathology, Cleveland Clinic; SNP analyses for chromosome 3 abnormalities 

were performed in the Genomics Core Facility at the Cleveland Clinic; and MLPA anal-

yses for chromosomal deletions and duplications associated with UM were performed in 

the Department of Molecular and Clinical Cancer Medicine, University of Liverpool. The 
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gene expression analyses for the 12 genes associated with the UM metastasis were per-

formed at Castle Biosciences Inc., Phoenix, AZ. A histopathology analysis of the liver bi-

opsies or liver metastasis resection specimens was employed to confirm the metastatic 

status of all of the metastasizing pUM. The properties of the pUM specimens used for the 

proteomic analysis are described in Table S1. 

4.2. Sample Preparation 

The pUM tissues (n = 100) and choroid control tissues from pUM-containing eyes (n 

= 13) were homogenized in 100 mM triethylammonium bicarbonate (TEAB) containing 

2% SDS and 1 mM -mercaptoethanol. Protein was extracted three times from the cell 

debris with centrifugation and the quantity of soluble protein was estimated by the bicin-

choninic acid assay (Pierce) [65]. Each soluble protein fraction was reduced with 10 mM 

DTT, alkylated with 40 mM iodoacetamide, and then quenched with 40 mM DTT [66]. 

About 200 μg of reduced and alkylated protein from each fraction was precipitated with 

two volumes of ice-cold acetone. The protein pellets were resuspended in 100 mM TEAB 

buffer containing 0.5 mM CaCl2 and were digested overnight at 37 °C with trypsin (ini-

tially with 2% trypsin (w/w), followed in 2 h with another 2% (w/w), and the next day with 

another 1% (w/w) for 2h). Following proteolysis, soluble peptides were quantified by 

AccQ-Tag amino acid analysis [67,68]. Equal amounts of each of the 13 choroid specimens 

from the UM eyes were pooled to form a single reference control sample for the proteomic 

analysis of the 100 pUM. The preparation of the pooled choroid control from nine disease-

free eyes was as previously described [33]. 

4.3. ITRAQ Labeling and Peptide Fractionation 

iTRAQ labeling with an 8-plex iTRAQ kit was performed as previously described 

[33,68–71]. The choroid specimens from the UM eyes were first analyzed by LC MS/MS 

relative to the choroid from disease-free eyes. Tryptic digests of the 13 choroid specimens 

from UM eyes were each labeled with a single iTRAQ tag and combined in two unique 

batches with the pooled choroid control sample from nine disease-free eyes labeled with 

a unique iTRAQ tag. Specifically, one batch contained choroid specimens from four met-

astatic and three non-metastatic UM eyes (25 μg each), and the other batch contained cho-

roid specimens from two metastatic and four non-metastatic UM eyes (25 μg each); both 

batches contained the disease-free choroid control (25 μg each). Each sample batch was 

individually fractionated by reverse-phase high performance liquid chromatography 

(RPHPLC) at pH 10 on a Waters xBridge BEH300 C18 column (3.5 μ particle size, 2.1 × 150 

mm). Chromatography was performed at a flow rate of 200 μL/min using 0.1% 

NH4OH/aqueous acetonitrile solvents, a 0.7%/min acetonitrile gradient over 45 min; ab-

sorbance was monitored at 214 nm and the fractions were collected at 1 min intervals. 

Chromatography fractions encompassing the entire elution were selectively combined 

and dried, and a total of 12 fractions per batch were analyzed using LC MS/MS. 

iTRAQ labeling of the pUM specimens proceeded after the 13 choroid tissues from 

the UM eyes were demonstrated by proteomic analysis to be suitable to serve in a pooled 

reference control. Tryptic digests of the 100 pUM (25 μg per sample) were each labeled 

with a single iTRAQ tag and combined in 15 unique batches (6–7 specimens per batch) 

with the pooled choroid control (25 μg/batch) that was also labeled with a unique iTRAQ 

tag. Each batch of six to seven specimens contained both metastasizing and non-metasta-

sizing pUM and specimens from both Cleveland and Liverpool, whenever possible. Each 

batch of pUM specimens was fractionated by RPHPLC at pH 10, as described above, and 

the chromatography fractions were collected, combined, and dried for LC MS/MS analy-

sis. 
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4.4. Protein Identification 

RP-HPLC pH10 chromatography fractions were analyzed by LC MS/MS, as de-

scribed elsewhere, using an Orbitrap Fusion Lumos Tribrid mass spectrometer [33,68–71]. 

Protein identification utilized the Mascot 2.6.2 search engine and the UniProt human ref-

erence proteome database version 2020_04 (20,376 human sequences). Database search 

parameters were restricted to three missed tryptic cleavage sites, a precursor ion mass 

tolerance of 10 ppm, a fragment ion mass tolerance of 20 mmu, and a false discovery rate 

of 1%. Protein identification required the detection of a minimum of two unique peptides 

per protein. Fixed protein modifications included N-terminal and ε-Lys iTRAQ modifica-

tions and S-carbamidomethyl-Cys. Variable protein modifications included Met oxida-

tion, Asn and Gln deamidation, and iTRAQ Tyr. A minimum Mascot ion score of 25 was 

used for accepting the peptide MS/MS spectra. 

4.5. Protein Quantitation 

The iTRAQ tags on pUM peptides and choroid controls were quantified by the 

weighted average method [72] using the Mascot 2.6.2 Summed Intensities Program. Pro-

tein quantitation required a minimum of two unique peptides per protein, utilized a re-

porter ion tolerance of 10 ppm, and a Mascot peptide ion scores  25. Protein ratios were 

determined in log space and were transformed for reporting. 

4.6. Statistical Analysis 

Quantile normalization was used to normalize the mass spectrometry iTRAQ prote-

omics data. The missing protein expression data were further imputed using the k-nearest 

neighbor method. Batch effects were also examined. Means and standard error of the 

mean (SEM) were calculated for proteins quantified in metastasizing pUM (n = 53) and 

non-metastasizing pUM (n = 47). Differential expression (DE) analyses were performed 

using the limma package in R, and the results were adjusted for multiple-testing using the 

Benjamini–Hochberg procedure [73,74]. Criteria for DE proteins included average protein 

ratios (metastasizing pUM/non-metastasizing pUM) above or below the mean by at least 

one standard deviation, with adjusted p-values ≤ 0.05 and ≤20% for the imputed data. Fur-

ther criteria for significantly elevated or decreased proteins included average ratios 

(pUM/control) above or below the mean by at least one standard deviation (SD), with adjusted 

p-values ≤ 0.05 and ≤20% for the imputed data. A minimum fold-change of 1 SD and a max-

imum of 20% allowance for missing data was incorporated into these criteria to minimize 

the impact of quantitative error on the identification of DE and significantly altered pro-

teins. 

A multivariate prediction model was pursued using pUM DE proteins as predictors. 

We explored three different modeling methods, namely logistic regression with the Least 

Absolute Shrinkage and Selection Operator (LASSO), logistic regression with the Akaike 

Information Criterion (AIC) to select predictors, and the Support Vector Machine (SVM). 

The model with the highest accuracy was chosen as the final model, for which we also 

constructed the receiver operating characteristics curve and evaluated the area under the 

curve with correction for optimism using Bootstrap. Sensitivity and specificity were com-

puted to measure the model’s ability to discriminate between metastasizing and non-me-

tastasizing pUM. All of the analyses were conducted with R 3.6.0 (cran.r-project.org, ac-

cessed date: 26 April 2021). 

4.7. Bioinformatics 

Bioinformatic analyses were performed with Ingenuity Pathways Analysis (IPA, Qi-

agen, Release Date 15 September 2020), NanoString Technologies, Seattle, WA (2019 and 

2020 versions), the UniProt Knowledge Base (https://www.uniprot.org/, version August 

2020, 25 March 2021), and the Reactome Pathway Browser [71] (https://reactome.org, ver-

sion 76, 30 March 2021). Immune proteins within the determined pUM proteome were 
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identified by interrogating a total of 2313 unique immune genes within gene panels from 

IPA and NanoString Technologies. Interrogated gene panels included 47 IPA immune re-

sponse pathways containing 1515 unique genes and 2 NanoString Technologies panels 

(the nCounter PanCancer Immune Profiling Panel and the nCounter Immune Exhaustion 

Panel) representing 70 pathways and containing 1302 unique genes. In addition, immune 

proteins were sought among differentially expressed pUM proteins by gene ontology 

(GO) analysis using the UniProt Knowledge Base and Reactome Pathway Analysis. Cate-

gorization of immune suppressive and immune checkpoint regulator proteins was done 

as described by NanoString Technologies, Figueiredo et al. [21], Krishna et al. [22], and 

Waks et al. [75]. 

4.8. Western Blot Analysis 

Western blot analysis [69,76] of the pUM and choroid control tissues was performed 

using 12% or 4–20% acrylamide Invitrogen/Novex precast SDS-PAGE gels (1 mm × 7 cm 

× 13 cm, ThermoFisher, Waltham, MA, USA), polyvinylidene fluoride (PVDF) membrane 

(Millipore Sigma, Burlington, MA, USA), and IRDye 680RD secondary antibody detection 

(LI-COR, Lincoln, NE, USA). Fluorescence was detected with a LI-COR Odyssey CLx im-

aging system with Image Studio 5.2. Prior to Western blot analysis, and the sample 

amounts applied to SDS-PAGE (~10 μg) were equalized based on Coomassie blue staining 

intensities [77] quantified by densitometry using a Bio-Rad GS-710 instrument and Bio-

Rad Quantity One software 4.6.8. The PVDF membranes were blocked with a LI-COR 

Odessey blocking buffer and probed with primary antibodies at 4 °C overnight. The fol-

lowing 12 primary antibodies were utilized: anti-glutathione S-transferase Omega 1 

(mouse monoclonal antibody (mAb) at 0.5 μg/mL, #MABN642, EMD Millipore); anti-mac-

rophage migration inhibitory factor (mouse mAb at 1.6 μg/mL, #MAB289-100, R&D Sys-

tems); anti-syntenin-1 (rabbit pAb at 1:1000 dilution, #A5360, ABclonal, Woburn, MA, 

USA); anti-HLA class II histocompatibility antigen, DR alpha (rabbit pAb at 1:2000, 

#A11787, ABclonal); anti-galectin-3 binding protein (goat pAb at 0.2 μg/mL, #AF2226, 

R&D Systems, Minneapolis, MN, USA); anti-vitronectin (mouse mAb at 0.4 μg/mL, 

#MAB2349, R&D Systems); anti-nidogen-2 (goat pAb at 0.3 μg/mL, #AF3385, R&D Sys-

tems); anti-aspartate aminotransferase (rabbit pAb at 1:2000, #A6915, ABclonal); anti-ly-

sosome membrane protein 2 (goat pAb at 0.2 μg/mL, #AF1966, R&D Systems); anti-gua-

nine nucleotide-binding alpha-11 (rabbit pAb at 1:2000, #A2731, ABclonal); anti-lac-

toylglutathione lyase (rabbit pAb at 1:800, #A1932, ABclonal); and anti-cAMP-dependent 

protein kinase type II-alpha regulatory subunit (rabbit mAb at 0.6 μg/mL, # MAB8000, 

R&D Systems). Secondary antibodies were purchased from LI-COR, USA, and used at 

1:5000 dilution, for 2–3 h at room temperature in the dark, and included the following: 

donkey anti-mouse IgG (#925-68072), donkey anti-goat IgG (#925-68074), and goat anti-

rabbit IgG (#925-6807). 

5. Conclusions 

In conclusion, quantitative proteomic analysis of 100 pUM led to the identification of 

a significant number of differentially expressed proteins and insights into the bioinfor-

matic differences between metastasizing and non-metastasizing pUM, including differ-

ences in the immune response. Immune profiling of the determined pUM proteome con-

firmed transcriptomic findings that the TME of UM is immune-suppressive and contains 

a low abundance of conventional immune check point regulators. The proteomic results 

suggest CDH1, HLA-DPA1, and several DE immune kinases and phosphatases as possi-

ble candidates for immune checkpoint blockade therapy. Prediction modeling of the pro-

teomic data showed that metastasizing and non-metastasizing pUM can be identified with 

93% discriminatory accuracy, supporting protein-based prognostic methods for detecting 

UM metastasis. Without effective treatments for metastatic UM, improved prognostic 

methods and earlier detection could enhance survival options. 
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