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ABSTRACT 
 

The Dynamic and Multidimensional Context of Urban Mobility 

Yunzhe Liu 

 

The process of urbanisation exacerbates tensions between people and urban resources, 

which are particularly evident in those challenges related to urban mobility planning. 

Meanwhile, the expanded availability of Big (urban) Data has enabled new avenues for 

urban analysts to draw perspectives that better describe and model the urban 

environment, and often with a finer spatiotemporal scale. Such data are also increasingly 

offering the potential to integrate studies at both spatial and temporal dimensions, better 

capturing the dynamic context of urban environments. These studies could offer more 

holistic insights into aspects of the form and function of cities, facilitating improved 

context-based decision making. 

With the continuous advancement of information technology and the exponential 

expansion of computational power, it has become technically feasible to integrated 

dynamic and multidimensional variables into urban mobility research. Within this 

context, this thesis presents three published journal articles that address methodological 

and substantive research gaps in urban analytics by developing an improved analytical 

framework based on conventional geodemographic analysis to investigate aspects of the 

urban environment within the context of urban mobility. The framework presents a 

typical knowledge-discovery workflow that systematically links measures of both 

spatiotemporal dynamics and multidimensional urban contexts. It covers detailed steps 

from the initial data selection to classification and interpretation, contributing to a better 

understanding of space, time, and urban mobility contexts. 

As the research progressed, the contents in the prototype framework were constantly 

improved and enriched, and the developed framework has been implemented with open 

data collected from the targeted areas to conduct mobility-related research in practice. 

The usefulness of this framework has been exemplified by case studies, and it may 

easily be applied to other urban settings. Moreover, its contributions to related literature 

have also been exemplified through peer-reviewed academic papers.  
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1.0 INTRODUCTION  
 

This chapter serves as the introduction to this thesis. It begins by describing the 

background and motivations for the research. The research objectives are elaborated. A 

summary of the general structure of the thesis is presented, highlighting the main 

contributions from each chapter. 

 

1.1 RESEARCH BACKGROUND AND CHALLENGES 

1.1.1 URBANISATION AND URBAN MOBILITY CHALLENGES 
 

The number of people who live in cities is growing. According to UNDESA (2018), 

55% of the global population (i.e., 4.2 billion inhabitants) reside in urban settlements, 

with estimates suggesting that, when combined with the overall population growth, this 

proportion is likely to increase to approximately 60% by 2030 and close to 70% by 

2050. Urbanisation is ‘a complex socioeconomic process that transforms the built 

environment, converting formerly rural into urban settlements, while also shifting the 

spatial distribution of a population from rural to urban areas’ (UNDESA, 2018, 3). In 

2009 there was a tipping point where more than half of the global population resided 

within urban as opposed to rural areas.  

The quantity and scale of cities are also increasing. In 2018, there were 33 megacities, 

with populations over 10 million, and 10 more cities were projected to join this 

community by 2030. Meanwhile, the number of cities between 500,000 and 1 million 

people is also expected to grow from 598 to 710 (UNDESA, 2018). The total land area 

of cities is expanding, with rates twice as fast in terms of land area as they are in terms 

of population, and this trend is estimated to be nearly tripled during the period between 

2000 and 2030, adding 1.2 million km² of additional urban built-up area to the world in 

the next three decades (Angel et al., 2011; World Bank, 2020). 

Although urbanisation may bring prosperity and stimulate economic development, the 

rapid transition from predominantly rural to urban living is levying historically 

unprecedented demand for urban resources, posing numerous risks to cities (WEF, 

2019). As cities grow, the demand for urban mobility increases (Michel & Ribardière, 

2017). Such trends have been observed in both the developed and developing countries, 

while supply (e.g., transport infrastructures and capacity), by comparison, has 

consistently lagged far behind demand (de Palma & Lindsey, 2001; Narayanaswami, 



Page | 14  
 

2016). Disequilibrium between the demand for mobility and the supply of the transport 

system results in many negative economic, environmental, and social effects. These 

negative impacts are pervasively embodied in urban mobility challenges associated with 

high private motor vehicle dependency, including but not limited to excessive 

greenhouse gas emission, public health issues, increasing levels of congestions and road 

accidents, air and noise pollution, and wellbeing-related social exclusion problems 

(Chavez-Baeza & Sheinbaum-Pardo, 2014; Ettema et al., 2016; Hickman & Banister, 

2014; Hynes, 2017; Rodrigue, 2020; She et al., 2017).  

 

1.1.2 COMPLEX URBAN ENVIRONMENT 
 

The aforementioned challenges not only threaten the urban systems in terms of 

socioeconomic and environmental aspects but also require more effective and holistic 

decision-making from urban planners and policymakers with significant concerns for 

“inclusive, healthy, resilient, and sustainable” urban planning at local, regional, and 

national levels (Webb et al., 2018; World Bank, 2020). Cities are quintessential complex 

systems, involving various components that are constantly changing with multifaceted 

relationships and interactions, some of which are hard to explain and include nonlinear 

dynamics, feedbacks, and high interconnectivity and unpredictability (Alberti et al., 

2018; Batty, 2013b; Haken & Portugali, 2021; McPhearson et al., 2016; Stevenson & 

Gleeson, 2019). Hence, ‘they are full of contestations, conflicts, and contingencies that 

are not easily captured, steered, and predicted respectively’ (Bibri, 2021a, 1). Urban 

decision making needs to be supported by knowledge discovered from insights into 

urban morphology and metabolism (Thakuriah et al., 2017; Webb et al., 2018). These 

complexities make the urban environment challenging to understand and to manage 

when moving towards more sustainable and resilient development pathways, for 

example, the smart city initiative (Betis et al., 2018; Kumar et al., 2020; Rossetti, 2015; 

UN, 2015). 

The complexities of the urban environment are expanded by the heterogeneous pace of 

change among its components. Wegener (1995) has conceptualised the major 

components within the urban environment in his famous model, that is, a model of urban 

models. In his model, the idealised urban environment consists of eight constantly 

changing components that are interconnected with each other and differ in temporal 

rates of change. Transport networks and land use, for example, are slow-changing 

components; and mobility-related components, such as, transport and activities, are fast-
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changing (Rodrigue, 2020; Wegener, 1995). Along with the accelerating urbanisation 

process, urban environments are becoming even more complicated and changeable, with 

more and more layers of interactions between their inhabitants and diverse components 

(Andrienko et al., 2020; Batty, 2013). From the urban mobility perspective, these 

complexities could be reflected in the intensity and distribution of urban transport 

resources at different times and locations, representing the dynamic aspect of urban 

mobility (Yuan & Raubal, 2012). Due to the close association between urban mobility 

and multidimensional urban contexts, for example, land use and socioeconomic 

attributes (Cervero & Kockelman, 1997; Ewing & Cervero, 2001, 2010), the complexity 

of urban mobility is further amplified, raising a myriad of challenges to urban transport 

planning and management. 

As Gershenson (2016) has stated, it is difficult to separately study factors in any 

complex system since ‘its future is partly but strongly determined by its interactions with 

other components and its environment’ (p. 1). Hence, comprehensively understanding 

the urban environment and its impact on urban mobility through a systematic evidence-

based activity has become an urgent demand for policymakers, city governors and urban 

planners (Kourtit et al., 2020). This situation requires the enhanced involvement of 

scientists and researchers (e.g., urban scientists and analysts) in urban policy, planning, 

and management processes (McPhearson et al., 2016). As Webb et al. (2018) have 

discussed, ‘researchers can contribute through collaborative knowledge development 

with urban stakeholders, capturing and translating learning for decisionmakers in a more 

systematic way, and facilitating innovation, evolutionary co-design and adaptive 

management of our cities’ (p.57). 

 

1.1.3 UNDERSTANDING THE URBAN ENVIRONMENT FROM DATA 
 

It should be emphasised that the phenomenon of urbanisation is not new, nor are the 

urban challenges emerging from these processes. For example, traffic congestion 

attributed to urban population growth had been an issue for urban areas since the Roman 

Empire (van Tilburg, 2006). However, a principal distinction between contemporary and 

past urbanisation is there are new ways to understand these processes (Singleton et al., 

2017). The emergence of new ways of understanding and managing cities include the 

emergence of various enabling and driving instruments that can monitor activities within 

or attributes of urban environments. The rapid implementation of these instruments in 

everyday practices is enabling the accessing and sharing of data (Bibri & Krogstie, 
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2018; Singleton et al., 2017). With the continuous advancement of information and 

communication technologies (ICTs), the exponential expansion of computational power, 

coupled with the broader availability of urban data (i.e., Big/Urban Data Deluge), there 

has never been a time in history with more abundant data and tools. These data and tools 

provide significant opportunities for urban analysts to deepen their understanding of a 

plethora of urban problems (Andrienko et al., 2020; Batty, 2019; Hao et al., 2015; 

Singleton et al., 2017). 

The majority of early studies in urban mobility are primarily limited in terms of the 

following three perspectives. First, most early studies are confined to data obtained from 

traditional data collection approaches, such as questionnaires and surveys (see Cullen, 

1972; Love & Chapin, 1976), which are labour-intensive, time-consuming, and error-

prone (Yuan & Raubal, 2012). Second, due to the limited spatial and temporal 

granularity, data from the conventional approaches may not provide sufficient evidence 

enabling a comprehensive analysis of the characteristics of the whole urban environment 

(Kong et al., 2020). Third, in the early age of urban mobility study, it was difficult to 

investigate the complex mobility patterns underlying human travel behaviours in space, 

time, and other multidimensional aspects simultaneously due to the lack of necessary 

computational power (Shen & Cheng, 2016). However, owing to the abovementioned 

changes, as in other quantitative urban studies, the landscape of urban mobility study has 

transformed dramatically. According to Long and Liu (2016) and Kong et al. (2020), 

these changes can be summarised into the following trends:  

1) ‘transformation in spatial scale from high resolution but small coverage or 

wide coverage but low resolution to wide coverage with high resolution; 2) 

transformation in temporal scale from static cross-sectional to dynamic 

consistent; 3) transformation in granularity from land-oriented to human-

oriented; and 4) transformation in methodology from conventional research 

group to crowdsourcing’. (p. 295)  

A more in-depth discussion of these changes brought about by the Big (Urban) Data 

Deluge is presented in the literature review (see Section 2.1 in Chapter 2). 

 

1.2 RESEARCH OBJECTIVES 
 

With the increased availability of Big (Urban) Data and the exponential expansion of 

computational power, it has become technically feasible to integrate dynamic and 
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multidimensional variables into urban mobility research. However, gaps in the literature 

continue to pose challenges in the research field. These challenges are preventing urban 

planners and policymakers from gaining a more thorough understanding of the urban 

environment and its mobility and making evidence-based decisions. The details of this 

issue are discussed in Chapter 2, Section 3.3, 4.2, and 5.2.  

Within this context, the main aim of this thesis is to address gaps in the existing 

literature by developing a knowledge-discovery methodological framework to analyse 

the urban environment and urban mobility from multi-sourced urban data. In order to 

systematically achieve this goal, the typical workflow of building a geodemographic 

classification is utilised as the methodological foundation for this thesis. This method is 

a well-established and frequently used contextual approach in urban analytics (specified 

in Section 2.4 in Chapter 2). The developed framework should comprehensively 

consider both dynamic and multidimensional urban contexts while incorporating spatial, 

temporal, and contextual dimensions of urban mobility. To achieve the primary aim, 

several research objectives need to be met and are defined as follows:  

 

• Objective 1: to summarise and improve the typical workflow of building a 

geodemographic classification from existing literature 

• Objective 2: to identify and select variables that are commonly used in both 

traditional and recent studies to build the classification through a comprehensive 

literature review 

• Objective 3: to handle the adverse effects caused by the high dimensionality in the 

dataset by using the dimensionality reduction method 

• Objective 4: to extract urban and human mobility patterns from multi-sourced urban 

data while concurrently considering dynamic and contextual urban contexts  

• Objective 5: to apply the developed framework in the target case study area to 

manifest its utilities and contributions to the existing literature. 
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1.3 THESIS STRUCTURE AND IMPACT STATEMENT 
 

This thesis is organised into six chapters that collectively elaborate on the 

multidimensional and dynamic contexts of urban mobility and how the methodological 

framework proposed in this thesis combines space, time and urban contexts together to 

provide a holistic understanding of urban mobility. In this chapter (Chapter 1), the 

overview of the research background and the research objectives are introduced.  

Chapter 2 contains a comprehensive literature review elaborating the required 

background knowledge for this research in greater depth. The review first provides an 

overview of the contemporary status of the Big Data deluge and its manifestation in 

urban studies, that is, the urban data deluge. This is followed by the introduction of a 

typical knowledge-discovery framework, that is, the data, information, knowledge, 

wisdom (DIKW) hierarchy and its workflow in dealing with urban data. The theoretical 

concept of urban analytics and the relationship between urban contexts and urban 

mobility are reviewed. The latter half of the literature review focuses on 

geodemographics and how the geodemographic classification is created since it 

significantly facilitates the construction of the proposed methodology framework of this 

thesis.  

Based on the conventional geodemographic analysis, this thesis proposes an enhanced 

methodological framework to more comprehensively analyse urban mobility by linking 

measures of both spatiotemporal dynamics and multidimensional urban contexts. The 

framework systematically covers the procedures from the initial data selection to the 

automated feature selection, then moves to data wrangling, processing, cluster analysis, 

and finally to the resulting visualisations and interpretations. The conceptual diagram of 

the methodological framework developed in this thesis is presented in Figure 1.1.  

The overall advantage of the framework developed in this thesis is that it presents a 

relatively detailed knowledge-discovery workflow that presents holistic insight into 

urban mobility through space, time, and urban context. This thesis is of beneficial use in 

urban environment and mobility studies, exemplified by the publication of several 

academic journal articles (see Chapter 3, 4 and 5). The major contributions and 

innovations of the three published journal articles are listed as follows, while the other 

minor contributions are specified in the articles. 
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In the first paper (Chapter 3), the main contributions are twofold. First, this paper 

contains a systematic literature review (SLR) of the existing urban mobility studies, 

aiming to identify commonly used variables capturing those urban contexts important to 

explaining urban mobility patterns. Findings from the SLR expand the traditional ‘three-

Ds’ or ‘five-Ds’, which are concepts to capture a greater multidimensional perspective 

and categorise the identified candidate variables into four domains land use and built 

environment, location and accessibility, socioeconomic and demographic, and transit-

related. These categories provide a theoretical framework guiding initial variable 

selection in building any mobility-related typologies. Second, the paper also contributes 

to the development of an analytical framework that considers the integration of both 

temporal dynamics and contextual domains in the study of urban mobility. Based on the 

framework, interaction and consistency between the context and use can be unveiled, 

with the interpretability of the temporal mobility pattern improved significantly due to 

contextual enrichment.  

Figure 1.1 Conceptual Diagram of The Proposed Methodological Framework 
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The second paper (Chapter 4) presents an innovative methodological contribution in the 

form of a variable selection framework. The proposed framework is based on the 

principal component analysis (PCA) and automatically selects candidate contextual 

variables for a multidimensional indicator. However, innovations of this paper are not 

only confined to automating variable selection but also holistically optimise the data 

processing (e.g., strong correlation pairs) and the output quality (e.g., clustering quality). 

Implementing the proposed framework has been examined by comparing it to a 

benchmark geodemographic classification – 2011 Output Area Classification (2011 

OAC). The overall comparison shows that the classification built, utilising the presented 

framework, outperforms the 2011 OAC in terms of the clustering quality, which is 

explicitly manifested by several statistical indicators. 

Returning to the substantive domain of mobility, the third paper (Chapter 5) utilises the 

frameworks presented in the abovementioned papers to analyse a taxi GPS dataset to 

carry out the urban Area of Interest (AOI) detection. Based on the conventional three-

phase workflow of urban AOI analysis, the research gaps embedded with each phase of 

this process as presented in previous studies are addressed. The proposed framework 

integrates space, time, and urban contexts to provide a comprehensive perspective of 

urban mobility and, thus, better depicts the highly dynamic and multidimensional urban 

environment. The advantages of our framework are threefold. First, the ST-DBSCAN 

algorithm is employed to detect urban travel hotspots across both spatial and temporal 

dimensions. This improvement overcomes the shortcoming of the widely used DBSCAN 

or its derivative algorithms that merely focus on space or time in isolation. Second, 

instead of using polygons to define the boundaries of AOIs, the urban street network is 

creatively utilised as the organic carrier of AOIs, formulating road-constrained AOIs. 

This adjustment not only increases the accuracy of AOI detection but also considers the 

reshaping influence of urban morphology on human mobility, which is often overlooked 

by relevant studies. Finally, both temporal pattern profiling and contextual enrichment 

techniques are adopted to analyse the identified AOIs in more depth. This integrated 

analysis attempts to answer questions about where the AOIs are located, when the AOIs 

appear, what latent attributes affect the configuration and characterisation of an AOI, 

and how the AOIs contextually relate to different travellers.  

Chapter 6 closes the thesis with a concise summary, re-emphasising the research 

outcomes, highlighting the contributions from both theoretical and technical 

perspectives to the scientific literature related to this topic. This summary is followed by 

a discussion of the limitations and future research directions of the study.  
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2.0 LITERATURE REVIEW 
 

This chapter contains a comprehensive literature review. It begins by describing the 

research background elaborated in the previous chapter in greater depth, concentrating 

on topics related to the Big Data deluge and emerging urban data (Section 2.1 and 2.2). 

In Section 2.3, the DIKW hierarchy is reviewed and followed by one of its typical 

manifestations within the context of urban study, that is, urban analytics (Section 2.4). 

The latter half of the literature review focused on geodemographics and how the 

geodemographic classification is created step-by-step since it serves as the theoretical 

and methodological foundation of this thesis; and significantly facilitates the 

construction of the proposed methodology framework of this thesis. 

Objective 1 has been fulfilled in this chapter.   

 

2.1 BIG DATA DELUGE  
 

The phrase Big Data is largely ambiguous and amorphous (Moorthy et al., 2015). Since 

various stakeholders view the Big Data phenomena from a variety of viewpoints, it is 

difficult to provide a precise definition. Although there are no standardised definitions in 

academia or industry, Big Data might refer to datasets that are too large or complex to be 

(efficiently) processed by conventional data processing methods and tools (Kaisler et al., 

2013), or might be simply understood as ‘any data that cannot fit into an Excel 

spreadsheet’ (Batty, 2013a, 274). Compared with traditional datasets, usually referred to 

as ‘small data’, Big Data typically contain massive unstructured attributes requiring to 

be frequently updated, requiring real-time streamed analytics (Chen et al., 2014). 

Various studies have portrayed the major characteristics of Big Data by a series of ‘V’s, 

which have expanded over time (see Khan et al., 2014; Panimalar et al., 2017; Rani et 

al., 2019). These essentially include volume, velocity, and variety (Laney, 2001). 

Additionally, representative Vs denote veracity, validity, and volatility, with one special 

V, that is, value, which is the desired outcome of Big Data processing (Khan et al., 2014; 

Kitchin, 2014a). 

There has been an exponential growth in the volume of data generated since the early 

21st century. Moorthy et al. (2015) have stated that ‘data that the human race has 

accumulated in the past one decades, far exceeds the data that was available to mankind 

during the proceeding century’ (p.74). Hal Varian (cited in Smolan & Erwitt, 2012) has 
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pointed out that more data are being produced every two days at present than in all of 

history prior to 2003. Zikopoulos et al. (2012) have reported that more than 800,000 

petabytes (250 bytes) of data were stored worldwide in 2000. According to an article 

from International Data Corporation (IDC), these data figures increased to 1.8 zettabytes 

(270 bytes) in 2011 and were estimated to exceed 40 zettabytes in 2020 (Gantz et al., 

2012). The recent forecasting figure in the IDC White Paper indicated there would be 

approximately 175 zettabytes of data created, replicated, and consumed worldwide by 

2025 (Reinsel et al., 2018). The explosive growth of Big Data is referred to as the ‘(Big) 

Data Deluge’ (Bibri & Krogstie, 2018; Kitchin, 2013; Kourtit et al., 2020). 

2.1.1 ADVANTAGES OF BIG DATA DELUGE 
 

The promise that Big Data deluge would revolutionise scientific discovery and 

technological innovation is now generally recognised. Big Data deluge has had a far-

reaching impact on the evolution of many research disciplines, particularly urban studies 

and analytics. Recently, there has been much enthusiasm about the potentiality offered 

by the Big Data deluge for better understanding, monitoring, analysing, and planning 

contemporary cities to increase their contribution to the goals of smart, sustainable 

urbanism (Bibri, 2021b, 2021c; Bibri & Krogstie, 2018; Kitchin, 2013; Kong et al., 

2020). 

Kitchin (2013) has pointed out that Big Data deluge provides excellent opportunities for 

studies switching from ‘data-scarce to data-rich; static snapshots to dynamic unfoldings; 

coarse aggregations to high resolutions; relatively simple hypotheses and models to 

more complex, sophisticated simulations and theories’ (p.263). More recently, Kong et 

al. (2020) have systematically reviewed Big Data-based urban studies and listed the 

following advantages of utilising such data to conduct urban studies. First, Kong et al. 

(2020) have pointed out that Big Data can unveil individual-based human activities and 

mobility patterns in multiple dimensions, facilitating urban study toward a “people-

oriented” perspective. For example, my previous work, i.e., Liu and Cheng (2020) have 

utilised the travel transaction histories extracted from the Oyster Card system in London 

to conduct a personalised travel pattern analysis. Passengers with similar travel 

behaviour were grouped together, resulting in several groupings reflecting various 

subway travel patterns. Second, Kong et al. (2020) have also pointed out that compared 

to traditional data, Big Data are more timely. This advantage provides urban analysts 

new opportunities to examine dynamic change within cities at more granular temporal 

scales. Therefore, Big Data-based urban research is more time-scalable, which means 
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that they are simple to aggregate at various time scales such as hourly, daily, weekly, 

monthly, and annually, facilitating a variety of studies, ranging from nearly real-time 

traffic estimation to relatively long-term social mobility analysis (Meng et al., 2020; Wu 

et al., 2020). Third, the emergence of Big Data has made it possible to achieve high 

spatial resolution and wide geographic coverage simultaneously in the study of the urban 

environment and human mobility patterns. These advantageous characteristics have 

alleviated the contradiction caused by using most traditional datasets, that is, making 

trade-offs between spatial resolution and geographic coverage (Long & Liu, 2016). For 

example, Cai et al. (2017) have integrated data extracted from social media and 

nighttime light satellite imagery to analyse the structure of the three metropolitan areas 

in China and replaced the traditional urban administrative units with the redefined 

boundaries based on human activity distributions. 

2.1.2 CHALLENGES OF BIG DATA DELUGE 
 

Along with the advantages offered by Big Data, challenges of using them also exist.  

Kong et al. (2020) and Martin (2015) have highlighted the following three major 

potential problems or challenges incurred in applying Big Data to urban studies.  

First, the data quality issue can be a significant concern in Big Data, which may be 

attributed to data bias, inaccuracies in the data, or a lack of coverage. The manner in 

which the data are collected, the degree of imputed data within the data source, or 

intentional obfuscation by providers due to privacy concerns can all lead to producing 

inaccurate data (Martin, 2015). For example, the map service providers in China are 

required by the law to use a specific coordinate system, that is, GCJ-02, to encrypt their 

GPS data, with the goal of improving national security. In this coordinate system, the 

original GPS data (based on the WGS84 system) are processed by an obfuscation 

algorithm that adds random offsets to both the latitude and longitude, which may cause 

substantial research problems in the cross-region analysis (Xu et al., 2016). Moreover, 

Big Data may be skewed toward a specific ethnic group, gender, or socioeconomic class 

due to data bias, particularly for those data from self-selecting groups or containing 

underrepresentation of particular population groups. For instance, Wan et al. (2018) 

have cautioned that the sociodemographic background of location-based service (LBS) 

data is more likely to be biassed towards the younger generation because such data are 

only collected from the smart devices, which are more available to the young generation 

than the elderly. Additionally, this data bias possesses spatial heterogeneity, which 

means that the spatial distribution of data is uneven. For instance, Chen et al. (2019) and 
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Hu et al. (2015) have pointed out that the spatial distribution of the LBS network 

(LBSN) data is much denser in the major urban areas (i.e., city or town centres) than in 

the suburbs or more remote areas. This data bias may frame the Big Data-based urban 

research overwhelmingly focus on the metropolitan areas where data availability is high, 

whereas more small towns and remote regions are neglected.  

Second, with more granular data being utilised by practitioners and researchers, 

discussions about ethical issues are also arising for both industry and academia (Martin, 

2015; Someh et al., 2019). Ethical challenges include but are not limited to the concerns 

of individual privacy, trust, and awareness, and social equity (Chang, 2021; Rubinstein, 

2013; Someh et al., 2019). These ethical challenges may amplify the data quality 

concerns mentioned above, limiting the utility of using Big Data in urban studies. For 

instance, the abovementioned social and spatial data biases are somewhat related to the 

digital divide among the regions or communities, which have been well documented in 

many studies (Longley et al., 2006; Riddlesden & Singleton, 2014; Singleton et al., 

2020; Üsküplü et al., 2020). Third, Big Data are challenging to coordinate and handle 

since they are massive in terms of their volume and diverse in terms of their structure. 

Given that there is always a lag between the ability to understand big data and the ability 

to produce and collect them, determining how to exploit valuable information from such 

massive and complex datasets and how to implement the findings for practical 

applications are also noticeable challenges (Kong et al., 2020). For example, the issue of 

high data dimensionality (discussed in more depth in Chapter 2.4.3 and 4.0) is one of the 

representatives of this type of challenge.  

 

2.2 URBAN DATA  
 

Within urban settings, the ‘(Big) Data Deluge’ manifests in the growing availability of 

data generated in continuous streams from various types of sensors (Bibri & Krogstie, 

2018). Examples of this data are individual travel transactions from the Smartcard 

Automated Fare Collection (SCAFC) systems, GPS trajectories from GPS-enabled 

vehicles and mobile devices, entry and exit counts from turnstiles in public transit 

stations, geotagged tweets or images from LBSNs or other volunteered data repositories, 

and light detection and ranging (LiDAR) point clouds and remote sensing (RS) imagery 

from satellite or aircraft. Such emerging data sources have significantly enriched the 

content of traditional data sources represented by population census and land-use and 

travel surveys, which collectively make up urban data. 
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Urban data can be categorised into different types based on various criteria, such as data 

source, data environment, data geometry, and so forth (Kong et al., 2020). Particularly, 

based on the intentionality of collection, urban data can be broadly classified into two 

categories:  purposeful (or designed) data and organic data (Singleton et al., 2017). 

Table 2.1 presents examples of the major data types and their possible sources. 

 

Category Type of 
Urban Data Source Example of 

Data Provider 
Example of 
Dataset 

Purposeful/Designed 
Data 

Census National census US Census 
Bureau ACS 

Travel data Travel survey TfL LTDS 
Building Land 
uses Land use survey NYC Planning ZoLa 

Greenspace  Land survey OS OS Open 
Greenspace 

Real-estate 
records 

Housing 
statistics 

HM Land 
Registry 

Price Paid 
Data 

LiDAR / RS 
Image 

Aircraft / 
Satellite 

Environment 
Agency 

LiDAR 
composite 
DSM 

Air quality Gas sensors Londonair Londonair 
Data 

GPS points / 
trajectories GPS trackers Esri Esri Tracker 

GPS 

Internet usage Interview OxIS OxIS survey 
data 

Organic Data 

Smart Card 
records SCAFC TfL Oyster Card 

Data 

GPS traces GPS-enabled 
vehicles TLC Taxi Trip 

Record 
Entry/Exit 
counts Turnstile sensors MTA Turnstile 

Data 
Bikesharing 
Trips 

Docking station 
sensors Citi Bike Citi Bike 

Trips 
LBSN Crowdsourcing Twitter Tweeter Data 
Volunteered 
geodata Crowdsourcing OSM OSM Data 

Table 2.1 Urban Data Type: Purposeful Data and Organic Data. 

As its name implies, purposeful or designed data are collected through statistically 

robust collection schemes, providing critical insight into cities (Singleton et al., 2017). 

One of the most typical forms of purposeful data is the nationwide socioeconomic and 

demographic survey investigating topics such as public health, educational attainment, 

unemployment rate, or providing a count of the entire population and households (i.e., 

national census). Taking the national census for example, in the UK, the national 
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statistical agencies, such as the Office for National Statistics (ONS)1, have provided a 

nationwide census every ten years since 1801. This national census is regarded as “the 

most complete source of information about the population” in the UK (ONS, 2016). The 

latest published census is the 2011 Census, taken on 27 March 2011, covering the 

various characteristics of the whole usual resident population for the UK, including but 

not limited to socioeconomic, demographic, and built environment domains. As for the 

US, the traditionally decennial census has been replaced by the American Community 

Survey (ACS) since 2010. ACS, first launched in 2005, is a rolling survey program 

conducted by the US Census Bureau, gathering information from more than 3.5 million 

households across the country on a yearly basis, covering social, housing, demographic, 

and economic subjects (US Census Bureau, 2020). 

The expense of collecting purposeful data is usually costly in terms of human, physical, 

and financial resources. In practice, national surveys often require the creation of a 

highly accurate register listing all known addresses (e.g. home or workplace) to avoid 

the problem of undercoverage, that is, failure to count legitimate households and 

populations (Leventhal, 2013; ONS, 2015; Singleton et al., 2017). Each address is 

contacted by delivering a questionnaire through various approaches, including post, 

phone, and the Internet. A force of field enumerators are then dispatched to those 

households that do not respond to the survey. According to the estimation, the 2011 UK 

Census costs approximately £432 million (Leventhal, 2013), as for the US, the census 

‘cost about 42 per person counted’ (Singleton et al., 2017, 20). 

Organic data are more “accidental” in nature, and their potential utilities can exceed the 

purposes other than the one for which they were originally intended (Arribas-Bel, 2014). 

For instance, passively collected smart card transaction data from the SCAFC systems 

can be employed to analyse passengers’ travel behaviour, whereas its collected purpose 

is to simplify the task of ticketing and revenue collection (Pelletier et al., 2011). 

Moreover, the GPS data extracted from GPS-enabled devices and vehicles are another 

example showing the “accidental” characteristics of organic urban data. Most GPS 

devices used in daily life are primarily designated to provide positioning and navigation 

for end-users. At the same time, the spatiotemporal coordinate data recorded in their 

background database can be further processed into detailed trajectories or origin-

destination (OD) matrices that represent a reasonable proxy for individual mobility and 

hence facilitate many urban mobility studies (Tang et al., 2015; Wang et al., 2019; Wang 

 

1 ONS is responsible for the census in England and Wales; GROS is responsible for the census in 
Scotland; NISRA is responsible for the census in Northern Ireland 
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et al., 2015; Zhao et al., 2016). Accordingly, these urban data are regarded as a 

byproduct of some transactional processes of daily life within cities (Singleton et al., 

2017). Compared with conventional purposeful data, organic data share more similar 

characteristics with big data because they usually contain detailed personalised 

information and are available at a high spatiotemporal resolution with wide geographic 

coverage. However, the potential challenges of using organic data are also shared with 

Big Data, which have been discussed in the previous section. Typically, similar to other 

Big Data, one of the most critical limitations of organic data is the lack of contextual 

information. This is especially pronounced in the transport-related dataset due to its 

“accidental” characteristics, such as GPS data, smartcard data, and data from other 

sensors (such as station turnstile). For example, in most vehicle-based GPS data, no 

extra information other than the spatiotemporal coordinates and essential identifiers are 

usually provided. As a result, many in-depth studies, such as travel purpose analysis or 

functional zone detection analysis, which are of importance in urban mobility analysis, 

cannot be carried out by solely using this data. 

The difference between organic and purposeful data are vital as they present different 

utilities in different conditions. Typically, purposeful data are more useful for measuring 

(very) slow-changing components in the urban environment since they are usually rich 

with detailed contextual information capturing multidimensional characteristics of the 

observations. Organic data, on the other hand, are better utilised to capture fast-

changing components since they usually contain finer spatiotemporal granularity 

enabling nearly real-time analysis (see more in Section 2.4.4). However, in order to 

provide a fuller image of the complex urban environment, it is necessary to combine 

these two types of urban data, with the essence being retained and the peripheral being 

discarded. For instance, urban analysts have sought to distil the general pattern of urban 

mobility from organic data and then use purposeful data to investigate the associations 

between them or enrich the result interpretability (Chen et al., 2019; Liu & Cheng, 2020; 

Wang et al., 2017b; Xu et al., 2019; Zhou et al., 2019). With the advancement of 

machine-learning techniques, it is possible to use the labelled but small-scale purposeful 

data to predict unlabelled and large-scale organic data through various predictive 

machine-learning models. For instance, Zhang et al. (2020) have applied a graph-based 

prediction model to the sociodemographic variables in the London Travel Demand 

Survey (LTDS) to estimate passengers’ sociodemographic status in the massive 

unlabelled London Oyster card data. 
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2.3 DIKW PARADIGM  
 

As discussed in previous sections, the emergence of urban (Big) Data has fundamentally 

transformed those existing research paradigms in urban science, enabling new 

perspectives on urban life than has even been available before. However, it should be 

noted that data in themselves do not convey insight, and ‘they only have utility if 

meaning and value can be extracted from them’ (Kitchin, 2014b, 100). As such, it is 

what is done with data that is crucial, not merely that they are generated.  

The progressive relationships between data, information, knowledge, and wisdom are 

presented in the well-known DIKW pyramid, or hierarchy, in which D is the 

abbreviation for data, I for information, K for knowledge, and W for wisdom (Rowley, 

2007). This pyramid illustrates the concept that ‘information is described in data terms, 

knowledge with respect to information, and wisdom in terms of knowledge’ (Aditya 

Shastry & Sanjay, 2020, 204). The cake metaphor, introduced by Gurteen (1998), can 

assist in understanding the difference between those components within the DIKW 

pyramid. According to Gurteen (1998), data are compared to molecular components of 

the cake; information to a list of ingredients; knowledge to the recipe (indicating how to 

make the cake); and finally, wisdom corresponds to know-why and for-whom to make 

the cake. As stated by Fricke (2019), ‘the DIKW suggests that there are more data than 

information in the world, more information than knowledge and more knowledge than 

wisdom’ (p.35). 

Figure 2.1 shows the adapted DIKW pyramid within the context of the urban 

environment, with each layer distinguished by a series of distillation processes, such as 

abstracting, organising, analysing, interpreting, and applying, which adds meaning and 

value by revealing relationships and insight (Kitchin, 2014b). The DIKW hierarchy is 

effective in demonstrating the process of turning raw urban data that are less useful into 

knowledge that is more informative for the end-users, for example, urban planners or 

policymakers (Nativi et al., 2020). Urban data are generated and collected from various 

sources, either organically or purposefully, acting as the abstraction of the real urban 

environment, which also can be regarded as the raw material to generate information. 

Information is considered as the added-value product made up of linked elements and 

meaningful patterns that results from the processing and organisation of accessible data. 

Knowledge can be viewed as a collection of well-organised information, which is gained 

from comprehending information through analysing and interpreting value patterns in 

information. Finally, at the summit of the DIKW pyramid, the wisdom is defined as a 
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combination of multiple applied knowledge, which has a direct influence on decision-

making. 

The DIKW hierarchy provides an overall framework for transforming raw data into 

useful knowledge that is applicable for decision-making, manifesting a data-driven 

decision-making process. The investigation of deaths from cholera outbreaks in the Soho 

district of London, undertaken by Dr John Snow in 1854, is often regarded as the earliest 

recorded example of spatial data analysis and one of the most famous examples of the 

DIKW paradigm (Longley et al., 2015). The death cases of cholera collected in Snow’s 

work are the raw Data; the map he made, that is, the famous John Snow’s cholera map 

of Soho1, showing the spatial distribution of these cases are Information; the correlation 

between the distance from the water pump and the case hotspots can be considered as 

Knowledge, revealing the transmission way of cholera; and the decision of removing the 

pump handle on Broad Street is the actual action referenced by the Knowledge, thus, can 

be considered as Wisdom.  

 

1 See https://www.bl.uk/collection-items/john-snows-map-showing-the-spread-of-cholera-in-soho-london-1855# 

Figure 2.1 DIKW Pyramid in the Context of the Urban Environment.  

Diagram adapted from Rowley (2007) and Kitchin (2014b). 

https://www.bl.uk/collection-items/john-snows-map-showing-the-spread-of-cholera-in-soho-london-1855
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The data-to-knowledge transition is usually the responsibility of data analysts or 

scientists, whereas decision making (i.e., from knowledge to wisdom) necessitates more 

comprehensive considerations based on the knowledge from many perspectives. Since 

the primary aim of a decision is value creation (Nurulin et al., 2019), it is critical to 

emphasise the importance of multi-stakeholders in the decision-making progress as 

active contributors in order to move science beyond its traditional technical boundaries 

and translate knowledge into understandable and usable forms (Tumwebaze et al., 

2021). In the context of the contemporary urban environment, making decisions has 

become more complex than ever due to the urban complexity and explosive availability 

of data (i.e., Big Data deluge) and the involvement of stakeholders with often-conflicting 

objectives and dynamic interactions at different phases of decision making. Decision-

making in the modern urban system, as summarised by Eräranta & Staffans (2015), is 

not only a data-driven practice but also a collective learning procedure supported by 

advanced ICT-based technologies and visualisations of available data, constant 

processes, and local history and stories. This requires a higher involvement and 

collaborations of multi-stakeholders, such as citizens, end-users, planners, engineers, 

experts, elected representatives, in the different phases of the project (Dupont et al., 

2015). Since the stakeholders involved preserve different information and knowledge of 

the problems, their complex decisions should be exposed to negotiation in various 

phases of the process, which can enable various perspectives to be considered and thus 

make a robust decision based on a shared vision of the city (Tran Thi Hoang et al., 

2019).  

 

2.4 URBAN ANALYTICS 
 

Before the era of Big Data deluge, data about cities have been systematically collected, 

and various statistics have been presented for the purpose of influencing urban planning 

and policymaking since the late 19th century (Singleton et al., 2017). In the UK, for 

instance, Charles Booth undertook a massive survey of the socioeconomic and 

occupation conditions of the working-class population living in the inner London area in 

the late 1890s. Based on the data he collected, Booth innovatively built a poverty-related 

classification of households, which categorised those surveyed households into seven 

different clusters based on their conditions of poverty, aiming to provide ‘a statistical 

record of impressions of degree of poverty’ (Hennock, 1991, 190). Such classification 

was colour-coded and mapped out subsequently, known as the famous Booth’s poverty 

maps, displaying the social class of inner London on a street-by-street basis; and it was 
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regarded as one of the first attempts to map the large-scale sociospatial structure of 

London (Orford et al., 2002). 

With the rapid development of ICTs and the widespread availability of large-scale urban 

data in the era of Big Data deluge, the term urban analytics “seems to effortlessly roll off 

the tongue as though we have used it all our lives” (Batty, 2019, 403). Apart from the 

benefits offered by the emerging ICTs in terms of improving quality of life and 

facilitating more sustainable resource management, they are also essential to 

comprehending cities as constantly changing complex systems configured by multi-layer 

networks that are self-organised and ‘embedded in space and enabled by various types of 

infrastructures, activities, and services’ (Bibri, 2021a, 2). Urban analytics can be 

generally defined as a set of urban research practices applying computational and 

statistical approaches to emerging urban data to develop an in-depth understanding of 

urban processes, which is ‘fast emerging as the core set of tools employed to deal with 

problems of Big Data, urban simulation, and geodemographics’ (Batty, 2019, 403).  

Urban analytics can be considered as the synonym of the DIKW paradigm in 

contemporary urban research. Urban analytics aim to transform vast amounts of urban 

data into informative knowledge supporting evidence-based decision making and 

deepening understanding of the complex urban environment through the application of a 

range of data science-related techniques, such as data mining, machine learning, 

statistical analysis, database querying, or a combination of these approaches (Bibri & 

Krogstie, 2018). The basic assumption is that the analysis of emerging urban data can 

productively contribute to the solution to long-standing challenges in the urban 

environment (Kandt & Batty, 2021). The abundance of urban data, along with the 

computational and analytical power, opens up new avenues for urban analytics and 

planning in moving towards more sustainable and resilient development pathways. 

Hence, the importance of Big (urban) Data analytics are being emphasised more 

frequently in contemporary urbanism, as well as their novel implementations in 

enhancing and promoting sustainability. This trend is evinced by many studies carried 

out recently on smart cities, ecocities, and data-driven smart sustainable urbanism (e.g., 

(Bibri, 2021b, 2021c, 2021a; Bibri & Krogstie, 2020, 2018; Pasichnyi et al., 2019; 

Yigitcanlar & Cugurullo, 2020)). 

Urban analytics might be argued as comprising two major research agendas: urban 

contexts and urban dynamics. Urban contexts can be regarded as the umbrella name of 

multidimensional attributes delineating the slow-changing components in the urban 

environment, represented by attributes from the built environment and neighbourhoods 
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(Rodrigue, 2020; Wegener, 1995). Urban analytics from this agenda typically utilise 

purposeful urban data, for example, census or land-use surveys, to capture the 

characteristics of urban contexts. Urban dynamics, as the counterpart of urban contexts, 

can be collectively referred to as human behaviour and mobility variables depicting fast-

changing urban components (Rodrigue, 2020; Wegener, 1995). As mentioned before, 

organic data are more commonly utilised to conduct related analyses in recent years, 

while the usage of purposeful data, such as data from the travel demand survey, is still 

in evidence (see Jiang et al., 2012; Zhang et al., 2020). Figure 2.2 presents the 

conceptual diagram, adapted from the urban model introduced by (Wegener, 1995), 

showing the relationship between urban contexts and urban dynamics in urban analytics. 

This diagram also shows the three major components in the urban environment: human 

mobility, neighbourhood attribute, and the built environment. Compared to fast-

changing human mobility, neighbourhood attribute and built environment are classified 

as slow-changing categories, in which the built environment is viewed as the most 

‘static’ component in the urban environment.  

 

2.4.1 URBAN CONTEXTS 

Figure 2.2 Simplified Main Components in the Urban Environment  

Diagram adapted from (Wegener, 1995) ‘a model of urban models’ and (Rodrigue, 2020) ‘dynamics of 

urban changes’. 
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Urban contexts are paramount for city life, which ‘refers holistically to the social, 

environmental, and economic settings within which we live our lives’ (Singleton et al., 

2017, 79). Urban contexts have extensive subtle influences on people’s entire life, 

including but not limited to health and social wellbeing, education and occupation, 

access to opportunities (e.g., voting, new technologies, or the labour market), and are 

known to be influential for various behavioural patterns (Abreu & Öner, 2020; Gao et 

al., 2019; Krefis et al., 2018; Longley et al., 2006; Mouratidis, 2018; Singleton, 2010). 

Such enduring influences are usually referred to as the “neighbourhood effect”, which 

has a lengthy research history (see Mouratidis, 2018; Sampson, 2012; Thiele et al., 2016; 

Urban, 2009).  

Particularly, numerous studies have discussed the impacts of urban contexts on people’s 

travel behaviour. In travel research, such influences have often been named with words 

beginning with D (see Chapter 3.3 for more details). For example, the well-known 

‘three-Ds’ concept, namely, density in development, diversity in land use and urban 

design introduced by Cervero and Kockelman (1997) has emphasised the importance of 

environmental factors (i.e., built environment) in affecting people’s travel demand. The 

‘three-Ds’ concept has been widely advocated by urban planning agencies around the 

world and is recognised as the theoretical basis of transit-oriented development (TOD) 

in strategic urban planning, which aims to encourage public transit use (e.g. Staricco & 

Vitale Brovarone, 2018; Sung & Choi, 2017; van Lierop et al., 2017; Xu et al., 2017). 

Furthermore, with the more profound insights into this field, the concepts of the original 

‘three-Ds’ model established by Cervero and Kockelman (1997) has been expanded as 

‘six-Ds’ since the introductions of more ‘D’ variables, i.e., destination accessibility, 

distance to transit, and demand management (Ewing & Cervero, 2001; Ewing & 

Cervero, 2010). 

Kattiyapornpong and Miller (2009) have additionally identified that neighbourhoods’ 

demographic and socioeconomic characteristics (e.g., age, income, and life stage) have 

significant differential and interactive influences on residents’ travel behaviour in terms 

of travel preference and choice of travel mode. The profound influences of 

sociodemographic characteristics on people’s travel behaviour were also identified in the 

review conducted by Ewing and Cervero (2010) and are also much in evidence in a 

number of other international studies (e.g. Bajracharya & Shrestha, 2017; Dieleman et 

al., 2002; Gao et al., 2019; Ma et al., 2018; Syam et al., 2012). Thus, while not part of 
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the built environment variables, Ewing and Cervero (2010) have recognised the 

sociodemographic variables as “the seventh D” (p.267).  

It should also be noted that the influence of urban context is not only limited to 

residential neighbourhoods but also increasingly includes transitional spaces, such as 

areas occupied through travel (e.g., origins and destinations), and other collective 

locations such as workplaces (Cockings et al., 2020; Singleton et al., 2017).  

 

2.4.2 APPROACHES TO MEASURING URBAN CONTEXTS 
 

There are two major approaches usually employed by urban analysts to understand 

urban contexts, namely, the variable and contextual paradigms (Singleton et al., 2017). 

The variable approach typically focuses on answering questions about the influence of 

independent variables on a dependent variable. On the other hand, a contextual approach 

regards neighbourhoods as a complex mix of interrelated and difficult to separate 

attributes described through a multivariate rather than a univariate object (Webber & 

Burrows, 2018).  

There are two approaches to composite metrics that are widely used in contextual 

analysis (Singleton et al., 2017). The first relates to the composite index, which provides 

a continuous measure of the constructs to be evaluated and takes and distils multiple 

input variables into a single number (i.e., a single metric). Such composite indicators are 

most commonly developed in the field of deprivation (i.e., hardship) of an individual’s 

socioeconomic context (Townsend, 1987). One successful attempt, for example, to 

capture various aspects of deprivation is the UK’s Index of Multiple Deprivation (IMD). 

This index is a single score of deprivation and has been utilised for many years to 

measure the relative deprivation of small geographical areas (e.g., lower super output 

areas, (LSOAs)) in the UK (MHCLG, 2010; Kinsella, 2007; Mclennan et al., 2019; 

Noble et al., 2006; Smith et al., 2015). The overall IMD is calculated as a weighted level 

aggregation of several constituent dimensions of deprivation. For instance, the 2019 

IMD was calculated based on several attributes extracted from seven different 

dimensions of deprivation, namely, employment, income, education, crime, barriers to 

housing and services, and living environment (Mclennan et al., 2019). Another example 

of a composite index is the Access to Health Assets and Hazards (AHAH) index created 

by Daras et al. (2019), which presents a summary statistic of the health-related 

accessibility and built environmental characteristics of an area, with the goal of offering 
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a holistic assessment of neighbourhood quality across the GB, based on how “healthy” 

they are.  

An alternative approach is offered by the creation of geographic classifications, 

commonly referred to as geodemographics (Harris et al., 2005; Leventhal, 2016). This 

approach has been well-documented and has a lengthy history of research, which is 

discussed in more depth in the next sections. Compared to indices, one of the most 

distinctive characteristics of the classification approach is that the output is categorical 

and multidimensional and, therefore, does not rely on a single measure or index 

(Alexiou, 2016). Such output is more typically used to provide a qualitative summary 

portraying the most salient contextual characteristics of an area and has particular utility 

when reflecting nonlinear relationships between input measures (Singleton et al., 2017). 

 

2.4.3 GEODEMOGRAPHICS 
 

Geodemographics can be simply defined as “an analysis of people by where they live” 

(Sleight, 1997, 16). It is usually organised by classification of areas sharing similar 

multidimensional characteristics and aims to summarise multiple characteristics of 

socioeconomic, demographic, and built environment concerning a set of small 

geographic areas (Harris et al., 2005; Singleton et al., 2017). A geodemographic 

classification is constructed by utilising a clustering technique that organises each 

observation (i.e., geographic area) into a type of cluster according to the overall 

similarities concealed within the multidimensional attributes they shared. Since the 

observational areas targeted by geodemographic analysis are often relatively small, such 

as groups of postcodes or census tracts, many scholars tend to use “neighbourhood” as a 

shorthand term to describe this kind of small area zonal geography (Harris et al., 2005; 

Leventhal, 2016; Singleton & Longley, 2009).  

The conceptual tenet of geodemographic classification relates to the notion of societal 

homophily, or the “birds of a feather flock together” phenomenon (Harris et al., 2005). 

In geographic terms, this relates to the tendency for people to be attracted to areas that 

comprise others with similar characteristics to themselves (Sleight, 1997), reflecting a 

fundamental axiom in human geography discipline, known as Tobler’s first law of 

geography, that is, ‘everything is related to everything else, but near things are more 

related than distant things’ (Tobler, 1970, 236). Although geodemographic analysis has 

developed significantly over decades, its theoretical foundation always adheres to the 



Page | 37  
 

principle that ‘people tend to align themselves with the behaviour and aspirations of the 

local communities where they live’ (Alexiou, 2016, 21). Therefore, the objective when 

building a geodemographic classification is to partition a set of small areas into clusters 

that share similar attributes, with the output of such clusters offering a simplified and 

categorical representation of the salient multidimensional characteristics of the areas 

(Spielman & Singleton, 2015). 

In accordance with other commonly used measures of socioeconomic stratification, 

geodemographic classification is not immune to criticism (Harris et al., 2005; Leventhal, 

2016). By aggregating areas sharing similar multidimensional characteristics into 

clusters, the geodemographic clusters generally represent the average characteristics of 

an area where people live. However, using such averages from areal aggregation to infer 

individuals’ characteristics is to risk invoking the ecological fallacy (Dalton & Thatcher, 

2015), that is, ‘an error of deduction that involves deriving conclusions about individuals 

solely on the basis of an analysis of group data’ (O’Dowd, 2003, 84). However, 

problems related to ecological fallacy or modifiable areal unit problem (MAUP) are 

certainly not limited to geodemographic analysis and appear more commonly in most 

socioeconomic phenomenon studies where disclosure is an important issue(Longley et 

al., 2015). 

Booth’s mapping of London in the late 19th century, referred to in the previous section, 

has been argued as an early (albeit non-computational) geodemographic classification 

(Adnan, 2011; Alexiou, 2016; Leventhal, 2016; Webber & Burrows, 2018). However, a 

more robust intellectual heritage links back to the urban ecology studies of the Chicago 

School of Sociology in the 1920s and 1930s (Batey & Brown, 1995; Timms, 1971). In 

their contemporary methodological form, most geodemographics are strongly tied to the 

work of Richard Webber, who established a national classification of areas using the 

1971 UK Census in the late 1970s (see Webber, 1978). Geodemographics developed 

parallelly in both UK and US and gained significant traction during the 1980s as a tool 

for commercial marketing (Reibel, 2011). It was used in PRIZM in the US and Acorn in 

the UK and sustained until the present day. (For an overview of these developments, see 

Singleton & Spielman, 2014). Geodemographic classification has an expansive and 

international lineage with utility for private and public sector applications within various 

geographic extents (Gale et al., 2016; Singleton & Longley, 2015; Singleton & 

Spielman, 2014). 

Geodemographic classification can be utilised either as a general-purpose or an 

application-specific analytical tool. For instance, geodemographic classification can be 
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used to depict general urban contexts within a national extent, for example, the 2001 and 

2011 output area classification (OAC) (Gale et al., 2016; Vickers & Rees, 2007). 

Alternatively, it can be built to investigate general problems within the frame of a 

targeted geographic extent, for example, the 2011 London output area classification 

(LOAC) (Singleton & Longley, 2015). Moreover, it can be specifically constructed to 

analyse a bespoke substantive problem – for example, Internet User Classification (IUC) 

and a national bespoke educational geodemographic system (Alexiou et al., 2020; 

Singleton, 2016; Singleton & Longley, 2009). 

 

DATA USED IN THE CONSTRUCTION OF A GEODEMOGRAPHIC 
CLASSIFICATION 
 

Predominantly but not universally, The majority of existing geodemographic 

classifications comprise input variables from the purposeful urban data, particularly the 

census (Alexiou, 2016; Harris et al., 2005). In the UK, for instance, each decennially 

released census has triggered a new generation of geodemographic classification fuelled 

by the latest presented results (see Charlton et al., 1985; Gale et al., 2016; Robinson, 

1998; Vickers & Rees, 2007; Webber, 1975; Webber & Craig, 1978). Even given the 

Big Data deluge, the population census has always been “the most important and 

valuable source of geodemographic analysis” because it offers reliable, comprehensive, 

and coherent data on the sociodemographic characteristics of residents in each 

neighbourhood in the country (Leventhal, 2016, 7). Apart from sociodemographic 

attributes, other variables as part of the population census, such as the commuting flows 

between people’s residence and workplace, have also been employed to build a 

geodemographic classification (Hincks et al., 2018).  

In addition to those attributes extracted from the population census, variables captured 

from other purposeful urban datasets can be used to conduct geodemographic analysis. 

For instance, Alexiou et al. (2016) have created a classification of Multidimensional 

Open Data Urban Morphology (MODUM) to delineate the urban morphology of 

England and Wales by using built environment attributes from GIS and spatial datasets 

mainly provided by the national mapping and surveying agency Ordnance Survey (OS). 

Moreover, although some of the inputs employed in the IUC that was developed by 

Singleton et al. (2016) were partially from the UK 2011 Census, variables extracted 

from the Oxford Internet Survey (OxIS) primarily occupied a large share of the inputs in 

building such classification. The Transport Classification of Londoners (TCoL), a 
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classification built by TfL (2017) to classify Londoners based on their travel mode 

choice and travel purpose, is another example of using purposeful urban data to create 

geodemographic classification, in which the majority of the input variables were 

extracted from the LTDS 2012-2015.  

 

GENERALISED WORKFLOWS FOR CREATING GEODEMOGRAPHIC 
CLASSIFICATIONS 
 

Building a successful geodemographic classification can be a time-consuming and 

challenging process since it can be affected by various factors such as data availability, 

methodological choices, geographic coverage, and weighting schemes (Alexiou & 

Singleton, 2015; Liu et al., 2019; Openshaw et al., 1995; Webber, 1978).  

Although there is no standard approach to creating a geodemographic classification, 

commonly used processes can be summarised into five stages, namely, deciding a 

geographic extent and scale, variable extraction and selection, variable preprocessing, 

cluster analysis, and result examination and interpretation. 

 

DECIDE GEOGRAPHIC EXTENT AND SCALE 
 

The first stage of creating a geodemographic classification is to decide the geographic 

extent (i.e., the coverage) and the spatial resolution (i.e., the scale) that the classification 

will be created for. These decisions are not only determined by the research scope and 

purpose but are also based on data available to the classification builder at different 

geographic scales (Alexiou & Singleton, 2015). For example, most of the well-known 

geodemographic classifications in the UK, such as the 2001 and 2011 OAC, are based 

on the national census aggregated at the Output Area (OA) level, which is the lowest 

geographical level at which census estimates are provided. Hincks et al. (2018) 

constructed a new geodemographic classification of commuting flows for England and 

Wales by utilising the contextual variables characterising the commuters at Middle 

Layer Super Output Area (MSOA) level. Moreover, according to Singleton et al. (2016), 

the IUC, a purpose-specific geodemographic classification that focuses on measuring 

Internet use and engagement was created and released at the LSOA level. 

Many geodemographic classifications have coverage for the whole extent of a country; 

however, some other bespoke classifications consider more localised extents. For 
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instance, Singleton et al. (2016) used England as the geographic extent of the IUC and 

the Greater London area was adopted as the geographic extent of LOAC (Singleton & 

Longley, 2015). 

 

VARIABLE SELECTION 
 

The second stage is to assemble a database comprising a series of variables that are 

considered important to the differentiation of areas. According to Murphy & Smith 

(2014), the overarching objective when creating any geodemographic classification is to 

develop a framework for selecting potential variables that are beneficial for producing 

meaningful and application-relevant classifications. There are differences of opinion 

concerning the optimal brevity of inputs. Some scholars have advocated that “the fewer 

the variables the better”, for example, Openshaw & Wymer (1995), whereas others, such 

as Harris et al. (2005), have claimed that a more meaningful classification is likely to be 

built through inputting more variables. 

However, many studies have found that clustering performance can be significantly 

improved by reducing the number of input variables due to the phenomenon called the 

“curse of dimensionality” (see Iguyon & Elisseeff, 2003; Pacheco, 2015; Rojas, 2015; 

Tang et al., 2014). Therefore, the objective of variable selection might more effectively 

be framed by selecting the most parsimonious inputs, that is, to select the smallest subset 

of input variables that capture the most variation within the original dataset (Debenham, 

2002; Gale et al., 2016; Harris et al., 2005). Apart from pragmatically considering the 

data availability, the goal of variable selection can usually be achieved by balancing 

both a theoretical and empirical rationale for variable inclusion (Spielman & Singleton, 

2015). For instance, it is common to initially select a group of candidate variables that 

draw upon the references of comprehensive literature. This is accompanied by an input 

variable assessment process, which typically takes into account a wide variety of 

statistical factors of the candidate variables, including but not limited to their 

collinearity, spatial coverage, and potential impacts on the clustering results (Gale et al., 

2016; Liu et al., 2019; Vickers & Rees, 2007). 

In addition to the abovementioned compact approaches, dimensionality reducing 

methods, such as principal component analysis (PCA) (see Section 4.3 in Chapter 4) and 

self-organising map (SOM) (see Section 3.4.2 in Chapter 3), have been commonly 

(although not universally) integrated into some of the geodemographic classification 

products that corresponded to the decennially released census data (e.g. Charlton et al., 
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1985; Openshaw & Wymer, 1995; Robinson, 1998; Webber, 1975; Webber & Craig, 

1978). The typical rationale of dimensionality reduction methods is to transform the 

high-dimensional variables into a low-dimension that is more appropriate for those 

mathematical algorithms applied in clustering (see Bara et al. 2018; Jolliffe, 1972; 

Miljkovic, 2017; Jiliang Tang et al., 2014). While the primary justification for 

dimensionality reduction methods in past studies many decades ago was to reduce the 

heavy computational burden (Singleton, 2016), such methods still present potential 

utility in the contemporary realm of building geodemographic classification, even within 

a computational intensive setting (Adnan, 2011; Liu et al., 2019).  

 

VARIABLE PRE-PROCESSING  
 

After the assembly of selected variables, data preprocessing is typically conducted and 

involves a series of processes such as data manipulation, normalisation, standardisation, 

or weighting (Alexiou, 2016; Harris et al., 2005). The selected variables are seldom used 

in their raw formats. They are usually translated into measures such as percentages and 

ratios (e.g., density), which is followed by an examination of their various statistical 

attributes such as normality (kurtosis), variance, collinearity, and so forth. For example, 

classification builders are likely to use histogram or box plot to examine the distribution 

of the data, and to identify abnormal values and outliers, or to use a Minimum Spanning 

Tree (MST) algorithm to check the correlation between variable pairs (Alexiou, 2016; 

Harris et al., 2005; Liu et al., 2019). 

In case the examined variables are not distributed normally, data normalisation 

techniques are commonly adopted by classification builders, for example, logarithm 

transformation, inverse hyperbolic sine, or Box-Cox transformation (see Box & Cox, 

1964), are often applied with the aim of returning a more normal distribution. 

Furthermore, it is typically necessary to apply a universal scale of measurement to each 

of the variables prior to the clustering stage, ensuring that they are all measured in the 

same unit. Same unit measurement can be achieved by applying standardisation 

techniques to the dataset, for example, range standardisation, rank standardisation, z-

scores, and interquartile range standardisation (Alexiou, 2016; Alexiou & Singleton, 

2015; Gale et al., 2016).  

 

CLUSTERING ANALYSIS 
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After the data preprocessing is accomplished, cluster analysis typically follows to assess 

the area similarity or dissimilarity in terms of these selected variables, which is typically 

carried out by applying a clustering algorithm to the prepared dataset.  

Cluster analysis as applied to geodemographics belongs to a branch of unsupervised 

machine learning. Typically, cluster analysis pursues the maximisation of the similarities 

between observations within the same group and minimises the similarities between 

different groups (Sinaga & Yang, 2020). Similarity or dissimilarity is usually determined 

by the “distance” between observations, which can be measured as Euclidean distance, 

weighted Euclidean distance, cosine distance, Mahalanobis distance, Manhattan 

distance, and many other measurements (Shirkhorshidi et al., 2015; Troy, 2017).  

The choice of clustering algorithm can differ significantly, which is partially determined 

by the purpose of the classification as well as the nature of the data to be processed 

(Alexiou, 2016; Alexiou & Singleton, 2015). A geodemographic classification usually 

consists of a hierarchical series of aggregations that can be assembled either top-down or 

bottom-up. In a typical top-down clustering mode, the largest grouping is first 

constructed and is subsequently divided into smaller subgroups. The k-means clustering 

algorithm (see MacQueen, 1967) is frequently utilised for such purposes. For instance, 

Gale et al. (2016) have implemented the k-means clustering algorithm on selected 

variables from the 2011 UK Census data to build the 2011 OAC, classifying all OAs 

across the UK into eight Supergroups, which were further split into 26 Groups and 

further into 76 Subgroups. Similarly, Singleton et al. (2016) have created the IUC by 

employing k-means clustering with top-down implementation, generating a nested 

hierarchy of four Supergroups and 11 Groups classification, profiling the vulnerability 

of e-resilience for all LSOAs in England. Moreover, the top-down k-means clustering 

method was also used in the creation of COWZ-UK (Cockings et al., 2020).  

Classifications built from the bottom-up create the most disaggregate level of the 

classification first, which are then aggregated successively based on their similarities 

into larger clusters. Such iteration steps can be repeated until only one cluster remains, 

or the distance between the two closest clusters above meets a predefined threshold, or 

until a specific number of clusters is reached. Such clustering process is usually carried 

out by hierarchical agglomerative clustering such as Ward’s clustering algorithm (see 

Ward, 1963), and is more prevalent in commercial geodemographic systems (Alexiou & 

Singleton, 2015).  

In addition, several other clustering algorithms, either with top-down or bottom-up 

implementations, have been used to create geodemographic classifications. For instance, 
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the Self-Organisation Maps (SOM) (see Kohonen, 1998) was employed as an alternative 

classifier for the creation of the GB Profiles (Openshaw & Wymer, 1995). The 

implementations of such technique were also found in creating MODUM (Alexiou et al., 

2016) and the geodemographic classification for NYC (Spielman & Thill, 2008). A 

Fuzzy Geographically Weighted Clustering (FGWC) algorithm was used to create a 

geodemographic classification with explicit consideration of geographical 

neighbourhood effects (Mason & Jacobson, 2006).  

 

CLUSTER REVISION AND INTERPRETATION 
 

The final stage of building a geodemographic classification involves an assessment of 

the clustering results, alongside descriptions of the classifications. This stage can be 

viewed as the optimisation stage, where the produced clusters are examined. For 

example, it is usual for the classification builder to check the cluster sizes to avoid 

creating clusters with too large or small a size. Typically, “pen portrait” descriptions are 

developed to describe the most salient characteristics of the areas represented by the 

clusters and accordingly assign shorthand names (Harris et al., 2005).  

In summary, several analytical decisions require to be made in the pre, mid, and post 

stages of constructing a geodemographic classification. As claimed by Singleton et al. 

(2017), ‘building a geodemographic classification is both an art and a science, and 

typically requires a degree of subjectivity in the exact choices of methods implemented’ 

(p.92). For instance, choices include which variables should be selected to better 

differentiate between areas; which data standardisation or normalisation method should 

be adopted in preprocessing the data; which type of aggregation scheme and clustering 

algorithm to apply; how to set the optimal clustering parameters, such as how many 

clusters are appropriate to fit the scope of the analysis. In order to answer these 

questions, the experience of the classification builders is crucial. Classification builders 

typically rely on other established classifications, exploratory spatial data analysis, or 

other specific empirical evaluation before creating a classification (Harris et al., 2005).  

 

2.4.4 FROM URBAN CONTEXTS TO URBAN DYNAMICS (HUMAN 
MOBILITY) 
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Urban dynamics, a multidisciplinary concept that originated from complex systems 

theory in system engineering, is the other key component in formulating the urban 

environment (Thériault & Des Rosiers, 2013). Urban dynamics are observed across a 

range of temporal scales from short-term or real-time to longer-term changes that 

arguably drive those patterns we observe through urban contexts. Understanding short-

term urban dynamics is a well-established research topic in GIS, transportation planning, 

and behaviour modelling (Cullen, 1972; Huff & Hanson, 1986; Love & Chapin, 1976; 

Ravenstein, 1885). Such investigations have been framed within the literature through 

the use of various terminologies, including but not limited to human mobility, human 

dynamics, and urban human mobility (Kandt & Batty, 2021; Wang et al., 2019; Yuan & 

Raubal, 2012; Zhao et al., 2016). Generally, urban dynamics pertains to ‘how people 

move in cities’ (Zhao et al., 2016, 91). 

Most of the early studies in this field were primarily limited to studies using data derived 

from traditional travel diaries, questionnaires, travel demand and household surveys, 

including detailed tracking, logging, and analysing of individual’s life cycles (Cullen, 

1972; Harvey & Taylor, 2000; Love & Chapin, 1976; Maat et al., 2005). Since the 

conventional data collection approaches suffer from limited spatial and temporal 

granularity, such datasets may not provide adequate evidence facilitating a 

comprehensive investigation of the characteristics of the whole urban environment. 

Additionally, due to a lack of powerful computational tools, it was challenging to 

simultaneously examine the intricate mobility patterns underlying human trips and 

behaviours from both integrated spatial and temporal perspectives (Shen & Cheng, 

2016; Yuan & Raubal, 2012).  

With the exponential advancement of ICTs and the increasingly prevalent application of 

mobile location-aware sensors, large-scale data collection of travellers’ journeys has 

become technically feasible and economically affordable. Such unprecedented 

developments have replaced the previous challenges posed by data scarcity and a lack of 

computational power with a large amount of data containing more detailed and finer 

spatiotemporal granularity (Kandt & Batty, 2021; Kitchin, 2014b). Multi-source 

heterogeneous data acquired from deployed sensors, Call Detail Records (CDR), GPS 

devices, SCAFC transactions, WiFi or RFID access points, and LBSN, reveal unique 

opportunities for exploring underlying regularities of urban/human mobility, facilitating 

a deeper understanding of the urban environment and its metabolism (Cattuto et al., 

2010; Chen et al., 2016; Chen et al., 2019; Liu & Cheng, 2020; Tang et al., 2015; Wang 

et al., 2019; Wang et al., 2015; Zhang et al., 2012). Notably, human mobility studies 

play a crucial role in addressing real-world challenges with a wide range of applications, 
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such as urban transit planning, environmental protection, security, location-based 

services (LBS), migration studies, tourism, and epidemic control  (Badr et al., 2020; 

Bernard et al., 2014; Domínguez-Mujica et al., 2011; Hsieh et al., 2015; Kang et al., 

2012; Liu & Cheng, 2020; Wang et al., 2017; Xia et al., 2016; Xiong et al., 2020).  

According to Lew & McKercher (2006), the spatiotemporal distribution of human 

dynamics in the urban environment is uneven, meaning that some of the ‘popular’ urban 

areas exhibit much more crowded and denser human interactions than other places. As 

discussed in previous sections, existing studies have verified the close association 

between urban-scale mobility and urban contexts, including people’s sociodemographic 

attributes and urban spatial constraints (Ewing & Cervero, 2001; Ewing & Cervero, 

2010). Explanations of such association can be twofold. First, it may suggest that 

different city areas preserve different inhabitants’ mobility patterns, for example, people 

who live proximal to the central business districts may be more active than those living 

in suburban areas in terms of travel intensity (Gordon et al., 1989; Yuan & Raubal, 

2012). For instance, Chen et al. (2019) have used the hourly-aggregated intensity of cell 

phone usage to assess the regional travel demand in each of Beijing’s traffic analysis 

zones (TAZs). They found that travel demands vary between different urban districts. 

Workplaces and residential districts have more demands for travel than other districts. 

Similar aggregated mobility patterns have also been identified in the research conducted 

by Liu et al. (2020). Through applying clustering techniques to the hourly-aggregated 

subway passenger flow derived from NYC’s subway turnstile machines, Liu et al. 

(2020) have pointed out that subway stations situated on the outskirts of NYC are more 

likely to express a “double-humped” home-oriented mobility pattern, characterised by 

high inbound and low outbound passenger flow during the morning peak with the 

reverse during the evening peak. Secondly, as Wang et al. (2019) have stated, the 

association may also indicate that people who frequently co-occur in proximity may 

have some similarities in their respective sociodemographic attributes or mobility 

patterns. For instance, a study has found that well-off neighbourhoods attract people 

residing in areas of various levels of deprivation, whereas deprived areas are more likely 

to attract people who live in other deprived areas, indicating a social segregation effect 

(Lathia et al., 2012). Recently, Zhang et al. (2020) have posited the argument “you are 

how you travel” and attempted to predict people’s sociodemographic conditions by 

modelling urban human mobility patterns extracted from London Oyster Card 

transactions.  
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3.0 CONSIDERING CONTEXT AND DYNAMICS: A 
CLASSIFICATION OF TRANSIT-ORIENTED 
DEVELOPMENT FOR NEW YORK CITY 

 

The research presented in this chapter is an adapted version of the publication: 

• Liu, Y., Singleton, A., Arribas-Bel, D. (2020) Consideration context and dynamics: a 

classification of transit-orientated development for New York City. Journal of Transport 

Geography. 85. 102711. https://doi.org/10.1016/j.jtrangeo.2020.102711 

While the article details the study’s other innovations, its main contributions to this 

thesis are summarised below. 

1. Through a systematic literature review (SLR), a theoretical framework used for 

the initial variable selection for creating mobility-related classification is 

developed.  

2. An analytical framework is proposed, integrating dynamic and contextual 

dimensions for the urban environment and mobility analysis. 

In this chapter, objective 2, 4, 5 have been fulfilled. 

 

3.1 ABSTRACT 
 

Transit-Oriented Development (TOD) is a widely recognised planning strategy for 

encouraging the use of mass and active transport over other less sustainable modes. 

Typological approaches to TOD areas can be utilised to either retrospectively or 

prospectively assist urban planners with evidence-based information on the delivery or 

monitoring of TOD. However, existing studies aiming to create TOD typologies 

overwhelmingly concentrate input measures around three dimensions of: density, 

diversity and design; which might be argued as not effectively capturing a fuller picture 

of context. Moreover, such emphasis on static attributes overlooks the importance of 

human mobility patterns that are signatures of the dynamics of cities. 

This study proposes a framework to address this research gap by enhancing a 

conventional TOD typology through the addition of measures detailing the 

spatiotemporal dynamics of activity at transit stations; implemented for the selected case 

study area, New York City.  

 

https://doi.org/10.1016/j.jtrangeo.2020.102711
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3.2 INTRODUCTION 
 

Transport Oriented Development (TOD) is considered as a type of sustainable urban 

development focusing on encouraging transit ridership through providing high density 

and mixed-use development within walking distance (e.g. 400–800 m; or 5–10-min 

walk) of public transport facilities (Thomas et al., 2018). The main objective of TOD 

advocates delivering a favourable environment consisting of urban forms that are highly 

compact, of mixed-use, pedestrian- and cycling-friendly, and develop neighbourhoods 

with the vicinity of public transport hubs (i.e. transit stations). Such influences are 

commonly within a framework referred to as the ‘three-Ds’: namely, high density in 

development, diversity in land use and good urban design (Cervero & Kockelman, 

1997). This development pattern has been widely recognised and accepted as a leading 

planning strategy by most planning agencies around the world, exemplified by extensive 

cases in North American and European cities, China, South Korea and so forth (Staricco 

& Vitale Brovarone, 2018; Sung & Choi, 2017; van Lierop et al., 2017; Xu et al., 2017).  

TOD principally aims to address common urban transportation challenges associated 

with automobile dependence, such as traffic congestion and parking difficulties, air 

quality and noise pollution, excessive greenhouse gas emission, public health and 

wellbeing-related issues (Chavez-Baeza & Sheinbaum-Pardo, 2014; Ettema et al., 2016; 

Hickman & Banister, 2014; Hynes, 2017; Rodrigue, 2020; She et al., 2017). Although 

urban planners have adopted a series of actions aimed at reducing the dependence of 

private automobile use through encouraging more sustainable alternatives including 

public transit and active travels (i.e. walking and cycling) (Lee et al., 2013; Winters et 

al., 2017), TOD presents a focus for more comprehensive planning solutions since it 

effectively integrates both urban land use and transport system planning (Lee et al., 

2013; Papa et al., 2018; Taki et al., 2017).  

Although TOD can be argued as consistent in its prescriptions for policy-making and 

planning, extensive studies have illustrated that for TOD to be successful, there is a 

necessity to be highly sensitive to local specificities. For the purposes of assisting urban 

planners in establishing new TOD or evaluating existing TOD, context-based TOD 

typologies have been implemented to differentiate various station catchment areas 

(Higgins & Kanaroglou, 2016; Kamruzzaman et al., 2014; Lyu et al., 2016; Papa et al., 

2018). Existing studies have overwhelmingly differentiated TOD through measures 

related to the ‘three-Ds’ such as land use mix, residential and commercial density, and 

floor area ratio. However, other aspects of context, such as socioeconomic variables are 

neglected (Higgins & Kanaroglou, 2016). Moreover, such static attributes overlook the 
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dynamic context of TODs, namely, human’s mobility, which as others have shown also 

plays a vital role in the evolution of urban morphologies and functional regions (Wang 

et al., 2017; Xia et al., 2018).  

It is within this context that we expand upon the existing literature to consider a more 

comprehensive definition of TOD through a broader range of multidimensional inputs, 

including their dynamic context. A new analytical framework is implemented here for 

the case study city of New York City, USA. The paper proceeds first to present a 

literature review of approaches used to build a TOD typology, followed by a Systematic 

Literature Review (SLR) designed to identify variables commonly considered as 

important drivers of differentiation between TOD contexts. General information about 

the case study area is presented in Section 3.4, followed by a discussion of the range of 

station catchment areas and a specification of data pre-processing of the 64 selected 

candidate variables. In Section 3.4.2, 472 subway stations are categorised into a four-

category TOD typology through the implementation of a proposed methodology 

framework based on Self-Organising Map (SOM). The groups are named and described 

according to their salient characteristics. In Section 3.5, subway turnstile data are utilised 

to capture human mobility patterns, using the same framework to create Temporal 

Clusters featuring five featured travel patterns. In Section 3.6, the two produced clusters 

are integrated to explore the interaction between static and dynamic features of the TOD 

areas. Finally, the paper concludes with a discussion suggesting some future work and 

limitations to the approach.  
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3.3 LITERATURE REVIEW  
 

There are multiple approaches to building a TOD typology, ranging from the qualitative 

ascription of idealised TOD contexts (Higgins & Kanaroglou, 2016; Lyu et al., 2016) to 

more quantitative frameworks utilising models of TOD catchments and associated 

measures drawn for within these areas (Higgins & Kanaroglou, 2016). TOD contexts 

within the urban environment have been characterised in the literature through various 

indicators and variables that are argued to have an effect on (or be a result of) the use of 

public transport. Given the variable definition of TOD extents, study objectives and 

locations, the specificity of criteria and indicators selected as influential to TOD 

characteristics vary between studies. 

Following the development of TOD-related research, the concepts of the original ‘three 

Ds’ model established by Cervero & Kockelman (1997) has been expanded. For 

instance, Ewing and Cervero (2010) added Destination accessibility, Distance to transit, 

and an additional non-environmental variable, i.e. Demographics, to the family of ‘D 

variables’, formulating the ‘five Ds’ concept. These concepts were utilised within a 

Systematic Literature Review (SLR) to identify those TOD related measures used in the 

recent literature. We utilised the Scopus1, Google Scholar2, and Web of Science3 

referencing databases and looked for references published between 2009 and 2018. 

These databases were queried for research in the broadest sense, including journal 

articles, official documents, guidelines, and so forth; which either created a TOD 

typology (or indexed TOD features) for major transit stations or focused on analysing 

the relationship between multidimensional variables around stations and ridership of 

public transit more generally. Scopus returned 15 studies, the Web of Science and 

Google Scholar respectively identified 11 and 6240 results. The studies were checked 

for diversity, both in terms of geographic context (i.e. the location of the case study) and 

type (e.g. journal article, governmental documents/policies); and secondly, the quality of 

the reviewed studies was considered in terms of the influence of the academic studies 

(measured by the times cited) and the authority of the governmental documents/policies.  

Through this process, 29 studies were identified, and from these, a set of common 

variables selected that are presented in Table 3.1. Although many align with the ‘five 

Ds’, most of the studies are not comprehensive in coverage of all domains of the ‘five 

 

1 https://www.scopus.com/ 
2 https://scholar.google.co.uk/ 
3 https://wok.mimas.ac.uk/ 

https://www.scopus.com/
https://scholar.google.co.uk/
https://wok.mimas.ac.uk/
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Ds’. Moreover, some of the variables employed in these studies do not align with the 

‘five Ds’, implying broader or context-specific considerations. The candidate variables 

could broadly be categorised into four domains, namely, Land Use and Built 

Environment, Location and Accessibility, Socioeconomic and Demographic, and 

Transit-related.  

Input to the Land Use and Built Environment, and Location and Accessibility domains 

were drawn from a range of sources including the Census and other public survey data, 

but also Points of Interest (POI) databases either as supplements or alternatives to 

conventional land-use measures (see Lyu et al., 2016; Wang et al., 2017; Wang et al., 

2016). These studies advocated that POI data may capture finer-grained and more up to 

date information depicting the land use composition and urban facilities. Moreover, 

other variables, such as the type of dwelling, type of tenure, building height, building 

age, and average travel time/distance to workplace/transit station, also take a relatively 

large share of commonly-used variables in these two domains; which may be as a result 

of their reasonably common availability and broadly understood definitions. 

Within the Socioeconomic and Demographic domain, typical variables identified from 

the literature included the median household income, household vehicle ownership, 

educational attainment, and occupation type. As for demographic variables, the “seventh 

D”1 in D-variables (Ewing & Cervero, 2010, 267), mainly including age composition 

and household size/type. 

Transit-related attributes had high salience in the studies identified; and indicators 

included measures such as daily/weekly ridership, frequency of metro services, or peak 

passenger load/frequency in the transit station. Although of utility, such measurements 

were typically limited in temporal resolution (i.e., weekly ridership) or were somewhat 

static (e.g., morning peak ridership volume), and therefore only had limited account for 

actual periodic variation in patterns of use. Given that spatiotemporal data related to 

transit have become more prevalent, some of the studies, such as Qin et al. (2017), Wang 

et al. (2017), Wang et al. (2016) and Kim (2018), utilised attributes from trip transaction 

data extracted from a smart card system to calibrate more real-time measures. In 

addition to transit flow data, human mobility was also inferred by Wang et al. (2017) 

through mobile application data from an online mapping system. 

Within the Location and Accessibility domain, travel distance/time from the transit 

nodes to the main working places are typically adopted by many of the reviewed studies. 

 

1 The “sixth D” in D-variables is considered as demand management (Ewing & Cervero, 2010, 267) 
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Moreover, proximity to activities is also a commonly used variable indicating the 

connectivity between transit nodes and the surrounding environment. Perceived 

attributes are also employed by some reviewed studies, such as cleanness and safety of 

the transit station. However, due to the difficulty of quantifying and data availability, 

most of the reviewed studies do not include these types of variables. 
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Domain TOD Indicators used in the reviewed 
studies 

Atkinson-
Palombo & 
Kuby 
(2011) 

Austin et 
al. 
(2010) 

Bhattacharjee 
& Goetz (2016) 

CTOD 
(2013) 

Chen et 
al. 
(2009) 

Chorus 
& 
Bertoli
ni 
(2011) 

Dirgahayani 
& 
Choerunnisa 
(2018) 

Guo et 
al. 
(2018) 

Higgins & 
Kanaroglou 
(2016) 

Huang et 
al. (2018) 

Ivan et al. 
(2012) 

Land Use & Built 
Environment 

Average Block Size/ Length  *  *        
Degree of Functional Mix      * *     
Housing Unit /Density            
Land Cover            
Mixed-ness of Land Use 
(Diversity/Entropy) *  *  *  * * * *  

Population /Residents Density * * * * * *  * * * * 
Job Density /Business Intensity * * *  *    * *  
Floor Area Ratio (FAR)       *     
Property/Land Values    *     * * * 
Street Network/Intersection Density         * * * 
Type of Dwelling/Tenure           * 
Year Structure Built (Building Age)            

Transit-related 

Attributes of Transit Stations      *      
Frequency of Metro Services            
Interchange to Other Transit Modes        *   * 
Number of Directions Served 
(Bus/Subway) 

     *  *   * 

Number of Nearby Transit Hubs     * * * *   * 
Parking Facility/Infrastructure *          * 
Utilisation of Transit (Passenger 
Load/Ridership) 

    *   *  * * 

Walkability/Pedestrian 
Networks/Cyclability 

   *   *  * *  

Location & Accessibility 

Accessibility to/ from Station  *     *  *   
Average Travel Time (to Work/Transit 
Stations) 

 *       *   

Distance to City Centre/CBD  *  * * *      
Perceived Attributes (e.g. Safety, 
Attractiveness) 

   *   *     

Proximity of Activities/Amenities at 
Station 

   *  * *  *   

Socioeconomic & 
Demographic 

Ethnic/Age Composition    * *    *   
Household Income * *   *    *   
Household Type/Size * *          
Occupation Type/Education Level *  *   *   *  * 
Transport Mode to Work  *       *   
Vehicles Ownership  *  *        

Case Study Area Phoenix 
US 

9 Cases 
US 

Denver 
US 

Alleghe
ny 
County 
US 

New 
York 
City 
US 

Tokyo 
 Japan 

Jakarta & 
Bandung 
Indonesia 

Tokyo 
Japan 

Toronto 
region 
Canada 

Arnhem–
Nijmegen 
MA. 
 
Netherlan
ds 

Ostrava 
Czech 
Republic 

Number of Transit Stations (Cases) 
Buffer Distance (metres) 

27 9 NA NA 468 99 NA 27 372 22 11 
800 800 800 NA NA 700 NA 1500 800 800 700 
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Jun et al. 
(2015) 

Kamruzzaman et 
al. (2014) 

Kim et al. 
(2017) 

Kim et al. 
(2018) 

Lee et al. 
(2013) 

Lyu et 
al. 
(2016) 

Monajem 
& Ekram 
Nosratian 
(2015) 

Nasri & 
Zhang 
(2014) 

Papa et al. 
(2018) 

Pollack 
et al. 
(2014) 

Singh et al. 
(2017) 

Sohn 
(2013) 

Song & 
Deguchi 
(2013) 

 *    *  *      
 *    * *  *     
* * * *   *   *    
   *          
* * * * * *  *   * * * 
* * * *  * * * *  * * * 
*  * *  * * * * * * *  
  *          * 
        *   *  
*   *  * *    *   
* *        *   * 
*   *        *  
     *      *  
      *      * 
 *   *      * * * 
     *       * 
*   * *  * *    * * 
     *     *   
  * * *  *    * * * 
 *    * *   * * *  
    * *  *   *   
 *    *     *   
 *     * *    *  
          *   
     *   *  * *  
* * *          * 
* * *     *  *    
*  * *    *      
*  * *  * *    *   
       *  *    
 *      *  *    

Seoul MA. 
South Korea 

Brisbane 
Australia 

Seoul MA. 
South Korea 

Seoul MA. 
South Korea 

Seoul MA. 
South Korea 

Beijing 
China 

Tehran 
Iran 

Washington 
D.C. 
Baltimore 
MA. 

Naples 
Italy 

Boston 
US 

Arnhem–
Nijmegen 
MA. 
 
Netherlands 

Seoul 
MA. 
South 
Korea 

Tokyo 
Japan 

442 1734 CCDs 479 479 284 268 5 5 62 345 21 479 152 
300,600,900 800 500 500 500 700 700 + 100 800 500 800 800 500 600, 1000 
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Table 3.1 Variables Checklists from the Systematic Literature Review 

 

Vale (2015) Wang et al. 
(2016) 

Wang et al. 
(2017) 

Zemp et al. 
(2011) 

Zhou et al. 
(2017) 

     
*     
     
     
 * *  * 
*   *  
   *  
     
     
     
     
     
*   *  
*   *  
*   *  
*   *  
* *  *  
* *    
* * * * * 
   *  
 *  *  
 *  *  
 *    
   *  
*     
     
     
     
*     
     
     

Lisbon 
Portugal 

Beijing 
China 

Shanghai 
China Switzerland Wuhan 

China 

83 215 588 1700 96 
700 770 3800 500 700 500 
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3.4 CONTEXTUALISING TOD: NEW YORK CITY 
 

The case study area selected for this study is the New York City (NYC), which is the 

most densely populated cities within the US with an estimated 8.56 million residents 

distributed over a land area about 777 km2 (US Census Bureau, 2019). The city is 

located at the southern tip of the state of New York on the US eastern seaboard, 

comprising five boroughs, namely, Brooklyn, Queens, Manhattan, Bronx, and Staten 

Island. The New York City Subway, first opened in 1904, is a rapid transit system that 

offers 24/7 service across four of the five boroughs of NYC (i.e. Manhattan, Queens, 

The Bronx, and Brooklyn), which is controlled by the Metropolitan Transportation 

Authority (MTA). The system spans 27 lines (665 miles of track) and 472 subway 

stations, facilitating a major transportation mode for residents and visitors to the city 

(MTA, 2016). According to the subway ridership statistics provided by MTA, in 2016, 

an average of 5.65 million passengers used the system daily on weekdays and about 5.75 

million at the weekends, making it the largest rapid transit system in the US and the 

seventh busiest worldwide.  

 

3.4.1 DEFINING STATION CATCHMENT AREA AND DATA PRE-
PROCESSING 
 

Fundamental to any TOD typology is a definition of the contextual area surrounding the 

transit stations. For this case study we selected an area of 800 m (approximately 0.5 

miles) which mirrored the majority of studies conducted within the US (see Atkinson-

Palombo & Kuby, 2011; Austin et al., 2010; Bhattacharjee & Goetz, 2016; Nasri & 

Zhang, 2014). Although most of these studies employed a Euclidean distance buffer (or 

circular buffer) to define the catchments of transit station areas, it can be argued that a 

network distance buffer is more suitable since it “more accurately representing the built 

environment as experienced by someone walking through it” (Oliver et al., 2007, 8). 

Figure 3.1 illustrates 50 m-trimmed street network-based catchment areas (800 m 

walking distance) of the NYC subway stations. A zoomed-in inset map, on the upper left 

corner, shows an example circular buffer and a network buffer at Metropolitan Avenue 

Station. It is clear that a circular buffer area is less effective representation given the 

surrounding street density and available paths to walk. Additionally, in some other 

locations within a circular buffer, the walking distance is longer than 800 m due to more 
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facilitating urban structure, such as block size. A more systematic discussion comparing 

the influence of these two types of buffer are detailed in Oliver et al. (2007).  

Moreover, two inset maps located on the right side of Figure 3.1 highlight a stretch of 

census blocks1 along with their defined station catchment areas. Each catchment 

contains census blocks, for example, the catchment area of Mets-Willets Point station is 

formed by seven census blocks; Lefferts Blvd station catchment intersects with 25 

census blocks, which are converted into proportion based on their area of overlap. The 

proportion is subsequently used as a weight (𝑤𝑤𝑖𝑖) to calculate the weighted average value 

of selected variables. Equation 3.1 illustrates how these weights were used to calculate 

values attributed to census block where they intersected with the catchment areas.  

 

𝒙𝒙� =
∑ (𝒙𝒙𝒊𝒊 ∗ 𝒘𝒘𝒊𝒊)𝒏𝒏
𝒊𝒊=𝟏𝟏
∑ 𝒘𝒘�̇�𝒊
𝒏𝒏
𝒊𝒊=𝟏𝟏

 (3.1) 

Equation 3.1 𝒙𝒙� is the weighted mean; 𝒙𝒙𝒊𝒊 is an original value; 𝒘𝒘𝒊𝒊 is the weight (i.e. the 

proportion of the area occupied by a specific census block in the station catchment area). 

 

For other variables at the finer spatial resolution, particularly spatial points extracted 

from the NYCOD and NYCP (e.g. street trees, bus stops), these were first aggregated to 

the station catchment areas where they were located and either a density or percentage 

value calculated. 

 

1 Census blocks, the smallest geographic area for which the US Census Bureau collects and tabulates census 
data (US Census Bureau, 2019). 
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The selection of variables was primarily guided by findings from Section 3.3 alongside 

further consideration of the quality and availability of potential variables within the case 

study area. As such, variables selected for this study were categorised into the four 

previously identified domains: Land Use and Built Environment, Transit-related, 

Location and Accessibility, and Socioeconomic and Demographic. Variables 

representative of these domains were extracted from the following seven open data 

sources: American Community Survey (ACS)1, National Walkability Index (NWI)2, 

Smart Location Database (SLD)3, NYC Open Data (NYCOD)4, NYC Planning 

(NYCP)5, Metropolitan Transportation Authority (MTA)6. Table 3.2 presents the final 

64 variables selected for this study alongside a brief description. After the selected 

variables were assembled for each of the subway station catchment, the Box-Cox 

transformation (Equation 3.2; Box & Cox, 1964) was adopted to transform non-normal 

 

1 https://www.census.gov/programs-surveys/acs/ 
2 https://catalog.data.gov/dataset/walkability-index 
3 https://www.epa.gov/smartgrowth/smart-location-mapping 
4 https://opendata.cityofnewyork.us/ 
5 https://www1.nyc.gov/site/planning/data-maps/open-data.page 
6 http://web.mta.info/developers/turnstile.html 

Figure 3.1 The New York City Subway System and Catchment Areas (800m Walking Distance) With 

Highlights of Census Blocks 

https://www.census.gov/programs-surveys/acs/
https://catalog.data.gov/dataset/walkability-index
https://www.epa.gov/smartgrowth/smart-location-mapping
https://opendata.cityofnewyork.us/
https://www1.nyc.gov/site/planning/data-maps/open-data.page
http://web.mta.info/developers/turnstile.html
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variables values to approximate a normal distribution. Furthermore, given that the 

assembled variables are measured on different scales, z-scores were implemented as a 

standardisation (Equation 3.3). This frequently used technique creates a transformed 

variable with a mean of zero and unit of standard deviation. 

 

𝒙𝒙𝒊𝒊
′ = �

𝒙𝒙𝒊𝒊𝝀𝝀 − 𝟏𝟏
𝝀𝝀

𝐥𝐥𝐥𝐥𝐥𝐥𝒙𝒙𝒊𝒊
       

,      𝒊𝒊𝒊𝒊 𝝀𝝀 ≠ 𝟎𝟎;
,      𝒊𝒊𝒊𝒊 𝝀𝝀 = 𝟎𝟎.

    (3.2) 

Equation 3.2 where 𝒙𝒙𝒊𝒊′ is the transformed value; 𝝀𝝀 ranging from -5 to 5, which can be 

estimated using the profile likelihood function to achieve ‘optimal value.’ 

 

𝒛𝒛𝒊𝒊 =
𝒙𝒙𝒊𝒊 − 𝝁𝝁
𝝈𝝈

 (3.3) 

Equation 3.3 where 𝒛𝒛𝒊𝒊 is the standardised value , 𝒙𝒙𝒊𝒊is an original value, 𝝁𝝁 is the mean of 𝒙𝒙𝒊𝒊, 

and 𝝈𝝈  is the standard deviation from the mean. 

 

 



Page | 59  
 

Database Code Domain Variables Title Description 

ACS 

B01001 

Socioeconomic & Demographic Age: 0-4 % of Population Aged between 0 and 4 
Socioeconomic & Demographic Age: 5-14 % of Population Aged between 5 and 14 
Socioeconomic & Demographic Age: 15-19 % of Population Aged between 15 and 19 
Socioeconomic & Demographic Age: 20-24 % of Population Aged between 20 and 24 
Socioeconomic & Demographic Age: 25-44 % of Population Aged between 25 and 44 
Socioeconomic & Demographic Age: 45-64 % of Population Aged between 45 and 64 
Socioeconomic & Demographic Age: 65&above % of Population Aged 65 and above 

B08303 

Location & Accessibility TTtW: < 5 mins % of Workers whose Travel Time to Work is less than 5 minutes 
Location & Accessibility TTtW: 5-14 mins % of Workers whose Travel Time to Work is between 5 and 14 minutes 
Location & Accessibility TTtW: 15-29 mins % of Workers whose Travel Time to Work is between 15 and 29 minutes 
Location & Accessibility TTtW: 30-44 mins % of Workers whose Travel Time to Work is between 30 and 44 minutes 
Location & Accessibility TTtW: 45-59 mins % of Workers whose Travel Time to Work is between 45 and 59 minutes 
Location & Accessibility TTtW: > 60 mins % of Workers whose Travel Time to Work is longer than 60 minutes 

B11016 

Socioeconomic & Demographic HT: 1-person % of 1-Person Household 
Socioeconomic & Demographic HT: 2-person % of 2-Person Household 
Socioeconomic & Demographic HT: 3-person % of 3-Person Household 
Socioeconomic & Demographic HT: 4+-person % of 4 or more Person Household 

B15003 

Socioeconomic & Demographic EA: No school % of Population have no qualifications 
Socioeconomic & Demographic EA: Elementary school % of Population attained kindergarten to 5th grade 
Socioeconomic & Demographic EA: Middle school  % of Population attained 6th to 8th grade 
Socioeconomic & Demographic EA: High school % of Population attained 9th to 12th grade 
Socioeconomic & Demographic EA: College / Bachelor % of Population attained College or Bachelor’s degree 
Socioeconomic & Demographic EA: Master / Doctorate  % of Population attained Master’s or Doctorate Degree 

B19013 Socioeconomic & Demographic Median Income Household Median Income in the past 12 months 

B25003 Land Use & Built Environment Tenure: Owner % of Housing Unit occupied by Owner 
Land Use & Built Environment Tenure: Renter % of Housing Unit occupied by Renter 

B25024 
Land Use & Built Environment US: Detached % of Housing Unit categorised as detached 
Land Use & Built Environment US: Attached % of Housing Unit categorised as attached 
Land Use & Built Environment US: Apartment % of Housing Unit categorised as apartment (from 2 to 50 units) 

B25034 

Land Use & Built Environment YB: 2010 / Later % of Building built in 2010 or later 
Land Use & Built Environment YB: 2000 - 2009 % of Building built in between 2000 and 2009 
Land Use & Built Environment YB: 1980 - 1999 % of Building built in between 1989 and 1999 
Land Use & Built Environment YB: 1960 - 1979 % of Building built in between 1960 and 1979 
Land Use & Built Environment YB: 1940 - 1959 % of Building built in between 1940 and 1959 
Land Use & Built Environment YB: 1939 / Earlier % of Building built in 1939 or earlier 

B24010 

Socioeconomic & Demographic OT: M.B.S.A. % of Workers in Management, Business, Science, and Art Occupations 
Socioeconomic & Demographic OT: S. % of Workers in Service occupations 
Socioeconomic & Demographic OT: S.O. % of Workers in Sales and office occupations 
Socioeconomic & Demographic OT: N.C.M. % of Workers in Natural resources, construction, and maintenance occupations 



Page | 60  
 

Socioeconomic & Demographic OT: P.T.M. % of Workers in Production, transportation, and material moving occupations 

B25044 

Socioeconomic & Demographic VA: No-vehicle % of Housing Units have no vehicle 
Socioeconomic & Demographic VA: 1-vehicle % of Housing Units have 1 vehicle 
Socioeconomic & Demographic VA: 2-vehicle % of Housing Units have 2 vehicles 
Socioeconomic & Demographic VA: 3+-vehicle % of Housing Units have 3 or more vehicles 

B01003 Land Use & Built Environment Population Density Population Density 
NWI D4a Location & Accessibility D4a Distance from the population-weighted centroid to the nearest transit stop (meters) 

SLD 

D1c Land Use & Built Environment D1c Job Density 
D2a_EpHHm Land Use & Built Environment D2a_EpHHm Employment and Household Entropy 
D3a Land Use & Built Environment D3a Road Network Density 
D4d Location & Accessibility D4d Aggregate frequency of transit service per square mile 

NYCOD 

CSCL Land Use & Built Environment Intersection Density Street Intersection Density Calculated from the Street Centreline 
STC Land Use & Built Environment Tree Density Street tree density 
Bicycle Land Use & Built Environment Bike Facilities Citi-Bike, Bicycle Routes and Parking Shelters density 
Bus Land Use & Built Environment Bus Facilities Bus Stops Density 
Parking Land Use & Built Environment Parking Facilities Parking meters/lots density 
POI Land Use & Built Environment POI Point of Interest Data: contains seven land-use types 

NYCP MapPLUTO Land Use & Built Environment Landuse Land Use: contains seven land-use types 

MTA Turnstile Transit-related Turnstile: Entry Entry Counts for all turnstile data by every 4 hours per day 
Transit-related Turnstile: Exit Exit Counts for all turnstile data by every 4 hours per day 

Table 3.2 Final Variable Selection and Basic Description 
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3.4.2 CONTEXTUALISING TOD 
 

After the assembly of the normalised and standardised input data; similarity in the 

context of subway stations was explored by the application of a Self-Organising Map 

(SOM). The Self-Organising Map (SOM), also known as Kohonen Map, is a single layer 

feedforward artificial neuron network, which is trained by unsupervised, competitive 

learning as a tool for “visualisation and analysis of high dimensional data” (Bação & 

Lobo, 2010, 4). The SOM translates high-dimensional inputs into a low-dimensional 

space, also referred to feature map that is configured by the number of pre-defined 

neurons arranged on a regular lattice (e.g. a rectangular or hexagonal topology), through 

‘fitting’ a grid of nodes to the data over a fixed number of iterations. The resulting map 

allows a graphical presentation of the data that can be easily interpreted by map-readers, 

which can be further classified by the machine learning techniques designed for low 

dimensionality (Bara et al., 2018; Natita et al., 2016; Spielman & Folch, 2015). 

Numerous studies have highlighted the utility of SOM for visualising complex, 

nonlinear statistical relationships within high-dimensional data (Bação & Lobo, 2010; 

Das et al., 2016; Miljkovic, 2017; Yin, 2008). The method is suitable for this application 

given the multiplex of measures assembled. Moreover, even after the application of 

Box-Cox transformation, some variables remained not normally distributed, which may 

have caused some problems if we directly adopted conventional feature extraction 

methods such as principal components analysis (PCA), since the underlying assumptions 

of these techniques are not satisfied (Das et al., 2016). Accordingly, Demartines & 

Blayo (1992) note that the SOM is not very sensitive to the normal distribution when the 

input data contain high dimensionality. 

Several studies have highlighted the potential applications of SOM in terms of building 

typology for urban contexts (Arribas-Bel & Schmidt, 2013; Jain et al., 2018; Schäfer et 

al., 2018; Spielman & Thill, 2008), and specifically within the context of TOD: Sohn 

(2013) presented an application of SOM for Seoul, South Korea, metro station areas. 

Several parameters need to be specified in advance when fitting a SOM, including the 

number of neurons (M), the range of the learning rate and its decline pattern (α), the 

shape/type of the neuron, and the type neighbourhood function (Spielman & Folch, 

2015). The first step before training the SOM is to define an appropriate number of 

neurons that are used to configure the network. A small feature map (i.e. the number of 

observations far exceeds the number of neurons) results in a generalisation, whereas a 

large map allows a specific location in geographic space (subway stations, in this study) 
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to be projected to a particular location in the corresponding attribute space, representing 

specific properties (Spielman & Thill, 2008). A useful ‘rule of thumb’ (Equation 3.4) 

suggested by Tian et al. (2014), is employed here to determine the number of neurons. 

Since the 472 stations configure the observations (N), 108 (M) neurons, projected on a 

12 by 9 grid, are accordingly generated to structure the SOM. For the remaining 

parameters, these were set following an objective of maximising SOM quality through 

minimisation of the average quantisation error (QE) statistic. We tested the value of QE 

generated by using various combinations of different SOM parameters following (Natita 

et al., 2016). The results of these experiments are shown in Table 3.3, with the 

combination of a rectangular topology, the bubble neighbourhood function and a linear 

decline in learning rate (ranging from 1.0 to 0.01) resulting in the smallest average QE 

(3.41). Thus, this combination of parameters is eventually adopted to train the SOM 

network for creating spatial clusters. 

 

Test Topology/Shape Learning 
Rate Type 

Neighbourhood 
Type 

Average 
QE 

Learning 
Rate range 

1 Hexagon Linear Bubble 3.51 1.0-0.01 
2 Hexagon Inverse Bubble 3.59 1.0-0.01 
3 Hexagon Linear Gaussian 4.21 1.0-0.01 
4 Hexagon Inverse Gaussian 4.79 1.0-0.01 
5 Rectangle Linear Bubble 3.41 1.0-0.01 
6 Rectangle Inverse Bubble 3.69 1.0-0.01 
7 Rectangle Linear Gaussian 4.18 1.0-0.01 
8 Rectangle Inverse Gaussian 4.75 1.0-0.01 

Table 3.3 Result of SOM Parameter Settings for Building TOD Typology 

 

𝑴𝑴 ≈ 𝟓𝟓√𝑵𝑵 (3.4) 

Equation 3.4 Where M is the number of neurons, which is an integer close to the result of the 

right-hand side of the equation and N is the number of observations. 

 

To reduce the complexity of the computed SOM feature maps further, a hybrid 

hierarchical k-means (H-K-means) algorithm was applied to aggregate the neurons into 

groups sharing similar attributes (Chen et al., 2005; Kassambara, 2017). The procedure 

of this algorithm can be summarised into three steps: firstly, agglomerative hierarchical 

clustering is applied to the input data and generated tree (i.e. dendrogram), which is cut 

into k number of clusters; secondly, the cluster centroids (i.e. the mean value) are 

computed for each group; and finally, these cluster centroids are utilised as the initial 
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centres for the k-means algorithm (Kassambara, 2017). To select an appropriate number 

of clusters, a clustergram was created that demonstrates a weighted mean of the first 

component of a PCA for each cluster centre across a range of tested k values, where the 

width of each line represents the number of observations (i.e. neurons in SOM). The 

detailed rationale of this technique has been discussed elsewhere (see Schonlau, 2002); 

but generally, the logic is to find the point where the centroids of the clusters are as 

dissimilar as possible (well-spaced). According to the clustergram shown in Figure 3.2, 

it is easily observed that when the number of clusters reaches four, the difference 

between cluster centroids (red dots) is maximised (after k = 4, these centroids are getting 

close to each other; when k = 5, two cluster centroids are nearly overlapped, indicating 

relatively bad clustering results). 

 

Figure 3.2 Clustergram for Selecting Number of Clusters Differentiating TOD Typologies. 
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The result from clustering the 108 neurons is shown in a 2-dimensional plane (Figure 

3.3) and is mapped in Figure 3.4 portraying the geographic distribution of TOD 

typologies for NYC. The geographic distribution follows a broadly concentric circle-

shape, radiating away from the central area of Manhattan.  

 

Figure 3.3 TOD Typologies by SOM Nodes (presented on a 12*9 grid). 

Figure 3.4 Geographic Distribution of TOD Typologies 
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To ascertain the most salient characteristics of the clusters, index scores (i.e. x/x̄ *100) 

were calculated for the input variables and displayed within each cluster in Figure 3.5. 

These scores indicate the (over-) underrepresentation of a target characteristic compared 

to the regional average value (i.e. a score of 100). An index score 50 would hence equate 

to a rate that is half the average, and 200 would be double. Utilising both the map and 

scores, descriptive profiles were generated.  

 

CLUSTER 1: COMMERCIAL CORE 
 

This cluster is characterised by commercial areas with a highly educated (Master’s or 

Doctorate) population, aged between 25 and 44, including many of those who are 

employed in well-paid management, business, science and arts occupations. Residents of 

such areas are more likely to live in apartments (built after the 1980s) consisting of one- 

or two-person households. These areas are characterised by an extremely high job 

density, high level of traffic permeability, and plenty of public services, commercial and 

mixed-use properties, accompanied with a mature infrastructure for cycling and a high 

level of accessibility of public transit.  

CLUSTER 2: BLUE-COLLAR DOMICILE 
 

Residents of this typology have an age distribution closer to the regional mean, who 

have increased prevalence to live with family in rented apartments that are situated in 

areas with high population density, forming a typical three-person household size. Many 

more of these residents are likely to have occupations within the areas of service and 

production, transportation, and material moving sectors. Additionally, the annual median 

income earned by residents of these areas is much lower. The physical environment is 

characterised by detached properties and apartment constructed in the 1940s and 

typically linked with adequate parking infrastructures.  

CLUSTER 3: YOUNG FAMILY RESIDENTIAL 
 

These areas are characterised by residential occupants with (pre-)school-age children. 

Many residents live in the detached property located in boroughs outside Manhattan. 

Given the distance of travel to work (more than 60 min), the car dependency of these 



Page | 66  
 

areas is higher than the regional average, also demonstrated by the high household 

vehicle availability.  

CLUSTER 4: OLDER FAMILY RESIDENTIAL 
 

Populations living within this cluster can be broadly characterised by college-educated 

middle-age residents (aged between 45 and 64) who are likely to own a detached 

property built between the 1940s to 1970s and located on the periphery of NYC. Many 

residents live in relatively large households with dependent children (aged from 5 to 19). 

Residents of this group show high use of private automobiles for commuting, manifested 

by high levels of vehicle availability (two or more cars) at more than four times the 

regional average. 

  

Figure 3.5 Index Scores by Four TOD Typologies. 
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3.5 CLASSIFYING TEMPORAL TOD DYNAMICS  
 

The space–time dynamics of TOD localities were considered through subway turnstile 

data supplied by the MTA. This dataset provides a variety of information on subway 

station entries and exits, organised into four-hourly daily time bands (i.e. six intervals a 

day); with the period 2015 to 2016 selected. The turnstile data was aggregated by days 

of the week, and for each station (a station contains several turnstiles) created 30 

variables (six-time bands, five working days) for entry counts and a further 30 variables 

for exits. To provide further insight into those stations sharing similar patterns of transit 

use, the analytical framework applied earlier to station contextual data was replicated for 

the subway turnstile ingress and egress. This included the data pre-processing (e.g. 

normalisation and standardisation), alongside SOM construction and clustering. A 

clustergram was again used to select an appropriate number of clusters (see Figure 3.6), 

with k = 5 selected. These ‘Temporal Clusters’ are mapped in Figure 3.7.  

 

 

Figure 3.6 Clustergram for Selecting Number of Clusters Differentiating Temporal Clusters. 
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To ascertain the most salient characteristics of the clusters, a further set of index scores 

were created for the temporal clusters, using the method previously described in Section 

3.4.2. A series of heatmaps show these scores in Figure 3.8 for the five Temporal 

Clusters. Utilising both the map and scores, descriptive profiles were generated from 

these insights.  

CLUSTER 1: TYPICAL WORK-ORIENTED 
 

Stations within this cluster are mainly located in the Lower and Midtown areas of 

Manhattan, downtown areas of Brooklyn and Long Island City. They feature a typical 

‘double-humped’ (morning and evening) subway travel pattern associated with 

workplace-oriented usage. In the morning peak, low inbound passenger flow is 

identified accompanying with a high outbound flow; while during the evening peak, 

stations have high inbound flow and a low outbound flow. The role of these stations 

switches during workdays: from a ‘major destination’ in the morning to ‘major origin’ in 

the evening.  

CLUSTER 2: HOME-WORK MIXED 
 

Figure 3.7 Geographic Distribution of Temporal Clusters 
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Stations classified by this cluster are mainly located outside Manhattan, featuring a 

mixed subway travel pattern. During the morning peak and even earlier, stations exhibit 

a high volume of inbound passenger flows and a high volume of outbound flows.  

CLUSTER 3: ENTERTAINMENT AND WORK 
 

Stations within this cluster are predominantly located in either Downtown or Midtown 

Manhattan, occupying more than half of subway stations in Manhattan. These stations 

meet a low inbound and high outbound passenger flow during the morning but reverse 

this pattern during the evening. Moreover, there is additionally a large volume of 

inbound flows during the midnight-to-late-at-night period, which may e a result of these 

destination being the popular place of departure from evening events. 

CLUSTER 4: OFF-PEAK AVERAGE 
 

Stations of this group are distributed reasonably randomly across New York. This cluster 

also consists of stations exhibiting moderate levels of passenger flow, which are very 

close to the average. More generally, these are less popular stations and experience 

fewer passengers during commuting peak periods. 

CLUSTER 5: TYPICAL HOME-ORIENTED 
 

Although a fraction of stations from this group can be identified in the northern part of 

Central Park, most stations are located outside Manhattan (especially in the periphery of 

NYC). These stations also experience the ‘double-humped’ travel pattern, however, high 

inbound and low outbound passenger flow during the morning peak, with the reverse 

during the evening. 
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3.6 INTEGRATING CONTEXT AND SPACE-TIME 
DYNAMICS 
 

An overarching purpose of this work has been to extend an existing framework for the 

creation of TOD typologies to examine both context and dynamics. As such, in this 

section, we explore the intersection of our two created classifications. Figure 3.9 

presents an alluvial diagram showing the proportion of subway stations categorised at 

the intersection of these two classifications for the NYC extent. There is reasonable 

consistency between these two classifications with some emerging differences.  

As might be expected, stations with their context classified as ‘Commercial Core’ 

predominantly correspond to ‘Typical Work-Oriented’ and ‘Entertainment & Work’ 

temporal clusters, manifesting typical workplace-oriented function of these TOD areas. 

Similar temporal patterns can be observed in those stations categorised as ‘Blue-Collar 

Domicile’ which splits between ‘Typical Home-Oriented’ and ‘Home-Work Mixed’ 

which might be expected given more residential-oriented usage. 

Figure 3.8 Inbound and Outbound Index Value of Five Temporal Clusters  

(presented in a ‘weekly travel profile’ manner). In order to achieve better visualisation result, all values 

less than 100 (less than the mean value) are presented by white. 
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TOD areas categorised as ‘Young Family Residential’ unsurprisingly predominantly 

correspond with the temporal cluster ‘Typical Home-Oriented’ and ‘Home-Work 

Mixed’. Stations are both major origins and destinations during peak times, which may 

be a result of proximity to local employment centres or schools. Given that many of the 

residences of this cluster are students, the high volume of (early-) morning peak flows 

may partially be explained by educational establishment opening times. 

Within TOD stations classified as ‘Older Family Residential’, there is correspondence to 

the temporal clusters ‘Home-Work Mixed’ and ‘Off-Peak Average’. There are likely 

demographic drivers of these patterns alongside a higher rate of private vehicle 

ownership as a result of their more suburban locations.  

 

 

Figure 3.9 Alluvial Diagram: Percentage Strata by Cross-Tabulating TOD Typologies and 

Temporal Clusters 
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3.7 CONCLUSIONS 
 

Transit-Oriented Development (TOD) is a widely recognised planning method for 

tackling transport-related challenges. Typological approaches to TOD can be utilised 

either retrospectively or prospectively to assist urban planners with evidence-based 

information on the delivery or monitoring of TOD. However, most existing studies 

creating TOD typologies have overwhelmingly relied upon inputs selected alongside the 

‘three Ds’ or the ‘five Ds’ principles, which might be argued as not capturing effectively 

multidimensional aspects of context alongside dynamics of such areas through human 

mobility. This study proposed and implemented an analytical framework to address this 

research gap by enhancing a conventional TOD typology with a wider array of 

contextual data, while also considering the spatiotemporal dynamics of activity at transit 

stations. 

Our presented contextual TOD typology was implemented with candidate data inputs 

gather through systematically reviewing 29 recent studies related to TOD typology. The 

‘five-Ds’ principles were enriched through various measures that were broadly 

categorised across four domains: Land Use and Built Environment, Transit-related, 

Location and Accessibility, and Socioeconomic and Demographic. Four salient TOD 

clusters were generated for the case study city of NYC, by applying a methodology 

framework formed by the combination of Self-Organising Map (SOM) and hierarchical 

k-means clustering (H-K-means) to the multidimensional input data. These clusters were 

further named, described and mapped. 

The spatiotemporal dynamics of activity at transit stations was considered through 

subway turnstile data from the MTA. Through the second application of the proposed 

framework to the temporal dataset, 472 subway stations were classified into five unique 

clusters respectively representing different types of travel activity. 

The contextual TOD typology was then enhanced through linkage with the classification 

of aggregate space-time dynamics to illustrate the interaction between context and use. 

Through cross-validation there was much consistency unveiled, for example, the work-

oriented stations are mainly corresponding to the stations located in major employment 

centres. 

One of the main limitations of this study relates to the temporal resolution of the subway 

turnstile data. The 4-h temporal interval adopted by MTA to aggregate the passenger 

flows is limited in granularity and may mask valuable details should more disaggregate 

data be made available. In other contexts, researchers such as Liu and Cheng (2020) and 



Page | 73  
 

Mahrsi et al. (2014) have utilised smart card data to conduct the travel pattern analysis, 

which brings finer resolution for both boarding and alighting information. However, 

such data or similar products were not publicly available from MTA. Secondly, due to 

data limitations of this contextual area, this study did not consider multimodal journeys 

which may also offer insight as the ability to interchange to other transit modes has been 

spotlighted by many of the reviewed studies (Chorus & Bertolini, 2011; Dirgahayani & 

Choerunnisa, 2018; Zemp et al., 2011). Although the present study employed variables, 

such as bus stop density, parking facilities, and bike facilities, to attempt to represent the 

intermodal connectivity, these variables were relatively ‘static’ compared to the data that 

could infer mode swapping. None-the-less, despite such caveats, this paper has 

demonstrated a new and powerful technique that implements an innovative methodology 

to extend a TOD typology to represent both context and dynamics; and will likely be a 

useful framework for application within other urban contexts.
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4.0 A PRINCIPAL COMPONENT ANALYSIS 
(PCA)-BASED FRAMEWORK FOR 
AUTOMATED VARIABLE SELECTION IN 
GEODEMOGRAPHIC CLASSIFICATION 

 

The research presented in this chapter is an adapted version of the publication: 

• Liu, Y., Singleton, A. and Arribas-bel, D. (2019) A principal component analysis 

(PCA)-based framework for automated variable selection in geodemographic 

classification. Geo-spatial Information Science. 22(4). 251-264. 

https://doi.org/10.1080/10095020.2019.1621549 

While the article details the study’s other innovations, its main contributions to this 

thesis are summarised below. 

1. A PCA-based variable selection methodological framework is developed, aiming 

to automate the process of selecting the most ‘meaningful variables for creating 

a geodemographic classification 

2. Better performance from this framework has been identified by comparing its 

output to a benchmark geodemographic classification (i.e. 2011 OAC). 

In this chapter, objective 3 has been fulfilled. 

 

4.1 ABSTRACT 
 

A geodemographic classification aims to describe the most salient characteristics of a 

small area zonal geography. However, such representations are influenced by the 

methodological choices made during their construction. Of particular debate are the 

choice and specification of input variables, with the objective of identifying inputs that 

add value but also aim for model parsimony. Within this context, our paper introduces a 

principal component analysis (PCA)-based automated variable selection methodology 

that has the objective of identifying candidate inputs to a geodemographic classification 

from a collection of variables. The proposed methodology is exemplified in the context 

of variables from the UK 2011 Census, and its output compared to the Office for 

National Statistics 2011 Output Area Classification (2011 OAC). Through the 

implementation of the proposed methodology, the quality of the cluster assignment was 

improved relative to 2011 OAC, manifested by a lower total within-cluster sum of 

square score. Across the UK, more than 70.2% of the Output Areas (OAs) occupied by 

https://doi.org/10.1080/10095020.2019.1621549
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the newly created classification (i.e. AVS-OAC) outperform the 2011 OAC, with 

particularly strong performance within Scotland and Wales. 

 

4.2 INTRODUCTION 
 

A geodemographic classification aims to summarise the multidimensional 

socioeconomic and built characteristics of small area zonal geography, and are often 

referred as “neighbourhood” classification (Harris et al., 2005). Geodemographic 

analysis relates to the application of such classifications and is positioned within a 

history of analytical frameworks that have aimed to explore the comparative context of 

urban areas (Bassett & Short, 1980; Timms, 1971). The theoretical tenet of 

geodemographic classification relates to the principle of homophily, which in 

geographic terms is the tendency for individuals to be attracted to areas that contain 

others with similar characteristics to themselves (Sleight, 1993; Webber & Craig, 1978). 

As such, the methodological objective when creating a geodemographic classification is, 

therefore, to sort a set of small areas into clusters that share similar characteristics, with 

the output of such groupings providing a simplified and categorical representation of the 

overarching multidimensional geography (Spielman & Singleton, 2015). 

In general terms geodemographic classifications are created in a series of stages that 

include the gathering of input variables that describe various characteristics of a given 

set of small areas; potentially normalising these inputs and then standardising the 

measures onto the same scale. Due to the high dimensionality of contemporary 

geodemographics, computational methods are implemented to examine the similarity 

between areas. This is most commonly achieved through an implementation of cluster 

analysis which refers to a family of computational methods that will typically have the 

general goal to maximise within-group similarity and between-group difference through 

various optimisation strategies (Adnan, 2011; Everitt et al., 2011). Outputs may typically 

be presented as a hierarchy, with larger and coarser groupings being split into smaller 

more specific nested groups; with such structure again created through various clustering 

or partitioning strategies. After this process is complete, it is typical that the 

characteristics of the assembled clusters are described by looking at which input 

variables are over- or under-represented within them; and these are then used to build 

written “pen portraits” and illustrative graphics. 

As a methodological approach, geodemographic analysis has a lineage of application 

across the public and private sectors, spanning multiple decades and geographic contexts 
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(Bassett & Short, 1980; Paul Longley, 2005; Paul Longley & Goodchild, 2008; 

Singleton & Spielman, 2014). However, the utility of a geodemographic classification 

for a given application is substantially determined by those methodological choices 

made during construction (Openshaw et al., 1995). For example, it may be pertinent to 

align geodemographic classification inputs to those drivers of a small area differentiation 

within the context of a particular application (Singleton & Longley, 2009) or, for 

analysis of specific localities, a classification may be enhanced by considering inputs 

derived for a focused rather than national extent (Singleton & Longley, 2015). 

Furthermore, standardisation algorithms (e.g. z-scores, range, and inter-decile range) can 

have various impacts upon classification shape and performance (Gale et al., 2016). 

Given the impact of methodological choice, it is typical that great care is taken into the 

testing and evaluation of different approaches along with their outputs, and this is acute 

within the context of those national classifications released by official statistical bodies 

where extensive stakeholder consultation and ratification are typically implemented as 

part of the construction process (Gale et al., 2016; Vickers & Rees, 2007). 

A primary task when building any geodemographic classification is to develop a 

framework for the selection of specific variables that will produce meaningful and 

application-relevant clusters (Murphy & Smith, 2014). Those debates about the brevity 

of geodemographic classification inputs have been rehearsed for a long time. Openshaw 

et al. (1995) advocated that “the fewer the variables the better”, whereas Harris et al. 

(2005) state that a more meaningful classification is likely to be constructed through 

inputting more variables, unless these variables are not “reliable, robust, and adding new 

information”. The dimensionality of inputs (i.e. the number of zones multiplied by the 

number of variables) also has an interaction with the effectiveness of clustering methods 

to find salient structure from the data. Clustering performance can be hugely improved 

through the reduction of the number of variables due to this “curse of dimensionality” 

(Guyon & Elisseeff, 2003; Pacheco, 2015; Rojas, 2015; Jiliang Tang et al., 2014). 

Taking such perspectives into consideration, a typical objective of variable selection is 

therefore to achieve input parsimony, that is, the identification of the smallest subset of 

input variables that capture the most variation within the original dataset (Debenham, 

2002; Gale et al., 2016; Harris et al., 2005). This will typically be achieved by balancing 

both the theoretical and empirical rationale for variable inclusion (Spielman & 

Singleton, 2015). For example, it is common that initial inputs are presented within a 

framework that draws upon wider literature, guiding the type and balance between 

different potential influences upon or outcomes of area differentiation. More 

empirically, this will usually ensue a process of initial candidate input variable 
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evaluation, typically considering a range of factors about the individual candidate 

variables including their correlation, distribution or spatial coverage. 

The remaining sections of this paper are presented as follows. In Section 4.3, we 

introduce the Office for National Statistics 2011 Output Area Classification (2011 OAC) 

as an example geodemographic that has an open and reproducible methodology; and 

focus particularly on the variable selection method adopted to create it. This is followed 

by a consideration of alternative methods that have been used to select geodemographic 

inputs in some other past national classifications built for either the UK or Great Britain. 

We then consider the use of Principal Component Analysis (PCA) as an alternative 

methodology for automating variable selection within Section 4.4, alongside results of 

the developed methodology in Section 4.5. In Section 4.5.2, we compare and contrast 

the results of a cluster analysis using the variable selection method with 2011 OAC. The 

limitations of this research are discussed in Section 4.6, alongside some plans for further 

work and extension. 

 

4.3 SELECTING VARIABLES IN NATIONAL 
CLASSIFICATIONS 
 

The 2011 OAC is a UK census-only geodemographic, which was released in 2014 by 

the Office for National Statistics (ONS) (Gale et al., 2016). This followed a similar 

classification created for the UK from the 2001 Census (Vickers & Rees, 2007). Both 

the 2001 and 2011 OAC have an open methodology and data inputs, which enable 

reproducibility, and furthermore provide a useful framework upon which comparative 

studies can be designed (Gale et al., 2016). The 2011 OAC presents a three-tiered 

hierarchy, comprising eight supergroups, 26 groups, and 76 subgroups. Each output 

cluster presents a shorthand name and “pen portrait” (description) depicting the most 

salient multidimensional characteristics (Bates, 2015; Gale et al., 2016). 

The initial variable selection for 2011 OAC only considered those non-redundant census 

variables that were consistently provided by the three different UK census agencies 

(England and Wales, Scotland, Northern Ireland); and as a result of public consultation, 

was also guided by the 2001 OAC inputs. In 2011 OAC, 166 prospective variables 

(including 94 variables that were referenced by the 2001 OAC) and a derived variable of 

the standardised illness ratio (SIR) were tested. Moreover, the suitability of these initial 

variables was also scrutinised by the ONS (Gale et al., 2016). The initial variables were 

rationalised with two main objectives. The first was to obtain a variable mix that 
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represented the general characteristics of the UK’s neighbourhoods, meanwhile, also 

distinguishing salient characteristics that varied geographically. A second requirement 

was to minimise the number of strongly correlated census variables, thus limiting any 

potential weighting effect that may be caused by collinearity. According to Gale et al. 

(2016), these requirements were achieved through two empirical approaches. The first 

was to examine the correlations of candidate variables, and specifically identifying those 

variable pairs for further consideration where the correlation was greater than ± 0.6. A 

second technique implemented cluster-based sensitivity analysis, which aimed to 

identify those variables that had the greatest impact, either positive or negative, on 

cluster formation. This method assessed the total within-cluster sum of squares and the 

total between-cluster sum of squares statistics after including or excluding different 

variables from a clustering run. After further evaluation including examination of 

statistical distributions and mapping, 60 variables were eventually retained to build 2011 

OAC, which were broadly organised into three domains: demographic, housing and 

socioeconomic (Gale et al., 2016). 

However, the OAC (both 2001 and 2011 OAC) approach to variable selection deviates 

from those methods implemented by academics building geodemographic classifications 

for pre-2001 censuses in the UK. The very different computational contexts of the past 

made more sophisticated multidimensional processing much slower or impossible 

(Adnan, 2011; Singleton, 2016). Prior to the 2001 OAC, dimensionality reducing 

methods such as principal component analysis (PCA) were commonly (although not 

universally) integrated into some of the classification products that corresponded to the 

decennially released Census (e.g. Charlton et al., 1985; Robinson, 1998; Webber, 1975; 

Webber & Craig, 1978). When a PCA is calculated for a dataset, a set of new orthogonal 

variables (i.e. principal components) are created which are the linear combination of the 

original variables. The principal component that accounts for the largest variance is 

called the first principal component, the second principal component that accounts for 

the second-largest variance as the second, and so forth (Jolliffe, 1972; Pacheco, 2015). 

Clustering a set of principal components reduces the overall number of inputs to a 

geodemographics, making the clustering process either possible or much faster to 

complete; which in the past had been a key constraint given more limited computational 

power/availability. However, as the data handling and processing capacity of computers 

have increased, the necessity for PCA in this context has been reduced. Furthermore, 

some scholars have also argued that use of PCA to create inputs may erase interesting 

patterns, and particularly those which are spatially heterogeneous (Harris et al., 2005; 

Leventhal, 2016; Tang et al., 2014). 



Page | 79  
 

However, there are some contemporary implementations of PCA when building 

geodemographic classifications. For instance, Santeo et al. (2016) employed PCA as an 

inspection tool that determines whether a linear relationship exists between candidate 

variables; Adnan (2011) adopts PCA as a standardisation technique in the progress of 

producing real-time geodemographics. Although not a necessity in terms of 

computation, and as illustrated by Debenham (2002), PCA can have a useful role as a 

tool that guides variable selection. Although, what is under-researched is how such a 

process could be automated, taking account of both the overall importance of input 

variables to cluster formation, but also those sensitivities of the extent to which such 

relationships may hold between different localities. One of the overarching objectives of 

this paper is therefore to re-examine the potential for PCA within a computationally 

intensive setting, where the benefits of PCA for the identification of variables that 

explain the main variance within a dataset can be integral to an automated variable 

selection process. We present this new methodology in the context of a UK census-

based geodemographic, contrasting the output against the 2011 OAC. 

 

4.4 AUTOMATED VARIABLE SELECTION USING PCA 
 

As discussed in the previous section, an overarching objective of the variable selection 

stage of building a geodemographic classification is to identify the smallest possible 

subset of variables that can represent the main variance within a universe of potential 

inputs being considered, which may also be informed by theoretical or practical 

rationale. Although accepting of arguments that PCA can have an adverse effect when 

used to create inputs to a geodemographic classification (Harris et al., 2005; Leventhal, 

2016; Tang et al., 2014), we would argue that PCA can still have utility as a tool in the 

identification of appropriate input variables; which is the basis of the method we 

introduce in the remainder of this section. 
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The flowchart presented in Figure 4.1 illustrates an approach that is comprised of five 

main stages. The first stage generates a set of principal components (PCs) from the input 

variables. Meanwhile, by summing up of the squared factor scores for the PC, the 

eigenvalue associated with each of the PCs can be calculated, which is utilised to define 

the range of iteration tests at stage 2. Additionally, the contribution of the variable to 

each component can be obtained by calculating the ratio between the squared factor 

score for a variable and the eigenvalue associated with that component. The value of a 

contribution is between 0 and 1. Generally, the larger the value, the more a variable 

contributes to the component (Abdi & Williams, 2010; Pacheco, 2015). 

 

Stage 2 defines a threshold for the number of iterations to test between a “harsh” and a 

more “liberal” cut-off point. The maximum, i.e. “harsh”, threshold value is defined by a 

Figure 4.1 Proposed Automated Variable Selection Method Workflow 
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strict cut-off point that is generated from the commonly used Kaiser’s rule, namely, the 

eigenvalue of a meaningful PC is greater than or equal to 1 (Jolliffe, 2002; Kaiser, 1960; 

Pacheco, 2015). The minimum, i.e. “liberal”, threshold value is determined by adopting 

a cut-off point that is suggested by Jolliffe (1972), namely, the eigenvalue of a 

meaningful PC is greater than or equal to 0.7. 

Stages 3–5 are iterative, with each run successively removing a PC from the set 

identified at stage 2. In every iteration at stage 3, the contribution of the variables to the 

retained PCs is quantified by taking the sum of their individual contributions multiplied 

by their respective eigenvalues in each PC (Pacheco, 2015). Abdi & Williams (2010, 

437) suggest the use of “larger than the average contribution” as a heuristic cut-off when 

identifying variables with high contributions. Similarly, in this stage, where a variable 

contribution is greater than the average of these summed scores, it is retained for stage 4. 

Stage 4 explores the correlation between the retained variables using a Minimum 

Spanning Tree (MST), which re-examines the level of data redundancy. Any highly 

correlated pairs are highlighted by the tree, defined as having a correlation coefficient of 

greater than or equal to ± 0.75, which is commonly cited as the “rule of thumb” 

indicating a high correlation (Santeo et al., 2016; Udovičić et al., 2007). In these 

instances, those highly correlated variables (i.e. nodes in the MST) with the fewest 

branches (i.e. less connected) were removed from the candidate variable list since they 

are considered of lower importance (Financial Network Analytics, 2012). Although 

automated in this instance, it follows similar methods implemented when building some 

commercial geodemographics (Harris et al., 2005). 

At stage 5, the filtered variables are then clustered using the K-means algorithm with a 

user-specified number of clusters. This was optimised by running 10,000 times which is 

necessary given that the starting seeds used to initialise cluster partitioning are 

stochastic, and as such, there can be slight differences in outcomes between each run of 

the algorithm. Of the 10,000 runs that are generated for each iteration of Stage 5, the 

result with the lowest Total Within-cluster Sum of Squares (TWSS) statistics is 

extracted; representing a solution with overall more compact clusters. For this selected 

optimised run, two statistics were calculated as a measure of overall clustering quality: 

The between cluster sum of square (BCSS) and within-cluster sum of square (WCSS) 

statistics. 

At the end of each Stage 5 run, the WCSS and BCSS are then stored in association with 

the currently tested PC cut-off defined at Stage 3. The ratio between the WCSS and 

BCSS is used to monitor the impact of the specific PC selection. Generally, the larger 
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the ratio, the better clustering results. The iteration stops when the minimum/maximum 

(depending on removing/adding) number of PC defined by Stage 2 is met. 

 

4.5 CASE STUDY APPLICATION 
 

The automated variable selection process presented in the previous section was 

implemented in an example of building a UK census geodemographics that would be 

broadly comparable to 2011 OAC. As discussed earlier, the open methodology and data 

used to create this geodemographics make it a useful candidate for comparison; and in 

drawing parallels between the classifications we can illustrate broad comparability and 

the utility of the presented technique. It should be noticed that the objective of this 

application was, therefore, to retain broad comparability with the 2011 OAC, and to this 

end, the methods of standardisation, normalisation and clustering were mirrored. Thus, 

input data were normalised using an Inverse hyperbolic sine, and then range 

standardised onto a 1–0 scale. For the K-means implementation, only the most aggregate 

level of hierarchy in 2011 OAC was considered in this comparison, so k was defined as 

8 for this model, although future work might consider further levels of disaggregation or 

a range of different k values might be tested. The rationale for the specific 

methodological choices in 2011 OAC can be found within Gale et al. (2016); however, 

the key point of departure in the presented methodology relates to how the final 

variables are selected for input into the clustering process. 

In this application of the generally applicable methodology outlined in the previous 

section, we considered nearly all variables contained within the Key Statistics (KS) and 

Quick Statistics (QS) tables for the UK, which included the 167 initial variables 

considered for inclusion in 2011 OAC. Although, given that some tables contained 

duplicated or near identical topics, only one of these tables were included. For instance, 

both tables KS104 and QS108 concerned living arrangements; tables KS102 and QS102 

detailed age structure. Finally, like 2011 OAC, the initial inputs also included 

computation of a Standardised Illness Ratio. The full initial variable specification is 

listed in Table S1 of the online Supplementary Materials. 

After running a PCA on the input data, a total of 53 meaningful PCs were identified by 

examination of the eigenvalue thresholds which are plotted against the cumulative 

variance explained in Figure 4.2. If we had applied the Kaiser rule (Eigenvalue ≥1), only 

30 principal components would have been selected which cumulatively accounted for 

about 72.4% of the variance being retained. However, it can be seen that by altering the 
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cut-off value from 1 to 0.7, the filtering process identified 52 principal components, 

which cumulatively accounted for approximately 83.6% of the variance contained in the 

original data. 

A summary of outcomes from the iteration tests is shown in Figure 4.3. The highest 

quality clustering results were identified (an objective function of maximising the ratio 

between BCSS and WCSS) when the first 51 PCs were used to identify input variables 

to the cluster analysis. Of the 86 variables firstly identified, 12 pairs were highly 

correlated (Correlation Coefficient ≥ ± 0.75); and as such, utilising the minimum 

spanning tree (Figure 4.4), 12 variables were removed. 

 

 

 

 

 

 

 

Figure 4.2 Scree Plot: Eigenvalue vs. Percentage of Explained Variances 
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Figure 4.3 BCSS and WCSS Result by Iteration test by Principal Components. Ratio = BCSS / WCSS 

Figure 4.4 Minimum Spanning Tree of the Census Variables after the PCA-Based Filter.  

The thickness of the curve indicates the absolute value of the person correlation coefficient. The 

value above ±0.75 is highlighted by red thicker line, which therefore will be removed in the next 

phases. 
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Detail about the type and frequency of variables retained for each iteration are presented 

in Table 4.1. The variables have been divided into three different domains of: 

demographic, socioeconomic and housing. Overall the iterations, variables in the 

socioeconomic domain were retained less often, indicating greater redundancy. In 

contrast, the housing domain was reasonably stable, and for all iterations comprised 

between 45 and 60 percent of the overall variables within this domain. 
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PCs Retained 
Variables 

Demographic 
(D) 

Socioeconomic 
(S) 

Housing 
(H) 

Ratio = 
BCSS/WCSS 

D 
% by 
Total 

S 
% by 
Total 

H % 
by 
Total 

30 90 50                                  
55.6 

28                                  
31.1 

12                                  
13.3 0.4862 62.5 41.8 60.0 

31 91 50                                  
55.6 

29                                  
32.2 

12                                  
13.3 0.4854 62.5 43.3 60.0 

32 90 49                                  
54.4 

29                                  
32.2 

12                                  
13.3 0.4867 61.3 43.3 60.0 

33 88 49                                  
54.4 

27                                  
30 

12                                  
13.3 0.4813 61.3 40.3 60.0 

34 87 49                                  
54.4 

26                                  
28.9 

12                                  
13.3 0.4820 61.3 38.8 60.0 

35 85 48                                  
53.3 

25                                  
27.8 

12                                  
13.3 0.4842 60.0 37.3 60.0 

36 84 47                                  
52.2 

25                                  
27.8 

12                                  
13.3 0.4840 58.8 37.3 60.0 

37 81 47                                  
52.2 

24                                  
26.7 

10                                  
11.1 0.4866 58.8 35.8 50.0 

38 79 45                                  
50 

24                                  
26.7 

10                                  
11.1 0.4882 56.3 35.8 50.0 

39 78 43                                  
47.8 

25                                  
27.8 

10                                  
11.1 0.4894 53.8 37.3 50.0 

40 75 43                                  
47.8 

23                                  
25.6 

9                                  
10 0.4881 53.8 34.3 45.0 

41 75 43                                  
47.8 

22                                  
24.4 

10                                  
11.1 0.4852 53.8 32.8 50.0 

42 74 43                                  
47.8 

21                                  
23.3 

10                                  
11.1 0.4864 53.8 31.3 50.0 

43 74 43                                  
47.8 

21                                  
23.3 

10                                  
11.1 0.4864 53.8 31.3 50.0 

44 74 43                                  
47.8 

21                                  
23.3 

10                                  
11.1 0.4864 53.8 31.3 50.0 

45 74 42                                  
46.7 

21                                  
23.3 

11                                  
12.2 0.4901 52.5 31.3 55.0 

46 75 42                                  
46.7 

23                                  
25.6 

10                                  
11.1 0.4891 52.5 34.3 50.0 

47 74 41                                  
45.6 

23                                  
25.6 

10                                  
11.1 0.4891 51.3 34.3 50.0 

48 75 41                                  
45.6 

24                                  
26.7 

10                                  
11.1 0.4888 51.3 35.8 50.0 

49 75 41                                  
45.6 

23                                  
25.6 

11                                  
12.2 0.4898 51.3 34.3 55.0 

50 74 41                                  
45.6 

23                                  
25.6 

10                                  
11.1 0.4899 51.3 34.3 50.0 

51 74 40                                  
44.4 

24                                  
26.7 

10                                  
11.1 0.4903 50.0 35.8 50.0 

52 74 40                                  
44.4 

24                                  
26.7 

10                                  
11.1 0.4898 50.0 35.8 50.0 

Total 167 80 67 20  55.4 36.0 53.3 
Table 4.1 Testing Results Showing the Number and Percentage of Overall Retained Variables 

and by Domain  
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In the optimised result (51 PCs), 74 variables in total were retained, distributed between 

40 demographic, 24 socioeconomic, 10 housing. Table 4.2 summarises this distribution 

relative to those inputs used to build 2011 OAC. Most significantly, the proportion of 

retained variables related to demographics was much larger, while the other domain 

proportions remained largely similar in size. 

 

Domain AVS-OAC AVS-OAC (%) 2011 OAC 2011 OAC (%) 

Demographic 40 54.1% 26 43.3% 

Socioeconomic 24 32.4% 26 43.3% 

Housing 10 13.5% 8 13.3% 

Total 74 - 60 - 

Table 4.2 Number of Final Census Variables Retained by Domain vs 2011 OAC 

 

4.5.1 DESCRIBING THE DERIVED CLASSIFICATION 
 

In this penultimate section, we firstly present descriptions to accompany the optimised 

clustering result derived through automated variable selection (Automated Variable 

Selection OAC – AVS-OAC). The new classification created through this process had 

an average cluster size of approximately 29,037 Output areas (OAs), however, varied 

from 11,397 (E) and 41,399 (B) OAs, which, respectively, correspond to about 4.9% and 

17.8% of the total number of OAs in the UK. By contrast, 2011 OAC varies from 8,589 

OAs (2: Ethnicity Central) to 35,285 OAs (6: Urbanities), so the range of our presented 

clusters is larger. 

Figure 4.5 maps the geographic distribution of the AVS-OAC clusters across the UK, 

and also respectively highlights the cluster distribution in the largest cities, namely, 

London, Cardiff, Edinburgh, and Belfast. The spatial distribution highlights a useful 

urban-rural split, and within urban areas presents a range of differentiating clusters. 

Additionally, and as one might expect given the methodological choices made, London 

is fairly poorly segmented with the majority of inner London dominated by two clusters 

(i.e. Cluster D and E). This effect is similar in 2011 OAC, and indeed is discussed at 

length elsewhere (see Singleton and Longley, 2015). One potentially negative 

observation of the created classification was the emergence of two clusters that 

represented mainly rural areas (Clusters 1 and 6). In order to explore these patterns and 

wider interpretability of the cluster characteristics and later comparison with 2011 OAC, 
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index scores (i.e. x/x̄ *100) were computed for the input variables and displayed in 

Figure 4.6, with the scores ordered by domain. These scores illustrate characteristics that 

are over or underrepresented for each of the eight clusters relative to the national 

average (a score of 100). An index score of 50 is therefore half the national average, and 

200 would be double. Additionally, as is common when building a geodemographic 

classification, such index scores were then used to ascribe a label and brief description 

of each of the clusters.  

  

Figure 4.3 Geographic Distribution of AVS-OACs with Highlighted Major Cities 
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4.5.2 CLASSIFICATION PERFORMANCE AND COMPARISON TO 2011 
OAC 
 

In this final section, we first evaluate AVS-OAC performance internally to explore 

cluster robustness, and then make some external comparisons with 2011 OAC; to 

establish those broad similarities or differences that emerge through the application of 

this alternative methodology, and examine the impact this has on the overall 

discriminatory power. 

An objective when building this classification was to provide an output that would make 

a suitable benchmark against 2011 OAC; achieved through maintaining both a broadly 

similar potential attribute input pool and output cluster frequency. However, a 

disadvantage of constraining the number of clusters to match 2011 OAC was that two 

very similar rural clusters emerged: Cluster A: Prosperous Rural and Cluster F: Rural 

Retirement; which represented considerable redundancy. When building a 

geodemographic classification for operational rather than methodological evaluation 

purposes, there is typically a stage that will test multiple potential cluster frequencies 

with the objective of mitigating such issues. However, conversely, the post-analysis 

Figure 4.4 AVS-OAC Results (Index scores) grouped by variable domains 
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merging or splitting of clusters is also prevalent when building many geodemographic 

classifications (Harris et al., 2005). For the purposes of this illustration we decided to 

keep this artefact, although in an operational model such as 2011 OAC, we would expect 

that such issues would be resolved pre or post clustering through manual intervention 

after stakeholder consultation. 

Correspondence between 2011 OAC supergroups and AVS-OAC clusters is highlighted 

in Figure 4.7 which presents the percentage by of OAs that overlap between the two 

classifications for the UK extent. As might be expected given the differing inputs, the 

correspondence between the two classifications varies; and highlights the importance of 

stakeholder engagement when selecting appropriate cluster representations in 

operational models. For example, we can see that the AVS-OAC Cluster: “F: Rural 

Retirement” is composed predominantly by OA identified by 2011 OAC as within 

Supergroups “1. Rural Residents” and “6. Suburbanites”, thus representing a blend of 

both rural and the connecting hinterland at the periphery of urban areas. The AVS-OAC 

Cluster “D. Urban Central” combines many OA that are identified by the 2011 OAC 

Supergroups “2. Cosmopolitans”, “3. Ethnicity Central”, but not some other 

predominantly urban clusters such as “7. Constrained City Dwellers”, which emerged 

with greater correspondence to AVS OAC Cluster “C. Hard Pressed Living”. Or, the 

AVS-OAC cluster “B: Ageing Outskirt” can be seen to correspond to a diffuse number 

of 2011 OAC Supergroups located in suburban areas. A similarly defuse pattern can also 

be identified in “G: Transitional Terraced”, although just over half of those areas 

identified by the 2011 OAC Supergroup “5. Urbanites” also correspond with this cluster. 
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As a measure of comparative clustering quality, a Total Within-cluster Sum of Squares 

(TWSS) statistic was calculated for each classification (i.e. AVS-OAC and 2011 OAC) 

by taking the sum of the squared difference between every classification input attribute 

within an area and the mean of the assigned cluster centroid. A higher score indicates an 

area where the attribute values for the OA are further from their assigned cluster mean 

(the centroid generated via k-means clustering), in other words, the quality of cluster 

assignment is poorer. Box plots in Figures 4.8 and 4.9, respectively delineate the TWSS 

by the AVS-OAC Clusters and the 2011 OAC Supergroups. 

Figure 4.5 Cross-Tabulation: OA Percentage by AVS-OAC and 2011 OAC 
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Figure 4.6 Total Within-cluster Sum of Squares (TWSS) by the AVS-OACs.  

Mean value for each of the cluster is calculated and illustrated by the red point within the boxplot. The 

total mean value is presented by the dash line 

Figure 4.7 Total Within-cluster Sum of Squares (TWSS) by the 2011 OAC.  

Mean value for each of the cluster is calculated and illustrated by the red point within the boxplot. The 

total mean value is presented by the dash line. 
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Overall, the AVS-OAC clusters have lower TWSS than 2011 OAC, statistically 

indicating a better fit, which is manifested by the average value (i.e. 0.825 and 0.914). 

Within AVS-OAC, we can see that the clusters “D: Urban Central”, “C: Hard Pressed 

Living” and “E: Multicultural Urban Lifestyle” contain the highest TWSS value 

(average value, which are 1.06, 0.98, and 0.96) and the greatest variability (standard 

deviations, which are 0.286, 0.257, and 0.241, respectively), which might be considered 

the three least successful AVS-OAC clusters. These clusters are concentrated in both 

densely populated urban centres and transitional areas on the periphery of urban cores. 

In some sense, this is to be expected given the heterogeneous nature of urban centres and 

is an issue acute between Greater London and other parts of the UK which leads to 

larger variability. In particular, residents of AVS-OAC cluster “E: Multicultural Urban 

Lifestyle” are mainly concentrated within Greater London, which is a region known to 

be not well represented by 2011 OAC (Singleton & Longley, 2015). 

Analysis of the geographic variability in classification performance can be expanded by 

mapping how well the input attributes of each OA fit their assigned cluster from both 

AVS-OAC and 2011 OAC, again using the TWSS statistics. The frequency of OAs that 

performed better by AVS-OAC relative to 2011 OAC (attributes values that are closer to 

their assigned cluster mean) was counted within each UK Local Authority District 

(LAD), and are presented in the choropleth map in Figure 4.10. Overall, 390 out of 404 

local authority districts in the UK have greater than 50% of their constituent OAs 

statistically better represented by AVS-OAC relative to 2011 OAC. There are however 

some clear regional patterns that emerge; with particularly strong performance in 

Scotland and Wales where, respectively, all unitary authorities had more than 70% and 

65% of OAs with better fit by AVS-OAC relative to 2011 OAC statistically. More 

negatively, there are some LADs that experience relatively poor performance, which are 

indicated by dark red in the choropleth (Figure 4.10): and include a cluster of boroughs 

alongside the River Thames within Greater London alongside some other London 

Boroughs. Additionally, some of the LADs located within Northern Ireland also exhibit 

poorer clustering performance. These instances support an argument for more 

consideration within an automated variable selection process of those characteristics 

specific to regional geographies. The need for greater regional consideration when 

building geodemographics is a well-established argument (Alexiou, 2016), which also 

points to future work outside of the scope of this paper when selecting variables 

automatically. 
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Figure 4.8 Percentage of Out-Performed OAs by AVS-OAC by Local Authorities and London 

Boroughs 
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4.6 CONCLUSIONS 
 

The consideration of which variables are input into a cluster analysis is a common 

preliminary stage when building a geodemographic classification. The overarching 

objective is typically to achieve input parsimony, but there are multiple views on how 

this is best achieved, balancing theoretical considerations, practicalities of available data 

or attribute statistical properties and those past experiences or embedded knowledge of 

the classification builder(s). The primary objective of this paper was to extend such 

considerations by developing and testing an automated method of variable selection, and 

then benchmarking the presented technique within the context of building a UK national 

geodemographic from 2011 Census data. 

The objective was to illustrate how automated variable selection could be implemented 

to identify inputs that produce a plausible and comparable classification. In doing so, we 

are not claiming that this be of equivalence to an operational model, specifically as the 

methodology presented here lacks user consultation; but rather provides an innovative 

tool that might be useful to inform variable choices. It is not difficult to envisage a build 

process within an operation setting where differing variable selection sets might be 

specified and evaluated in consultation with stakeholders. 

Our heuristic process was built around Principal Component analysis that automated 

input variable selection, feeding these into a classification model that in our example 

broadly followed the 2011 OAC methodology. The application presented here was 

primarily data-driven for the purposes of methodological illustration; however, the 

technique itself is flexible and generic, and lends itself to other applications with any set 

of variables, thus also transferring well as a component of more theoretical expositions 

of geodemographic structure. 

The method as implemented here was within the context of consistently available 

variables from the 2011 Census for the UK geographical extent. Through a five-stage 

variable selection procedure, 74 census variables were retained from 171 initial 

candidates. The clustering was constrained to mirror 2011 OAC cluster frequency, 

creating a final typology of eight clusters. This output was subsequently evaluated 

through comparison with 2011 OAC to examine both cluster similarity and relative 

performance. Overall, the quality of the cluster assignment is statistically better than 

2011 OAC in more than 70.2% of the OAs across the UK; with particularly strong 

performance within Scotland and Wales. 
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The application of our method illustrated good comparative performance relative to 

2011 OAC; however, there are several limitations that could be alleviated in future 

work. First, there may be potential for integrating regional and subregional evaluation 

when selecting variables, which might evolve into a set of heuristics that would 

potentially identify a more effective variable input mix. A counter view would be that 

this would be at the expense of computation time; and indeed, may be not resolve an 

inherent constraint in regional variability when building geodemographics from data 

pertaining to a national extent. Secondly, this automated process decouples stakeholder 

user input from the classification process; and as Openshaw et al. (1995) state that “there 

is no simple relationship between optimising a statistical measure of classification 

performance such as the within-cluster sum of squares and the end-users’ perception of 

classification performance in a particular context”. Such considerations could be 

integrated into a fuller process of classification building, which may be particularly 

important within the context of an operational classification, such as those built for a 

national statistical agency. Finally, it is also worthy of recalling that the presented 

method utilises PCA and there is also potential to integrate alternate and more explicitly 

spatial techniques, which may also enhance regionally variable performance, for 

example through Geographically Weighted PCA (Harris et al., 2011). Furthermore, there 

is also potential that additional steps could be implemented that assess an appropriate 

cluster frequency for a given problem, although there would be significant challenges 

when balancing such considerations with computational efficiency when input variable 

combinations were also being assessed in parallel. 

This paper has presented a new methodology that optimises the selection of an initial list 

of candidate variables that are input into a cluster analysis used to build a 

geodemographic classification. The performance of this methodology is implemented 

within the context of the 2011 UK Census, and comparison is made with 2011 OAC. 

Performance was comparable to 2011 OAC over the evaluated metrics, although the 

shape of the classification varied, and there were also some regional differences in 

performance. The methodology presented here provides a generally applicable tool that 

integrates well with both theoretical and user embedded classification building programs 

over multiple international contexts, and, will likely have particular relevance for the 

creation of future geodemographics for the UK 2021 Census and beyond. 
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5.0 IDENTIFYING AND UNDERSTANDING ROAD-
CONSTRAINED AREAS OF INTEREST (AOIS) 
THROUGH SPATIOTEMPORAL TAXI GPS 
DATA: A CASE STUDY IN NEW YORK CITY 

 

The research presented in this chapter is an adapted version of the publication: 

• Liu, Y., Singleton, A., Arribas-bel, D., and Chen, M. (2021). Identifying and 

understanding road-constrained areas of interest (AOIs) through spatiotemporal taxi 

GPS data: a case study in New York City. Computers, Environment and Urban Systems. 

86. 101592. https://doi.org/10.1016/j.compenvurbsys.2020.101592 

While the article details the study’s other innovations, its main contributions to this 

thesis are summarised below. 

1. An enhanced methodological framework for urban mobility analysis is 

developed, in which space, time, and urban contexts are considered collectively. 

2. Frameworks presented in previous articles (i.e., Chapter 3 and 4) are integrated 

to finalise the methodological framework proposed in this thesis. 

3. The utility of the integrated framework has been examined by applying it to 

conduct an urban AOI detection task in the case study area.  

In this chapter, objective 2, 4, 5 have been met. 

 

5.1 ABSTRACT 
 

Urban areas of interest (AOIs) represent areas within the urban environment featuring 

high levels of public interaction, with their understanding holding utility for a wide 

range of urban planning applications. 

Within this context, our study proposes a novel space-time analytical framework and 

implements it to the taxi GPS data for the extent of Manhattan, NYC to identify and 

describe 31 road-constrained AOIs in terms of their spatiotemporal distribution and 

contextual characteristics. Our analysis captures many important locations, including but 

not limited to primary transit hubs, famous cultural venues, open spaces, and some other 

tourist attractions, prominent landmarks, and commercial centres. Moreover, we 

respectively analyse these AOIs in terms of their dynamics and contexts by performing 

further clustering analysis, formulating five temporal clusters delineating the dynamic 

https://doi.org/10.1016/j.compenvurbsys.2020.101592
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evolution of the AOIs and four contextual clusters representing their salient contextual 

characteristics. 

 

5.2 INTRODUCTION 
 

Urban areas of interest (AOIs) can be broadly defined as areas within an urban 

environment that attract people's attention, and which are often related to the 

generalisation of different types of urban economic activity (Hu et al., 2015; Yuan et al., 

2012). AOIs are prevalently characterised by metrics describing high levels of public 

exposure and frequency of demand and are framed within the literature through the use 

of various terminologies including functionally-critical locations or urban hotspots (Cai 

et al., 2018; Qin et al., 2017; Zhou et al., 2015). It has been argued that a set of locations 

can be considered as an AOI when they involve various types of infrastructure that are 

of necessity for people's daily life, such as restaurants, primary workplaces, transport 

hubs, landmarks, entertainments, schools, and universities (Cai et al., 2018; Chen et al., 

2019). 

AOIs are also significant for urban transit planning, location-based services, and the 

management of daily travel since these areas can be utilised to assign higher priority in 

the allocation of public resources (Hu et al., 2015; Ma et al., 2019). Due to the wide 

range of applications of AOIs, successfully identifying and understanding the 

characteristics of such urban areas could provide a useful reference basis that benefits 

multiple stakeholders, including but not limited to tourism management, the 

identification of social functions, urban environmental study, urban vitality analysis, 

traffic planning, and public transit management (Alfeo et al., 2018; Chen et al., 2020; 

Kim, 2018; Ni et al., 2019; van der Zee et al., 2020; Zhou et al., 2019). 

A traditional approach to investigate AOIs is primarily dependent on data derived from 

questionnaire-based methods such as field surveys or travel diaries. However, these 

approaches are labour-intensive, time-consuming, and error-prone, thus limiting their 

usefulness and applicability for large geographic areas (Yuan & Raubal, 2012). 

Following the rapid development and widespread use of location-based technology, 

large volumes of spatiotemporal data have been being collected either actively or 

passively, opening up new opportunities to map out and understand urban dynamics and 

reveal in-depth relationships between the urban fabric and the human mobility (Arribas-

Bel, 2014; Qin et al., 2017). Numerous previous studies have implemented data mining 

techniques on heterogeneous data sources to identify urban AOIs, for instance, check-in 



Page | 99  
 

data from social media, location data from mobile phones, and point of interest (POI) 

data from commercial location search engines (Chen et al., 2019; Hu et al., 2015; Kuo et 

al., 2018; Üsküplü et al., 2020; Xu et al., 2019; Yang et al., 2016). 

Moreover, as a vital component of urban public transit, taxi trip data from GPS-enabled 

taxis have also been repurposed to define AOIs in many academic studies. For example, 

Garcia et al. (2018) utilised the origin-destination (OD) matrix extracted from 69 million 

records of taxi trips in NYC to identify popular taxi drop-off locations. Keler et al. 

(2020) investigated commuter-specific destination hotspots located in NYC by using 

Boro-taxi drop-off GPS points. Qin et al. (2017) applied a spatiotemporal clustering 

method on the taxi GPS points extracted from taxi trajectory data to detect urban hotspot 

areas in Wuhan. Cai et al. (2018) explored urban hotspots and computed their 

attractiveness index score through utilising one-week of taxi GPS trajectory data 

collected from 6599 taxis in Kunming. 

According to the related studies (see Cai et al., 2018; Chen et al., 2019; Hu et al., 2015; 

Kuo et al., 2018), a typical bottom-up AOI detection framework can be summarised as 

comprising the following three phases: 

1. the hotspot detection phase: identifying point clouds (i.e. the AOI prototype) 

through a density-based clustering method such as DBSCAN; 

2. the boundary-defining phase: constructing closed polygons to define the AOI 

boundary; 

3. the analysis phase: clarifying and exploring the characteristics of AOIs. 

However, there are several aspects of these phases that require further consideration and 

improvement. Firstly, the hotspot detection phase is often limited to attributes in 2D 

planar space, which overwhelmingly concentrate on answering the question of ‘where’ 

but somewhat ignore the dynamic variation from the temporal aspect of AOIs. Given the 

fact that not every area in the urban environment is continuously recognised as a hotspot 

that attracts people's interest across all time periods, the omission of the temporal 

dimension may impose challenges in distinguishing different AOIs. For instance, office 

buildings and transport nodes (e.g. railway stations and airports) are defined as urban 

AOIs since they are both characterised by overall high traffic volume. However, the 

overall high traffic volume in the former AOI is more likely to be limited to two peak-

time periods of commuting (i.e. morning and evening peak), whereas the latter AOI has 

a large traffic volume all day except at closing time. 

A second research gap relates to those methods used in the boundary-defining phase. It 

is common to use a set of closed polygons to represent AOI geometrically, since using 



Page | 100  
 

polygons can “provide simple and accessible representations for areas compared with 

clustered points” (Hu et al., 2015, 241). Many studies defined the border of an AOI by 

enclosing identified hotspots through convex hull or bounding box algorithms (L. Cai et 

al., 2018; Hollenstein & Purves, 2010). Although such methods are computationally 

efficient and convenient to apply, those polygons constructed through convex hulls are 

very likely to cover superfluous empty areas (Akdag et al., 2014). Other studies utilised 

the concave hull algorithms to define AOI boundaries, such as chi-shape algorithm (Hu 

et al., 2015) or alpha-shape (Chen et al., 2019; Kuo et al., 2018). However, concave hull 

algorithms are highly susceptible to parameter selection (e.g., λ in chi-shape and α in 

alpha shapes), which is embodied in small changes in parameter settings can make a 

significant difference in the shape of the calculated polygon (Chen et al., 2019). Since 

there is no authoritative guidance on how to obtain the optimal parameters, parameter 

selection is relatively subjective and can affect the quality of the results returned. 

Additionally, the feasibility of using polygons to represent AOIs remains to be discussed 

further, as such geometry only takes the impacts of human activities at AOIs into 

consideration, while the reshaping influences of urban structure on AOIs are neglected 

(Ma et al., 2019). 

The third research gap relates to the analysis phase of the three-phase framework. After 

AOIs are identified, most existing studies mainly concentrate on their spatial distribution 

and morphology, but seldom do they explore those latent attributes, in terms of dynamic 

and contextual aspect, affecting the configuration and characterisation of an AOI. Such 

circumstance emerges more commonly in studies using traffic data (e.g., taxi GPS) as 

inputs since there is usually no extra information facilitating further in-depth analysis 

other than spatiotemporal coordinates.  

The unique contribution of this study is the proposal of an enhanced three-phase 

analytical framework that improves on the aforementioned workflow within the context 

of a taxi GPS dataset collected for the case study area, i.e. New York City. These 

methodological enhancements aim to provide new substantive insight into the 

spatiotemporal dynamics and contextual characteristics of urban AOIs within the New 

York City and specifically for the Manhattan area. Firstly, we present urban AOIs as 

both a spatial and temporal phenomenon, implementing the ST-DBSCAN algorithm to 

detect spatiotemporal taxi trip hotspots. Secondly, in the process of defining the 

boundary of AOIs, the detected hotspots are linked to road geometry rather than 

enclosing them with polygons, formulating road-constrained AOIs. Finally, after the 

construction of AOIs, we utilise the H-K-mean clustering algorithm to conduct an in-

depth analysis of these areas in respect of their spatiotemporal dynamics. Additionally, 
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we extract several contextual variables from external open data sources and investigate 

the salient multidimensional characteristics of the identified AOIs through a 

geodemographic analysis. 

The remainder of this paper proceeds as follows. Section 5.3 presents an overview of the 

case study area and the data used in this study, accompanying with a brief description 

introducing the main points of the data pre-processing and sampling. Section 5.4 

provides a detailed explanation of the proposed three-phase analytical framework, 

ranging from essential theoretical context and algorithm introduction to detailed 

parameter settings and variable selection. Section 5.5 and its sub-sections respectively 

depict the results generated from each phase of the proposed framework, which is then 

followed by a summary of the work and a discussion of future directions in the context 

of known limitations. 

 

5.3 DATA AND EXPLORATORY ANALYSIS 
 

New York City (NYC) is the selected case study area. It is the most densely populated 

city within the US, with an estimated 8.4 million population distributed over a land area 

of approximately 784 km2 (US Census Bureau, 2019). NYC is situated in the south-east 

of the state of New York on the US eastern seaboard, including five boroughs: 

Brooklyn, Queens, Manhattan, Bronx, and Staten Island. Across this area, the New York 

City Taxi and Limousine Commission (TLC), founded in 1971, is the agency 

responsible for licensing and regulating all segments of the taxi-related industry, 

primarily involving Medallion taxis (Yellow taxis), Street Hail Liveries (Green taxis), 

and For-Hive Vehicles (FHVs). In 2018, there were more than 300,000 TLC licensed 

vehicles servicing across the boroughs of NYC (TLC, 2018). 

Data used in this study were extracted from the TLC database, involving taxi trip records 

jointly generated by both Yellow taxis and Green taxis in the whole year of 2015. The 

primary reason we used this 2015 dataset is that it is the latest and most accessible taxi 

trip data containing detailed GPS coordinates delineating individual taxi travels. Due to 

privacy issues, since the latter half of the year 2016, the TLC has replaced the provision 

of original taxi GPS coordinates by aggregating them into designated Taxi Zones, 

accordingly causing difficulties in analysing them through a density-based algorithm. It 

should also be mentioned that, although FHVs are occupying more and more proportions 

of taxi trips over the recent years (see TLC, 2018), trip record data from FHVs were 
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excluded from this study since FHVs only began submitting trip records in Taxi Zone 

format after April 2015. 

Data cleaning eliminated taxi trip records that were erroneous or out of bounds, such as 

GPS coordinates located outside of the study area or too far away from the nearest road 

network (≥50 m); drop-off times that were earlier than pickup times; and unrealistic 

passenger counts. After the cleaning process, 150,134,156 taxi trip records were retained 

of the approximately 160 million original trips. Figure 5.1 is a hexagon-binning map 

showing the spatial distribution of the retained taxi trip points. The majority of the NYC 

taxi trips (approximately 84% of the total taxi GPS points) are found within the 

Manhattan area, and as such, we subset the data to only focus on this area. Taking 

computational capacity into consideration, 1% of the samples (i.e. 1,190,646 taxi trips; 

2,381,292 pickup and drop-off points), randomly selected from the pre-processed 

dataset, were subsequently inputted to the follow-up analysis. 

 

 

The choice of a 1% random sample mirrors previous studies aiming to represent general 

human mobility patterns (González et al., 2008). However, to ensure the 

validity/stability of findings, multiple 1% random samples of the source taxi GPS data 

were iteratively selected and tested within our framework to examine the stability of the 

Figure 5.1 Spatial distribution of hexagon-binning for pre-processed taxi GPS points in NYC, 2015 
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results. Specifically, we conducted an experiment in which 1% samples of the taxi GPS 

data were randomly selected multiple times, formulating several testing datasets. Then 

we examined the output results generated by inputting each of the testing datasets into 

the first two phases of our framework (introduced in Section 5.4). On the basis of this 

iterative experiment, we only retained the AOIs that can be identified every single run, 

assuring their stability and representativeness, and utilised them to carry out further 

investigations (i.e. the third phase). 

 

5.4 METHODOLOGY FRAMEWORK 
 

Figure 5.2 presents a conceptual diagram illustrating an overview of the methodological 

framework proposed in this study. The framework consists of three phases, generally 

mirroring the conventional workflow mentioned in Section 5.2, but containing a 

methodological enhancement in each phase. Firstly, in the hotspot detection phase, we 

apply the ST-DBSCAN algorithm to the pre-processed taxi GPS data to detect the 

spatiotemporal hotspots of the taxi trips located in the case study area. The second phase 

is boundary-defining, which is responsible for converting the detected taxi hotspots into 

road-constrained AOIs through the K-Nearest Neighbour (KNN) algorithm that 

aggerates point clusters to their nearest road segments. The last phase of the framework 

is the analysis phase, which is comprised by two layers, i.e. dynamic layer and 

contextual layer, concentrating on extracting knowledge about the dynamic features and 

the contextual characteristics of the identified AOIs through clustering analysis that is 

carried out by using hierarchical k-means (H-K-means) algorithm. The remaining 

subsections respectively describe each phase of our proposed framework in more depth. 
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5.4.1 THE HOTSPOT DETECTION PHASE 
 

DBSCAN (density-based spatial clustering for applications with noise) is a commonly 

applied density-based clustering algorithm for hotspot detection (Ester et al., 1996), 

which is configured by two parameters: Epsilon (Eps), the search radius based on a user-

defined distance measure, and MinPts, the minimum points within the Eps radius. These 

parameters jointly determine a minimum density threshold. Point clusters are 

constructed at locations in which the point density exceeds the specified threshold. 

Given the advantages in distinguishing between outliers and clustered points through a 

relatively simple parameter setting, DBSCAN and its extensional algorithms have been 

widely employed by many studies to detect hotspots from large-scale geo-referenced 

data. For instance, Xu et al. (2019) applied DBSCAN to POI data extracted from the 

Baidu map API to identify the spatial agglomeration of POI-forming functional regions 

within Wuhan. Zhang et al. (2016) applied Grid and Kd-tree DBSCAN (GD-DBSCAN) 

algorithms on taxi pickup locations to identify taxi demand hotspots in Shanghai. Chen 

Figure 5.2 Conceptual Diagram of the Proposed Analytical Framework 
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et al. (2019) implemented Hierarchical-DBSCAN (HDBSCAN) to geotagged photo data 

from Flickr to capture the dynamic characteristics of urban AOIs in the inner London 

area. 

Due to the nature of DBSCAN, i.e. using only one distance (Eps) to measure similarity, 

DBSCAN and most of the abovementioned DBSCAN-based algorithms merely consider 

spatial attributes in the process of detecting hotspots, resulting in the omission of 

temporal attributes (Birant & Kut, 2007). However, the urban environment is a complex 

and constantly changing system, involving various components with multifaceted 

relationships and interactions (Batty, 2013b). Such complexities can be reflected in the 

changeable type, intensity and distribution of urban resources at different times and 

locations, referring to both urban dynamics and human mobility (Song et al., 2019). 

From the perspective of urban AOI, not all areas of the urban environment can be 

recognised as a hotspot over all time periods (Chen et al., 2019; Hu et al., 2015). We 

argue here that in many other studies that exclude a temporal dimension, this leads to the 

capture of only a partial representation of urban AOIs, hence, limiting our understanding 

of urban functions and their underlying spatiotemporal dynamics. 

In order to consider spatial and temporal dimensions simultaneously, ST-DBSCAN 

(Spatial-temporal Density-Based Spatial Clustering of Applications with Noise), a 

modified extension of the traditional DBSCAN designed to analyse spatiotemporal data 

(Birant & Kut, 2007; Shi & Pun-Cheng, 2019), was employed to detect taxi hotspots. 

Generally, the primary convenience of ST-DBSCAN is that it can identify 

spatiotemporal clusters with arbitrary shape and noise points (Cheng et al., 2014). More 

specifically, according to Birant & Kut (2007), ST-DBSCAN surpasses normal 

DBSCAN in terms of the three following advantages: firstly, it provides cluster 

discoverability according to the non-spatial, spatial, and temporal values of objects; 

secondly, it can effectively detect noise points even when various cluster densities exist; 

thirdly, it improves clustering quality even if clusters are adjacent to each other. 

Numerous studies have highlighted the utility of ST-DBSCAN for handling complex 

spatiotemporal data and the application to many areas of research (see Chen et al., 2020; 

Iliopoulou et al., 2020; Shen & Cheng, 2016).  

In common with other DBSCAN-based algorithms, ST-DBSCAN also requires 

predefined parameters before application. According to Birant & Kut (2007), MinPts can 

be determined by a heuristic method (Equation 5.1). 
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𝑴𝑴𝒊𝒊𝒏𝒏𝑴𝑴𝑴𝑴𝑴𝑴 ≈  𝐥𝐥𝐥𝐥(𝒏𝒏) (5.1) 

Equation 5.1 n indicates the total number of observations. In this study, the observations are 

the 2381292 taxi GPS points located in the Manhattan area, NYC. MinPts is accordingly equal 

to 15.  

 

To define Eps (i.e. Eps1), a k-distance graph (Figure 5.3) delineates ascendingly sorted 

distances to the k-nearest neighbours for each object (where k = MinPts). An appropriate 

Eps value can be selected from the “first valley” of the graph (Birant & Kut, 2007, 214), 

where there is “an obvious and abrupt change” (Shi & Pun-Cheng, 2019, 7). For this 

case, we selected 70 metres as the Eps value based on this heuristic method. 

 

In addition to MinPt and Eps, Birant & Kut (2007) introduced a second epsilon 

parameter, i.e. Eps2, to define the search radius for the temporal dimension. Similar to 

Eps1 mentioned above, a larger value for Eps2 results in broader clusters, while a 

smaller value generates narrower clusters, delineating a finer temporal resolution. Here 

we set Eps2 equal to 0.25, representing a 15-minute search radius. The primary reason 

for choosing this temporal resolution was approximately referenced by the average taxi 

Figure 5.3 KNN distance graph (K=15) used to determine Eps (Eps = 70m). 
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trip time (i.e. 14.8 minutes), along with the consideration of a convenient result display 

and interpretation.   

 

5.4.2 THE BOUNDARY-DEFINING PHASE 
 

As discussed in Section 5.2, it is typical in the delineation of urban AOI use an enclosed 

polygon to define the boundary of the identified point clusters (i.e. hotspots) to 

formulate AOIs. However, there are growing appeals for alternative representations. 

Firstly, despite convex-hull and concave-hull algorithms being commonly used in many 

related studies, both have drawn criticism. The former is sometimes challenged for 

creating redundant empty areas (Akdag et al., 2014), whilst the latter is susceptible to the 

choice of parameters, thus involving high subjectivity (Cai et al., 2018; Chen et al., 

2019; Hu et al., 2015). Secondly, it can be argued that defining AOI’s boundary using 

enclosed polygons fails to appropriately account for the potential impacts of urban 

morphology on shaping AOIs since they “only considered the distribution characteristics 

of data that capture human activities” (Ma et al., 2019, 2). Thirdly, because of the 

uncertainties caused by inevitable measurement error of GPS, offset between the 

observed location and the actual location may be a feature of the data inputs: although 

vehicle GPS location should align with the road network (Yang & Gidófalvi, 2018). 

Taking such concerns into account, we argue that the road network is a more organic 

carrier of the detected point clusters, which therefore can be employed to define the 

boundary of urban AOIs, particularly for an application utilising taxi data since they 

bound these patterns of mobility (Ma et al., 2019; Yuan et al., 2012).  

After projecting the detected taxi trip hotspots onto the 2D plane containing the road 

network, a KNN algorithm was adopted to aggregate these points to their nearest road 

segment, formulating road-constrained AOIs. It should be mentioned that, if the road 

segments are topologically connected, they are considered as one AOI, ensuring that 

there are no overlapping AOIs.  

 

5.4.3 THE ANALYSIS PHASE 
 

After AOIs are identified, most existing studies mainly concentrate on their spatial 

distribution or temporal evolution pattern, but seldom explore the latent attributes 
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affecting the configuration of AOIs. Such circumstance emerges more commonly in 

studies using traffic data (e.g. taxi GPS) as inputs since there is no adequate information 

facilitating further analysis other than spatiotemporal coordinates (i.e. longitude, 

latitude, and time). 

This phase consists of two layers, i.e. dynamic layer and contextual layer, which are 

designed to extract useful information about the detected AOIs through further 

clustering analysis from both dynamic and contextual perspectives. The clustering 

results generated through each layer will be presented and discussed in Section 5.5. 

 

THE DYNAMIC LAYER 
  

Since the spatiotemporal hotspots were aggregated to street segments to form the road-

constrained AOIs, each AOI can be regarded as proportionally containing at least one or 

more point clusters over a temporal sequence. Such temporal sequences depict various 

dynamic patterns exhibited by AOIs. Some AOIs, for instance, only appear at a 

particular time of day, while others have greater longevity. 

In this context, the hierarchical k-means (H-K-means) clustering algorithm was adopted 

to classify AOIs into groups based on the similarities in their dynamic pattern. H-K-

means provides a hybrid of both hierarchical clustering and k-means clustering and 

comprises three steps: first agglomerative hierarchical clustering is implemented to the 

data to create a k number of clusters; secondly, the centroids (i.e. the mean value) are 

calculated for each cluster; finally, these computed centroids are used as the centroid 

initialisation for the k-means algorithm (Arai & Ridho Barakbah, 2007; Chen et al., 

2005). 

The optimal number of clusters (k) is determined by Gap Statistics, introduced by 

Tibshirani et al.(2001) (Equation 5.2), which compares the total within-cluster variation 

for different values of k with their expected values under “an appropriate null reference 

distribution of the data” (p.412).  

 

𝑮𝑮𝑮𝑮𝑮𝑮𝒏𝒏(𝒌𝒌) =  𝑬𝑬𝒏𝒏∗ {𝒍𝒍𝒍𝒍𝒈𝒈(𝑾𝑾𝒌𝒌)} − 𝒍𝒍𝒍𝒍𝒈𝒈(𝑾𝑾𝒌𝒌) (𝟓𝟓.𝟐𝟐) 

Equation 5.2 𝑬𝑬𝒏𝒏∗  denotes the expectation under a sample size n from the reference distribution. 

𝑾𝑾𝒌𝒌 is the pooled within-cluster sum of squares around the cluster means. The estimation of 

the optimal clusters k will be the value that maximises 𝑮𝑮𝑮𝑮𝑮𝑮𝒏𝒏(𝒌𝒌). 
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The clustering results could portray the picture of ‘urban pulse’ answering questions, 

such as where AOIs are and when they emerge and disappear. 

 

THE CONTEXTUAL LAYER 
 

As mentioned previously, due to a lack of further detail on journey purpose, it is 

insufficient to solely use taxi GPS data to understand the characteristics of identified 

urban AOIs, for example, to explore what specific features of these AOIs attract taxi 

passengers and further affect their travel behaviour. In order to gain greater insight into 

the identified AOIs and improve their interpretability, it is helpful to import 

supplementary data capturing some contextual attributes that potentially influence 

individual’s travel behaviour, as well as to apply the corresponding analytical method to 

extract meaningful information about the salient characteristics of urban context from 

these datasets (Liu & Cheng, 2020). In this study, we utilised a geodemographic 

classification methodology to extract salient contextual characteristics exhibited by each 

identified AOIs.  

Geodemographic classification is an analytical framework that provides categorical 

summaries of multidimensional socioeconomic, demographic and built environment 

characteristics for small geographic areas (Singleton et al., 2017). The detailed processes 

to build a geodemographic classification and the advantages of such classification are 

well documented (see Alexiou, 2016; Harris et al., 2005; Leventhal, 2016; Singleton et 

al., 2017). Geodemographic classification has an expansive and international lineage, 

with utility for both private and public sectors applications and for various geographic 

extents (Gale et al., 2016; Singleton & Longley, 2015; Singleton & Spielman, 2014). 

The implementation of geodemographic classification for this study can be regarded as a 

bespoke application designed to differentiate urban AOIs in Manhattan, NYC. 

Numerous studies have investigated the linkage between urban context and travel 

behaviour over the past decades (Cervero & Kockelman, 1997; Dieleman et al., 2002; 

Ewing & Cervero, 2010; Ma et al., 2014; Pan et al., 2009). For instance, Ewing & 

Cervero (2010) found that an individual's travel mode choice can be influenced by the 

demographic and socioeconomic characteristics of the household as well as the built 

environment characteristics of the surrounding area, which provided additional ‘D’ 

variables to the well-established ‘three Ds’ principle (i.e. density, diversity, and design) 
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introduced by Cervero & Kockelman (1997). More recently, Liu et al. (2020) presented 

a study containing a systematic literature review over 29 contemporary studies related to 

the impacts of the urban context on people’s travel behaviour. They pointed out that 

although most of the studies still aligned with the ‘D’ variables, some of the variables 

they used have beyond the scope of the traditional ‘D’ variables, implying broader or 

context-specific considerations. They further categorised those variables into four 

domains, namely, Land Use and Built Environment (LB), Location and Accessibility 

(LA), Socioeconomic and Demographic (SD), and Transit-related (T), guiding the 

variable selection for their research about creating a contextual transit-oriented 

development (TOD) typology for NYC.  

Given the overlapping research context and case study area, we acknowledged the 

systematic literature review conducted by Liu et al. (2020) and utilised their presented 

four variable-domains as a reference to guide our initial variable selection. With extra 

consideration of the availability and consistency of the data (note that the 2015 taxi data 

were used in this study), 52 candidate variables were initially selected (Table 5.1), which 

were extracted from the following four open data sources, i.e. American Community 

Survey (ACS), NYC Open Data, Smart Location Database (SLD), and NYC Planning.  

Inevitably, such a large number of candidate variables and the resulting high 

dimensionality we argue would lead to harmful effects in the following cluster analysis. 

Numerous studies have discussed the negative impact caused by the high dimensionality 

on the clustering performance, which is also known as ‘the dimensional curse’, 

including dramatically increasing the demand for computational power and storage 

capacity, lowering the efficiency of the clustering algorithm, impairing the output 

interpretability (Guyon & Elisseeff, 2003; Renjith et al., 2020; Weber et al., 1998). 

Apart from the potential threats from high dimensionality, multicollinearity between the 

candidate variables is also problematic (Sambandam, 2003). The existence of variable 

pairs with high correlation is harmful to the clustering performance since such 

dimensions are effectively assigned more weight during the clustering process (Harris et 

al., 2005; Sambandam, 2003). 

In order to alleviate the adverse impacts of high dimensionality and multicollinearity, we 

employed a principal component analysis (PCA)-based variable selection framework, 

proposed by Liu et al. (2019), to “select the smallest possible subset of variables that can 

represent the main variance within a universe of potential inputs being considered” (Liu 

et al., 2019, 253). PCA is a feature transformation methods, which has a long history of 

being applied across multiple disciplines to accomplish dimensionality reduction (Ma et 



Page | 111  
 

al., 2019; Malhi & Gao, 2004; Webber, 1975). Through linear transformation, PCA 

finds a set of orthogonal space to maximise the variance in each coordinate axis (Abdi & 

Williams, 2010), to project high-dimensional data onto a low-dimensional 

representation, while preserving the original data features as much as possible (Ma et al., 

2019). The variable-selection framework proposed by Liu et al. (2019) consists of 

multiple stages, that not only select variables according to the average contribution of 

the input variables to the principal components (PCs) but also filters variables based on 

their correlation between each other. The minimum spanning tree (MST) was integrated 

into the framework to filter out variable pairs with relatively high correlation 

(correlation coefficient ≥ ± 0.75). Additionally, their framework also considers such 

impacts on overall clustering quality, which provides additional utility for this study. A 

full description of the PCA-based variable selection framework, its properties, parameter 

settings, and relative strengths and weaknesses is beyond the scope of this section 

however presented by Liu et al. (2019).  
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Data Sources Code Domain Variables Title Description Checklist 

ACS 

B01001 

SD Age: 0- 4 % of population aged between 0 and 4  
SD Age: 5 - 14 % of population aged between 5 and 14 * 
SD Age: 15 - 19 % of population aged between 15 and 19  
SD Age: 20 - 24 % of population aged between 20 and 24  
SD Age: 25 - 44 % of population aged between 25 and 44 * 
SD Age: 45 - 64 % of population aged between 45 and 64  
SD Age: 65 & above % of population aged 65 and above * 

B08303 

LA TTtW: < 5  % of workers whose travel time to work is less than 5 minutes  
LA TTtW: 5 - 14  % of workers whose travel time to work is between 5 and 14 minutes * 
LA TTtW: 15 - 29  % of workers whose travel time to work is between 15 and 29 minutes  
LA TTtW: 30 - 44  % of workers whose travel time to work is between 30 and 44 minutes * 
LA TTtW: 45 - 59  % of workers whose travel time to work is between 45 and 59 minutes * 
LA TTtW: > 60  % of workers whose travel time to work is longer than 60 minutes  

B15003 

SD EA: No school % of population have no qualifications * 
SD EA: Elementary school % of population attained kindergarten to 5th grade  
SD EA: Middle school  % of population attained 6th to 8th grade  
SD EA: High school % of population attained 9th to 12th grade * 
SD EA: College / Bachelor % of population attained college or bachelor's degree  
SD EA: Master / Doctorate  % of population attained master or doctorate degree * 

B19013 SD Median Income Household median income in the past 12 months  

B24010 

SD OT: M.B.S.A. % of workers in management, business, science, and art occupations * 
SD OT: S. % of workers in service occupations * 
SD OT: S.O. % of workers in sales and office occupations  
SD OT: N.C.M. % of workers in natural resources, construction, and maintenance occupations  
SD OT: P.T.M. % of workers in production, transportation, and material moving occupations  

B01003 LB Population Density Number of populations by area (km2)  

SLD 
D4a LA D4a Distance from the population-weighted centroid to the nearest transit stop (meters)  
D1c LA Job Density Gross employment density (jobs/acre) * 
D4d T Transit Frequency Aggregate frequency of transit service per square mile * 

NYCOD 

CSCL LB Intersection Density Number of street intersections by road length * 
STC LB Tree Density Number of street trees by road length  
Bicycle T Bike Facilities Number of Citi-bike, bicycle routes and parking shelters by road length * 
Bus T Bus Facilities Number of bus stops by road length * 

NYCP MapPLUTO 

LB LU: R % of building & poi categorised as residential use * 
LB LU: C % of building & poi categorised as commercial use * 
LB LU: TU % of building & poi categorised as transport and utility * 
LB LU: PSCI % of building & poi categorised as public service and institution * 
LB LU: OSR % of building & poi categorised as open space and recreation  
LB LU: V % of building & poi categorised as vacant   
LB LU: Mixed % of building & poi categorised as mixed-use * 
LB FAR Floor area ratio (gross floor area/area of plot) * 
LB Landmark Density Number of landmarks by road length * 
LB BT: Detached % of building unit categorised as detached  
LB BT: Attached % of building unit categorised as attached * 
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LB BT: Semi-Attached % of building unit categorised as semi-attached  
LB BT: Apartment % of building unit categorised as apartment  
LB YB: 2010 / Later % of building built in 2010 or later * 
LB YB: 2000 – 2009 % of building built between 2000 and 2009 * 
LB YB: 1980 – 1999 % of building built between 1989 and 1999  
LB YB: 1960 – 1979 % of building built between 1960 and 1979  
LB YB: 1940 – 1959 % of building built between 1940 and 1959  
LB YB: 1939 / Earlier % of building built in 1939 or later * 

Table 5.1 Initial 52 candidate variables and selected variables from the PCA-based variable selection framework proposed by Liu et al. (2019). 
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Many of the variables related to specific points of interest, and as such were aggregated 

into the road-constrained AOIs using the KNN algorithm (K=1) that was applied in the 

boundary-defining phase. Values of some variables, such as Floor Area Ratio (FAR), 

were averaged during the aggregation process, whereas others (e.g. many of the ACS 

variables) were aggregated based up their intersection with the AOI. The last column of 

Table 5.1 shows the checklist indicating the contextual variables that were selected after 

the application of the PCA-based selection method. 27 out of 52 candidate variables 

were included as inputs.  

After the selected variables were assembled for each AOI, the Box-Cox transformation 

(Box & Cox, 1964) (Equation 5.3) was employed to convert abnormally distributed 

variables to approximate normality. Furthermore, since the variables are measured on 

different scales, z-scores (Equation 5.4) were applied as a method of standardisation.  

 

𝒙𝒙𝒊𝒊
′ = �

𝒙𝒙𝒊𝒊𝝀𝝀 − 𝟏𝟏
𝝀𝝀

𝐥𝐥𝐥𝐥𝐥𝐥𝒙𝒙𝒊𝒊
       

,      𝒊𝒊𝒊𝒊 𝝀𝝀 ≠ 𝟎𝟎;
,      𝒊𝒊𝒊𝒊 𝝀𝝀 = 𝟎𝟎.

    (5.3) 

Equation 5.3 𝒙𝒙𝒊𝒊′ is the transformed value; 𝝀𝝀 ranges from -5 to 5, which can be estimated using 

the profile likelihood function to achieve ‘optimal value’. 

 

𝒛𝒛𝒊𝒊 =
𝒙𝒙𝒊𝒊 − 𝝁𝝁
𝝈𝝈

 (5.4) 

Equation 5.4 𝒛𝒛𝒊𝒊 is the standardised value, 𝒙𝒙𝒊𝒊is an original value, 𝝁𝝁 is the mean of 𝒙𝒙𝒊𝒊, and 𝝈𝝈  is 

the standard deviation from the mean. 

 

The variables were subsequently clustered through H-K-means, and the Gap Statistics 

mentioned in Section 5.4.3. were utilised once again to define the optimal number of 

clusters. The clustering result provides summary measures of the urban context, 

revealing the salient characteristics distinguishing AOIs from other urban areas. 

Furthermore, in order to improve the interpretability of revealed clusters, it is typical to 

assign shorthand names and written “pen portraits” descriptions for each of the clusters 

within the built geodemographic classification (Alexiou, 2016; Harris et al., 2005).  
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5.5 RESULTS  

5.5.1 IDENTIFIED AOIS IN MANHATTAN, NYC 
 

Figure 5.4 presents the spatial distribution of the 31 identified urban AOIs. These areas 

are featured by major transportation hubs, such as the West 39th Street Ferry Terminal 

(AOI 18), Pennsylvania Station (AOI 15), and Grand Central Station (AOI 16); famous 

cultural venues, such as the Lincoln Centre for the Performing Arts (AOI 26), the 

Whitney Museum of American Art (AOI 8), and the Metropolitan Museum of Art (AOI 

30); open spaces, such as Central Park (AOI 24) and Union Square (AOI 6); and some 

other tourist attractions, prominent landmarks, and commercial centres, such as 

Columbus Circle (AOI 25), the Empire State Building (AOI 13), the Rockefeller Centre 

(AOI 20), and the One World Trade Centre (AOI 1).  

 

5.5.2 DYNAMIC FEATURES OF AOIS 
 

Figure 5.4 Geographic Distribution of 31 Identified AOIs in NYC. 
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As discussed earlier, an advantage of the ST-DBSCAN algorithm is that in addition to 

the spatial attributes of the urban AOI, the temporal characteristics are also preserved, 

enabling further exploration of their dynamic evolution throughout the day. As such, the 

31 identified urban AOIs were further classified into five temporal clusters representing 

different types of dynamic patterns. Figure 5.5 contains a sorted heatmap presenting the 

temporal distribution of the clustering results, followed by a map showing their spatial 

distribution (Figure 5.6). Based on such patterns, furthermore, shorthand names and 

descriptive profiles were generated for each AOI cluster. 

 

 

Figure 5.5 The Temporal Distribution of AOIs (by 15-Minute Interval). 
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CONSTANT AOIS 
 

Most AOIs classified in this group are located in Midtown of Manhattan, covering 

various major transit hubs (e.g. Pennsylvania Station, AOI 15), and integrated 

commercial, retail centres (e.g. Rockefeller Centre, AOI 20). AOIs from this cluster are 

continuously exposed to a high volume of taxi activity lasting approximately the whole 

day, and as such is one of the most stable AOIs in Manhattan. 

NOON AOIS 
 

AOIs of this group distribute evenly across Manhattan from north to south, with no 

specific agglomerations. These AOIs record gradually increased taxi flow at around 

9:30, a peak at high noon, and a reduction after 17:30, which could be affected by 

business opening hours.   

MORNING AOIS 

Figure 5.6 Geographic Distribution of Five Temporal Clusters. 
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Experiencing high taxi travel demand between 6:00 and 10:30 in the morning, AOIs in 

this group are primarily identified in areas proximal to major commercial centres (e.g. 

One World Trade Centre, AOI 1) or public institutions, such as hospitals and medical 

institutions (e.g. Weill Cornell Medical Centre, AOI 27), which could indicate a typical 

morning peak commuting pattern.  

LATE NIGHT AOIS 
 

AOIs from this group are mainly identified in south Manhattan. AOIs begin to emerge 

after 17:30 and continuously attract taxi travels until 3:00 in the early morning of the 

next day, which might either suggests a recreational pattern reflecting the nightlife in 

Manhattan or residential-oriented pattern, or combination of both.  

EVENING AOIS 
 

AOIs of this group are diffuse over Manhattan from Midtown (Union Square, AOI 6) to 

the Upper West Side (Lincoln Square, AOI 26). These AOIs emerge at around 17:00, 

peak at around 21:30, and entirely disappear before midnight, indicating an off-peak 

recreational-oriented travel pattern.  

 

5.5.3 THE CONTEXTUAL FEATURE OF AOIS 
 

Figure 5.7 presents a map illustrating the spatial distribution of the geodemographic 

classification that was generated from applying H-K-means to the 27 variables retained 

by the PCA variable selection. The identified 31 AOIs were classified into four clusters, 

i.e. Major transit hubs, High-rise integrated commercial, Residential heritage mix, and 

Public institution mix, delineating four different salient multidimensional characteristics 

extracted from the contextual variables.  

Index scores (i.e. x/x̄ *100) were computed for the retained variables and were displayed 

within each cluster in Figure 8. These scores reflect the (over-) underrepresentation of a 

target attribute compared to the average value (i.e. a score of 100). An index score of 50 
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would be quivalent to a rate that is half the average, and 200 would be double. Using 

both the map and scores, descriptive profiles were generated.  

 

 

MAJOR TRANSIT HUBS 
 

AOIs of this cluster cover primary public transit nodes in Manhattan, predominantly 

manifested by the high level of transit frequency and the surrounding transport-oriented 

Figure 5.7 Geographic Distribution of Four Contextual Clusters. 

Figure 5.8 Index Scores by Four Contextual Clusters. 
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buildings and facilities. These nodes facilitate inter-/intra city flows, including a ferry 

terminal (AOI 18), railway station (AOI 31), and an interstate bus terminal (AOI 17).  

HIGH-RISE INTEGRATED COMMERCIAL 
 

Commercial-use skyscrapers are very likely to be located in proximity to AOIs from this 

group since the average floor area ratio is dramatically higher than the average, 

exemplified by the high-rise office buildings near the One World Trade Centre (AOI 1). 

These areas are likely to be the leading employment destinations in Manhattan due to the 

short travel-to-work time and the high level of the job density. 

RESIDENTIAL HERITAGE MIX 
 

AOIs of this cluster mainly agglomerate in Midtown Manhattan. Areas approximating to 

these AOIs are likely to contain many old buildings built earlier than 1939 and have had 

been primarily utilised for residential purposes, while the mixed-use buildings and 

facilities are also much in evidence (e.g. multipurpose areas near the Pennsylvania 

Station, AOI 15). Landmark destinations within these AOIs are significantly higher than 

the regional average, which may be attractive for tourists and travellers. 

PUBLIC INSTITUTION MIX 
 

These AOIs are prevalently located in Upper Manhattan, although they can be found 

across Manhattan. Buildings or facilities located near this type of AOIs are likely to be 

used for many purposes, including residential usages, retailing markets, culture venues, 

public services (e.g. hospitals), and research or educational institutions.  

 

5.5.4 INTEGRATED SPATIOTEMPORAL DYNAMICS AND CONTEXT  
 

The main objective of this study was to understand how AOIs are represented both from 

contextual and spatiotemporal perspectives. Accordingly, the intersection of the 

temporal and contextual classifications was analysed through cross-tabulation, and the 

result presented in Figure 5.9. The heatmap illustrates the frequency and proportion of 

AOIs categorised at the intersection of the two typologies. The result indicates a general 

correspondence between the two classifications with some emerging differences.  
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As the major gateways of NYC and interchange platforms facilitating multimodal inter-

/intra-city journeys, two out of three AOIs from the ‘Major transit hubs’ unsurprisingly 

correspond to the ‘Constant AOIs’ featuring consistent exposure to high volumes of taxi 

traffic throughout the day. It should be noticed that although the areas near the ferry 

terminal (i.e. AOI 18) are also classified as ‘Major transit hubs’, these areas are only 

recognised as an AOI after 16.30 (i.e. Evening AOIs), which might indicate a typical 

evening return peak use. 

The intersection also reveals regular commuting patterns. Nearly 60% of those AOIs 

classified as ‘High-rise integrated commercial’ are respectively occupied by ‘Morning 

AOIs’ and ‘Evening AOIs’, manifesting a typical bimodal commuting pattern. However, 

there is also correspondence between the AOIs categorised as ‘Residential heritage mix’ 

and ‘Late Night AOIs’, suggesting a residential-oriented function.  

Moreover, characterised by mixed and compact land use, AOIs from the ‘High-rise 

integrated commercial’ and ‘Public institution mix’ categories present various temporal 

usage patterns, which with more defuse representation over the four temporal clusters, 

with the exception of ‘Late Night AOIs’. Such a pattern reflects a wide variety of 

essential roles in people’s daily life, which could satisfy multiple demands, including 

entertainment, public services, commuting, shopping, tourism and other aspects.  
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5.6 DISCUSSION AND CONCLUSIONS 
 

The measurement and ascription of urban AOIs are of continued interest within the field 

of urban mobility studies. The wide availability of large-scale spatiotemporal data has 

enabled a variety of new methods of identifying and understanding urban AOIs through 

the application of density-based cluster analysis, which can generally be conceptualised 

into a framework comprising three phases: hotspot detection, boundary-defining, and 

analysis. We identified how such frameworks as those currently implemented contain 

several limitations across each phase. Firstly, due to the nature of the traditional 

DBSCAN algorithm, many of the existing studies overwhelmingly concentrated on the 

spatial aspect of the AOI, while a more integrated view combining spatial and temporal 

dimensions was somewhat overlooked. Secondly, using enclosed polygon to define the 

boundary of AOI from those identified hotspot clusters may not form the most 

appropriate units for analysis given that they lack the attributes of the underlying urban 

Figure 5.9 Cross-Tabulation: AOI Frequency and Percentage by Contextual Clusters and Temporal 

Clusters in Manhattan.  

Italic number shows the actual number of AOIs; Bold number shows the percentage. 
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morphology that may inform the identified patterns. Finally, after AOIs are identified, 

most existing studies neglect the characterisation of those latent attributes affecting the 

formation of AOIs. 

Within this context, our study proposed a new analytical framework that is guided by a 

conventional three-phase workflow, yet addressed the abovementioned research. The 

ST-DBSCAN algorithm was employed as the core of the first phase to detect 

spatiotemporal hotspots. In the second phase, the road network was used to define the 

boundary of urban AOI; and finally, the dynamic features and contextual features of 

urban AOI were exposed and investigated. The proposed framework was applied to a 

taxi GPS dataset extracted from the selected case study area, New York City. 

Our enhanced framework identified 31 unique AOIs across the spatial extent of 

Manhattan. Most of the AOI locations were highly correlated to famous places, such as 

landmarks, culture venues, open spaces, commercial centres, and transit stations. The 

spatiotemporal dynamics of the extracted AOIs were considered through further cluster 

analysis conducted using the H-K-means algorithm. The 31 detected AOIs were 

classified into five unique clusters (i.e. Temporal Clusters), respectively, representing 

different types of spatiotemporal activity. Furthermore, the contextual features of AOIs 

were considered by importing 52 candidate variables from supplementary open data 

portals. A PCA-based variable selection framework proposed by Liu et al. (2019) was 

employed to filter out redundant variables, which eventually retained 27 variables that 

identified five salient AOI clusters (i.e. Contextual Clusters). These clusters were 

named, described, and mapped. Through cross-tabulating the abovementioned two types 

of AOI clusters, a high degree of correspondence was found, reflecting the interrelation 

between the context and dynamics of AOIs.  

The utility of defining road-constrained AOIs alongside their dynamic and contextual 

characteristics we envisage will benefit multiple stakeholders. For urban planners and 

policymakers, they are more likely to identify urban areas with greater priority and issue 

more context-based policies, assisting in allocating limited urban resources more 

effectively. For transport agencies and operators, enhanced spatiotemporal information 

about the urban AOIs could help to mitigate traffic congestions and provide timely 

adjustment to the provision of public transport. For taxi drivers, enhanced knowledge of 

trip hotspots will assist in making more purposeful route selections to maximise the 

potential for passenger demand. For tourists and travellers, the identified urban AOIs 

might be utilised as an informative city guide; and for retailers and business managers, 

our results could assist them with site selection and targeted advertising.  
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One limitation of this study relates to the parameter selection of ST-DBSCAN. The 

method used in this study to define MinPt and Eps is primarily based on the heuristic 

method suggested by the Birant & Kut (2007), which requires further justification in 

terms of practical application. In another context, Chen et al. (2019) suggested using 1% 

of the observations to define the MinPt in their study on the detection of urban AOIs in 

London. In our case, however, if 1% of the observations were employed to define the 

parameter, the algorithm would fail to identify any clusters since the Minpt is too large 

(i.e. MinPt is more than 2000). As we discussed previously, there are no standard rules 

guiding the parameter selection, meaning that the parameter setting may be adjusted 

according to the actual conditions. As such, we envisage further work looking at 

optimised methods for parameter selection. Nonetheless, despite such caveat, this paper 

has presented an innovative methodological framework to identify and understand urban 

AOIs in terms of both context and dynamics, and will likely be a useful framework for 

applications within other urban contexts. 

The presented approach is extendable in many ways. One direction of future work that 

would be favourable to the quality of value of the outcomes is the integration with the 

other emerging datasets. Since the landscape of the traditional taxi market has been 

changing by the rapid rise of ‘ride-hailing’ businesses such as Uber and Lyft, a growing 

number of taxi travellers replace their traditional on-street-hailing with more convenient 

app-hailing (NYDOT, 2018; Willis & Tranos, 2021). In this context, it is possible to 

either compare the spatiotemporal differences between the urban AOIs formed by the 

traditional taxi GPS data and those formed by the app-based for-hire vehicle data; or 

integrate them together to deepen our understandings about the urban AOIs more 

comprehensively within the context of the current taxi market. Furthermore, with more 

public transit datasets are becoming publicly available, it is possible to identify and 

compare AOIs through using data from other travel modes, which might demonstrate 

manifold differences of interest between multimodal travellers, e.g. active mobility and 

motorised road users (Keler et al., 2020). 
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6.0 CONCLUSION AND FUTURE WORK 
 

The final chapter provides a summary of the thesis contributions. First, in Section 6.1, a 

chapter-by-chapter synopsis of this thesis is presented, in which the main outcomes and 

contributions of each chapter are re-emphasised. Second, in Section 6.2, the limitations 

of this thesis are discussed, followed by prospects for future research directions. 

 

6.1 THESIS SUMMARY AND CONTRIBUTIONS 
 

The thesis was introduced in Chapter 1 and provided the general context of the research 

alongside hypothesised outcomes aligned to research objectives. The challenges of 

urbanisation were discussed, including a specific focus on urban mobility. The potential 

applications of new forms of urban data were discussed within the context of enabling 

urban analysts to engage in evidence-based urban planning activities. Much of this 

discussion was framed within the context of advancements of ICTs and the increased 

availability of urban (big) data; positing that such changes enable the improved analysis 

of urban mobility problems from spatial, temporal and contextual dimensions. The 

principal goal of this thesis has been to develop a knowledge-discovery framework that 

effectively integrated the dynamic and multidimensional contexts of urban mobility. To 

achieve this, five major research objectives were set (listed below), which have been 

accomplished through the development of this thesis. 

 

• Objective 1: to summarise and improve the typical workflow of building a 

geodemographic classification from existing literature 

• Objective 2: to identify and select variables that are commonly used in both 

traditional and recent studies to build the classification through a comprehensive 

literature review 

• Objective 3: to handle the adverse effects caused by high dimensionality in the 

dataset by using the dimensionality reduction method 

• Objective 4: to extract urban and human mobility patterns from multi-sourced urban 

data while concurrently considering dynamic and contextual urban contexts  

• Objective 5: to apply the developed framework in the target case study area to 

manifest its utilities and contributions to the existing literature. 

 



Page | 126  
 

Chapter 2 achieved Objective 1 by conducting a literature review of the relevant 

research. First, the research background of this thesis was elaborated in further detail. 

This included a discussion of how the  “Big Data deluge” and its manifestation within 

urban settings could be understood through a framework based around the intentionality 

of collection. Urban data were then classified into two major categories (i.e., purposeful 

data and organic data), with the advantages and drawbacks clarified for both. It was 

argued that although organic data benefit urban mobility research due to their large-

scale coverage and fine spatiotemporal granularity, purposeful data still have their own 

advantages in capturing detailed contextual information. These advantages can be 

utilised to overcome the drawback of solely using organic data by adding contextual 

enrichment. Urban studies, and especially urban mobility studies, were argued to benefit 

from incorporating both organic and purposeful urban data as these collectively build 

upon each others’ strengths to offset their weakness. Second, the chapter reviewed the 

Data, Information, Knowledge, and Wisdom (DIKW) paradigm and its application for 

contemporary urban analytics. The concept of urban contexts was introduced amid the 

discussion of urban analytics and was followed by a review of its utility for urban and 

human mobility research. The latter half of the literature review focused specifically on 

the methodology of geodemographics and how geodemographic classification can be 

created. This was necessary given that geodemographics provided both the theoretical 

and methodological foundation for the thesis, which significantly influenced the 

construction of the proposed methodology framework developed and implemented by 

this thesis.  

Chapter 3 fulfilled Objectives 2, 4 and 5. The prototype analytical framework was 

outlined in this chapter, which integrated dynamic and multidimensional contexts 

distilled from the multi-sources of urban data to provide a comprehensive understanding 

of the urban environment and urban mobility. The proposed framework was primarily 

based on the typical workflow of building an application-specific geodemographic 

classification; however, it made several improvements represented by the variable 

enrichment from the dynamic and contextual perspectives. In particular, a systematic 

literature review (SLR) with the aim of identifying those variables that are commonly 

used in contemporary studies affecting urban mobility and differentiating urban transit 

areas. Through the SLR, a variable specification was gathered; following four domains, 

namely: land use and built environment, location and accessibility, socioeconomic and 

demographic, and transit-related. Such findings significantly expanded upon variable 

selection methods utilised within the existing literature that were overwhelmingly based 
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on the ‘Ds’. The SLR served as the theoretical framework that guided the initial variable 

selection for building any mobility-related classifications.  

Chapter 4 achieved Objective 3 by developing a PCA-based variable selection 

framework to mitigate the adverse effects on cluster performance of high dimensionality 

input data when building geodemographic classification. This automated five-stage 

framework employed traditional PCA in a computationally intensive setting to select a 

subset of appropriate candidate variables from the initial inputs for creating any 

geodemographic classification. However, within the proposed framework, the variable 

selection was not solely based on the traditional PCA results; additional factors were 

considered during and after the clustering process. For instance, after PCA filtering, the 

highly correlated variable pairs were further examined by the minimum spanning tree 

(MST) method, in which variables with the fewest branches in the MST were eliminated 

from the candidate pool; furthermore, variables that adversely affect the final clustering 

quality (measured by the ratio between BCSS and WCSS) were also filtered out. The 

performance of this variable selection framework was then evaluated by comparing it to 

the benchmark geodemographic classification (i.e., 2011 OAC). The several statistical 

indicators demonstrate that through the implementation of the proposed methodology, 

the quality of the cluster assignment was improved relative to the 2011 OAC. 

Chapter 5 fulfilled Objectives 2, 4, and 5. The two frameworks developed in Chapter 3 

and 4 were integrated with this chapter. This was then employed to address a typical 

urban mobility task, namely, identifying and characterising urban areas of interest 

(AOIs) through taxi GPS data. This analytical framework of urban AOI discovery was 

primarily derived from a three-phase workflow that was summarised from the existing 

studies, but containing methodological enhancements in each phase. First, instead of 

using the frequently used DBSCAN approach, which only considers the spatial 

distribution of the GPS points, the ST-DBSCAN algorithm was implemented on the taxi 

dataset to identify spatiotemporal hotspots. Such implementation considers spatial and 

temporal distributions simultaneously, identifying taxi travel hotspot clusters in a space-

time cube. Second, the road networks were innovatively utilised as the carrier of the 

detected spatiotemporal hotspots, therefore configuring the road-constrained AOIs (i.e., 

the aggregation between road network with spatiotemporal hotspots). By contrast, 

traditional studies usually employed a closed polygon approach to defining AOIs’ 

boundary, and it could therefore be argued that they fail to consider the reshaping effects 

of urban morphology. Third, the proposed frameworks introduced in Chapter 3 and 4 

were employed in the AOI analysis phase. These formulated the dynamic and contextual 

layers, which provided a comprehensive analysis of urban AOIs in terms of 
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spatiotemporal dynamics and urban contexts. The results demonstrate that the contextual 

enrichment significantly improved the interpretability of the spatiotemporal AOIs 

identified in the case study area, thereby facilitating a comprehensive understanding of 

the urban environment and mobility patterns.  

In summary, the work conducted in this thesis has presented a new methodological 

framework that enables the analysis of urban mobility through multiple sources of urban 

data; and considering both the dynamic and multidimensional aspects of urban contexts. 

The proposed framework has demonstrated its utility in the case study areas by resolving 

real-world mobility-problems (e.g., creating context-based TOD classification and urban 

AOI detection). Moreover, since the methodological framework established in this thesis 

was applied to open data obtained from the case study areas to exemplify its utility, it 

will likely be a helpful framework for applications within other international urban 

contexts. 

 

6.2 LIMITATIONS AND FUTURE OUTLOOK 
 

Although the thesis has presented many novel contributions to the current research and 

literature, several criticisms may be levelled at some limitations that were encountered 

during the development of the proposed methodological framework. These limitations 

have been outlined in detail within those papers making up the thesis (specifically, see 

Section 3.7, 4.6, and 5.6). These arguments are reiterated here alongside suggestions of 

future works based on them. 

First, as stated in Section 2.1, although the rapid development of ICTs and the increased 

availability of urban data have made it possible to simultaneously analyse urban 

mobility from spatial, temporal, and contextual perspectives, computational challenges 

continue to limit such work since there is always a lag between the ability to understand 

data and the ability to produce and collect them (Kong et al., 2020). This computational 

bottleneck has been manifested by the compromises made in this research. For instance, 

in Chapter 3, one of the main reasons why the weekends’ turnstile data were excluded 

from the analysis is that the passengers’ weekend travel contained too much noise (i.e. 

random trips or outliers). Such noisy data could not be handled well using traditional 

distance-based clustering methods, and therefore the weekend travel patterns were not 

able to be revealed effectively. Moreover, the ST-DBSCAN algorithm employed in 

Chapter 5 is very memory-intensive, directly leading to the decision to merely take 1% 

random samples from the whole year taxi GPS dataset. Given the limited computational 
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power, how to effectively and efficiently process urban (big) data is one of the future 

directions not only for this study but also for other similar urban studies seeking to 

derive actionable knowledge from raw datasets. As such, one of the potential future 

directions of this work may be to address the problem of balancing the speed-accuracy 

and the privacy-utility tradeoffs during the data aggregation (Asikis & Pournaras, 2020; 

Yun et al., 2019). Future studies could ascertain how to aggregate data to achieve better 

computing performance without losing too much detailed information. For example, in 

the study outlined in Chapter 5, it is possible to aggregate the individual taxi GPS points 

to the designated areas, such as TAZ (see Chen et al., 2019; Zhang et al., 2016), and then 

adopt a grid- or area-based ST-DBSCAN to explore their spatiotemporal patterns. 

Alternatively, it would be helpful to transpose the first two phases of the framework by 

first snapping GPS points to the road network segment, also referred to as the map-

matching process (Yang & Gidófalvi, 2018), and then using a network-based ST-

DBSCAN algorithm to detect taxi aggregation hotspots or so-called hot routes. While 

problems related to the ecological fallacy or MAUP might occur due to the data 

aggregation, these hypothetical attempts could significantly improve the performance of 

the data mining and machine learning algorithms while maintaining a reasonable level of 

spatiotemporal granularity. 

Second, it is inevitable to end up with a dataset with high dimensionality when 

integrating dynamic and multidimensional contexts to analyse the complex urban 

environment and its mobility. This will typically result in the ‘curse of dimensionality’, 

which brings uncertainties and adversely affecting the clustering results (see Section 

4.2). Although this thesis sought to utilise various approaches (e.g., SOM and the PCA-

based variable selection methods) to mitigate such adverse effects, the issues caused by 

high dimensionality cannot be addressed entirely. Given that most unsupervised 

classifiers employed in this thesis, such as k-means, hierarchical clustering, and H-K-

means, are based on distance measurement (i.e., using distance to measure the similarity 

between attributes), such limitation will be further amplified. Moreover, the high-

dimensionality exists not only in the dataset assembled by contextual variables but also 

in one configured by temporal variables. The size of the time intervals used to aggregate 

human mobility, also known as the temporal window, determines the dimensionality of 

the dynamic aspect. For instance, due to the inherent temporal resolution of the subway 

turnstile data used in Chapter 3, the passenger flow counts were aggregated into a four-

hour temporal window, meaning that a day comprises 12 variables (i.e., six for entry and 

six for exit). In terms of the dataset with a finer temporal resolution, such as the taxi 

GPS data used in Chapter 5, the temporal interval size was set as 15 minutes (i.e., a day 
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comprises 96 variables). Moreover, since some mobility data contain real-time changes, 

such temporal resolution may need to be more fine-grained. For instance, more than half 

of the bike trips duration in the NYC CitiBike bike-sharing system last less than 10 

minutes (Sokoloff, 2018). To perform a similar mobility-related analysis, the size of the 

temporal window aggregating the bike trips would be five minutes or even less, thereby 

resulting in an exponential expansion in dimensionality. This explosive growth in 

dimensionality will undoubtedly add more uncertainties to the clustering result, 

degenerating the level of result interpretability. Alongside reducing dimensionality by 

carrying out complex variable selection work, another promising approach is to conduct 

the clustering task by using more sophisticated data mining and machine learning 

algorithms that do not predominantly rely on distance measures. For instance, Liu and 

Cheng (2020) innovatively employed a text-mining algorithm in the urban mobility 

study. They applied the Latent Dirichlet Allocation (LDA) algorithm, a generative 

model-based clustering technique, on the smart card dataset to classify London 

underground passengers characterising similar travel behaviour. Similarly, in order to 

identify the spatiotemporal functions of metro stations in Shanghai, Wang et al. (2017) 

proposed a Doc2vec-based semantic framework (IS2Fun) for characterising the semantic 

distribution of subway stations based on human mobility patterns and POIs. Moreover, 

as the neural network techniques have matured, it is possible to utilise graph-based data 

clustering methods to mitigate the challenges caused by high dimensionality (see Liu & 

Barahona, 2020).  

Finally, while this thesis provided an innovative framework for incorporating dynamic 

and multidimensional contexts into urban mobility studies, it may be limited in aspects 

of the dynamic nature of the urban environment. As discussed in Chapter 2, although 

certain urban environment components, such as the neighbourhood’s socioeconomic and 

demographic background, are classified as a relatively static category, they do inherently 

change-over-time. For instance, the disparity of research about the daytime and 

nighttime population has been well-documented and has a lengthy history of research 

(Akkerman & Shimoura, 2012; Moss & Qing, 2012; Schmitt, 1956; Sleeter & Wood, 

2006). This daytime-nighttime differential is predominantly influenced by the 

heterogeneity in people’s living and working locations, resulting in different 

sociodemographic characteristics at different times of the day but in the same spatial 

location. Furthermore, it should be noted that even the ‘most static’ urban environment 

components, such as urban land use and POIs, may alter their main functionality at 

different times of the day. Some mixed-use urban areas are predominately used for one 

certain type of function, such as commercial use, during the day, and then switch to 
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another type, such as residential use, during the evening and nighttime hours. This time-

varying shifting is more evident in modern metropolitan areas, such as NYC and 

London, where mixed land use and compact urban development are more prominent. 

With the expanded diversity and availability of urban data, it would be advantageous in 

future urban mobility research to convert these ‘static’ contextual attributes into dynamic 

time-varying attributes. For example, future research could combine both daytime and 

nighttime data to analyse the dynamic change of people’s sociodemographic 

characteristics in relation to their mobility. Moreover, it would be beneficial in future 

works to link the multi-sourced urban data together. For example, future studies could 

establish a linkage between the conventional survey-based land use data, such as POIs, 

and the emerging crowdsourcing data, such as OSM data, to obtain the POIs’ opening 

time and thus formulate a time-varying POI dataset. Future works would be hugely 

benefited by such linked data.  

However, despite the abovementioned limitations, this thesis has made significant 

contributions to the existing research in urban analytics through developing an enhanced 

methodological framework that is based on conventional geodemographic analysis to 

investigate the urban environment and urban mobility more comprehensively. The 

developed framework has presented a typical DIKW workflow that enables the analysis 

of urban mobility through multi-sourced urban data; and systematically integrates both 

the dynamic and multidimensional aspects of urban contexts, contributing to a better 

understanding of urban mobility from space, time and urban context aspects. The 

proposed framework has demonstrated its utility in the case study areas by resolving 

real-world mobility problems. Furthermore, since the framework was designed to use 

open data to exemplify its adaptability, it will likely be a valuable framework for 

implementations within other urban contexts on a global scale. 

Moreover, beyond the scope of urban study, the methodological framework developed in 

this thesis could be potentially applied to various mobility-related fields, facilitating 

evidence-based and effective decision-making. For instance, in public transit planning, 

the developed framework could be employed to monitor and assess the effectiveness of 

transit policies introduced by the public transit agency. In my previous research, namely, 

Liu & Cheng (2020), a similar analytical framework was applied to the Oyster Card data 

in London to assess the overall performance of the TfL’s Night Tube campaign, to some 

extent manifesting the utility of this analytical framework (see Liu & Cheng, 2020). 

Comparing to that work, instead of using the existing general-purpose geodemographic 

classification (i.e., 2011 OAC) to contextualise human mobility pattern, the analytical 

framework developed in this thesis advocates creating an application-specific 
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classification to conduct contextual enrichment, which could further improve the result 

interpretability and provide a target-specific application.  

Furthermore, this framework could be utilised to analyse the ongoing COVID-19 

pandemic in the public health field. The knowledge gained can be used as the evidence 

basis guiding the governmental implementation of non-pharmaceutical interventions 

(NPIs), such as regional or national lockdowns, with the goal of containing the viral 

transmission effectively. Many recent studies (see Grantz et al., 2020; Yabe et al., 2020) 

have proved a strong positive correlation between human mobility and coronavirus 

transmission. Therefore, analysing people’s mobility patterns can help decision-makers 

monitor and even predict the outbreak hotspots in both space and time. For example, in 

my recent research (see Cheng et al., 2021), a part of the analytical framework14 

developed in this thesis was implemented to conduct COVID-19 transmission analysis 

based upon individual patients’ trajectory data collected in China. In that research, we 

revealed the spatiotemporal patterns of patients’ mobility and the transmission stages of 

COVID-19 from Wuhan to the rest of China at finer spatial and temporal scales. In 

addition, with higher data availability of contextual information, it is feasible to 

undertake further contextual enrichment to evaluate and profile the severity or 

vulnerability for each hotspot area and the households who live there, suggesting the 

areas that will be most at risk from pandemic waves (Daras et al., 2021). Based on the 

findings, policymakers could make further modifications (e.g., whether easing or 

strengthening the restrictions) for existing NPIs. 

  

 

14 Only the spatiotemporal paradigm (see Figure 1.1) part was used due to the lack of personal 
contextual information 
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