
UNIVERSITY OF LIVERPOOL

Efficient Kalman Filtering and

Smoothing

by

Siu Lun Yeung

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Science and Engineering

Department of Electrical Engineering and Electronics

August 2021

University Web Site URL Here (include http://)
s.lun@hotmail.com
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

Declaration of Authorship

I, SIU LUN YEUNG, declare that this thesis titled, ‘Efficient Kalman Filtering and

Smoothing’ and the work presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

Acknowledgements

It has been challenging and diffcult for the past four years of my pursuit of the PhD

degree in University of Liverpool. However, I cannot achieve it alone without the help

from many others. To name a few, I would like to thank the following people.

First, I want to thank my mentor, Dr Jeyan Thiyagalingam. He is the sole reason why I

can finish this journey. Thank you for choosing me to be one of your students. I cannot

be more grateful for that. Without his help, I am sure I would not have achieived a

lot during this hard times. His passion and care for students has been invaluable to

me. I consider myself very lucky to have him as my advisor, to be on my side when I

was confused and puzzled on the road of research. I particularly admire his work ethic

and dedication to his students and his work. Whenever I needed his help or guidance,

he would be there for me no matter the time and place. Without his inspiration and

encouragment, I really couldn’t have reached such proud achievement.

Moreover, I want to thank my supervisor, Dr Angel Garcia-Fernandez, who always give

me guidance and advise despite the pandemic. Not only he is dedicated and responsible

to research, he is also friendly and thoughtful to students. I have learned a lot from

him in terms of technical knowledge and how to get through the PhD. I appreciate his

patient and gave me a lot of freedom to acheive my dream. Also, I would like to thank

Dr Alexei Lisitsa and Prof Frans Coenen for the advice and help from the Independent

Progress Assessment Panel (IPAP) reviews.

Finally, I would like to thank my parents, Kit-Hing Sin and Yu-Pui Yeung, their love

have been one of the main fuels to help me overcome every difficulties. Their selfless

and unlimited support on my education and life make me the person I am today. For

that, I cannot be more thankful.

iii

UNIVERSITY OF LIVERPOOL

Abstract

Faculty of Science and Engineering

Department of Electrical Engineering and Electronics

Doctor of Philosophy

by Siu Lun Yeung

The Kalman filter and Kalman smoother are important components in modern multi-

target tracking systems. Their application are vast which include guidance, navigation

and control of vehicles. On top of that, when the motion model is uncertain, Multiple-

Model approach can be combined with the filtering and smoothing method. However,

with large amount of retrodiction window size, number of motion models and large

number of targets, this process can become very computationally intensive and thus

time consuming. Very often, real-time processing is needed in the world of tracking

and therefore, this computational bottleneck become a problem. This is the motivation

behind this thesis, to reduce the computational complexity when multi-target, multi-

window or multi-model applications are used. This thesis presents several approaches

to tackle this multi-dimensional problems in terms of complexity while maintaining

satisfactory precision.

A natural step forward will be in leveraging the modern multi-core architectures. How-

ever, in order to parallelize such process, these algorithms have to be reformulated to be

fitted into the parallel processors. In order to parallelise multi-target and multi-window

scenario, this thesis introduce nested parallelism and prefix-sum algorithm to tackle

the problem and realised this on Intel Knights Landing (KNL) Processor and OpenMP

memory model.

On the other hand, in the case of limited parallel resources, this thesis also develop

alternatives called Fast Kalman smoother (FRTS) to lower the computation complexity

due to multi-window problem. Specifically the smoother algorithm is reformulated such

that it is computationally independent of number of window size in the fixed-lag configu-

ration. Although the underlying mathematics is the same as the conventional approach,

FRTS introduced numerical stability issue which makes the smoother unstable. There-

fore, this thesis introduce the idea of condition number to monitor the deterioration rate

in order to correct the numerical error once the pre-set threshold is breached.

University Web Site URL Here (include http://)
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)
s.lun@hotmail.com

iv

In addition to the large number of targets and retrodiction window size mentioned earlier,

the number of models running simultaneously make the problem even more challenging

in the perspective of real-time performance. Since such algorithms are the fundamental

backbone of a large amount of multi-frame tracking algorithms, it would be beneficial to

have a multi-model algorithm that is computationally independent to number of model

utilised. Consequently, this thesis extend the FRTS concept to fixed-lag Multiple-Model

smoothing method to achieve this goal.

The proposed algorithms are compared and tested through an extensive and exhaustive

set of evaluations against the literature, and discuss the relative merits. These evalua-

tions show that these contributions pave a way to secure substantial performance gains

for multi-dimensional tracking algorithms over conventional approaches.

Contents

Declaration of Authorship i

Acknowledgements ii

Abstract ii

List of Figures viii

List of Tables x

Abbreviations xi

1 Introduction 1

1.1 Motivations . 1

1.2 Aims and Objectives . 3

1.3 Outline of the Thesis . 5

2 Background 7

2.1 Introduction . 7

2.1.1 Problem Formulation . 7

2.1.2 Linear State Space Models . 8

2.1.3 Kalman Filter . 8

2.1.4 Kalman Smoother . 9

2.1.5 Motion Model . 10

2.1.6 Interactive Multiple Model Filter 12

2.1.7 Multi-Target Tracking . 14

2.1.7.1 Gating . 15

2.1.7.2 Nearest Neighbour Data association 16

2.2 Related Work and Applications . 17

3 A Parallel Retrodiction Algorithm for Large-Scale Multitarget Track-
ing 19

3.1 Introduction . 19

3.2 Approach to Parallelized Multitarget Tracking with Retrodiction 22

3.3 Parallelization of Components for MTTR 24

v

Siu Lun Yeung vi

3.3.1 Parallelization of the Kalman Filter 25

3.3.2 Retrodiction . 27

3.3.3 Measurement-to-Track Association 27

3.3.4 Computational Complexity of MTTR 28

3.4 Parallel RTS Retrodiction . 29

3.4.1 Enabling the Parallelization of the RTS Smoother 30

3.4.2 Parallelizing the RTS Smoothing with the Prefix-Sum Algorithm . 33

3.4.3 Data Reuse and Performance . 35

3.4.4 Complexity of the Proposed Parallel RTS Algorithm 36

3.4.5 Realizing MTTR on Parallel Systems 41

3.4.6 Algorithm that is Independent to the Window Size 42

3.5 Simulation and Evaluation . 43

3.5.1 Simulated Scenario . 43

3.5.2 Evaluation Framework . 44

3.5.3 Parallelism and Data Reuse . 45

3.5.4 Thread Allocation and Choice of Smoothing Algorithm 46

3.5.5 Evaluation of the Window Size-Independent Algorithm 51

3.6 Summary . 52

4 Fast Fixed-Lag Smoother 54

4.1 Introduction . 54

4.2 Background . 57

4.2.1 Fast RTS Smoother . 57

4.3 Numerical Stability Analysis . 60

4.3.1 Numerical Stability of fRTS− . 60

4.3.2 Addressing the Numerical Instability 61

4.3.3 Condition Number . 63

4.4 Computational Complexity . 66

4.4.1 Complexity of FRTS . 67

4.5 Simulation and Evaluation . 69

4.5.1 Simulated Scenario . 69

4.5.2 Evaluation Method . 70

4.5.3 Accuracy of FRTS . 70

4.5.4 Speed-Up of FRTS Algorithm . 71

4.5.5 Multi-Target Scenario . 76

4.6 Conclusions . 79

5 Cost-effective Multiple Model Tracking 80

5.1 Introduction . 80

5.2 Background . 83

5.2.1 Autonomous Multiple Model Filter 83

5.3 Formulation of AMMS . 84

5.4 Formulation of the FMMS . 88

5.5 Computational Complexity Analysis . 89

5.5.1 Interactive Multiple Model Filtering and Smoothing 90

5.5.2 Autonomous Multiple Model Filtering and Smoothing 93

5.5.3 Fast Multiple Model Smoothing . 94

Siu Lun Yeung vii

5.5.4 Comparison . 94

5.6 Simulation and Evaluation . 94

5.6.1 Simulated Scenario . 94

5.6.2 Error-to-Complexity Performance Index 101

5.6.3 Analysis and Discussion . 101

5.7 Conclusions . 103

6 Conclusions 104

6.1 Future Work . 105

Bibliography 107

List of Figures

1.1 Multi-Target Tracking . 2

1.2 Problem Illustration . 3

2.1 Kalman filter loop . 9

2.2 Kalman smoother loop . 11

2.3 IMM Filter loop . 14

2.4 Gating . 16

3.1 Reduction on n elements using p processors using the Binary Tree. 33

3.2 Prefix-Sum on bi, Ci, Di. 34

3.3 Theoretical Performance Comparison in terms of FLOP Counts (log scale) 39

3.4 Speed-up for a range of window size . 40

3.5 Speed-up for a range of number of states 40

3.6 OpenMP Fork-Join Model. 41

3.7 Block Diagram Illustrating the Window Size-Oblivious RTS Smoothing
Algorithm. 43

3.8 Simulation for Multi-target Tracking Scenario (in meters) 44

3.9 Runtime of Single Target Tracking Against Different Window Sizes (log
scale) . 45

3.10 Speedup of Single Target Tracking Against Different Window Sizes 46

3.11 Performance of Multitarget Tracking against the Number of Threads . . . 48

3.12 The Effect of Nested Parallelism on the Overall Performance of Multi-
Target Tracking . 48

3.13 Performance of Multitarget Tracking against the Number of Targets . . . 49

3.14 Runtime for Tracking Multiple Targets for a Range of Window Sizes
(nB = 8) (log scale) . 50

3.15 Speed-Up of Tracking Multiple Targets over a range of Window Sizes
(nB = 8) . 50

3.16 Runtime of Tracking Multiple Targets for a range of Window Sizes (nB =
64) (log scale) . 50

3.17 Speed-Up of Tracking Multiple Targets for a range of Window Sizes (nB =
64) . 51

3.18 Performance Gain of the Overall PRTS for a Range of Window Sizes . . . 52

4.1 Divergence issues of the fRTS− for an example scenario 61

4.2 Accumulated position error of the cRTS and FRTS smoothers compared
(in log scale) . 62

4.3 Accumulated error in the covariance of the cRTS and FRTS smoothers
compared (in log scale) . 62

viii

List of Figures ix

4.4 Variation of condition number of the smoother gain (proposed FRTS)
with the renewal process . 64

4.5 Speed-up of different FRTS algorithms for different ns and Sr 67

4.6 Example target tracking scenario . 70

4.7 Relative error of state for FRTS (θ = 0.1) (log scale) 71

4.8 Relative error of state for FRTS (Magnified) (θ = 0.1) (log scale) 71

4.9 Absolute error of state (position) for FRTS (θ = 0.1) (log scale) 72

4.10 Absolute error of state (position) for FRTS (Magnified) (θ = 0.1) (log scale) 72

4.11 Absolute error of state (velocity) for FRTS (θ = 0.1) (log scale) 72

4.12 Absolute error of state (velocity) for FRTS (Magnified) (θ = 0.1) (log scale) 73

4.13 Variation of condition number for FRTS (θ = 0.1) (log scale) 73

4.14 Relative error of covariance between cRTS and FRTS (θ = 0.1) (log scale) 73

4.15 Performance gain of proposed algorithms 74

4.16 Relative error of state for FRTS (θ = 1) (log scale) 74

4.17 Absolute error of state (position) for FRTS (θ = 1) (log scale) 74

4.18 Absolute error of state (velocity) for FRTS (θ = 1) (log scale) 75

4.19 Variation of condition number for FRTS (θ = 1) (log scale) 75

4.20 Relative error of covariance between cRTS and FRTS (θ = 1) (log scale) . 75

4.21 Multi-Target Tracking Scenario with FRTS 77

4.22 Relative Error of x-positions (log scale) 77

4.23 Relative Error of y-positions (log scale) 77

4.24 Relative Error of x-positions (log scale) 78

4.25 Relative Error of y-positions (log scale) 78

5.1 Operations of the AMMS . 87

5.2 Operations of the IMMS . 87

5.3 Operations of the GBP1S . 87

5.4 Operations of the FMMS . 89

5.5 Speed-up of AMMS and FMMS in comparison with IMM when N = 4 . . 95

5.6 Speed-up of AMMS and FMMS in comparison with IMM when L = 4 . . 95

5.7 Scenario 1 for Target Tracking . 97

5.8 Scenario 2 for Target Tracking . 98

5.9 Position Error Comparison for Tracking Scenario 1 98

5.10 Velocity Error Comparison for Tracking Scenario 1 98

5.11 Comparison of Mode Probability for CV for Scenario 1 99

5.12 Cost effectiveness plot for Tracking Scenario 1 99

5.13 Error Comparison for Tracking Scenario 2 99

5.14 Velocity Error Comparison for Tracking Scenario 2 100

5.15 Comparison of Mode Probability for CV for Scenario 2 100

5.16 Cost effectiveness plot for Tracking Scenario 2 100

List of Tables

3.1 Operational Complexity of the Kalman Filter. 26

3.2 Operational Complexity of the RTS smoother 27

3.3 Operational Complexity of the NN . 29

3.4 Computational Complexity of the Proposed RTS Smoothing Algorithm
with Data Reuse. 38

3.5 Complexity of the Proposed RTS Smoothing Algorithm. 39

4.1 Operational Complexity of the RTS smoother 66

4.2 Computational Complexity of the FRTS 68

4.3 Runtimes (in seconds) . 76

4.4 Velocities of Targets . 78

5.1 Operational Complexity of the IMMF . 92

5.2 Operational Complexity of the IMMS . 93

5.3 Operational Complexity of the AMMS . 96

5.4 Operational Complexity of the FMMS . 97

x

Abbreviations

AMMF Autonomous Multiple Model Filter

AMMS Autonomous Multiple Model Smoother

ASIPDA Augmented State Integrated Probabilistic Data Association

BMFLS Biswas-Mahalanabis Fixed-Lag Smoother

BLAS Basic Linear Algebra Subroutines

C2C Computation-to-communication

CV Cosntant Velocity

CT Cosntant Turn

CNG-FRTS Condition Number-Guided Fast Rauch-Tung-Striebel

cRTS Conventional fixed-lag RTS

DR Data Reuse

fRTS− Fast RTS without stability renewal module

FLOPs Floating Point Operations

FMMF Fast Multiple Model Filtering

FMMS Fast MM Fixed-Lag Smoother

FRTS Fast Rauch-Tung-Striebel

GPU Graphical Processing Unit

GPBn Generalized Pseudo-Bayesian n-order

GNN Global Nearest Neighbour

IMM Interactive Multiple Model

IMMS Interactive Multiple Model Smoothing

IMMF Interactive Multiple Model Filter

IPDA Integrated Probabilitic Data Association

JPDA Joint Probabilitic Data Association

KF Kalman Filtering

xi

Abbreviations xii

K-FRTS Constant Gain Fast Rauch-Tung-Striebel

KFG-FRTS Kalman Filter-Guided Fast Rauch-Tung-Striebel

KNL Knight Landing processor

MHT Multiple Hypothesis Tracking

MM Multiple Model

MI Matrix Inverse

MVM Matrix-Vector Multiplication

MMM Matrix-Matrix Multiplication

MMA Matrix-Matrix Addition

MTT Multi Target Tracking

MTTR Multi Target Tracking with Retrodiction

MI Matrix Inverse

NDR No Data Reuse

NN Nearest Neighbour

PRTS Parallel Rauch-Tung-Striebel

PPMHT Point Probabilistic Multiple Hypothesis Tracking

PT,SRTS Parallel Tracking Sequential RTS

PT,PRTS Parallel Tracking Parallel RTS

PRTS-DR Parallel RTS with Data Reuse

PRTS-NDR Parallel RTS with no Data Reuse

PT Parallel Tracking

RTS Rauch-Tung-Striebel

RMSE Root-mean-squared error

sIPDA Smoothing with IPDA

SRTS-DR Sequential RTS with Data Reuse

SRTS-NDR Sequential RTS with No Data Reuse

SIMD Single instruction, multiple data

SRTS Sequential Rauch-Tung-Striebel

ST Single-core Tracking

TPM Transition Probability Matrix

VVA Vector-Vector Addition

VSMM Variable Structure Multiple Model

Dedicated to my Father

xiii

Chapter 1

Introduction

This chapter gives a brief overview of the work developed in this thesis, beginning by

describing the motivations behind it in Section 1.1. Followed by Section 1.2 which discuss

specific goals this thesis aims to achieve. Then, a short summary to outline the thesis

structure and contributions of this PhD are presented in Section 1.3.

1.1 Motivations

The Kalman Filter is well recognised in the field of signal processing. The applications of

it encompasses multiple discipline of industrial usage since the 1970s including trajectory

estimation, state prediction for control or diagnosis, denoising and so on [1–10]. The

basic filtering algorithm is often combined with Kalman Smoothing algorithm to offer

optimal filtering performance. Although the computational complexity of the combined

filtering and smoothing algorithms is often acceptable, it can become an issue if they

were to be scaled across a very large number of targets. This is particularly the case

with current demands in aerospace applications (such as drone surveillance) [11, 12]

where there is a compelling need to perform both filtering and smoothing at real-time

across a very large number of targets simultaneously. The total number of computations

or the number of floating point operations carried out by these algorithms per second

(known as FLOPs) can increase dramatically with the number of targets within the

field of view. This multi-target tracking scenario is illustrated in Figure 1.1 with lines

showing the trajectories of the targets. To guarantee the real-time utility of the filtering

and smoothing algorithms, it is essential to ensure that the overall FLOPs performance

or computational complexity is managed well.

The tracking procedure begins with the filtering process to estimate the state based on

the prediction model and measurements. A smoother can be used to re-calculate the

1

Siu Lun Yeung 2

-4 -2 0 2 4 6 8 10 12

10
4

-2

0

2

4

6

8

10

12
10

4

Figure 1.1: Multi-Target Tracking

trajectories of the targets when a small amount of delay is acceptable. Smoothing is often

carried out over a set of points with past measurements, known as smoothing window

size. Rauch-Tung-Striebel (RTS) smoother is one of the most widely used techniques

for improving state estimation. However, the computational performance of smoothing

algorithms may begin to deteriorate with a large number targets, particularly when

combined with large smoother window sizes. This is rather crucial as most of the tracking

systems rely on real-time or near-real-time performance. Therefore, in order to bring

significant gain comparing with other smoother, the underlying mathematics of the

algorithm have to be reformulated and reassembled to meet the challenge.

Furthermore, the real utility of smoothing algorithms do not end with state estimation.

Instead, they have a much deeper influence on overall performance tracking systems,

and influences different tracking scenarios. Among others, maneuvering targets requires

a significant attention here. Nearly all practically significant tracking scenarios often

involve maneuvering targets, where simple single-model based tracking method fail. In

this context, Multiple Model (MM) tracking allows multiple prediction models to be

executed simultaneously to better capture the appropriate, resulting motion model of

targets. The usage of smoothing algorithms in conjunction with multiple-model tracking

further improve the tracking accuracy of the algorithm. However, multiple model meth-

ods require a bank of filters and smoothers operating together to improve the overall

accuracy which makes real-time performance even more challenging. The number of

filters and smoothers utilised are proportional to the number of models used. Therefore,

not only multi-target and multi-window become a problem in complexity, multi-model

is also another hurdle to overcome in order to render practical tracking algorithm for

real-time usage. This multi-dimensional problem is illustrated in Figure 1.2. In terms of

multi-model smoothing method, in general, each of the filters need to carry out smooth-

ing on the estimates from multiple model. On top of that, smoothing usually needs a

Siu Lun Yeung 3

Filtering

Smoothing

Multi-model{ {

{

Multi-target

Multi-window

Figure 1.2: Problem Illustration

couple of smoothing points to lower estimation error. Furthermore, this become even

more complicated when tracking multiple models are needed to be tracked. This multi-

dimensional complexity problem is the main focus in this thesis.

1.2 Aims and Objectives

As outlined in Section 1.1, the multi-dimensional problem which incules multi-target,

multi-window and multi-model can impede tracking algorithm to reach real-time per-

formance. A natural and trivial way to address these issues would be to exploit parallel

architecture and parallelise these algorithms. Although there have been several bod-

ies of work addressing the parallelisation aspects of filtering or smoothing, they are

often focused at a coarse-grain level, such as parallelisation across multiple sensors or

across targets. This approach, opposed to fine-grained parallelism, where the focus is on

parallelising algorithms at the inner level (across window size), cannot scale optimally

particularly when the fine-grained parallelism aspects are fully ignored [13]. However,

fine-grained parallelisation is a rather challenging endeavour for several reasons. First, it

may often require substantial reformulation of the underlying algorithm to fit the archi-

tecture and memory model, particularly the current multi-core, shared memory model.

Secondly, it requires careful implementations of the algorithm on modern architectures.

One of the aims of this thesis is to reformulate the smoothing algorithm, in terms of

target tracking, to allow easy implementation on a range of parallel architectures. Given

Siu Lun Yeung 4

the non-trivial nature of this endeavour, the literature around fine-grained parallelisation

on filtering and smoothing algorithms, particularly for the latter, is considerably limited.

For instance, numerous approaches have been proposed to improve the performance of

the filtering through various designs (which are in fact instances of parallelisation), such

as multi-stage estimators [14–16], their performance have not been transformational, as

discussed in Section 2.2.

For maneuvering targets, Multiple Model (MM) tracking allows multiple prediction mod-

els to be executed simultaneously to better capture the motion of them. The difference

between exiting algorithms is that they fuse the estimates from individual filters dif-

ferently. Moreover, the computational complexity of this tracking algorithm is largely

governed by the number of targets, number of delayed time points and number of mod-

els. The most popular method for MM is Interacting Multiple Model filtering (IMM).

According to the MM survey conducted in [17, 18], IMM is the most efficient and ac-

curate MM algorithm. Therefore, several papers have tried different approaches to find

a faster solution for IMM filtering, for example in [17–22]. In order to accommodate

more number of models and window size in the MM algorithms without increasing the

computational burden, novel approach has to be investigated by combining the existing

method with new idea in order to breakthrough the barrier.

In this thesis, the following concerns are addressed, by making following three contribu-

tions:

1. First, to address the multi-target, multi-window problem, a fully parallelised fil-

tering and smoothing algorithm targeting contemporary multi-core architectures

is formulated. More specifically, the underlying mathematics are reformulated to

fit the notion of multi-core parallelism and shared-memory model that underpin

modern systems. The Rauch-Tung-Striebel (RTS) smoother is chosen to be the

parallelised smoother, as RTS is one of the most widely used smoothing technique

for improving the state estimation.

2. Secondly, without the usage of multi-core architecture, a novel algorithm, namely,

the Fast RTS Smoother (FRTS), is investigated to address the multi-window prob-

lem, that is, the complexity of the algorithm is independent to number of window

size. However, after the formulation, numerical instability arise as small error ac-

cumulate over number of time steps. Therefore, additional work and research is

carried out to make FRTS feasible.

3. Thirdly, by using Interacting Multiple Model smoothing (IMM) algorithm as a

baseline algorithm, this thesis develops a novel, fast, computationally cost ef-

fective algorithm for multiple model smoothing to address the multi-model and

Siu Lun Yeung 5

multi-window complexity problem. Although there are a numerous variations of

MM algorithms, IMM is the most wide used, most efficient and accurate MM algo-

rithm [17, 18, 22]. More specifically, the proposed algorithm could accommodates

a large number of models and a large range of window sizes without increasing the

computational complexity.

1.3 Outline of the Thesis

As stated before, the aim of this thesis is to improve the existing state-of-the-art tracking

algorithms in the aspect of filtering, smoothing and multiple model tracking. Tracking

is a complex procedure which involves multiple stages in order to obtain reliable esti-

mations. Due to the increasing complexity of tracking algorithms, it is natural to seek

more efficient techniques not only can reduce the complexity while keeping RMSE within

acceptable range. Therefore, in this thesis, novel tracking techniques are presented and

compared with the state-of-the-art approach in order to address these problems.

Chapter 2 introduce the basic building blocks of tracking algorithm and notations for

the following chapters. The main contributions of the thesis are outlined in the following

Chapters.

1. The first contribution: A Parallel Retrodiction Algorithm for Large-Scale Multi-

target Tracking is presented in Chapter 3. This chapter addresses the issue brought

by number of targets and number of window size of smoother by introducing par-

allelism in both the filtering and smoothing algorithms. By reformulating the

underlying algorithms as well as applying them on modern multi-core architec-

tures, significant performance improvement can be achieved. This piece of work is

also published in the following journal:

� S. Yeung and J. Thiyagalingam, A Parallel Retrodiction Algorithm for Large-

Scale Multi-target Tracking, Accepted in IEEE Transactions on Aerospace

and Electronic Systems [23].

2. In Chapter 4, it presents the idea of Fast Fixed-Lag Smoothing Algorithm (FRTS).

The key novelty here is the computational complexity of the algorithm being

fully independent of the smoothing window size. Most existing smoothing al-

gorithms in the literature have their computational complexity linearly coupled to

the smoothing window size. This chapter also includes techniques to address the

numerical instabilities that may arise due to such decoupling, and a number of

guided-smoothing algorithms are proposed to address these concerns.

Siu Lun Yeung 6

3. In Chapter 5, it includes different generations of Multiple Model Target tracking

algorithms: the autonomous, the cooperative and the variable structure multiple

models. By combining the strength of each of these techniques, a novel MM

algorithm is suggested which include filtering and smoothing stage.

Chapter 6 summarizes the work presented in this thesis and outlines future research

based on the work developed.

Chapter 2

Background

2.1 Introduction

Since the aim of the thesis is to develop efficient Kalman Filtering and Smoothing in the

sense of multi-model usage, in this section, the basic formulation of the Kalman Filter,

Kalman Smoother and the Interactive Multiple Model Smoother are covered. Reader

can refer to the notations here for the following chapters. The current state-of-the-art

techniques are presented in Section 2.1. Furthermore, in 2.2, this thesis include some of

the work using different approaches to reduce the computation cost and reach real-time

performance.

2.1.1 Problem Formulation

The purpose of tracking is to estimate the unknown state of the target, denoted as xt,

by incorporating the information from the measurement generated from the sensor. As

measurement comes in discrete moment in time, the tracking process is also performed in

discrete time step. At any time step t, this thesis seek the estimate with higher accuracy

than measurements which has lower estimation error. In Bayesian point of view, the

posterior probability density function (pdf) is computed

p(xt|Zt)

Zt is the measurements sequence from t = 1 to T . It can be a scalar value or a vector

of measurements such as positions and velocities in different dimensions. Therefore, Zt

is a measurement set with vectors zt written as

Zt = {z1, ..., zt} (2.1)

7

Siu Lun Yeung 8

The Kalman filter computes the minimum mean-squared error (MMSE) estimate by

using the posterior pdf which is given by

x̂MMSE
t = E{xt|Zt} =

∫
xtp(xt|Zt)dxt (2.2)

where E is the expectation.

2.1.2 Linear State Space Models

A linear state space model consists of a sequence of state space process which can be

given by xt where t = 0, 1, . . . , T and xt ∈ Rn is the state of the system at time step t

with vector dimension n. The state can be updated at every time step by the following

dynamic model and measurements model:

xt = Atxt−1 + wt

zt = Htxt + vt (2.3)

at which At is the transition matrix of the dynamic model and wt is the process noise

with known covariance Qt. Whereas, zt is the measurement with dimension m at time t,

vt is the measurement error assumed to be a white noise process with known covariance

Rt and has zero cross-correlation with the process noise. Ht is the measurement model

matrix.

2.1.3 Kalman Filter

The original paper for Kalman filter can be found in [24]. Kalman filters are based on

linear dynamical systems discretized in the time domain. It is the closed form solution

to the Bayesian filtering equations. The dynamic and measurement models are assumed

as linear Gaussian. The aim of the Kalman filter is to minimise the estimation error

which is given by

et = xt − x̂t (2.4)

where, xt is the true value of the state and x̂t is the estimate calculated by the filter.

Therefore, et is the error from the estimation. The associated error covariance matrix is

Pt = E[ete
T
t] = E[(xt − x̂t)(xt − x̂t)T] (2.5)

Siu Lun Yeung 9

Pt|t

xt-1|t-1

Pt-1|t-1

Prior knowledge Prediction xt|t-1

Pt|t-1

Update step

xt|t

Estimate

t <-- t + 1

Compare

prediction and

measurments

zt

Figure 2.1: Kalman filter loop

With the assumption of prior estimate xt|t−1, the Kalman filter can be divided into two

steps: prediction and update, in order to calculate the distribution of xk. The prediction

step is

xt|t−1 = Atxt−1 + wt (2.6)

Pt|t−1 = AtPt−1A
T
t +Qt

Followed by the update step,

St = HtPt|t−1H
T
t +Rt (2.7)

Kt = Pt|t−1H
T
t S
−1
t

xt|t = xt|t−1 +Kt(zt −Htxt|t−1)

Pt|t = Pt|t−1 −KtStK
T
t

where St is the innovation matrix, Kt is the Kalman Gain and zt is the measurement

vector which can be calculated by using (2.3). The full recursive process is described in

Figure 2.1

2.1.4 Kalman Smoother

The original paper for Kalman smoother can be found in [25]. In smoothing, it considers

the estimation of the past rather than in the future as in the case of filtering, which can

be described as p(xt|z1:T) (probability of xt conditioned on z1:T), where T is the current

time step and t is the time step of interest where T > t. Smoothing can further reduce

Siu Lun Yeung 10

the root-mean-squared error (RMSE) of the estimates combined with filtering. There are

three common classifications of smoothing [26, 27], which are: Fixed-Interval Smoothing,

Fixed-Lag Smoothing and Fixed-Point Smoothing. Fixed-Interval Smoothing seeks the

optimal estimates at all the data points within a fixed interval, whereas Fixed-Point

Smoothing repeatedly estimates the same data point in time based on future data. When

a small delay can be tolerated, fixed-lag smoothing can be used to seek the estimate at a

particular time lag with respect to the present estimate. This configuration of smoothing

is common in target tracking as it allows real-time performance while reducing the RMSE

[25]. The Rauch-Tung-Striebel Smoother, which is called the Kalman Smoother, is used

to compute the closed form solution. The smoothed solution is conditioned on the whole

measurement space z1:T , whereas the filtering only considers measurements z1:t which is

up to time t.

x̂t|N = x̂t|t + Ct(x̂t+1|N − x̂t+1|t) (2.8)

with Ct being defined as the smoother gain as follows:

Ct = Pt|tA
T
t P
−1
t+1|t (2.9)

However, Pt|t, x̂t|t and xt+1|t and P−1t+1|t are computed as part of the forward pass for the

filter before the smoother process begins. Hence, the results of these computations can

be saved in memory and can be reused during the backward pass, whose initial values

will be Pt+1|N and x̂t+1|N . The exact distance of smoothing from the last time step is

determined by the window size N . In each step of the backward sweep, the old filter

estimate is renewed to improve the accuracy. The smoothed error covariance matrix for

the smoothed estimates is given by:

Pt|N = Pt|t + Ct(Pt+1|N − Pt+1|t)C
T
t (2.10)

The full recursive process is described in Figure 2.1. The number of cycles to loop

depends on the window size N .

2.1.5 Motion Model

To predict target motion, a moton model can be used. Two of the most common

models [17, 28] to describe target dynamics are Constant Velocity (CV) Model and

Constant Turn (CT) Model. Constant Velocity Model describes non-maneuver and

uniform motion with constant velocity v. The model ACV can be represented by the

Siu Lun Yeung 11

Pt|t

Pt|N

xt+1|N

Pt+1|N

xt|N

Estimate

t <-- t - 1

Compare

prediction and

smoothed estimate

Smoothed

Linearly blend

 smoother gain with

filtered estimate

xt|t

Ct

Pt+1|t

xt+1|t

Figure 2.2: Kalman smoother loop

following matrix with sampling time §.

Acv =


0

0

0

1

0

0

1

0

0

1

0

§

1

0

§

0


On the other hand, if the target exhibits turning behaviour with constant speed v and

constant turn rate ω. The following matrix Aturn (in 2D) can be used.

Aturn =


0

0

0

1

0

0

1

0

sin(w§)

cos(w§)

1−cos(w§)
w

sin(w§)
w

cos(w§)

−sin(w§)

sin(w§)
w

cos(w§)−1
w



A simple solution to track manoeuvring targets is to incorporate multiple motion mod-

els to predict target motion which leads to Multiple Model (MM) tracking. Multiple

Model methods are the conventional approach in single target tracking under motion

Siu Lun Yeung 12

uncertainty and in the absence of measurement origin uncertainty. Basically, these

methods resolve the target motion uncertainty by using multiple models at a time for

a maneuvering target. Numerous techniques have been developed to resolve the tar-

get motion uncertainty, amongst the more popular, there are the Autonomous Multiple

Model [29, 30] and the Interacting Multiple Model algorithm [31].

Furthermore, all the MM approaches can be categorized into two groups: the Fixed

Structure and the Variable Structure [18]. The first has received a lot of attention

from the scientific community, and there is little to be improved, on the other hand,

the latter is relatively new ad appeared to have an alternative to upgrade the Fixed

Structure Multiple Model algorithms. In the survey conducted by Li and Jilkov [18],

a comprehensive study of all the main Variable Structure Multiple Model (VSMM)

algorithms is presented.

2.1.6 Interactive Multiple Model Filter

Target tracking is more difficult when the target in motion is also maneuvering which

makes the motion seemingly stochastic and unpredictable. By tuning the process noise

of the Kalman filter, this shortcoming can be mitigated. However, in practice, that

may not be very usable since the that involves trial and error to tune the process noise.

Interactive Multiple Model comprises of different motion models which can anticipate a

lot more circumstances than Kalman filter. In the theis, one of the aims is to make such

an algorithm efficient such that the computation is independent to number of model

used. Therefore, the details of the Interactive Multiple Model Filter and its notations

are provided in this section. The details can be found in [32].

The main difference IMMF compared to a conventional Kalman filter is IMMF use

several possible models for the target’s motion and a probabilistic switching mechanism

govern the usage of these models. In this case, a bank of Kalman filters are operated

in parallel (not in the sense of parallel computing), each of the filter correspond to one

of the models. The information of each of the model would be exchanged or mixed

in each time cycle. As a result, the overall state estimate is a combination of the state

estimates from the individual filters. Consider that there are M models which is given as

m1, ...,mr such that each of the filter would have individual Markov jump-linear system

xt = Amrt xt−1 + wmrt

zt = Hmr
t xt + vmrt (2.11)

Amrt and Hmr
t are the state transition matrix and observation matrix at time t with

model mr. Process noise wmrt and measurement noise vmrt are assumed to be white

Siu Lun Yeung 13

Gaussian noise as well. It is assumed that the target is switched between the models

according to the Markov chain with known transition matrix. This matrix consist of the

probabilities of the transition from one to another where pij is the probability at which

Mi model at time step t is switching over to t+ 1 and i, j = 1, ...,M . Each of the model

has a mode probability µit|t which is updated in every recursion. The IMM recursion at

time t are as follows

1. Mixing probabilities:

The mixing probabilities µ
i|j
t−1|t−1 are given by

µ
i|j
t−1|t−1 =

1

c̄j
pijµ

i
t−1|t−1

c̄j =

M∑
i=1

pijµ
i
t−1|t−1 (2.12)

2. Mixing:

For jth model, the mixed estimate x̂0j and covariance matrix P 0j are given by

x̂0jt−1|t−1 =
M∑
i=1

µ
i|j
t−1|t−1x̂

i
t−1|t−1

P 0j
t−1|t−1 =

M∑
i=1

µ
i|j
t−1|t−1[P

i
t−1|t−1 + eojeoj

T
] (2.13)

where e0j = x̂it−1|t−1 − x̂
0j
t−1|t−1 is the mixed estimate error with each of the ith

filtered estimate

3. Mode-matched filtering:

The usual Kalman filter equation from (2.6) to (2.7) can be used to update the

mixed state estimates and covariance with the received measurement and corre-

sponding motion model

4. Mode probability update:

After the filtering step, the mode probability can also be updated by the following,

µjt|t =
1

c
Λjt c̄j

c =
M∑
j=1

Λjt c̄j (2.14)

where Λjt is the jth mode likelihood

Siu Lun Yeung 14

Model 1 filter

Model 2 filter Estimate

Output
Mixing

Model M filter

xt|t

zt

x1t|t

x2t|t

xMt|t

x01t-1|t-1

x02t-1|t-1

x0Mt-1|t-1

Figure 2.3: IMM Filter loop

5. Estimate:

After the filtering step, the mode probability can also be updated by the following,

x̂t|t =
M∑
i=1

µjt|tx̂t|t

Pt|t =

M∑
i=1

µjt|t[P
j
t|t + ejej

T
] (2.15)

where ej = x̂jt|t − x̂t|t is the estimate error with each of the jth filtered estimate

and final estimate

The full recursive process is described in Figure 2.3

2.1.7 Multi-Target Tracking

Multiple Target Tracking (MTT) problem extends the single target tracking scenario

to a situation where the number of targets may not be known and varies with time,

leading to the presence of measurement origin uncertainty in addition to the target

motion uncertainty. Ideally, the number of measurements at each time step matches

with the number of target presented in the field of view. However, this rarely occur

in practice. This is due to the fact that sensors have their limitations or obstruction

occur and not all targets can be detected. Moreover, false measurements is possible as

unwanted object can be detected because of noise or random signal reflections which

this thesis refer as clutter. Besides, the resolution of the detector may not be ideal and

Siu Lun Yeung 15

so multiple detection can be found on single object. The multi-target tracking problem

can be formulated as follows. Assume at any time index t, there are U number of targets

and V number of measurements. Each of the targets has its own state denoted as xt

and form a set Xt and Zt such that

Xt = [x
(1)
t , ..., x

(U)
t]

Zt = [z
(1)
t , ..., z

(V)
t] (2.16)

The problem of multi-target tracking is to assign each of the measurements to the existing

target (target-oriented) or assign each of the target to measurement (measurement-

oriented).

2.1.7.1 Gating

One of the approaches to solve the MTT problem is to assign label to each of the de-

tected target and remain a target list ad assign new detections to the existing targets

throughout the tracking process. Targets can be added or removed based on the proba-

bility model. Track initialisation is the first issue when it comes to multi-target tracking.

Correct track initialisation can lower the computation due to data association. The pro-

cess of Gating helps deciding if an detection is a probable candidate to be assigned to

existing tracks. In other words, it screens out the false signal such as clutter which can

also lower the computation burden. The region enclosed by the gate, with the predicted

value as center, is called the validation region as shown in Figure 2.4. The following

scenarios might occur when gating is used

1. More than one observation satisfy the gate of a track

2. One observation satisfy more than one gate of the tracks

3. Observation might be used to initiate a track even if it falls inside the gate

4. Observation fall outside of gates and form tentative tracks

To see whether a measurement satisfy the gate limit, the residual vector is defined and

given by

vt = zt −Hx̂t|t−1 (2.17)

The innovation matrix S is the same as (2.7) and given by,

S = HPHT +R (2.18)

Siu Lun Yeung 16

Track 1 Gate

Track 2 Gate

z1

x
1

k+

z4

Figure 2.4: Gating

There is a correlation between the observation and track if the norm of the residual

vector d2 is less than a certain gate threshold G such that,

d2 = vt
TS−1vt ≤ G (2.19)

2.1.7.2 Nearest Neighbour Data association

The simplest way to handle data association is called nearest neighbour method (NN)

which assign the closest measurement to a target after gating is performed. This op-

erations function sequentially and so the solution usually is not globally optimal and

leads to poor tracking result. Consequently, track loss occur and important informa-

tion is loss. A global version of NN is the Global Nearest Neighbour method. Instead

of consider tracks and measurements one by one, it computes all the possible distance

combination and try to find a solution to lower the global distance. In other words,

it consider targets and measurements simultaneously. This GNN approach become a

optimization method which can be handled by algorithm like Auction algorithm and

Hungarian methods. There are other techniques developed to resolve the measurement

Siu Lun Yeung 17

origin uncertainty, such as the Joint Probabilistic Data Association (JPDA) Filter [33],

and the Multiple Hypothesis Tracking (MHT) Filter [28].

2.2 Related Work and Applications

As outlined in earlier part of this chapter, the main objectives of this thesis are to develop

a suite of efficient filtering and smoothing algorithms particularly targeting the real-

time performance. Furthermore, as outlined before, the proposed algorithms are built

on existing developments around Kalman filtering and smoothing algorithms. As both

filtering and smoothing algorithms utilise matrix algebra, such as matrix multiplications

and inversions, the computational complexity of filtering and smoothing algorithms are

dominated by the complexity of relevant matrix operations. More specifically, the order

of computational complexity is often around O(n3) [34] when multiplying two n × n

matrices. Numerous efforts can be found in the literature towards reducing the compu-

tational complexity of filtering and smoothing algorithms. These can be considered in

three different strands, as follows:

� Matrices properties

� Algorithm approximations

� Software and Hardware architecture

The literature around improving computational complexity of matrix algebra is very

rich [35]. As such, exploring the literature around efficient matrix operations is beyond

the focus of this thesis. However, it is worth highlighting the key outcomes of the survey

highlighted here. One of the best performance around matrix-matrix multiplication can

be achieved using efficient matrix operation algorithm such as Strassen’s algorithm [36]

which has complexity O(n2.807). Also one can exploit the sparsity and symmetries

property of matrices to avoid excessive calculations such as Sparse Basic Linear Algebra

Subprograms [37] or Matlab.

Moreover, there have been several efforts for improving the computational cost of Kalman

filtering using algorithm approximation. Friedland introduced a two-stage estimator [14].

The main idea is to separate the computations into two parallel filters, a full-order filter

and the other one handles the augmented state. The computation can be reduced by

using these interconnected Kalman flter. However the performance is not as good as the

regular Kalman filter. There are other approaches that extend this idea such as in [15]

Siu Lun Yeung 18

and in [16], Hsieh and Chen proposed a new version of this two-stage Kalman filter and

is mathematically equivalent as the regular Kalman filter.

Finally, improving the performance of matrix operations through software-hardware co-

design and software optimisation have been the subject of computer and computational

science for several decades [35]. In terms of software and hardware architecture, there

are software packages targeting matrix operations such as [38, 39]. Moreover, with

the recent development of parallel architecture, the multi-sensor multi-target tracking

algorithm can be parallelised and reduce computation time. There are different ways

in parallelising the algorithm. For instance, the operations within the matrices can be

parallelised known as fine-grained parallelism [40]. On the other hand, multiple Kalman

filters can be parallelised as well known as coarse-grained parallelism [41].

Chapter 3

A Parallel Retrodiction

Algorithm for Large-Scale

Multitarget Tracking

3.1 Introduction

Multitarget tracking (MTT) problems arise in a number of different applications such as

surveillance, control, navigation, failure detection and medicine [1–10]. In the context

of surveillance and navigation, the key aim of MTT is to estimate the states of multiple

targets using the measurements returned by sensors, which are inherently noisy. The

fundamental cornerstone of MTT algorithms are state estimation filters [42–45], which

provide a means for obtaining the best possible estimates for the target states, given a

dynamical model to represent the target motion.

In general, the state estimation process works in two stages: prediction and update. In

the first or the prediction stage, the state at the current time step is used to predict the

state at the next time step. This predicted state is then updated (or corrected) using

the measurement obtained at the subsequent time step during the second stage. Among

different filters that can be used for this predict-update process, the Kalman Filter [24]

is a popular basis for handling linear models and non-linear models through necessary

extensions [27, 46, 47]. The key aspect here is that the update is not possible until future

measurements arrive. In cases where a delay in estimation can be tolerated, or where the

estimation is performed for off-line use (i.e. the whole set of measurements are already

available), the estimation accuracy can be improved rather significantly by incorporating

future measurements. This process, known as smoothing or retrodiction [48], produces

much better and cleaner estimates. In fact, the accuracy improves with delay [49, 50],

19

Siu Lun Yeung 20

which is often referred to as the retrodiction window size. As such, the MTT with

retrodiction (MTTR) is an attractive option for producing better state estimates. By

linking MTT with a smoothing algorithm of choice, the overall quality of state estimates

can be improved. Among different smoothing algorithms, such as augmented fixed-

lag smoothing [51, 52], Fraser-Potter smoothing [53], and Rauch-Tung-Striebel (RTS)

smoothing [25], the RTS smoother is one of the most widely used, for being the fastest

fixed-interval smoother [54, 55] and for its simplicity [56]. For example, in [57], the RTS

algorithm is used in conjunction with Multiple Hypothesis Tracking (MHT) and the

Interacting Multiple Model (IMM) algorithm for tracking maneuvering targets. In [58],

fixed interval smoothing for integrated probabilistic data association (IPDA) [59] is

proposed using the RTS smoother. In [60], and [61], the RTS smoother is used for

backward Point Probabilistic Hypothesis Tracking (PPMHT). Given this widespread

adoption of the RTS smoother, it is very common to see the RTS smoother as a backbone

for MTTR algorithms.

As the RTS smoother tends to provide cleaner estimates and better tracking capabil-

ity, it is natural to extend the MTT algorithms with the RTS smoother. However,

the downside of this approach is that the overall process is likely to become compu-

tationally expensive. This is particularly true with increasing number of targets and

smoothing window size. This can potentially limit the approach from being deployed

in applications where real-time performance is required. An obvious approach would

be to parallelize the MTTR algorithms, which essentially boils down to parallelizing

both the MTT and the retrodiction components. The latter task is focused on a well-

contained, single component such as the RTS smoother or the Fraser-Potter smoother.

However, the parallelization of the MTT component requires parallelizing a number of

sub-components, including the Kalman filtering and data association. With the fact that

Kalman filter operations are very matrix-matrix or matrix-vector focused, paralleliza-

tion at the linear algebraic-level operations is very common. For example, for parallel

Kalman filters, some hardware-specific approaches are outlined in [62, 63]. More rel-

evant work includes [64] which reformulates the Kalman filter operations in order to

dismantle the data dependencies. This approach enables the necessary data to fit into a

cache memory achieving a linear speed-up. In [65], a matrix operations library matriplex

is created targeting small-sized matrices so that the operations with single instructions

operating on multiple streams of data (SIMD operations) which can be optimized on

vector processing units. In [66], all matrices in the Kalman filtering algorithm are trans-

formed into a banded form achieving a linear speed-up with an increasing number of

cores. In addition to these, a number of parallel MTT approaches have been proposed.

For example, a parallelization scheme for IMM tracking is suggested in [67]. These are

often integrated with the assignment component. For example, a coarse-grained parallel

Siu Lun Yeung 21

m-best S-dimensional assignment algorithm is proposed in [68]. A similar scheduling

algorithm for the IMM-assignment problem is proposed in [69] utilizing the task-level

parallelization. Moreover, a comparison of sequential and parallel implementations of

a multi-sensor multi-target JPDA tracking algorithm has been studied in [70]. It is

reported that the complexity of the parallel approach has an exponential relationship

with the number of sensors, whilst the serial (non-parallelized) method has a linear re-

lationship. Hence, simply parallelizing the association algorithms alone does not always

yield performance gain [69].

With a number of approaches to parallelize different components, as outlined above, it

is possible to integrate these different parallel solutions to formulate a fully parallelized

MTTR solution. However, such an approach can only offer sub-optimal benefits. There

are several reasons for this. More specifically, the parallelization of the RTS smoother

is a challenging problem, predominantly due to the dependencies between computations

within the RTS smoother. These dependencies limit the scope for parallelization, despite

having sufficient parallel resources. As such, despite the fact that MTT aspects are

parallelizable, the sequential nature of the RTS smoother can severely limit the overall

performance due to Amdahl’s Law [71]. Secondly, the parallelization must be aimed at

all levels of granularity [72], as opposed to aiming for only the fine-grained parallelism.

Such an approach for parallelization is likely to bring more tangible benefits than either

coarse or fine-grained parallelism alone.

In this chapter, this thesis aims to address this problem of offering a truly parallel MTTR

solution, particularly that leverages RTS smoothing. By refining and reformulating the

underlying mathematical framework for RTS smoothing, this thesis derive a parallel

retrodiction algorithm. This thesis then apply this algorithm, along with the parallelized

components of MTT, to offer a unified solution for handling large-scale multitarget

tracking with retrodiction. A thorough evaluation of the proposed algorithms under

various conditions show that they offers substantial performance improvements over

various previously proposed methods, and can truly handle the issues associated with

large-scale target tracking. The key contributions of this chapter are:

� Reformulation of the Parallelized RTS Smoother: By carefully refining and

reformulating the underlying mathematical framework for the RTS smoother, this

thesis derive an easily parallelizable RTS smoother. In particular, the proposed

smoother algorithm offers a O(logN) complexity (as opposed to O(N)) upon par-

allelization. Furthermore, the proposed algorithm offers significant reduction on

the overall number of Floating Point Operations (FLOPs) performed during the

smoothing process;

Siu Lun Yeung 22

� Data Reuse: Redundant and repeated computations often waste computational

resources and directly reflect on the overall performance.This thesis propose an

approach for reducing the redundant computations through extensive re-use of

previously computed results for the RTS smoothing process. The benefit of this

approach is directly evidenced by the significantly reduced number of FLOPs, and

better runtime performance;

� Nested Parallelism: With a finite set of computational resources, such as par-

allel threads, it is always a challenge to understand the best practices for the

best utilization of parallel resources. Using OpenMP as the underlying model,

this thesis show how the overall MTTR problem can be treated as a hierarchical

parallelization problem. To this end, this thesis introduce the notion of nested

parallelism into the MTTR problem. With this in place, this thesis show how the

parallel resources can be mapped between the tracking and smoothing aspects so

as to maximize the overall performance;

3.2 Approach to Parallelized Multitarget Tracking with

Retrodiction

In order to render an MTTR system based on RTS smoothing, the Kalman filter, al-

gorithms for gating and measurement-to-track association and the RTS algorithm have

to be parallelized. These will be covered in the section that follows this. However, any

effort in parallelizing these combination of algorithms will have to account for the hard-

ware platform on which the parallelization will be based upon. The exact choice of a

hardware platform for parallelizing these algorithms may vary depending on the volume

of the data being processed and on the amount of computation-to-communication ratio.

Potential options are graphical processing units (GPUs), modern multi-core processors,

multi-node clusters and / or a combination of these. In all these platforms, the physical

unit that offers the resources for parallelism is a set of computational cores. For instance,

the current generation of GPUs (Volta generation) can offer up to 2560 lightweight cores

while the current multi-core processors may offer up to 64 heavy-weight physical cores.

Lightweight and heavyweight cores refer to the mechanics of a multi-processing system.

Heavyweight cores mean it needs more processing power to undergo parallel computing

while lightweight cores can carry out such a process more easily. While the GPUs offer

very lightweight cores with tightly-coupled lock-step-fashioned processing capability, the

latter offers substantial processing capability with very good autonomy between cores.

The cluster system, can integrate a number of GPUs or CPUs or both to provide a net-

work of computational resources so as to provide scalability up to hundreds of thousands

Siu Lun Yeung 23

of cores. The important aspect here is that the core count does not directly translate

to automatic performance benefits. The exact performance improvement resulting from

these platforms depends on several factors, such as:

� capability of the computational cores;

� autonomy between computational cores;

� method of interconnection between cores and the main processing unit of the

system; and

� the underlying programming model and the associated complexity of the model

for using these cores.

With these in place, a number of aspects have to be weighed in to decide the exact

cost-benefit aspects of any platform. For instance, despite offering a very large core

count, GPU cores are very lightweight. As such, the basic executing unit (known as

thread or process) on GPUs can only handle a limited set of operations. On the other

hand, cores from multi-core CPUs are capable of performing more complex operations.

Furthermore, GPUs are an add-on device to a system (also known as accelerators) and

hence, they are not part of the main system. As such, computations on GPUs have to

be off-loaded along with the data on which the computation has to be performed. In

contrast, CPUs are a core unit of any system. As such, no off-loading process takes place

when running applications on multi-core CPUs. This directly translates to a prerequisite

of computation-to-communication (C2C) ratio [73]. The C2C ratio mandates that the

time savings from the computations should offset the time spent on data movements.

Although different algorithms may exhibit different C2C ratios, with GPUs and a cluster

of nodes, the communication time of algorithms becomes significant compared to the

multi-core algorithms. To this end, the C2C ratio for MTTR algorithms is often low,

given that measurements and state-vectors are small in size. In order to eliminate the

extra communication, this thesis is primarily focused on the multi-core parallelization,

which this thesis refer to as shared-memory parallelism, where a number of cores (pro-

cessors) share a single memory and the data movements are between the processor and

the main memory.

The exact programming model this thesis use to exemplify the proposed approach for

parallelization is multi-threaded programing, namely the OpenMP model [74]. The

basic mechanism of the OpenMP approach is that the application starts off with a

single thread, running on a single core (known as the master thread), and this master

thread can fork out a number of threads as required. The exact number of threads that

the master thread decides to fork out may be controlled as required, by the algorithm

Siu Lun Yeung 24

developer. The ratio between the number of threads and the number of physical cores

is known as the subscription ratio. A subscription ratio of one indicates that a core

runs a single thread. Modern hardware platforms, such as Intel Knights Landing or

Skylake Processors [75] directly support the subscription radio of four, meaning that

each core can easily handle four threads at any given time, without noticing any delays.

Although higher values can be used, such an effort will lead to sub-optimal outcomes.

In this chapter, by using one of the latest, state-of-the-art multi-core processors, Intel

processor Knights Landing (KNL) [75] as the target architecture, this thesis demonstrate

the performance benefits of the proposed approach. The KNL processor, has 64 heavy-

weight cores, each capable of supporting a subscription ratio of four, leading to 256

threads at a time.

The next stage of parallelization is to decide where to dedicate these parallel resources

(threads). This thesis proposes the following different design possibilities:

� Parallelism across Targets: In this case, each thread can be assigned to take

care of a target, and a number of threads are assigned to a number of targets. In

fact, owing to the latencies in measurements between targets, a single thread can

be assigned to handle multiple targets at the same time. However, the downside

of this approach is that a single thread has to handle the Kalman filtering, gating

and association, and the retrodiction process. However, as will be seen later, both

the filtering and the retrodiction processes are fully matrix-based, which is highly

parallelizable using threads. As such, although the parallelism exists at the target

tracking level, the filtering and retrodiction are highly sequential. This thesis refer

to this approach as parallel tracking, sequential RTS (PT, SRTS);

� Parallelism across Targets and Operations: As the filtering and retrodiction

processes are parallelizable themselves, another approach would be allocate the

threads between two aspects: between targets and between filtering / retrodiction

processes. However, the exact allocation of threads between the number of targets

and matrix operations is very subjective. This thesis refer to this scheme as Parallel

Tracking, Parallel RTS (PT, PRTS).

3.3 Parallelization of Components for MTTR

In this section, this thesis cover the computational and parallelization aspects of the

Kalman filter, gating and measurement-to-track association and retrodiction. The par-

allelization of the Kalman filter is a well explored area, and more details can be found

Siu Lun Yeung 25

in [63, 66, 67, 76, 77]. In discussing this aspect here, this thesis give a special emphasis

on the computational aspects of the Kalman filter.

3.3.1 Parallelization of the Kalman Filter

The parallelization efforts for the Kalman filter are primarily focused on the under-

pinning matrix-matrix, and matrix-vector operations (collectively referred to as Basic

Linear Algebra Subroutines or BLAS) [38] within the Kalman filter. Let ns be the

number of states and nm be the size of the measurement vector. Using the standard

notation for matrices and vectors in the Kalman filter [24], this thesis show all the

BLAS operations of the Kalman filter, required within a single iteration (time step k),

in Table 3.1, where k = 0, ...,K. This thesis also indicate the exact number of FLOPs re-

quired for performing each of these BLAS operations, with the acronyms MVM, MMM,

MMA, VVA, and MI denoting matrix-vector multiplication, matrix-matrix multiplica-

tion, matrix-matrix addition (or subtraction), vector-vector addition (subtraction) and

matrix inverse, respectively. In summary, a single iteration of the Kalman filter will

require the following:

� eight matrix-matrix multiplications;

� three matrix-vector multiplications;

� three matrix additions (subtractions);

� two vector additions (subtractions);

� three matrix transpose operations; and

� one matrix inversion.

The matrix-matrix multiplication of Hk+1Pk+1 is repeated across two stages of the

Kalman filter (covariance estimation and computing the innovation matrix). It is worth

noting that these matrices remain invariant between these computations. As such, the

result for the Hk+1Pk+1 computation can be re-used without recomputing and hence

this reduces the total number of matrix-matrix multiplications to seven. Although there

are three matrix transpositions, they can easily be avoided by the right indexing of the

matrix (row-order as opposed to column-order or vice versa). As the state matrices

are significantly smaller than cache-line capacities, this does not cause any performance

issues. Hence, there are a total of 18 operations for a single iteration of KF. In general,

matrix-matrix multiplication is an operation with the cubic complexity. Although it is

possible to seek sub-cubic algorithms, such as Strassen [36] or Coppersmith–Winograd

Siu Lun Yeung 26

Table 3.1: Operational Complexity of the Kalman Filter.

Operation FLOP count Operation

State Prediction:

1. xk+1|k = Akxk|k 2ns
2 − ns MVM

Covariance Prediction:

2. AkPk|k 2ns
3 − ns2 MMM

3. AkPk|kA
T
k 2ns

3 − ns2 MMM

4. Pk+1|k = AkPk|kA
T
k +Qk ns

2 MMA

Measurement Prediction:
5. zk+1|k = Hk+1xk+1|k 2nsnm − nm MVM

6. ẑk+1|k = zk+1 − zk+1|k nm VVA

Innovation Covariance:

7. Hk+1Pk+1|k 2nmns
2 − nsnm MMM

8. Hk+1Pk+1|kH
T
k+1 2nsnm

2 − nm2 MMM

9. Sk+1 = Hk+1Pk+1|kH
T
k+1 + Rk+1 nm

2 MMA

Kalman Gain:

10. Pk+1|kH
T
k+1 2ns

2nm − nsnm MMM

11. S−1
k+1

≈ nm3 MI

12. Wk+1 = Pk+1|kH
T
k+1S

−1
k+1

2nsnm
2 − nsnm MMM

State Update:
13. Wk+1ẑk+1|k 2nsnm − ns MVM

14. x̂k+1|k+1 = xk+1|k +Wk+1ẑk+1|k ns VVA

Covariance Update:

15. Wk+1Hk+1 2ns
2nm − ns2 MMM

16. Wk+1Hk+1Pk+1 2ns
3 − ns2 MMM

17. Pk+1|k+1 = Pk+1|k −Wk+1Hk+1Pk+1 n2
s MMA

algorithms [78], not only are they very complex to implement, but maintaining their

numerical stabilities is also a separate task in itself [79]. More details can be found in

Section 2.2. For these reasons, they are seldom used, and hence this thesis seek only the

standard (yet optimized) implementation here. As such, the overall runtime complexity

of the Kalman filter is the sum of all operations shown in Table 3.1, which in turn influ-

ences the overall runtime performance [80]. However, the total runtime complexity can

be approximated by the dominating runtime complexity. The total number of FLOPs

in the Kalman filter is:

6ns
3 + 6nmns

2 + 4nsn
2
m + n3m + nsnm − ns (3.1)

where the dominant term, namely 6ns
3, decides the overall runtime complexity to be

approximated to O(ns
3). With this, the computational complexity of the Kalman filter

will increase in a cubic manner as the dimensions and / or the states increase.

Siu Lun Yeung 27

Table 3.2: Operational Complexity of the RTS smoother

Operation FLOPs BLAS Operation

Smoother gain:

Pi|iA
T
i 2ns

3 − ns2 MMM

P−1
i+1|i ≈ ns3 MI

Ci = Pi|iA
T
i P
−1
i+1|i 2ns

3 − ns2 MMM

Smoothed state:
x̂i+1|N − x̂i+1|i ns VVA

Ci(x̂i+1|N − x̂i+1|i) 2ns
2 − ns MVM

xi|N = x̂i+1|i + Ci(x̂i+1|N − x̂i+1|i) ns VVA

Smoothed covariance:

Pi+1|N − Pi+1|i ns
2 MMA

Ci(Pi+1|N − Pi+1|i) 2ns
3 − ns2 MMM

Ci(Pi+1|N − Pi+1|i)C
T
i 2ns

3 − ns2 MMM

Pi|i + Ci(Pi+1|N − Pi+1|i)C
T
i ns

2 MMA

3.3.2 Retrodiction

As mentioned in Section 3.1, there are a number of smoothing algorithms that can

fit within the scope of MTTR. This chapter focus on the most widely adopted RTS

smoother [25], also known as a two-pass smoother. In the first (or forward) pass, the

estimate of the states and corresponding covariance are recursively computed. In the

second (or backward) pass, the smoothed states are computed. The details of the RTS

smoother has been presented in Section 2.1.4. It is often the case that the smoothing

process is incorporated as part of the Kalman filtering. In other words, in every iteration

of the KF, the smoother algorithm will iterate through N data points for deriving

smoothed estimates. This increases the computational intensity of the overall MTTR

algorithm. Table 3.2 shows the the BLAS operations and the number FLOPs associated

with the RTS retrodiction algorithm.

The total number of FLOPs for the RTS smoothing algorithm with the window size of

N , is thus, N(9ns
3 + ns). The computational complexity of the retrodiction algorithm

can be approximated by the dominating term O(n3s). However, noting that the size of ns

is usually smaller than N implies that the dominating complexity term can be affected

linearly with N so that the overall complexity is O(Nn3s).

3.3.3 Measurement-to-Track Association

An MTT system tracks multiple targets using a set of measurements generated by one

or more sensors. This is performed by carefully maintaining the state of tracks assigned

Siu Lun Yeung 28

to each target. In this context, during a single scan, a number of measurements are re-

turned from the sensor which must be associated to either existing tracks or new tracks

to be created. There are a large number of algorithms for measurement-to-track asso-

ciation, each offering a different capability and performance. As such, the exact data

association algorithm to be used depends on a number of factors [33, 81, 82], such as

accuracy and speed. In this chapter, in order to demonstrate the approach while attain-

ing real-time performance, this thesis choose the Nearest Neighbor (NN) [28] algorithm

as the underlying algorithm for measurement-to-track association. However, this can

be replaced with another association algorithm as needed, subject to the parallelization

efforts towards the chosen algorithm. With a diverse set of association algorithms, it is

challenging to present a generic parallelized approach for association without going be-

yond the scope of this chapter — parallel retrodiction. The approximated computational

complexity would be O(n3) as matrix operations are involved.

In terms of nearest neighbor data assocation, let there be Mt measurements and Bt

targets at the t-th time-step. Table 3.3 shows the BLAS operations, and the number of

FLOPs for each measurement j returned during the t-th time-step. In other words, these

operations are repeated Mt times such that j = 0, . . . ,Mt − 1 to find the observation

that has the closest distance to the predicted state. For simplicity, the measurement

covariance Rt+1 is considered the same for all measurements.

3.3.4 Computational Complexity of MTTR

The overall computational complexity of the MTTR pipeline is the sum of individual

complexities. However, asymptotically, only the dominating components of the com-

plexity matters. If assumed that the Mt and Bt remains almost constant, i.e. M = Mt

and B = Bt, the total number of FLOPs for the MTTR pipeline (covering KF, RTS

smoothing and association) can be approximated to:

B[(9N + 6)ns
3 + 6nmns

2 + (4n2m +N)ns + n3m

+nsnm − ns +M(2nm
2 + 2nm − 1)]

(3.2)

The dominating component of the computational complexity for measurement-to-track

association is O(n2m). Hence, the overall computational complexity for the MTTR is

still O(BNns
3).

Siu Lun Yeung 29

Table 3.3: Operational Complexity of the NN

Operation FLOPs BLAS Operation

Nearest Neighbor:
1. vt+1,j = zt+1,j − zt+1|t M(nm) VVA

2. vTt+1,jS
−1
t+1 M(2nm

2 − nm) MVM

3. d2
j = vTt+1,jS

−1
t+1vt+1,j M(2nm − 1) MVM

3.4 Parallel RTS Retrodiction

There have been attempts in the past to parallelize the retrodiction process, particularly

the RTS smoother [83, 84]. In [83], the RTS smoother is combined with the Mayne-Fraser

two-filter smoother [85] to form an approach for parallel smoothing. Their approach

is to partition the target smoothing window into sub-intervals, and perform parallel

smoothing on each of those sub-intervals before combining them. More specifically,

their algorithm consists of three steps. In the first step, the interval to be smoothed

is partitioned into a number of sub-intervals, and each sub-interval is further divided

into two halves so that right half of the interval will be forward filtered while the left

half of the interval is backward smoothed. This is done in parallel, and across all

intervals with little or no communication. Then at the point where a forward filter and a

backward smoother from two adjacent sub-intervals meet, they employ the Mayne-Fraser

smoother [85] to obtain the smoothed estimate of the common point. In the third, and

final stage, two separate RTS smoothers will be used (one forward and backward), in

parallel, to calculate the smoothed estimate of each point within sub-intervals. Although

this approach is different to earlier approaches, the smoothing is done in two stages: local

smoothing and global smoothing.

Algorithm 1 RTS Fixed-Interval Smoother - Naive Version (Sequential).

1: for k=0; k<K; k++ do
2: . Forward Pass: Kalman Filter and NN
3: [Pk+1|k+1, Pk+1|k, x̂k+1|k+1, x̂k+1|k] =
4: KF [x̂k|k, Pk|k]
5: . Backward Pass: Sequential RTS Smoothing
6: for i=N-1; i>=0; i-- do
7: Ci ← Pi|iF

TP−1i+1|i
8: x̂i|N ← x̂i|i + Ci(x̂i+1|N − x̂i+1|i)

9: Pi|N ← Pi|i + Ci(Pi+1|N − Pi+1|i)C
T
i

10: x̂i+1|N ← x̂i|N
11: Pi+1|N ← Pi|N
12: end for
13: end for

Siu Lun Yeung 30

In contrast, the algorithm proposed in this chapter is significantly different in many as-

pects. First, the proposed parallel algorithm does not require local and global smoothing.

Secondly, this thesis exploit the operational characteristics of prefix sum [86] to build

a reduction tree, which can be realized efficiently on a parallel system, to find the final

smoothed estimate. As will be demonstrated below, this approach is more straight-

forward to implement and efficient enough to achieve a much reduced computational

complexity. Let N be the window size of the smoother, such that i = 0, 1, . . . , N − 1.

With this notion, the basic, sequential, naive version of the RTS fixed-interval smoother,

for a single target, is presented in Algorithm 1. This thesis refer to this version as the

sequential RTS smoother (SRTS) in the following sections.

3.4.1 Enabling the Parallelization of the RTS Smoother

The basic requirement for parallelizing two statements or computations in an algorithm

is that both of them are independent of each other. In other words, one of these computa-

tions should not rely on the result of the other, which this thesis refer to as dependencies.

The original version of the RTS smoother presented in Algorithm 1 has a number of de-

pendencies between computations, that inhibit straightforward parallelization. These

are:

� Loop-Carried Dependencies: There are dependencies that are carried by the

inner loop (for i=). More specifically, computations towards x̂i+1|N and Pi+1|N

depend on the result from the previous iteration, for any value of i.

� Intra-Loop Dependencies: One or more computations within the inner-loop

are coupled to the results from preceding statements (from the same iteration of

the loop). For instance, when considering the computations in statements 7–11,

there are a number of dependencies (Statements 8 and 9 depend on 7; 10 on 8; 11

on 9 and alike).

These two dependencies prevent both the loop (for k) and the statements within the

loop from being parallelized. There is no direct approach to handle this problem. To

reveal the potential opportunity for parallelization, this thesis unroll the inner loop.

To reveal the parallelism, consider Equation 2.8, where the state estimates, x̂i+1|N , are

performed recursively. Let bi be:

bi = x̂i|i − Cix̂i+1|i (3.3)

Siu Lun Yeung 31

For a window size of N , the first iteration of the RTS smoother should provide:

x̂N−1|N = x̂N−1|N−1 + CN−1(x̂N |N − x̂N |N−1)

= bN−1 + CN−1x̂N |N (3.4)

The second iteration should lead to:

x̂N−2|N = x̂N−2|N−2 + CN−2(x̂N−1|N − x̂N−1|N−2)

= x̂N−2|N−2

+ CN−2

(
(bN−1 + CN−1x̂N |N)− x̂N−1|N−2

)
= x̂N−2|N−2 − CN−2x̂N−1|N−2 + CN−2bN−1

+ CN−2CN−1x̂N |N

= bN−2 + CN−2bN−1 + CN−2CN−1x̂N |N (3.5)

Going through the last (N -th) iteration should render the following expression:

x̂0|N = (b0 + C0b1) + (C0C1)(b2 + C2b3) +

[C0C1C2C3]

[(b4 + C4b5) + (C4C5)(b6 + C6b7)] +

. . .

(C0C1 . . . CN−2CN−1)x̂N |N (3.6)

Equation 3.6 shows no obvious recursive nature or dependencies between the terms of

the equation. Therefore, each of them can be processed independently. A closer look

at the same equation may appear to have an implicit dependency. For instance, it may

be misinterpreted that the computation of C0C1 . . . Ci has a loop-carried dependency.

However, although it is true that to compute Ci (for some i), all terms up to Ci−1

are needed, these terms can be computed during Kalman filtering (Statement 3), and

hence these terms can be precomputed. A similar argument can be put forward towards

computing the terms bi. More specifically, although the individual terms are available

as part of the Kalman filter iteration, the overall terms of the form

αq = αq−1 ⊕ βxq (3.7)

for q = 0, 1, . . . , n ∈ N and for some operator ⊕ (multiply, divide, plus or minus), tend to

indicate that there are dependencies. However, Equation 3.7 is in fact a known pattern

of parallelism, which can be parallelized across a number of communicating processors

Siu Lun Yeung 32

by divide-and-conquer [87–89], which will be discussed in the section that follows this.

With this pattern being exploited, by eliminating the dependency issues contained in the

inner loop by unrolling, and by back-substituting the smoother gains in each iteration

of the retrodiction, the smoothing operation can be parallelized.

The smoothed covariance, Pi|N , is useful for assessing the performance of a smoother.

However, it is an auxiliary data that does not provide any state-specific information. As

such, it is generally ignored by smoothers. However, there are association algorithms,

for example [58], that require the smoothed covariance for better data association. In

such circumstances, parallelization of the smoother without having an approach for

parallelizing the smoothed covariance is less appealing. To overcome this issue, this

thesis also present the parallelization of smoothed covariance. Let Di be:

Di = Pi|i − CiPi+1|iC
T
i (3.8)

For the smoother of window size N , the smoothed covariance at the first iteration will

be:

PN−1|N = PN−1|N−1 + CN−1(PN |N − PN |N−1)CTN−1
= DN−1 + CN−1PN |NC

T
N−1 (3.9)

By successively back-substituting corresponding values of Dk, at the last iteration,

P0|N = (D0 + C0D0C
T
0)

+ (C0C1)(D2 + C2D3C
T
2)(C0C1)

T

+ [C0C1C2C3][(D4 + C4D5C
T
4) + (C4C5)(D6

+ C6D7C
T
6)(CT5 C

T
4)][C3C2C1C0]

T

. . .

+ [C0...CN−1]PN |N [CN−1...C0]
T

(3.10)

The smoothed covariance can also be computed in parallel, similar to that of Equa-

tion 3.7, given that the values of Di can be precomputed and the compositions of the

smoothed covariance P0|N can be processed independently. And hence, any dependen-

cies within the RTS smoother towards computing the smoothed states and the smoothed

covariance matrices have fully been eliminated. As such, the RTS smoother is ready to

be parallelized. This thesis outline this approach in the next section.

Siu Lun Yeung 33

Figure 3.1: Reduction on n elements using p processors using the Binary Tree.

3.4.2 Parallelizing the RTS Smoothing with the Prefix-Sum Algorithm

The aim of Equation 3.7 is to sum a numbers of vectors together to obtain a final

vector sum which can be represented as in Figure 3.1. Suppose there are 8 elements or

vectors in the beginning as shown in the Figure. 4 processors are used to add elements

according to the tree and produce 4 vectors. Then, 2 processors will be used to produce 2

vectors which subsequently produce the final vector sum without explicit communication

between cores in each stage. In general, this vector sum problem can be represented in

the following summation sequence,

y =
n∑
i=0

yi (3.11)

for i = 0, . . . , e where e is the number of vectors and p is the number of processors. With

p(< e) processors in the system, each will have e
p partition of the vector y. Thus, each

processor can sum the e
p section of the vector y without any communication with any of

the other processors. Once this is done, each processor can pair-up with another, to sum

up their local partitions, and this can be repeated. In other words, the overall reduction

operation can be performed using a binary tree as shown in Figure 3.1. Hence, the

reduction operation can be performed in parallel simply by using p = n/2 processors.

More specifically, there will be log n operations. This relies on the fact that the reduction

operation is associative. This is referred to as up-sweep.

In this case, the operands of the prefix operations are not primitive types. Instead,

they themselves are vectors and matrices. This renders the operation non-associative as

for primitive types. Hence, retaining the order of operations is essential for delivering

numerically correct results. As discussed in the previous section, the values for bi, Ci and

Di can be computed during the KF process for all values of i = 0, . . . , N−1. With this in

Siu Lun Yeung 34

Figure 3.2: Prefix-Sum on bi, Ci, Di.

place, Figure 3.2 shows the prefix operation for this context, where x ∈ X = {b, C,D}.
The exact operation (whether product or sum) varies depending on the operand. More

specifically, this thesis modify values in-place, implying that when any of x is updated,

this thesis update the current value with the new value. The values of x can be updated

in any of the levels in the binary tree. To distinguish the updated value from the original

value, this thesis denote the updated value as xd∗, where d represents the level at which

the value was last updated. For instance, C2∗
i or C∗∗i indicates that Ci has been last

updated in the second level of the reduction process. More specifically, in the example

shown in Figure 3.2,

C∗i = CiCi+1 (3.12)

C∗∗i = C∗i C
∗
i+2 (3.13)

C∗∗∗i = C∗∗i C
∗∗
i+4 (3.14)

for updates at levels d1, d2 and d3. Similarly, the updates for bi at the same levels are:

b∗i = bi + Cibi+1 (3.15)

b∗∗i = b∗i + C∗i b
∗
i+2 (3.16)

b∗∗∗i = b∗∗i + C∗∗i b
∗∗
i+4 (3.17)

With these, Equation 3.6 can now be re-written as

x̂0|N = b∗0 + C∗0b
∗
2 + C∗∗0 (b∗4 + C∗4b

∗
6) + C∗∗∗0 x̂8|N

= b∗∗0 + C∗∗0 b
∗∗
4 + C∗∗∗0 x̂8|N

= b∗∗∗0 + C∗∗∗0 x̂8|N (3.18)

Siu Lun Yeung 35

Along the same argument, let C
′d∗
i represent the in-place updated smoothed covariance

Pi|N . That is, C
′∗
i = Ci+1 ⊕ Ci. Note that the order of operands is different to that of

the above to preserve the correctness of the operation. With this, updates of the Pi|N

and Di at levels d1, d2 and d3 become,

C
′∗
i = Ci+1Ci (3.19)

C
′∗∗
i = C

′∗
i+2C

′∗
i (3.20)

C
′∗∗∗
i = C

′∗∗
i+4C

′∗∗
i (3.21)

and

D∗i = Di + CiDi+1C
T
i (3.22)

D∗∗i = D∗i + C∗iD
∗
i+2C

′∗T
i (3.23)

D∗∗∗i = D∗∗i + C∗∗i D
∗∗
i+4C

′∗∗T
i (3.24)

With these, Equation 3.10 can now be re-written as:

P0|N = D∗0 + C∗0D
∗
2C
′∗T
0 + C∗∗0 (D∗4 + C∗4D

∗
6)C

′∗∗T
0

+ C∗∗∗0 P8|NC
′∗∗∗T
0

= D∗∗0 + C∗∗0 D
∗∗
4 C

′∗∗T
0 + C∗∗∗0 P8|NC

′∗∗∗T
0

= D∗∗∗0 + C∗∗∗0 P8|NC
′∗∗∗T
0 (3.25)

In summary, Equations 3.18 and 3.25 can be evaluated in parallel using p processors

provided that the necessary values have been precomputed during the Kalman filtering

process. In the next section, this thesis outline the aspect of data-reuse, which aims to

eliminate unnecessary pre-computations during Kalman filtering.

3.4.3 Data Reuse and Performance

The parallelization of the RTS smoothing algorithm relies on the fact that certain values

have been pre-computed during the Kalman filtering and are available prior to paral-

lelization. Although pre-computing the values of Pi|i, x̂i|i, xi+1|i and P−1i+1|i is trivial, the

availability of these values can only be guaranteed by storing them in a data structure

for later consumption. This leads to re-calculation of Ci from Equation 2.9 in every

iteration of the smoother. In [26], it has been reported that the calculation of Ci can be

reused. However, the idea of data reuse is extended in this chapter to the terms bi and

Di. A much better approach is derived here to store the computed results of bi, Ci and

Siu Lun Yeung 36

Di which can drastically reduce the number of redundant operations. This approach is,

however, valid when no individual values are required for any other purposes or no re-

constructed values are needed at latter stage. In the case of a smoother, this is very true.

The sequential RTS smoothing algorithm with data reuse is shown in Algorithm 2. With

this, the proposed algorithm for time index k = 0, ...,K is presented in Algorithm 3. The

algorithm uses an auxiliary function genericRTS for handling non-power-of-two window

sizes. A detailed analysis of this algorithm is performed in the following sub-sections.

Algorithm 2 RTS Fixed Interval Smoother - With Data Reuse (Sequential)

1: for k=0; k<K; k++ do
2: . Forward Pass: Kalman Filter and NN
3: [Pk+1|k+1, Pk+1|k, x̂k+1|k+1, x̂k+1|k] =
4: KF [x̂k|k, Pk|k]

5: Ck ← Pk|kA
TP−1k+1|k

6: bk ← x̂k|k − Ckx̂k+1|N
7: Dk ← Pk|k − CkPk+1|kC

T
k

8: . Backward Pass: Sequential RTS Smoothing
9: for i=N-1; i>=0; i-- do

10: x̂i|N ← bi + Cix̂i+1|N
11: Pi|N ← Di + CiPi+1|NC

T
i

12: x̂i+1|N ← x̂i|N
13: Pi+1|N ← Pi|N
14: end for
15: end for

3.4.4 Complexity of the Proposed Parallel RTS Algorithm

Since the performance gains from the proposed algorithm stems from both the paral-

lelization and from extensive data re-use, this thesis compare their FLOP counts. For

a single target tracking scenario with a window size of N , the number of FLOPs of

the sequential RTS smoother with data re-use embedded is shown in Table 3.4. The

approximate total number of FLOPs is:

(4N + 9)ns
3 − 2ns

2 (3.26)

It can be seen that the overall computational complexity is still approximately O(Nns
3).

After leveraging the reuse of previous results, the RTS smoother can be parallelized to

yield additional performance gain. The number of FLOPs for the parallelized RTS

smoothing algorithm (including the data reuse) is shown in Table 3.5. From this, the

approximate number of total FLOPs is:

(13 + 6 logN)ns
3 + ns

2 − ns (3.27)

Siu Lun Yeung 37

Algorithm 3 RTS Fixed Interval Smoother -
Proposed Parallelized Algorithm.

1: for k=0; k<K; k++ do
2: Each index h will be executed in parallel
3: for h=0; h<T; h++ do
4: . Forward Pass: Kalman Filter and NN
5: . Parallelized Backward Pass: RTS Smoothing
6: if N is power of 2 then
7: for e=0; e< logN; e++ do
8: q ← 2logN−e

9: s← N/q
10: Each index p will be executed in parallel
11: for p=0; p < q/2; p++ do
12: up,h ← p× s× 2
13: wp,h ← s+ up,h
14: Dk,up,h ← Dk,up,h+

15: Ck,up,hDk,wp,hC
′T
k,up,h

16: C
′
k,up,h

← Ck,wp,hCk,up,h
17: bk,up,h ← bk,up,h + Ck,up,hbk,wp,h
18: Ck,up,h ← Ck,up,hCk,wp,h
19: end for
20: end for
21: x̂0|N,h ← bk,h,0 + Ck,h,0x̂k+1|N,h
22: P0|N,h ← Dk,h,0 + Ck,h,0Pk+1|N,hC

′T
k,h,0

23: else
24: [x̂0|N,h, P0|N,h]←
25: genericRTS(bk,h, Ck,h, Dk,h)
26: end if
27: end for
28: end for

The overall computational complexity is approximately O(logNns
3). Here, the logN

term signifies the reduction operation. By comparing the sequential RTS smoother

(SRTS), sequential RTS smoother with data reuse (SRTS-DR) and parallel RTS smoother

with data reuse (PRTS-DR), a number of observations can be drawn. Most importantly,

1. A large number of computational aspects have been parallelized. More specifically,

computations at line 6 of Algorithm 1 (the calculations of Ci) are hoisted within

the Kalman filtering and saved up sequentially during the forward sweep for re-use.

The same is applicable to bi and Di.

2. The new algorithm offers a substantial reduction in the number of equivalent

FLOPs, and this reduction increases with the window size N . Let FSN and FPN

be the overall number of FLOPS in the sequential and parallel version of the RTS

smoother. The theoretical gain g in terms of FLOPs by parallelization is given by

Siu Lun Yeung 38

Table 3.4: Computational Complexity of the Proposed RTS Smoothing Algorithm
with Data Reuse.

Operation Equivalent FLOP BLAS Operation

Smoother gain Ck:

Pk|kA
T
k 2ns

3 − ns2 MMM

P−1
k+1|k ≈ ns3 MI

Ck = Pk|kA
T
k P
−1
k+1|k 2ns

3 − ns2 MMM

Calculation of bk:

Ckx̂k+1|k 2ns
2 − ns MVM

bk = x̂k|k − Ckx̂k+1|k ns VVA

Calculation of Dk:

CkPk+1|k 2ns
3 − ns2 MMM

CkPk+1|kC
T
k 2ns

3 − ns2 MMM

Dk = Pk|k + CkPk+1|kC
T
k ns

2 MMA

Sequential RTS Smoothing with Data Reuse
Repeat N times

Cix̂i+1|N 2ns
2 − ns MVM

x̂i|N = bi + Cix̂i+1|N ns VVA

CiPi+1|N 2ns
3 − ns2 MMM

CiPi+1|NC
T
i 2ns

3 − ns2 MMM

Pi|N = Di + CiPi+1|NC
T
i ns

2 MMA

gF =
FSN
FPN

3. In order to parallelize and exploit the data reuse within the algorithm, additional

steps are needed. Therefore, for low window sizes, SRTS, SRTS-DR and PRTS-

DR may not show any relative benefits. For instance, for N = 1, the FLOP

count for SRTS, SRTS-DR and PRTS-DR are 1950, 2736 and 2838, respectively.

However, as N increases, the benefit of SRTS-DR and PRTS-DR can be visualized,

particularly for problems with a large number of states, as shown in Figure 3.3.

The speed-ups of different RTS smoother versions are shown in Figure 3.4. It can

be observed that both parallelization and extensive data reuse result in substantial

performance gains. As the window size, N , increases, the gains become much more

significant, which will also be demonstrated in Section 3.5. Also, a graph of window

size of 8 and 64 is plotted in Figure 3.5 to show the speed-up of algorithm when

the number of states change. It shows that number of states is independent to

speed-up of algorithm.

4. The overall FLOP count can further reduced by combining the filtering and measurement-

to-track association, if desired. If this is performed, the overall number of FLOPs

Siu Lun Yeung 39

Table 3.5: Complexity of the Proposed RTS Smoothing Algorithm.

Operation Equivalent FLOP BLAS Operation

Smoother gain Ck:

Pk|kA
T
k 2n3

s − n
2
s MMM

P−1
k+1|k ≈ n3

s MI

Ck = Pk|kA
T
k P
−1
k+1|k 2n3

s − n
2
s MMM

Calculation of bk:

Ckx̂k+1|k 2n2
s − ns MVM

bk = x̂k|k − Ckx̂k+1|k ns VVA

Calculation of Dk:

CkPk+1|k 2n3
s − n

2
s MMM

CkPk+1|kC
T
k 2n3

s − n
2
s MMM

Dk = Pk|k + CkPk+1|kC
T
k n2

s MMA

Smoother Parallel region start
Repeat logN times

Cu = CuCw 2n3
s − n

2
s MMM

Cubw 2n2
s − ns MMM

bu = bu + Cubw ns VVA

C
′
u = CwCu 2n3

s − n
2
s MMM

CuDw 2nsn
3
d − ns

2 MMM

CuDwC
′T
u 2ns

3 − ns2 MMM

Du = Du + CuDwC
′T
u ns

2 MMA
Smoother Parallel region end

Smoothed state

C0x̂k+1|N 2ns
2 − ns MVM

x̂k|N = b0 + C0x̂k+1|N ns VVA

Smoothed covariance

C0Pk+1|N 2ns
3 − ns2 MMM

C0Pk+1|NC
′T
0 2ns

3 − ns2 MMM

Pk|N = D0 + C0Pk+1|NC
′T
0 ns

2 MMA

0 20 40 60 80 100 120 140

10
4

10
5

Figure 3.3: Theoretical Performance Comparison in terms of FLOP Counts (log scale)

Siu Lun Yeung 40

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

2 4 6 8 10 12 14 16 18 20

1

2

3

4

5

6

Figure 3.4: Speed-up for a range of window size

2 4 6 8 10 12
0

5

10

15

20

Number of States

S
p
e
e
d
-U

p

Speed-up of Different RTS Smoother Versions

SRTS−DR−8

PRTS−DR−8

SRTS−DR−64

PRTS−DR−64

Figure 3.5: Speed-up for a range of number of states

becomes

F = (19 + 6 logN)(ns)
3 + (6nm + 1)(ns)

2 + 4nsn
2
m + nsnm

−ns +M(2nm
2 + 2nm − 1) (3.28)

With multitarget tracking, the FLOPs count becomes

FB = B[(19 + 6 logN)(ns)
3 + (6nm + 1)(ns)

2 + 4nsn
2
m + nsnm

−ns +M(2nm
2 + 2nm − 1)] (3.29)

5. The overall computational complexity for B targets becomes O(B logNns
3).

Siu Lun Yeung 41

…

…

…

KF

GNN

RTS

Figure 3.6: OpenMP Fork-Join Model.

3.4.5 Realizing MTTR on Parallel Systems

The approach this thesis have outlined hitherto is independent of any target platform

or architecture. As such, Algorithm 3 can be realized on any target platform of choice.

This can be a shared-memory system, a GPU system or a cluster-based parallel platform.

The exact mechanism of how the parallelization is exploited in the target architecture,

however, varies depending on the choice of platform.

In this thesis, this thesis solely focus on a parallel model known as shared-memory paral-

lelism — common in contemporary systems having multiple cores or multiple processors.

One of the shared-memory parallelism programming model is OpenMP (Open Multi-

Processing) [74] and is used in this thesis. Furthermore, a framework that encapsulates

the processes concerning multi-target tracking, gating and association (using the NN)

and smoothing (using the RTS smoother) is created.

This thesis show this overall flow of processes within the proposed parallel model in

Figure 3.6. The ideal fork-join model this thesis seek here is that the master thread will

launch a number of independent threads, each handling a single target. Each of these

threads will then in turn, launch a number of threads themselves to perform matrix-

vector operations within the Kalman filter, NN and the RTS smoothing operations in

parallel. For instance, if there are B targets, and B threads are created with one thread

handling one target, it is possible to create a configuration so that each thread can launch

a threads themselves to handle the necessary matrix operations in a parallel manner.

This will result in a total of aB threads. However, in reality, due to the overheads

associated with spawning and managing threads and limits of the subscription ratio,

the actual number of threads, BR, used in the parallelization s will be much less than

aT , such that BR << aB. As such, the choice of a often becomes task-specific. In this

case, it depends on the number of targets T . This phenomena will be demonstrated in

Siu Lun Yeung 42

Section 3.5. Regardless of the platform, depending on the overall number of threads,

the overall complexity will be reduced when the NN and RTS smoothing algorithms are

parallelized. The overall complexity of the parallelized algorithm is:

FP = (19 + 6 logN)(ns)
3 + (6nm + 1)(ns)

2 + 4nsn
2
m + nsnm

−ns +M(2nm
2 + 2nm − 1) (3.30)

which further reduces the computational complexity to O((logN)ns
3).

3.4.6 Algorithm that is Independent to the Window Size

Although the parallelization approach presented in the previous section offers a substan-

tial reduction in FLOPs and offers reduced computational complexity, the algorithm has

a subtle limitation: it only works for window sizes that are of a power-of-two, owing to

the limitations stemming from the original prefix-sum algorithm. As such, an approach

is required to handle non-power-of-two window sizes. This is achieved by decomposing

the non-power-of-two window size N ′ into a m+ 1 separate power-of-two window sizes

[N ′a, . . . , N
′
0] such that

N ′ = N ′a + . . .+N ′0

= qa.2
a + . . .+ q1.2

1 + q0.2
0 (3.31)

where qi ∈ {0, 1} and a = blog2(N
′)c. This is akin to expressing a number in a binary

format. There will be at most 2a < log2(N
′) power-of-two-window sizes. These 2a sepa-

rate power-of-two-window retrodictions can be performed using the proposed algorithm,

in parallel. In other words, it can be considered as reducing 2a independent reduction

trees. This process can be repeated recursively until no more decomposition can be

performed, at which stage the standard (non-parallel) RTS smoother will be used. This

thesis illustrate this process in Figure 3.7 and show the corresponding steps in Algo-

rithm 4 with c and βl denoting the remaining window sizes to be processed and the

maximum value for the next power-of-two tree-size.

Siu Lun Yeung 43

 If c = 0

 Standard

Prefix-Sum

 Algorithm

 Sub-

Reduction Tree

 Algorithm

Input: cStart

Yes

No

 Output:

Smoothed

Estimate

End

Output:

c, A[l]

 Standard

Prefix-Sum

 Algorithm

Figure 3.7: Block Diagram Illustrating the Window Size-Oblivious RTS Smoothing
Algorithm.

Algorithm 4 Sub-reduction Tree Algorithm.

1: c← 1
2: l← 0
3: while c 6= 0 do
4: βl ← blnNc
5: c← N − 2βl

6: N ← c
7: l← l + 1
8: end while

3.5 Simulation and Evaluation

3.5.1 Simulated Scenario

To demonstrate the efficacy of the proposed approach, consider a scenario with multiple

targets flying at constant altitude and constant velocity over a field of view. Assume

that the number of targets is known and fixed. As the exact motion model is not

directly relevant to the direct contributions of the chapter, the simulation will rely on a

two-dimensional constant acceleration model. More specifically, this thesis set the state

transition matrix A, measurement matrix H, state vector x, process and measurement

noise covariance matrices Q and R as follows:

A =


0

0

0

0

0

1

0

0

0

0

1

§

0

0

0

1

§

§2
2

0

0

1

0

0

0

0

1

§

0

0

0

1

§

§2
2

0

0

0


H =


0

1

0

0

0

0

1

0

0

0

0

0


Siu Lun Yeung 44

−1000 0 1000 2000 3000 4000
−4000

−2000

0

2000

4000

6000

Tracking Scenario for 10 Targets

x-position

y
-p
o
si
ti
o
n

Figure 3.8: Simulation for Multi-target Tracking Scenario (in meters)

x =


ÿ

ẏ

y

ẍ

ẋ

x


z =


y

x


Q = E[vkvk
T]

R = E[wkwk
T]

Furthermore, the initial x- and y-position of targets prior to tracking are uniformly and

randomly generated with the range from 0 to 1000m. The initial velocities in x- and

y- directions of targets are also uniformly generated ranging from −100 to 100ms−1.

A time-flattened version of the simulated scenarios is shown in Figure 3.8 for tracking

ten targets over a period of 100 time steps. In each time step, a normally distributed

noise is added as process and measurement noise with standard deviation of 100m with

R = 1002m2. This thesis also report up to 1000 targets when discussing the performance

results. In the evaluation of the smoother, 100 Monte Carlo runs were used for the

trajectory and the total performance measure is the mean value of the runtime and

speed-up.

3.5.2 Evaluation Framework

The thesis tests the proposed algorithms on a multi-core shared memory system, with an

Intel KNL (7210) processor containing 256 cores and a memory of 96GB. Furthermore,

the thesis relied on vendor-supplied or equivalent BLAS libraries that have already been

parallelized and performance tuned for the architectures this thesis have used. As such,

they provide the standard approach for a number of BLAS operations such as matrix-

matrix multiplication or matrix inverse. In particular, this thesis used the EIGEN

Siu Lun Yeung 45

0 200 400 600 800 1000 1200
10

-1

10
0

10
1

10
2

SRTS,DR

PRTS,DR

SRTS,NDR

Figure 3.9: Runtime of Single Target Tracking Against Different Window Sizes (log
scale)

Library (v3.3.3) for the evaluation. Finally, this thesis repeated the experiments a 100

times and the mean of the runtime is selected.

3.5.3 Parallelism and Data Reuse

As mentioned before, the performance gains for the proposed parallel RTS smoothing

algorithm stem from both parallelization and from data reuse. To quantify the benefits

of each of these components, this thesis first use a single target tracking scenario. By

varying the window size N from 2 through 1024, the sequential RTS smoother with data

reuse SRTS-DR and parallelized RTS smoother with data reuse PRTS-DR is compared

against the naive version. The runtime results are shown in Figure 3.9 and the associ-

ated speed-up against naive version is shown in Figure 3.10. As shown in Figure 3.9, the

SRTS-DR variant shows better performance than the PRTS-DR variant, for smoothing

with windows sizes smaller than 250. This indicates that overheads arising out of par-

allelization, negatively impact the overall performance gain. In other words, for smaller

window sizes, computational intensity is not sufficient to warrant excessive paralleliza-

tion. However, for smoothing with window sizes larger than 250, the performance gain

of PRTS-DR increases significantly. Furthermore, from Figure 3.10, it can be observed

that for window sizes smaller than the threshold window size, ηN ≈ 250, the SRTS-DR

version performs better than the PRTS-DR version. Therefore, this thesis proposed a

thread allocation approach as outlined in Section 3.5.4 as part of the overall MTTR

system, that adaptively selects the number of threads and the appropriate algorithm

depending on the number of targets, available number of threads on a given platform,

and window size.

Siu Lun Yeung 46

0 200 400 600 800 1000 1200
0

5

10

15

20

25

SRTS,DR

PRTS,DR

Figure 3.10: Speedup of Single Target Tracking Against Different Window Sizes

3.5.4 Thread Allocation and Choice of Smoothing Algorithm

The MTTR algorithm is fully customizable in terms of number of targets (fixed and

known), window size, number of threads to be allocated at the target-level and smoother

process. This thesis consider four different variants in evaluating the performance of the

proposed algorithm:

1. Multitarget tracking is performed in parallel across all targets using the PRTS with

data reuse embedded. In other words, a number of threads are run in parallel, each

taking care of a target, and each of these threads can fork a number of threads in

turn to perform the RTS smoothing in parallel. This thesis refer to this version as

(PT, PRTS-DR);

2. Multitarget tracking is performed in parallel using the sequential RTS smoother

with data reuse embedded (PT, SRTS-DR);

3. Multitarget tracking is performed in parallel using the sequential RTS smoother

without data reuse embedded (PT, SRTS-NDR) which is alternatively referred to

as (PT, SRTS) at times; and

4. Multitarget tracking is performed sequentially using the sequential RTS smoother

without data reuse embedded (ST, SRTS).

By default, this thesis use the window size of N = 64, but wherever applicable, this

thesis vary the window size from N = 2 through to N = 4096. To avoid a large number

of combinations, this thesis vary the number of targets 8, 64, 128 and 1024. In order to

visualize the effect of the number of threads allocated at the target level, the (PT, SRTS-

NDR) is going to be tested for a range of threads. The runtime for processing 1000

Siu Lun Yeung 47

measurements are recorded in each of simulation (100 times and mean is calculated).

As the overall number of threads in a system is finite, this thesis tested the implication

of number of threads on the overall performance by varying the total number of threads

from 1 to 256. This thesis show the resulting speedup against the single threaded

(PT, SRTS-NDR) version in Figure 3.11, for number of targets set at 8, 128 and 1024.

There are a number of observations that can be made here. First and foremost, the

multi-threaded (PT, SRTS-NDR) version offers remarkable performance improvement

over the single threaded version (ST, SRTS). This speedup increases with the number of

targets. Furthermore, increasing the number of threads does not increase the speedup in

a linear manner. Instead, for a given number of targets, there is a maximum number of

threads from which the MTTR can benefit from, beyond which, allocating more threads

only results in diminishing returns. In fact, to maximize the performance, the number of

targets must be accounted for when allocating threads. For instance, when tracking 128

targets, allocating 128 threads leads to the best overall speed-up of 25 over the single-

threaded version. This is true when tracking nB = 8 targets. However, for nB = 1, 024

targets, the overall performance peaks at 256 beyond which there are no performance

gains. This figure matches the exact number of threads that can be spawned with

hardware support, indicating that over-subscribing the system with additional threads

does not improve the performance. To conclude, number of threads chosen should match

number of targets to yield maximum performance gain.

Since the proposed model can be tuned to use the notion of nested parallelism, if there

are any leftover threads after allocating threads for multitarget tracking, they can be

allocated to parallelize the smoother operations. For instance, this is possible where the

number of targets is less than the maximum number of hardware threads. To test the

efficacy of the nested parallelism model, this thesis evaluated the framework as follows:

this thesis set the number of targets to 8, and this thesis then allocate the remaining

number of threads to parallelize the RTS smoother. For instance, if two threads are

allocated at the second level (RTS smoother level), a total of 16 threads will be spawned

in the RTS smoother stage for tracking 8 targets. This thesis then compare this against

the version where each RTS smoother uses only one thread. This thesis show the overall

results in Figure 3.12 for different smoother window sizes. This thesis observe that for

window sizes less than 1, 024, nested parallelism does not offer any benefits. In fact, there

is a slowdown. However, for window sizes larger than (or equal to) 2048, there are clear

performance benefits. Therefore, the nested threshold window size ηn for performance

benefit in nested parallelism in tracking nB = 8 targets is approximately 2048.

With all these observations, this thesis select the number of threads and/or the smoother

algorithms as follows:

Siu Lun Yeung 48

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60
Targets = 8

Targets = 64

Targets = 128

Targets = 1024

Figure 3.11: Performance of Multitarget Tracking against the Number of Threads

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5
Window Size = 512

Window Size = 1024

Window Size = 2048

Window Size = 4096

Figure 3.12: The Effect of Nested Parallelism on the Overall Performance of Multi-
Target Tracking

1. For single target tracking, when the tracking algorithm has a window size smaller

than ηN , the smoothing algorithm of choice should be SRTS-DR, and PRTS-DR

otherwise;

2. Threads are primarily allocated at the target level. This is justified as the over-

all tracking process is much more computationally intensive than RTS smoother.

When the number of targets is larger or equal to number of hardware threads, all

hardware threads should be dedicated to the outer target level to obtain maximum

performance and so SRTS-DR should be used for RTS smoother.

3. When allocating threads at the target level, the actual number of threads allocated

at this level is, TB = min(nCSr, nB), where nC is the number of cores, Sr is the

subscription rate, and nB is the number of targets;

Siu Lun Yeung 49

0 10 20 30 40 50 60 70
0.8

1.0

1.2

1.4

1.6

1.8

Speed Up of (PT,PRTS-DR) vs. (PT, SRTS-DR)

Number of Targets

S
p
ee
d
-U

p

Figure 3.13: Performance of Multitarget Tracking against the Number of Targets

4. If the number of targets is smaller than number of hardware threads, also, when

the tracking algorithm has a window size bigger than ηn, the smoothing algorithm

of choice should be PRTS-DR;

The exact values for ηN , and the number of nested threads allocated at the RTS smoother

level will vary depending on the platform of choice, number of cores and the subscription

ratio Sr. Although the number of cores and the subscription ratio are deterministic, the

overheads of spawning threads across different platforms are never the same.

With this methodology in place, the impact of number of targets on the performance

of the SRTS-DR and the PRTS-DR variants are of interest. To assess this aspect, the

window size is set to 4, 096 and smoothing is performed with 20, 000 time steps. The

speed-up of the PRTS-DR variant is shown in Figure 3.13. The speed up is quantified

by using the SRTS-DR version as the baseline to observe the benefit of introducing

parallelism. As can be observed here, the performance benefits of the PRTS-DR (over

SRTS-DR) diminishes with the increasing number of targets. With the increasing num-

ber of targets, the framework will start to allocate more threads towards target tracking

and the actual number of threads for the RTS smoothing process will begin to decrease.

With this, the performance of the RTS smoother will begin to deteriorate. Thus, if the

number of targets exceeds that of the number of cores, it will be prudent to select the

(PT, SRTS-DR) variant over others for better performance.

This thesis then compare all four different versions of the algorithms, namely (ST, SRTS-

NDR), (PT, SRTS-NDR), (PT, SRTS-DR) and (PT, PRTS-DR), for different window

sizes, while fixing the number of targets. To ensure that this thesis have a sufficient

number of threads allocated at the RTS smoother level, this thesis set the number of

targets to nB = 8 and nB = 64 On a system with nC ∗ Sr = 256, this leaves up to 32

Siu Lun Yeung 50

0 500 1000 1500 2000 2500 3000 3500 4000 4500
10

0

10
1

10
2

10
3

10
4

ST,SRTS-NDR

PT,SRTS-NDR

PT,SRTS-DR

PT,PRTS-DR

Figure 3.14: Runtime for Tracking Multiple Targets for a Range of Window Sizes
(nB = 8) (log scale)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

10

20

30

40

50

PT,SRTS-NDR

PT,SRTS-DR

PT,PRTS-DR

Figure 3.15: Speed-Up of Tracking Multiple Targets over a range of Window Sizes
(nB = 8)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
10

1

10
2

10
3

10
4

10
5

10
6

ST,SRTS-NDR

PT,SRTS-NDR

PT,SRTS-DR

PT,PRTS-DR

Figure 3.16: Runtime of Tracking Multiple Targets for a range of Window Sizes
(nB = 64) (log scale)

Siu Lun Yeung 51

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

50

100

150

PT,SRTS-NDR

PT,SRTS-DR

PT,PRTS-DR

Figure 3.17: Speed-Up of Tracking Multiple Targets for a range of Window Sizes
(nB = 64)

and 4 threads to be allocated at the RTS smoother level, respectively. For each target-

level setting, this thesis vary the window size from 4 through 4, 096. The speedups are

measured by using the (ST, SRTS-NDR) version as the baseline.

For nB = 8, as observed before, for window sizes smaller than 2, 048, the (PT, SRTS-DR)

variant will deliver the best tracking performance. However, for window sizes larger than

2, 048, the (PT, PRTS-DR) version is the best choice. For the case of nB = 64, 25% of the

available threads will be allocated to the target tracking level. The runtime and speed-

up graphs for these cases are shown in Figures 3.14, 3.15, 3.16 and 3.17. A number of

observations can be drawn from these figures. For instance, the (PT, SRTS-DR) version

has the best performance among all four algorithms for window sizes smaller than 2, 048.

However, for cases with window sizes larger than (or equal to) 2, 048, nested threading

(PT, PRTS-DR) can offer attractive performance over the (PT, SRTS-DR) version. It is

also evident that naively parallelizing tracking algorithms can only lead to sub-optimal

performance gains. By utilizing and balancing the parallelization and data reuse, it

is possible to attain a 40-fold speedup against the baseline. It can also be observed

that when using the (PT, PRTS-DR) version, the performance for tracking nB = 8

and nB = 64 are almost the same (approximately around 9.862 seconds). Finally, for

nB = 64, the (PT, SRTS-DR) diagram shows better performance than the (PT, SRTS-

NDR) variant. These results indicate that by carefully utilizing the framework, a nearly

150-fold speedup can be achieved.

3.5.5 Evaluation of the Window Size-Independent Algorithm

As the last aspect of the evaluation, this thesis has considered the algorithm that is

designed to be independent to the inherent limitation of the basic algorithm that is

Siu Lun Yeung 52

0 100 200 300 400 500 600
1.0

1.5

2.0

2.5

3.0

3.5

Figure 3.18: Performance Gain of the Overall PRTS for a Range of Window Sizes

reliant on power-of-two window sizes. For this case, this thesis varied the window size

N , within the range of 4 through 512, for 100 targets over 10, 000 time steps. This

thesis varied the window sizes so as to include non-power-of-two window sizes. This

thesis show the resulting speed-up of the proposed algorithm in Figure 3.18. From these

results, it is evident that the proposed algorithm offers notable performance gains over

the SRTS variant.

3.6 Summary

In this chapter, this thesis created a fully functional parallel framework for multitarget

tracking with retrodiction. The key contribution, which underpinned this overall frame-

work here, is a novel parallel retrodiction algorithm based on the RTS smoother. To

overcome the limitations within the original RTS smoother, more specifically the ones

that impede parallelization, this thesis have reformulated and refined the underlying

mathematical constructions. These reformulations, which are based on the prefix sum

operation, have minimized the interdependencies between the operations and eliminated

most of the redundant computations, improving reuse. With these in place, the proposed

approach leads to a very highly performing parallelized filter for retrodiction, enabling

large-scale multi-target tracking.

This approach, compared to the approaches that have been hitherto based on complex

partitioning mechanisms, is easier to implement. The parallel algorithm, in addition to

reducing the number of FLOPs, has a reduced computational complexity. More specif-

ically, owing to the formulations stemming from the prefix-sum, the original algorithm

was only capable of handling power-of-two window sizes. This chapter addressed this

Siu Lun Yeung 53

issue by formulating a window size-oblivious version of the proposed algorithm. Address-

ing this subtle issue enables the proposed algorithm to be used for any window size. The

resulting algorithm (PRTS) offers rather significant performance gains compared to the

sequential version of the RTS smoother (SRTS).

In addition to parallelization of the RTS smoother, parallelizing the tracking and mea-

surement to track association offers additional performance improvements. In essence,

the proposed framework offers very notable performance gains over the conventional

approaches, which rely on vanilla version of the RTS smoother. This exhaustive sim-

ulations have demonstrated the potential benefits of the proposed approach. Although

the performance gains are likely to vary between different computing platforms (and

tracking scenarios), the approach is readily adoptable across different computing plat-

forms. More specifically, the exploitation of data reuse in the proposed algorithm is very

notable.

Going beyond the performance on a single target, the proposed algorithm can also bring

notable performance gain in multi-target tracking scenarios. Besides, the overheads

caused by thread launching and the number of cores on the CPU is very likely to improve

in the future. With these, this thesis firmly believe that the proposed approach is both

novel and offers an avenue for tracking a large number of targets, if sufficient parallel

resources can be found. Given the rise and the norm of modern parallel platforms, this

is a very promising approach for tracking a very large number of targets in real-time.

Chapter 4

Fast Fixed-Lag Smoother

4.1 Introduction

Smoothing is one of the basic techniques that is fundamental to a number of target

tracking scenarios [44, 45], particularly where delays can be tolerated. Given a sequence

of observations z1:t, and corresponding states x1:t, the basic idea of smoothing is to com-

pute the posterior density p(xt|z1:t+l) where l ≥ 0. In other words, future observations

are used to smooth-out the current states so as to minimize the estimation errors. In

general, there are three variants of smoothing: fixed-interval, fixed-lag and fixed-point

smoothing. All of these techniques vary depending on what is being smoothed out.

Fixed-interval smoothing [55] uses all measurements obtained over a fixed interval to

compute smoothed estimates for each required time point. As such, the computational

complexity is a function of the length of the interval. Fixed-lag smoothing [90, 91] is

performed by delaying the estimation process to incorporate future measurements in

order to improve the estimation accuracy, particularly where a certain time delay L can

be tolerated.The fixed-point approach is similar to that of the fixed-lag. However, the

point on which the estimate to be refined is fixed instead of varying with time which

has the complexity. By caching the intermediate history of the states, a recursive fixed-

point smoother can be achieved without stepping back through each of the intermediate

estimates [26]. For instance, Biswas proposed an augmented fixed-point smoother by

using the augmented matrix structure [91].

The application of smoothing is rich which includes radar tracking [92], economics [93],

signal processing [94], traffic modelling [95] and so on. In particular, for real-time appli-

cation, aircraft radar guidance system rely on filtering and smoothing heavily to provide

accurate position data [92]. In economics, filtering and smoothing are used in predicting

real-time market price to reduce the investment risk and play an important role in the

54

Siu Lun Yeung 55

economic development and financial building [96]. In traffic systems modelling, a short-

term traffic volume model is developed based on filtering and smoothing to monitor and

predict real-time traffic volume [97]. Therefore, filtering and smoothing are important

tools in modern signal processing and system modelling.

The Rauch-Tung-Striebel (RTS) smoother [25], also called the Kalman smoother, is used

in conjunction with the Kalman filter [24]. Due to its simplicity, it is widely used in the

tracking community. For example, in [57], the authors employ the RTS algorithm for

MHT applications in conjunction with the Interacting Multiple Model (IMM) algorithm

for maneuvering target tracking. In [19], the IMM smoothing is further improved by

only using M filters/smoothers for a bank of M models. In [58], fixed interval smoothing

IPDA (sIPDA) was proposed, which also use RTS smoothing formulae in order to obtain

better target estimate and target probability existence. Furthermore, in [61], RTS is used

for backward Point Probabilistic Hypothesis Tracking (PPMHT) pass. It is also regarded

as the fastest implementation among a number of fixed-interval smoothing variants [54]

with the computational complexity of O(N(n3)), where N is the window size and n is

the number of states. When fixed-lag smoothing is used, they are mostly augmented

fixed-lag smoothers. For instance, in [51], a fixed-lag state augmented system is proposed

to utilize the IMM and Joint Probabilistic Data Association (JPDA) to improve state

estimations. In [98], a method called Augmented State Integrated Probabilistic Data

Association (ASIPDA) is proposed to fuse IPDA with a retrodiction approach. In [53],

the authors extend the idea for multi-scan target existence information.

However, one of the major drawbacks of smoothing, regardless of the variant, is the

computational complexity, and thus the number of computations, which increase with

the time-interval or delay, N . These computations can easily begin to dominate the

overall number of computations performed during state estimation, particularly when

numerous targets need to be tracked. When the number of tracks to be smoothed

increases, the overall number of computations can become a bottleneck, even where

small delays are tolerable. There is a body of work around improving the computational

performance of smoothers, for instance [26, 99]. The central idea behind the body of

work is to render a fast fixed-lag smoother since it is mostly used for real time processing

and so computation is expected to be minimised. Although the proposed approach aims

to overcome the performance issues, as will be discussed in latter sections, this approach

is numerically unstable, and becomes practically unusable. The motivation for this

chapter is to fix this numerical instability.

In theory, it is possible to have a conventional fixed-lag RTS smoother (cRTS) that is

computationally independent of the window size N as will be shown in this chapter.

However, in practice, such an algorithm will lead to erroneous results. Therefore, this

Siu Lun Yeung 56

thesis aim to derive the fastest, numerically stable, fixed-lag smoother so that the com-

putational complexity is no longer strongly coupled to the time-delay or window-size.

In doing so, this thesis make the following key contributions:

1. This thesis revisit the existing body of work that aimed to offer the computationally

efficient version of the RTS, and show how the cRTS can be reformulated to yield

the computationally independent to window size (which refer to as fRTS−) in

Theorem 1;

2. This thesis carry out a detailed analysis on the stability of the fRTS−, and show

that it can exhibit divergence and thus may become unusable over time; and

3. This thesis offer a solution to address the stability issue, which this thesis refer to

as FRTS, that offers both performance and numerical stability.

This evaluations, based on a number of simulations, show that all the proposed ap-

proaches offer superior performance and numerical stability when compared against the

fRTS− version. With these results, this chapter shows that RTS smoother can be im-

plemented in a way that it is indepednent of the window size with acceptable accuracy.

The rest of the chapter is organized as follows: In Section 4.2, this thesis concentrate

on presenting the linear state space model and FRTS to serve as a background for the

section that follows this. Also, this thesis prove that FRTS can be computationally

independent to window size after reformulation. In Section 4.3.1, this thesis show the

stability issue of fRTS− and the source of the problem. Section 4.3.2 introduces the

notion of using condition number to solve and monitor the algorithm to assure feasibil-

ity and usability. Then, Section 4.4 displays the complexity of the proposed algorithm

and compares FLOPs counts with cRTS. After that, Section 4.5 shows the accuracy and

speed-up of the proposed algorithms from a series of simulations. Finally, Section 4.6

concludes the chapter.

Siu Lun Yeung 57

4.2 Background

4.2.1 Fast RTS Smoother

For window size N , the smoothed estimate will be calculated as

xsk = xk − Ckx−k+1 + Ckx
s
k+1

xsk−1 = xk−1 − Ck−1x−k + Ck−1x
s
k

...

xsk−N = xk−N − Ck−Nx−k−N+1 + Ck−Nx
s
k−N+1 (4.1)

The dependency issue of the RTS algorithm can be clearly seen in (4.1). In order to

calculate the time-lag smoothed estimate at k−N , denoted as xsk−N , the smoothed esti-

mate of the next time step at k−N +1 has to be known. This dependency propagate to

the smoothed estimate at the beginning of the window xsk. Moreover, the computations

increase with N .

Theorem 1. The conventional RTS, which has complexity of O(N(n3)), can be refor-

mulated to be computationally independent to window size N which gives O(n3).

Proof. To simplify the operations in (4.1), the following can be defined

βk = xk − Ckx−k+1 (4.2)

Therefore, (4.1) can be written as

xsk = βk + Ckx
s
k+1

xsk−1 = βk−1 + Ck−1x
s
k

...

xsk−N = βk−N + Ck−Nx
s
k−N+1 (4.3)

Therefore, xsp can be simplified as, where p = k −N

xsp = βp +

p+N−1∑
i=p

[
i∏

j=p

Cj]βi+1 + [

p+N∏
j=p

Cj]x
s
k+1 (4.4)

Siu Lun Yeung 58

The following are defined to further simplify the expression,

Ψp = βp +

p+N−2∑
i=p

[
i∏

j=p

Cj]bi+1

Ωp =

p+N−1∏
j=p

Cj (4.5)

which makes

xsp = Ψp + Ωpβk + ΩpCkx
s
k+1 (4.6)

As the value of k changes in every time step and so does k − N , however, the whole

summation sequence Ψ and Ω do not need to be re-calculated if the following operations

are performed in each time step instead

Ωp+1 = C−1p ΩpCk

Ψp+1 = C−1p [Ψp − βp] + Ωp+1βk+1 (4.7)

Therefore, the smoothed estimate in the next time step will be

xsp+1 = Ψp+1 + Ωp+1Ck+1x
s
k+2 (4.8)

The calculations involved in (4.7) and (4.8) are independent of window size N and so this

algorithm has the complexity of O(n3). Same principle can be applied to compute the

smoothed covariance. The smoothed covariance for window size of N can be calculated

as

P sk−N = Pk−N − Ck−NP−k−N+1C
T
k−N

+ Ck−NP
s
k−N+1C

T
k−N (4.9)

To simplify the operations, the following can be defined,

Dk = Pk − CkP−k+1C
T
k (4.10)

Therefore,

P sp = Dp + CpP
s
p+1C

T
p (4.11)

Siu Lun Yeung 59

When propagating P sk−N+1 back to P sk+1, it can be written as

P sp = Dp +

p+N−1∑
i=p

[

i∏
j=p

Cj]Di+1[

−p∏
j=−i

CT−j]

+ [

p+N∏
j=p

Cj]P
s
k+1[

−p∏
j=−p−N

CT−j] (4.12)

The following are defined to further simplify the expression,

Γp = Dp +

p+N−2∑
i=p

[

i∏
j=p

Cj]Di+1[

−p∏
j=−i

CT−j]

∆p =

−p∏
j=−(p+N−1)

CT−j (4.13)

Therefore,

P sp = Γp + ΩpDk∆p + ΩpCkP
s
k+1C

T
k ∆p (4.14)

To obtain computational independence, the following operations can be performed on

the summation sequence Γ and ∆,

∆p+1 = CTk C
T
p ∆pC

−T
p CTk

Γp+1 = C−1p [Γp −Dp]C
−T
p + Ωp+1Dk+1∆p+1 (4.15)

Therefore, the smoothed covariance in the next time step will be

P sp+1 = Γp+1 + Ωp+1Ck+1P
s
k+2C

T
k+1∆p+1 (4.16)

As a result, the computation of the mean and covariance from the smoother can be

independent to the window size N . The fRTS− algorithm is shown in Algorithm 5.

Siu Lun Yeung 60

Algorithm 5 fRTS− Fixed-Lag Smoother

1: . Initialize Ψ as a vector of zero

2: . Initialize Ω as an identity matrix

3: . Initialize Γ as a matrix of zero

4: . Initialize ∆ as an identity matrix

5: for t=0; t<T; i++ do

6: . Forward Pass: KF

7: [Pt+1, P
−
t+1, xt+1, x

−
t+1] = KF [xt, Pt]

8: . Backward Sweep: RTS

9: Ct ← PtF
T (P−t+1)

−1

10: βt ← x̂t − Ctx̂−1t+1

11: Dt ← Pt − CtP−1t+1C
T
t

12: if (0 < t < N) then

13: Ψ← Ψ + Ωβt

14: Γ← Γ + ΩDt∆

15: Ω← ΩCt

16: ∆← CTt ∆

17: else

18: Ψ← Ψ + Ωβt

19: Γ← Γ + ΩDt∆

20: Ω← ΩCt

21: ∆← CTt ∆

22: xsp ← Ψ + Ωxt

23: P sp ← Γ + ΩPt∆

24: Ω← C−1p Ω

25: ∆← ∆C−Tp

26: Ψ← C−1p (Ψ− βp)
27: Γ← C−1p (Γ−Dp)C

−T
p

28: end if

29: end for

4.3 Numerical Stability Analysis

4.3.1 Numerical Stability of fRTS−

Although the fRTS− version of the RTS minimizes redundant computations through

re-use, it is practically unusable due to issues relating to its numerical stability. In

the original fRTS− algorithm, with the majority of the computations being chained via

Siu Lun Yeung 61

-900 -800 -700 -600 -500

1800

2000

2200

2400

2600

2800 Ground Truth

Measurements

Kalman Filter

Conventional RTS

fRTS
-

Figure 4.1: Divergence issues of the fRTS− for an example scenario

matrix-matrix multiplications, errors, albeit small, from each of the smoother steps is

likely to accumulate over iterations. Over a number of steps, the accumulated error will

be large enough so that the estimated state will begin to deviate from the ground truth

as shown in circled region in Figure 4.1. This divergence issue is also reported in [26].

This chapter simulated the movement of a single target moving diagonally along a North-

Westerly direction along a straight-line on a single plane, denoted by y = −3x + 100,

for x = 0 through x = −800. In the result, the cRTS and fRTS− methods begin with

producing similar estimates, over time, the estimates from the fRTS− start to deteriorate,

and this can be observed in Figure 4.2. This thesis also show how the error develops for

the covariance matrix P over time, in Figure 4.3.

Despite simulating a simple example, it was sufficient enough to show the divergence

issues of the fRTS− method. Given that fRTS− is derived to match the cRTS, one would

expect the estimates produced by both methods to be the same. However, the non-

deterministic nature of the execution of instructions inside the CPUs, and associative

properties of floating point addition and multiplication operations, lead to different

results.

4.3.2 Addressing the Numerical Instability

The key computations that lead to accumulated errors over time are through cached or

reused values of Ψ,Ω,Γ and ∆ from (4.5) and (4.13). At every iteration of the sweep,

their original values are overwritten by the multiplication of the inverse of the smoother

gain and cached gain Ω. Ideally, having stable values at every iteration would not lead

to divergence, which is impossible in the fRTS− version. However, if these expressions

can be computed at regular intervals instead of at every time step as in cRTS does, it

can help restoring stability while preserving the computational benefit.

Siu Lun Yeung 62

0 20 40 60 80 100 120
10

-15

10
-10

10
-5

10
0

x-position (fRTS
-
)

x-position (FRTS)

y-position (fRTS
-
)

y-position (FRTS)

Figure 4.2: Accumulated position error of the cRTS and FRTS smoothers compared
(in log scale)

0 20 40 60 80 100 120
10

-10

10
0

10
10

10
20

10
30

Conventional RTS

fRTS
-

FRTS

Figure 4.3: Accumulated error in the covariance of the cRTS and FRTS smoothers
compared (in log scale)

This chapter demonstrate the possibility of restoring the stability of the fRTS− in Fig-

ure 4.2, where the relevant values are restored using the cRTS at regular intervals. With

the help of cRTS to compute the error-free values of Ψ,Ω,Γ and ∆, the error is bounded.

This thesis also show how the error of covariance matrix varies over time in Figure 4.3.

Here, this thesis renew the values every wr = 50 measurements. However, the choice

of renewal window wr may vary with different initializations, and in fact between prob-

lems. It is purely about trading off computational efficiency with numerical stability. If

computed at every time step, fRTS− may converge to the cRTS, but this thesis would

lose the computational efficiency. On the other hand, if restored sparsely, it may become

unstable.

Siu Lun Yeung 63

4.3.3 Condition Number

To understand the rate of divergence, a monitoring metric is needed to efficiently re-

new the error accumulated in fRTS− . During computation, particularly with repeated

matrix-vector multiplications, numerical errors can be encountered for a number of rea-

sons, including, but not limited to, rounding, truncation, propagation, and accumula-

tion [100]. The condition number of a matrix can be an effective method to signify how

sensitive the computation is to perturbations [101], and this has a wide variety of appli-

cations in numerical analysis and linear algebra [102–104]. In this case, the main form

of computation where errors are encountered is when attempting to solve the equations

in the form of x = ρ−1b as in (4.7). More details can be found in [105]. Since computer

algorithms can only provide an approximation of the vector b and x, namely, x∗ and b∗.

To understand the relative error induced in x caused by b, the condition number can be

used.

In general, a matrix with high condition number is described as “ill-conditioned”, and

low condition number as “well-conditioned”. The condition number is defined as [100]

κ(ρ) = ‖ρ‖
∥∥ρ−1∥∥ (4.17)

‖·‖ is the norm of the matrix. In this analysis, which is presented in a later section of

this chapter, the L2-norm is used. If ρ is singular, then κ(ρ)→∞, and the computation

of its inverse is likely to have large numerical errors. On the other hand, if ρ is isotropic,

then κ(ρ) = 1, and a stable algorithm is guaranteed. However, in iterative methods, the

consideration of κ(ρ) might not be enough. In particular, for problems addressed in this

chapter, where one iteratively computes xt+1 = ρ−1t xt, where t = 0, 1, . . . , T denote the

time step, the errors become accumulated over time, regardless of how well-conditioned

the matrix ρ is. As such, the algorithm may diverge over time even if κ(ρ) is small

enough to guarantee x = ρ−1b to be non-divergent. Here, the numerical accuracy of

xt depends on the product of κ(ρt), namely, κ(ρ0)κ(ρ1)...κ(ρT) instead of κ(ρ) at only

any particular time instant. This can also be seen through considering the solution of a

linear system ρx = b, and suppose the vector b is perturbed by a small amount of vector

and give out the value b̂. This error will induce perturbation to x and give out x̂. The

relative error of vector x can be represented as

‖x− x̂‖
‖x‖

≤ κ(ρ)

∥∥∥b− b̂∥∥∥
‖b‖

(4.18)

Siu Lun Yeung 64

60 80 100 120 140 160 180
10

0

10
10

10
20

Figure 4.4: Variation of condition number of the smoother gain (proposed FRTS)
with the renewal process

Suppose (4.18) is iterative and start from t = 0 to T

‖xT − x̂T ‖
‖xT ‖

≤ [

T−1∏
j=0

κ(ρj)]
‖x0 − x̂0‖
‖x0‖

(4.19)

From (4.19), it can be shown that the relative error in vector xT is bound by the relative

error of the vector x0 at t = 0 and the product of condition number κ(ρt). Therefore,

product of condition number κ(ρt) has a magnifying effect on the relative error on the

vector xT . In other words, monitoring the product of the condition number can reflect

the perturbation range of the algorithm fRTS− .

In the algorithm fRTS− , it is found that there are a number of operations that can

lead to divergence. Among these, the divergence is dominated by C−1p . For instance,

consider the expression (4.7),

Ψp+1 ← C−1p Ψp − C−1p βp + Ωp+1βk+1

which after the hth time step, can be simplified as

Ψp+h ← (CpCp+1 . . . Cp+h−1)
−1Ψp + C

ignoring the constant C, the expression can be seen in the form of

x = ρ−1b

where x = Ψt+h, ρ = CpCp+1 . . . Cp+h−1 and b = Ψt on the expression above. As a

result, the accuracy of Ψ deteriorates over time as it is affected by the condition number

Siu Lun Yeung 65

of Ct at every time step. Therefore, by monitoring the condition number of matrix

multiplication train X = κ(Cj), the amount of error can be estimated.

Apart from using the condition number train, the initial relative error of vector x0 in

Equation (4.19) also needed to be considered to predict the error propagation. It is

shown that the intermediate error is irrelevant in the relative error of interest at t = T

as the error will be bounded by the previous time step. Therefore, considering the initial

relative error will be sufficient. In order to calculate the initial relative error, this thesis

need to know the divergence of Ψ after using the fRTS− for one time step comparing

with cRTS. It implies that cRTS is needed to be implemented along side with fRTS−

to witness the degree of divergence. However, as only the vector Ψ is needed to be

calculated, the full calculation of cRTS is not needed as shown in Accuracy Renewal

Module Part 2 in Table 4.2. Therefore, by using the following as a monitoring metric,

J = [

T−1∏
j=0

κ(ρj)]
‖x0 − x̂0‖
‖x0‖

(4.20)

where J represents the magnification of relative error over time and is always higher than

the relative error of the vector xT . Therefore, whenever J exceeds a preset threshold θ,

cRTS can be used to cease the error propagation. If user only can tolerate 10 percent of

percentage error, θ is needed to set to 0.1. An example case is illustrated in Figure 4.4,

where the growth of the product of condition number is presented and reset by using the

cRTS approach which forms the accuracy renewal algorithm. The algorithm is shown

in Algorithm 6. With the help of the accuracy renewal module on fRTS− , a stable

algorithm can be achieved, which this thesis refer as the Fast RTS smoother (FRTS).

Algorithm 6 Accuracy Renewal Module Part 1

1: if J > θ then
2: Ψ← 0
3: Ω← I
4: Γ← 0
5: ∆← I
6: X ← 1
7: for k=0; k<N-1; k++ do
8: Ψ← Ψ + Ωβk
9: Γ← Γ + ΩDk∆

10: Ω← ΩCk
11: ∆← CTk ∆
12: end for
13: end if
14: X ← cond(Cp)X

Siu Lun Yeung 66

4.4 Computational Complexity

The smoothing process is often incorporated as part of the Kalman filtering process.

In other words, at every iteration of the filtering, the smoother algorithm will iterate

through N data points for deriving smoothed estimates. Let ns be the number of states.

In summary, a single iteration of the RTS smoother with a window size of N will require

the following:

� 6N matrix-matrix multiplications;

� N matrix-vector multiplications;

� 4N matrix additions (subtractions);

� 2N vector additions (subtractions);

� N matrix transpose operations; and

� N matrix inversions.

Table 4.1: Operational Complexity of the RTS smoother

Operation FLOPs Type

Smoother gain:

Pk|kA
T
k 2ns

3 − ns2 MMM

P−1
k+1|k ≈ ns3 MI

Ck = Pk|kA
T
k P
−1
k+1|k 2ns

3 − ns2 MMM

Smoothed state:

x̂k+1|N − x̂k+1|k ns VVA

Ci(x̂k+1|N − x̂k+1|k) 2ns
2 − ns MVM

xk|N = x̂k+1|k + Ci(x̂k+1|N − x̂k+1|k) ns VVA

Smoothed covariance:

Pk+1|N − Pk+1|k ns
2 MMA

Ck(Pk+1|N − Pk+1|k) 2ns
3 − ns2 MMM

Ck(Pk+1|N − Pk+1|k)CTi 2ns
3 − ns2 MMM

Pk|k + Ci(Pk+1|N − Pk+1|k)CTk ns
2 MMA

The matrix transposition of A will be performed in the KF step, which can be cached

to avoid repeated computations. This can be easily avoided by choosing an appropriate

Siu Lun Yeung 67

0 100 200 300 400 500
0

2

4

6

8

10

12

n
s
 = 4

n
s
 = 8

n
s
 = 12

S
r
 = 0.1

S
r
 = 0.5

S
r
 = 0.8

Figure 4.5: Speed-up of different FRTS algorithms for different ns and Sr

indexing order of the matrix, (row-order as opposed to column-order or vice versa).

As the state matrices are significantly smaller than cache-line capacities, this does not

cause any performance issues. Hence, there are a total of 15N operations for a single

iteration of RTS smoother for window size N . In general, matrix-matrix multiplication

is an operation with the cubic complexity. The overall complexity of the cRTS is the

sum of all operations shown in Table 4.1, which in turn influences the overall runtime

performance [80]. However, the total runtime complexity can be approximated by the

dominating runtime complexity. The total number of FLOPs L1 in the RTS smoother

is:

 L1 = N(9ns
3 + ns) (4.21)

where the dominating term, namely 9Nns
3, decides the overall runtime complexity to be

approximated to O(Nns
3). With this, the computational intensity of the RTS smoother

will increase in a cubic manner as the dimensions of the state vector increase.

4.4.1 Complexity of FRTS

The performance gain of this algorithm relies highly on the frequency of the accuracy

renewal. In other words, lower performance gain will be obtained if a higher accuracy is

needed. The FLOPs count of the FRTS is listed in Table 4.2. Apart from the accuracy

renewal module, all operations are only needed to be calculated once for every time step

as opposed to N times as in cRTS. The total FLOPs of the FRTS Algorithm L2 without

accuracy renewal is given as

 L2 = 33ns
3 − 3ns

2 (4.22)

Siu Lun Yeung 68

Table 4.2: Computational Complexity of the FRTS

Operation FLOPs Type

Calculation of Ck:

Pk|kA
T
k 2ns

3 − ns2 MMM

P−1
k+1|k ≈ ns3 MI

Ck = Pk|kA
T
k P
−1
k+1|k 2ns

3 − ns2 MMM

Calculation of bk:

Ckx̂k+1|k 2ns
2 − ns MVM

bk = x̂k|k − Ckx̂k+1|k ns VVA

Calculation of Dk:

CkPk+1|k 2ns
3 − ns2 MMM

CkPk+1|kC
T
k 2ns

3 − ns2 MMM

Dk = Pk|k − CkPk+1|kC
T
k ns

2 MMA

Calculation of Ψ,Ω,Γ and ∆:

Ωbk 2ns
2 − ns MVM

Ψ = Ψ + Ωbk ns VVA

ΩDk 2ns
3 − ns2 MMM

ΩDk∆ 2ns
3 − ns2 MMM

Γ = Γ + ΩDk∆ n2
s MMA

Ω = ΩCk 2ns
3 − ns2 MMM

∆ = CTk ∆ 2ns
3 − ns2 MMM

Calculation of x̂k−N|N and P̂k−N|N :

Ωx̂k|k 2ns
2 − ns MVM

x̂k−N|N = Ψ + Ωx̂k|k ns VVA

ΩPk|k 2ns
3 − ns2 MMM

ΩPk|k∆ 2ns
3 − ns2 MMM

Pk−N|N = Γ + ΩPk|k∆ n2
s MMA

Calculation of Ψ,Ω,Γ and ∆:

C−1
k−N ≈ ns3 MI

Ω = C−1
k−NΩ 2ns

3 − ns2 MMM

∆ = ∆C−T
k−N 2ns

3 − ns2 MMM

Ψ− bk−N ns VVA

Ψ = C−1
k−NΨ 2ns

2 − ns MVM

Γ−Dk−N n2
s MMA

C−1
k−NΓ 2ns

3 − ns2 MMM

Γ = C−1
k−NΓC−T

k−N 2ns
3 − ns2 MMM

Accuracy Renewal Module Part 1
(Repeat N − 1 times)

Ωbk 2ns
2 − ns MVM

Ψ = Ψ + Ωbk ns VVA

ΩDk 2ns
3 − ns2 MMM

ΩDk∆ 2ns
3 − ns2 MMM

Γ = Γ + ΩDk∆ n2
s MMA

Ω = ΩCk 2ns
3 − ns2 MMM

∆ = CTk ∆ 2ns
3 − ns2 MMM

Accuracy Renewal Module Part 2
(Repeat N times)

Ωbk 2ns
2 − ns MVM

Ψ = Ψ + Ωbk ns VVA

Siu Lun Yeung 69

The FLOP counts for the accuracy renewal part 1 and 2 of the algorithm L
′
2 is given as

 L
′
2 = (N − 1)(8ns

3 − ns2) + 2Nn2s (4.23)

The speed-ups of FRTS algorithm, based on the FLOP counts, are compared to cRTS

and is shown against a range of window sizes in Figure 4.5. The metric, Renewal Fraction

Sr, is used to to better describe the Figure. Sr is computed as

Sr = Tr
T

(4.24)

where T is the total number of time steps and Tr is the number of times the expression

for Ψ,Ω,Γ and ∆ are re-computed. As shown in the graph, Sr = 0.1 can lead to speed-

ups of over 10 times for FRTS. To demonstrate the effect of Sr on FRTS, different

values of Sr are used. For Sr = 0.8, 0.5 and 0.1, a speed up of over 1.5, 2 and 10 can be

achieved, respectively. However, the speed up for different values of ns does not have a

big difference and all have speed up of 4 for Sr = 0.2.

4.5 Simulation and Evaluation

4.5.1 Simulated Scenario

Given that the techniques outlined in this chapter are not restricted to or based on any

specific motion model, this thesis use a simple, yet effective scenario to demonstrate the

efficacy of the proposed approach. Consider a scenario with a single target flying at

constant altitude and constant velocity over. More specifically, this thesis set the state

transition matrix A, measurement matrix H, state vector x, process and measurement

noise covariance matrices Q and R as follows:

A =


0

0

0

1

0

0

1

0

0

1

0

§

1

0

§
0
 H =


0

1

1

0

0

0

0

0


Furthermore, the initial velocities in the x- and y- directions of a target is randomly

generated. In each time step, a normally distributed noise N (µ, σ2) with µ = 0 and

σ = 100m is added with R = 1002m2. The noise level is independent from the accuracy

of the FRTS algorithm as compared to the cRTS. The RMSE will increase if higher noise

level is used for cRTS and hence so does FRTS. Therefore, a scenario with a single level

of noise is sufficient.

Siu Lun Yeung 70

-900 -800 -700 -600 -500

1500

2000

2500

3000

3500 Ground Truth

Measurements

Kalman Filter

Conventional RTS

Fast RTS

Figure 4.6: Example target tracking scenario

4.5.2 Evaluation Method

This thesis have tested the proposed algorithm on a state-of-the-art multi-core shared

memory system, with an Intel KNL (7210) processor containing 256 cores and a memory

of 96GB. Furthermore, this thesis relied on vendor-supplied or equivalent BLAS libraries

that have already been parallelized and performance-tuned for the architecture this thesis

have used. As such, they provide the best possible performance for a number of BLAS

operations such as, MMM or MI. In particular, this thesis used the EIGEN Library

(v3.3.3) for the evaluation. All experiments are repeated 100 times and the mean of the

results are recorded.

4.5.3 Accuracy of FRTS

To evaluate the accuracy of the FRTS approach, a window size of 8 is used for 1000

time steps. The relative error threshold θ is set to 0.1 which represents degree of error

tolerance as explained in (4.20). The tracking scenario is shown in Figure 4.6. The

relative error of the FRTS compared to the cRTS is shown in Figure 4.7, in log scale.

As can be observed from the Figure, the relative error is minimal here, and this error

is bound within 0.1, comparing to cRTS smoother estimate. Moreover, the relative

error of the norm of the covariance of cRTS and FRTS is compared and plotted in

Figure 4.14 which also shows the error is bound. In this simulation, accuracy renewal

step is activated 24 times to restore the accuracy of the algorithm (Sr = 24/992 ≈
0.024) as can be visualised in Figure 4.13 as condition number is being renewed. In the

evaluation of the smoother, 100 Monte Carlo runs were used for the trajectory and the

total performance measure is the mean value of the average position and velocity error.

The mean x-position, y-position, x-velocity and y-velocity error are 2.25× 10−14, 2.15×
10−14, 4.03×10−12 and 2.89×10−12 respectively. Same experiments are conducted with

Siu Lun Yeung 71

0 200 400 600 800 1000

10
-14

10
-12

10
-10

x-position y-position x-velocity y-velocity

Figure 4.7: Relative error of state for FRTS (θ = 0.1) (log scale)

350 400 450 500 550 600 650

10
-15

10
-10

x-position y-position x-velocity y-velocity

Figure 4.8: Relative error of state for FRTS (Magnified) (θ = 0.1) (log scale)

relative error threshold θ set to 1 to compare the difference. As shown in Figure 4.16

to 4.20, the frequency of accuracy renewal is lower as the error tolerance is higher.

Comparing with θ = 0.1, the accuracy renewal step is activated 4 times only as shown in

the Figures. Also note that in Figure 4.16, the relative error is bound to 1 as compared

to Figure 4.7, the relative error is bound to 0.1 as different values of θ is used. This

experiment also shows that there is a trade off between accuracy and complexity of the

proposed algorithm as less accuracy renewal step (less calculations) is activated if higher

error tolerance is allowed.

4.5.4 Speed-Up of FRTS Algorithm

In this section, this thesis compare the runtime performance of the proposed algorithms

FRTS to cRTS. This thesis recorded the runtimes of these algorithms for processing the

simulated scenario across 10000 time steps for a range of window sizes from 2 to 512.

Then, they are compared to the corresponding runtimes of the conventional RTS. This

Siu Lun Yeung 72

200 400 600 800 1000
10

-14

10
-12

10
-10

x-position y-position

Figure 4.9: Absolute error of state (position) for FRTS (θ = 0.1) (log scale)

400 450 500 550 600

10
-12

10
-10

x-position y-position

Figure 4.10: Absolute error of state (position) for FRTS (Magnified) (θ = 0.1) (log
scale)

0 200 400 600 800 1000
10

-16

10
-14

10
-12

10
-10

10
-8

x-velocity y-velocity

Figure 4.11: Absolute error of state (velocity) for FRTS (θ = 0.1) (log scale)

Siu Lun Yeung 73

400 450 500 550 600
10

-15

10
-10

x-velocity y-velocity

Figure 4.12: Absolute error of state (velocity) for FRTS (Magnified) (θ = 0.1) (log
scale)

0 200 400 600 800 1000
10

0

10
5

10
10

10
15

Figure 4.13: Variation of condition number for FRTS (θ = 0.1) (log scale)

0 200 400 600 800 1000
10

-16

10
-14

10
-12

10
-10

Figure 4.14: Relative error of covariance between cRTS and FRTS (θ = 0.1) (log
scale)

Siu Lun Yeung 74

0 100 200 300 400 500 600
0

10

20

30

40

50

Figure 4.15: Performance gain of proposed algorithms

0 200 400 600 800

10
-10

10
0

x-position y-position x-velocity y-velocity

Figure 4.16: Relative error of state for FRTS (θ = 1) (log scale)

0 200 400 600 800 1000
10

-15

10
-10

10
-5

10
0

10
5

x-position y-position

Figure 4.17: Absolute error of state (position) for FRTS (θ = 1) (log scale)

Siu Lun Yeung 75

0 200 400 600 800 1000

10
-10

10
-5

10
0

x-velocity y-velocity

Figure 4.18: Absolute error of state (velocity) for FRTS (θ = 1) (log scale)

0 200 400 600 800 1000
10

0

10
50

10
100

Figure 4.19: Variation of condition number for FRTS (θ = 1) (log scale)

0 200 400 600 800 1000
10

-20

10
-10

10
0

10
10

Figure 4.20: Relative error of covariance between cRTS and FRTS (θ = 1) (log scale)

Siu Lun Yeung 76

Table 4.3: Runtimes (in seconds)

Window Size
2 8 32 128 512

FRTS 4.877 4.928 5.229 5.387 7.419
cRTS 3.411 8.095 26.33 98.45 372.1

thesis then compute the runtime speedup St, as

St =
tf
tc

where tf denotes the runtime of the algorithm of FRTS and tc being the runtime of

the cRTS algorithm. This thesis show the overall speedup in Figure 4.15. To provide a

detailed information, this thesis also show the runtimes in Table 4.3. As can be observed

from the graph, FRTS shows superior performance gain when compared against the

cRTS. Moreover, it can be observed that the runtimes of the FRTS are almost the same

across range of window sizes, with significant speedups when compared to the cRTS. The

speedup increase with window size and reaches over 50 times speed-up for the window

size of 512. The value of Sr is approximately equal to 0.02 and so the proposed algorithm

FRTS has an edge in complexity over cRTS.

4.5.5 Multi-Target Scenario

The proposed algorithm will also work on multi-target tracking. Since the RTS smoother

is irrelevant to data association which is a step to assign observed measurements to

existing tracks, the multi-target scenario considered here will be independent. The

starting position and velocity of the targets are randomly generated from an uniform

distribution. 5 targets are moving in constant velocities for 1000 time steps and are

shown in Figure 4.21 which shows FRTS can track the target without huge error as in

Figure 4.1. As before, addictive Gaussian noise of variance of 100m is added to each time

step. Window size of 8 for the fixed-lag FRTS smoother. The tracking result is plotted

in Figure 4.21. The accuracy of the FRTS and cRTS are compared. To clearly observe

the change of propgated error. The x-positions and y-positions estimated by FRTS for

all 5 targets and 300 time steps are plotted in Figure 4.22. It can be observed that the

error is lower than θ which is set to 0.1. For x-, y- velocities, the mean of the estimated

value is provided in Table 4.4 to compare with Ground Truth values. Moreover, the

absolute error of x-, y- positions are plotted in Figure 4.24 and 4.25.

Siu Lun Yeung 77

2 4 6 8 10 12

10
4

-2

0

2

4

6

8
10

4

FRTS

Measurements

Figure 4.21: Multi-Target Tracking Scenario with FRTS

0 50 100 150 200 250 300
10

-16

10
-15

10
-14

10
-13

10
-12

Target 1 Target 2 Target 3 Target 4 Target 5

Figure 4.22: Relative Error of x-positions (log scale)

0 50 100 150 200 250 300
10

-16

10
-15

10
-14

10
-13

10
-12

Target 1 Target 2 Target 3 Target 4 Target 5

Figure 4.23: Relative Error of y-positions (log scale)

Siu Lun Yeung 78

0 50 100 150 200 250 300

10
-10

10
-8

Target 1 Target 2 Target 3 Target 4 Target 5

Figure 4.24: Relative Error of x-positions (log scale)

0 50 100 150 200 250 300

10
-12

10
-10

10
-8

Target 1 Target 2 Target 3 Target 4 Target 5

Figure 4.25: Relative Error of y-positions (log scale)

Table 4.4: Velocities of Targets

Target
1 2 3 4 5

x-vel (GT) 8.81 39.8 39.2 31.6 -46.4
y-vel (GT) 19.1 -12.1 1.85 15.8 -30.6
x-vel (FRTS) 8.74 39.7 39.1 31.6 -46.3
y-vel (FRTS) 18.8 -12.2 1.86 15.9 -30.4

Siu Lun Yeung 79

4.6 Conclusions

Retrodiction or smoothing is an essential process in the context of tracking and often

becomes embedded as part of the of the Kalman filter estimation process. The RTS

smoother is one of the most widely used smoothing algorithm in the tracking community.

However, a näıve acceleration of the RTS algorithm, fRTS−, can become numerically

unstable across window sizes, or across time steps. In this chapter, this thesis developed

an algorithm, FRTS, to address the shortcomings of fRTS−. This thesis showed that

stability issue can be identified by the condition number, and how this can be used to

monitor the progression of accuracy errors across time steps.

This thesis presented a detailed analysis on their computational complexities, showing

how FRTS can offer a significant performance advantage over the cRTS. This thesis

also verified these claims using a synthetic, yet realistic, evaluation, showing how the

accuracy errors can be contained within 10−9 percentage while offering over 50 times

speedup in runtime performance. This thesis show that these algorithms offer superior

performance both in terms of accuracy and computational complexity. This thesis shows

that FRTS is more capable than cRTS to handle a large number of targets within multi-

target tracking systems in real time.

Chapter 5

Cost-effective Multiple Model

Tracking

5.1 Introduction

Tracking algorithms require an accurate approximation of the motion of the targets.

The Multiple Model estimator has proven to be useful in tracking targets with different

modes of motion and has been widely researched [31, 32, 106–108]. MM includes all

the possible motion models in the algorithm and a bank of filters are operated on each

of the models. The motion estimation process works in two stages: prediction and

update. In the prediction stage, the state at the current time step is used to predict

the state at the next time step. This predicted state is then updated (or corrected)

using the measurement obtained at the subsequent time step during the second stage.

Among different filters that can be used for this predict-update process, the Kalman

Filter [24] is a popular basis for handling linear, non-linear and non-Gaussian models

through necessary extensions [26]. When the dynamics of the targets can switch among

different modes, it is more robust to have more than one motion model in the tracking

algorithm and hence the existence of many multiple-model (MM) algorithms.

In general, MM algorithms are formed by running several filters with different motion

model in each of them independently that match different maneuvering movement. The

output of these filters are fused to create an overall estimate. Each of the MM algorithms

have different configuration of fusing the estimates. The underlying structure of MM

algorithms can be explained as follows [18]

1. Model-set determination: This includes the choice of the model set incorporated

in the MM algorithm to achieve better estimates. Depends on the circumstances,

80

Siu Lun Yeung 81

it can be fixed-structure of variable-structure. Fixed-structure denotes that the

number of models is fixed in the MM algorithm whereas variable-structure varies

with time from a fix pool of model depends on which suits the algorithm the best

at each give time.

2. Cooperation strategy: This represents the strategy to deal with the uncertainties

in the model used which includes pruning of unlikely model, merging of similar

model and selection of the most likely model sequence. Also, iterative method can

be used such as expectation-maximization (EM) algorithm.

3. Output process: This generates overall esitmates based on all filters from number

of models and consider the strategy of fusing the best ones from them.

With different strategies, MM algorithms can be catogorized into three generations [109].

Different generations have different limitations and characteristics. The first generation

MM method was proposed by Magill and others [29, 30]. It mainly relies on the fact

that each elemental filter operates individually and independently. Then the output of

each individual filter are fused to produce the final estimate. The most well known of all

is autonomous MM (AMM) algorithm. The second generation extends the idea of first

generation MM method by introducing reconditioning of each filter at each time step. For

example, in the Interacting Multiple Model (IMM) algorithm, there is a reinitialization

step prior to the filtering step. The third generation introduces the notion of variable

structure, which allows varying number of models in each time step. It eliminates the

models that are not matched with the true modes of motions. This generation is known

as Variable Structure Multiple Model (VSMM). Amongst them, IMM is the most well

known and the most cost-effective due to its simplicity and effectiveness [110–114]. All

of the MM filtering stages involve using L number of filters and hence the complexity

of MM filtering algorithm is in general O(Ln3). However, some of the algorithms, for

example, GPB2 algorithm needs L2 operations for filtering operations [18].

In cases where a delay in estimation can be tolerated, the Multiple Model estimation

accuracy can be also improved rather significantly by incorporating a future measure-

ment. This process is known as Multiple Model smoothing or retrodiction. Similar to

single model tracking, the accuracy improves with the retrodiction window size. Several

methods which incorporated smoothing in the MM regime is presented in [57, 115–117].

In [115, 117], the authors proposed a two-filter methods which combine the forward

and backward time filters to calculate the smoothed estimates. The backward time fil-

ter often become the bottleneck of this approach as the inverse of target dynamics are

needed to be defined. In [116], augmented filters as mentioned in [90, 91] were used to

combine with the MM approach. However, this method is not widely used as there is

Siu Lun Yeung 82

no mode jump between models. Rauch-Tung-Striebel (RTS) smoothing [25] based MM

smoothing is presented in [57]. This approach use the conventional IMM forward filter

and then fuse with the RTS backward smoothing by merging the smoothed estimates

with different hypothesis. In general, the smoothed estimate is obtained by merging

estimates from a L smoothers with L being the number of models [118].

In many cases, a large number of models are required to cover the entire range of the

possible modes of motion which can become computationally infeasible. To reduce this

complexity, several papers have presented different methods in tackling this problem.

Most of the work relies on the assumption that the system would approach to steady-

state and so a constant Kalman Gain can be used for each of the filter bank. For instance,

in [20], a comparative study is presented to show the computation superiority of the

constant gain approach. Furthermore, a constant gain approach of the IMM (fastIMM)

based on α-β and α-β-γ filters are described in [21]. Besides, another fixed gain approach

at which the Kalman gain is calculated off-line prior to the tracking [22]. Since the IMM

is regarded as the most cost-effective MM filter in the tracking community, a lot of

work has been done to improve the complexity of such an algorithm. However, not

much has been explored in the smoother space to find a more cost-effective tracking

algorithm as a whole alongside smoothing. Especially, for smoothing, at each time step,

a multiple model algorithm with L models has to be executed N times and so smoothing

in MM settings can be a computation of bottleneck when L,N or the number of targets

increases. This chapter try to seek a cost-effective real-time approach of MM tracking

algorithms including the fixed-lag smoothing stage. Not only do the proposed algorithms

have unprecedented complexity advantages, they also do not rely on constant gain to

minimise computations. The key contributions of this Chapter are:

� Autonomous MM Fixed-Lag Smoother (AMMS):

This algorithm is similar to the idea of AMM filter but in smoother form. It

utilises the RTS smoother as the backbone and L number of smoothers to produce

the smoothed estimate. It also eliminates the reconditioning step of IMMS as the

Markov process has already been included in the filtering step if second generation

filter is used. Adding another reconditioning step in smoother would be redundant

in terms of cost-effectiveness as shown in the evaluation section.

� Fast MM Fixed-Lag Smoother 2 (FMMS):

This algorithm makes the computation complexity independent of number of mod-

els L which result in O(Nn3) instead of O(LNn3) as in the conventional method.

� Complexity Analysis of IMM and proposed algorithms:

A detailed complexity analysis is provided to show the computational advantage

of the proposed algorithm over the conventional approach.

Siu Lun Yeung 83

� Tracking Scenarios Simulations:

Two scenarios with complex manoeuvring patterns are simulated to see the runtime

and accuracy performance of the proposed approach. Also, a performance index to

calculate cost-effectiveness is suggested to quantify and to find a more cost-effective

MM tracking algorithm alongside with smoothing procedures.

This evaluations, based on a number of simulations, show that all the proposed ap-

proaches offer superior performance in terms of runtime and accuracy when compared

against the conventional approach. These results show that the proposed approach not

only offers good complexity performance, but can also provide more time of tolerance

for smoothing, leading to better state estimates as shown in Section 5.6. The rest of the

Chapter is organized as follows: Section 5.2 concentrate on introducing the AMM Filter

which serve as a background for the sections that follows this. Section 5.3 and 5.4 focus

on deriving the proposed smoother algorithms: AMMS and FMMS. After that, a de-

tailed complexity analysis is presented in Section 5.5 to show the benefits on complexity

of the proposed algorithms. Furthermore, two complex tracking scenarios are used in

Section 5.6 to compare the runtime and accuracy of the algorithms and finally, Section

5.7 conclude the findings.

5.2 Background

5.2.1 Autonomous Multiple Model Filter

The Autonomous Multiple Model Filter (AMMF) [109] gives the MMSE estimate x̂k|k =

E[xk|zk,mk−1
j] where mk−1

j is the true model at time k−1 and j = 1, ..., L. It is assumed

that the true system mode is time invariant and identical to one of the finite model set

used. This assumption separates first and second generations like IMM since IMM

assume the true mode sequence is Markov or random which allow a time-varying mode

sequence. The AMM algorithm runs a Kalman Filter (KF) on each of the model and so

the posterior probability of each model is calculated. Then, the model probabilities are

used to weight each of the models to produce the final estimate. In other words, each

of the model is operated independently and they only interact with each other in the

output stage. The AMMF recursion is executed as below

1. Mode-conditioned filtering stage:

KF will be used on each of the mode-model mj with initial condition xjk−1|k−1 and

P jk−1|k−1

Siu Lun Yeung 84

2. Mode probability update stage:

The mode probability can be calculated as

µjk =
µjk−1L

j
k∑N

i=1 µ
i
k−1L

i
k

(5.1)

where Ljk = N (ẑjk|k−1, S
j
k)

3. Estimate fusion stage:

The estimate of the final output are mixed from each of the filter with correspond-

ing mode probability

x̂k|k =
N∑
j=1

µjkx̂
j
k|k

Pk|k =

N∑
j=1

µjk{P
j
k|k + [x̂jk|k − x̂k|k][x̂

j
k|k − x̂k|k]

T }

(5.2)

Since AMMF only has one fusion stage where each bank of filter interact with each other

and so it is very computationally attractive being the simplest form of MM algorithm.

However, as it assumes true mode sequence is time invariant and so practical application

can be limited.

5.3 Formulation of AMMS

The use of a fixed-lag smoother is essential in real time tracking. Even with a small

lag, the smoother can outperform MM filtering significantly [119, 120]. The purpose

of the MM smoother is to calculate a new sets of estimates and re-weight the output

from each of the mode-filter in order to create an estimate with lower error in the case

of model switching. However, with large number of models and window size, the MM

algorithm can become a bottleneck in the smoothing step. In order to obtain a smoothing

algorithm which has lower computation time than the IMMS but comparable accuracy,

a smoothing algorithm is investigated based on AMM smoothing, which is referred as

AMMS. The AMM state estimator is given by the total expectation theorem,

x̂k = E[xk|zk]

=
N∑
j=1

E[xk|zk,mk
j]P{mk

j |zk} (5.3)

Siu Lun Yeung 85

Also, the covariance Pk|k will be given as

Pk|k = MSE(x̂k|k|zk) (5.4)

Similarly, in backward smoothing for AMMS, the smoothed density will be given as

p(xt|zk) where t < k. The expectation of this density will be

x̂t|k = E[xt|zk]

=

N∑
i=1

E[xt|zk,mk
i]P{mk

i |zk}

=

N∑
i=1

x̂it|kµ
i
k (5.5)

(5.6)

Also, the covariance Pt|k can be given as

Pt|k = MSE(x̂t|k|zk)

=

N∑
i=1

[P it|k + (x̂it|k − x̂t|k)(x̂
i
t|k − x̂t|k)

T]µik (5.7)

RTS smoother can be used to calculate x̂it|k and P it|k for each model. The smoothing

algorithm recursion for one step is executed as below

1. Smoothing stage:

RTS smoother will be used on each of the mode-model mi, where i = 1, ..., L with

initial condition xik+1|k+1 and P ik+1|k+1

2. Mode probability update stage:

The mode probability calculation is similar to (5.1) which is given as

µit|k =
µit+1|kL

i
t∑N

j=1 µ
j
t+1|kL

j
t

(5.8)

where Lit = N (x̂it+1|k; x̂
i
t+1|t, P

i
t+1|t)

3. Estimate fusion stage:

The smoothed of the final output are mixed from each of the jth smoother with

Siu Lun Yeung 86

corresponding mode probability

x̂t|k =
N∑
j=1

µjt|kx̂
j
t|k

Pt|k =
N∑
j=1

[P jt|k + (x̂jt|k − x̂t|k)(x̂
j
t|k − x̂t|k)

T]µit|k

(5.9)

The smoothing regime of AMMS is shown in Figure 5.1. Three models with three

different initial estimates, denoted as dots, are smoothed on the right of the Figure by the

RTS smoother individually. Then, the smoothed estimates of each smoother, denoted

as squares, are fused by Equation (5.9). As shown in Figure 5.2, IMMS reinitialize

each of the smoother estimates before smoothing based on the smoothed estimate from

other smoother models. Therefore, AMMS is more computationally attractive than

IMMS since AMMS has omitted the reinitialization stage. This omission is due to the

fact that the Markov process has already been assumed in the filtering stage if a second

generation filter is used. Therefore, in terms of cost-effectiveness, the reconditioning step

in smoothing stage might be redundant to achieve real-time performance. The smoother

scheme by using the GBP1, which refer as GBP1S is also displayed in Figure 5.3 for

comparison. The main difference is that GBP1S use the fused estimate x̂k−1|k−1 for the

next time step. The algorithm of AMMS for time lag L is displayed in Algorithm 7.

Algorithm 7 AMMS Algorithm

1: for k=0; k<T; k++ do
2: . Forward Pass: MM Filtering
3: [P ik+1|k+1, P

i
k+1|k, x̂

i
k+1|k+1, x̂

i
k+1|k] =

4: Filter[x̂ik|k, P
i
k|k]

5: . Backward Pass: AMMS
6: if k > L then
7: for t=k-1; t>=k-L; t-- do
8: . Smoothing stage
9: [P it|k, x̂

i
t|k] =

10: RTS[x̂it+1|t, P
i
t+1|t, x̂

i
t|t, P

i
t|t]

11: . Mode probability update stage
12: Equation (5.8)

13: . Estimate fusion stage
14: Equation (5.9)
15: end for
16: end if
17: end for

Siu Lun Yeung 87

Start of Smoothing End of SmoothingEstimate

Figure 5.1: Operations of the AMMS

Start of Smoothing End of SmoothingEstimate

Figure 5.2: Operations of the IMMS

Start of Smoothing End of SmoothingEstimate

Figure 5.3: Operations of the GBP1S

Siu Lun Yeung 88

5.4 Formulation of the FMMS

Extending the idea from the AMM and the AMMS, this section derives a new method

of smoothing which is part of the contribution of the thesis. Apart from smoothing each

of the models and fusing the estimate at each step, it is possible to fuse the statistics

prior to the smoothing stage in order to remove the computational burden of smoothing

N models at each step. The MMSE estimate from the estimate fusion stage as shown in

(5.2) pre-fuses the estimate in order to remove the computational burden of smoothing

N models at each step. By looking at the RTS smoother equations in (??) to (??),

the statistics that is needed to implement the RTS smoother are x̂k|k, x̂k+1|k, Pk|k and

Pk+1|k. For x̂k|k and Pk|k, the MMSE estimate from the estimate fusion stage as shown

in (5.2) can be used. Same principle can be applied to the predicted statistics, x̂k+1|k

and Pk+1|k. By using the total probability theorem,

x̂k+1|k =

N∑
j=1

µjk|kx̂
j
k+1|k (5.10)

Pk+1|k =

N∑
j=1

µjk|k{P
j
k+1|k + [x̂jk+1|k − x̂k+1|k]

[x̂jk+1|k − x̂k+1|k]
T }

(5.11)

However, a new smoother gain needs to be derived. This is because for the usual MM

algorithm, each of the mode model Ai is used to calculate the smoother gain individually

to smooth each of the mode estimate. In order to obtain an MM smoother that has the

complexity independent to the number of models N , the smoother gain needed to be

fused before the implementation of the smoother step. The smoother gain from each

mode filter can be calculated by

Cjk = P jk|kA
j
k

T
(P jk+1|k)

−1
(5.12)

Since smoother gain is just a weight and therefore can be re-weighted based on the model

probability µjk|k. To fuse the smoother gain Cjk, total probability theorem can be used

which gives the mixed gain Φ

Φk =

N∑
j=1

µjk|kC
j
k (5.13)

Therefore, the estimates obtained from filtering can be smoothed by a simple RTS

smoother with dynamic model according to the mode probability. Due to the fact that

the estimates and predictions are mixed together prior smoothing step, the complexity

Siu Lun Yeung 89

Start of Smoothing End of SmoothingEstimate

Figure 5.4: Operations of the FMMS

of number of models L can also be taken out which leads to complexity of O(Nn3). Note

that, the calculations of (5.10) to (5.13) can be performed prior to the smoother stage.

The FMMS algorithm is shown in Algorithm 8 and the smoothing regime is shown as

Figure 5.4.

Algorithm 8 FMMS Fixed-Lag Smoother

1: for k=0; k<T; k++ do
2: . Forward Pass: MM Filtering
3: [P ik+1|k+1, P

i
k+1|k, x̂

i
k+1|k+1, x̂

i
k+1|k] =

4: Filter[x̂ik|k, P
i
k|k]

5: Equation (5.10) to (5.13)
6: . Backward Pass: FMMS
7: if k > L then
8: for t=k-1; t>=k-L; t-- do
9: [Pt|k, x̂t|k] =

10: FMMS[x̂t+1|t, Pt+1|t, x̂t|t, Pt|t]
11: end for
12: end if
13: end for

5.5 Computational Complexity Analysis

In this section, this thesis provide a detailed analysis on the computational complex-

ity of the Interactive Multiple Smoothing as well as the proposed algorithms, namely

AMMS and FMMS. Both smoother and filtering operations often involve manipulation

of matrices, and thus basic linear algebra operations such as matrix-matrix multiplica-

tion (MMM), matrix-vector multiplication (MVM), matrix inverse (MI), matrix-matrix

addition (or subtraction) (MMA), element-wise operation (EWO) and vector-vector ad-

dition (or subtraction) (VVA). These are often referred to as Basic Linear Algebra

Subroutine operations or BLAS operations [38]. For each of the algorithm, this thesis

discuss the relevant BLAS operations. In addition to this, this thesis provide the num-

ber of floating point operations (FLOPs). A floating-point operation can be either a

summation or multiplication. However, in practice, the real number of FLOP differs

between them. In here, for simplicity, any operation is counted as a single FLOP.

Siu Lun Yeung 90

5.5.1 Interactive Multiple Model Filtering and Smoothing

IMMF can be regarded as running several KF smoothers in parallel with some mixing

procedures. The number of operations of KF have already been presented in [23] and

Table 3.1 and so will not be analysed in this Chapter. In summary, a single iteration of

KF needs the following operations.

� Eight matrix-matrix multiplications;

� Three matrix-vector multiplications;

� Three matrix additions (subtractions);

� Four vector additions (subtractions);

� Three matrix transpose operations; and

� One matrix inversions.

The FLOPs of IMMF are presented in Table 5.1. Prior to the stage of filtering for each

model, there are two stages: calculation of mixing probabilities and the mixing stage. In

the calculation of the mixing probabilities stage, the total predicted model probability

c̄ with size L × 1 is calculated through MVM. When calculating mixing probabilities

µ
i|j
k−1|k−1 with size L×L, each of the element in the matrix is calculated with 1 element

wise multiplication and 1 division which leads to 2L2 FLOP. In the mixing stage, the

estimate and its covariance are mixed with the corresponding probabilities. The mixing

of estimate x̄jk−1|k−1 with size ns × L can be calculated as MMM. For the mixing of

covariance, it calculates L numbers of covariances, each of them with size ns × ns.

At first, the difference of the mixed estimate and the previous estimate are calculated

which leads to ns FLOPs. There will be L2 vector subtractions involved and so the

total FLOP will be L2ns. Then, L2 vector and vector multiplications which is counted

as (Lns)
2. Since vector transpose can be omitted with correct permutations, the FLOP

involved can be omitted. For the addition of P ik−1|k−1 and vvT , there will be L2 number

of additions of n2s FLOPs. Finally each of the covariance component will be weighted

by the probabilities which result in (Lns)
2. Then, there are L × (L − 1) number of

summations to calculate each of the model covariance. After that, the mixed estimates

and covariance are processed by the filtering stage. The total number of FLOPs of KF

is [23]

Fkf = 6ns
3 + 6nmns

2 + 4nsn
2
m + n3m + nsnm − ns (5.14)

where nm represents number of dimensions. After the filtering stage, the likelihood of

each of the model is used to update the mode probability. The normalising constant c

Siu Lun Yeung 91

involves L element wise multiplication and L − 1 summations and so 2L − 1 FLOPs.

After that, the mode probability µjk|k needs 1 multiplication and 1 division for each

element in µjk|k with total of L elements and so 2L FLOPs are needed. Finally, for

the overall estimate, there are Lns element wise multiplication and L − 1 additions of

vectors with size ns which leads to 2Lns − ns. For overall covariance, the procedure is

similar to covariance mixing. However, instead of calculating covariance for each of the

model, only one covariance is needed to calculate. Therefore, there will be L number of

operations instead of L2. As a result, the total number of FLOPs of IMMF including

the filtering stage,

Fimmf = 4(Lns)
2 + 2L2ns + 3L(ns)

2 + L(Fkf)

4L2 + 3L+ 2Lns − n2s − ns − 1
(5.15)

For IMMS, the backbone of the algorithm is RTS smoother. Similarly, the details of its

FLOPs will not be included here. In summary, it needs

� Four matrix-matrix multiplications;

� One matrix-vector multiplications;

� Two matrix additions (subtractions);

� Two vector additions (subtractions);

� One matrix transpose operations; and

� One matrix inversion.

which results in

Frts = 9n3s + ns (5.16)

The operations of IMMS is similar to IMMF but instead of filtering step, a smoothing

procedure is used. Also, a backward transition probability is needed to be calculated.

Therefore, the overall number of FLOPs including the RTS stage is

Fimms = 4(Lns)
2 + 2L2ns + 3Ln2s + LFrts

8L2 + 2L+ 2Lns − n2s − ns − 1
(5.17)

Siu Lun Yeung 92

Table 5.1: Operational Complexity of the IMMF

Operation FLOPs Type

Mixing probabilities:

c̄j =
∑L
i=1 pijµ

i
k−1|k−1 2L2 − L MVM

µ
i|j
k−1|k−1

= 1
c̄j
pijµ

i
k−1|k−1 2L2 EWO

Estimate Mixing:

x̄
0j
k−1|k−1

=
∑L
i=1 µ

i|j
k−1|k−1

x̂ik−1|k−1 2L2ns − Lns MMM

Covariance Mixing:

v = x̂ik−1|k−1 − x̄
0j
k−1|k−1

L2ns VVA

vvT (Lns)2 VVM

P ik−1|k−1 + vvT (Lns)2 MMA

µ
i|j
k−1|k−1

[P ik−1|k−1 + vvT] (Lns)2 EWO

P
0j
k−1|k−1

= sum(P) L(L− 1)n2
s MMA

Mode-matched filtering:

[P
j
k+1|k+1

, P
j
k+1|k, x̂

j
k+1|k+1

, x̂
j
k+1|k] = LFkf KF

KF [x̂
j
k|k, P

j
k|k]

Mode probability update:

c =
∑L
i=1 Λ

j
k
c̄j 2L− 1 EWO

µ
j
k|k = 1

c
Λ
j
k
c̄j 2L EWO

Overall Estimate:

x̂k|k =
∑L
j=1 µ

j
k|kx̂

j
k|k 2Lns − ns MVM

Overall Covariance:

v = x̂
j
k|k − x̂k|k Lns VVA

vvT Ln2
s VVM

P
j
k|k + vvT Ln2

s MMA

µ
j
k|k[P

j
k|k + vvT] Ln2

s EWO

Pk|k = sum(P) Ln2
s − n

2
s MMA

Siu Lun Yeung 93

Table 5.2: Operational Complexity of the IMMS

Operation FLOPs Type

Backward transition probability:

ej =
∑L
l=1 pliµ

l
t|t 2L2 − L MVM

bij = 1
ēi
pjiµ

j
t|t 2L2 EWO

Backward mixing probability:

dj =
∑L
l=1 bijµ

l
t+1|k 2L2 − L MVM

µ
i|j
t+1|k = 1

d̄j
bijµ

i
t+1|k 2L2 EWO

Estimate and Covariance Mixing:

x̂
0j
t+1|k =

∑L
i=1 µ

i|j
t+1|kx̂

i
t+1|k 2L2ns − Lns MMM

v = x̂it+1|k − x̄
0j
t+1|k L2ns VVA

vvT (Lns)2 VVM

P it+1|k + vvT (Lns)2 MMA

µ
i|j
t+1|k[P it+1|k + vvT] (Lns)2 EWO

P
0j
t+1|k = sum(P) L(L− 1)n2

s MMA

Mode-matched Smoothing:

[P
j
t|k, x̂

j
t|k] LFrts RTS

= RTS[x̂
j
t|t, P

j
t|t, x̂

j
t+1|t, P

j
t+1|t]

Smoothed mode probability:

µ
j
t|k = 1

f
Λ
j
t|kµ

j
t|t 2L EWO

f =
∑L
i=1 Λ

j
t|kµ

j
t|t 2L− 1 EWO

Overall Smoothed Estimate and Covariance:

x̂t|k =
∑L
j=1 µ

j
t|kx̂

j
t|k 2Lns − ns MVM

v = x̂
j
t|k − x̂t|k Lns VVA

vvT Ln2
s VVM

P
j
t|k + vvT Ln2

s MMA

µ
j
t|k[P

j
t|k + vvT] Ln2

s EWO

Pt|k = sum(P) Ln2
s − n

2
s MMA

5.5.2 Autonomous Multiple Model Filtering and Smoothing

In order to analyse the improvement of complexity of AMMS, the following FLOPs

count analysis is presented. The FLOPs count of AMMS is presented in Table 5.3 for

window size N . The total number of FLOPs will be

Famms = N(4Ln2s + 3Lns + 4L+ LFrts − n2s − ns − 1) (5.18)

Since AMMF is the same algorithm but with the smoothing stage instead of filtering

stage. The overall FLOPs count of the algorithms are the same as AMMS and so the

overall FLOPs for AMMF is

Fammf = 4Ln2s + 3Lns + 4L+ LFkf − n2s − ns − 1 (5.19)

Siu Lun Yeung 94

5.5.3 Fast Multiple Model Smoothing

For FMMS, the complexity burden of L model is released in the smoothing stage. There

is only one set of RTS smoother calculation needed in the smoothing stage. Also, the

mixed smoother gain Φ can be cached and so only needed to be calculated once in every

time step instead of every window step. Moreover, the mixed estimate and covariance

predictions are needed to be calculated for FMMS as in (5.10) and (5.11). The FLOPs

count of FMMS is presented in Table 5.4. Therefore, the total FLOPs for window size

N is
Ffmms = 5Ln3s + 3Ln2s + 3Lns − n2s − 2ns

+N(4n3s + 2n2s − ns)
(5.20)

5.5.4 Comparison

To compare the FLOPs count of the proposed algorithms and the conventional IMM,

the following gain metric gsu is defined.

gsu =
Fbase
Falgo

(5.21)

where Fbase represents the FLOPs of the conventional algorithm and Falgo denotes the

FLOPs of algorithm being compared. The speed-up of AMMS and FMMS over IMMS

are shown in Figure 5.5. For a window size of 4, the advantage of FMMS and AMMS

over IMMS increases linearly with the number of models. In practice, 4 − 10 models

are used in MM algorithms which can bring over 8 times and nearly 2 times speed up

comparing with IMMS when 10 models are used. As expected, FMMS has the highest

speed-up as it is computationally independent of the number of models L. To observe

the speed-up of algorithms across different window size 1− 32, the number of model is

set to four and the result is shown in Figure 5.6. The performance gain of AMMS is

restricted to 1.3× while FMMS can reach up to over 10× faster than the conventional

IMMS approach.

5.6 Simulation and Evaluation

5.6.1 Simulated Scenario

To demonstrate the efficacy of the proposed approach, 2 tracking scenarios are simulated.

Consider a scenario with single target flying over a surveillance region of for 500 time

steps. all experiments are implemented 100 times and average values are calculated. At

Siu Lun Yeung 95

0 20 40 60 80 100
0

10

20

30

40

50

60

FMMS AMMS

Figure 5.5: Speed-up of AMMS and FMMS in comparison with IMM when N = 4

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

FMMS AMMS

Figure 5.6: Speed-up of AMMS and FMMS in comparison with IMM when L = 4

t equals to 100, 200 and 300, it undergoes constant turn for 50 time steps at turn rate

of 0.17, 0.03 and −0.17rad/s. It remains to be constant velocity dynamics (23.5m/s)

for the rest of the motions. A 4-model MM algorithms is used. The tracking scenario

is shown in Figure 5.7. The second scenario, as shown in Figure 5.8, has 700 time steps

and at t equals to 50, 200, 300, 400, 500 and 600, it undergoes constant turn for 50 time

steps at turn rate of −0.34, 0.17, −0.16, 0.04, 0.34 and −0.03rad/s. The simulation will

rely on a 7-model MM algorithm comprised of a constant velocity model and 6 constant

turn model with the respective known turn rate. More specifically, this thesis set the

state transition matrix A, measurement matrix H, turn rate w, state vector x, process

and measurement noise covariance matrices Q and R as follows:

Siu Lun Yeung 96

Table 5.3: Operational Complexity of the AMMS

Operation FLOPs Type

Mode-matched Smoothing:

[P
j
t|k, x̂

j
t|k] LFrts RTS

= RTS[x̂
j
t|t, P

j
t|t, x̂

j
t+1|t, P

j
t+1|t]

Mode probability:

µit|k =
µi
t+1|kL

i
l∑L

j=1
µ
j
t+1|kL

j
l

4L− 1 EWO

Overall Smoothed Estimate:

x̂t|k =
∑L
j=1 µ

j
t|kx̂

j
t|k 2Lns − ns MVM

Overall Covariance:

v = x̂
j
t|k − x̂t|k Lns VVA

vvT Ln2
s VVM

P
j
t|k + vvT Ln2

s MMA

µ
j
t|k[P

j
t|k + vvT] Ln2

s EWO

Pt|k = sum(P) Ln2
s − n

2
s MMA

Acv =


0

0

0

1

0

0

1

0

0

1

0

§

1

0

§

0


H =


0

1

1

0

0

0

0

0


Aturn =


0

0

0

1

0

0

1

0

sin(w§)

cos(w§)

1−cos(w§)
w

sin(w§)
w

cos(w§)

− sin(w§)

sin(w§)
w

cos(w§)−1
w



Furthermore, the initial velocities in x- and y- directions of the target are randomly

generated. At each time step, a Gaussian distributed noise N (µ, σ2) with µ = 0 and

σ = 50m with R = 502m2 is added for scenario 1 and µ = 0 and σ = 100m with

R = 1002m2 for scenario 2. For the IMM and the IMMS, the following Markov transition

matrix is defined for scenario 1 and 2.

Siu Lun Yeung 97

Table 5.4: Operational Complexity of the FMMS

Operation FLOPs Type

Mixed Prediction Estimate:

x̂k+1|k =
∑L
j=1 µ

j
k|kx̂

j
k+1|k 2Nns − ns MVM

Mixed Prediction Covariance:

v = x̂
j
k+1|k − x̂k+1|k Lns VVA

vvT L(ns)2 VVM

P
j
k+1|k + vvT L(ns)2 MMA

µ
j
k|k[P

j
k+1|k + vvT] L(ns)2 EWO

Pk+1|k = sum(P) (L− 1)n2
s MMA

Mixed Gain:

P
j
k|kF

j
k

T
L(2ns

3 − ns2) MMM

P
j
k+1|k

−1 ≈ Lns3 MI

C
j
k

= P
j
k|kF

j
k

T
P
j
k+1|k

−1
L(2ns

3 − ns2) MMM

Φk =
∑L
j=1 µ

j
k|kC

j
k

Lns
2 + ns(N − 1) EWO

Smoothed state:
x̂t+1|k − x̂t+1|t ns VVA

Φk(x̂t+1|k − x̂t+1|t) 2ns
2 − ns MVM

x̂t|k = x̂t|t + Φk(x̂t+1|k − x̂t+1|t) ns VVA

Smoothed covariance:

Pt+1|k − Pt+1|t ns
2 MMA

Φk(Pt+1|k − Pt+1|t) 2ns
3 − ns2 MMM

Φk(Pt+1|k − Pt+1|t)Φk
T 2ns

3 − ns2 MMM

Pt|k = Pt|t − Φk(Pt+1|k − Pt+1|t)Φk
T ns

2 MMA

-2000 -1000 0 1000 2000

0.8

0.9

1

1.1

1.2

10
4

Measurements

Ground Truth

Figure 5.7: Scenario 1 for Target Tracking

Siu Lun Yeung 98

-500 0 500 1000 1500 2000 2500 3000
4000

6000

8000

10000

12000
Measurements

Ground Truth

Figure 5.8: Scenario 2 for Target Tracking

0 100 200 300 400 500
0

20

40

60

80

100

120
KF

IMM

AMM

I-FMMS

I-AMMS

I-IMMS

A-FMMS

A-AMMS

Figure 5.9: Position Error Comparison for Tracking Scenario 1

0 100 200 300 400 500
0

5

10

15

20

25

KF

IMM

AMM

I-FMMS

I-AMMS

I-IMMS

A-FMMS

A-AMMS

Figure 5.10: Velocity Error Comparison for Tracking Scenario 1

Siu Lun Yeung 99

0 100 200 300 400 500
-0.5

0

0.5

1

1.5
Truth

IMM

AMM

I-AMMS

I-IMMS

A-AMMS

Figure 5.11: Comparison of Mode Probability for CV for Scenario 1

0 100 200 300 400 500

10
2

10
4

10
6

KF

IMM

AMM

I-IMMS

I-FMMS

I-AMMS

Figure 5.12: Cost effectiveness plot for Tracking Scenario 1

0 100 200 300 400 500 600 700

40

60

80

100

120

140
KF

IMM

AMM

I-FMMS

I-AMMS

I-IMMS

A-FMMS

A-AMMS

Figure 5.13: Error Comparison for Tracking Scenario 2

Siu Lun Yeung 100

0 100 200 300 400 500 600 700
5

10

15

20

25
KF

IMM

AMM

I-FMMS

I-AMMS

I-IMMS

A-FMMS

A-AMMS

Figure 5.14: Velocity Error Comparison for Tracking Scenario 2

0 100 200 300 400 500 600 700
-0.5

0

0.5

1

1.5
Truth

IMM

AMM

I-AMMS

I-IMMS

A-AMMS

Figure 5.15: Comparison of Mode Probability for CV for Scenario 2

0 100 200 300 400 500 600 700
10

1

10
2

10
3

10
4

10
5

KF

IMM

AMM

I-IMMS

I-FMMS

I-AMMS

Figure 5.16: Cost effectiveness plot for Tracking Scenario 2

Siu Lun Yeung 101

p1ij =


0.01

0.01

0.01

0.97

0.01

0.01

0.97

0.01

0.01

0.97

0.01

0.01

0.97

0.01

0.01

0.01


pij =


0.01

0.01

0.01

0.01

0.01

0.01

0.94

0.01

0.01

0.01

0.01

0.01

0.94

0.01

0.01

0.01

0.01

0.01

0.94

0.01

0.01

0.01

0.01

0.01

0.94

0.01

0.01

0.01

0.01

0.01

0.94

0.01

0.01

0.01

0.01

0.01

0.94

0.01

0.01

0.01

0.01

0.01

0.94

0.01

0.01

0.01

0.01

0.01

0.01


where In is an identity matrix of dimension n

5.6.2 Error-to-Complexity Performance Index

In order to quantify the cost effectiveness of different algorithms, the Error-to-Complexity

performance index γ is proposed.

γ =
Nflops

Edatarmse − Ermse
(5.22)

where Ermse is the RMSE of the algorithm, whereas Edatarmse is the RMSE of the mea-

surements to ground truth and Nflops is the number of FLOPs of algorithm. γ can

be interpreted as the cost of FLOPs needed to account for the accuracy increase from

taking measurements as estimates. Therefore, the algorithm which has the lower value

of γ will be more cost-effective.

5.6.3 Analysis and Discussion

To investigate the accuracy and efficiency of the proposed algorithms, they are used to

compare with other MM algorithms on both tracking scenarios. The tracking algorithm

Siu Lun Yeung 102

comprised of filtering and smoothing stage. The relationship between different filtering

and smoothing combinations is also studied. The filtering algorithms are IMM and

AMM. For smoothing, AMMS, FMMS and IMMS are compared. If the MM algorithm

use IMM as filter and IMMS as smoothing, the algorithm will be termed as I-IMMS. If

AMM is used, it will be named as A-AMMS. Moreover, the result of KF which use CV

model is compared as well as a baseline. The algorithms: KF, AMM, IMM, I-AMMS,

I-IMMS, A-FMMS and A-AMMS, are used to perform state estimations on tracking

scenario 1 and 2. The results are plotted in Figure 5.9 to 5.16.

For tracking scenario 1, it is shown that from time step 0 to 100 in Figure 5.9, the

object is moving in constant velocity and all models have similar RMSE, however, when

the object undergoes constant turn at 0.17rad/s for 50 time steps, the KF, AMM has

a sudden increase in RMSE. A-FMMS and A-AMMS also has the same effect but due

to the use of smoother, the RMSE is lowered. While the RMSE for IMM, I-FMMS, I-

AMMS and I-IMMS remain steady which indicates the change of model do not have an

effect of the RMSE. The ones that have the IMM as filter and equipped with a smoother

have the lowest RMSE, regardless of the choice of smoother. When the time step is at

200, another turn is taken at 0.03rad/s for 50 time steps. No significant RMSE error

change is observed due to the fact that the turn rate is not too high as so a CV will be

suffice for algorithms that does not have good switching capability. When at time step

300, a turn rate of −0.17rad/s is taken and similar RMSE can be observed as in time step

100. The RMSE of AMM, KF, A-AMMS, and A-FMMS increase while IMM, I-FMMS,

I-IMMS and I-AMMS are independent to model change. The velocities estimates have

a similar pattern to position as shown in Figure 5.10. The switching efficiency of the

algorithms can be explained more through looking at the mode probability change of

CV as shown in Figure 5.11. In the beginning from time step 0 to 100, all algorithms can

identify CV as the correct model. However, at time step 100, AMM has a late switching

response and at t = 150, AMM and A-AMMS determine that the probability of CV is

close to 0 while indeed CV is the correct model, whereas IMM, I-AMMS and I-IMMS can

correctly keep up with the switching. The same happen at time step 300 at which AMM

and A-AMMS incorrectly determine the model choice. IMM, I-AMMS and I-IMMS have

the correct model switching with I-AMMS and I-IMMS perform better with the help of

smoother. Therefore, they perform better as shown in Figure 5.9 and 5.10. Moreover,

to compare the effectiveness of algorithms, the γ value of them are plotted in Figure 5.12

which shows that I-FMMS has the lowest γ value which indicates the most effective out

of the algorithms shown. The IMM is the second most cost effective, meaning although

I-IMMS perform better in estimation, the decrease in RMSE does not account for the

increase in FLOPs. Therefore, in real time tracking scenarios, users may take this into

consideration when designing tracking algorithms. However, the proposed algorithm has

Siu Lun Yeung 103

an even lower γ value than IMM which shows the decrease in RMSE brought by the

smoother does account for the increase in FLOPs.

For scenario 2, targets are more manoeuvrable and a higher noise level is simulated which

increase the difficulty of tracking. However, similar result are shown in Figures 5.13

to 5.14, with I-FMMS, I-AMMS and I-IMMS show the lowest RMSE and I-FMMS

being the most cost-effective as shown in Figure 5.16. It is interesting to note that

the Markov transition and reinitialisation step as in the IMM is not important in the

smoothing stage as justified y Figures 5.9 to 5.11 for scenario 1 and Figures 5.13 to

5.15 for scenario 2. Similar performance can be achieved, comparing to the I-IMMS,

without using the Markov transition matrix and shows that the I-AMMS and I-FMMS

has better complexity than te I-IMMS.

5.7 Conclusions

The Multiple Model (MM) estimation approach offers outstanding performance for

tracking maneuvering targets. The Interacting Multiple Model (IMM) estimator has

been regarded as the state-of-the art in the domain of multiple model tracking due to

its simplicity and accuracy. Furthermore, when a delay can be tolerated, retrodiction or

smoothing can be used in the context of tracking and often becomes part of the estima-

tion process. The Rauch-Tung-Striebel (RTS) Smoother is one of the most widely used

smoothing algorithm in the tracking community. Interacting Multiple Model (IMM)

smoother is a smoother regime that utilise RTS and IMM together. However, with a

large number of window size and number of models, such a MM tracking algorithm is dif-

ficult to achieve real-time performance. This chapter has proposed an efficient smoother

algorithm by using Autonomous Multiple Model as the backbone as well as derived a

new Fast Multiple Model smoother (FMMS) to look for a better compromise between

floating point operations and accuracy in terms of RMSE.

This chapter presented a detailed analysis on their computational complexities, showing

how these algorithms can offer a significant performance advantage over the conventional

IMM and IMMS algorithms. Among these, the FMMS offers the best computational

complexity, which release the computational burden of number of models and achieve

the unprecedented complexity of O(Nn3). Besides, it is shown that, in this study, it is

the more cost-effective over the conventional approach this chapter have compared. It

also show that these algorithms offer comparable performance in terms of accuracy in

two tracking scenarios.

Chapter 6

Conclusions

The aim of this thesis is to present novel algorithms that can improve the performance

of the tracking procedures in the aspect of filtering, smoothing and multiple model

tracking. Under this thesis scope, a collection of novel algorithms for target tracking

was developed. This chapter will thus emphasize the main results drawn from the

algorithms compared and presented in various tracking scenarios.

In Chapter 3, a novel parallelisation algorithm the RTS Smoother was developed which

brings notable performance gain along with the parallelisation in handling the number

of targets. This leads to nested parallelism and studies suggested that in order to

maximise performance gain, a careful understanding of the computing architecture as

well as the window size and the number of targets are needed. After re-formulating the

RTS smoother algorithm, it was discovered that a lot of data can be reused and so a

massive amount of FLOPs can be omitted. The simulation results show that nearly a

150-fold speed-up can be achieved by compared to the naive approach.

Apart from introducing parallelism in RTS smoother, it is also possible to omit the in-

termediate calculations and obtain the fixed-lag estimate directly in every time step. By

studying the nature of fixed-point smoother, the fixed-lag RTS Smoother has been re-

formulated in order to accommodate the caching mechanism in the algorithm. However,

after reformulation, the algorithm becomes unstable and so a thorough stability analysis

has been presented in Chapter 4. After identifying the source of the stability problem,

condition number guided-smoother is proposed to monitor the deterioration rate of the

smoother. As a result, a 50 times speedup can be achieved in runtime performance with

comparable RMSE to the conventional RTS smoother.

Apart from filtering and smoothing, when target motion is uncertain, multiple model

algorithms are used to improve tracking maneuvering targets. The first generation

104

Siu Lun Yeung 105

of MM algorithms is the most limited, since it assumes the target is in a constant

maneuver, such that the target has one (unknown) constant mode. The other two

generations have more complex concepts, even though they are not computationally

more complex. Their tracking capability is much better, since they assume the targets

can have multiple maneuvering motions. The CMM generation has little more room

for improvement, leading to the general belief in the tracking community, that the

VSMM algorithms will outperform fixed-structure MM algorithms significantly, since

they allow lower computational complexity with larger model-sets. However, the VSMM

algorithms are relatively new and need more research to be well established as a robust

alternative algorithm to CMM. Therefore, IMM remains the state-of-the-art approach

for MM algorithms. In order to seek a more cost-effective approach, a compromise

between the first and second generation MM algorithms is investigated. A Fast Multiple

Model Filter along with smoothing are introduced and presented in Chapter 5. Not

only does it possess the light weight nature of first generation algorithm, it also has

comparable accuracy comparing with IMM and IMMS. From the complexity analysis, a

10 times speedup can be achieved.

The advantage of the suggested algorithms are having the computational edge. How-

ever, the algorithms become more complex and more difficult to implement than the

conventional RTS. For example, the programming of parallel RTS algorithm mentioned

in Chapter 3 needs to consider threads spawning and synchronization which needs more

time to tune and more complicated to code. Moreover, parallel computing might leads to

different result due to truncation and calculation approximations. The FRTS and FMMS

algorithms suggested in Chapter 4 and 5 also suffer similar problem. It is a trade-off

between accuracy and complexity. Although 50 times speed-up can be achieved, certain

amount of accuracy is loss during the process. The amount of loss is controlled by the

users and user can find a optimal point between accuracy and speed.

6.1 Future Work

The additional research that can be realized in this area is vast. There are several

additional topics to extend this thesis work, they are: i) Non-linear tracking algorithms,

ii) alternative algorithms and iii) measurement origin uncertainty algorithm.

All algorithms presented in the thesis are applied to linear Kalman filtering. However,

there are other filters in the tracking community such as the extended Kalman filter,

particle filtering and PHD filtering that use the same principles as the linear Kalman

filter. Moreover, since these filters need to handle more complicated problems in non-

linear scenarios, they tend to have higher complexity and are more computationally

Siu Lun Yeung 106

intensive. The proposed techniques can possibly be transferred to these filtering and

smoothing algorithms to improve the existing methods.

In Chapter 3, the proposed parallelized retrodiction algorithm can be further improved

by considering thread spawning times and can be fully customized when number of

window size is fixed before deploying the use fo the algorithm. Since thread spawning can

be a small bottleneck for parallel algorithm, threads can be pre-allocated to designated

operations to achieve better performance. For the proposed algorithm FRTS, the trade-

off between accuracy and complexity solely replies on the accuracy renewal step. The

complexity benefit of the FRTS would be minimised if the renewal step is needed to be

used too frequently when high accuracy is required. Therefore, more work can be done

on this area to further improve the accuracy of the proposed algorithm FRTS and so it

can run more smoothly without monitoring the deterioration of the algorithm. In terms

of the MM approach, there can be two directions to exploit in order to achieve better

accuracy for tracking manoeuvring targets in real-time. The first one is to design a better

set of models to better capture different possibility of target movement and incorporating

them into the MM algorithms. The other approach is to develop and design better

algorithms which this thesis is proposing. However, the proposed method does not

show any improvement in tracking accuracy but only in complexity. On this note, more

research can be carried out to develop novel methods for achieving higher accuracy while

maintaining complexity independent to number of models used and smoothing window

size.

Also, measurement origin uncertainty algorithm has not been considered on in this

thesis. However, it is a very important stage in tracking which can impact the tracking

performance. The process of filtering and smoothing can help these algorithms to obtain

more accurate results and so false detections can be reduced.

Bibliography

[1] Z. Ge, F. Chang, and H. Liu. Multi-target tracking based on Kalman filtering

and optical flow histogram. In 2017 Chinese Automation Congress (CAC), pages

2540–2545, Oct 2017.

[2] X. R. Li. The PDF of nearest neighbor measurement and a probabilistic nearest

neighbor filter for tracking in clutter. In Proceedings of 32nd IEEE Conference on

Decision and Control, pages 918–923 vol.1, Dec 1993.

[3] Xuezhi Wang, S. Challa, and R. Evans. Gating techniques for maneuvering target

tracking in clutter. IEEE Transactions on Aerospace and Electronic Systems, 38

(3):1087–1097, Jul 2002.

[4] Z. Bekhtaoui, A. Meche, M. Dahmani, and K. A. Meraim. Maneuvering target

tracking using q-learning based Kalman filter. In 2017 5th International Confer-

ence on Electrical Engineering - Boumerdes (ICEE-B), pages 1–5, Oct 2017.

[5] Wolfgang Koch. GMTI-tracking and information fusion for ground surveillance.

volume 4473, page 12, 2001.

[6] D. Zhang, X. Qian, and Y. Zhang. Research on abnormal behavior target tracking

algorithm in airport intelligent video surveillance. In 2017 International Confer-

ence on Progress in Informatics and Computing (PIC), pages 154–158, Dec 2017.

[7] D. S. R. Kondru and M. Celenk. Predictive airborne target tracking using all-

terrain fusion based mobile surveillance system. In 2018 52nd Annual Conference

on Information Sciences and Systems (CISS), pages 1–6, March 2018.

[8] N. T. B. Bui, D. C. Pham, B. Q. Nguyen, and S. T. Le. Tracking a 3D target

with fusion of 2D radar and bearing-only sensor. In 2018 IEEE International

Conference on Industrial Technology (ICIT), pages 1532–1537, Feb 2018.

[9] G. Kumar, D. Prasad, and R. P. Singh. Target tracking using adaptive Kalman

Filter. In 2017 International Conference on Smart grids, Power and Advanced

Control Engineering (ICSPACE), pages 376–380, Aug 2017.

107

Bibliography 108

[10] Y. Kong, X. Zhang, and W. Bai. Extended target tracking algorithm based on

improved Bernoulli filter. In 2017 3rd IEEE International Conference on Computer

and Communications (ICCC), pages 2522–2527, Dec 2017.

[11] Huan H. Zhou and B. Ni. Tracking of drone flight by neural network siamese-

rpn. In 2020 6th International Conference on Engineering, Applied Sciences and

Technology (ICEAST), pages 1–3, 2020.

[12] J. Park et al. A comparison of convolutional object detectors for real-time drone

tracking using a ptz camera. In 2017 17th International Conference on Control,

Automation and Systems (ICCAS), pages 696–699, 2017.

[13] P. Pacheco. An Introduction to Parallel Programming. Morgan Kaufmann, 2011.

[14] B. Friedland. Treatment of bias in recursive filtering. IEEE Transactions on

Automatic Control, 14(4):359–367, 1969.

[15] J.Y. Keller and M. Darouach. Two-stage Kalman estimator with unknown exoge-

nous inputs. Automatica, 35(2):339–342, 1999.

[16] C.S. Hsieh. General two-stage extended Kalman filters. IEEE Transactions on

Automatic Control, 48(2):289–293, 2003.

[17] X. Rong Li and V. P. Jilkov. Survey of maneuvering target tracking. part i.

dynamic models. IEEE Transactions on Aerospace and Electronic Systems, 39(4):

1333–1364, 2003.

[18] X. Rong Li and V. P. Jilkov. Survey of maneuvering target tracking. part v.

multiple-model methods. IEEE Transactions on Aerospace and Electronic Sys-

tems, 41(4):1255–1321, Oct 2005.

[19] R. Lopez and P. Danès. Low-complexity IMM smoothing for jump markov nonlin-

ear systems. IEEE Transactions on Aerospace and Electronic Systems, 53:1261–

1272, June 2017.

[20] E. Derbez, B. Remillard, and A. Jouan. A comparison of fixed gain IMM

against two other filters. In Proceedings of the Third International Conference

on Information Fusion, volume 2, pages THB2/3–THB2/9 vol.2, 2000. doi:

10.1109/IFIC.2000.859872.

[21] D. Mohammed, K. Mokhtar, Q. Abdelaziz, and M. Abdelkrim. A new IMM

algorithm using fixed coefficients filters (fastIMM). AEU - International Journal

of Electronics and Communications, 64(12):1123 – 1127, 2010.

Bibliography 109

[22] S.S. Khalid and S. Abrar. A low-complexity interacting multiple model filter for

maneuvering target tracking. AEU - International Journal of Electronics and

Communications, 73:157 – 164, 2017.

[23] S. L. Yeung, S. Tager, P. Wilson, R. Tharmarasa, W. Armour, and J. Thiya-

galingam. A parallel retrodiction algorithm for large-scale multitarget tracking.

IEEE Transactions on Aerospace and Electronic Systems, pages 1–1, 2020.

[24] R.E. Kalman. A new approach to linear filtering and prediction problems. ASME.

J. Basic Eng, pages 35–45, 1960.

[25] H. E. Rauch, C. T. Striebel, and F. Tung. Maximum likelihood estimates of linear

dynamic systems. AIAA Journal, 3(8):1445–1450, 1965.

[26] Simo Särkkä. Bayesian Filtering and Smoothing. Cambridge University Press,

New York, NY, USA, 2013.

[27] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle

filters for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on

Signal Processing, 50(2), Feb 2002.

[28] Jitendra R. Raol. Multi-Sensor Data Fusion with MATLAB. CRC Press, Inc.,

Boca Raton, FL, USA, 1st edition, 2009.

[29] D. G. Lainiotis. Optimal adaptive estimation: Structure and parameter adapta-

tion. In 1970 IEEE Symposium on Adaptive Processes (9th) Decision and Control,

pages 143–143, Dec 1970.

[30] D. G. Lainiotis. Partitioning: A unifying framework for adaptive systems, i: Es-

timation. Proceedings of the IEEE, 64(8):1126–1143, Aug 1976.

[31] X. R. Li and Y. Bar-Shalom. Estimation and tracking: Principles, techniques, and

software [reviews and abstracts]. IEEE Antennas and Propagation Magazine, 38

(1):62–, Feb 1996.

[32] H. A. P. Blom and Y. Bar-Shalom. The interacting multiple model algorithm for

systems with Markovian switching coefficients. IEEE Transactions on Automatic

Control, 33(8):780–783, Aug 1988.

[33] Kuo-Chu Chang and Y. Bar-Shalom. Joint probabilistic data association for mul-

titarget tracking with possibly unresolved measurements and maneuvers. IEEE

Transactions on Automatic Control, 29(7):585–594, Jul 1984.

[34] J. Mendel. Computational requirements for a discrete Kalman filter. IEEE Trans-

actions on Automatic Control, 16(6):748–758, 1971.

Bibliography 110

[35] G.H. Golub and C. van Loan. Matrix Computations. JHU Press, fourth edition,

2013.

[36] M. Paprzycki and C. Cyphers. Using Strassen’s matrix multiplication in high

performance solution of linear systems. Computers and Mathematics with Appli-

cations, 31(4):55 – 61, 1996. Selected Topics in Numerical Methods.

[37] Iain S. Duff, Michele Marrone, Giuseppe Radicati, and Carlo Vittoli. Level 3 Basic

Linear Algebra Subprograms for Sparse Matrices: A User-Level Interface. ACM

Trans. Math. Softw., 23(3):379–401, September 1997.

[38] B. Gravelle and B. Norris. Performance analysis of compressed batch matrix oper-

ations on small matrices. In 2019 International Conference on High Performance

Computing Simulation (HPCS), pages 424–427, 2019.

[39] Craig C. Douglas, Michael Heroux, Gordon Slishman, and Roger M. Smith.

GEMMW: A Portable Level 3 BLAS Winograd Variant of Strassen’s Matrix-

Matrix Multiply Algorithm. Journal of Computational Physics, 110(1):1 – 10,

1994.

[40] D. Lawrie and P. Fleming. Fine-grain parallel processing implementations of

Kalman filter algorithms. In International Conference on Control 1991. Control

’91, pages 867–870 vol.2, 1991.

[41] Blattner Timothy and Yang Shiming. Performance study on CUDA GPUs for

parallelizing the local ensemble transformed Kalman filter algorithm. Concurrency

and Computation: Practice and Experience, 24(2):167–177, 2012.

[42] L. Huo and Z. Wang. A Target Tracking Algorithm Using Grey Model Predicting

Kalman Filter in Wireless Sensor Networks. In 2017 IEEE International Confer-

ence on Internet of Things (iThings) and IEEE Green Computing and Communi-

cations (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom)

and IEEE Smart Data (SmartData), pages 604–610, June 2017.

[43] L. ChongYi, L. Cheng, F. LinYu, and Y. JingTing. Target tracking based on

extended Kalman particle filter. In 2017 3rd IEEE International Conference on

Computer and Communications (ICCC), pages 1715–1719, Dec 2017.

[44] Yaakov Bar-Shalom, Thiagalingam K, and Li X-Rong. Estimation with Applica-

tions to Tracking and Navigation. John Wiley & Sons, Inc., New York, NY, USA,

2002.

[45] Yaakov Bar-Shalom, Thiagalingam K, and Li X-Rong. Multitarget-Multisensor

Tracking: Principles and Techniques. Bertrams, YBS Publishing, Storrs, USA,

1995.

Bibliography 111

[46] S.J. Julier and J.K. Uhlmann. A new extension of the kalman filter to nonlin-

ear systems. In Proc. of AeroSense: The 11th Int. Symp. on Aerospace/Defense

Sensing, Simulations and Controls, 1997.

[47] E. A. Wan and R. Van Der Merwe. The unscented Kalman filter for nonlinear esti-

mation. In Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing,

Communications, and Control Symposium (Cat. No.00EX373), pages 153–158,

2000.

[48] A. Harvey. Forecasting, Structural Time Series Models and the Kalman Filter.

Cambridge University Press, Cambridge, 1990.

[49] J.B Moore B, Anderson. Optimal filtering. Pretice-Hall, New Jersey, USA, 1979.

[50] H. Rauch. Solutions to the linear smoothing problem. IEEE Transactions on

Automatic Control, 8(4):371–372, Oct 1963.

[51] Chen B and Tugnait J. K. Tracking of multiple maneuvering targets in clutter

using IMM/JPDA filtering and fixed-lag smoothing. Automatica, 37(2):239 – 249,

2001.

[52] U. Khan, D. Musicki, and T. L. Song. A fixed lag smoothing IPDA tracking in

clutter. In 17th International Conference on Information Fusion (FUSION), pages

1–7, July 2014.

[53] D. Mušicki, T. L. Song, and T. H. Kim. Smoothing Multi-Scan Target Tracking

in Clutter. IEEE Transactions on Signal Processing, 61(19):4740–4752, Oct 2013.

[54] P. G. Park and T. Kailath. New square-root smoothing algorithms. IEEE Trans-

actions on Automatic Control, 41:727–732, 1996.

[55] Grewal. M. S and Andrews A. P. Kalman Filtering: Theory and Practice with

MATLAB. Wiley-IEEE Press, 4th edition, 2014.

[56] Robert Grover Brown and Patrick Y C Hwang. Introduction to random signals and

applied Kalman Filtering: with MATLAB exercises and solutions; 3rd ed. Wiley,

New York, NY, 1997.

[57] W. Koch. Fixed-interval retrodiction approach to bayesian IMM-MHT for maneu-

vering multiple targets. IEEE Transactions on Aerospace and Electronic Systems,

36(1):2–14, Jan 2000.

[58] Song T. L and D. Mušicki. Smoothing innovations and data association with

IPDA. Automatica, 48(7):1324 – 1329, 2012.

Bibliography 112

[59] D. Musicki, R. Evans, and S. Stankovic. Integrated probabilistic data association.

IEEE Transactions on Automatic Control, 39(6):1237–1241, Jun 1994.

[60] T E. Luginbuhl R L. Streit. Maximum likelihood method for probabilistic multi-

hypothesis tracking. volume 2235, page 12, 1994.

[61] T. L. Song, D. Musicki, H. H. Lee, and X. Wang. Point target probabilistic multiple

hypothesis tracking. IET Radar, Sonar Navigation, 5(6):632–637, July 2011. ISSN

1751-8784. doi: 10.1049/iet-rsn.2010.0260.

[62] M. P. Lyster, K. Ekers, J. Guo, M. Harber, D. Lamich, J. W. Larson, R. Lucchesi,

R. Rood, S. Schubert, W. Sawyer, M. Sienkiewicz, A. d. Silva, J. Stobie, L. L.

Takacs, R. Todling, J. Zero, C. H. Q. Ding, and R. Ferraro. Parallel Computing

at the NASA Data Assimilation Office (DAO). In Supercomputing, ACM/IEEE

1997 Conference, pages 26–26, Nov 1997.

[63] M. A. Palis and D. K. Krecker. Parallel Kalman filtering on the Connection

Machine. In The Third Symposium on the Frontiers of Massively Parallel Com-

putation, pages 55–58, Oct 1990.

[64] O. Rosen and A. Medvedev. Efficient Parallel Implementation of State Estima-

tion Algorithms on Multicore Platforms. IEEE Transactions on Control Systems

Technology, 21(1):107–120, Jan 2013.

[65] G. Cerati et.al. Kalman-Filter-Based Particle Tracking on Parallel Architectures

at Hadron Colliders. In Proceedings, 2015 IEEE Nuclear Science Symposium and

Medical Imaging Conference (NSS/MIC 2015): San Diego, California, United

States, page 7581932, 2016.

[66] O. Rosen and A. Medvedev. Parallelization of the Kalman filter for banded systems

on multicore computational platforms. In 2012 IEEE 51st IEEE Conference on

Decision and Control (CDC), pages 2022–2027, Dec 2012.

[67] R. L. Popp, K. R. Pattipati, Y. Bar-Shalom, and M. Yeddanapudi. Parallelization

of a multiple model multitarget tracking algorithm with superlinear speedups.

IEEE Transactions on Aerospace and Electronic Systems, 33(1):281–290, Jan 1997.

[68] R. L. Popp, K. R. Pattipati, and Y. Bar-Shalom. m-best s-d assignment algorithm

with application to multitarget tracking. IEEE Transactions on Aerospace and

Electronic Systems, 37(1):22–39, Jan 2001.

[69] K. R. Pattipati, T. Kurien, R. T. Lee, and P. B. Luh. On mapping a tracking al-

gorithm onto parallel processors. IEEE Transactions on Aerospace and Electronic

Systems, 26(5):774–791, Sep 1990.

Bibliography 113

[70] L. Y. Pao and C. W. Frei. A comparison of parallel and sequential implementations

of a multisensor multitarget tracking algorithm. In American Control Conference,

Proceedings of the 1995, volume 3, pages 1683–1687 vol.3, Jun 1995.

[71] M. D. Hill and M. R. Marty. Amdahl’s Law in the Multicore Era. Computer, 41

(7):33–38, July 2008.

[72] J. Kwiatkowski. Evaluation of Parallel Programs by Measurement of Its Granu-

larity. In Parallel Processing and Applied Mathematics, pages 145–153. Springer

Berlin Heidelberg, 2002.

[73] M. Crovella, R. Bianchini, T. LeBlanc, E. Markatos, and R. Wisniewski. Using

communication-to-computation ratio in parallel program design and performance

prediction. In [1992] Proceedings of the Fourth IEEE Symposium on Parallel and

Distributed Processing, pages 238–245, 1992.

[74] OpenMP Architecture Review Board. OpenMP Application Program Interface.

[75] James J. Jeffers, J. Reinders and A. Sodani. Intel Xeon Phi Processor High Perfor-

mance Programming: Knights Landing Edition 2nd Edition. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 2nd edition, 2016.

[76] J.M. Jover and T. Kailath. A parallel architecture for kalman filter measurement

update and parameter estimation. Automatica, 22(1):43–57, 1986.

[77] D.J. Potter and M.P. Cline. Parallel algorithms for 2d kalman filtering. In [1990

Proceedings] The Third Symposium on the Frontiers of Massively Parallel Com-

putation, pages 47–50, 1990.

[78] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progres-

sions. Journal of Symbolic Computation, 9(3):251 – 280, 1990.

[79] V. Y. Pan. Strassen’s algorithm is not optimal trilinear technique of aggregating,

uniting and canceling for constructing fast algorithms for matrix operations. In

19th Annual Symposium on Foundations of Computer Science (sfcs 1978), pages

166–176, Oct 1978.

[80] T.H. Cormen et.al. Introduction to Algorithms, Third Edition. The MIT Press,

3rd edition, 2009.

[81] Y. Bar-Shalom, F. Daum, and J. Huang. The probabilistic data association filter.

IEEE Control Systems, 29(6):82–100, Dec 2009.

[82] S. S. Blackman. Multiple hypothesis tracking for multiple target tracking. IEEE

Aerospace and Electronic Systems Magazine, 19(1):5–18, Jan 2004.

Bibliography 114

[83] A.H. Tewfik, A.S. Willsky, and B.C. Levy. Parallel smoothing. Systems and asas

Control Letters, 14(3):253 – 259, 1990.

[84] A.S. Willsky, A.H. Tewfik, and B.C. Levy. A New Parallel Smoothing Algorithm.

IEEE Conference on Descicion and Control, 25, 1986.

[85] F. Badawi, A. Lindquist, and M. Pavon. On the mayne-fraser smoothing formula

and stochastic realization theory for nonstationary linear stochastic systems. In

1979 18th IEEE Conference on Decision and Control including the Symposium on

Adaptive Processes, volume 2, pages 505–510, Dec 1979.

[86] G. E. Blelloch. Prefix Sums and Their Applications. Synthesis of Parallel Algo-

rithms, 1990.

[87] R. Rabenseifner and J.L. Träff. More Efficient Reduction Algorithms for Non-

Power-of-Two Number of Processors in Message-Passing Parallel Systems. In Re-

cent Advances in Parallel Virtual Machine and Message Passing Interface, pages

36–46, 2004.

[88] P. J. Slater, E. J. Cockayne, and S. T. Hedetniemi. Information Dissemination in

Trees. SIAM Journal on Computing, 10(4):692–701, 1981.

[89] E. E. Santos. Optimal and Efficient Algorithms for Summing and Prefix Summing

on Parallel Machines. Journal of Parallel and Distributed Computing, 62(4):517 –

543, 2002.

[90] J.B. Moore. Discrete-time Fixed-lag Smoothing Algorithms. Automatica, pages

163–173, 1973.

[91] K. Biswas and A. Mahalanabis. Optimal fixed-lag smoothing for time delayed

system with colored noise. IEEE Transactions on Automatic Control, 17(3):387–

388, June 1972.

[92] C. K. Chui and G. Chen. Kalman Filtering with Real-Time Applications.

SpringerVerlag, New York, 1987.

[93] P. S. Maybeck. Stochastic Models, Estimation, and Control. Academic Press, New

York, 1982.

[94] H. W. Sorenson. Kalman Filtering: Theory and Application. IEEE Press, New

York, 1985.

[95] M. S. Grewal and H. J. Payne. Identification of Parameters in a Freeway Traffic

Model. IEEE Transactions on Systems, Man, and Cybernetics, SMC-6(3):176–185,

1976.

Bibliography 115

[96] Z. Fang, G. Luo, F. Fei, and S. Li. Stock Forecast Method Based on Wavelet Modu-

lus Maxima and Kalman Filter. In 2010 International Conference on Management

of e-Commerce and e-Government, pages 50–53, 2010.

[97] Y. Gong and Y. Zhang. Research of Short-Term Traffic Volume Prediction Based

on Kalman Filtering. In 2013 6th International Conference on Intelligent Networks

and Intelligent Systems (ICINIS), pages 99–102, 2013.

[98] R. Chakravorty and S. Challa. Augmented state integrated probabilistic data as-

sociation smoothing for automatic track initiation in clutter. Journal of Advances

in Information Fusion, 1(1):63–74, July 2006.

[99] C N. Kelly and B D.O. Anderson. On the stability of fixed-lag smoothing algo-

rithms. Journal of the Franklin Institute, 291(4):271 – 281, 1971.

[100] E. W. Cheney and D.R. Kincaid. Numerical Mathematics and Computing. Brook-

s/Cole Publishing Co., Pacific Grove, CA, USA, 6th edition, 2007.

[101] A. K. Cline, C. B. Moler, G. W. Stewart, and J. H. Wilkinson. An Estimate for

the Condition Number of a Matrix. SIAM Journal on Numerical Analysis, 16(2):

368–375, 1979.

[102] J.P. Merlet. Jacobian, Manipulability, Condition Number and Accuracy of Parallel

Robots. ASME J. of Mechanical Design, 128:199–206, 01 2006.

[103] R. Kress. Minimizing the condition number of boundary integral operators in

acoustic and electromagnetic scattering. The Quarterly Journal of Mechanics and

Applied Mathematics, 38(2):323–341, 05 1985.

[104] S. Skare et.al. Condition Number as a Measure of Noise Performance of Diffusion

Tensor Data Acquisition Schemes with MRI. Journal of Magnetic Resonance, 147

(2):340 – 352, 2000.

[105] N.K. Tsao and F.F. Kuo. On machine precision, computation error and condition

number in solving linear algebraic systems. Computers and Electrical Engineering,

1(3):459–464, 1973.

[106] X. R. Li and Y. Bar-Shakm. Mode-set adaptation in multiple-model estimators

for hybrid systems. In 1992 American Control Conference, pages 1794–1799, June

1992.

[107] X. R. Li and Y. Bar-Shalom. Multiple-model estimation with variable structure.

IEEE Transactions on Automatic Control, 41(4):478–493, April 1996.

Bibliography 116

[108] H. A. P. Blom. An efficient filter for abruptly changing systems. In The 23rd IEEE

Conference on Decision and Control, pages 656–658, Dec 1984.

[109] D. Magill. Optimal adaptive estimation of sampled stochastic processes. IEEE

Transactions on Automatic Control, 10(4):434–439, October 1965.

[110] A. Averbuch, S. Itzikowitz, and T. Kapon. Radar target tracking-Viterbi versus

IMM. IEEE Transactions on Aerospace and Electronic Systems, 27(3):550–563,

May 1991.

[111] Y. Bar-Shalom, K. C. Chang, and H. A. P. Blom. Automatic track formation in

clutter with a recursive algorithm. In Proceedings of the 28th IEEE Conference on

Decision and Control,, pages 1402–1408 vol.2, Dec 1989.

[112] Y. Bar-Shalom and W. Blair. Multitarget-multisensor Tracking: Applications and

Advances. Number v. 3 in Artech House radar library. Artech House, 1990.

[113] J.A Guu and C.H. Wei. Maneuvering target tracking using IMM method at high

measurement frequency. IEEE Transactions on Aerospace and Electronic Systems,

27(3):514–519, May 1991.

[114] R. Kenefic. Active sonar application of a U-D square root PDAF. IEEE Transac-

tions on Aerospace and Electronic Systems, 26(5):850–857, Sep. 1990.

[115] H.A.P. Blom and Y. Bar-Shalom. Time-reversion of a hybrid state stochastic

difference system with a jump-linear smoothing application. IEEE Transactions

on Information Theory, 36(4):836–847, 1990.

[116] B. Chen and J.K. Tugnait. Interacting multiple model fixed-lag smoothing al-

gorithm for Markovian switching systems. IEEE Transactions on Aerospace and

Electronic Systems, 36(1):243–250, 2000.

[117] R.E. Helmick, W.D. Blair, and S.A. Hoffman. Fixed-interval smoothing for marko-

vian switching systems. IEEE Transactions on Information Theory, 41(6):1845–

1855, 1995.

[118] N. Nadarajah et.al. Imm forward filtering and backward smoothing for maneuver-

ing target tracking. IEEE Transactions on Aerospace and Electronic Systems, 48:

2673–2678, 07 2012.

[119] O. E. Drummond. Multiple target tracking with multiple frame, probabilistic data

association. In Signal and Data Processing of Small Targets 1993, volume 1954,

pages 394 – 408. International Society for Optics and Photonics, SPIE, 1993.

Bibliography 117

[120] O E. Drummond. Target tracking with retrodicted discrete probabilities. In Sig-

nal and Data Processing of Small Targets 1997, volume 3163, pages 249 – 268.

International Society for Optics and Photonics, SPIE, 1997.

	Declaration of Authorship
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Motivations
	1.2 Aims and Objectives
	1.3 Outline of the Thesis

	2 Background
	2.1 Introduction
	2.1.1 Problem Formulation
	2.1.2 Linear State Space Models
	2.1.3 Kalman Filter
	2.1.4 Kalman Smoother
	2.1.5 Motion Model
	2.1.6 Interactive Multiple Model Filter
	2.1.7 Multi-Target Tracking
	2.1.7.1 Gating
	2.1.7.2 Nearest Neighbour Data association

	2.2 Related Work and Applications

	3 A Parallel Retrodiction Algorithm for Large-Scale Multitarget Tracking
	3.1 Introduction
	3.2 Approach to Parallelized Multitarget Tracking with Retrodiction
	3.3 Parallelization of Components for MTTR
	3.3.1 Parallelization of the Kalman Filter
	3.3.2 Retrodiction
	3.3.3 Measurement-to-Track Association
	3.3.4 Computational Complexity of MTTR

	3.4 Parallel RTS Retrodiction
	3.4.1 Enabling the Parallelization of the RTS Smoother
	3.4.2 Parallelizing the RTS Smoothing with the Prefix-Sum Algorithm
	3.4.3 Data Reuse and Performance
	3.4.4 Complexity of the Proposed Parallel RTS Algorithm
	3.4.5 Realizing MTTR on Parallel Systems
	3.4.6 Algorithm that is Independent to the Window Size

	3.5 Simulation and Evaluation
	3.5.1 Simulated Scenario
	3.5.2 Evaluation Framework
	3.5.3 Parallelism and Data Reuse
	3.5.4 Thread Allocation and Choice of Smoothing Algorithm
	3.5.5 Evaluation of the Window Size-Independent Algorithm

	3.6 Summary

	4 Fast Fixed-Lag Smoother
	4.1 Introduction
	4.2 Background
	4.2.1 Fast RTS Smoother

	4.3 Numerical Stability Analysis
	4.3.1 Numerical Stability of fRTS-
	4.3.2 Addressing the Numerical Instability
	4.3.3 Condition Number

	4.4 Computational Complexity
	4.4.1 Complexity of FRTS

	4.5 Simulation and Evaluation
	4.5.1 Simulated Scenario
	4.5.2 Evaluation Method
	4.5.3 Accuracy of FRTS
	4.5.4 Speed-Up of FRTS Algorithm
	4.5.5 Multi-Target Scenario

	4.6 Conclusions

	5 Cost-effective Multiple Model Tracking
	5.1 Introduction
	5.2 Background
	5.2.1 Autonomous Multiple Model Filter

	5.3 Formulation of AMMS
	5.4 Formulation of the FMMS
	5.5 Computational Complexity Analysis
	5.5.1 Interactive Multiple Model Filtering and Smoothing
	5.5.2 Autonomous Multiple Model Filtering and Smoothing
	5.5.3 Fast Multiple Model Smoothing
	5.5.4 Comparison

	5.6 Simulation and Evaluation
	5.6.1 Simulated Scenario
	5.6.2 Error-to-Complexity Performance Index
	5.6.3 Analysis and Discussion

	5.7 Conclusions

	6 Conclusions
	6.1 Future Work

	Bibliography

