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Abstract
A conventional robot programming method extensively limits the reusability of skills in
the developmental aspect. Engineers programme a robot in a targeted manner for the
realisation of predefined skills. The low reusability of general‐purpose robot skills is
mainly reflected in inability in novel and complex scenarios. Skill transfer aims to transfer
human skills to general‐purpose manipulators or mobile robots to replicate human‐like
behaviours. Skill transfer methods that are commonly used at present, such as learning
from demonstrated (LfD) or imitation learning, endow the robot with the expert's low‐
level motor and high‐level decision‐making ability, so that skills can be reproduced and
generalised according to perceived context. The improvement of robot cognition usually
relates to an improvement in the autonomous high‐level decision‐making ability. Based
on the idea of establishing a generic or specialised robot skill library, robots are expected
to autonomously reason about the needs for using skills and plan compound movements
according to sensory input. In recent years, in this area, many successful studies have
demonstrated their effectiveness. Herein, a detailed review is provided on the transferring
techniques of skills, applications, advancements, and limitations, especially in the LfD.
Future research directions are also suggested.

1 | INTRODUCTION

Similarly to the appearance of the robot discussed here, the
world's first robot prototype, Unimate, was officially born in
1959. Only two years later, Unimate1900 series robots had
been used as the first batch of automated mass production
tools in factories. Since then, with a vision for the future,
humans have embarked on a long journey, but at a surprisingly
fast speed, to explore the potential of robots. Unquestionably,
today, 60 years later, the boom in the robotics market is clear,
behind which has been the active development of robotics
technologies and artificial intelligence. So far, robots with skill
learning have generally appeared in industrial manufacturing
[1, 2], logistics [3], field robotics [4], surgery [5] and other
fields. In addition to these common areas, robots are also
expanding into nursing [6], human–robot collaboration [7],
autonomous vehicles [8] and transfer learning [9] (i.e. sharing
knowledge between agents with similar but discrepant mech-
anisms). It is not difficult to see that robots are continuously

finding new ways to impact people's lives, and robotics tech-
nologies have gradually begun to develop to enter for the trend
of lightweight and collaborative areas, which could potentially
allow more people to benefit from the safety and efficiency
brought about by robots in the future.

In manufacturing, robotic surgery and various other robot
applications, traditional robot programming is oriented toward
specific skills, and engineers focus on the realisation of each task
by hard‐coding everything that needs to be executed. Tradi-
tional robots, while performing the task of ‘bottle‐to‐cup water
pouring’, need to pay attention to the factors involving the
position of the bottle/cup mouth and path planning. However,
the task requirements in the actual scene are far from simple.
When encountering challenges like obstacles, moving objects,
and environmental changes, robots struggle to handle these
adaptability challenges. These pre‐programmed skills take en-
gineers a long time to develop, and they may not be compatible
with different task environments, as such demand is beyond
their capacity [11]. Once the developed system starts to be
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used, the robot's performance will not be enhanced any further,
and any improvement will depend entirely on the engineer's
knowledge of a specific task. In order to solve these problems,
modularised skills, improved adaptation ability, and higher
robot cognitive level are necessary. Moreover, in an era where
robots are expected to perform a variety of personalised tasks,
developing a useful skill transfer framework which is capable of
endowing a robot with human‐like motor and reasoning skills is
their destiny.

The term learning from demonstration (LfD) or pro-
gramming by demonstration (PbD) is sometimes also referred
to as imitation learning or apprenticeship learning. Whatever
it is called, it is an efficacious technique for skill transferring
and reducing the complexity of search spaces for a robot
trying to learn a skill [12]. Research into LfD started about
40 years ago; as its name suggests, LfD allows robots to learn
a skill by analysing the skill performed by the demonstrator
and then imitating the skill. This transforms the tiresome and
complicated (even sometimes unmanageable) skill pre‐
programming process into a demonstrating (i.e. teaching)
process, which can be implemented by laymen (i.e. people
who do not have programming skills), and resembles the
method of human–human interaction and social learning. LfD
could be categorised as a supervised learning approach,
assuming the experts' demonstrations are (sub‐)optimal. The
observed demonstrations direct the robot policy search to a
local optimal area where refinement could be further applied.

Overall, these kinds of technologies that replace traditional
programming have a broad range of applications; for example,
remote underwater vehicle operation [13], reusable surgical
skills [14], autonomous services robotics [15] and physical
collaborative tasks [16], etc. Most importantly, LfD is ideal for
highly customised/personalised tasks, as it reduces the time
and labour cost of re‐programming. A typical LfD human–
robot skill transfer method involves three main steps, which
are (1) demonstration, (2) modelling and learning, and (3) skill
extraction and reproduction. Herein readers are guided in re-
capping the different outcomes, in recent years, that have made
breakthroughs in the above three steps.

In [17], four primary issues were summarised that deal with
imitation learning/LfD problems. Two issues raised, ‘what to
imitate' and ‘how to imitate', are generally of interest to ro-
botics researchers, and many solutions have been proposed
and tested. When imitators learn a skill, a good learner knows
clearly on a high‐level what they want to imitate. The world we
observe is composed of countless amounts of low‐level and
high‐level information. Only a small portion of this informa-
tion is essential in imitation. For example, when imitating table‐
wiping skills, agents need to pay attention to hand position and
press strength, while speed information is usually irrelevant.
The fundamental reason for a human being able to continu-
ously improve his/her skill performance, based on observing
his/her own skill completion, is the understanding of perfor-
mance and the corresponding systematic evaluation metric.
Then, the question of 'how to imitate' explores how to maxi-
mise the metric. This implies that imitators need to have suf-
ficient high‐level cognitive abilities to solve these problems.

The term ‘cognition’ refers to all psychological skills that
can help learning, understanding, reasoning, and perception.
Decision‐making is a higher level cognitive process, and is also
a consideration that focused on here. Artificial intelligence like
machine learning (ML), deep learning (DL) and other data‐
driven technologies can achieve reasoning, planning, learning,
decision‐making and other functions to a certain extent [18].
After Gibson's theory of affordance [19], research on afford-
ance learning also began. Affordance explained the mapping
between objects, their affordable behaviours, and the effects of
behaviours, enabling skill transfer and learning from a unique
viewpoint [20]. Robots in the new era require more personal-
ised skills and a more user‐friendly programming interface. So
far, most of the research into LfD has been limited to specific
scenarios and skills. Due to the inadequate cognitive/decision‐
making capabilities of robots, most applications are not suit-
able for frequently changing task scenarios because they cannot
reduce the load of reprogramming well (i.e. reprogramming is
needed when the task is changed). In some current application
scenarios, robots need to possess a great variety of skills and be
able to evolve into novel ones by reorganising existing skills,
rather than acquiring them from the human teacher each time.
In addition to the realisation of learning individual (motor)
skills, the text herein will also motivate readers to review and
understand some research into cognitive skill transfer and LfD
dealing with challenges in complex task scenarios, high‐level
decision‐making and action‐sequence planning.

A detailed overview of the critical techniques, advance-
ments and problems, and developmental trends of robot–
human skill transfer (i.e. in particular, LfD) in both
high‐level and low‐level perspectives is provided. Section 3
introduces the works in LfD to realise low‐level individual
(motor) skill. Section 4 focuses on the high‐level aspects which
introduce cognition/decision, complex compound skills. Sec-
tion 5 extracts the current works and shortcomings, putting
forward constructive suggestions for future developments.
Finally, Section 6 provides a summary.

2 | PRELIMINARIES

As one of the most comprehensive topics in robotics, human–
robot skill transfer involves a lots of work of which some is
solved and some remains unsolved. Figure 1 depicts the main
issues that have been long attracting researchers' attention.
This can be simplified by understanding the big picture using a
few perspectives, as shown below.

� Demonstration: When tackling skill transfer problems, the
first thing that needs to be specified is the formation of a
skill. Depending on the modal choice, different sensors may
be applied as parts of the demonstration interface. Through
three main kinds of interface, the expert/failure demon-
strations are captured. Each interface has its pros and cons,
which are discussed later.

� Learning low‐level motor primitives: Temporal alignment,
motion trajectory segmentation, and recognition may be the
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prerequisites for learning individual sub‐tasks, as people
usually demonstrate a complex sequence of skill primitives.
Two main types of primitive representation approaches can
now be found: the dynamical system‐based approach and the
probabilistic approach. Each model usually has its own
dedicated learning techniques that have been proved to work
effectively. Sometimes, reinforcement learning can be addi-
tive to model learning, as it refines a skill that could then be
performed by a robot, which will have a higher success rate.

� High‐level symbolic reasoning: Being able to perform high‐
level reasoning is an improvement to robot cognition. From
that, robots automatically recognise skill primitives and give
them labels. The task goal is usually predefined as it reduces
the system complexity. However, modern industrial robots
are expected to realise the task goal by themselves so that
conventional robot programming can truly be replaced with
advanced autonomous methods. Some techniques for
primitives re‐sequencing and motion planning already exist;
however, learning that task planning skill with object
affordance seems to be more intuitive since it allows to plan
from high level to low level.

� Skill reproduction and generalisation: Techniques
employed for regenerating skills can be different, depending
on the model used in the primitive learning stage. Percep-
tion forms a crucial role when generalisation is necessary.
Feedback terms may be added to the motion planning
module in order to achieve online adaptation. It is certainly
the case that active perception would improve perception
accuracy; however, computational modelling of active
perception skill is only in its preliminary research stage.

� Incremental learning: To further refine a skill performance,
correction is a means to provide additional information for
robots to learn a user preference based on inverse

reinforcement learning. Allowing emulation is an important
user preference that differs from imitation in being mainly
motion‐driven or effect‐driven. Again, affordance would
definitely facilitate the emulation process, which should
make researchers pay attention.

3 | LOW‐LEVEL MOTOR SKILL
FORMULATION

3.1 | Overview of LfD

LfD is a skill‐learning process for a robot that does not require
people to do hands‐on hard‐coding programming during
learning. Instead, it provides other interfaces that are friendly to
users for demonstrating the skill, which makes the interaction
more intuitive, as shown in Figure 2. Performing demonstra-
tions requires an interface (i.e. a medium); there are three main
categories of interfaces for demonstrating a skill. Methods such
as kinesthetic teaching and observational learning are commonly
used as they are fundamental to routine human social learning.
Methods like teleoperation, which are not applicable in skill
transfer between humans, efficiently work between humans and
robots. It is worth mentioning that somemethods, like trial‐and‐
error learning [21], are not in the scope of ‘demonstrating’, and
hence cannot be classified as LfD.

Kinesthetic teaching is an approach in which the teacher
directly interacts with the robot via physical contact and ma-
nipulates each degree of freedom to complete a task—for
example, holding a robot arm to open the door [22]. This
kind of direct contact interaction retains the teacher's haptic
perception while demonstrating, but the performance level is

F I GURE 1 Overview of skill transfer problems. AL‐DMP, Arc‐length DMP; BP‐AR‐HMM, Beta‐process Autoregressive Hidden Markov Model; CPDMP,
Compliant Parametric DMP; DMP, Dynamic movement primitive; DTW, Dynamic Time Warping; E‐M, Expectation‐maximisation; GMM, Gaussian mixture
model; GMR, Gaussian mixture regression; GTW, Generalised Time Warping; H‐DBN, Hierarchical Dynamic Bayesian Network; HHMM, Hierarchical Hidden
Markov Model; HMM, Hidden Markov model; HSMM, Hidden semi‐Markov model; IRL, Inverse reinforcement learning; LWPR, Locally weighted projection
regression; LWR, Locally weighted regression; MoMP, Mixture of Movement Primitive; PCA, Principal component analysis; SADMP, Style Adaptive DMP;
TP‐GMM, Task‐parameterised GMM
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hugely dependent on the teacher's operation level. In other
words, for a remarkably complex behaviour (such as manipu-
lating a humanoid robotic arm with redundancy [23]), it is
difficult for the teacher to take into account the coordinated
movement of all degrees of freedom, which reduces the
expertise level of the skill performance to a certain extent.
Demonstrators often just hold the end‐effector of the
manipulator to roam in its workspace and feel his/her motion
is under constraint, which clearly shows that its drawback is its
inadequacy for a highly dynamic task.

The observational learning approach primarily exploits
computer vision systems or systems involving other modalities,
which map the pose of humans to robots by estimating human
joint states and calculating them according to the corre-
sponding kinematic algorithms. In this process, a binocular
camera with a depth sensor [24, 25] and markers [26] can be
used. Other motion‐recording systems like gyroscopes and
accelerometers can also be used as a substitute for vision.
Through observational learning, the pose of the entire person's
arm will be considered, not just the end‐effector (i.e. hands),
which maximises the dexterity of robot skills. However, the
drawback of this method is that no interactive force feedback
can be obtained.

The teleoperation method requires the teacher to
control the leader device (e.g. manipulator/joystick/exoskel-
eton/haptic device, etc.) [27], and consequently control the
movement of the follower mechanism. Compared to kines-
thetic teaching, this method has to use kinematics to map
the configuration at both ends. Moreover, not all tele-
operated systems are equipped with a force/tactile feedback
system [28], so the teacher loses haptic perception while
manipulating, which will degrade the performance of the
skill; even if the system is based on a haptic device, the
time‐delay intervention will also lead to resonating, shaking
and other problems [29].

The correspondence problem [30] describes the effect of
the discrepancies in the embodiment (i.e. nature and working
mechanism) of humans and robots on accomplishing the same
skill. Different agents utilise different perceptual systems and
physical mechanisms to interact with the environment or the
other agents, which makes the sensory capabilities and motor
capabilities among them different. From a technical aspect, for
example, a robot might use depth‐imaging sensors [31] as its
visual sensor, which do not capture as much detail as human
eyes do; and a 3 degree‐of‐freedom (DoF) robot may not be

suitable for a 6 DoF skill, which is easy to achieve by humans.
To successfully evaluate a learnt skill, it is necessary to make
sure both that agents share the same, or at least a similar, visual
and motor capability [32]. However, the requirements of those
capabilities for learning skills are task‐oriented. As benefiting
from contacting robot, kinesthetic teaching can simplify the
correspondence problem as humans adapt their skill based on
their own experience and cognitive skill.

3.2 | What is a skill?

The composition of skills mainly involves the problem of
modalities or ‘“what to imitate'. The development of robotic
skills usually progresses with demand. Robots were initially
used in industrial production, and the task goal was principally
to control the pose (i.e. position and orientation) of the robot.
After that, pure position control cannot meet the force‐related
and contact‐rich task scenarios, such as mopping and polishing.
Researchers then began to consider encoding force informa-
tion into the skill [33]. Later, some used bioelectric signals such
as surface electromyography (sEMG) to match the human
muscle activation level to the robot impedance, thereby
enhancing the adaptability of the robot [27, 34].

In LfD, the motor skills of robots are usually subdivided into
various skill primitives. When performing complex tasks, the
robot needs to find the most suitable primitive among the
existing skill library and arrange them in the correct order. In
addition, there are many uncertain factors in the environment,
and it is particularly necessary to perceive and select appropriate
sensory information, which greatly reflects the robot's symbolic
reasoning ability. Does the robot need to perceive and analyse all
modalities in this high‐level decision‐making process? If not,
how can humans quickly extract the key information needed to
complete the task from the sensory information? Can such
cognitive skills be transferred to robots technically? Problems
like these have not been able to be solved well so far.

Lopes et al. [35] proposed a computational model of social
learning. The article points out the essential difference between
imitation and emulation. They suggested using the ‘“strategy
weighting triangle' to explain the ‘“what to imitate' problem. In
their theory, imitation refers to fully understanding and
copying the demonstrator's behaviour and intentions, while
emulation refers to the understanding of the effect of the
demonstrator's behaviour and then achieving this effect with

F I GURE 2 Human–robot skill transfer [10]:
(a) learning via teleoperation; (b) kinesthetic teaching
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action more open (i.e. observed actions or actions that were
never‐before‐seen). An example of emulation can be described
as this, the demonstrator grabs the object away from the
desktop and put it down to another position, while the robot
(i.e. emulator) realises the goal is to change the location of the
object, so it pushes the object to the goal position instead of
grasping it. The following baseline preference is to minimise
the energy consumed by the behaviour. Through the trading‐
off between the three, the learnt skills may be better evaluated.

Figure 3 is a visualisation of the theory of Lopes et al. Non‐
social behaviour performed using a passive role intends to
minimise the energy consumption. Imitation and emulation as
two common imitative behaviours are the motion/action
copier and goal/final effect copier, respectively. Points located
in the middle of the triangle then indicate the nature of the
imitator. From the above points of view, skills are comprised of
single low‐level motor primitives and high‐level cognition/
symbolic reasoning, although it is very challenging to model
and integrate high‐level reasoning into robot skills.

3.3 | Represent and learn individual motor
skills

In order to facilitate the computational modelling and reuse
ability, motor skills are often modelled into various primitives
at a trajectory level. The article [36] summarises and introduces
the algorithms for implementing skills learning at the trajectory
level. A survey [37] broadly summarised the different tech-
nologies (including LfD and other techniques) that will be used
in robot skill transfer learning and list the applications in
different scenarios. Recently, some new review articles on LfD
conclude the advances based on multiple categorising methods
[38] and applications in the robotic assembly domain [39].
Meanwhile, readers can also obtain information from some
classic LfD review articles, such as [40–42].

A simple recording and replay software will satisfy the
behavioural clone, which is a brute‐forcemethod. However, skill
synthesis and encoding allow generalisation in different situa-
tions. This kind of skill modelling technique seeks an abstracted
and generic expression of the skill, which usually reduces the
total number of feature points of the skill and generalises/
modifies it at an abstraction layer. Generally speaking, skills can
be described in two broad ways, namely, dynamic system‐based
approaches and probabilistic approaches.

3.3.1 | Dynamic system (DS)‐based approaches

DS‐based methods generally seek to encode the dynamic
attractor landscape in the state space (i.e. typically position and
velocity) of the demonstrations.

Dynamic movement primitive (DMP) is one of the most
popular techniques to model skills at the trajectory level, which
was first officially proposed in 2002 [43]. It was then updated
and described in detail in 2013 [44]. The essence of DMPs is a
second‐order non‐linear dynamic system, which contains a

spring and damper. The original DMPs (e.g. non‐periodic
ones) are presented with the following set of differential
equations in a first‐order notation:

τ _v¼ αvðβvðg − xÞ − vÞ þ f ; ð1Þ

τ _x¼ v ð2Þ

Since DMPs are orienting to the trajectory, thus we have
the trajectory x and its rate of change v. g is the set point of the
system and τ is a time constant which relates to the movement
duration. αv and βv are positive constants that relate to the
spring constant and the damping coefficient of the second‐
order system. f is a non‐linear forcing term that is driven by
a state parameter s.

f ðsÞ ¼
P

iωiψ iðsÞsP
iψ iðsÞ

ðg − x0Þ; ð3Þ

τ _s¼ −αs ð4Þ

where i is the index of basis, x0 is the initial position of the
trajectory and α is a constant. The state parameter s as stated in
Equation (4), which monotonously reduces to zero as time
passes, forms an indicator of the task completion. In other
words, s → 0 as time t → ∞, which makes the forcing term f(s)
go to zero when the task is about to complete. While the
forcing term is zero, Equations (1) and (2) become a standard
spring‐damper system that always leads x towards g. The
personalised pattern of a trajectory is encoded in the forcing
terms as stated in Equation (3) by using a set of weighted
Gaussian kernel basis functions ψ. The learnt pattern is stored

F I GURE 3 A computational model describing the relationship
between imitation and emulation in social learning [35]
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as the weights ω. The scaling term g − x0 helps to adapt the
skill to a new initial position, while maintaining the global
shape of the trajectory. The high popularity of DMPs confirms
some of their advantages; the four main features are discussed
below.

� DMPs can encode not only discrete (non‐periodic) skills,
but also rhythmic (periodic) skills, which is implemented by
replacing the system with a limit cycle dynamic system.
Nakanishi et al. [45] successfully realised biped walking
locomotion of a humanoid robot with rhythmic DMPs.
However, the walking trajectory in the experiment was
generated by a state machine controller, and the walking
demonstration of a human would cause failure. This well
reflects that the physical or sensory discrepancy between
imitator and demonstrator will greatly affect the success rate
of skill transfer.

� DMPs can be easily extended to multi‐dimensional sys-
tems by sharing the same canonical system (Equation 4)
and using different transformation systems for each tra-
jectory. In [46], DMPs are separately modelled for each
joint of the manipulator by establishing multiple non‐
linear functions and transformation systems. In [47],
motion trajectory and force trajectory are encoded into a
single skill.

� Inherent generalisability is another advantage of DMPs,
which can be implemented straight forwardly. The task
performance duration can be adjusted by changing the
temporal scaling factor τ to get a more rapid or slow state
change, and the start/goal position can also be adaptable
while maintaining the overall shape that is stored in the
learnt weights ω [48].

� Because of the spring‐damper system, DMPs are very stable
and robust. They are also very resistant to small external
disturbances. For large constraints like someone obstructing
the robot arm while it is moving, a feedback term can be
added into the system to adjust the behaviour online [49].

Despite DMPs showing many kinds of advantages in skill
learning, they also have certain disadvantages [44]. The system
cannot be used when the start and goal positions are too close.
Moreover, there is a mirror effect when generalising the
movement to a specific goal. To this end, [50] proposed a
modified DMP formulation, as shown in Equation (5). This
equation is then a replacement of Equation (1).

τ _v¼ Kðg − xÞ − Dv − Kðg − x0Þsþ Kf ðsÞ; ð5Þ

K and D are the stiffness coefficient and damping coeffi-
cient, respectively, which are somehow equivalent to αv and βv.
The left of Figure 4 intuitively describes the DMPs that operate
based on a canonical system and a virtual spring‐damper
attached to the start and goal. The canonical system, as a vir-
tual timer, controls the phase s according to the time t, and the
virtual spring‐damper driven by s produces a virtual force at

each time and attracts the system state space values to the
equilibrium.

Other works that approach a better performance in using
DMPs are as described below. By adding an external signal to
rhythmic DMPs and introducing a set of additional dynamic
systems for the temporal scaling factor, a smoothly changed
and speed‐adjustable rhythmic skill with synchronisation is
obtained [52]. Kober et al. [53] extend the DMPs by involving
external variables to each DoF, so that the perceptually coupled
motor primitives are obtained.

Based on the insight that humans utilise a small number of
motor primitives to generalise a large number of motions ac-
cording to different environment stimuli (perceptual infor-
mation or task parameters), gating networks can be used to
further extend the generalisability of the skill. A gating
network‐based model Mixture of Movement Primitives
(MoMP) [54] is proposed, which outputs a weighted sum of
the old motor primitives to form a new movement. In MoMP,
the gating network is triggered by an augmented state, which is
associated with meta‐parameters (i.e. the hitting position, ve-
locity and orientation of the racket in a table tennis task). In
order to learn the meta‐parameter in that table tennis hitting
task, two methods can be used, which are (1) analytically
predict and convert to joint space using inverse kinematics; (2)
episodic reinforcement learning approach (Cost‐regularised
Kernel Regression (CrKR) [55]). Summing up MP candidates
some time may not be able to deliver a good policy (and may
be even worse than a single primitive) [56]. The weights (i.e. the
responsibility of a motor primitive to produce a new move-
ment) for each motor primitive can be updated through rein-
forcement learning methods such as the method inspired by
Relative Entropy Policy Search (REPS) [57].

The authors of [58, 59] introduce the idea of Query q to
DMPs, which was inspired by MoMP to extend the general-
isability. q→ [ω, τ, g], is the key concept, and finds the mapping
between queries (i.e. goal of primitives) and the learnt param-
eters. Then, for any given novel query q, the robot can generate a
motion plan that is more human‐like. The work [60] proposed
DMPs that further refine the query system, encoding each style
directly into the attractor landscapes (i.e. the forcing term f). The
authors of [61] point out that the importance of the movement
styles which can be utilised to accomplish specific tasks like
shooting ball in Small Size eague and table tennis. ‘Style Adap-
tive DMPs’ (SADMPs) are presented that merge the weights of
different styles to adapt to the changes in goal position.

Inspired by some findings in biology, Rückert el al. [62]
provide a parameterised version of DMPs called ‘DMPSyner-
gies’. This technique parameterises the basis function in the
forcing term, so that, in multi‐task learning, the synergies
knowledge in each task can be shared and speed up the
learning process. Very recently, another parameterised version
of DMPs was proposed in [63], which is the Compliant
Parametric DMPs (CPDMPs). This uses the Parametric Hid-
den Markov Model (PHMM) to encode the forcing term of the
modified DMPs so that f(s) becomes f(θm, s) where θm can
be any high‐dimensional variable that affects the shape of the
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trajectory. For example, θm can be the position of an obstacle.
After training of the PHMM parameters based on multiple
demonstrations and Expectation Maximisation algorithm [64],
the system is then ready to generate a trajectory that avoids
obstacles. In addition, a force‐feedback coupling term is
introduced into the transformation system so that the robot is
able to handle the external forces.

DMP Plus [65] has been designed to increase the trajectory
reproduction precision by adding bias to each Gaussian basis
kernel ψi and truncating the kernel. In [66], the exponentially
decaying canonical system Equation (4) is replaced by a linearly
decayed one. The system shows comparable results and
reduced the user's time expansion while teaching the robot.
The authors of [67] developed a new DMPs representation
called arc‐length DMPs (AL‐DMPs) that decouples the tem-
poral speed and spatial shape of motion trajectories. This was
done by representing the DMPs differential equation using the
derivatives of arc‐length rather than time. It is worth pointing
out that AL‐DMPs well solve the temporal scaling and time
alignment problems. Gams et al. [68] studied the DMPs in a
bimanual scenario where two arms are tightly coupled. They
modified the DMPs to be cooperative DMPs by adding
complementary coupling terms to each transformation system.

Stable estimator of dynamic systems (SEDS) is com-
plementary to DMPs [69, 70]. A SEDS model uses Gaussian
mixture model (GMM) to encode the attractor landscape as the
joint probability of position and velocity. The learning outcome
becomes an optimisation problem for finding GMM parameter
values that minimise the trajectory error concerning all the
demonstrations, such that the system is globally asymptotically
stable. Similar to DMPs, high stability always allows converging
to the goal. While DMPs allow for a single demonstration
encoding, a SEDS is suitable for multiple demonstrations
learning. A drawback of SEDS is that it assumes the dynamic
system is time‐invariant, which is not as versatile as DMPs,
where the system dynamic could change with time as the
forcing term changes. Another drawback is that the fixed
attractor normally does not like to make the states vector (i.e.
position and velocity) go away from the attractor, which may
distort the overall shape of the motion. To this end, the
Control Lyapunov Function‐based dynamic movements

(CLFDM) approach was designed [71], which is also guaran-
teed to be global asymptotically stable. The difference between
the two models is that the CLFDM uses regression techniques
like Gaussian mixture regression (GMR) to model an unstable
motion according to demonstrations; however, it learns a
Lyapunov function to control the stability at runtime during
task reproduction/generalisation by solving the problem of
constrained convex optimisation.

3.3.2 | Probabilistic approaches

Probabilistic approaches seek the help of probability theory to
encode a spatial or temporal pattern using joint probability
density, while a method called probabilistic movement primi-
tives (ProMP) can be slightly different, and is introduced
below.

The GMM is one of the most popular models for encoding
a trajectory. The term GMM is also referred to as mixture of
Gaussian (MoG), and was first proposed to describe multi‐
modal probability distributions [73], which is then utilised to
encode the complex shape of a trajectory of low or high di-
mensions [74]. The idea of a GMM is as shown as below:

pðξjÞ ¼
PK

k¼1
πkNðξj; μk ;

P
kÞ; ð6Þ

1 ¼
PK

k¼1
πk; ð7Þ

where p(ξj) is a probability density function of a point j on the
trajectory ξj; there would be K number of Gaussian compo-
nents in total, πk is the prior knowledge of the k‐th Gaussian.
N denotes the symbol of a Gaussian distribution. μk and ∑k
are the mean and covariance of the k‐th Gaussian, respectively.
Put simply, a GMM encodes the trajectory as the K‐modal
probability map that shows what spatial position a point is
most likely occur at in the trajectory space. An example of
GMM encoding uses single demonstration one‐shot learning,

F I GURE 4 Dynamic movement primitives in
conjunction with Gaussian mixture model [51]
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that can be seen in the left of Figure 5, where a 3D trajectory is
encoded into a four‐modal Gaussian map. The uniqueness of a
DMP is the dynamic equation‐based representation, which
means that the frequently used forcing term of DMPs
composed of weighted Gaussian kernel can be replaced by a
GMM [75]. As shown in the right of Figure 4, GMM models
the joint probability of forcing terms f and phase s, which is
more compact when the trajectories have more fluctuations.

Hidden Markov model (HMM) and hidden semi‐
Markov model (HSMM) are both alternatives to GMM
[76, 77]. The key difference between an HMM and GMM is
that the HMM considers the transition probability between
each states (i.e. each Gaussian modal). One can think of an
HMM model as a GMM with latent variables (not directly
observable) changing over time. An HMM encodes the state
duration implicitly in the probability of no state transition,
which may be inaccurate, while an HSMM explicitly defines the
state duration using a log‐normal distribution (LN ) with mean
μD

i and covariance
PD

i , as shown in Equation (10). The pa-
rameters for modelling an HSMM (ΘHSMM) based on K state
components can be seen in the Equations (8) and (9).

ΘHMM ¼ ffai;jg
K
j¼1;Πi; μi;

P
ig

K

i¼1
; ð8Þ

ΘHSMM ¼ ffai;jg
K
j¼1;j≠i;Πi; μi;

P
i; μ

D
i ;
PD

i g
K

i¼1
; ð9Þ

pðDiÞ
HSMM

¼ LN ðμD
i ;
PD

i Þ ð10Þ

Di is the duration of the i‐th state, ai,j is the state transition
probability between state i and j, and Πi is the prior of the state
i, indicating that the probability of the initial state is i. The
parameters of an HMM (ΘHMM) would be similar to the
HSMM, where duration terms are removed and j can be equal
to i. Figure 6 visualises an example of encoding using HSMM,
however an HMM example will not be shown here since
HSMM has a similar structure but without state duration
probability. It can be seen easily from the figure that six
Gaussian components are used for encoding, where state
transitions (i.e. arrows between states) are enabled with tran-
sition probabilities. Close to each state, a state duration
probability density function is calculated, shown as small bell‐
shaped functions. Based on all of the above, state sequence
probabilities, which describe the conditional probability of
seeing a point in a certain state given the time variable, are
plotted on the timeline.

Trajectory‐based GMM is a method that explores not
only the static feature but also the dynamic features (i.e. uti-
lising the relationship between the trajectory and its derivatives,
e.g., position, velocity, acceleration and jerk) [80]. As shown in
Equation (11), ξt can be calculated through Euler approxima-
tion using spatial position (i.e. it can be any dimensions) of
three executive time steps, where Φt is the matrix that relates
to the Euler approximation. By stacking data of all the time

steps a generic function (Equation 12) can be obtained, where
Φ is a large sparse matrix.

ξt ¼

x t
_x t
€x t

2

4

3

5¼Φt

x t
x tþ1
x tþ2

2

4

3

5; ð11Þ

ξ ¼ Φx by stacking all the t f rom 1 to T ð12Þ

Suppose multiple trajectories are obtained, information can
be encoded either in a GMM, HMM or HSMM. Taking GMM,
for example, a likelihood of trajectory ξ given state s can be
computed where s is a sequence of indicators (i.e. one for each
time step) that denotes which Gaussian component contrib-
utes to each time step, as shown in Equation (13).

pðξ|sÞ ¼∏
T

t¼1
Nðξt|μst;

X

st

Þ; ð13Þ

where μst and
P

st are the mean and covariance of the state (i.e.
which Gaussian component) st at time step t. The maximum
likelihood then can be performed with the help of Cholesky
and QR decompositions [81] to solve the motion generation
problem. As shown in Figure 7, the trajectory‐GMM works
well in a four‐demonstration, 18 Gaussian components situa-
tion, which synthesises the trajectories to form a complex one
that contains a diversion in the middle, allowing to go in either
direction. This method does not require time/spatial aligned
demonstrations.

Gaussian process regression (GPR) is a generic method
that computes with brute force the high‐dimensional trajectory
distribution [82]. It finds the correlation between each degree‐
of‐freedom and stores the trajectory distribution information
into a high‐dimensional positive definite covariance matrix.
The trajectories can be regenerated or resampled by condi-
tioning. Figure 8 illustrates the process of using a GPR method
in modelling a 1D trajectory. This method results in a large
covariance matrix and means, which may be easy to use.
However, its performance depends entirely on the demon-
stration quality and it is prone to spatial/temporal variations. A
tremendous amount of demonstrations may be needed to
synthesise and infer a smooth trajectory.

Task‐parameterised solutions are well summarised in
[83], which clearly shows three types of solutions, namely,
GPR with Trajectory Models database; Multi‐Streams
approach; and Parametric Gaussian Mixture Model (PGMM/
PHMM). Generally speaking, the task‐parameterised model
includes information of task parameters (i.e. offset positions
and transformations) as query points for each demonstration
data point. Suppose the task parameter in each demonstration
is fixed, the issue can be treated as a GPR problem [82]
solving with techniques like GMM and Gaussian mixture
regression. This allows the motion to be inferred based on
novel task query in real time; however, GPR cannot handle
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query points that are too far from the demonstrated ones. The
Multi‐Streams approach utilises a different strategy that ob-
serves motion at multiple different frames, and trains each
model separately, which, however, may raise a computational
limitation issue [84]. The parametric hidden Markov model
(PHMM) takes all the demonstrated motion and query into a
single model, while PGMM holds the same strategy but does
not take state transition into account [85]. PGMM/PHMM
can be problematic sometimes as the covariances are not
parameterisable (i.e. constants) and lead to a local minimum
solution in Expectation‐Maximization (E‐M) learning. An
improved version is presented in [83] based on PHMM, which
makes a fusion of the main features of the above three models.
Task parameterisation can be used in conjunction with
trajectory‐GMM model, where the motion derivatives are
introduced.

Probabilistic movement primitives (ProMP) [86] uses
a similar idea as DMPs to add an artificial clock that maps
time to a phase variable with an arbitrary non‐linear func-
tion. Locally weighted regression can also be applied to learn
a set of basis function weights. The uniqueness of a ProMP
model is that it further encodes the trajectory using GPR in
the weighting space (to find a distribution of the weights),
where abstraction is carried out twice to get a compactly
represented model, which yields a number of fruitful prop-
erties to use, and it is easy to perform temporal/spatial
generalisation and online modifications. It estimates a tra-
jectory shape using a weighted sum of basis function, as
xt = Φtω + ϵx, where Φt is a matrix of time‐variant basis
function and ω is the weight that encodes the spatial in-
formation; ϵx is the Gaussian noise which belongs to a zero
mean covariance matrix ∑x.

pðx t|ωÞ ¼ N ðx t|Φtω;
P

xÞ; ð14Þ

pðω|ΘωÞ ¼ N ðω|μω;
P

ωÞ ð15Þ

Once the weights are learnt, a probability map of the tra-
jectory can be obtained as in Equation (14). To learn the
weightings from multiple demonstrated trajectories, the
parameter Θω = {μω, ∑ω} of a Gaussian distribution of
the weights for all demonstrations can be learnt. Then Equa-
tion (15) can be used to derive the weights. An example of
application of ProMP can be seen in [87] for table tennis, where
the authors also studied the probability distribution in task space
and robot joint space, so that the task space trajectory can be
obtained from a ProMPmodel trained in the joint space. ProMP
model has a flexible generalisation ability through probability
conditioning, and it can also be used for action recognition,
which is not so easily accomplished using DMPs.

3.4 | Learning techniques and reproduction
of the skill

3.4.1 | Locally weighted regression

Locally weighted regression (LWR) [88] is a super‐fast algo-
rithm combining the simplicity of linear least squares regres-
sion and the flexibility of non‐linear regression, which was
originally proposed in [89]. It allows doing one‐shot learning
with the idea of doing linear regression locally on a non‐linear
problem. An extended version called locally weighted projec-
tion regression (LWPR) was introduced in [90] to reduce the

F I GURE 5 (left) Example of Gaussian mixture model motion encoding with five Gaussian components; (right) Gaussian mixture regression trajectory
generation and its covariance [72]
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redundant complexity using a partial least‐square. LWR is
commonly used for learning of DMPs, and some recently
published examples can be seen in [91, 92] for target reaching
and pouring with obstacle avoidance tasks, respectively.

3.4.2 | Expectation‐maximisation

E‐M is an algorithm for learning the parameters of GMM‐ and
HMM‐basedmodels [93]. It is an iterative algorithm that involves

two steps, E‐step andM‐step.More intuitively, the idea of E‐M is
to update the lower bound function of the objective function,
then the lower bound function is maximised, which implicitly
(indirectly) maximises the overall object function. Note that, the
E‐M algorithm may not work efficiently when the GMM or
HMM contains too many components [94], which increases the
dimensionality in solving E‐M learning and significantly adding
the computational complexity to the system. A variant of E‐M
called the Baum‐Welch algorithm can be seen in [64], and an
example of using it to train an HMM can be seen in [10].

F I GURE 6 (left) Example of hidden semi‐Markov model motion encoding with six Gaussian components; (right) state transition and state duration
probability; (bottom) timeline of state sequence probabilities [78, 79]

F I GURE 7 (left) Four demonstrated
trajectories; (middle) Gaussian mixture model
(GMM) encoding of the trajectories with 18
Gaussian components; (right) trajectory inference of
the trajectory‐based GMM and its covariance with
two possible paths in the middle [80]
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3.4.3 | Gaussian mixture regression

GMR is a commonly used technique that is frequently used in
combined with GMM [95], HMM [10] and DMPs [51, 96, 97].
An excellent review on different regression algorithms can be
found in [98]. Comparing GMR with LWR or LWPR, it
computes the regression function from the (multivariant) joint
density function. For a robot trajectory, the temporal value
often acts as the model input and the other data as the output
values, and by finding the conditional probability map of tra-
jectory given time, Pðxtrajectory|tÞ, the infinitely differentiable
(non‐discontinuous) spatial trajectory can be obtained [99].
Another interesting example usage of GMR can be found in
[70], which uses a GMM to encode Pðxtrajectory; _xtrajectoryÞ and
derive velocity at different spatial positions with GMR. Time‐
dependent GMR [100] is another variant usage that has been
proven to be useful; it takes time, position and velocity
together as variables for computing the joint probability den-
sity, and then estimates Pðxtrajectory; _xtrajectory|tÞ. In the right of
Figure 5, the computed trajectory means and covariances can
be visualised. In [101], not only the motion dynamics is
encoded, the joint probabilities between position and force,
and joint stiffness are also encoded using HSMM, then GMR
is used to generate motion with the desired contact force, joint
stiffness and velocity at each position.

3.4.4 | Reinforcement learning

The idea of reinforcement learning in robot policy learning
is to find the cost and reward function for a robot to
optimise its action, hence obtaining better outcomes. Con-
ventional trial‐and‐error [21] requires robots to search in a
very large action space, which means the training takes a
very long time and is not friendly to a real robot. With a
combination of LfD, the action space would be significantly
confined to a local optima area, which reduces the training
time. In other words, the success rate of reproducing the

learnt skills after one‐shot learning may not be assured a
high value with known and unknown reasons, which re-
minds us of the effectiveness of reinforcement learning (RL)
and makes it a non‐replaceable tool. In a ball‐in‐the‐cup
skill transfer study [102], the manipulator cannot succeed
in reproducing the skill at all by just using a single
demonstration because some spikes in acceleration cannot
be reproduced correctly by the motor.

Inverse reinforcement learning (IRL) [103] has been pro-
posed to extract reward functions based on perceiving actions
and environment, as shown in Figure 9. In some scenarios,
such as in minimally invasive surgery (MIS), expert surgeons
are continuously optimising their actions through evaluation.
However, even the surgeons themselves cannot fully explain
what their evaluating policy is. This, again, reminds us of using
IRL. Recently, Li et al. [104] presented their inspiring work on
implementing IRL in robotic surgery procedures to derive a
policy for surgery skill evaluation.

Most works in robot reinforcement learning are time‐
consuming and based on the real system. Some studies have
tried to train a robot in a physical simulator, which may
significantly reduce the time spent on the real system as it
searches in a submanifold of space of policy and high‐
dimensional sensory input. However, it is quite common that
the robot produces catastrophic failures after transfer to real
scenarios, and that is why people often use model‐free RL in
the real system. Domain Randomisation (DR) is a useful
technique that allows to fill in the reality gap (i.e. mismatch
between real world and simulations) by randomising the
simulation scenes, which embed the uncertainty of the world
into the learnt parameters to form a more robust policy. Ex-
amples can be seen in [105, 106], which utilise DR to train for a
balancing task and ball‐in‐a‐cup task. Peng et al. [107] also
developed a dynamic randomisation technique to randomise
the unknown dynamics property of objects to link a Sim‐Real.

In summary, DS‐based methods are often used for direct
learning control because of the characteristics of dynamic
equations. Users can access and improve the robot system's

F I GURE 8 A 1D example of Gaussian process regression [80]
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stability and complete the task stably by online regulation.
However, the method based on probability theory is more
flexible and suitable for the target/via‐point generalisation. It
assumes that the user has an effective robot controller.
Therefore, this method is usually used for task space trajectory
planning rather than directly learning motor control variables.
Nevertheless, this also facilitates the robot task planning in the
task space at a high level based on cognitive skills.

3.5 | Temporal alignment

As for multiple demonstrations and complex skill demon-
strations, demonstration differences are commonly seen in
both spatial and temporal values. Demonstrators may not be
able to or not necessarily produce temporal and spatial aligned
motions. Spatial difference is totally dependent on the
demonstrator; however, for temporal difference, there are
some models that can get rid of these issues; for example, the
AL‐DMP and trajectory‐based GMM as introduced in the
previous sections. Trajectory‐based methods solve this issue by
pushing the model complexity to a relatively high level, which
is not always ideal. As other methods do not provide a built‐in
mechanism for temporal alignment, commonly used tech-
niques are introduced in this section.

Dynamic time warping (DTW) was first proposed in [108],
and tackles speech recognition problems, as speech and robot
motion share a similar trajectory structure using time series,
and DTW is also well applied in the robotics domain. In [109],
the authors use DTW and E‐M algorithm to achieve a method
that synthesises multiple demonstrations and computes the
time‐aligned trajectories at the same time. The outcome of this
method is to compute a synthesised trajectory z as a reference
with a set of time mappings τ for each demonstration. The
model of their work is based on Equation (16)

x 1ðτ1t Þ
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xMðτM
t Þ
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where x(τt) is the demonstrated trajectory with its time map-
ping at time t, and M is the total number of demonstrations.
N denotes the symbol of Gaussian distributions; here, the
mean is zero and covariance matrices R are the weighting
which indicates the contribution of each demonstration in

shaping the reference trajectory z. Open parameters are z, R
and τ. Then a Kalman smoother is established, and optimises
results via E‐M. The E‐step compute a Gaussian distributions
Z for the reference z given R and τ, and the M‐step updates R
and τ given Z by maximising the likelihood, then closes until
they converge. Another extension of DTW, Generalised Time
Warping (GTW), can be found in [110] which allows to work
with high‐dimensional, multi‐modality data efficiently using a
Gauss‐Newton algorithm. DTW often causes non‐continuous
trajectories with very large acceleration jumps, instead of giving
a constraint on the velocity or acceleration, and [111] proposes
the Local Time Warping (LTW) method to solve that problem
by optimisation using local information.

4 | COMPOUND SKILLS AND HIGH‐
LEVEL COGNITIVE REASONING

In the previous section, the learning outcomes of a robot are
mainly defined as low‐level policies, which can be utilised for a
robot to perform a single task element. However, to endow the
robot with more capability in handling people's routine work,
achieving human‐like high‐level reasoning is required. High‐
level skills are the premise of combining low‐level skills to
complete more complex compound skills. Research in this area
usually involves skill segmentation, labelling, recognition, and
planning/sequencing. The significance of these studies is
notable, considering that if the learnt skill primitives cannot be
arranged correctly, the robot will not be able to complete more
complex tasks autonomously.

Meanwhile, the robot can use this learnt high‐level
reasoning skill knowledge and produce novel skills through
some generative frameworks. This is just like the learning
process of humans, which is well reflected in the learning of
musical instrument performance. For example, skilful violinists
can compose and play a piece of never‐before‐seen sheet
music almost immediately, as that is just resequencing of all the
learnt ‘skill primitives’. In this example, composing involves
high‐level decision‐making, while playing involves resequenc-
ing and joining smoothly the learnt motor skills primarily.
Learning of such complicated high‐level cognitive skills is no
different from learning the interaction between the labels of
environmental conditions, agents and objects. The following
section reviews previous studies and the current works in
techniques of skills segmentation, recognition, motion taxon-
omy, joining, and sequencing; and then, an inspiring topic of

F I GURE 9 An intuitive comparison between
reinforcement learning (RL) and inverse
reinforcement learning (IRL)
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affordance‐learning used in robotics is introduced, which tries
to solve imitation in an affordance‐based method.

4.1 | Skill segmentation and recognition

Segmentation of a continuously performed complex com-
pound skill (i.e. computer assembly) can be solved in various
kinds of ways. Supervised segmentation, or manual segmen-
tation, is intuitive and precise, but is also time consuming.
However, achieving a perfect generic framework for segmen-
tation can be extremely challenging since the segmentation
problems are often task relevant. The most straightforward,
efficiently worked unsupervised method is based on stopped
motion by assuming each cut‐off point has zero velocity.

In [112], a segmentation algorithm based on spectral
analysis is introduced. In this study, the target trajectory for
conducting segmentation was the temporal varying 3D‐
position of hand. It is noteworthy that the affinity matrix of
spectral analysis is computed using Gaussian kernel function
based on spatial difference and temporal difference, which is
considered to be less intuitive. This method has a drawback of
manual selection for parameters (i.e. standard deviation term of
Gaussian kernel and the total number of clusters), where, in a
more complex trajectory, it is difficult to take all kinds of
motor pattern into account, and people do not want to specify
the number of sub‐trajectories manually.

Meier et al. [113] modified the DMPs to be a discretised
Kalman filter version to achieve movement segmentation with
online movement recognition. At each time step, the E‐M al-
gorithm was used to update the optimal parameter estimation
for each DMP in the library. The DMPs with the maximum of
likelihood are then the best predicted motion, which can be
done online with increasing confidence. An issue with this is
that the estimated optimal DMP temporal scaling factor can be
sometimes unreasonably large or small. The auto‐segmentation
is done by monitoring the drop of likelihood value. This
method assumes all skill primitives are stored in a library and
the segmenting target joins each primitive with no spacing,
which largely constraints its effectiveness.

Another method based on Beta‐process Autoregressive
Hidden Markov Model (BP‐AR‐HMM), which is less
straightforward but has good performance, was proposed by
Emily et al. [114, 115]. For the details of this algorithm,
refer to their works; however, the process is briefly sum-
marised below. A beta process (BP) is seen as the conjugate
of the Bernoulli process (BeP), which describes the
parameter of BeP and implies an infinite number of fea-
tures/modes (i.e. infinite possible patterns of a segment).
Suppose multiple compound demonstrations (i.e. time series)
are given, each demonstration can share modes in the
infinite features set, which is described as different subsets
of all the features and is encoded in a binary vector fi,
where fi indicates which mode has occurred in series i. This
suggests that features can be shown multiple times in the
same or a different time series, which benefits the process
of multiple demonstration during teaching. Then, a Dirichlet

distribution is used to derive the transition probability vector
π(i) with finite parameter for HMM, which helps to
compute the modes of z(i) for the next time step based on
all accessible knowledge. Finally, the problem is solved by
defining VAR dynamics for observation y(i). Notice that π(i)

has finite parameters, which suggests that the total number
of modes does not need to be specified. The structure of
BP‐AR‐HMM can be seen in Figure 10, and application
examples can be seen in [116, 117].

The above‐mentioned methods worked fine in certain
situations and performed with a key concept of similarity. In
other words, it attempted to maximise the similarity/likelihood.
Other works shown below tackle segmentation in another way
based on indicative events. Konidaris et al. proposed a seg-
mentation method based on changepoint detection [118]. The
idea would be finding the point where a coming time step
cannot be fit into the same model as before. This method can
only be used with the prerequisite that all of the model is
stored as the prior or just using a simple model like linear/
quadratic trajectories.

Zhe et al. presented their Sensorimotor Primitive Seg-
mentation algorithm based on triggering events [119]. This
method utilises Bayesian online changepoint detection
(BOCPD) [120] as a technique with multi‐modal sensory data
including robot state, environment/object state and tactile
sensory signal based on a BioTacs sensor [121]. With these
setups, the results show that it is very effective for using such
multi‐modal sensory signals, especially for using a tactile signal
within a contact‐rich task.

4.2 | Skill taxonomy and skill library

In Section 3, it was shown that DMPs and probabilistic
approaches can store the skill pattern into each primitive.
That actually facilitates the classification process. The
motivation of classification is that, from the result of motor
skill auto‐classifiers, one would be able to implement motion
prediction and choose the reactive skill from the pre‐
constructed skill library to solve problems. DMPs are
mainly designed for skill generation and not yet for classi-
fication, although they show some capability of classifying
[122]. Probabilistic models like an HMM would be fasci-
nating in classification. Motions can be easily put into a
category with its model parameter value, for example, an
HMM parameter of ΘHMM. Motion is classified by finding a
set of parameters ΘHMM to maximise the likelihood of
seeing a motion x, as shown in Equation (17).

ΘHMM ¼ argmax
ΘHMM

pðx|ΘHMMÞ ð17Þ

All of the classified motion models that are fulfilled by
personalised characteristics encoding construct a skill library
for use in specific application domains. However, such classi-
fied motion is not automatically labelled with physical meaning.
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In other words, similar motions in a skill library, which is
constructed in LfD, can be used interchangeably. However,
skills like ‘push' may not necessarily hold similar spatial shape
in the task space (e.g. push could in any direction with any
speed). This increases the difficulty in assigning a symbolic
label to motion primitives based on current LfD skill repre-
sentation models, whereas symbolic labels can be very helpful
in planning a compound motion at high level. To this end,
would it be very helpful to derive a better motion taxonomy
methodology for generic usages, by finding the most effective
and most explicable sensory modalities?

Aksoy et al. [123] proposed a Semantic Event Chain
(SEC) tool for object–action relation, as shown in Figure 11
(a). In SEC, objects in the scene are segmented and se-
mantic scene graphs are established based on the object's
spatial relations in four modes. With SEC as the basis, the
most fundamental manipulations in life are studied in [124].
This research summarises a manipulation ontology tree
which contains three fundamentally different types of ma-
nipulations and six manipulation goal categories, as shown in
Figure 11(b). The authors further explored the importance
of motion trajectory in motion taxonomy and discovered a
positive answer.

Different from the above, a motion taxonomy for
manipulation embedding with similarity metric was proposed
in [125]. In this taxonomy, four main aspects are involved for
encoding motions to binary vectors, which are, interaction
type, object structural outcome, motion trajectory, and active
descriptor, which indicates whether a tool is used to actively
manipulate or not. The motion trajectory analysis is based on
principal component analysis (PCA); interestingly, this binary
encoding allows to compute motion differences using weighted
Hamming distance with tuneable weight (i.e. trajectory profile
may influence the taxonomy more than the interaction type).
The calculated distances between motions can help to cluster
similar motions, as shown in Figure 12, which is produced by a
visualisation tool (t‐SNE) [126].

In addition to all the above, other inspiring works can be
seen in [127–129], which present motion taxonomy in different
perspectives. Additionally, motion taxonomy could be benefi-
cial for extending skills in affordance‐based learning, which is
introduced in Section 4.4.

4.3 | Skill sequencing and joining primitives

Enabling robots to solve problems in a complex environment
and perform a series of actions requires the robot to know the
meaning of the label behind an action. A metric for inferring
task constraints and goals can be essential.

Ekvall et al. [130] presented their framework for complex
task planning and resequencing the learnt sub‐tasks. The
essence of this framework is to express complex task dem-
onstrations as many series of states/effects (i.e. effects
mainly for absolute/relative position changes). Based on all
the demonstrations, task priority constraints can be found,
hence the possible skill sequence can be found to achieve an
effect. The learning framework also allows incremental
learning, which updates the knowledge as new demonstra-
tions arrive. Another area of work that trains the robot
incrementally with the help of vocal comments under a LfD
framework can be seen in [131]. HMM is commonly used in
high‐level skill planning and recognition [132, 133], as it
encodes the transition between each state in a time‐series.
The Hierarchical Hidden Markov Model, formally defined as
Hierarchical Dynamic Bayesian Network (H‐DBN), in mul-
tiple levels is presented in [134]. Another version of H‐DBN,
Growing H‐DBN, can be seen in [135], and has two levels
for encoding high‐level abstraction and low‐level motor
skills, respectively.

Nevertheless, one can always define the action labels
manually and join all the primitives in a predefined sequence.
Joined primitives can be problematic while they are repro-
duced, because of the discontinuity. Problems can be solved by
refining the connection between two primitives. For example,
third‐order DMP formulation allows a smooth acceleration
profile [136] or adapting the primitive model parameters to
combine primitives as one skill [137].

4.4 | Affordance‐based learning

Gibson et al. [19] first proposed their theory about affordance
a few decades ago. It is used to describe the relationship be-
tween objects/agents, actions and effect after actions. For
example, a larger force of a hand will push a ball away along a

F I GURE 1 0 The illustrative structure of beta‐
process autoregressive hidden Markov model [115]
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direction for a long distance, while a lower force can only
produce a short movement. Examples can be seen in [138],
where a robot learnt the rolling capability of a toy car and
learnt the tool selection skill by searching the affordance of
objects in the scene for achieving an effect. Figure 13 shows
that affordance can usually be used in three ways. As action,
object and effect are correlated, inference of one component
can be feasible when other two components are known. Do
et al. [140] proposed a deep network‐based framework for
affordance recognition training, which is called ‘Affordance-
Net.’ As shown in Figure 14, with the object detected, its
affordance attribution inference can be accomplished (with the
colour‐augmented area). Based on that, robot WALK‐MAN is
able to grab a bottle and pour towards a pan.

LfD and affordance learning can be used as a conjunction;
in [139], affordance is learnt with Markov Chain Monte Carlo
and Bayesian network [141]. In addition, a robot is able to
perform task abstraction based on the action–object state
demonstration, hence, the robot learns the policy of optimally
finishing the task. Learning of the policy is achieved by
adopting a variant of Bayesian inverse reinforcement learning
[142, 143]. Based on the idea of affordance, Kroemer et al.
[144] present a kernel‐based approach that works together with
DMPs, which improves the action planning due to better
perception. In their work, affordance of object subparts is
learnt (i.e. a particular object shape is affordable for specific
actions and effects). Kernel basis function is used for
computing subpart similarity in shape, and kernel logistic

F I GURE 1 1 Taxonomy based on semantic event chain
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regression is used to choose a DMP. Another interesting
example can be seen in [145, 146], where potential object grasp
positions are learnt via image processing with machine learning
or estimated by a Fuzzy Gaussian Mixture Model (FGMM).

5 | CURRENT WORKS AND OPEN
ISSUES

5.1 | Collaborative skills

Collaboration between robots and humans is remarkably useful
but challenging, even just for a human‐like hand‐over task.
Achieving collaborative or interactive skills requires a robot to
have an accurate human motion recognition and estimation
module, which also takes safety factors into account. Collab-
oration is the consequence of reaction to an action or an active
promotion to the overall task goal. It is relatively easy to train a
robot to collaborate in a supervised approach, where action
primitives are manually labelled. However, an unsupervised
approach is more preferable because of the exemption of
labelling work, so that robots can observe human co‐workers
all day long or actively involved in the task as a co‐worker
and discriminatively learn the intention–action pairs.

HMM, a widely used time‐series model which is capable of
encoding both temporal and spatial patterns, could be a way to
approach collaboration. In [147], a Mimetic Communication
Model, as shown in Figure 15, was proposed to realise collabo-
ration control. The motions of humans and robots are recog-
nised as continuous HMMs (CHMMs), where human motion is
used to trigger interaction state changes in a discrete HMM
(DHMMs) and select an appropriate reference motion primitive

for the robot. Then the reference trajectory is modified online to
adapt to human behaviours, and meanwhile, humans will also
adapt to robot behaviour online (i.e. do not need a computational
model for that, i.e. the human's reaction. However, in the future,
it is interesting to compute the model of the human's adaptive
behaviour to influence the human indirectly).

Another fascinating example of a collaborative skill trans-
fer framework is proposed in [148], where ProMP is used. For
achieving a single task collaborative skill, the motion demon-
stration of both humans (with P DoF) and robots (with Q
DoF) are encoded into a single ProMP model using M number
of demonstrations as described in the previous section. Then

F I GURE 1 2 A motion taxonomy: visualised by t‐SNE [125]

F I GURE 1 3 Put affordances into use [139]
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the probability distribution of a motion pattern (i.e. p(ω; Θ)
where ω is the weight of basis functions that encodes a motion
pattern, Θ is a hyperparameter) is a multivariate distribution
where part of its dimensions relate to human motion, and the
rest are for robot motion. In the inference stage, by providing a
human motion y*, the likelihood p(ω|y*; Θ) is obtained by
conditioning. To generate a robot motion, the weights are in-
tegrated in the posterior distribution. This interactive skill also
has a mixture representation if multiple subtasks exist, which
allows a non‐linear correlation between tasks. The process is
relatively straightforward since it utilises the idea of Gaussian
mixture, which was covered in the previous section. All the key
concepts of this method are depicted in Figure 16. Apart from
skill learning for collaboration, perception accuracy is also an
important factor that influences performance as perception is
directly related to the inference of people's intent. Su et al.
[149] trained a model‐free Deep Convolutional Neural
Network (DCNN) for recognition of surgeon gestures based
on the information from a kinect camera, inertial measurement
unit (IMU) and EMG sensors.

5.2 | Learning to emulate

Start with questions: ‘If you need to get an object right in front
of you, would you choose to grab by your hand or grasp with
another grasping tool? If the object is out of reach of the
robot's end‐effector, would the robot be able to use a grasping
tool in its reach to extend its capability of achieving the goal
without a human's explicit demonstration or being told to
perform like this?’ As a human, reasoning about a task goal is
relatively easy with knowledge about the affordances, which is
a result of training that happens every day. Whiten et al. [150]
presented a taxonomy of social learning effects that classifies
the emulation within copying. Emulation is first distinguished
from imitation by the observation of children that can achieve
a goal using idiosyncratic means which were never seen pre-
viously [151]. It suggested an approach for engineers of using a
different way to re‐look at imitation learning problems in an
emulation aspect. Normally, the term emulation means to copy
the end‐state of a series of actions or copy the final effect of a
series of actions (Figure 17).

Despite affordance learning being an alternative of emula-
tion that facilitates the generalisation of skills, emulation can be a
very unique way to produce novel skills that forms an alternative
to conventional imitation learning. A good example of emulation

learning in robot skill learning can be seen in [152], where skills
like pick‐and‐place can be done with moving obstacles.
Comparing this to the previous works, where obstacle positions
are assumed to be fixed after calculating an optimal trajectory, it
contains an emulation module which feeds an estimated
parameter (i.e. relates to the Gaussian representation of obsta-
cles) back to the systemusing a utility function. At each time step,
the solution would be the trajectory that minimises the utility
function, which is actually minimising the error between the
learnt demonstration trajectory and the generated trajectorywith
obstacle avoidance (i.e. satisfying both task and state con-
straints). Apart from that method, where the task constraint and
state constraint aremanually defined, affordance‐basedmethods
could help to select those constraints based on learnt high‐level
knowledge, which would definitely be a research direction worth
attempting in the future.

5.3 | Active perception

Perception provides information for an agent to learn the
context of the environment. To the best of the authors'
knowledge, robot perception is commonly used in a passive
manner, while humans often take an active role in perceiving
information for useful modalities. For example, perceiving a
circular object does not necessarily mean that is a ball, it could

F I GURE 1 4 AffordanceNet: objects detected with the affordance attribution attached [140]

F I GURE 1 5 Mimetic communication model [147]
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F I GURE 1 6 Key concept of a probabilistic movement primitives (ProMP)‐based collaborative skill realisation: (top) single task interactive ProMP training
and inference key process; (bottom) multi‐task mixture of interactive ProMP training and inference key process [148]. CHMM, continuous HMM; DHMM,
discrete HMM; HMM, Hidden Markov model

F I GURE 1 7 A taxonomy of social learning
effects [150]
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also be a piece of paper in a circular shape, and people usually
actively move their viewpoints to get a better perception.
Figure 18 intuitively demonstrates this problem. Some articles
have also pointed out the importance of being an active
perceiver in an experiment with animal subjects [153]. The
essence of active perception is defined as setting up goals
based on the current belief about the state of the world and
performing behaviours that may achieve it [154]. One of the
most informative sensory modality in perception is vision. The
information embedded in images is not fully extractable in one
go. The goal of active perception is to know the context well,
adopting a top‐down attention strategy in the vision system has
been proven to be efficient [155, 156], and this is a feature
selection strategy that starts from the highest level.

In [157], an active sensing control method is proposed and
tested in a more plane simultaneous localisation and mapping
(SLAM) application. In their work, an online gradient descent
strategy is used to shape a B‐spine as an optimal path for
perception. The results showed that relying on a calculated
optimal path, which was compared to a straight path, the
maximum estimation uncertainty can be reduced. This work is
being extended to more complex scenarios [158]. As seen in
the previous sections, by adding perceptual coupling to the
skill model, the skill will be adaptive to the changes. Imagine if
better perception could be achieved by a robot as a skill, robots
would be more human‐like, which may attract the attention of
increasing numbers of researchers.

5.4 | Learning from failure

Another interesting topic would be learning policies from
failures as they are often ignored in conventional LfD. Shiarlis
et al. [159] proposed an algorithm called Inverse Reinforce-
ment Learning from Failure (IRLF) based on IRL. Using IRLF,
policy can be derived from both successful demonstrations and
failure demonstrations, even if the failure trajectory is very
similar to the successful one. Common LfD methods aim to
maximise the similarity between the generalised trajectory and
the demonstrations; when failures occur, robots can also
minimise the possibility of reproducing such a mistake. Based
on this idea, [160] proposed a framework that a human
demonstrate failure actions, followed by a robot's exploratory
trials that make the policy diverge from the failures, which was
tested using a real robot.

5.5 | Incremental learning from correction

As discussed above, the action may not be perfectly repro-
duced after the learning process, hence the skill refinement
process would be very helpful. Although a huge amount of
state–action pairs may have been used for training, due to the
complexity and uncertainty of the environment, robots still
produce errors. For example, actions may be generalised to an
unexpected goal. In [161], an interactive algorithm named
confidence‐based autonomy was proposed. This method the
for expert's corrective demonstration to incrementally update
the trained policy. Additionally, they used the corrective
demonstration as a replacement of the policy that would be
generalised under the specific state.

However, there can be another way for correction learning
that has been rarely tried; that is, to seek changes in both low‐
level dynamics and high‐level goals. A robot may continuously
monitor its dynamic changes, if the human interacts with the
robot, most likely an error has occurred in either low‐level
motion or the high‐level decision, otherwise, refinement is
required. By abstracting these human intentions or preference
during the correction process, and putting this knowledge into
use, would the performance be getting better?

Very recently, a fascinating learning outcome from a
demonstration framework was proposed [162], where robots
and humans share the role of controlling motion. The human
correction is analysed to learn the human's preference. For
example, the human may want the robot to hold fragile objects
(i.e. slow down the motion), which is not a predefined pref-
erence that a robot would take into account. The robot needs
to be aware of its lack of ability to explain the human's
intention by having less confidence, and then the reason about
how to behave to meet people's requirements, which is
potentially solved in [162, 163].

5.6 | Open issues

There remain many open issues for human–robot skill transfer
that are difficult to answer or close. On a technical level,
humans arrange tasks through high‐level cognition and use
low‐level motor muscle memory to generalise certain behav-
iours, which is one of the most commonly agreed facts.
However, whether computers can have the same cognitive
abilities as humans may remain controversial for a long time in

F I GURE 1 8 Illustration of the use of active perception to obtain more information [153]
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the future. Whether or not it exists, a generic framework or
solution to arrange tasks to solve problems through cognition
needs everyone's joint efforts to find out. An agents' emulation
behaviour is actually the production of a kind of ‘creativity’.
However, whether this kind of ‘creativity' is necessary to serve
the development of human society is also a very interes-
ting topic. In terms of law and ethics, the skill transfer
framework is based on an individual's experience or a small
number of individuals' experiences. More investigations may be
needed to discover if it is suitable to be applied in real in-
dustrial applications.

6 | CONCLUSION

A comprehensive review has been provided herein on the topic
of techniques used in human–robot skill transfer, to enable
readers to capture an overall bigger picture of issues that may
be met in research. Both a dynamic system‐based model and a
probabilistic model can be used to model individual skill
primitives. With a different model, various learning and
generalisation techniques could be used. To allow reactive and
complex task performance, high‐level reasoning is the most
important aspect. HMM‐based methods are shown to be very
effective in high‐level knowledge learning. Despite that, active
perception should definitely be studied for a compact
computational model to facilitate the perception accuracy in
collaborative skill performing. Affordances‐based learning is
then a useful tool for tackling motion/intention recognition
and action planning at a high level. Finally, the importance of
incremental learning for robot skill refinement has been
emphasised. Based on the introduction given here, it is hoped
that researchers will have a clear idea of the structure of robot
skill learning and transfer this knowledge and explore for more
potential topics to further extend robot capability.
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