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“How much better to get wisdom than gold,
to choose understanding rather than silver!”

(Proverbs 16:16, New International Version.)

“Listen to advice and accept instruction,
that you may gain wisdom in the future.”

(Proverbs 19:20, English Standard Version.)

“The fear of the LORD is the beginning of wisdom,
and knowledge of the Holy One is understanding.”
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Abstract

Geometric and Topological Methods for
Applications to Materials and Data Skeletonisation

Philip Smith

Crystal Structure Prediction (CSP) aims to speed up functional materials discovery by
using supercomputers to predict whether an input molecule can form stable crystal struc-
tures with desirable properties. The process produces large datasets where each entry is a
simulated arrangement of copies of the input molecule to form a crystal. However, these
datasets have little structure themselves, and it is the aim of this thesis to contribute
towards simplifying and analysing such datasets.

Crystals are unbounded collections of atoms or molecules, extending infinitely in the
space they lie within. As such, rigorously quantifying the geometric similarity of crystal
structures, and even just identifying identical structures, is a challenging problem. To
solve it, we seek a continuous, complete, isometry classification of crystals. Consequently,
by modelling crystals as periodic point sets, we introduce the density fingerprint, which
is invariant under isometries, Lipschitz continuous, and complete for an open and dense
space of crystal structures. Such a classification will be able to identify and remove near-
duplicates from these large CSP datasets, and potentially even guide future searches.

We describe how this fingerprint can be computed using periodic higher Voronoi zones.
This geometric concept of concentric regions around a fixed centre characterises relative
positions of points from the centre in a periodic point set. We present an algorithm to
compute these zones in addition to proving key structural properties.

We later discuss research into skeletonisation algorithms, proving theoretical guarantees
of the homological persistent skeleton (HoPeS), subsequently formulating and performing
an experimental comparison of HoPeS with other relevant algorithms. Such algorithms,
if effectively used, can be applied to large datasets including those produced by CSP to
reveal the shape of the data, helping to highlight regions of interest and branches that
merit further study.
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Chapter 1

Introduction

Solid periodic crystalline materials (crystals) are fundamental to our current way of life,
with wide-ranging applications from molecular electronics [9] and photomechanics [63] to
gas storage [49] and pharmaceuticals [50]. Much of the rich space of crystal structures re-
mains unsurveyed, and so being able to efficiently explore this space may lead to significant
breakthroughs in some of the most prominent current challenges; for example in carbon
capture, producing superconducting materials, or improving solid-state batteries such as
those found in electric vehicles.

The emerging field of Crystal Structure Prediction (CSP) aims to speed up the discovery
of functional materials by running complex algorithms that take as input a molecular
structure and output a large dataset of simulated crystals, where each entry consists of
a particular arrangement of copies of the input molecule. These datasets can then be
analysed to predict if the input molecule can form a stable crystal with desirable properties
for real-world applications.

However, CSP is a slow process, producing datasets with little structure and often with
many near-duplicates – entries of the dataset that are effectively identical – which lead
to unnecessary repetitions of computationally expensive calculations. Yet, due to discon-
tinuities in crystallographic groups and ambiguities in unit cell representation, rigorously
describing the geometric similarity of crystal structures remains an unsolved problem.

Hence, adding structure to these somewhat disorganised datasets is the very issue that
underpins this thesis, which if solved may not only speed up functional materials discovery
but could even guide future research directions to focus on certain regions of crystal space.

As part of this thesis, we present two methods where geometric and topological tech-
niques can be used to speed up the discovery of new functional materials. Firstly, we
introduce the geometric concept of Voronoi zones and apply them to our research towards
a continuous, complete, isometry classification of crystal structures based on geometric in-
variants. Secondly, we discuss our contributions to skeletonisation algorithms – algorithms
that take as input a point cloud and output a skeleton where points or clusters of points
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are connected by simplices. Such outputs can be used to visualise the global structure of a
dataset, highlighting regions or branches of related points. This research on skeletonisation
algorithms can be applied more widely to any datasets that can be represented as point
clouds, not just to datasets of crystal structures.

The outline of the thesis is as follows. In the rest of this introduction, we state in
Sections 1.1 - 1.3 basic definitions and concepts that will be used throughout the thesis.
The introduction finishes in Section 1.4 with a formal description of the problems this thesis
attempts to solve. In Chapter 2, we present and discuss a new algorithm for computing
Voronoi zones of a periodic point set. This algorithm is then used in Chapter 3 in the
computations of the density fingerprint – a classification of periodic point sets with proven
properties. In Chapter 4, we describe our research into skeletonisation algorithms, before
summarising the thesis with some concluding remarks in Chapter 5. Appendix A gives a
short description of separate work on superpixels, and Appendix B lists all notations used
in this thesis.

1.1 Periodic Point Sets Model Crystals

We begin with the notion of a periodic point set, which is important in Chapters 2 and 3
as we seek to classify crystals up to isometry. Periodic point sets can be used to represent
crystals as formal mathematical objects. Each point corresponds to an atom or molecular
centre in a crystal, and we can add labels such as chemical elements or other physical
properties if needed. Periodic point sets generalise the notion of a lattice which is a set of
points defined by n linearly independent vectors in Rn.

Notation 1.1 (Point p, Vector ~p). Any point p ∈ Rn can be represented by a vector ~p
from 0 ∈ Rn to p, which has a length and a direction. We use the notation ~p with an arrow
above for the vector to distinguish it from the point p.

Definition 1.2 (Lattice Λ, Unit Cell U). For a basis of n linearly independent vec-
tors ~v1, . . . , ~vn ∈ Rn, the integer combinations of these basis vectors form a lattice, Λ =
{
∑n

i=1 civi | ci ∈ Z}. By taking linear combinations of the basis vectors with coefficients
in the interval [0, 1), we obtain a unit cell U for Λ, U = {

∑n
i=1 civi | ci ∈ [0, 1)}. See

Figure 1.1 for an example.

For dimensions n ≥ 2, there are infinitely many bases that define the same lattice. As
such, there have been several algorithms designed to deterministically select a ‘good’ basis
for a given lattice, usually consisting of basis vectors that are short and close to orthogonal.
One such basis is the Minkowski-reduced basis.

Definition 1.3 (Minkowski-reduced Basis of a Lattice). Let Λ ⊂ Rn be a lattice with
basis vectors ~v1, . . . , ~vn. We say that {~v1, . . . , ~vn} is a Minkowski-reduced basis if, for all
1 ≤ i ≤ n, there is no lattice vector ~v with norm less than that of ~vi such that the vectors
~v1, . . . , ~vi−1, ~v can be extended to a basis of Λ.
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 v⃗1
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Figure 1.1: In the left image, the lattice Λ consisting of black zero-dimensional points is
formed by taking the integer combinations of the basis vectors ~v1, ~v2. The blue unit cell
contains a motif of five red zero-dimensional points. By translating each red motif point
by all integer combinations of the basis vectors, we obtain the periodic set on the right,
which extends infinitely throughout the plane.

Periodic point sets are formed by translating a finite subset of the unit cell by all of
the lattice vectors. This finite subset is called a motif.

Definition 1.4 (Motif M). Given a unit cell U of a lattice Λ ⊂ Rn, a motif M ⊂ U is a
finite subset of U . The cardinality of M , |M |, is the number of points in the motif, and is
denoted by m = |M |.

Definition 1.5 (Periodic Point Set A). A periodic point set A (or periodic set for brevity)
of a lattice Λ ⊂ Rn with motif M is defined to be the Minkowski sum M + Λ, A = {a+~v |
a ∈M, v ∈ Λ}, see Figure 1.1.

We note here the important observation of how a periodic set generalises a lattice:
while a lattice will always have just one point in its motif, a periodic set can have any
finite number of motif points.

In Chapter 2, it is helpful to consider a finite, bounded extension of a unit cell of a
periodic set.

Definition 1.6 (k-Extended Unit Cell kU). Let A = M + Λ ⊂ Rn be a periodic set
with lattice Λ and motif M . If the basis vectors of the lattice Λ are ~v1, . . . , ~vn, then
U = {

∑n
i=1 civi | ci ∈ [0, 1)}. For an integer k ≥ 1, we define kU to be the k-extended unit
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Λ 2U

0

Figure 1.2: The 2-extended unit cell 2U of the unit cell U from Figure 1.1, extended
symmetrically around the origin. Since |M | = 5 in Figure 1.1, there are 22 · 5 = 20 points
of the periodic set that are contained within 2U .

cell, kU = {
∑n

i=1 civi | ci ∈ [0, k)}. If m = |M |, the number of points of A within kU is
|A ∩ kU | = knm. It is often more convenient, if k is even and so k = 2j for some j ∈ Z≥1,
to let kU = {

∑n
i=1 civi | ci ∈ [−j, j)}, see Figure 1.2.

Periodic sets are preferable for modelling crystal structures, since atomic centres are
much better defined than chemical bonds, especially bonds between molecules. However,
additional information such as chemical elements or bonds can be added to the periodic
set if required.

Definition 1.7 (Crystal). For the purposes of this thesis, we will mathematically define
a crystal to be a solid material that can be represented as a periodic set, for instance by
placing points at the atomic locations.

Crystals, and similarly periodic sets, are invariant under all translations by lattice
vectors. For a periodic set A = M + Λ, if there are no other translations that map A onto
itself, then we call the unit cell U formed by the basis vectors that generate Λ a primitive
unit cell of A. Crystals are also invariant under rigid motions, which are orientation-
preserving transformations.

Definition 1.8 (Orientation of a Transformation). A non-singular transformation T : Rn →
Rn is orientation-preserving if its determinant is positive. If its determinant is negative,
then we say that the transformation is orientation-reversing.

Definition 1.9 (Rigid Motion). A rigid motion of Rn is a transformation of the space that
preserves distances (see Definition 1.14) and orientation. Any rigid motion can be described
as the composition of rotations and translations. For R2, it is possible to describe every
rigid motion as the composition of just a single translation and rotation.
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r R

Figure 1.3: The packing and covering radii for the unit square lattice with points at (x, y),
x, y ∈ Z. The packing radius r of 0.5 is illustrated on the left, whilst the covering radius
R of

√
2/2 is illustrated on the right.

Rigid motions are a subset of isometries, and for simplicity it is these transformations
that we wish to classify periodic sets (and hence crystals) up to.

Definition 1.10 (Isometry). An isometry of Rn is a transformation of the space that
preserves distances, but not necessarily orientation. Isometric transformations include
reflections in addition to translations and rotations.

For some statements relating to periodic sets, it is necessary to define certain conditions
that are satisfied by the periodic sets. Often we desire periodic sets in which points cannot
be arbitrarily close to each other, and where the points are spread evenly throughout the
space. Such conditions are intrinsically related to the packing and covering radii.

Definition 1.11 (Packing Radius r). Let A ⊂ Rn be a periodic set. The packing radius r
of A is the largest radius such that every open ball of radius r and centre p ∈ Rn contains
at most one point of the periodic set A. In other words, the packing radius is equal to half
the minimum distance between two points in A (see Figure 1.3).

Definition 1.12 (Covering Radius R). Let A ⊂ Rn be a periodic set. The covering radius
R of A is the smallest radius such that every closed ball of radius R and centre p ∈ Rn
contains at least one point of the periodic set A. In other words, there is no point in Rn
that is further than R from a point in A (see Figure 1.3).

A periodic set that has packing radius r > 0 and covering radius R < ∞ is called a
Delone set [16]. For example, in R2, the unit square lattice is a Delone set since it has
r = 0.5 and R =

√
2/2, see Figure 1.3.
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1.2 Metric Spaces, Point Clouds and Graphs

Definition 1.13 (Metric). For a set M , a function d : M ×M → R is called a metric if it
satisfies, for any x, y, z ∈M , the following three conditions:

1. Positivity: d(x, y) ≥ 0 with equality if and only if x = y.

2. Symmetry: d(x, y) = d(y, x).

3. The triangle inequality: d(x, y) + d(y, z) ≥ d(x, z).

Definition 1.14 (Metric Space (M,d)). A metric space (M,d) is any set M that is
equipped with a metric d on M .

Sometimes, we will drop the metric d in the notation and simply refer to a metric
space (M,d) as M . The set M can be infinite in size (for example R2 with the Euclidean
distance) but it can also be finite.

Definition 1.15 (Point Cloud C). For a metric space M , we define a point cloud C ⊂M
to be a finite subset of M .

The set of points in a metric space M that are equidistant from two points in a point
cloud C ⊂M form the bisector.

Definition 1.16 (Bisector). The bisector between points p, q ∈ Rn is the Rn−1-dimensional
subspace composed of all points of Rn that are equidistant from p and q. We note that the
vector ~p− ~q is normal to the bisecting subspace.

A graph can be turned into a metric space by assigning appropriate weights to its edges.

Definition 1.17 (Metric and Neighbourhood Graphs). A graph G is a finite set of vertices
and edges, where an edge is simply an unordered pair of vertices. A metric graph is a graph
that has a length or weight assigned to each edge, and the distance between two vertices
is the minimum total length of any path from one vertex to another (if one exists). A
neighbourhood graph N(C; ε) of a point cloud C with threshold ε is an example of a metric
graph. C is its vertex set, and it has an edge between vertices p, q ∈ C if the distance
d(p, q) between p and q in the metric space is no more than ε (and the length of this edge
will be d(p, q)).

Graphs can contain cycles – a sequence of vertices, where each vertex is connected to
the previous vertex by an edge, the first and last vertices are the same, and otherwise no
vertex is repeated. An edge that is not part of any cycle is called a bridge.

Definition 1.18 (Bridge). Let G be a graph. An open edge e ⊆ G is called a bridge if the
removal of the edge increases the number of connected components of the graph G. An
edge that is not a bridge belongs to a cycle of G.
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1.3 Simplices, Filtrations and Homology

Definition 1.19 (Simplex ∆, Simplicial Complex Q). Let n ≥ 1. An n-dimensional
simplex ∆n is the convex hull of n + 1 linearly independent vertices and, for a standard
n-simplex, whose vertices are the n+1 standard unit vectors, has the geometric realisation

∆n = {(x0, . . . , xn) ∈ Rn+1 | x0 + . . .+ xn ≤ 1, xi ≥ 0},

whilst a 0-dimensional simplex is just a point. A simplicial complex Q with a finite vertex
set C is a collection of simplices with vertices {v0, . . . , vk} ⊆ C such that: any subset (face)
of a simplex, which is just a lower-dimensional simplex, is included in Q; and any pair of
simplices in the complex only intersect along common faces.

Given a point cloud C in a metric space M , there are several methods of obtaining
simplicial complexes with vertex set C. These include the Čech complex, the Vietoris-Rips
complex, the Delone triangulation and the α-complex.

Definition 1.20 (Čech Complex Čh(C,M ;α), Vietoris-Rips Complex VR(C,M ;α)). Let
C ⊂M be a point cloud in a metric space M . The Čech complex Čh(C,M ;α) is a simplicial
complex that includes the simplex {v0, . . . , vk | vi ∈ C} if and only if the full intersection
of the set of k + 1 balls with radius α and centres at v0, . . . , vk is non-empty [12, Section
4.2.3]. Similarly yet subtly different, the Vietoris-Rips complex VR(C,M ;α) is defined to
include the simplex {v0, . . . , vk | vi ∈ C} if and only if each pairwise intersection of the
corresponding balls with radius α and centres at v0, . . . , vk is non-empty.

Definition 1.21 (Delone Triangulation Del(C), α-complex C(α)). For a point cloud
C ⊂ Rn, the Delone triangulation consists of simplices with vertices at points in C whose
minimal open circumballs do not contain any other points in C. For any scale α ≥ 0, the
α-complex, C(α) ⊆ Del(C), consists of all simplices in the Delone triangulation of C whose
circumradii are at most α.

Often, particularly in Chapter 4, to capture the shape of a point cloud, balls are ‘grown’
simultaneously around each point. The union of all balls at a given radius α is called the
α-offset.

Definition 1.22 (α-offset Xα). Let X ⊂M be a subspace of a metric space M . We define
the α-offset of X, Xα, to be the set of all points in M that are within a distance α from a
point in X. Namely, Xα = {m ∈M | d(m,x) ≤ α for some x ∈ X}.

The following lemma from topology is fundamental to the field of Topological Data
Analysis, and is equally essential to the research in Chapter 4. It states that the rather
complex α-offset of a point cloud C can be replaced by certain combinatorially simpler
complexes without changing the homotopy type. Definitions of basic topological notions
used below can be found in [31].
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Lemma 1.23 (Nerve Lemma). [17, Theorem 3.2] Let C ⊂ Rn be a finite point cloud.
Then any α-offset Cα ⊆ Rn is homotopy equivalent to both the Čech complex Čh(C,Rn;α)
and equally the α-complex C(α) ⊆ Rn.

Sometimes we wish to consider a family of nested simplicial complexes, for example the
family of α-complexes of a point cloud C at increasing values of α. Such a family is called
a filtration.

Definition 1.24 (Filtration of Simplicial Complexes). A filtration of simplicial complexes
is an indexed family of complexes {Qi}i∈I where the index i runs over a totally ordered
index set I. The family is subject to the condition that for i, j ∈ I, if i ≤ j, then Qi ⊆ Qj .
A filtration {Q(C;α)} of simplicial complexes on a point cloud C starts with Q(C; 0) = C
and then adds simplices of dimension at least one as α increases.

Any simplicial complex has topological features such as connected components or cycles.
The homology groups algebraically encode this information.

Definition 1.25 (Homology Groups of a Complex, Hk(Q)). Cycles of a complex Q can
be algebraically written as finite linear combinations of edges (with coefficients in Z2)
and generate the vector space Z1 of all cycles. Meanwhile, boundaries of 2-dimensional
simplices in Q are cycles of 3 edges and generate the subspace B1 ⊆ Z1. The first homology
group, H1(Q), of a complex Q is the quotient group Z1/B1, with the addition of cycles
as its operation and the empty cycle as its identity element. Homology groups of other
dimensions can be defined similarly.

The rank of a homology group provides information on the number of a particular
feature that are present in a complex Q. This is of particular importance in Chapter 4 as
we investigate reconstructing graphs from point cloud samples that have the same number
of cycles – i.e. the rank of the first homology group, or equally the first Betti number – as
the underlying graph.

Definition 1.26 (k-th Betti number). The k-th Betti number of a simplicial complex Q is
the rank of its k-th homology group Hk(Q). For example, the rank of H0(Q), namely the
zeroth Betti number of the complex Q, is equal to the number of connected components
present in Q.

1.4 Formal Problems and Key Contributions

Having defined some of the basic definitions that establish a foundation for the rest of this
thesis, we can now introduce the two main problems we will go on to tackle. Firstly, we
desire a classification of crystals up to isometries, which we formulate in terms of periodic
sets which model crystals.
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Problem 1 (A Continuous, Complete, Isometry Classification of Periodic Sets). We desire
a classification of periodic sets that satisfies the following three conditions:

I Invariance under isometries: any two periodic sets that are isometric should be
classified identically.

II Continuous under perturbations: if a periodic set undergoes a small perturbation,
the distance between the old and new classifications should be small.

III Completeness: no two non-isometric periodic sets should have the same classification.

We prove in Lemma 3.4, Theorem 3.10 and Theorem 3.14 that the density fingerprint
map (Definition 3.5) satisfies Conditions I and II of the above problem, and is complete for
an open and dense space of periodic sets. Voronoi zones – the subject matter of Chapter 2
– enable us to compute the density fingerprint as described in Section 3.5.

Secondly, it is the data skeletonisation problem that desires guarantees on the recon-
struction of a graph G from a point cloud C that has been sampled from it.

Problem 2 (Data Skeletonisation Problem). Given a noisy point cloud C sampled from
a graph G in a metric space M , can you find conditions on G and C such that the re-
constructed graph G′ has the same first homology group as G (H1(G′) ∼= H1(G)) and
geometrically approximates G in the sense that G′ ⊂ Gα and G ⊂ (G′)α for a suitable
parameter α depending on G and C?

Theorems 4.21, 4.28 and 4.32 state optimality and reconstruction guarantees of the
skeleotisation algorithm HoPeS, whilst Sections 4.7 - 4.9 describe a detailed comparison of
three skeletonisation algorithms on real and synthetic datasets.
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Chapter 2

Voronoi Zones of a Periodic Set

(This chapter is based on the paper “A practical algorithm for higher Voronoi zones of
periodic point sets” authored by P.S. and V. Kurlin and is currently under review.)

The focus of this chapter is on the geometric concept of Voronoi zones (Definition 2.4)
of a periodic set (Definition 1.5). These structures characterise the relative positions of
points from a fixed centre in a periodic set, including points that are more distant in
addition to the nearest neighbours. Since periodic sets can be used to model all crystals
(Definition 1.7), this research is applicable to the study of crystals as properties such as
a crystal’s energy are similarly dependent on interatomic distances between both distant
atoms and close neighbours. A detailed explanation of precisely how Voronoi zones can
be used to assist the discovery of new functional materials is described in Section 3.5 of
Chapter 3.

To introduce Voronoi zones, we must start with the related classical concept of a Voronoi
domain introduced by Georges Voronoi in 1908 [61].

Definition 2.1 (Voronoi Domain V (C; p)). Let C ⊂ Rn be a point cloud (Definition 1.15).
The Voronoi domain of a point p ∈ C, V (C; p), is defined to be the set of all points x ∈ Rn
that are no closer to any other point of C than p. Namely, V (C; p) = {x ∈ Rn | d(x, p) ≤
d(x, q) for all q ∈ C, q 6= p}.

Although any distance can be used in the definitions of a Voronoi domain and its
related concepts, throughout this chapter we will simply be using the Euclidean distance.
As such, we note that the Voronoi domain of a point is closed and convex. Of course, it is
straightforward to extend Voronoi domains to k-th degree Voronoi domains.

Definition 2.2 (k-th Degree Voronoi Domain Vk(C; p)). Let C ⊂ Rn be a point cloud.
The k-th degree Voronoi domain of a point p ∈ C, Vk(C; p), is defined to be the set of
all points x ∈ Rn that have no more than k − 1 points of C closer to x than p. Namely,
Vk(C; p) = {x ∈ Rn | ‖x− q‖2 < ‖x− p‖2 for at most k − 1 points q ∈ C}. We set
V0(C; p) = ∅ for convenience, and we note that V1(C; p) = V (C; p).
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Figure 2.1: The first 12 Voronoi zones of the origin in the hexagonal lattice (left) and square
lattice (right), where lattice points are portrayed as small red dots. The k-th Voronoi zone
is represented by polygons of the same colour.

Unlike k-th order Voronoi domains of a point cloud C (which partition Rn so that
points x, y ∈ Rn are in the same k-th order Voronoi domain if their corresponding sets of
k nearest neighbours in C match) which tile Rn [20], k-th degree Voronoi domains overlap
and so do not form a tiling. k-th degree Voronoi domains are again closed, but they are
not necessarily convex. However, they are star convex.

Definition 2.3 (Star Convexity). A set X ⊂ Rn is star convex if there exists a point
x0 ∈ X such that any line segment from x0 to a point x ∈ X is contained within X.

Indeed, for any x ∈ Vk(C; p), any point on the line segment from p to x must also have
p among its k-th nearest neighbours in C, and so is contained within Vk(C; p). The k-th
degree Voronoi domain contains the (k− 1)-th degree Voronoi domain, and it is by taking
the relative complement of successive k-th degree Voronoi domains that we obtain Voronoi
zones.

Definition 2.4 (k-th Voronoi Zone Zk(C; p)). Let C ⊂ Rn be a point cloud. For k ∈ Z≥1,
the k-th Voronoi zone of a point p ∈ C, Zk(C; p), is defined to be the relative complement
Vk(C; p) \ Vk−1(C; p). We set Z0(C; p) = ∅, and note that Z1(C; p) = V1(C; p) = V (C; p).

A point x ∈ Rn has p as its unique k-th nearest neighbour if and only if x is in the
interior of Zk(C; p). We also note that, for k ≥ 2, Zk(C; p) is neither open nor closed, since
its interior faces (faces such that any point on the face can be connected to p by a line
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segment whose interior does not intersect Zk(C; p)) are open whilst the remaining exterior
faces are closed. Our work focuses on higher Voronoi zones of periodic sets (Definition 1.5),
an example of which can be seen in Figure 2.1.

2.0.1 Review of Related Work

The first algorithm to compute Voronoi domains for general periodic sets of points was
described in [15], but did not consider higher degree Voronoi domains. The algorithm,
which computed their dual – periodic Delone triangulations or mosaics – was recently
improved in [46].

Previously, higher Voronoi zones of order k ≥ 2 were considered in the periodic setting
only for lattices [14], referring to them as Brillouin zones. This is because they are applied
to reciprocal lattices of a crystal, which are obtained from the crystal’s lattice (in direct
space) via a Fourier transform, and can be seen in the crystal’s powder diffraction pattern.
Such a pattern is primarily impacted by the crystal’s periodicity, and so it is only ever
lattices and not more general periodic sets that are produced. It is the extension of Voronoi
zones to periodic sets in direct space, and an algorithm to compute them, that is the novel
work of this chapter.

An algorithm visualising higher Voronoi zones of a lattice was introduced by Andrew
et al. [3]. The algorithm simply assigns each point in a square or cubical grid to the
appropriate k-th Voronoi zone. We substantially improve on this work in two ways: firstly,
as previously mentioned, we generalise the input so that higher Voronoi zones of general
periodic sets with motifs of more than one point can be computed; and secondly we compute
precisely the polytopes that comprise each zone, enabling our outputs to be used not just
for visualisations but also for accurate computations (for example in the computations of
ϕAk (t) in Theorem 3.21 of Chapter 3).

2.0.2 Contributions and Chapter Outline

The main contributions of this chapter are as follows:

• For any periodic set A ⊂ Rn, the k-th Voronoi zone is introduced in Definition 2.4
and structurally described in Theorem 2.6.

• The sum of the volumes of the k-th Voronoi zones Zk(A; a) over all points a in the
motif M of a periodic set A ⊂ Rn is independent of k, as stated and proved in
Theorem 2.12.

• The practical algorithm of Section 2.2 computes all Voronoi zones up to a given order
k of a point a in a periodic set A ⊂ Rn, n ≤ 3. By Theorem 2.18, it has polynomial
complexity in the number m = |M | of points in the motif M of A, and has been
implemented in C++ [54].
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• Experimental analysis of the algorithm in Section 2.3 illustrates the time complexity
bound, as well as showing the dependence of geometric features like the number of
polytopes that comprise a k-th Voronoi zone on the order k or the motif size m.

Chapter outline: Section 2.1 states and proves structural properties of k-th Voronoi
zones, in particular Theorems 2.6 and 2.12. Section 2.2 provides a practical algorithm to
compute the k-th Voronoi zones up to any finite k for a periodic set A. The algorithm is
experimentally analysed in Section 2.3, which also includes visualisations of higher Voronoi
zones for several periodic sets. Section 2.4 discusses novelty and open problems relating to
Voronoi zones.

2.1 The Geometric Structure of Voronoi Zones

The main results in this section are Theorem 2.6 describing the spherical nature of the
k-th Voronoi zone around its centre, and Theorem 2.12 that states that the volume of the
k-th Voronoi zone (summed over motif points) is independent of the order k. Hence, all
coloured regions in Figure 2.1 have the same area, which might seem surprising at first
glance.

2.1.1 Spherical Projection

In order to prove Theorem 2.6 about the structure of a Voronoi zone, it is helpful to know
which zone a point belongs to. This is the zone index of a point.

Definition 2.5 (Zone Index ind(x;C; p)). Let C ⊂ Rn be a point cloud, and for p ∈ C, let
b(C; p) be the set of all bisectors (Definition 1.16) between p and every other point of C.
For any x ∈ Rn, consider the half-open line segment [p, x) joining p to x (but not including
x). Then the zone index of x relative to C and p is ind(x;C; p) = i + 1, where i is the
number of bisectors in b(C; p) that intersect the line segment [p, x).

For any point x in the closed Voronoi domain V (C; p), the half-open segment [p, x)
belongs to the interior of V (C; p) and hence does not intersect any of the bisectors of
b(C; p). Therefore, all points x ∈ V (C; p) have zone index ind(x;C; p) = 1. Each time we
cross a bisector of b(C; p) as we move radially further away from the central point p, the
zone index jumps by at least one. This fact can be used to prove the following spherical
structural description of Voronoi zones of periodic sets.

Theorem 2.6 (Structure of Voronoi Zones). For any point a in a periodic set A ⊂ Rn, the
closure of the k-th Voronoi zone Zk(A; a) is the union of convex polytopes whose interior
points have zone index k. Moreover, this closure is spherical in the sense that the radial
projection closure{Zk(A; a)} → Sn−1 (where Sn−1 is centred at a) is surjective.
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Proof. First, we prove that any point x ∈ Rn that has a as its unique k-th nearest neighbour
has zone index ind(x;A; a) = k. Consider the line segment l(s) from a to x parameterised
by s so that we have l(0) = a and l(1) = x. While l(s) lies strictly within V1(A; a), the
point l(s) has a as its unique closest neighbour, and ind(l(s);A; a) = 1.

As we increase the parameter s, the zone index ind(l(s);A; a) increases by one each
time we intersect a bisector separating a from another point in A. If we cross i bisectors,
ind(l(s);A; a) would equal i + 1. As l(1) = x has a as its unique k-th nearest neighbour,
l(s) must intersect k − 1 bisectors as s increases from 0 to 1. Therefore, ind(x;A; a) = k.

Hence the closure of Zk(A; a) is a finite union of polytopes whose interior points have
zone index k. Since the polytopes’ faces are bisectors between the central point a and
other points in the periodic set A, each individual polytope is convex. Interior faces of
these polytopes consist of points with zone index at most k − 1, whilst the remaining
exterior faces have zone index k.

To prove the second clause of the theorem, note that any straight ray R emanating
from a either contains points of zone index k, and thus intersects Zk(A; a), or R must
jump from zone index k′ < k to zone index k′′ > k as we move along R away from a. This
can only happen if R passes through an intersection of multiple bisectors. However, at
this intersection point w, any small neighbourhood of w contains points of all intermediate
indices from k′ to k′′, including k, since no two bisectors can coincide. Hence w is contained
in the closure of Zk(A; a), and we can conclude that the image of the closure of Zk(A; a)
under the radial projection covers the whole sphere Sn−1.

2.1.2 Constant Volume

Theorem 2.12 states that the sum of the volumes of the k-th Voronoi zones over all points
in the motif of a periodic set is independent of the order k. The definitions, statements
and proofs in this subsection follow a similar pattern to that found in [19], where they
prove the same result for lattices. The key difference here is that we have extended the
result to more general periodic sets. The proof works by finding a bijection (Lemma 2.11)
between regions of the Voronoi domain of the origin in the lattice Λ of a periodic set A (the
k-th Voronoi subdomain) and regions of the k-th Voronoi zones (k-th Voronoi subzones)
of motif points of A.

Definition 2.7 (k-th Voronoi subdomain V (k)(A; 0)). Let A ⊂ Rn be a periodic set with
lattice Λ. Then the k-th Voronoi subdomain, V (k)(A; 0), is the open subdomain strictly
within V (Λ; 0) (and so has a unique closest point in Λ) consisting of all points that have a
unique k-th nearest neighbour in the periodic set A.

Definition 2.8 (k-th Voronoi subzone Z(k)(A; a)). Let A ⊂ Rn be a periodic set with
lattice Λ. Then the k-th Voronoi subzone, Z(k)(A; a), is the open subdomain strictly
within Zk(A; a) (and so has a unique k-th closest point in A) consisting of all points that
have a unique closest lattice point v ∈ Λ.
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The proof of Theorem 2.12 requires that each point a ∈ A should be identified with just
one lattice point. The natural thought is to identify a point a ∈ A with the lattice point
v whose Voronoi domain V (Λ; v) it lies within. Yet Voronoi domains are closed and can
overlap at their boundaries. Hence a point that is equidistant from its two closest lattice
points will be contained in both of the corresponding Voronoi domains. To overcome this,
we define half-open Voronoi domains that tile Rn without any overlap.

Definition 2.9 (Half-open Voronoi domain V h(Λ; 0)). For a lattice Λ ⊂ Rn, we define the
half-open Voronoi domain, V h(Λ; 0), to be the union of the interior of V (Λ; 0) with one
representative of each orbit of the points on the boundary of V (Λ; 0), where two points are
equivalent if they are related to each other by a translation by a lattice vector.

By using half-open Voronoi domains in the place of classic Voronoi domains, the fol-
lowing piecewise shift function is well-defined.

Definition 2.10 (Piecewise shift fk(x)). Let A ⊂ Rn be a periodic set with lattice Λ. By
Definition 2.7, any point x ∈ V (k)(A; 0) has a unique k-th nearest neighbour ak ∈ A. We
have that ak ∈ V h(Λ; vk) for a unique lattice point vk ∈ Λ, and so we define the piecewise
shift to be fk(x) = x− ~vk.

Lemma 2.11. The function

fk : V (k)(A; 0)→
⋃

a∈A∩V h(Λ;0)

Z(k)(A; a)

from Definition 2.10 is a bijection.

Proof. We first show that the image of V (k)(A; 0) under the function fk is in the union of
k-th Voronoi subzones

⋃
a∈A∩V h(Λ;0)

Z(k)(A; a). Any x ∈ V (k)(A; 0) has a unique k-th nearest

neighbour ak ∈ A by Definition 2.7. ak is covered by a unique half-open Voronoi domain
V h(Λ; vk) for some vk ∈ Λ, since the half-open Voronoi domains tile Rn without overlap.
So we have that fk(x) = x− ~vk. Since x ∈ V (k)(A; 0) has a unique closest lattice point and
a unique k-th closest point in A, so does fk(x) as its a translation of x by a lattice vector.
The unique k-th nearest neighbour of fk(x) among points in A is ak − ~vk, which is in the
half-open Voronoi domain V h(Λ; vk− ~vk) = V h(Λ; 0), and so fk(x) ∈

⋃
a∈A∩V h(Λ;0)

Z(k)(A; a).

It remains to prove that fk is injective and surjective. To prove that it is injective,
let x, x′ ∈ V (k)(A; 0) have unique k-th nearest neighbours ak, a

′
k ∈ A that lie in half-open

Voronoi domains V h(Λ, vk) and V h(Λ, v′k) respectively. If vk = v′k, then fk(x) −
−−−→
fk(x

′) =

x − ~x′, which implies fk(x) = fk(x
′) if and only if x = x′. If vk 6= v′k, then fk(x) and

fk(x
′) lie in different half-open Voronoi domains, and since these regions do not overlap,

fk(x) 6= fk(x
′). Hence fk is injective.
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Figure 2.2: A periodic set with a two-point motif (blue and red points). The origin is
depicted by a small black dot. Top left: the first Voronoi zone of the red point. Top
middle: both first Voronoi zones of the red and blue points form the Voronoi domain
V (Λ; 0). Top right: the first Voronoi zone of the blue point. Bottom left: the second
Voronoi zone of the red point. Bottom middle: both second Voronoi zones of the red
and blue points form the Voronoi domain V (Λ; 0) after applying lattice vector translations
to the polygons that form the second Voronoi zones, see Lemma 2.11 and Theorem 2.12.
Bottom right: the second Voronoi zone of the blue point.

To prove that fk is surjective, let x ∈ Z(k)(A; a) for some a ∈ A ∩ V h(Λ; 0). Then x
has a as its unique k-th nearest neighbour in A, and has some vk ∈ Λ as its unique closest
lattice point. Consider the point x − ~vk. This point has a unique k-th nearest neighbour
a− ~vk ∈ A, and has vk− ~vk = 0 as its unique closest lattice point. Hence x− ~vk ∈ V (k)(A; 0).
Since a− ~vk has −vk as its unique closest lattice point, fk(x− ~vk) = x− ~vk + ~vk = x, and
so fk is surjective.

It is Lemma 2.11 that does the majority of the heavy lifting in the proof of Theorem 2.12.

Theorem 2.12 (Voronoi Zone Volumes). Let A ⊂ Rn be a periodic set such that A = M+Λ
for a motif M and a lattice Λ. Then the sum of the volumes of the k-th Voronoi zones
Zk(A; a) over all motif points a ∈M is independent of the order k.

Proof. The statement is trivially true for k = 0, so let k ≥ 1. Since Lemma 2.11 says
that the k-th Voronoi subdomain, V (k)(A; 0), and the union of k-th Voronoi subzones over
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points of A in the half-open Voronoi domain V h(Λ; 0),
⋃

a∈A∩V h(Λ;0)

Z(k)(A; a), are related by

a bijection consisting of piecewise translations of nonzero measure regions, we can conclude
that these two domains have the same volume. Since these two domains differ from the
Voronoi domain V (Λ; 0) and the union of k-th Voronoi zones over points of A in the half-
open Voronoi domain by measure zero sets, it also holds that these two latter domains
have equal volume too. Motif points and points in the set A ∩ V h(Λ; 0) each contain one
representative of each orbit of A. Hence we have

Vol[V (Λ; 0)] =
∑

a∈A∩V h(Λ;0)

Vol[Zk(A; a)] =
∑
a∈M

Vol[Zk(A; a)],

showing that the sum of the volumes of the k-th Voronoi zones over all motif points a ∈M
is independent of the order k, see Figure 2.2.

For a periodic set A = M + Λ ⊂ Rn, we can generalise Theorem 2.12 to any integrable
function µ : Rn → R that is Λ-periodic, i.e. µ(x+ ~v) = µ(x) for all x ∈ Rn, v ∈ Λ.

Corollary 2.13. Let A = M + Λ ⊂ Rn. For any integrable function µ : Rn → R that
is Λ-periodic, the integral over the union of the k-th Voronoi zones Zk(A; a) of all motif
points a ∈ A is independent of the order k.

Proof. We can follow the exact same logic as in the proof of Theorem 2.12. In fact,
Theorem 2.12 is just the specific case when, for x ∈ Rn, µ(x) = 1.

2.2 A Practical Algorithm to Compute Voronoi Zones

We describe here a practical algorithm to compute all Voronoi zones up to a given order k
for a point a in a periodic set A ⊂ Rn, where the dimension n = 2 or 3. The input of the
algorithm consists of the following, where all coordinates are rational to allow for practical
computations:

• A lattice Λ ⊂ Rn given by a basis {~v1, . . . , ~vn} ∈ Qn.

• A finite motif M ⊂ U , where U is the unit cell of Λ, consisting of m = |M | points
given by their fractional coordinates (coefficients in the basis of Λ).

• A point a ∈M selected to be the centre of the Voronoi zone Zk(A; a), where A is the
periodic set formed by the Minkowski sum A = M + Λ. Since we are interested in
applications to crystals which are invariant under rigid motions, we similarly study
periodic sets up to rigid motions, and so we can perform a translation on the periodic
set A so that the point a is at the origin 0 ∈ Rn.

• An integer k ≥ 1 which determines the highest order Voronoi zone to be computed.
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Λ V(Λ;0) 4U4U4U4U4U

Figure 2.3: When Λ is the square lattice generated by the basis vectors ~v1 = (1, 0), ~v2 =
(4, 1), the 4-extended unit cell 4U (yellow) is insufficient to cover the Voronoi domain
V (Λ; 0) (blue), see Lemma 2.14.

The output is the first k Voronoi zones of the origin in the periodic set A, Zi(A; 0),
1 ≤ i ≤ k. Each Voronoi zone is the union of a set of polytopes defined by:

• Vertices: arbitrarily ordered points in Rn.

• Edges: unordered pairs of vertices indexed above.

• Two-dimensional faces (for n = 3): cyclically ordered lists of edges indexed above.

2.2.1 Justification of the Minkowski Basis Reduction

In the first stage of the algorithm, a basis reduction is performed. This is needed due to
Lemma 2.14 which states that for any lattice there is always a unit cell such that no fixed
k-extension of the unit cell (Definition 1.6) covers even the Voronoi domain V (Λ; 0), let
alone higher Voronoi zones.

Lemma 2.14. For any fixed k ≥ 1 and for any lattice Λ ⊂ Rn, there always exists a set of
basis vectors such that no k-extension of the corresponding unit cell U covers the Voronoi
domain V (Λ; 0), see Figure 2.3.

Proof. One can choose a basis {~v1, . . . , ~vn} of Λ in such a way that the nearest neighbour of
the origin 0 ∈ Rn in Λ\{0} is the point v1. Let w be the midpoint of the line segment from
the origin 0 to v1, which is on the boundary of V (Λ; 0), and so would have to be covered
by the k-extension of any unit cell. Consider the basis {~v1 + (2k + 1)~v2, ~v2, . . . , ~vn}. The
k-extension kU of the unit cell U spanned by this new basis does not cover w. Indeed, U
must be extended by −(k + 1)~v2 in order to cover w. Hence at least the (k + 1)-extension
of U is needed.

In [30], they prove Lemma 2.15 stating that the 2-extension of the unit cell of a
Minkowski-reduced basis (Definition 1.3) covers the Voronoi domain V (Λ; 0) of the ori-
gin. We have used this lemma to prove Lemma 2.16, which is in turn used in the proof of
Lemma 2.17 extending Lemma 2.15 to any higher order Voronoi zone. This justifies the
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use of the Minkowski basis reduction in Stage 1 of the algorithm computing higher Voronoi
zones of periodic sets.

Lemma 2.15. [30, Appendix A.1] For a unit cell U of a lattice Λ ⊂ Rn, n ≤ 3, with
a Minkowski-reduced basis {~v1, . . . , ~vn}, the 2-extended unit cell 2U strictly contains the
Voronoi domain V (Λ; 0).

Lemma 2.16. For a unit cell U of a lattice Λ ⊂ Rn, n ≤ 3, with a Minkowski-reduced
basis {~v1, . . . , ~vn}, let Λi, i ≥ 1 an integer, be the set of all points in Λ on the boundary of
the 2i-extended unit cell 2iU (extended symmetrically around the origin). Then any point
x ∈ Rn \ 2iU is closer to at least one point of Λi than to 0 ∈ Rn.

Proof. Set i = 1. By Lemma 2.15, the Voronoi domain V (Λ; 0) is strictly within 2U .
Consider a point x on the boundary of 2U . x belongs to the Voronoi domain V (Λ; v) of
a lattice point v ∈ Λ \ {0}. 2U + v must strictly contain V (Λ; v), and as x ∈ V (Λ; v),
2U+v must strictly contain x. Since x is also on the boundary of 2U , for 2U+v to strictly
contain x, we must also have 0 ∈ 2U +v. From this we can deduce that v ∈ Λ1. Therefore,
any point on the boundary of 2U is closer to at least one point of Λ1 than to 0, which
implies that any point x ∈ Rn \ 2U is similarly closer to at least one point of Λ1 than to
0. For i > 1, consider the lattice iΛ with a Minkowski-reduced basis {i~v1, . . . , i~vn} and
unit cell iU . The above argument still holds for this new lattice, meaning that any point
x ∈ Rn \ 2iU is closer to at least one point of iΛ1 than to 0. But since iΛ1 ⊂ Λi, the result
follows.

Lemma 2.17. For a unit cell U of a lattice Λ ⊂ Rn, n ≤ 3, with a Minkowski-reduced
basis {~v1, . . . , ~vn}, its 2k-extension 2kU (symmetrically extended around 0 ∈ Rn) covers
the k-th Voronoi zone Zk(A; 0) for any periodic set A = M + Λ.

Proof. Since Zk(A; 0) ⊆ Vk(A; 0), it suffices to prove that Vk(A; 0) ⊆ 2kU when A is a
lattice (and so has just one point in its motif M) since increasing the number of points
in M can only make Vk(A; 0) smaller. Consider any point x ∈ Rn \ 2kU . By applying
Lemma 2.16 for 1 ≤ i ≤ k, we can conclude that there are at least k points of Λ \ {0}
that are closer to x than to 0. Then x must be outside the k-th degree Voronoi domain
Vk(Λ; 0), implying that Rn \ 2kU ⊆ Rn \ Vk(Λ; 0). Hence Vk(A; 0) ⊆ 2kU .

2.2.2 The Stages of the Algorithm in Dimension Two

The stages of the algorithm computing the first k Voronoi zones of a point in a periodic
set A are outlined below for dimension n = 2, while we discuss how this can be extended
to dimension n = 3 in Subsection 2.2.3.

Stage 1: reduction of the unit cell. The given basis of the lattice Λ is reduced to a
Minkowski-reduced basis.
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Figure 2.4: Left: the blue polygon Q is a convex piece of R2 with boundaries corresponding
to bisectors between the origin and points in the periodic set. Right: a new bisector L(p)
intersects Q, in particular creating two new intersection points on the boundary of Q. The
polygon Q is split into two smaller polygons, with the zone index of the polygon further
from the origin increasing by one.

Stage 2: sorting points from the extended motif. By Lemma 2.17, the k-th Voronoi
zone is covered by the 2k-extended unit cell 2kU of the unit cell U of the Minkowski-reduced
basis. If the motif M ⊂ U has m = |M | points, then the number of points in the extended
motif M2k = A∩ 2kU is |M2k| = (2k)nm. These points are inserted into a balanced binary
tree whose key for comparison is the distance of each point to the origin. This tree and
subsequent trees in the algorithm are implemented using the multimap structure in C++
for fast searching and insertions.

Stage 3 forms the main loop processing all points of the balanced binary tree (except
the origin) from Stage 2 in increasing order of their distance to the origin 0 ∈ R2.

Stage 3: looping over points. For a point p ∈ R2, the point 0.5p is at the midpoint
of the line segment [0, p] ⊂ R2. The bisecting line (Definition 1.16) L(p) between 0 and p
has parametric equation 0.5~p+ tp~p⊥ where tp ∈ R and ~p⊥ is a vector orthogonal to ~p and
anticlockwisely oriented relative to the origin.

For the first time through Stage 3, we start with the polygon 2kU , and take the first
point p1 of the binary tree. The bisector L(p1) intersects the boundary of 2kU in two
locations a and b, splitting the polygon 2kU into two. Points a and b are placed into a
balanced binary tree T (p1) whose key for comparison is the parameter tp1 of the bisector
L(p1). The two polygons that 2kU is split into are stored as additional information relating
to the edge e ⊂ L(p1) from a to b, assigning this information to a if a < b in T (p1), otherwise
to b. The polygon containing the origin is given a zone index of 1, whilst the polygon not
containing the origin is given a zone index of 2.

For any subsequent point p in the balanced binary tree from Stage 2, the intersection
points (that lie within 2kU) of the bisector L(p) with all previous bisectors L(q) as well as
the polygon 2kU are found. After finding a new intersection point a of L(p) with a previous
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bisector L(q), we insert the intersection point a into the balanced binary trees T (p) and T (q)
according to the parameters tp, tq of the equations of L(p), L(q) respectively. a subdivides
an edge e ⊂ L(q) and so we mark the two polygons attached to e. The intersection points
of L(p) with 2kU are added to the binary tree T (p).

Each marked polygon Q is split into two smaller polygons by the line L(p). We add
one to the zone index of the polygon on the opposite side of L(p) compared with the
origin, whilst the zone index of the polygon on the same side of L(p) as the origin remains
the same, see Figure 2.4. Every edge that was previously associated to the polygon Q is
appropriately reassigned one of the smaller polygons.

After completing Stage 3 for all points in the extended motif M2k (bar the origin), we
end up with a splitting of the polygon 2kU into smaller polygons where each polygon has
been assigned a zone index. The union of all polygons of zone index k is equal to the
closure of the k-th Voronoi zone Zk(A; 0).

2.2.3 Extension to Dimension Three

We now discuss our implemented extension of the algorithm in Subsection 2.2.2 to R3.
Stages 1 and 2 are identical to the two-dimensional case. In Stage 3, bisectors of points in
R3 are now two-dimensional planes that intersect with other bisectors in one-dimensional
lines. For any bisecting plane, we choose a normal vector oriented away from the origin.
For any two points p, p′ in the balanced binary tree, the line l of intersection (if there is one)
of their corresponding bisecting planes can be indexed by p, p′ (or indices of these points). l
has direction equal to the vector product of the normal vectors of the bisecting planes. Any
intersection point of three bisecting planes belongs to three lines of intersection (one for
each distinct pair of the three planes). Since such intersection points are naturally ordered
along each line l of intersection, we again keep them in balanced binary trees T (l(p, p′)).

For every point p in the loop of Stage 3, its corresponding bisecting plane is intersected
with the bisecting planes of every previous point q, obtaining the line of intersection l(p, q).
If l(p, q) intersects l(q, q′), where q′ is another previous point in the loop, we insert the
intersection point a into the binary trees T (l(p, q)), T (l(p, q′)) and T (l(q, q′)).

For a line of intersection l and for each oriented edge e ⊂ l between successive intersec-
tion points, we maintain a cyclic order of all polyhedra attached to e, which is again kept
as an extra attribute of the lower vertex of e in the binary tree T (l). If a new intersection
point enters T (l) within the edge e ⊂ l, then all of the polyhedra attached to e are marked.

We split the marked polyhedra by using the intersection function in the CGAL library.
Each of the new smaller polyhedra will belong to a list of cyclically ordered polyhedra
attached to edges within the intersection lines l(p, q), l(p, q′) and l(q, q′).

Again, the output of the algorithm will be a splitting of the parallelepiped 2kU into
smaller polyhedra where each polyhedron has been assigned a zone index. The union of
all polyhedra of zone index k is equal to the closure of the k-th Voronoi zone Zk(A; 0).
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Figure 2.5: The six 2D lattices used in the experiments of Section 2.3. From left to right:
a (black) generic lattice with basis {(1.25, 0.25), (0.25, 0.75)}; a (blue) hexagonal lattice
with basis {(1, 0), (0.5,

√
3/2)}; an (orange) rhombic lattice with basis {(1, 0.5), (1,−0.5)};

a (purple) rhombic lattice with basis {(1, 1.5), (1,−1.5)}; a (red) square lattice with basis
{(1, 0), (0, 1)}; a (green) rectangular lattice with basis {(2, 0), (0, 1)}.

2.2.4 The Complexity of the Voronoi Zones Algorithm

Theorem 2.18 says that the first k Voronoi zones can be computed in polynomial time in
the number m of motif points and equally the order k. The polynomial dependence on
m and k seems inevitable, because in general position m(2k)n bisectors between a fixed
centre p and its neighbours in a 2k-extended unit cell can intersect each other.

Theorem 2.18 (Algorithm Complexity). Let a periodic set A ⊂ Rn, n ≤ 3, have a motif
of m points in a Minkowski-reduced basis. Then the time complexity to compute the first k
Voronoi zones Zi(A; 0), 1 ≤ i ≤ k, is O(mn(2k)n

2
(n log(m) + n2 log(2k))).

Proof. Starting from a reduced basis in Stage 1, the 2k-extended unit cell consists of
m(2k)n points. Since sorting N points takes O(N log(N)) time, sorting the m(2k)n points
according to their distance from the origin in Stage 2 takes O(m(2k)n(log(m) +n log(2k)))
time. Stage 3 computes all n-fold intersections of m(2k)n bisectors, of which there are
O((m(2k)n)n), and so takes O((m(2k)n)n) time. Inserting the O(mn(2k)n

2
) intersection

points into binary trees and marking polyhedra requires O(N log(N)) time for N points,
and so takes O(mn(2k)n

2
(n log(m) + n2 log(2k))) time. Splitting the O(mn(2k)n

2
) poly-

topes depends linearly on the number of intersection points. Therefore, the algorithm’s
time complexity is O(mn(2k)n

2
(n log(m)+n2 log(2k))), since this is the greatest time com-

plexity for a single stage of the algorithm.

The complexity to compute a Minkowski-reduced basis is quadratic in logarithms of
the lengths of initial basis vectors for dimensions n ≤ 3 (exact bounds can be found in
[44, Theorems 4.2.1 and 5.0.4]). Although the dependence of the time estimate on the
dimension n is exponential, the experiments of Section 2.3 show that the algorithm is very
fast in practice.
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2.3 Experimental Analysis of the Voronoi Zones Algorithm

The complexity bound in Theorem 2.18 has been experimentally illustrated in dimensions
two and three as follows. In dimension n = 2, we chose six different lattices which are
described and visualised in Figure 2.5. Given one of these lattices Λ and a fixed integer
m ∈ [1, 50], we randomly generated a motif M of m points to get a periodic set A = M+Λ.
Repeating this random generation 100 times for each of the six lattices, we obtain 600
periodic sets for every m ∈ [1, 50] (see Figure 2.6 for a selection of periodic sets with
m = 1, 2 along with their Voronoi zones).

In the graphs of Figures 2.7-2.13, each cross represents the mean result, such as runtime
in milliseconds, over the 600 periodic sets of each number m of motif points considered.
All experiments were performed on a MacBook Pro with 2.3 GHz and 8GB RAM.

Figure 2.7 indicates that starting from about m = 10, the runtime increases almost
linearly with respect to the number m of motif points as expected by Theorem 2.18.
Meanwhile, Figure 2.8 indicates that in dimension two, the runtime follows a slow quadratic
increase with respect to the order k of Voronoi zones.

Although higher Voronoi zones are more complicated, Figures 2.9-2.10 show that the
number of vertices and polygons increase roughly linearly in dimension two as the order
k increases. Hence, their total numbers up to an order k grows quadratically as k in-
creases. Indeed, a linear number of bisectors are expected to produce a quadratic number
of intersections in R2.

Figure 2.11 shows that the number of polygons (similarly for vertices and edges) present
in a Voronoi zone depends on the number m of motif points in a different way. For a fixed
k the figure shows that the number of polygons plateaus as m increases (stabilising at
about 168 for k = 8 in Figure 2.11). The dependence of this stabilising number on k can
be investigated in future research.

We also computed the perimeter (the total length of the boundary) of k-th Voronoi
zones. For a fixed k, Figure 2.12 shows that the perimeter naturally decreases as the
number m of motif points increases, because the polygons that comprise each zone tend
to become ‘rounder’. If we fix the number m of motif points and increase k, the total
perimeter length seems to grow logarithmically in Figure 2.13.

The experiments in three dimensions were for periodic sets with m motif points ran-
domly generated within the cubic lattice. Figures 2.14-2.15 illustrate the time analysis
of Theorem 2.18 for dimension three. The number of polyhedra grows quadratically in k
(Figure 2.16) and stabilises in m (Figure 2.17) which is similar to dimension two. Three-
dimensional Voronoi zones for the cubic lattice can be seen in Figure 2.18, whilst Figure 2.19
shows the 5-th Voronoi zones for the FCC (face-centred cubic) and BCC (body-centred cu-
bic) lattices as well as for HCP (hexagonal close packing).
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Figure 2.6: The first 12 Voronoi zones of 0 ∈ R2 for: Top left: the rectangular lattice; Top
right: the lattice with basis {(1, 1.5), (1,−1.5)}; Bottom left: a periodic set with a two-
point motif and basis {(1, 0.5), (1,−0.5)}; Bottom right: a periodic set with a two-point
motif and basis {(1.25, 0.25), (0.25, 0.75)}. In each image, the basis vectors are shown by
thin black lines, and the image is rotated so that the first basis vector is horizontal.
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k = 8 Voronoi zones as the number of motif
points takes values m = 1, . . . , 50, averaged
over 600 2D periodic sets.

 0

 20

 40

 60

 80

 100

 120

 5  10  15  20  25  30

R
u
n
tim

e
 (
m
s
)

Order k of Voronoi Zone

Figure 2.8: The runtime to compute the first
k Voronoi zones for k = 1, . . . , 30, averaged
over 3000 2D periodic sets with values of m
between 1 and 5.
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Figure 2.9: The number of vertices in the k-
th Voronoi zone for k = 1, . . . , 30, averaged
over 6000 2D periodic sets with values of m
between 1 and 10.
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Figure 2.10: The number of polygons that
form the k-th Voronoi zone for k = 1, . . . , 30,
averaged over 6000 2D periodic sets with val-
ues of m between 1 and 10.
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Figure 2.11: The number of polygons that form the 8-th Voronoi zone as the number of
motif points takes values m = 1, . . . , 50, averaged over 600 2D periodic sets.
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Figure 2.12: The total perimeter length of
the 8-th Voronoi zone as the number of motif
points takes values m = 1, . . . , 50, averaged
over 600 2D periodic sets.
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Figure 2.13: The total perimeter length of k-
th Voronoi zones for k = 1, . . . , 30, averaged
over 6000 2D periodic sets with values of m
between 1 and 10.
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Figure 2.14: The runtime to compute the
first k = 5 Voronoi zones as the number of
motif points takes values m = 1, . . . , 10, av-
eraged over 10 3D periodic sets.
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Figure 2.15: The runtime to compute the
first k Voronoi zones for k = 1, . . . , 8, aver-
aged over 50 3D periodic sets with values of
m between 1 and 5.
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Figure 2.16: The number of polyhedra that
form the k-th Voronoi zone for k = 1, . . . , 10,
averaged over 50 3D periodic sets with values
of m between 1 and 5.
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Figure 2.17: The number of polyhedra that
form the 5-th Voronoi zone as the number
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Figure 2.18: Voronoi zones Zk(Λ; 0) for k =
4, 5, 6 respectively in the cubic lattice Λ.

Figure 2.19: 5-th Voronoi zones for FCC,
BCC and HCP respectively.

2.4 Conclusion and Open Problems

Computing and visualising Voronoi zones of periodic sets beyond classical Voronoi domains
is important for understanding crystals whose distant interatomic interactions determine
key physical properties.

The main novelty of this chapter is an algorithm to compute the first k Voronoi zones
of a periodic set for any k in dimensions two and three, which has polynomial time in the
key parameters k and m for a fixed dimension n.

The new generalisations extending work relating to lattices required overcoming several
roadblocks. Most importantly, an explicit estimate for an extension of a suitably reduced
cell to guarantee the covering of the k-th Voronoi zone in Lemma 2.17 is provided.

We finish with some open problems relating to Voronoi zones of periodic sets:

• Can the upper bound of the 2k-extension in Lemma 2.17 be improved? An improved
bound will enable a better asymptotic complexity in Theorem 2.18, and may be
possible considering that the square lattice (Figure 2.20) only requires the 2-extended
unit cell to cover the third Voronoi zone.

• Higher Voronoi zones reveal symmetries of a periodic set, for example the six-fold
rotational symmetry of the hexagonal lattice can clearly be seen in Figure 2.21. One
can try to use other geometric properties of higher Voronoi zones to enable a finer
classification of crystals than by classical crystallographic groups.
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Figure 2.20: The first 30 Voronoi zones of the origin in the square lattice (red dots).
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Figure 2.21: The first 30 Voronoi zones of the origin in the hexagonal lattice (red dots).
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Chapter 3

The Density Fingerprint

(This chapter is based on the paper “The density fingerprint of a periodic point set”
authored by H. Edelsbrunner, T. Heiss, V. Kurlin, P.S. and M. Wintraecken, and accepted
for publication in the proceedings of the 37th Symposium on Computational Geometry,
2021 [21].)

In recent years there has been a substantial change in the process by which new func-
tional crystal structures are discovered. The exponential increase in computing power has
made the ambitious idea of being able to identify useful crystal structures without setting
foot inside a laboratory a reality. In particular, the field of Crystal Structure Prediction
(CSP) seeks to predict properties of a crystal simply from its composition and geometric
structure. In novel work outlined in [49], given a molecule of fixed composition, material
scientists generate a large dataset of simulated crystal structures, with each entry repre-
senting a local minimum of a complicated energy function. By computing the properties
of each entry, a small subset can be identified as promising candidates to synthesise in the
laboratory. Hence useful, functional materials can be discovered that perhaps previously
would have required the impossible task of synthesising thousands or even millions of crys-
tals. This process could revolutionise functional materials discovery, yet in key ways it can
still be streamlined.

These large datasets often contain many near-duplicate entries that slow down the
process since costly computational calculations are unnecessarily performed on these dop-
pelgängers. Hence removing excess entries in the datasets could significantly speed up the
process. Moreover, the algorithm used to generate these datasets starts with a (broadly-
speaking) random arrangement of the specified molecule, and then modifies this arrange-
ment until the structure lies within a threshold of a perceived local minimum of the energy
function, in a similar approach to gradient descent. This is not too dissimilar from the
old-fashioned approach of literally shaking models of molecules in a box to see what ar-
rangement it settles in! What if we can more elegantly guide the search for new functional
materials in crystal space by efficiently identifying deep stable local minima of the energy
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function that correspond to the most stable and typically most useful structures? When
trying to find the source of a river, a sensible approach once you’ve encountered the river is
simply to head upstream. Similarly, can we better describe the space of crystals so optimal
structures are found more quickly? We believe both these potential improvements can
be obtained with the implementation of a sufficiently descriptive classification of crystal
structures, and it is in this chapter that we describe the progress we have made towards
this goal.

3.0.1 Contributions and Chapter Outline

The main contributions of this chapter are as follows:

• We formulate the classification problem of periodic sets in Section 3.1, and then
introduce the density fingerprint in Definition 3.5, consisting of an infinite sequence
of density functions (Definition 3.2), as a classification.

• We prove that, in R3, the density fingerprint is Lipschitz continuous in Theorem 3.10
and complete for an open and dense set of periodic sets in Theorem 3.14.

• We describe how the density fingerprint can be computed in Theorem 3.21, linking
the density fingerprint to the Voronoi zones of Chapter 2. An implementation in
dimensions one, two and three is available in C++ [53].

Chapter outline: Section 3.1 formulates the problem and describes the drawbacks of
previous approaches. The density fingerprint is introduced in Section 3.2, for which we go
on to discuss continuity and completeness in Sections 3.3 and 3.4 respectively. Computing
the density fingerprint is tackled in Section 3.5, whilst an application to CSP is described
in Section 3.6. We conclude with a discussion in Section 3.7.

3.1 A Continuous, Complete, Isometry Classification

As described above, we desire a classification of crystals that will improve the novel and
groundbreaking approach of CSP. The first step is to model crystal structures as a rigor-
ously defined mathematical object, which we achieve by representing crystals as periodic
sets (Definition 1.5). We therefore desire a classification of periodic sets, and hence crystal
structures, that can firstly determine whether two sets are identical or not, and secondly,
if the two sets do not match, quantify their similarity. Hence, with this in mind, we are
looking for a solution to the following problem.

Problem 1 (A Continuous, Complete, Isometry Classification of Periodic Sets). We desire
a classification of periodic sets that satisfies the following three conditions:
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I Invariance under isometries: any two periodic sets that are isometric (Definition 1.10)
should be classified identically.

II Continuous under perturbations: if a periodic set undergoes a small perturbation,
the distance between the old and new classifications should be small.

III Completeness: no two non-isometric periodic sets should have the same classification.

Condition I is required since crystals are rigid bodies and so are invariant under rigid
motions. Therefore, periodic sets that are related by a rigid motion should be deemed
equivalent. We use the slightly larger group of isometries for simplicity. Condition I
combined with Condition III implies that two structures will be identified as identical if
and only if they are isometric to each other, whilst Condition II will enable us to rigorously
quantify how similar two non-isometric structures are to each other.

3.1.1 Drawbacks of Previous Approaches

Ultimately, the question being considered here is deceptively simple: given two periodic
sets in R3, how close are they to being isometric to each other? Yet previous approaches
and existing tools available to tackle this problem are not without their drawbacks.

Ambiguity of Unit Cells

Typically, crystals, which are conceptually infinite, tend to be represented by a finite region
or building block which determines the entire infinite crystal. These building blocks are
called unit cells (Definition 1.2). Reducing an object of infinite size to that of something
that is finite seems a very sensible method of simplifying the problem. However, there is
much ambiguity regarding unit cells.

In Definition 1.2, a unit cell is defined to be the set of points that can be expressed as
a linearly combination of the basis vectors of the lattice with coefficients in the interval
[0, 1). Yet, in dimensions n ≥ 2, all lattices have infinitely many bases, and thus infinitely
many unit cells, see Figure 3.1. Because of this, there have been several attempts to define
algorithms that output a unique basis (and therefore a unique unit cell) for a given lattice.
Such a basis is called a reduced basis (and yield a corresponding reduced unit cell), and
tends to be composed of vectors that are reasonably short and almost orthogonal. Finding
good reduced bases has been widely studied, especially given its relevance to other fields
outside of crystallography such as cryptology. Some of the most well known reduced bases
include those by Hermite, Minkowski (Definition 1.3), Lagrange and Niggli [44].

The issue with all reduced bases is that they are not stable under perturbations of the
periodic set [4]. As an example, the Niggli reduced cell [45], for certain configurations,
requires a choice of basis vectors. However, if the periodic set is only slightly perturbed, a
significantly different set of basis vectors is outputted. This lack of stability poses significant
problems when establishing a continuous classification of crystal structures. Any invariants
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Figure 3.1: All four unit cells corre-
spond to a set of basis vectors that
generate the hexagonal lattice.

Figure 3.2: On the left, we have the square lat-
tice where the reduced unit cell is highlighted
in green. If every other lattice point in the x-
direction is perturbed slightly, as on the right, the
reduced unit cell doubles in area, and the number
of motif points in the unit cell also doubles from
one to two.

that are based on the unit cell, such as the parameters of the parallelepiped or fractional
coordinates of atoms within the unit cell, cannot be stable under perturbations of the
periodic set. As another example, the unit square lattice generated by the vectors (1, 0) and
(0, 1) has a square unit cell. However, if every point in the lattice with odd x-coordinate
is only sightly perturbed, the reduced basis doubles in volume, see Figure 3.2. These
discontinuities under small perturbations makes it impossible to use compact unit cells as
the foundation of a continuous classification of crystals.

Current Tools Require Tolerances

There are various software systems currently used in practice to quantify the similarity
between crystals, which include Compack [13], Mercury [40] and Compstru [25]. These
tools can be of great help when comparing crystals. However, they employ heuristics like
cut-offs and tolerances. For example, by default, Mercury seeks to match up to 15
molecules, where two molecules are said to be matched if they lie within some distance and
angle tolerances that are set by the user. Then, considering just the matched molecules, the
root mean square deviation is computed and this output is used to assess how similar the
structures are. In some scenarios, this does give an accurate description of the similarity,
whilst in others it can be misleading. Moreover, changing the tolerances can lead to a
different value of the root mean square deviation, and of course if you let the number of
molecules compared go to infinity, it is likely that the root mean square deviation will also
tend to infinity.
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Space Groups are a Discrete Classification

It is common practice for crystallographers to focus on the space group of a structure,
and with good reason. This contains important information particularly relating to the
structure’s symmetry. There are 230 space groups in three dimensions, obtained from the
Bravais lattices by including rotations, screw axes, mirror and glide planes, plus points of
inversion. These space groups can be thought of as a stratification of the space of isometry
classes of crystals, yet the stratum a structure belongs to is not a continuous property. For
example, a cubic lattice has 3 axes of 4-fold rotation. Yet if we extend one of the basis
vectors of the cubic lattice, even by the smallest amount, we obtain a tetragonal lattice
with only 1 axis of 4-fold rotation.

3.2 Density Functions and the Density Fingerprint

In light of the review of previous methods and tools to geometrically compare crystal
structures in Subsection 3.1.1, we must desire geometric invariants of crystals that are
continuous and independent of the unit cell in order to solve Problem 1. Motivated by the
single value density of a crystal, which is defined to be the molecular weight of the atoms
within a unit cell divided by the unit cell volume, we introduce the density fingerprint
that somewhat extends the concept of density to an infinite family of continuous functions,
which we call density functions.

Notation 3.1 (B(C; r)). Let C be a set of points in Rn. The set of balls with centres at
the points of C and radii t is denoted by B(C; t).

Definition 3.2 (k-th Density Function ψAk (t)). Let A ⊂ Rn be a periodic set with unit
cell U . The k-th density function, ψAk (t), is defined to be the fractional volume of the unit
cell U that is covered by exactly k balls of B(A; t),

ψAk (t) =
Vol[{p in exactly k balls of B(A; t) | p ∈ U}]

Vol[U ]
.

We illustrate how the density functions grow and diminish in a simple case in Exam-
ple 3.3, where the periodic set considered is the unit square lattice generated by the basis
vectors ~v1 = (1, 0) and ~v2 = (0, 1).

Example 3.3. Let the periodic set A be the unit square lattice. We describe here some key
milestones of the first nine density functions of A as the radii of balls of B(A; t) increases,
as seen in the top set of images in Figure 3.3. In the top-left of Figure 3.3, we see snapshots
of the growing balls around the lattice points at radii t = 0.25, 0.55, 0.75, 1. In particular,
we note that green double intersections (which will be born at radius 0.5) appear in the
second image (t = 0.55), orange and red triple and quadruple intersections (which will be
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Figure 3.3: The density functions of the square lattice (top set of images) and, for compar-
ison, the hexagonal lattice (bottom set of images). Left: the k-fold covers of the lattice
for four different radii: t = 0.25, 0.55, 0.75, 1.00. Right: the graph of the first nine density
functions above the corresponding densigram, in which the zeroth density function can be
seen upside-down and the remaining density functions are accumulated from left to right.
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born at radius
√

2/2) appear in the third image (t = 0.75), and the blue regions covered
by exactly one ball have vanished in the final image (t = 1).

The plot of the first nine density functions shown to the right of these snapshots shows
how the values of the functions grow and decrease as the radius increases. In particular,
we note in Table 3.1 the milestone radii at which each function becomes nonzero (is born)
and vanishes (dies).

k 0 1 2 3 4 5 6 7 8

Birth radius 0 0 0.5
√

2
2

√
2

2 1 5
√

2
6 1.25

√
2

Death radius
√

2
2 1

√
5

2
5
√

2
6

√
10
2

√
10
2

√
10
2

5
3

√
13
2

Table 3.1: The birth and death radii of the first nine density functions of the square lattice.

We have stressed that we are looking for geometric invariants of periodic sets that are
invariant under isometries and independent of the unit cell. Density functions fulfil both
of these criteria, despite there being a choice of unit cell in Definition 3.2.

Lemma 3.4. The k-th density function ψAk of a periodic set A is invariant under isometries
of A, and independent of the unit cell chosen in Definition 3.2.

Proof. By definition, isometries preserve distances and volumes. In particular, any point
of Rn that is within a distance t of exactly k points of A will again be within a distance
t of exactly k points of A after an isometry has been applied. Therefore, any region that
contributes towards the k-th density function will again contribute towards the k-th density
function after an isometry.

To show that density functions are independent of the unit cell chosen, consider parti-
tioning Rn into its orbits generated by the lattice translations. Any unit cell of minimal
volume will have one representative of each orbit. As every point in the same orbit will
have the same number k of points in A within a distance t, any unit cell of minimal volume
will have the same fractional volume of points covered by exactly k balls of B(A; t). Any
unit cell of greater volume will have m representatives of each orbit, but then its volume
will be m times greater, so the fractional volume of points covered by exactly k balls of
B(A; t) remains the same.

Having introduced the concept of a density function, we wish to associate to a periodic
set A its infinite family of density functions, which we call its density fingerprint, Ψ(A).

Definition 3.5 (Density Fingerprint Ψ(A)). Let A ⊂ Rn be a periodic set. The density
fingerprint of A is the infinite family of functions Ψ(A) = {ψA0 , ψA1 , . . .}. The function
Ψ : A→ {ψA0 , ψA1 , . . .} is called the density fingerprint map.
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In Sections 3.3 and 3.4, we prove that, in dimension n = 3, the density fingerprint is
continuous under perturbations and complete for generic periodic sets, conjecturing that
it is complete for all periodic sets in dimensions n ≥ 2.

3.3 Continuity of the Density Fingerprint Map

In this section, we will prove that, in dimension n = 3, the density fingerprint map from
periodic sets to density fingerprints is Lipschitz continuous with respect to small pertur-
bations of the periodic set.

Definition 3.6 (Lipschitz Continuity). Given two metric spaces (X, dX), (Y, dY ), a func-
tion f : X → Y is called Lipschitz continuous if there exists a constant C ∈ R≥0 such that
for all x1, x2 ∈ X, we have that

dY (f(x1), f(x2)) ≤ C · dX(x1, x2). (3.1)

Any such C is called a Lipschitz constant, and the smallest Lipschitz constant is called the
(best) Lipschitz constant.

To show that the density fingerprint map Ψ is Lipschitz continuous, we must first
define the distances we will use between pairs of periodic sets and between pairs of density
fingerprints.

Definition 3.7 (Bottleneck Distance dB(A,Q)). Let A,Q be point sets of equal cardinal-
ity. The (Euclidean) bottleneck distance, dB(A,Q), is defined to be the infimum over all
bijections γ : A → Q of the supremum of the (Euclidean) distances between all pairs of
points a ∈ A and γ(a) ∈ Q (see Figure 3.4). Namely,

dB(A,Q) = inf
γ : A→Q

sup
a∈A
‖a− γ(a)‖2 . (3.2)

The bottleneck distance is perhaps theoretically the best way of comparing periodic sets.
However, it is not practical since it involves finding the best bijection between infinitely
many points. This is why we need more appropriate geometric invariants to describe
periodic sets with distance functions that are easier to compute. For example, it is easy to
(approximately) compute the d∞ distance between density fingerprints.

Definition 3.8 (d∞(Ψ(A),Ψ(Q))). Let A,Q be periodic sets with density fingerprints
Ψ(A),Ψ(Q) respectively. We define the distance between Ψ(A) and Ψ(Q), d∞(Ψ(A),Ψ(Q)),
to be the supremum over k ≥ 0 of the weighted infinity norm (see Figure 3.4). That is,

d∞(Ψ(A),Ψ(Q)) = sup
k≥0

1
3
√
k + 1

2

∥∥∥ψAk − ψQk ∥∥∥∞ . (3.3)
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dB

Figure 3.4: Left: the bottleneck distance dB between the red and blue periodic sets. The
black lines between pairs of points denotes the optimal bijection. Right: the L∞-distances
between the k-th density function, 1 ≤ k ≤ 8, of the square (solid lines) and hexagonal
(dashed lines) lattices are equal to the lengths of the grey vertical bars.

The reason for the damping coefficient, 1
3√k+1

2 , is technical and is drawn out in the

proof of Theorem 3.10, but in summary it compensates for the fact that higher density
functions will be more sensitive to perturbations than lower ones.

Theorem 3.10 makes use of Lemma 3.9 stating that there will be a common lattice of
periodic sets with a small bottleneck distance between them.

Lemma 3.9 (Common Lattice). Let A,Q ⊂ R3 be periodic sets, and let rQ > 0 be the
packing radius (Definition 1.11) of Q. If dB(A,Q) < rQ, then there exists a lattice Λ with
unit cell U such that |A ∩ U | = |Q ∩ U | and A = (A ∩ U) + Λ, Q = (Q ∩ U) + Λ. Namely,
A and Q can be expressed in terms of a common lattice, and the cardinality of their motifs
for this lattice agree.

Proof. We will prove this by contradiction, by assuming that there is no common lattice
for A and Q. In this case, for a lattice ΛA of A and a lattice ΛQ of Q, ΛA∩ΛQ is a lattice of
dimension at most two. As a result, there exists a basis vector ~v of ΛA such that n~v ∈ ΛQ
implies n = 0. Choosing a point a ∈ A, consider the line of infinitely many evenly spaced
points a(n) = a + n~v, n ∈ Z. For each a(n), let q(n) ∈ ΛQ be the lattice point such that

a(n)−
−−→
q(n) ∈ UQ, where UQ is the unit cell of the lattice ΛQ. We denote b(n) = a(n)−

−−→
q(n),

where b(n) is simply the translate of a(n) by a lattice vector such that b(n) is inside UQ.
There must be infinitely many pairwise different points b(n) in UQ. For if b(n) = b(m),

then a(n)−
−−−→
a(m) = q(n)−

−−−→
q(m) which implies that (n−m)v = q(n)−

−−−→
q(m). q(n)−

−−−→
q(m)

is a lattice point of ΛQ, and so must be 0, which implies (n−m)v = 0, and so n = m.
But these infinitely many points must all be within a distance δ = dB(A,Q) from a

point in Q. But here we have a contradiction. To see this, let b(i) and b(j) be at a distance
less than ε = rQ − δ from each other. Two such points must exist since we have infinitely
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many in a bounded region. Consider the infinite line of points b(i) + n(
−−−−−−−→
b(j)− b(i)), n ∈ Z.

We note that b(i) + n(
−−−−−−−→
b(j)− b(i)) = b(i+ n(j − i)) modulo the lattice ΛQ, as both points

can be expressed as a(i)+n(j− i)~v+~q for some q ∈ ΛQ. Hence all of the points on the line
must be within a distance δ = dB(A,Q) from a point in Q. However, the distance between
contiguous points on the line is less than ε, and since the gap between balls of radius δ
centred at points of Q is at least 2ε, then at least one of the points on the line is outside
all such balls, and we reach our contradiction.

We can now prove that the density fingerprint is Lipschitz continuous by using the
fact that there is necessarily a common lattice between two periodic sets that are small
perturbations of each other.

Theorem 3.10 (Fingerprint Continuity). Let A,Q ⊂ R3 be periodic sets, both with packing
radius r > 0 and covering radius R <∞ (see Definitions 1.11 and 1.12). If δ = dB(A,Q) <
r, then there exists a constant C = C(r,R) such that d∞(Ψ(A),Ψ(Q)) ≤ C · dB(A,Q).

Proof. (This proof was principally constructed by Herbert Edelsbrunner.) By Lemma 3.9,
there is a lattice Λ ⊂ R3 that is common to both A and Q, and we write U for the
corresponding unit cell. Let the bijection γ : A → Q be such that the supremum of the
Euclidean distances between all pairs of points a ∈ A and γ(a) ∈ Q is equal to dB(A,Q).
Let k ∈ Z≥0 and t ∈ R≥0. We want to find an upper bound for d∞(Ψ(A),Ψ(Q)) =

sup
k≥0

1
3√k+1

2

∥∥∥ψAk − ψQk ∥∥∥∞. Firstly, let us fix k and t and find an upper bound for
∣∣∣ψAk (t)− ψQk (t)

∣∣∣.
By letting ∪kB(A; t) be the union of all points in R3 that are covered by at least k balls
of B(A; t), and letting Akt = ∪kB(A; t) \ ∪k+1B(A; t) be the union of all points in R3 that
are covered by exactly k balls of B(A; t), we have∣∣∣ψAk (t)− ψQk (t)

∣∣∣ =

∣∣Vol
[
Akt ∩ U

]
−Vol

[
Qkt ∩ U

]∣∣
Vol[U ]

. (3.4)

As a first step, let’s find an upper bound for the numerator, ∆, on the right-hand
side of Equation 3.4, in the case where the motif MQ of Q differs from the motif MA

of A due to a perturbation by at most δ of a single point a ∈ MA to a point q ∈ MQ.
Namely, Q = (A \ (a+ Λ))∪ (q+ Λ). Let the bijection γ between A and Q be the identity
except for the point a ∈ MA which it maps to q = γ(a) ∈ B(a; δ). A point x ∈ R3 is
possibly covered by a different number of balls before and after this perturbation only if
x ∈ (B(a; t)	B(q; t)) + Λ, where 	 denotes the symmetric difference. Observing that this
set is contained in

(
B
(a+q

2 ; t+ δ
2

)
\B

(a+q
2 ; t− δ

2

))
+ Λ (see Figure 3.5), we have that

∆ ≤ Vol[B(a; t)	B(q; t)] ≤ 4π

3

((
t+

δ

2

)3

−
(
t− δ

2

)3
)

=
4π

3

(
3t2δ +

1

4
δ3

)
. (3.5)

39



a q

t+𝛿/2

t-𝛿/2

𝛿

t t

Figure 3.5: For points a and q a distance δ apart, the symmetric difference B(a; t)	B(q; t)
is contained within B

(a+q
2 ; t+ δ

2

)
\B

(a+q
2 ; t− δ

2

)
.

Perturbing one point of MA after another, we can bound the error each time by Equa-
tion 3.5. Setting ρ = |MA|/Vol[U ], we get∣∣∣ψAk (t)− ψQk (t)

∣∣∣ ≤ 4π

3

(
3t2δ +

1

4
δ3

)
· ρ. (3.6)

We now wish to eliminate the dependence on t, which can be done by noting that for
each k there exists a value of t beyond which the k-th density functions of A and Q vanish.
To determine an upper bound for this value, consider a point y ∈ R3. By the definition
of the covering radius R, for t ≥ R, B(A;R) and B(Q;R) cover B(y; t − R). In fact, we
need only balls of radius R centred at the points of A ∩ B(y; t) and similarly Q ∩ B(y; t)
to cover B(y; t − R). By using a volume argument, it follows that the number of points

in the two sets A ∩ B(y; t) and Q ∩ B(y; t) is at least
4π
3

(t−R)3

4π
3
R3 =

(
t
R − 1

)3
. By setting

k + 1 ≤
(
t
R − 1

)3
, we see that for t ≥ R 3

√
k + 1 + R, both sets have at least k + 1 points.

Therefore, at radius t, y is covered by at least k+ 1 balls. Since this holds for any y ∈ R3,
we have ψAk (t) = ψQk (t) = 0 for t ≥ R 3

√
k + 1+R. This also holds for the simpler inequality

t ≥ 2R 3
√
k + 1 since 3

√
k + 1 ≥ 1 for all k ≥ 0. Replacing t in Equation 3.6 by this latter

bound, we obtain ∣∣∣ψAk (t)− ψQk (t)
∣∣∣ ≤ 4π

3

(
3
(

2R
3
√
k + 1

)2
δ +

1

4
δ3

)
· ρ

=
4π

3

(
12R2 3

√
k + 1

2
δ +

1

4
δ3

)
· ρ.

(3.7)
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Since this inequality is true for any t, then by dividing through by 3
√
k + 1

2
, we have

1
3
√
k + 1

2

∥∥∥ψAk − ψQk ∥∥∥∞ ≤ 16πR2ρδ +
πρ

3 3
√
k + 1

2 δ
3 ≤ 16πR2ρδ +

πρ

3
δ3

≤ 12R2

r3
δ +

1

4r3
δ3,

(3.8)

where the last equality results from noting that due to the definition of the packing radius
r, we have that ρ · 4π

3 r
3 ≤ 1 which implies that ρ ≤ 3

4πr3
. By the constraint in the theorem,

we have that δ2 < r2 < R2, and so finally we have

1
3
√
k + 1

2

∥∥∥ψAk − ψQk ∥∥∥∞ ≤ 12R2

r3
δ +

1

4r3
R2δ ≤ 12R2

r3
δ +

R2

r3
δ =

13R2

r3
δ. (3.9)

Hence, d∞(Ψ(A),Ψ(Q)) ≤ 13R2

r3
δ, and so Ψ is Lipschitz continuous where we can take

C = 13R2

r3
as an upper bound for the Lipschitz constant.

Figure 3.6 illustrates Theorem 3.10 in R2 for a periodic set A and its perturbation Q
by overlaying the first eight (undamped) density functions of the two periodic sets.
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Figure 3.6: Left: A periodic set with two points represented by black dots in the square
unit cell, and the perturbed periodic set with two points represented by blue squares in
the same unit cell. Right: The curves of the (undamped) density functions are solid for
the original periodic set and dashed for the perturbed periodic set. The small distances
between corresponding density functions illustrate Theorem 3.10.
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3.4 Completeness of the Density Fingerprint

One of the criteria for having an effective classification of periodic sets is that the classifica-
tion is complete, meaning that no two non-isometric periodic sets are mapped to the same
set of values. We conjecture that the density fingerprint map is complete in dimensions
n ≥ 2, although this remains an open problem. We have however successfully proven that
the fingerprint is complete for generic periodic sets in dimension three, and also observe
that, apart from in dimension one, we were unable to find a counterexample to complete-
ness in general, despite carrying out an extensive search. We will describe our tests on
prime candidates for a counterexample to completeness in Subsection 3.4.1, but first we
prove completeness for generic periodic sets in dimension three, with the initial step being
to define a generic periodic set. To do this, we need the definition of a circumradius.

Definition 3.11 (Circumradius). The circumradius of a set of 2, 3, or 4 linearly indepen-
dent points in R3 is the radius of the smallest sphere that passes through all the points
in the set. We can similarly define circumradii for edges/1-simplices, triangles/2-simplices
and tetrahedrons/3-simplices to be the smallest sphere that passes through all the vertices
of the simplex.

For a set of two points, the circumradius is simply half the distance between the two
points. For a set of three linearly independent points, the circumradius is the radius of
the unique circle that passes through the 3 points. And similarly for a set of four linearly
independent points, the circumradius is the radius of the unique sphere that passes through
all four points.

The constraints in Definition 3.12 of a generic periodic set are formulated in terms of
the circumradii of the edges, triangles and tetrahedrons spanned by subsets of two, three
and four points of the periodic set. To avoid infinitely many constraints, we introduce an
upper bound on the set of circumradii to consider. In particular, we denote by L(A; θ) the
list of all edges/1-simplices, triangles/2-simplices and tetrahedrons/3-simplices spanned by
points of the periodic set A whose circumradii are at most θ.

Definition 3.12 (Generic Periodic Set). A periodic set A ⊂ R3 is said to be generic for a
constant threshold θ if the following three conditions hold (apart from necessary violations
due to the periodic nature of the set):

I No two circumradii of different simplices of L(A; θ) are equal.

II The circumradii of different edges in L(A; θ) are not related to each other by a factor
of 2.

III Let t ≤ θ be the circumradius of a simplex in L(A; θ). If the simplex is a tetrahedron,
there is a unique set of six circumradii in L(A; θ) such that the edges with twice their
lengths can be assembled to a tetrahedron with circumradius t. If the simplex is not
a tetrahedron, then there is no such set of six circumradii.
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We call an edge a lattice edge if its length is equal to the length between two lattice
points. A lattice triangle is made up of three lattice edges, and a lattice tetrahedron is
made up of six lattice edges. The distinguishing factor between lattice simplices and non-
lattice simplices is that, for a generic periodic set, non-lattice simplices are unique up to
translations by lattice vectors. This is not true for lattice simplices (if there are at least
two motif points). For example, for points a, b in the motif of a generic periodic set, we can
translate a lattice edge starting at a to a lattice edge starting at b, where the translation
is not by a lattice vector.

Conditions I, II and III can be expressed in finitely many algebraic equations involving
the vectors ~a ∈M in the motif M of A and the lattice vectors ~v1, ~v2, ~v3 of the lattice Λ of
A. Therefore, the set of periodic sets that are generic with threshold θ is open and dense
with respect to perturbations of these vectors in the space of all periodic sets with at most
m = |M | motif points.

We can now prove Theorem 3.14 which states that the density fingerprint map is com-
plete in dimension three for generic periodic sets. The value of the threshold θ used in
Theorem 3.14 is dependent on the value Rad(A) of a periodic set A.

Definition 3.13 (Rad(A)). Let A ⊂ R3 be a periodic set with lattice Λ and unit cell U
with diameter D. We define Rad(A) to be the largest finite circumradius of up to four
points in A with pairwise distances between the points at most four times the diameter D
of U .

Since the diameter D of a unit cell of a periodic set A is always equal to the distance
between two points in A, there exist pairs of points in A that are a distance of 4D apart,
and so we have that Rad(A) ≥ 2D.

Theorem 3.14 (Generic Completeness). Let A,Q ⊂ R3 be non-isometric periodic sets
that are generic for the threshold θ = max{Rad(A),Rad(Q)}. Then Ψ(A) 6= Ψ(Q).

Proof. (This proof was principally constructed by Mathijs Wintraecken and Teresa Heiss.)
We will show that we can uniquely reconstruct the isometry class of A, [A], from the
density fingerprint Ψ(A), therefore showing that any periodic set Q that is non-isometric
to A must have a different density fingerprint, Ψ(Q) 6= Ψ(A).

Firstly, we show how we can obtain all tetrahedrons in L(A; θ) up to isometries. In
[18], it is shown that each density function can be expressed as the sum of volumes of
intersections of two, three or four balls centred at points in A. These volume formulae are
piecewise analytic in the radius t, where the radii at which the formulae are non-analytic
correspond to the circumradii of edges, triangles and tetrahedrons spanned by points in A.
Therefore, the set of all radii up to θ where at least one density function is non-analytic
coincides with the set of circumradii of simplices of L(A; θ).

To identify all tetrahedrons in L(A; θ) up to isometries, we treat all circumradii as if
they were circumradii of edges. By taking all combinations of six circumradii and seeing if
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edges with twice their lengths can be assembled to form a tetrahedron with a circumradius
in L(A; θ), we can obtain all tetrahedrons of L(A; θ) up to isometries by Condition III in
Definition 3.12.

To finish the proof, we want to be able to construct a periodic set in [A], the isometry
class of A. If we show that from the tetrahedrons of L(A; θ) this can be done uniquely,
then we are done.

We start the reconstruction with the lexicographically shortest non-lattice tetrahedron
from L(A; θ). If there is no non-lattice tetrahedron, then A is a lattice and can thus be
reconstructed from the lexicographically shortest lattice tetrahedron from L(A; θ): taking
such a tetrahedron’s three shortest lattice edges that are linearly independent from each
other, we obtain the Minkowski-reduced basis of the lattice.

But assuming there is a non-lattice tetrahedron, we will denote it by abcd, and without
loss of generality assume that ab is a non-lattice edge. Placing abcd arbitrarily in space (we
are only interested in the isometry class of A), we identify all tetrahedra abce in L(A; θ)
which possess a face agreeing with abc. For each such tetrahedron, there are two ways,
related by reflection, of glueing abce to abcd along their common face abc. We call the
two different tip positions e1 and e2. However, at most only one of them is possible. The
triangles abd and abe are non-lattice and therefore unique in A up to translations by lattice
vectors by Condition I. Thus the tetrahedron abde (assuming a, b, d, e do not all lie in the
same plane) is unique with a certain edge length de that is the distance between d and ei
for at most one of e1 and e2. If, for instance, this is the distance from d to e1, we glue abce
to abcd such that e is at e1.

This glueing procedure yields all points at a distance at most four times the diameter
of the unit cell from a, b, c and d by the definition of Rad(A), except the points that lie on
a plane spanned by abc or abd. This neighbourhood is large enough such that it contains
every point in the motif, as well as revealing a lattice basis identified by computing the
pairwise distances between the reconstructed points and checking whether they satisfy
Condition II. Repeating the reconstructed points with respect to the lattice yields the
isometry class of A. As the construction was unique given the genericity conditions, we
have that Ψ(A) 6= Ψ(Q).

3.4.1 Distinguishing Non-generic Periodic Sets

By Theorem 3.14, the density fingerprint map is complete for any generic periodic set A ⊂
R3. But what about for non-generic periodic sets? In general, are there any periodic sets
A,Q ⊂ Rn that are non-isometric but have matching density fingerprints, Ψ(A) = Ψ(Q)?
We have been unable to construct a proof stating that no such pair of periodic sets exists,
yet neither have we found any counterexamples in dimensions n ≥ 2. In this subsection,
we consider a couple of pairs of prime candidates for a counterexample to completeness in
dimension n = 3. Nevertheless, the density fingerprint map is able to distinguish them,
motivating us to make Conjecture 3.19.

44



We begin by noting that a counterexample to completeness has been found in dimension
one by a pair of periodic sets suggested by Morteza Saghafian.

Example 3.15 (Counterexample to Completeness in Dimension One). The following pair of
periodic sets are a counterexample to completeness in dimension one. Let U = {0, 4, 9} and
V = {0, 1, 3}. It can be checked that the finite sets U +V and U −V , and the periodic sets
A = (U+V )+15Z and Q = (U−V )+15Z cannot be distinguished by the one-dimensional
density fingerprint map. Specifically,

A = {x+ 15~m | m ∈ Z, x = 0, 1, 3, 4, 5, 7, 9, 10, 12} (3.10)

Q = {x+ 15~m | m ∈ Z, x = 0, 1, 3, 4, 6, 8, 9, 12, 14} (3.11)

are non-isometric periodic sets whose density fingerprints are indistinguishable. We note
that the pairs of periodic sets A×Zn−1, Q×Zn−1 ⊂ Rn, n ≥ 2, are distinguishable by the
density fingerprint map, and so this example cannot be used to construct counterexamples
to completeness in higher dimensions.

Our search for a counterexample to completeness in higher dimensions starts with
homometric structures.

Definition 3.16 (Homometric Structures). Two periodic sets A,Q ⊂ Rn are called homo-
metric if their multisets of difference vectors are equal (up to isometries): A−A = Q−Q,
where A−A contains all vectors ~a−~b for a, b ∈ A.

As described in the proof of Theorem 3.14, density functions are non-analytic only at
radii equal to the circumradius of a simplex spanned by points in the periodic set. Hence,
a natural candidate for a counterexample to completeness are non-isometric periodic sets
that have the same mulitset of pairwise distances between the points in the periodic set,
i.e. homometric structures.

Example 3.17 (Homometric Structures). In 1930, Pauling and Shappell [48] discovered a
one-parameter family of structures with crystallographic group number 206 and Wyckoff
position 24d, where for the parameter µ, taking ±µ yields pairs of homometric structures.
Following [48], we set µ = ±0.03, and refer to the corresponding periodic sets as A and
Q. Table 3.2 shows the L∞-distances between corresponding k-th density functions for
1 ≤ k ≤ 8. In particular, all L∞-distances are positive, from which we can deduce that the
density fingerprints of A and Q are distinguishable.

k 1 2 3 4 5 6 7 8∥∥∥ψAk − ψQk ∥∥∥∞ 0.0039 0.0090 0.0247 0.0246 0.0159 0.0138 0.0245 0.0279

Table 3.2: L∞-distances between the corresponding k-th density functions, 1 ≤ k ≤ 8, of
the two homometric structures A and Q from Example 3.17.
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Figure 3.7: Periodic sets A and Q from Example 3.18, pictured with rectangular unit
cells in dimension two for simplicity. Filled dots belong to the motifs while unfilled dots
illustrate the periodicity.

Example 3.18 describes a pair of periodic sets which not only are homometric, but in
fact the multisets of all triplets of points coincide too (up to isometries). Even in this case,
the density fingerprints are distinguishable.

Example 3.18. Let A1, Q1 ⊂ R be periodic sets with periodicity 32, each with 16 points in
their motifs. Explicitly,

A1 = {x+ 32n | n ∈ Z, x = 0, 7, 8, 9, 12, 15, 17, 18, 19, 20, 21, 22, 26, 27, 29, 30} (3.12)

Q1 = {x+ 32n | n ∈ Z, x = 0, 1, 8, 9, 10, 12, 13, 15, 18, 19, 20, 21, 22, 23, 27, 30}. (3.13)

In [29], it is shown that A1 and Q1 are non-isometric periodic sets that have the same
multisets of pairs and triplets of points up to isometries. From A1 and Q1 we can obtain
non-isometric periodic sets A,Q ⊂ R3 that again share this property by taking the Carte-
sian product of A1 and respectively Q1 with Z2, see Figure 3.7. Yet, as shown in Table 3.3,
although the first four density functions of A and Q agree, there is a nonzero distance
between higher density functions, and so we can conclude that the density fingerprint map
distinguishes these two periodic sets. The ability of the density fingerprint map to distin-
guish these periodic sets may be due to the fact that it takes into account the additional
information of the number of points in the periodic set that are within each circumsphere.

k 0 1 2 3 4 5 6 7 8∥∥∥ψAk − ψQk ∥∥∥∞ 0.000 0.000 0.000 0.000 0.005 0.007 0.013 0.022 0.007

Table 3.3: L∞-distances between the first eight density functions of the periodic sets A
and Q from Example 3.18.

Both the proof of generic completeness, and the ability of the density fingerprint map to
distinguish strongly related non-generic periodic sets, leaves us hopeful that the following
conjecture is true.
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Conjecture 3.19 (Completeness of the Density Fingerprint). Let A,Q ⊂ Rn, n ≥ 2, be
two non-isometric periodic sets. Then Ψ(A) 6= Ψ(Q).

Comparing the Density Fingerprints of FCC and HCP

Slightly tangential to this discussion on completeness, we think it is of interest to compare
two related periodic sets familiar to crystallography: the face-centred cubic lattice (FCC)
and the hexagonal close packing of spheres (HCP). Both periodic sets have the same packing
density of spheres in R3, specifically the greatest packing density possible.

When we compare the density fingerprints of FCC and HCP, as we see in Table 3.4,
the first and second density functions are identical, but the third density function and
subsequent density functions distinguish the two periodic sets. We compare this with
the persistence diagrams of the multicovers of FCC and HCP: the diagrams of the first
three multicovers are the same, while we have to wait until the persistence diagram of the
four-fold cover to distinguish between the two periodic sets.

k 1 2 3 4 5 6 7 8∥∥∥ψAk − ψQk ∥∥∥∞ 0.0000 0.0000 0.0280 0.0571 0.0946 0.0405 0.0551 0.1402

Table 3.4: The L∞-distances between the corresponding density functions of the face-
centred cubic lattice and the hexagonal close packing of spheres.

3.5 Computing Density Functions

It is in this section where the content of this chapter intersects with the Voronoi zones of
Chapter 2, as we describe how the density functions that comprise the density fingerprint
can be computed. In particular, it is Theorem 3.21 that relates the two chapters, from which
we can deduce that, in dimension n, the challenge of computing the density fingerprint can
be reduced to the challenge of computing the volume of intersection of a single solid sphere
with an n-simplex. A formula for such an intersection in dimension three is given in
Theorem 3.31.

Definition 3.20 (ψAk (t) and ϕAk (t)). In Definition 3.2, for a periodic set A and a unit cell
U of A, we defined ψAk (t) to be the fractional volume of the unit cell that is covered by
exactly k balls of B(A; t). We define ϕAk (t) to be the fractional volume of the unit cell that
is covered by at least k balls of B(A; t),

ϕAk (t) =
Vol[{p in at least k balls of B(A; t) | p ∈ U}]

Vol[U ]
.

Therefore, for k ≥ 0, we have the relation ψAk (t) = ϕAk (t)− ϕAk+1(t).
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Theorem 3.21. Let A = M + Λ be a periodic set in Rn with lattice Λ and motif M ⊂ U ,
where U is the unit cell of Λ, and let k ∈ Z≥1. Then the fractional volume of the unit cell
U covered by at least k balls of B(A; t), ϕAk (t), is given by the equation

ϕAk (t) =
1

Vol[U ]

∑
a∈M

Vol[Zk(A; a) ∩B(a; t)]. (3.14)

Proof. Let ZMk be the union over all motif points a ∈ M of the Voronoi zones Zk(A; a).
By Theorem 2.12, the volume of ZMk is equal to the volume of the unit cell U . Moreover,
similarly to Lemma 2.11, there is a bijection up to zero measure sets between ZMk and the
unit cell U consisting of piecewise translations by lattice vectors. Therefore, the volume of
the unit cell covered by at least k balls of B(A; t) is equal to the volume of ZMk covered by
at least k balls of B(A; t).

Now, consider the point x ∈ ZMk that lies in the interior of Zk(A; a) for some a ∈ M .
Hence x has a as its unique k-th closest point in A. Therefore, x is covered by at least k
balls of B(A; t) if and only if x ∈ B(a; t). This is because if x ∈ B(a; t), then x must also
be covered by the balls of radius t centred at the k − 1 points of A that are closer to x
than a, and similarly if x /∈ B(a; t), then there is at most k − 1 balls of radius t centred at
points of A that can cover x.

Hence the volume of Zk(A; a) that is covered by at least k balls of B(A; t) is the volume
of the intersection Zk(A; a)∩B(a; t), from which we can deduce that the fractional volume
of the unit cell covered by at least k balls of B(A; t) is indeed given by Equation 3.14.

As mentioned in Definition 3.20, the k-th density function of a periodic set A, ψAk , is
related to ϕAk by the equation ψAk (t) = ϕAk (t) − ϕAk+1(t). Hence Theorem 3.21 implies the
following corollary.

Corollary 3.22. Let A = M + Λ be a periodic set in Rn with lattice Λ and motif M ⊂ U ,
where U is the unit cell of Λ, and let k ∈ Z≥1. Then we have

ψAk (t) =
1

Vol[U ]

∑
a∈M

(Vol[Zk(A; a) ∩B(a; t)]−Vol[Zk+1(A; a) ∩B(a; t)]) , (3.15)

while for the zeroth density function we have

ψA0 (t) = 1− 1

Vol[U ]

∑
a∈M

Vol[Z1(A; a) ∩B(a; t)]. (3.16)

3.5.1 Volume of Sphere-Tetrahedron Intersections

By Theorem 2.6 we have that k-th Voronoi zones are a union of polytopes and thus can be
triangulated. Therefore, we can deduce from Corollary 3.22 that, in dimension n, the k-th
density function ψAk (t) can be computed as the summation of a set of volumes, where each
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Figure 3.8: [57, Figure 1] The three significant ways up to three half-spaces can intersect
a solid sphere in R3. Such intersections are called a spherical cap, a spherical wedge and a
spherical cone respectively.

summand is the volume of intersection of a single solid sphere with a solid n-simplex. We
discuss in this subsection the precise equations required to compute such an intersection
in dimension three, and note that similar yet simpler equations exist for dimension two.

There are three main, increasingly complex scenarios to consider, as depicted in Fig-
ure 3.8, involving one, two and three half-spaces, which we respectively call spherical caps,
spherical wedges and spherical cones.

Definition 3.23 (Half-Space H). For a plane pl ⊂ R3 defined by the equation ax+ by +
cz + d = 0, the corresponding half-space H ⊂ R3 is the set of all points (x, y, z) ∈ R3 such
that ax+ by+ cz + d ≥ 0. The opposite half-space, H, is the set of all points (x, y, z) ∈ R3

such that ax+ by + cz + d ≤ 0, and so we have H ∩H = pl.

Definition 3.24 (Spherical Cap Scap(H)). Let S be a solid sphere and let H be a half-
space, both in R3. We define the spherical cap, Scap(H), to be the intersection of S and
H: Scap(H) = S ∩H, see image (a) in Figure 3.8. The height h of a spherical cap is the
maximum orthogonal distance of a point in Scap(H) to the boundary of H.

Intersecting a spherical cap with another half-space results in a spherical wedge.

Definition 3.25 (Spherical Wedge Swedge(H1, H2)). Let S ⊂ R3 be a solid sphere and
let H1, H2 ⊂ R3 be two non-parallel half-spaces, whose boundaries intersect in a line that
passes through S. We define the spherical wedge, Swedge(H1, H2), to be the intersection of
S, H1 and H2: Swedge(H1, H2) = S ∩H1 ∩H2, see image (b) in Figure 3.8.

It will be helpful as we consider volumes of spherical wedges to introduce a slightly
simpler geometric object, the regularised spherical wedge.
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Definition 3.26 (Regularised Spherical Wedge Srwedge(H1, H2)). [57, Section 4.3] A regu-
larised spherical wedge, Srwedge(H1, H2), is a spherical wedge such that at least one of the
boundaries of the half-spaces H1, H2 passes through the centre of the sphere S.

Intersecting a spherical wedge with another half-space results in a spherical cone.

Definition 3.27 (Spherical Cone Scone). Let S ⊂ R3 be a solid sphere and let H1, H2, H3 ⊂
R3 be three half-spaces whose boundaries intersect at a single point p = ∂H1 ∩ ∂H2 ∩ ∂H3

which lies within S. We define the spherical cone, Scone(H1, H2, H3), to be the intersection
of S, H1, H2 and H3: Scone(H1, H2, H3) = S ∩H1 ∩H2 ∩H3, see image (c) in Figure 3.8.
The point p is called the vertex of the spherical cone.

Having defined spherical caps, wedges and cones, we present formulae for their volumes.
The volume of a spherical cap is well documented and there exists a simple formula in terms
of the height h of the cap and the radius t of the sphere.

Lemma 3.28 (Volume of a Spherical Cap). Let Scap(H) be a spherical cap with height h,
formed from a sphere with radius t. If t ≥ h, then the volume Vol[Scap(H)] of the spherical
cap is given by Vol[Scap(H)] = 1

3πh
2(3t − h). If h > t, we let h′ = 2t − h, and then

Vol[Scap(H)] = 4
3πt

3 − 1
3πh

′2(3t− h′).

The volume of a spherical wedge is far more complicated. However, in [57, Section 4.2],
they show that the volume of any spherical wedge can be given as the summation of the
volumes of regularised spherical wedges (in which they show that there are three distinct
cases to consider). In addition, they provide a formula for the volume of a regularised
spherical wedge.

Lemma 3.29. [57, Equation 5] Let Srwedge(H1, H2) be a regularised spherical wedge of a
sphere S with radius t. Let α be the angle between the two half-spaces H1 and H2 and let
d be the shortest distance from the line of intersection of the boundaries of H1 and H2 to
the centre of S. Let a = d sin(α), b =

√
|t2 − d2|, and c = d cos(α). Then the volume of

Srwedge(H1, H2) is given by the equation

Vol[Srwedge(H1, H2)] =
1

3
abc+ a

(
1

3
a2 − t2

)
arctan

(
b

c

)
+

2

3
t3 arctan

(
b sin(α)

t cos(α)

)
. (3.17)

The volume of a spherical cone can be broken down into the sum of the volumes of a
tetrahedron, three spherical wedges and a spherical cap.

Lemma 3.30. Let Scone(H1, H2, H3) be a spherical cone of a sphere S with vertex p, and
let l1, l2, l3 be the lines of intersections of the boundaries of H1 and H2, H1 and H3, and H2

and H3 respectively. Let p1, p2, p3 be the respective intersection points of the lines l1, l2, l3
with the sphere S that lie within the remaining half-space (i.e. p1 is the point of intersection
of l1 with S that lies within the half-space H3). Let the plane that contains p1, p2, p3 be the
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boundary of a new half-space H4 that is oriented so that the vertex p of the spherical cone
is not contained within H4. Then the volume of the spherical cone is given by the equation

Vol[Scone(H1, H2, H3)] = Vol[Tet(p, p1, p2, p3)] + Vol[Scap(H4)]

−Vol[Swedge(H1, H4)]−Vol[Swedge(H2, H4)]

−Vol[Swedge(H3, H4)],

(3.18)

where Tet(p, p1, p2, p3) is the tetrahedron spanned by the points p, p1, p2, p3.

Proof. The equation is obtained simply by using inclusion-exclusion principles.

Finally, we have arrived at Theorem 3.31 which provides an inclusion-exclusion formula
to compute the volume of intersection of a sphere with a tetrahedron.

Theorem 3.31 (Volume of Sphere-Tetrahedron Intersection). Consider a sphere S with
radius t and a tetrahedron T , both in R3. Let T be the intersection of four half-spaces
H1, H2, H3, H4, and consider the four opposite half-spaces H1, H2, H3, H4 (Definition 3.23).
Let H = {H1, H2, H3, H4} be the set of these four opposite half-spaces. Then the volume
of the intersection between S and T , Vol[S ∩ T ] is given by the equation

Vol[S ∩ T ] =
4

3
πt3 −

∑
a∈H

Vol[Scap(a)] +
∑
a,b∈H

Vol[Swedge(a, b)]

−
∑

a,b,c∈H
Vol[Scone(a, b, c)],

(3.19)

where a, b in the third term, and similarly a, b, c in the final term, are distinct half-spaces
in the set H.

Proof. Again, the equation is obtained simply by using inclusion-exclusion principles.

We conclude this discussion on the computations of density functions by noting that
the time complexity to compute the k-th density function is limited by the construction of
the (k + 1)-th Voronoi zones of Chapter 2. In Theorem 2.18, we state that computing the
first k Voronoi zones has time complexity O(mn(2k)n

2
(log(m) + n log(2k))). But we note

that, if the packing and covering radii of the periodic set are known, by using techniques
described in the proof of Theorem 3.10 where we bound the radius t beyond which the k-th
density function vanishes, Voronoi zones, and hence density functions, can be computed in
cubic time in the order k in dimension three.

3.6 An Application to Crystal Structure Prediction

As mentioned at the start of this chapter, an effective classification of crystal structures
will be a useful tool in the field of Crystal Structure Prediction (CSP). Whilst applying the
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Figure 3.9: Left: a T2 molecule. Middle: the T2-δ crystal with highlighted unit cell.
Right: the output of CSP for the T2 molecule. It is a plot of 5679 simulated T2 crystal
structures [49, Figure 2c], each represented by two coordinates: the physical density (atomic
mass within a unit cell divided by the unit cell volume) and energy (determining the
crystal’s thermodynamic stability). Structures at the bottom of the ‘downward spikes’ are
likely to be stable.

tool to CSP is still in its infancy, we can bring to light an example of its usefulness that
leads us to believe this will be a very helpful tool to materials scientists going forwards.

In [49], Crystal Structure Prediction is applied to several molecules, with the hope
of finding low density molecular crystal structures, which is rare because molecules tend
to pack densely. One such molecule is benzimidazolone T2, and interestingly, the output
of CSP (called an energy-function-structure map) for T2 (Figure 3.9) depicted several
‘downward spikes’ at densities lower than the only previously reported T2 crystal structure
(T2-α). It is likely that structures at the bottom of these ‘downward spikes’ are stable as
there is a significant energy barrier preventing the structures from deforming into more
dense arrangements.

The authors of [49] predicted from this output four new stable crystal polymorphs of
T2 in addition to the previously reported structure T2-α, including one structure that was
predicted to have half the density of T2-α. Subsequently, our collaborators in the Materials
Innovation Factory at the University of Liverpool were able to synthesise these four new
T2 polymorphs (T2-β, T2-γ, T2-δ, T2-ε), most significantly T2-γ that indeed has half the
density of T2-α, and in fact has the lowest density reported for a molecular crystal.

Our collaborators scanned the synthesised crystals using X-ray powder diffraction yield-
ing Crystallographic Information Files (CIFs), each containing the corresponding dimen-
sions of the structure’s unit cell and the fractional coordinates of atoms in the motif, among
other data. These files were then compared with the simulated structures that comprise the
output of CSP, either by using their physical densities alongside the Compack algorithm
– which compares only a finite portion of the structure – or by looking at visualisations of
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∥∥∥ψAk − ψQk ∥∥∥∞ k = 0 1 2 3 4 5 6 7

T2-α vs entry 99 0.0042 0.0092 0.0125 0.0056 0.0099 0.0088 0.0127 0.0099
T2-β vs entry 28 0.0157 0.0156 0.0159 0.0224 0.0334 0.0396 0.0357 0.0454
T2-γ vs entry 62 0.0020 0.0080 0.0128 0.0155 0.0153 0.0250 0.0296 0.0391
T2-δ vs entry 09 0.0610 0.0884 0.1267 0.0676 0.0915 0.0801 0.0733 0.0388
T2-ε vs entry 01 0.0132 0.0152 0.0207 0.0571 0.0514 0.0431 0.0468 0.0550

T2-β′ vs entry 09 0.2981 0.2631 0.3718 0.3747 0.2563 0.2360 0.3161 0.3232

Table 3.5: First five rows: the L∞-distances between the first eight pairs of density func-
tions of physically synthesised T2 crystals (T2-α, T2-β, etc.) and the simulated structures
that had predicted them from the CSP output T2 dataset (entry XX). Last row: the
suspiciously larger L∞-distances revealed the mix-up of the files T2-δ and T2-β′ and thus
led to the depositing of the initially omitted T2-δ Crystallographic Information File into
the Cambridge Structural Database.

the crystal structures. These comparisons showed that the synthesised crystals matched
closely entries from the CSP output, verifying the prediction. Our collaborators then de-
posited these CIFs into the globally used Cambridge Structural Database which contains
over one million structures.

We desired to use our newly developed density fingerprint to verify our collaborators’
matchings between the synthesised crystals T2-α, T2-β, T2-γ, T2-δ and T2-ε and the
simulated structures Entry 99, Entry 28, Entry 62, Entry 09, Entry 01 from the CSP
output that they had been matched with.

We did so by computing, for each of the five matches, the L∞-distances between the
first eight density functions of the synthesised and simulated structures, which are recorded
in Table 3.5. As one is the prediction of the other, we expected to see small distances.
And for four of the five structures this was true: T2-γ, for example, always has an L∞-
distance of less than 0.04 over the first eight pairs of density functions. However, when we
came to check the distances between density functions of T2-δ with its matched simulated
structure Entry 09, we were surprised to see large distances (the final row of Table 3.5). It
turned out that a mix-up of files had happened, and what was uploaded to the Cambridge
Structural Database as T2-δ was in fact T2-β′ (a crystal from the T2-β family). The density
fingerprint revealed this error, which was verified by chemists upon a visual inspection,
and it is because of this that T2-δ was subsequently correctly deposited to the Cambridge
Structural Database. Plots of the density functions of correctly matched synthesised and
simulated structures can be seen in Figure 3.10.
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Figure 3.10: Left: synthesised T2 crystals (curved grey molecules) superimposed with their
simulated versions (straight green molecules). Right: the first eight density functions of
the periodic sets formed from the molecular centres of the synthesised T2 crystals (solid
curves) and their corresponding simulated structures (dashed curves).
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3.7 Discussion

The main contribution of this chapter is a fingerprint map from periodic sets (which model
crystals) to an infinite sequence of density functions. In dimension n = 3, this map is in-
variant under isometries (Lemma 3.4), Lipschitz continuous (Theorem 3.10) and generically
complete (Theorem 3.14). We conjecture that the fingerprint map is complete without the
genericity assumption (Conjecture 3.19), but acknowledge that this remains an open ques-
tion. In this respect, it is worth noticing that our proof of generic completeness makes only
limited use of the order, k, at which the circumradius of an edge, triangle, or tetrahedron
is detected (where the order is the number of points in the respective circumsphere). Is
this additional information sufficient to prove general completeness?

We also link the density fingerprint to the Voronoi zones of Chapter 2 via Theorem 3.21,
and give a description of how density functions can be computed as the sum of volumes of
sphere-tetrahedron intersections, for which we give a detailed description culminating in
Theorem 3.31.

We present an application to Crystal Structure Prediction in Section 3.6, and comment
that we expect the fingerprint will also be used to simplify the large output datasets
produced by CSP by comparing simulated structures with each other, thus speeding up
what is currently a slow process.

Collaborators in the Materials Innovation Factory at the University of Liverpool have
simultaneously been using different approaches to tackle the same problem of classifying
crystal structures up to isometry [6]. Two continuous metrics on all lattices have been
introduced in [43], whilst the fast Average Minimum Distances of [62] form an infinite
sequence of continuous isometry invariants whose asymptotic behaviour is described. The
isosets of [5] partition all points in a periodic set into equivalence classes.

We close this chapter with two extensions of the results presented. Different types of
atoms are often modelled as balls with different radii. A possible geometric formalism is
that of weighted points and the power distance [7]. Our geometric results generalise to
this setting, although some need a careful adaptation. Our continuity result for periodic
sets (Theorem 3.10) also generalises to non-periodic Delone sets that allow for a reasonable
definition of density functions. Considering that quasi-periodic crystals can be modelled as
such, finding out how far such an extension can be pushed may be a worthwhile direction
of future research.
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Chapter 4

Skeletonisation Algorithms

(This chapter is based on the paper “Skeletonisation algorithms with theoretical guarantees
for unorganised point clouds with high levels of noise” authored by P.S. and V. Kurlin and
published in Pattern Recognition in 2021 [56].)

The central problem in Data Science is to represent unorganised data in a simple and
meaningful form. In this chapter, we focus on input data that can either be represented
by a cloud of points in a metric space (Definition 1.15), or by a connected weighted graph
(Definition 1.17), whose vertices are data points and the weights of the edges correspond
to the distances between the endpoints.

A common approach when faced with big data of this kind is to employ clustering
techniques to group entries of the dataset that are deemed to be related. However, real
data rarely splits into well-defined clusters, and perhaps a more informative approach is
to approximate the data by a skeleton, where data points or clusters of data points are
connected to neighbours by simplices. Such skeletons allow for a better visualisation of the
dataset’s structure, whilst branches of the skeleton may reveal new classes of data points.

We will focus in particular on one-dimensional skeletons, which can be thought of as
graphs, although some of the results we discuss can be extended to any dimension. One-
dimensional skeletons have already proven useful in curve recognition for surfaces [59],
extracting topological shapes of micelles [23], and for posture identification [47].

We are particularly interested in skeletonisation algorithms that have theoretical guar-
antees with respect to the quality of their outputs and can therefore provide solutions to
the following fundamental skeletonisation problem:

Problem 2 (Data Skeletonisation Problem). Given a noisy point cloud C sampled from
a graph G in a metric space M , can you find conditions on G and C such that the recon-
structed graph G′ has the same first homology group as G (H1(G′) ∼= H1(G), see Defini-
tion 1.25) and geometrically approximates G in the sense that G′ ⊂ Gα and G ⊂ (G′)α for
a suitable parameter α depending on G and C (see Definition 1.22)?
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Figure 4.1: Left: a point cloud from the PGC Dataset (Section 4.7) sampled from the
G(3, 2) graph with Gaussian noise (σ = 0.1). Right: reconstructions by Mapper, α-Reeb,
and simHoPeS respectively.

Informally, the homology condition of the Data Skeletonisation Problem implies that a
reconstructed graphG′ can be continuously deformed into the original graphG. Meanwhile,
the geometric approximation condition requires that the two graphs G and G′ are close to
each other with respect to a distance between graphs, i.e. one is in a small neighbourhood
of the other, and vice versa.

Mapper [51], α-Reeb [11] and HoPeS [37] (see Figure 4.1 for example outputs, as well as
Sections 4.2, 4.3 and 4.4 respectively) are three relevant skeletonisation algorithms that, as
well as sharing similar inputs and outputs, solve the Data Skeletonisation Problem. Thus
a discussion and comparison of these algorithms is the focus of this chapter.

4.0.1 Contributions and Chapter Outline

The main contributions of this chapter are as follows:

• We present a simpler proof of the optimality of HoPeS (Optimality Theorem 4.21)
than for the higher dimensional version described in [32].

• The key stability theorem (Theorem 4.11) of Topological Data Analysis is extended
to the graph reconstruction theorems (Theorems 4.28 and 4.32), which were first
announced in [37] and are proven here. Corollary 4.33 proves a global stability of
derived subskeletons of HoPeS for the first time, justifying its application to noisy
data [36, 38].

• Section 4.9 extensively compares the three skeletonisation algorithms on artificial and
real data, analysing topological and geometric measures alongside their runtimes.
The generation of the artificial dataset is explained in Section 4.7.

Chapter outline: Section 4.1 reviews relevant skeletonisation algorithms. The Mapper
algorithm, the α-Reeb algorithm and HoPeS are introduced in Sections 4.2, 4.3, and 4.4
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respectively. Optimality and reconstruction guarantees of HoPeS are discussed in Sec-
tions 4.5 and 4.6. The generation of a synthetic dataset is described in Section 4.7, which
is used in the experimental comparison of the skeletonisation algorithms in Section 4.9.
Section 4.10 concludes the chapter with a discussion on the advantages and disadvantages
of each algorithm.

4.1 Review of Related Work on Skeletonisation Algorithms

Among many skeletonisation algorithms we review the most relevant ones, some of which
we do not discuss further in the paper since either they do not accept as input any point
cloud or they cannot provide guarantees in relation to the Data Skeletonisation Problem.

Iterative algorithms: Singh et al. [52] iteratively approximated a point cloud C ⊂ Rn
by a subgraph of a Delone triangulation, which requires O(mdn/2e) time for m points of C
and three thresholds: a minimum number of edges K in a cycle, plus δmin and δmax which
are required for inserting and merging second order Voronoi regions. Similar parameters are
needed for principal curves [33] which were later extended to iteratively computed elastic
maps [28]. Since it is hard to estimate a rate of convergence for iterative algorithms, we
discuss below non-iterative methods.

Skeletonisation via Reeb graphs: starting from a noisy sample C of an unknown
graph G, X. Ge et al. [26] considered the Reeb graph of the Vietoris-Rips complex of
C at scale α. The α-Reeb graph G was introduced by F. Chazal et al. [11] for a finite
metric space C at a user-defined scale α. If C is ε-close to an unknown graph with edges
of minimum length 8ε, the output G is 34(β(G) + 1)ε-close to the input C, where β(G) is
the first Betti number of G (see [11, Theorem 4.9]). The α-Reeb graph has a metric, but it
is not embedded into any space even if C ⊂ R2. The algorithm to compute α-Reeb graphs
is fast with time complexity O(m log(m)) for m input points of C.

Mapper [51] outputs a network of interlinked clusters by using a user-defined filter
function f : C → R to associate different clusters of a point cloud C. M. Carrière et al.
[10, Theorem 5.2] found a connection between the output of Mapper and the Reeb graph
via MultiNerve Mapper.

Metric graph reconstruction: M. Aanjaneya et al. [1] studied a related problem
approximating a metric on a large input graph Y by a metric on a small output graph X̂.
If Y is a good ε-approximation to an unknown graph X, then [1, Theorem 2] is the first
guarantee for the existence of a homeomorphism X → X̂ that distorts the metrics on X
and X̂ with a multiplicative factor 1 + cε for c > 30

b , where b > 14.5ε is the length of the
shortest edge of X.

Graph reconstruction by discrete Morse theory: a Homological Spanning Forest
[42] uses a given pixel grid of 2D images, and hence cannot be applied to an arbitrary point
cloud. Similarly, the recent algorithm by T. Del et al. [58] requires, in addition to a point
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cloud, a density field ρ : Rd → R (usually on a regular grid) which concentrates around a
hidden graph.

4.2 The Mapper Algorithm

The Mapper algorithm is a skeletonisation framework introduced by G. Singh et al. [51],
which aims to give a simple description of a dataset by a network of interlinked clusters.
It takes as input a point cloud C alongside some additional parameters, and outputs a
simplicial complex. The further parameters that the user can vary are outlined below:

• A filter function f : C → Y assigns to each point of C a value from the param-
eter space Y , which is commonly R. Examples of filter functions include a density
estimator or the distance from a base point, where the distance could either be the
Euclidean distance or the distance from the base point within a neighbourhood graph.

• A covering of the range of f : the range of the filter function f must be covered
by overlapping regions, such as line intervals if Y = R. There are two parameters
of the covering that can be varied by the user, namely the number of regions and
the ratio of overlap. These parameters can be used to control the resolution of the
output simplicial complex.

• A clustering algorithm is needed to group points in the preimage of f for a given
region. The choice of algorithm may need to vary depending on the data being used.

For an input point cloud C where each point has been assigned a value by the filter
function, the algorithm has two main stages:

Stage 1: the range of the filter function is covered by a set of overlapping regions I, and
for each region Ii in the covering, we cluster the preimage f−1(Ii) = {p ∈ C | f(p) ∈ Ii} by
the chosen clustering algorithm. Each cluster is represented by a vertex (zero-dimensional
simplex) in the output complex.

Stage 2: if a set of k ≥ 2 clusters (from any region) share a common point in the point
cloud C, the corresponding k vertices span a (k − 1)-dimensional simplex in the output
simplicial complex.

The Mapper algorithm is a versatile tool that can be a useful method to visualise large
datasets. However, a significant drawback of the method is that the many important user-
defined parameters often require an existing knowledge of the data in order to make good
selections that give meaningful outputs.

In the experiments of Section 4.9, the Mapper algorithm is employed as follows. The
filter function is the Euclidean distance from a base point, which is chosen to be the most
distant point from a random point in C. Therefore, the parameter space Y = R, which
is covered by overlapping intervals. The overlap of contiguous intervals is fixed at 50%,
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which is the highest percentage such that the algorithm outputs a one-dimensional complex,
while the number of intervals is optimised in the experiments. As for clustering, in the
context of the experiments of Section 4.9, the clustering algorithm should not depend on
a predetermined number of clusters if Mapper is to work effectively, which rules out the
popular k-means clustering algorithm. Although we tried single-edge clustering, we found
that for the noisy point clouds of the PGC Dataset (Section 4.7), the algorithm DBSCAN
is more appropriate, and its choice of parameters is discussed in Subsection 4.2.1.

4.2.1 DBSCAN

DBSCAN [24] is a density-based spatial clustering for applications with noise. It requires
two parameters: the radius ε around a point within which we search for neighbours; and
minPts which is the minimum number of points required within a neighbourhood before a
cluster is formed. Given an input point cloud C, there are three main stages to DBSCAN:

Stage 1: a single point p1 ∈ C is randomly selected, and the set Nbhd(p1) of all points
within a distance ε of p1 is computed. If |Nbhd(p1)| < minPts, then p1 is labelled as noise.
Otherwise, we label all points in Nbhd(p1) that have not already been assigned a cluster
as belonging to the cluster of p1 (even if a point has previously been labelled as noise).

Stage 2: we loop over all points of Nbhd(p1) \ {p1}, where for each point pi we compute
Nbhd(pi) and label all points of Nbhd(pi) that have yet to be assigned a cluster as belonging
to the cluster of p1. If |Nbhd(pi)| ≥ minPts, then all points of Nbhd(pi) are added to the
set Nbhd(p1) \ {p1}. Hence, the loop over the points of the growing set Nbhd(p1) \ {p1}
finishes only when all points in the cluster of p1 have been identified.

Stage 3: Stages 1 and 2 are repeated for a new unlabelled point p2, and we continue so
forth until all points are either assigned to a cluster or are labelled as noise.

In the experiments of Section 4.9, the parameter ε is optimised over a range of values,
while we found it acceptable to set minPts = 5.

4.3 The α-Reeb Algorithm

The α-Reeb graph is a parametric version of a Reeb graph, which itself is a simplified
representation of a simplicial complex formed by taking the quotient by an equivalence
relation defined using level sets.

Definition 4.1 (Level Set). Let f : X → R be a real-valued function on a space X. The
level set of f corresponding to a value t ∈ R is the set Lt(f) = {x ∈ X | f(x) = t}.

Definition 4.2 (Reeb Graph Reeb(Q, f)). For a simplicial complex Q, let f : Q → R be
a real-valued function on Q. We define, for points x, y ∈ Q, the equivalence relation ∼
to be such that x ∼ y if and only if f(x) = f(y) and x and y are in the same connected
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component of the level set Lf(x)(f). The Reeb graph, Reeb(Q, f), is the quotient space of
Q formed by mapping all equivalent points under ∼ to a single point.

Definition 4.2 makes sense even when Q is generalised to be a topological space. If,
instead of having an entire simplicial complex Q, we only have a finite set of points sampled
from Q, even approximating the Reeb graph is not straightforward. Therefore, to bridge
this barrier, Chazal et al. introduced the α-Reeb graph [11].

Definition 4.3 (α-Reeb Graph). Let Q be a simplicial complex and f : Q → R be a
continuous real-valued function on Q. Let α > 0 and let I = {Ii} be a covering of
the range of f , where each Ii is a closed interval of length α. Consider the transitive
closure of the following equivalence relation ∼α: for x, y ∈ Q, we define x ∼α y if and
only if f(x) = f(y) and x and y are in the same connected component of the preimage
f−1(Ii) = {x ∈ Q | f(x) ∈ Ii} for some interval Ii ∈ I. Then the α-Reeb graph associated
with the covering I of a simplicial complex Q is the quotient space formed from Q by
mapping all equivalent points under ∼α to a single point.

Focusing on dimension two, the α-Reeb algorithm takes as input a connected neigh-
bourhood graph and scale parameter α ∈ R>0, and outputs an α-Reeb graph. A
neighbourhood graph N(C; ε) (Definition 1.17) is obtained from a point cloud C by adding
edges between points that are closer to each other than the specified threshold ε. If such
an operation yields a disconnected graph, then the algorithm can be applied individually
to each connected component.

Given a connected neighbourhood graph N(C; ε) of a point cloud C and scale parameter
α, there are three main stages to the α-Reeb algorithm:

Stage 1: a root vertex of N(C; ε) is chosen (for example the most distant vertex from a
randomly selected one) and the function f : C → R which assigns to each vertex its distance
from the root within N(C; ε) is calculated. The range of the function f , [0,max(f)], is
covered by the set of intervals I = {Ii}0≤i≤m, where Ii = [ iα2 ,

iα
2 +α], and m is the smallest

integer such that m ≥ 2(max(f)−α)
α . These intervals are ordered, so we say that one interval

is lower than another if its midpoint is smaller.

Stage 2: for each interval in the covering I, we consider its preimage f−1(Ii) ⊆ C. After
adding an edge between two vertices in the preimage if there exists an edge between the
two vertices in N(C; ε), we obtain a possibly disconnected subgraph of N(C; ε). We then
build an intermediate graph G by first adding a vertex to G for each connected component
of each subgraph, and then connect pairs of vertices of G by an edge if their corresponding
connected components of N(C; ε) share a vertex.

Stage 3: for each vertex v ∈ G related to the interval Ii, we take a copy of the interval Ii
and place its midpoint at v, splitting the interval into a top and bottom half. The α-Reeb
graph is the quotient of the disjoint union of these partially ordered copies of intervals,
where the top half of one interval is identified to the bottom half of a higher interval if
there is an edge between the corresponding vertices in G.
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Similarly to the Mapper algorithm, the α-Reeb algorithm aims to connect close clus-
ters. However the clustering of preimages of intervals in Mapper is replaced with finding
connected subgraphs. In the limit α → 0, the α-Reeb graph tends to the Reeb graph of
Definition 4.2.

In the experiments of Section 4.9, the threshold ε used to form the neighbourhood
graph N(C; ε) is fixed at double the maximum birth of dots above the first widest diagonal
gap of PD{Cα} (see Definitions 4.7, 4.8 and 4.22). The scale parameter α that effectively
determines the resolution of the output graph is optimised in the experiments.

4.4 The Homologically Persistent Skeleton HoPeS(C)

The homologically persistent skeleton, HoPeS(C), first introduced in [37], was motivated by
the prospect of extending reconstructed hole boundaries of unorganised clouds of edge pixels
to a one-dimensional skeleton [34, 35], and has since been extended to higher dimensions
[32, Definition 4.5]. In the one-dimensional setting, it seeks to extend a minimum spanning
tree of a point cloud by adding critical edges to form cycles.

4.4.1 Minimum Spanning Trees and Forests of a Filtration

Definition 4.4 (Minimum Spanning Tree MST(C)). Let C be a point cloud and let
{Q(C;α)} be a filtration (Definition 1.24) of complexes on C. Assigning to an edge e in
the filtration a length equal to twice the minimum α such that e ⊆ Q(C;α), we define a
minimum spanning tree MST(C) of the filtration {Q(C;α)} to be a connected graph with
vertex set C whose total length of edges is the minimum possible. For any α ≥ 0, we can
obtain a forest MST(C;α) from MST(C) by removing all edges that are longer than 2α.

We have that MST(C; 0) = C, and for large enough α we will have that MST(C;α) =
MST(C). MST(C) may not be unique if multiple edges enter the filtration at the same
scale α, and neither is it stable under perturbations. The mergegrams in [22] can be used
however to extract stable information from minimum spanning trees. Despite this lack of
stability, it is always the case that MST(C;α) enjoys the optimality of Lemma 4.6 among
all spanning graphs of Q(C;α).

Definition 4.5 (Spanning Graph). A graph G spans a possibly disconnected simplicial
complex Q on a cloud C if G has vertex set C, is a subset of Q, and the inclusion of G into
Q induces a 1-1 correspondence between connected components.

MST(C;α) will always be a spanning graph of Q(C;α). This can be seen since, by
definition, it has vertex set C, and is a subset of Q(C;α). It therefore cannot have fewer
connected components than Q(C;α), and neither can it have more. Otherwise, this would
lead to a contradiction in the minimality of MST(C), since there would be two components
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connected by an edge of length at most 2α in Q(C;α) that are connected by a strictly longer
edge in MST(C).

Lemma 4.6. Let {Q(C;α)} be a filtration of simplicial complexes on a point cloud C. For
any fixed scale α ≥ 0, the forest MST(C;α) has the minimum total length of edges among
all graphs that span Q(C;α).

Proof. Let e1, . . . , em be all of the edges of MST(C) that are longer than 2α. Hence
MST(C) = MST(C;α) ∪ e1 ∪ . . . ∪ em. Now, if we assume that there exists a graph G
that spans Q(C;α) and whose total length of edges is shorter than MST(C;α), then we
will also have that G ∪ e1 ∪ . . . ∪ em is connected with a shorter total length of edges than
MST(C), contradicting Definition 4.4.

Lemma 4.6 implies that, for any scale α, MST(C;α) will be, in terms of the minimal
total length of edges, optimal amongst graphs that span the complex Q(C;α) and thus
share the same zeroth homology group.

4.4.2 Persistent Homology and its Stability Under Perturbations

The homologically persistent skeleton extends the optimality of MST(C;α) from Lemma 4.6
to the first homology group, drawing from the field of persistent homology which sum-
marises the evolution of homology (Definition 1.25) throughout a filtration by recording
when homological features appear and disappear.

Definition 4.7 (Births and Deaths). For any filtration {Q(C;α)} of complexes on a point
cloud C, a homology class γ ∈ Hk(Q(C;αi)) is said to be born at birth(γ) = αi if γ is
not in the full image under any of the induced homomorphisms Q(C;α) → Q(C;αi) for
any α < αi. The homology class γ is said to die at death(γ) = αj when the image of γ
under the induced homomorphism Hk(Q(C;αi))→ Hk(Q(C;αj)) merges with the image of
another homology class under the induced homomorphism Hk(Q(C;α)) → Hk(Q(C;αj))
for some α < αi.

The birth and death pairs defined in Definition 4.7 are the key output of persistent
homology, and a popular way of recording this information is in persistence diagrams.

Definition 4.8 (Persistence Diagram PD{Q(C;α)}). Let {Q(C;α)} be a filtration of
complexes on a point cloud C. The persistence diagram PD{Q(C;α)} ⊂ R2 is the multiset
of all birth-death pairs (birth(γ),death(γ)) of all independent homology classes γ that
persist in the filtration {Q(C;α)}, see Figure 4.2. Since multiple independent homology
classes can have the same birth and death values, there can be multiple occurrences of the
same point (αi, αj) ∈ R2, and we say such points have multiplicity ui,j . It is convention
to include in the multiset all diagonal points (x, x) with infinite multiplicity. When the
multiset is plotted in R2, we refer to the birth-death pairs as dots of the persistence diagram.
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Figure 4.2: Left: a filtration of α-complexes of a point cloud C at α = 0, 2, 3, 4. One cycle
is born at α = 2, and a second cycle is born at α = 3. Both cycles persist until α = 4,
at which the cycles are filled in by 2-simplices. Right: the persistence diagram of the
filtration, with dots at (2, 4) and (3, 4).

In this chapter, we consider persistence diagrams consisting of dots corresponding only
to one-dimensional homology classes γ ∈ H1(Q(C;α)). For filtrations {Cα} of α-offsets
(Definition 1.22) of a point cloud C, persistence diagrams PD{Cα} are invariant under
isometry transformations on C. Moreover, the key advantage of PD{Cα} over other geo-
metric invariants is its stability as outlined in Theorem 4.11, for which we need definitions
of an ε-sample and the bottleneck distance between persistent diagrams.

Definition 4.9 (ε-sample). A point cloud C is said to be an ε-sample of a graph G if
C ⊂ Gε and G ⊂ Cε. Hence, any point p ∈ C is within a distance ε from G, and any point
of the graph G is within a distance ε of a point p ∈ C.

Definition 4.10 (Bottleneck Distance dB(PD,PD′)). The bottleneck distance dB(PD,PD′)
between persistence diagrams PD,PD′ is defined to be the infimum over all bijections
ψ : PD → PD′ of the supremum over all points p ∈ PD of the L∞-distance ‖p− ψ(p)‖∞.
Namely,

dB(PD,PD′) = inf
ψ

sup
p∈PD

‖p− ψ(p)‖∞ .

Theorem 4.11 (Stability of Persistence). [12, simplified Theorem 5.6] Let C be any ε-
sample of a graph G in a totally bounded metric space M . Then the persistence diagrams of
Čech filtrations on G and C are ε-close, that is dB(PD{Čh(G;M ;α)},PD{Čh(C;M ;α)}) ≤
ε. This inequality also holds for the filtrations of α-offsets by Nerve Lemma 1.23. Namely,
dB(PD{Gα},PD{Cα}) ≤ ε.
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4.4.3 HoPeS(C) is the Persistence-based Extension of MST(C)

HoPeS(C) is a skeleton of the point cloud C obtained from MST(C) by adding critical
edges found using persistent homology.

Definition 4.12 (Critical Edges). [32, modified from Definition 4.5] Let {Q(C;α)} be a
filtration of complexes on a point cloud C. An edge e is critical if, upon its entry into the
filtration, it gives rise to a new homology class that does not immediately die. The birth
value of a critical edge e is the scale α at which the edge appears in the filtration {Q(C;α)}.
Defining the death value of a critical edge is less straighforward. To do this, we first define
E(α) = {e1, . . . , es} to be the set of all critcal edges that have birth(ei) ≤ α but have
not yet been assigned a death value. Then [e1], . . . , [es] form a basis of H1(MST(C;α) ∪
E(α)/MST(C;α)). Define

f : H1(MST(C;α) ∪ E(α)/MST(C;α))→ H1(Q(C;α)/MST(C;α))

to be the homomorphism induced by the inclusion

MST(C;α) ∪ E(α)/MST(C;α)→ Q(C;α)/MST(C;α).

Let {b1, . . . , br} be a basis of ker(f), where r = dim(ker(f)) is equal to the number of
critical edges that die at exactly α (so r ≤ s). We can expand each basis element as
bi =

∑s
j=1 ci,jej , with ci,j ∈ Z2, and consider (in Z2) the system of equations

∑s
j=1 ci,jxj

for 1 ≤ i ≤ r. Since basis elements are linearly independent, this system of equations can
be solved with r leading variables expressed in terms of the remaining s− r free variables.
Letting I ⊆ {1, . . . , s} be the set of all the indices of the leading variables, we set the death
value of the critical edge ei to be α if and only if i ∈ I.

The elder rule selects those leading variables whose corresponding set of critical edges
has the greatest combined birth value (and so are younger), allowing older classes to persist
for longer. If there are distinct sets with the greatest combined birth value, we have a
genuine choice, although this choice does not affect the theoretical guarantees of HoPeS in
the subsequent sections. We are now ready to define the homologically persistent skeleton.

Definition 4.13 (HoPeS(C) and Reduced Skeletons HoPeS(C;α)). Let {Q(C;α)} be a
filtration of complexes on a point cloud C. The homologically persistent skeleton HoPeS(C)
is the union of a minimum spanning tree MST(C) with all critical edges e with labels
(birth(e),death(e)), see Figure 4.3. For any scale α ≥ 0, the reduced skeleton HoPeS(C;α)
is obtained from HoPeS(C) by removing all edges longer than 2α and all critical edges e
with death(e) ≤ α.

Although HoPeS(C) is dependent of the filtration {Q(C;α)} of complexes on the point
cloud C, for simplicity we omit this dependence on the filtration in our notation.
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(3,4)

(2,4)

Figure 4.3: Left: a minimum spanning tree MST(C) of the point cloud C from Figure 4.2.
Right: HoPeS(C), where the two critical edges are in red and are labelled with birth and
death values (birth(e), death(e)).

4.5 Optimality Guarantees of Reduced Skeletons HoPeS(C;α)

Theorem 4.21 proves that, for any scale α ≥ 0, the reduced skeleton HoPeS(C;α) is optimal
in terms of minimising the total length of edges amongst graphs that span C and have the
same zeroth and first homology groups as the complex Q(C;α). To prove Theorem 4.21,
there are several statements that we should first introduce.

Lemma 4.14. Let a homology class γ ∈ H1(Q(C;α)) be born due to a critical edge e added
to the filtration {Q(C;α)} at scale α. Then e has length |e| = 2 · birth(γ) relative to the
filtration {Q(C;α)}.

Proof. By Definition 4.12, a critical edge e is the last edge added to a cycle L ⊆ Q(C;α),
thus giving birth to the homology class γ at scale α = birth(γ). Since the length |e| equals
the doubled scale 2α, we have that |e| = 2 · birth(γ).

Lemma 4.15. The reduced skeleton HoPeS(C;α) is a subgraph of the simplicial complex
Q(C;α) for any α.

Proof. By Definition 4.13, HoPeS(C;α) consists of the forest MST(C;α) and all critical
edges e satisfying the two constraints |e| ≤ 2α and death(e) > α. Lemma 4.6 implies that
MST(C;α) ⊆ Q(C;α), and any critical edge e belongs to Q(C;α) for |e| ≤ 2α. Hence
HoPeS(C;α) ⊆ Q(C;α).

Lemma 4.15 implies that the inclusion HoPeS(C;α) → Q(C;α) induces a homomor-
phism f∗ on homology groups. Lemmas 4.16 and 4.17 analyse what happens with f∗ when
a critical edge e is added to or deleted from HoPeS(C;α).

Lemma 4.16 (Addition of a critical edge). Let an inclusion f : G→ Q of a graph G into
a complex Q induce an isomorphism f∗ : H1(G) → H1(Q). Now, between some vertices
u, v ∈ G let us add an edge e to G and Q that creates a homology class γ ∈ H1(Q ∪ e).
Then f∗ extends to an isomorphism H1(G ∪ e)→ H1(Q ∪ e).
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Proof. Let L ⊆ G ∪ e be a cycle containing the added edge e, and note that H1(G ∪ e) ∼=
H1(G)⊕〈[L]〉. Now f extends to the inclusion G∪ e→ Q∪ e, and f(L) is a cycle in Q∪ e.
Hence H1(Q ∪ e) ∼= H1(Q)⊕ 〈[f(L)]〉. By mapping [L] to [f(L)], we can extend f∗ to the
required isomorphism H1(G)⊕ 〈[L]〉 → H1(Q)⊕ 〈[f(L)]〉.

Lemma 4.17 (Deletion of a critical edge). Let an inclusion f : G→ Q of a graph G into a
complex Q induce an isomorphism f∗ : H1(G) → H1(Q). Let a homology class γ ∈ H1(Q)
die after adding the 2-simplex T to Q, and let e be an open edge of the 2-simplex T . Then
f∗ descends to an isomorphism f∗ : H1(G− e)→ H1(Q ∪ T ).

Proof. Adding T to Q kills the one-dimensional homology class ∂T ⊆ Q. Then H1(Q∪T ) ∼=
H1(Q)/〈[∂T ]〉. Deleting an open edge e from the boundary ∂T kills the one-dimensional
homology class ∂T ⊆ G, so H1(G − e) ∼= H1(G)/〈[∂T ]〉. Therefore, f∗ can descend to the
required isomorphism f∗ : H1(G− e)→ H1(Q ∪ T ).

Lemmas 4.16 and 4.17 can be used to show that the first homology groups of HoPeS(C;α)
and Q(C;α) are isomorphic.

Proposition 4.18. The inclusion HoPeS(C;α) → Q(C;α) from Lemma 4.15 induces an
isomorphism of one-dimensional homology groups H1(HoPeS(C;α))→ H1(Q(C;α)).

Proof. Both HoPeS(C; 0) and Q(C; 0) coincide exactly with the point cloud C, and so
their one-dimensional homologies are trivial. Each time a homology class is born or dies
in H1(Q(C;α)), the isomorphism H1(HoPeS(C;α)) → H1(Q(C;α)) is preserved by Lem-
mas 4.16 and 4.17.

We have shown in Lemma 4.6 and Proposition 4.18 that the zeroth and first homology
groups of HoPeS(C;α) agree with those of the simplicial complex Q(C;α) in the filtration
{Q(C;α)} from which HoPeS(C;α) is derived. Moreover, it can be shown that HoPeS(C;α)
is optimal amongst all such graphs in terms of minimising the total length of edges.

Lemma 4.19. Let {Q(C;α)} be a filtration and let L ⊆ Q(C;α) be a cycle that represents a
homology class γ ∈ H1(Q(C;α)). Then any longest edge e ⊂ L has length |e| ≥ 2 ·birth(γ).

Proof. Assume to the contrary that a longest edge e of the cycle L has half-length 0.5 · |e| <
birth(γ). Then L enters the filtration {Q(C;α)} earlier than α = birth(γ) and so cannot
represent the homology class γ that starts living only from birth(γ).

Recall that a forest MST(C;α) on a point cloud C at scale α is obtained from a
minimum spanning tree MST(C) by removing all open edges that are longer than the
doubled scale 2α.

Proposition 4.20. Let a graph G ⊆ Q(C;α) span Q(C;α) and let H1(G)→ H1(Q(C;α))
be an isomorphism induced by the inclusion. Let (bi, di), 1 ≤ i ≤ m, be all of the dots in
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the persistence diagram PD{Q(C;α)} such that bi ≤ α < di (these dots correspond to all
homology classes that are alive at scale α). Then the total length of G is bounded below by
the sum of the total length of edges in the forest MST(C;α) plus the summation 2

∑m
i=1 bi.

Proof. Let the subgraph G1 ⊆ G consist of all non-bridge edges (Definition 1.18) of G and
let e1 ⊂ G1 be a longest open edge of G1. Removing e1 from G makes H1(G) smaller. Hence
there is a cycle L ⊆ G1 containing e1 that represents a homology class γ1 ∈ H1(Q(C;α))
which corresponds to some off-diagonal dot of PD{Q(C;α)}, say (b1, d1). Then we have
that γ1 lives over the interval b1 = birth(γ1) ≤ α < death(γ1) = d1, and Lemma 4.19
implies that |e1| ≥ 2b1. Similarly, let the graph G2 ⊆ G− e1 consist of all non-bridge edges
of G−e1 and let e2 be a longest open edge of G2. Then, as before, we find its corresponding
dot, say (b2, d2), and deduce that |e2| ≥ 2b2. Repeating this process until we have a forest,
we can conclude that

∑m
i=1|ei| ≥ 2

∑m
i=1 bi. The graph G − (e1 ∪ . . . ∪ em) still spans the

possibly disconnected complex Q(C;α) since we removed each time a non-bridge edge, so
the total length of G−(e1∪. . .∪em) is at least the total length of MST(C;α) by Lemma 4.6,
and the result follows.

Proposition 4.20 gives a lower bound for the total length of edges of a graph G that
spans Q(C;α) and agrees with Q(C;α) on the first homology group. Theorem 4.21 states
that HoPeS(C;α) achieves this lower bound.

Theorem 4.21 (Optimality of HoPeS(C;α)). Let {Q(C;α)} be a filtration of complexes
on a point cloud C. For any α ≥ 0, the reduced skeleton HoPeS(C;α) has the minimum
total length over all graphs G ⊆ Q(C;α) that span Q(C;α) and induce an isomorphism
H1(G)→ H1(Q(C;α)) under inclusion.

Proof. For any α ≥ 0, the inclusion HoPeS(C;α) → Q(C;α) induces an isomorphism on
one-dimensional homology groups by Proposition 4.18. Let γ1, . . . , γm represent all m dots
of the persistence diagram PD{Q(C;α)} counted with multiplicities that have birth(γi) ≤
α < death(γi). Then γ1, . . . , γm form a basis of H1(Q(C;α)) ∼= H1(HoPeS(C;α)) by
Definition 4.8. The total length of HoPeS(C;α) equals the total length of MST(C;α)
plus 2 ·

∑m
i=1 birth(γi) by Lemma 4.14, which is exactly the lower bound for any graph

G ⊆ Q(C;α) that spans Q(C;α) and has the same one-dimensional homology group as
Q(C;α) as stated in Proposition 4.20.

4.6 Guarantees for Reconstructions using Derived Skeletons

A persistence diagram captures all homological features regardless of how long they persist
in the filtration. It is often the case that we want to distinguish between noisy features
that persist for a short time and genuine, dominant features that persist for much longer.
As such, in this section we introduce important subdiagrams of the persistence diagram
that seek to separate noisy features from those that are genuine, and it is by using these
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Figure 4.4: Subdiagrams of the persistence diagram of the point cloud C in Figure 4.2.
Left: Both dots are above the (yellow) first widest diagonal gap dgap1(C) = {0 < y−x <
1}. In this case, ds1(C) = 1. Middle: Both dots are in the green region and so belong to
VS1,1(C). We have that vs1,1(C) = 3. Right: vs1,2(C) = 2, and so only the leftmost dot
is in VS1,2(C).

subdiagrams that we obtain a family of subskeletons of HoPeS(C) for which there exists
reconstruction guarantees.

Definition 4.22 (Diagonal Gap dgapk(C), Subdiagram DSk(C), Scale dsk(C)). For any
point cloud C, a diagonal gap of PD{Cα} is a strip {0 ≤ a < y − x < b} that has dots of
PD{Cα} in both boundary lines {y−x = a} and {y−x = b} but not in the interior of the
strip. For any k ≥ 1, the k-th widest diagonal gap dgapk(C) has the k-th largest vertical
width |dgapk(C)| = b − a. The diagonal subdiagram DSk(C) ⊂ PD{Cα} consists of only
the dots above the lowest of the first k widest diagonal gaps dgapi(C), 1 ≤ i ≤ k. Each
DSk(C) is bounded below by the higher diagonal line y − x = b of the lowest of the first k
widest diagonal gaps, and so we say that it has diagonal scale dsk(C) = b.

Definition 4.23 (Vertical Gap vgapk,l(C), Subdiagram VSk,l(C), Scale vsk,l(C)). In the
diagonal subdiagram DSk(C) from Definition 4.22, we define a vertical gap to be the
widest vertical strip {0 ≤ a < x < b} such that the boundary line {x = a} contains a
dot of DSk(C), and there is no dot in the interior of the strip. For l ≥ 1, the l-th widest
vertical gap vgapk,l(C) has the l-th widest horizontal width

∣∣vgapk,l(C)
∣∣ = b − a. The

vertical subdiagram VSk,l(C) ⊆ DSk(C) consists of only the dots of DSk(C) that lie to the
left of the leftmost of the first l widest vertical gaps vgapk,i(C), 1 ≤ i ≤ l. Each VSk,l(C)
is bounded on the right by the left boundary line x = a of the leftmost of the first l widest
vertical gaps, and so we say that it has vertical scale vsk,l(C) = a.

In Definitions 4.22 and 4.23, if there are different diagonal gaps or vertical gaps with
the same width, we split the tie by saying that the lowest or the leftmost gap has the larger
width respectively. Example subdiagrams can be seen in Figure 4.4.
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Definition 4.24 (Derived Skeletons HoPeSk,l(C)). Let HoPeS(C) be obtained from a
filtration {Q(C;α)} on a point cloud C. For intergers k, l ≥ 1, the derived skeleton
HoPeSk,l(C) is obtained from HoPeS(C) by removing all edges that are longer than 2 vsk,l(C)
and by keeping only the critical edges that correspond to dots of VSk,l(C) that do not die
until after α = vsk,l(C).

Lemma 4.25. The derived skeleton HoPeSk,l(C) is within HoPeS(C; vsk,l(C)).

Proof. By Definition 4.13, HoPeS(C; vsk,l(C)) is obtained from HoPeS(C) by removing all
edges that are longer that 2 vsk,l(C), in addition to removing critical edges whose death
value is not greater than vsk,l(C). Definition 4.24 imposes these same constraints on the
derived skeleton HoPeSk,l(C), with the additional constraint that all critical edges must
correspond to dots of VSk,l(C). Hence HoPeSk,l(C) ⊆ HoPeS(C; vsk,l(C)).

Perhaps the most significant derived skeleton is HoPeS1,1(C) which is often the most
effective at separating noisy and genuine homological features. It is for this particular skele-
ton that, under certain conditions, Theorem 4.28 provides guarantees on the reconstruction
of a graph G from an ε-sample of G. One of these conditions involves the thickness θ(G)
of a graph G.

Definition 4.26 (Radius ρ of a Cycle, Thickness θ(G) of a Graph). For a graph G in
a metric space, the radius ρ of a non-self-intersecting cycle L ⊆ Gα is the persistence
death(γ)−birth(γ) of its corresponding homology class γ in the filtration. Not all homology
classes are necessarily born at α = 0, and so we define the thickness θ(G) of G to be the
maximum persistence of any homology class born after α = 0.

Lemma 4.27. For a graph G in a metric space with rank(H1(G)) = m, the one-dimensional
persistence diagram PD{Gα} has exactly m dots (with multiplicities) on the vertical axis
(not including the conventional infinitely many dots at the origin).

Proof. By Definition 4.7, a dot of the persistence diagram PD{Gα} is of the form (0, di),
di > 0, if and only if it corresponds to a homology class that is born an α = 0 and hence
is present in H1(G0) = H1(G).

Theorem 4.28. Let C be any ε-sample of a connected graph G in a metric space such
that rank(G) = m. Let the m dots on the vertical axis (Lemma 4.27) of PD{Gα} have
ordered deaths y1 ≤ . . . ≤ ym. If y1 > 7ε + 2θ(G) + max

1≤i≤m−1
{yi+1 − yi}, then vs1,1(C) is

a lower bound for the noise ε. Moreover, the derived skeleton HoPeS1,1(C) is contained
within the 2ε-offset of G and has the same first homology group, namely HoPeS1,1(C) ⊂ G2ε

and H1(HoPeS1,1(C)) ∼= H1(G). (For an example of a graph satisfying the condition, see
Figure 4.5.)
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Proof. Besides the m dots on the vertical axis of PD{Gα}, all other dots correspond to
homology classes born after α = 0 and thus by Definition 4.26 cannot lie above the line
y− x = θ(G). The stated inequality y1 > 7ε+ 2θ(G) + max

1≤i≤m−1
{yi+1− yi} guarantees that

the diagonal gap {θ(G) < y − x < y1} is wider than any other diagonal gaps of PD{Gα}.
By Stability Theorem 4.11, the perturbed diagram PD{Cα} is in the ε-offset of PD{Gα}

with respect to the L∞-metric on R2. Therefore, all noisy dots near the diagonal cannot
be above the diagonal line y − x = θ(G) + 2ε, whilst the remaining dots cannot be lower
than the line y−x = y1−2ε. So the diagonal strip {θ(G)+2ε < y−x < y1−2ε} of vertical
width y1 − θ(G) − 4ε is empty in PD{Cα}. We will show that this is the widest diagonal
gap in PD{Cα}.

Again, by Stability Theorem 4.11, any dot (0, yi) ∈ PD{Gα} cannot move outside of
the diagonal strip {yi − 2ε ≤ y − x ≤ yi + ε} (where the asymmetry here is due to the
fact that the dot cannot move in the negative x-direction). Therefore, in PD{Cα}, the
widest diagonal gap between these perturbed dots cannot have a vertical width of more
than max

1≤i≤m−1
{yi+1 − yi}+ 3ε, whilst as mentioned the greatest diagonal gap between dots

near the diagonal cannot have a vertical width of more than θ(G) + 2ε. Hence, the given
inequality y1 − θ(G)− 4ε > θ(G) + max

1≤i≤m−1
{yi+1 − yi}+ 3ε implies that all other diagonal

gaps have a vertical width smaller than y1 − θ(G)− 4ε.
Hence the widest diagonal gap of PD{Cα} covers the diagonal strip {θ(G) + 2ε <

y − x < y1 − 2ε} which is within the widest diagonal gap of PD{Gα}. Then the diagonal
subdiagram DS1(C) contains only dots above the diagonal line y − x = y1 − 2ε, which are
exactly the m perturbations of the original dots (0, yi), all of which lie in the vertical strip
{0 ≤ x ≤ ε}. Hence, we have that the vertical scale vs1,1(C) ≤ ε, and the derived skeleton
HoPeS1,1(C) contains exactly m critical edges corresponding to the m dots of DS1(C).

It remains to prove that HoPeS1,1(C) is 2ε-close to G. We have that MST(C) =
MST(C; ε), or in other words all edges of MST(C) are no longer than 2ε. Otherwise, Cε

would have multiple connected components which would imply that C could not be an
ε-sample of G as G is connected. Since all dots of DS1(C) lie within the vertical strip
{0 ≤ x ≤ ε}, all critical edges e of HoPeS1,1(C) have length |e| ≤ 2ε too. Therefore, all
edges of HoPeS1,1(C) have lengths at most 2ε, and as C is an ε-sample of G, we can deduce
that HoPeS1,1(C) ⊂ Cε ⊂ G2ε.

In Lemmas 4.29 and 4.30 we extend Stability Theorem 4.11 to diagonal and vertical
subdiagrams. By doing so, we are able to state and prove Theorem 4.32 that generalises
Theorem 4.28.

Lemma 4.29. Let C be any ε-sample of a connected graph G in a metric space. If
|dgapk(G)| − |dgapk+1(G)| > 8ε, then there is a bijection ψ : DSk(G) → DSk(C) such
that ‖q − ψ(q)‖∞ ≤ ε for all q ∈ DSk(G).

Proof. By Stability Theorem 4.11, there is a bijection ψ : PD{Gα} → PD{Cα} such that
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‖q − ψ(q)‖∞ ≤ ε for all q ∈ PD{Gα}. We will show that with the given inequality, ψ
descends to a bijection between the k-th diagonal subdiagrams.

The ε-neighbourhood of a dot q = (u, v) using the L∞-distance is the square [u− ε, u+
ε]×[v−ε, v+ε]. This square is bounded by the diagonal strip {v−u−2ε < y−x < v−u+2ε}.
Hence any diagonal gap {a < y − x < b} in PD{Gα} can become thinner or wider by at
most 4ε in PD{Cα}.

By the given inequality, the first k widest diagonal gaps dgapi(G), 1 ≤ i ≤ k, in
PD{Gα} are wider by more than 8ε than all other dgapi(G), i > k, which is a sufficiently
advantageous width such that none of the dgapi(G), i > k, can become wider than the
first k widest gaps in the perturbed persistence diagram PD{Cα}.

Although the order of the first k widest diagonal gaps may not be preserved under the
bijection ψ, the lowest of these diagonal gaps, {a < y−x < b}, is preserved by ψ. To show
this, consider the thinner strip S = {a+2ε < y−x < b−2ε} which has no dots from PD{Cα}
within it and has vertical width |S| ≥ |dgapk(G)|−4ε ≥ |dgapk+1(G)|+4ε ≥ |dgapk+1(C)|.
So the strip S is wider than dgapk+1(C) and so must be contained by one of the first k
widest diagonal gaps of PD{Cα}. As none of the lower diagonal gaps of PD{Cα} are among
the k widest, S is contained in the lowest of the first k widest diagonal gaps. Hence all dots
above S remain above S under the bijection ψ, and by Definition 4.22 these are exactly the
dots of PD{Gα} and PD{Cα} that form the diagonal subdiagrams DSk(G) and DSk(C)
respectively. Hence ψ descends to a bijection between the k-th diagonal subdiagrams.

Lemma 4.30. Let ψ : DSk(G) → DSk(C) be a bijection such that ‖q − ψ(q)‖∞ ≤ ε holds
for all q ∈ DSk(G), as in Lemma 4.29. If |vgapk,l(G)| − |vgapk,l+1(G)| > 4ε, then ψ
descends to a bijection ψ : VSk,l(G)→ VSk,l(C).

Proof. We follow a similar method as used in the proof of Lemma 4.29. The x-coordinate
of any dot q ∈ DSk(G) changes under the given bijection by at most ε, and so each vertical
gap can become thinner or wider by at most 2ε. By the given inequality, the first l widest
vertical gaps vgapk,i(G), 1 ≤ i ≤ l, are wider by more than 4ε than all other vgapk,i(G),
i > l, which is a sufficiently advantageous width such that none of the vgapk,i(G), i > l,
can become wider than the first l widest vertical gaps in the perturbed k-th diagonal
subdiagram DSk(C).

Again, although the order of the first l widest vertical gaps may change under the
bijection ψ, the leftmost of these vertical gaps, {a < x < b}, is preserved by ψ. To show this,
consider the thinner strip S = {a+ ε < x < b− ε} which has no dots from DSk(C) within
it and has vertical width |S| ≥ |vgapk,l(G)| − 2ε ≥ |vgapk,l+1(G)| + 2ε ≥ |vgapk,l+1(C)|.
So the strip S is wider than vgapk,l+1(C) and so must be contained by one of the first
k widest vertical gaps of DSk(C). As none of the further left vertical gaps of PD{Cα}
are among the k widest, S is contained in the leftmost of the first k widest vertical gaps.
Hence all dots to the left of S remain to the left of S under the bijection ψ, and by
Definition 4.23 these are exactly the dots of DSk(G) and DSk(C) that form the vertical
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Figure 4.5: An example of a graph G satisfying the conditions of Theorem 4.32 for k = 1,
l = 2. The persistent diagram of the graph has two dots with coordinates (0,

√
2) and
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√

2). Consequently, we have that ds1(G) =
√

2, |dgap1(G)| = 1, |dgap2(G)| =
√

2 − 1,

vs1,2(G) = 0, |vgap1,2(G)| = 1 and |vgap1,3(G)| = 0. Therefore, for ε < 2−
√

2
8 , G satisfies

the conditions of Theorem 4.32 for k = 1, l = 2. We also note that the thickness of G,

θ(G) =
√

2− 1, and so for ε < 2−
√

2
7 , G also satisfies the condition of Theorem 4.28.

subdiagrams VSk,l(G) and VSk,l(C) respectively. Hence ψ descends to a bijection between
these vertical subdiagrams.

The geometric approximation guarantee of derived skeletons in Theorem 4.32 requires
the following lemma about reduced skeletons.

Lemma 4.31 (Approximation by Reduced HoPeS(C;α)). Let C be a finite ε-sample of a
subspace G of a metric space. Then the reduced skeleton HoPeS(C;α) is contained within
the (ε+ α)-offset Gε+α for any scale α ≥ 0.

Proof. Any edge e ⊂ HoPeS(C;α) has length at most 2α by Definition 4.13, and hence is
covered by the balls with radius α and centres at the endpoints of e. Therefore, we have
that HoPeS(C;α) ⊂ Cα ⊂ Gε+α since C is an ε-sample of G.

Theorem 4.32 (Reconstruction by Derived Skeletons). Let C be an ε-sample of an un-
known graph G in a metric space M , where G satisfies the following conditions for some
k, l ≥ 1:

I Any cycle L ⊆ G corresponds to a homology class γ such that death(γ) ≥ dsk(G).

II |dgapk(G)| − |dgapk+1(G)| > 8ε.

III vsk,l(G) = 0.

IV |vgapk,l(G)| − |vgapk,l+1(G)| > 4ε.

73



Then the noise ε is bounded below by vsk,l(C), and the derived skeleton HoPeSk,l(C) is
contained within the 2ε-offset of the underlying graph G and has the same first homology
group as G. (For an example of a graph satisfying the conditions, see Figure 4.5.)

Proof. Due to Condition II, Lemma 4.29 implies that there is a bijection ψ : DSk(G) →
DSk(C) such that ‖q − ψ(q)‖∞ ≤ ε for all q ∈ DSk(G). Similarly, due to Condition IV,
Lemma 4.30 implies that ψ descends to a bijection ψ : VSk,l(G)→ VSk,l(C).

Let L1, . . . , Lm ⊂ G be all m independent cycles of G, corresponding to the m homology
classes γ1, . . . , γm that generate the first homology group H1(G). In the filtration {Gα},
these homology classes persist from α = 0 until they die at α = death(γi), and are exactly
the dots of PD{Gα} that lie on the vertical death axis. Condition I implies that all these
dots (0,death(γi)) belong to DSk(G).

We can deduce from Condition III that the leftmost of the first l widest vertical gaps is
attached to the vertical death axis in PD{Gα}, implying that VSk,l(G) consists of exactly
the m dots (0,death(γi)) with birth value 0.

Due to the bijection ψ, VSk,l(C) has exactly m dots, which are the noisy images of the
dots (0, death(γi)) ∈ VSk(G). Due to the property of the bijection, these dots can be at
most a distance ε from the vertical death axis, implying that vsk,l(C) ≤ ε.

The minimum death of the dots of VSk,l(C) is bounded below by dsk(G) − ε ≥
|dgapk(G)| − ε > 7ε > vsk,l(C). So all dots of VSk,l(C) satisfy the condition death >
vsk,l(C). Hence the derived skeleton HoPeSk,l(C) contains exactly m critical edges corre-
sponding to the m dots of VSk,l(C), and so H1(HoPeSk,l(C)) has the required rank m.

The geometric approximation HoPeSk,l(C) ⊂ G2ε follows from Lemmas 4.25 and 4.31,
with α = vsk,l(C) ≤ ε.

Corollary 4.33. In the same setting as Theorem 4.32, let C̃ be a (δ + ε)-sample of the
graph G. Then HoPeSk,l(C̃) is (2δ + 4ε)-close to HoPeSk,l(C).

Proof. Reconstruction Theorem 4.32 states that HoPeSk,l(C̃) ⊂ G2δ+2ε, and HoPeSk,l(C) ⊂
G2ε. Therefore, HoPeSk,l(C̃) ⊂ HoPeSk,l(C)2δ+4ε.

4.7 The Dataset of 79K Noisy Point Clouds

We have carried out an extensive comparison of the Mapper, α-Reeb and HoPeS algorithms
on both real and synthetic datasets. We produced the synthetic dataset, which we call the
Planar Graph Cloud (PGC) Dataset and consists of noisy point clouds randomly sampled
from planar graphs, so that we could accurately determine how effective the algorithms are
at outputting reconstructed graphs that meet certain topological and geometric criteria.
Since the Mapper, α-Reeb and HoPeS algorithms have guarantees relating to the homotopy
type of reconstructed graphs, but not relating to the stricter homeomorphism type that
captures branches outside of closed cycles, it is enough to consider for the experimental
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Figure 4.6: 4-wheel W(4), (3, 2)-grid G(3, 2), and 7-hexagons H(7) graphs.

comparisons graphs with no vertices of degree one. We therefore generated the PGC
Dataset using three patterns of planar graphs:

• The k-wheel graph W(k) ⊂ R2 has k ≥ 3 circumference vertices equally distributed
along the unit circle centred at the origin, at which there is another vertex. W(k)
has edges between the central vertex and all circumference vertices, and between
successive circumference vertices, see W(4) in Figure 4.6.

• For k, l ≥ 1, the (k, l)-grid graph G(k, l) ⊂ [0, k] × [0, l] has vertices at the integer
coordinate points (i, j), 0 ≤ i ≤ k, 0 ≤ j ≤ l. Each vertex (i, j) is connected to up to
four other neighbouring vertices (i± 1, j), (i, j ± 1), see G(3, 2) in Figure 4.6.

• The k-hexagons graph H(k) ⊂ R2 consists of the boundaries of k regular hexagons
with edges of unit length. The (k+1)-hexagons graph is obtained from the k-hexagons
graph by adding the boundary of a new hexagon. The last image in Figure 4.6 shows
the order in which hexagons are added for k ≤ 7.

To produce the dataset of noisy point clouds from these families of graphs, for each
graph G we sampled 100 points per unit length (e.g. 400 points for G(1, 1)), with each point
being sampled in the following way. By fixing the order of edges, G can be parameterised

by a single variable t that takes values in the interval
[
0,
∑k

i=1 li

]
, where l1, . . . , lk are the

lengths of the edges e1, . . . , ek ⊂ G. A value of t is uniformly selected, and then if t belongs

to the j-th interval
[∑j−1

i=1 li,
∑j

j−1 li

]
, a point is chosen from the j-th edge, corresponding

to the weighted combination w~u + (1 − w)~v of the edge’s endpoints u, v ∈ R2, where

w =
(
t−
∑j−1

i=1 li

)
/lj .

For each sampled point p lying on an edge e of the graphG, we generate two independent
random shifts de, d⊥ from the same distribution, and then shift p by de in the direction
parallel to e, and by d⊥ in the direction perpendicular to e. The distributions used are:

• Uniform noise with bound µ: de, d⊥ are uniformly selected from the interval [−µ, µ].
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Figure 4.7: Point clouds of the PGC Dataset. Top: samples with uniform noise and
bounds µ = 0.1, µ = 0.25, µ = 0.5. Bottom: samples with Gaussian noise and deviations
σ = 0.08, σ = 0.12, σ = 0.2.

• Gaussian noise with mean 0 and standard deviation σ: de, d⊥ have the Gaussian

density f(t, σ) = 1
2πσ2 e

−t2
2σ2 for t ∈ R.

The Planar Graph Cloud Dataset contains 79000 clouds consisting of 200 clouds of each
of the following 395 types:

• 70 wheel types: point clouds are sampled from W(k), 3 ≤ k ≤ 9, with uniform noise
with five values of the upper bound µ ranging from 0.05 to 0.25 in 0.05 intervals, or
with Gaussian noise with five values of the standard deviation σ ranging from 0.02
to 0.1 in 0.02 intervals.

• 108 grid types: point clouds are sampled from G(k, l), 1 ≤ k, l ≤ 3, k ≥ l, with
uniform noise with 8 values of the upper bound µ ranging from 0.05 to 0.4 in 0.05
intervals, or with Gaussian noise with 10 values of the standard deviation σ ranging
from 0.02 to 0.2 in 0.02 intervals.

• 217 hexagonal types: point clouds are sampled from H(k), 1 ≤ k ≤ 7, with uniform
noise with fifteen values of the upper bound µ ranging from 0.05 to 0.75 in 0.05
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intervals, or with Gaussian noise with 16 values of the standard deviation σ ranging
from 0.02 to 0.32 in 0.02 intervals.

The above intervals for the noise parameters were chosen to report the maximum noise at
which the skeletonisation algorithms have a high success rate of outputting reconstructions
with the correct first Betti number (Definition 1.26). Examples of point clouds in the PGC
Dataset can be seen in Figure 4.7.

4.8 Drawing and Simplifying Skeletons of Point Clouds

Lemma 4.15 states that HoPeS(C;α) is a subgraph of the complex Q(C;α). Therefore,
if a point cloud C ⊂ Rn and the filtration of α-offsets {Cα} is used to derive HoPeS(C),
then HoPeS(C) ⊆ Del(C). Hence, HoPeS(C) is embedded in Rn, thus visualising the shape
of C directly in the space where C lives. In particular, if C ⊂ R2, then HoPeS(C), and
its whole family of reduced and derived skeletons, are embedded in the plane. However,
both Mapper and α-Reeb outputs are abstract, and so do not live in the same space as C.
Therefore, in order to draw these outputs in the plane when C ⊂ R2, it is necessary for us
to project them to the plane as naturally as possible.

For Mapper, each vertex v in the output graph corresponds to a cluster Cv of points
in the cloud C, and so we naturally embed this vertex in R2 by placing it at the geometric
centre 1

|Cv |
∑

p∈Cv p.

It is less natural to embed the α-Reeb graph into R2, since it is defined to be the
quotient of a set of intervals under an equivalence relation. Noting this difficulty, we argue
that the most natural way of embedding this output is, in a similar way to Mapper, to map
the centre of each interval to the geometric centre of its corresponding connected subgraph.

In all cases, edges between vertices are drawn as straight line segments. However, unlike
any output of HoPeS which has no intersecting edges, embedding the Mapper and α-Reeb
outputs in this way can lead to the intersection of edges in locations other than at vertices.

Since the algorithms are compared on noisy samples of planar graphs that have no
vertices of degree one, the outputs of all three algorithms undergo a simplification by
having all vertices of degree one (and their corresponding open edges) iteratively removed,
see Figures 4.8 and 4.9.

We apply a second simplification to outputs of the HoPeS algorithm. This is because
HoPeS(C), and all of its derived and reduced skeletons, have vertex set C, yet an ideal
output should be simpler than the input, with much fewer vertices. Hence, we provide an
algorithm below that, after removing vertices of degree one, further reduces the number of
vertices in HoPeS(C).

Algorithm 4.34 (Simplifying HoPeS(C)). Firstly, all vertices of degree one (and their
corresponding open edges) are iteratively removed. Then, for a given threshold ε, we
iteratively collapse all edges of HoPeS(C) with lengths less than ε as follows:
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Figure 4.8: Left: an original Mapper out-
put for a noisy sample of W (4) in the top-
left of Figure 4.7. Right: the simplified
Mapper output by pruning vertices of de-
gree one.

Figure 4.9: Left: an original α-Reeb out-
put for a noisy sample of W (4) in the top-
left of Figure 4.7. Right: the simplified
α-Reeb output by pruning vertices of de-
gree one.

Stage 1: We skip any edge shorter than ε that is contained in a triangular cycle (a cycle
with three edges) in order to preserve the first homology group H1(HoPeS(C)).

Stage 2: To collapse an edge e with endpoints v1, v2, we first remove v1, v2 and all edges
incident on them, storing in memory all other vertices that either v1 or v2 were directly
connected to.

Stage 3: If deg(v1) = deg(v2) = 2, or deg(v1) 6= 2 and deg(v2) 6= 2, a new vertex v is
placed at the midpoint of the straight line segment between v1 and v2. If (say) deg(v1) 6= 2
but deg(v2) = 2, then the new vertex v is placed at the original location of v1, to better
preserve the geometric approximation of the skeleton.

Stage 4: We add an edge between the new vertex v and each of the vertices stored in
memory, which were the original neighbours of either v1 or v2.

Stage 5: If any of the new edges intersect with existing edges, the collapse is reversed and
we skip over this edge.

We denote the output of Algorithm 4.34 by simHoPeS(C; ε). Algorithm 4.34 can also
be applied to reduced skeletons HoPeS(C;α) and derived skeletons HoPeSk,l(C), denoting
the outputs as simHoPeS(C;α, ε) and simHoPeSk,l(C; ε) respectively. An example of the
simplification process can be seen in Figure 4.10.

In the experiments of Section 4.9, we always set ε to be equal to the maximum death
over all dots of DS1(C) (dropping ε from the notation for simplicity). It is possible that
such a simplification breaches the geometric approximation guarantees of Theorems 4.28
and 4.32, but the homology guarantees remain valid.

Corollary 4.35. Under the conditions of Theorems 4.28 and 4.32, simHoPeSk,l(C; ε) has
the same first homology group as the underlying graph G.
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Figure 4.10: Left: derived HoPeS1,1(C) for a point cloud sample of W (4). Middle: all de-
gree one vertices have been removed. Right: simHoPeS(C;α) obtained by Algorithm 4.34.

Proof. Removing vertices of degree one does not effect the first homology group of a graph.
Collapsing short edges can only lead to a change in the first homology group if either a
triangular cycle is collapsed or, considering the output as an embedded graph in R2, the
collapse leads to edges intersecting in locations other than at vertices. Algorithm 4.34
prevents both cases from arising, and so the first homology group of simHoPeSk,l(C; ε) is
isomorphic to H1(G) in the cases specified by Theorems 4.28 and 4.32.

Figures 4.11 - 4.13 show typical outputs of all three algorithms after the described
simplifications for point clouds from the PGC Dataset

Figure 4.11: From left to right: a cloud sampled from the W (5) graph with Gaussian noise
with σ = 0.04; the Mapper output; the α-Reeb output; simHoPeS1,1(C)
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Figure 4.12: From left to right: a cloud sampled from the G(3, 3) graph with uniform noise
with µ = 0.2; the Mapper output; the α-Reeb output; simHoPeS1,1(C)

Figure 4.13: From left to right: a cloud sampled from the H(6) graph with uniform noise
with µ = 0.4; the Mapper output; the α-Reeb output; simHoPeS1,1(C)

4.9 Experiments on Synthetic and Real Data

We present in this section an experimental comparison of the three skeletonisation algo-
rithms already introduced (Mapper, α-Reeb, and HoPeS) on the synthetic PGC Dataset
from Section 4.7, as well as on real data.

Recall that the PGC Dataset consists of 395 types of cloud, with each type distinguished
by its underlying graph G, the type of noise and the magnitude of noise. The outputs of
the skeletonisation algorithms on the 200 clouds of each type are used to compute four
measures for comparison:

• The Betti success rate: the percentage of the 200 outputs that have first homology
groups of the same rank as H1(G) (i.e. the first Betti numbers of the output and the
underlying graph G agree).

• The homeomorphism success rate: the empirical conditional probability (as a
percentage) that the output skeleton is homeomorphic to the underlying graph G,
given that the skeleton already agrees with G on the first Betti number.
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• The root mean square (RMS) error: this measures how close geometrically an
output skeleton S is to a cloud C. For each point p ∈ C, the distance d(p, S) is the
Euclidean distance of p from the closest point of S (which could be a point in the

interior of an edge). Then the RMS error is
√∑

p∈C d(p, S)2. We average over only

the outputs that agree with G on the first Betti number.

• The runtime: the time taken to produce a skeleton, averaged over all 200 outputs.

Each algorithm depends on input parameters that affect the output. For HoPeS, the
choice of parameters is straightforward: we simply take the derived skeleton HoPeS1,1(C)
consisting of critical edges that correspond to dots of DS1(C), and simplify the output by
Algorithm 4.34 using as the threshold ε the maximum death among these critical edges.

Yet for the Mapper and α-Reeb algorithms, the quality of the output skeletons is
much more sensitive to the input parameters, and choosing the same configuration of
parameters for each type of cloud would be inadequate. If parameters such as α in the
α-Reeb algorithm, or ε used in DBSCAN as part of the Mapper algorithm, are too small,
then noisy cycles will also be captured in addition to the dominant cycles. Yet if these
parameters are too large, even the dominant cycles will be missed. Hence, for each cloud
type, we optimise the parameters separately for each measure (apart from the running
time) by searching over a wide range of parameters. The results presented below are for
the parameters that yielded the best outputs for Mapper and α-Reeb (while the same
parameters used to achieve the best Betti success rate are again used to compute the mean
runtime). The range of values of the parameters used in the Mapper and α-Reeb algorithms
are as follows:

• Mapper: the amount of overlap of the intervals that cover the range of the filter
function was fixed at 50%. For a cloud of n points, we took tn/100 as the number
of intervals, rounded to the nearest integer, where t took 10 values from 1.5 to 3.3
in 0.02 intervals. The clustering parameter ε also took 10 values from 0.05 to 0.5 in
0.05 intervals. We therefore used 100 configurations of the Mapper parameters.

• α-Reeb: for the scale α, we took 10 values from 0.15 to 0.6 in 0.05 intervals.

Figures 4.14-4.19 show a selection of the results for clouds sampled from wheel, grid
and hexagons graphs with uniform or Gaussian noise. In each plot, the x-coordinate is the
first Betti number of the underlying graph, whilst the y-coordinate is the mean value over
all qualifying clouds (with optimal parameters for the Mapper and α-Reeb algorithms).
Figures 4.20 and 4.21 illustrate the maximum noise each algorithm can tolerate whilst
maintaining quality outputs (a Betti success rate of at least 90% and 95% respectively).

The real data used to compare the skeletons are clouds of Canny edge pixels extracted
from 500 real images of the Berkeley Segmentation Database (BSD500) [41]. Table 4.1
shows how well the outputs geometrically approximate the clouds, showing the mean RMS
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Figure 4.14: Clouds are sampled with uniform noise around wheel graphs W(k), 3 ≤ k ≤ 9.
Top-left: Betti success rate; Top-right: homeomorphism success rate; Bottom-left:
RMS error; Bottom-right: runtime.
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Figure 4.15: Clouds are sampled with Gaussian noise around wheel graphs W(k), 3 ≤ k ≤ 9.
Top-left: Betti success rate; Top-right: homeomorphism success rate; Bottom-left:
RMS error; Bottom-right: runtime.
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Figure 4.16: Clouds are sampled with uniform noise around grid graphs G(k, l), 1 ≤ k, l ≤ 3.
Top-left: Betti success rate; Top-right: homeomorphism success rate; Bottom-left:
RMS error; Bottom-right: runtime.
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Figure 4.17: Clouds are sampled with Gaussian noise around grid graphs G(k, l), 1 ≤ k, l ≤
3. Top-left: Betti success rate; Top-right: homeomorphism success rate; Bottom-left:
RMS error; Bottom-right: runtime.
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Figure 4.18: Clouds are sampled with uniform noise around hexagon graphs H(k), 1 ≤ k ≤
7. Top-left: Betti success rate; Top-right: homeomorphism success rate; Bottom-left:
RMS error; Bottom-right: runtime.
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Figure 4.19: Clouds are sampled with Gaussian noise around hexagon graphs H(k), 1 ≤ k ≤
7. Top-left: Betti success rate; Top-right: homeomorphism success rate; Bottom-left:
RMS error; Bottom-right: runtime.
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Figure 4.20: The magnitude of noise at which the Betti success rate drops below 90%. Top-
left: wheel pattern, uniform noise; Top-right: wheel pattern, Gaussian noise; Middle-
left: grid pattern, uniform noise; Middle-right: grid pattern, Gaussian noise; Bottom-
left: hexagons pattern, uniform noise; Bottom-right: hexagons pattern, Gaussian noise.
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Figure 4.21: The magnitude of noise at which the Betti success rate drops below 95%. Top-
left: wheel pattern, uniform noise; Top-right: wheel pattern, Gaussian noise; Middle-
left: grid pattern, uniform noise; Middle-right: grid pattern, Gaussian noise; Bottom-
left: hexagons pattern, uniform noise; Bottom-right: hexagons pattern, Gaussian noise.
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Measures / Algorithms Mapper α-Reeb simHoPeS HoPeS

RMS error (pixels) 10.726 6.48247 5.61771 0
Max distance (pixels) 55.892 45.0883 29.1306 0

Runtime (ms) 310 4110 1256 88

Table 4.1: Comparison of the algorithms on Canny edge pixels of 500 real images in the
BSD500 dataset.

error between the cloud and the skeleton, the maximum distance between a point of the
cloud and the skeleton, and the runtime. HoPeS1,1(C) is an extension of a minimum
spanning tree, and so of course has an RMS error of zero. But we include the simpler
version simHoPeS1,1(C) to provide a fairer comparison. The Mapper and α-Reeb outputs
are again optimised over a range of parameters. Vertices of degree one were not removed
for any of the outputs in these experiments on real data. Figures 4.22-4.25 are included to
provide the reader with a visual comparison of the quality of the outputs.

Figure 4.22: From left to right: image 135069 from the BSD500 dataset with the cloud C of
Canny edge pixels in red; the outputs of the Mapper, α-Reeb and HoPeS1,1(C) algorithms,
where the single critical edge of HoPeS1,1(C) is in red.

Figure 4.23: From left to right: image 29030 from the BSD500 dataset with the cloud C of
Canny edge pixels in red; the outputs of the Mapper, α-Reeb and HoPeS1,1(C) algorithms,
where the critical edges of HoPeS1,1(C) are in red.
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Figure 4.24: From left to right: image 3096 from the BSD500 dataset with the cloud C of
Canny edge pixels in red; the outputs of the Mapper, α-Reeb and HoPeS1,1(C) algorithms,
where the single critical edge of HoPeS1,1(C) is in red.

Figure 4.25: From left to right: image 302003 from the BSD500 dataset with the cloud C of
Canny edge pixels in red; the outputs of the Mapper, α-Reeb and HoPeS1,1(C) algorithms,
where the critical edges of HoPeS1,1(C) are in red.

4.10 Conclusions: Pluses and Minuses of the Algorithms

The key advantage of the Mapper algorithm is its versatility due to the various parameters
that the user can change. Yet this abundance of choice can lead to difficulties as a prior
knowledge of the dataset is often needed to select parameters that yield meaningful outputs.
The α-Reeb algorithm has effectively just the scale α as its only parameter, and an α-Reeb
graph can be computed in the very fast time O(n log(n)). Theoretically, HoPeS has the
advantage of being a parameter-free algorithm that is also embedded in the same space
as the point cloud C. Hence, the time-consuming process of optimising parameters is not
required and the intersection of edges is avoided. Yet HoPeS maintains versatility since
the output contains families of reduced and derived subskeletons that may better describe
the geometry of the point cloud.

Moreover, the experimental comparisons of Section 4.9 show that, despite optimising
the important parameters of the Mapper and α-Reeb algorithms over a wide range of
values, the derived skeleton simHoPeS1,1(C) performs comparably or even better without
the need to optimise parameters. The HoPeS algorithm could be improved to deal better
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with outliers, since there is a drop in its performance on clouds with Gaussian noise, whilst
all algorithms can be improved by a further minimisation of the RMS error of the skeleton
to the cloud.

To summarise, this chapter gives detailed proofs of Optimality Theorem 4.21 and Re-
constuction Theorems 4.28 and 4.32 for the first time, whilst Corollaries 4.33 and 4.35 are
new results. The extensive comparison of the three algorithms on synthetic and real data
in Section 4.9 reveals for the first time the maximum levels of noise at which the algo-
rithms reliably produce quality outputs. The C++ code implementing all three algorithms
is available at [55], whilst the PGC Dataset from Section 4.7 of 79000 point clouds (2GB)
for comparison with other skeletonisation algorithms is available by request.
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Chapter 5

Conclusion

The emerging field of Crystal Structure Prediction (CSP) is enabling the discovery of new
materials at an ever-increasing rate. Yet, the large datasets of simulated crystals that
are outputted by CSP are largely unstructured due to a lack of a rigorous comparison of
crystals that is invariant under isometries, continuous and complete. We have presented
two main directions of research that can be applied to these large CSP datasets to better
and more quickly analyse them.

Firstly, in response to Problem 1, we have introduced the density fingerprint (Defini-
tion 3.5) which is a continuous isometry invariant of periodic sets (which model crystals).
In particular, the density fingerprint contains a wealth of information that is stored in
an infinite sequence of continuous density functions. We have been able to show that it is
invariant under isometries (Lemma 3.4), Lipschitz continuous for small perturbations (The-
orem 3.10) and complete for an open and dense space of periodic sets in R3. Our failure to
find a counterexample to completeness in Subsection 3.4.1 in any dimension greater than
one has led us to conjecture that the density fingerprint map is complete for all periodic
sets in Rn, n ≥ 2 (Conjecture 3.19).

A prerequisite for computing the density fingerprint of a periodic set are the Voronoi
zones (Definition 2.4) introduced in Chapter 2. Here, we have generalised previous related
work on lattices to periodic sets, which are better at modelling crystals since crystals can
have multiple atoms or molecules within its motif. We have structurally described these
zones, observing their spherical nature in Theorem 2.6 and stating in Theorem 2.12 how
the total volume of each zone remains constant as the order k increases. In Section 2.2, we
have introduced an algorithm computing the first k Voronoi zones of a periodic set for a
given order k.

It is Theorem 3.21 that states how density functions can be computed via Voronoi
zones. Specifically, we can deduce from this theorem that, in dimension three, density
functions can be computed as a sum of the volumes of sphere-tetrahedron intersections,
where exactly computing such volumes is described in Subsection 3.5.1. Density functions
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can be computed in cubic time in the order k if the packing and covering radii of the
periodic set are known. Implementations of the algorithms to compute Voronoi zones of
periodic sets and density functions can be found at [54, 53] respectively.

Density fingerprints can easily be compared using the d∞-distance. Therefore, we
expect the fingerprint can be used to simplify the large output datasets produced by CSP
by comparing simulated structures with each other. This will enable near-duplicates to be
removed from the dataset, and clustering or even skeletonisation algorithms to visualise
the dataset’s structure. A small example of how the density fingerprint can be applied is
described in Section 3.6.

The second direction of research relates to skeletonisation algorithms. Particularly,
we have carried out an extensive comparison of three relevant skeletonisation algorithms
(Mapper [51], α-Reeb [11] and HoPeS [37]) on synthetic and real datasets. This comparison
has revealed that on point clouds with uniform noise, HoPeS performs comparably or even
better on objective measures, without the need to optimise parameters. On Gaussian noise
with outliers, while HoPeS continues to perform comparably, we note that the algortihm
could be improved to better accommodate outliers. The generation of the synthetic Planar
Graph Cloud Dataset has been described in Section 4.7, and can be used in future research
to compare other skeletonisation algorithms.

We have proven optimality and reconstruction guarantees for HoPeS in Theorems 4.21,
4.28 and 4.32, in addition to describing an algorithm to simplify the output of HoPeS by
reducing the number of vertices (Algorithm 4.34). Skeletonisation algorithms have wider
applications than just to CSP outputs, as they can be used to visualise the structure of
any dataset that can be represented as a point cloud in a metric space.

We conclude this thesis by reminding the reader of some open problems. The proof of
generic completeness of the density fingerprint map (Theorem 3.14) makes only limited use
of the order k at which the circumradius of an edge, triangle, or tetrahedron is detected
(where the order is the number of points in the respective circumsphere). This raises the
question of whether this additional information is sufficient to prove completeness for all
periodic sets in dimensions greater than one?

Separately, different types of atoms are often modelled as balls with different radii. A
possible geometric formalism is that of weighted points and the power distance [7]. The
geometric results for the density fingerprint generalise to this setting, although some need a
careful adaptation. The continuity result for periodic sets (Theorem 3.10) also generalises
to non-periodic Delone sets that allow for a reasonable definition of density functions.
Considering that quasi-periodic crystals can be modelled as such, finding out how far such
an extension can be pushed may be a worthwhile direction of future research.
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Appendix A

Resolution-independent Meshes of
Superpixels

(This short appendix describes separate work completed during the PhD, which culminated
in the publication of the paper “Resolution-independent meshes of superpixels” authored
by V. Kurlin and P.S. in proceedings of the 14th International Symposium on Visual
Computing, 2019 [39].)

An important problem in low-level computer vision is to quickly detect key structures
such as corners and edges where colour intensities substantially change. Consequently, the
over-segmentation of a digital image into superpixels is an important pre-processing step,
compressing the input size of the image and speeding up higher level tasks.

A superpixel was traditionally considered as a small cluster of square-based pixels that
have similar colour intensities and are closely located to each other. In this discrete model,
the boundaries of superpixels often have irregular zigzags consisting of horizontal or vertical
edges from a given pixel grid.

However, digital images represent a continuous world, where colour intensities change
gradually over two to three pixels without jumps, see [60, Figure 1]. Hence, instead of
combining pixels to form a superpixel, splitting an image into polygons that have straight
edges with any possible slope and vertices at sub-pixel resolution can be more suitable.
We call such polygons resolution-independent superpixels. In particular, we consider the
following resolution-independent formulation of the over-segmentation problem introduced
by Viola et al. [60]. We split an image into a fixed number of possibly non-convex polygons
such that:

• All polygons have straight edges and vertices with any real coordinates (not restricted
to a given pixel grid, and so are independent of the initial image resolution);

• The resulting coloured mesh (with the best constant colour for each polygon) ap-
proximates the original image, for example by minimising an energy.
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Figure A.1: SLIC superpixels (left) with zigzag boundaries of pixel-based superpixels are
converted into a resolution-independent mesh (right) of polygons with straight edges that
can be rendered at any higher resolution for better and smoother animations.

In the paper, we introduce RIMe (a Resolution-Independent Mesh of polygons): a
fast conversion algorithm of any traditional set of pixel-based superpixels into resolution-
independent superpixels, guaranteeing that their edges do not intersect, see Figure A.1.
The resolution-independent meshes based on the superpixels SEEDS (Superpixels Ex-
tracted via Energy-Driven Sampling) [8] and SLIC (Simple Linear Iterative Clustering)
[2] are compared with past meshes based on the Line Segment Detector [27]. The experi-
ments on the Berkeley Segmentation Database (BSD) [41] confirm that the new superpixels
have more compact shapes than pixel-based superpixels.

The main contributions of the paper to computer vision are as follows:

• We introduce the algorithm RIMe that can convert any set of pixel-based superpixels
into a resolution-independent mesh with quality guarantees.

• Experimental analysis confirms that the resolution-independent meshes based on
SEEDS and SLIC achieve better results on objective measures and perform simi-
larly to SEEDS and SLIC on the BSD benchmarks.

• RIMe outperforms all other resolution-independent superpixels on the objective re-
construction error and benchmarks of BSD.
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Appendix B

Notations

We record here a list of all the notations used in the thesis.

• General notation:

– Dimension: n.

– Point: p (Notation 1.1).

– Vector: ~v (Notation 1.1).

– Summations: i.

– Coefficient: c.

– Index set: I.

– Transformation: T .

– Bijection: γ or ψ.

– Symmetric difference: 	.

• Introduction:

– Lattice: Λ (Definition 1.2).

– Lattice point: v.

– Unit cell: U (Definition 1.2).

– Motif: M (Definition 1.4).

– Cardinality of motif M : m (Definition 1.4).

– Point in a motif: a.

– Periodic point set: A (Definition 1.5).

– A second periodic point set: Q.
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– k-extended unit cell: kU (Definition 1.6).

– Packing radius: r (Definition 1.11).

– Covering radius: R (Definition 1.12).

– Metric space: (M,d) or simply M (Definition 1.14).

– Point cloud: C (Definition 1.15).

– Subspace of a metric space: X.

– Graph: G (Definition 1.17).

– Neighbourhood graph: N(C; ε) (Definition 1.17).

– Edge: e.

– n-dimensional simplex: ∆n (Definition 1.19).

– Simplicial complex: Q (Definition 1.19).

– Čech complex: Čh(C,M ;α) (Definition 1.20).

– Vietoris-Rips complex: VR(C,M ;α) (Definition 1.20).

– Delone triangulation: Del(C) (Definition 1.21).

– α-complex: C(α) (Definition 1.21).

– α-offset of a subspace X ⊂M : Xα (Definition 1.22).

– Filtration: {Q(C;α)} (Definition 1.24).

– Filtration of α-offsets: {Cα}.
– Homology:

∗ Vector space of cycles: Z1 (Definition 1.25).

∗ Vector space of boundaries: B1 (Definition 1.25).

∗ k-th homology group: Hk (Definition 1.25).

• Voronoi Zones:

– Voronoi domain of p ∈ C: V (C; p) (Definition 2.1).

– k-th degree Voronoi domain of p ∈ C: Vk(C; p) (Definition 2.2).

– k-th Voronoi zone of p ∈ C: Zk(C; p) (Definition 2.4).

– Zone index: ind(x;C; p) (Definition 2.5).

– Set of bisectors: b(C; p) (Definition 2.5).

– k-th Voronoi subdomain of a periodic set A: V (k)(A; 0) (Definition 2.7).

– k-th Voronoi subzone of a periodic set A: Z(k)(A; a) (Definition 2.8).

– Half-open Voronoi domain: V h(Λ; 0) (Definition 2.9).
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– Piecewise shift: fk(x) (Definition 2.10).

– Integrable function: µ(x).

– Lattice points on the boundary of 2iU : Λi (Lemma 2.16).

– Bisecting line between 0 ∈ R2 and p ∈ R2: L(p).

– Binary tree: T .

• Density Functions:

– Set of balls of radius t centred at points of a set C: B(C; t) (Notation 3.1).

– k-th density function: ψAk (t) (Definition 3.2).

– Density fingerprint: Ψ(A) (Definition 3.5).

– Lipschitz coefficient: C (Definition 3.6).

– Bottleneck distance between periodic sets A and Q: dB(A,Q) (Definition 3.7).

– Shorthand for bottleneck distance dB(A,Q): δ.

– d∞ distance between fingerprints of A and Q: d∞(Ψ(A),Ψ(Q)) (Definition 3.8).

– Union of points covered by at least k balls of B(C; t): ∪kB(C; t).

– Union of points covered by exactly k balls of B(C; t): Ckt .

– Intensity |M |/Vol[U ]: ρ.

– List of simplices in A up to threshold θ: L(A; θ).

– Largest finite circumradius of up to four points: Rad(A) (Definition 3.13).

– Diameter of a unit cell: D.

– Isometry class of A: [A].

– Fractional volume of a unit cell covered by at least k balls: ϕAk (t) (Defini-
tion 3.20).

– Half-space: H (Definition 3.23).

– Opposite half-space: H (Definition 3.23).

– Plane: pl.

– Spherical cap: Scap(H) (Definition 3.24).

– Height of a spherical cap: h (Definition 3.24).

– Spherical wedge: Swedge(H1, H2) (Definition 3.25).

– Regularised spherical wedge: Srwedge(H1, H2) (Definition 3.26).

– Spherical cone: Scone(H1, H2, H3) (Definition 3.27).

– Tetrahedron spanned by the points p1, p2, p3, p4: Tet(p1, p2, p3, p4).
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• Skeletonisation Algorithms:

– Level set: Lt(f) (Definition 4.1).

– Parameter space: Y .

– Region of a covering: I.

– Covering of intervals: I.

– DBSCAN’s radius parameter: ε.

– DBSCAN’s minimum number of points: minPts.

– Reeb graph: Reeb(Q, f) (Definition 4.2).

– Minimum spanning tree of a filtration on C: MST(C) (Definition 4.4).

– Forests contained in MST (C): MST(C;α) (Definition 4.4).

– Persistent Homology:

∗ Homology class: γ.

∗ Birth value: birth(γ) (Definition 4.7).

∗ Death value: death(γ) (Definition 4.7).

∗ Persistence diagram: PD{Q(C;α)} (Definition 4.8).

∗ Multiplicity of a persistence dot: ui,j (Definition 4.8).

∗ Cycle: L.

– Homologically persistent skeleton: HoPeS(C) (Definition 4.13).

– Reduced HoPeS: HoPeS(C;α) (Definition 4.13).

– Diagonal gap: dgapk(C) (Definition 4.22).

– Diagonal subdiagram: DSk(C) (Definition 4.22).

– Diagonal scale: dsk(C) (Definition 4.22).

– Vertical gap: vgapk,l(C) (Definition 4.23).

– Vertical subdiagram: VSk,l(C) (Definition 4.23).

– Vertical scale: vsk,l(C) (Definition 4.23).

– Derived HoPeS: HoPeSk,l(C) (Definition 4.24).

– Radius of a cycle: ρ (Definition 4.26).

– Thickness of a graph: θ (Definition 4.26).

– Simplified HoPeS(C): simHoPeS(C; ε).

– Skeleton: S.

– k-wheel graph: W(k).

– (k, l)-grid graph: G(k, l).

– k-hexagons graph: H(k).
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