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Does the HadGEM3-GC3.1 GCM Overestimate Land Precipitation at High Resolution?
A Constraint Based on Observed River Discharge
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ABSTRACT: Previous studies showed that high-resolutionGCMs overestimate land precipitation when compared against
observation-based data. Particularly, high-resolution HadGEM3-GC3.1 shows a significant precipitation increase in
mountainous regions, where the scarcity of gauge stations increases the uncertainty of gridded observations and reanalyses.
This work evaluates such precipitation uncertainties indirectly through the assessment of river discharge, considering that
an increase of;10% in land precipitation produces;28%more runoff when the resolution is enhanced from18 to 0.258, and
;50% of the global runoff is produced in 27% of global land dominated by mountains. We diagnosed the river flow by
routing the runoff generated by HadGEM3-GC3.1 low- and high-resolution simulations. The river flow is evaluated using a
set of 344 monitored catchments distributed around the world. We also infer the global discharge by constraining the
simulations with observations following a novel approach that implies bias correction inmonitored rivers with twomethods,
and extension of the correction to the river mouth, and along the coast. Our global discharge estimate is 47.4 6 1.6 3
103 km3 yr21, which is closer to the original high-resolution estimate (50.53 103 km3 yr21) than to the low-resolution (39.63
103 km3 yr21). The assessment suggests that high-resolution simulations perform better in mountainous regions, either
because the better-defined orography favors the placement of precipitation in the correct catchment, leading to a more
accurate distribution of runoff, or the orographic precipitation increases, reducing the dry runoff bias of coarse-resolution
simulations. However, high-resolution slightly increases wet biases in catchments dominated by flat terrain. The im-
provement of model parameterizations and tuning may reduce the remaining errors in high-resolution simulations.

KEYWORDS: Rivers; Hydrologic cycle; Precipitation; Bias; General circulation models; Hydrologic models; Model
evaluation/performance

1. Introduction

The hydrologic cycle is a closed system that describes the
circulation of water between ocean, atmosphere, and land. The
water budget states that incoming and outgoing water from a
region is in balance with the change in water storage. Although
simple in concept, water budgets are difficult to accurately
determine in GCMs, given the considerable uncertainty in its
components (Healy et al. 2007). One of the most challenging
components is precipitation. Demory et al. (2014) and Roberts
et al. (2018) found that while total global precipitation is re-
markably resolution invariant and is in the range of observa-
tional uncertainty, its partitioning between ocean and land is
strongly sensitive to GCMs resolution when it is enhanced
from the conventional 18 to the 0.258 or finer resolution used
nowadays. Similarly, Demory et al. (2014) reported an intensi-
fication of the hydrologic cycle in HadGEM at high resolution,

given by an increase in atmospheric moisture transport from
ocean to land, which favors the occurrence of precipitation, and
consequently, an increase of river discharge into the ocean. In a
multimodel study, Vannière et al. (2019) found that the land
precipitation is on average 10% larger at higher resolution,
which is mostly explained by the enhancement of orographic
precipitation.

Land precipitation increases in high-resolution models due
to the emergence of resolved mesoscale processes, such as
sharper atmospheric fronts, stronger temperature gradients,
better defined orographic jets and their associated moisture
transport, and even mesoscale convective systems (Vellinga
et al. 2016). One would expect that the emergence of finer-
scale processes leads to an improved representation of land
precipitation. However, in the context of climate means,
Roberts et al. (2018) and Vannière et al. (2019) have shown
that the observations are in better agreement with low-
resolution models than with high-resolution models, which
produce larger land precipitation than most state-of-the-art
observation-based products [e.g., GPCP inRoberts et al. (2018,
their Fig. 1) and ERA-Interim in Vannière et al. (2019, their
Fig. 9b)]. In this context, and as a follow-on of the previous
studies, the question that motivates this paper naturally arises:
are high-resolution models overly sensitive to orography, or do
observations underestimate the amount of land precipitation,
and in particular orographic precipitation?

On the one hand, orographic precipitation might be overly
sensitive to model resolution. The extra precipitation at high
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resolution was shown to be in balance with increased moisture
transport from ocean to land and surface runoff, rather than
with evapotranspiration which is mostly insensitive to resolu-
tion (Demory et al. 2014; Vannière et al. 2019). However, the
atmospheric moisture transport cannot be measured, and
thereby, can be neither used to evaluate GCMs nor to reduce
uncertainties in the land water budget of reanalyses. Despite
this, it was suggested that the moisture transport from ocean to
land could be too high in high-resolution GCMs because of an
excessive surface latent heat flux over the ocean, caused by too
strong surface wind (Vannière et al. 2019).

On the other hand, land precipitation estimates based on
gridded observations, reanalysis and satellite products are not
free of uncertainty and errors. Adam et al. (2006) reported an
underestimation of ;6% in gridded land precipitation obser-
vations, mainly given by ungauged topographically complex
areas. Large errors and low correlations with the scarce ob-
servations available in mountainous regions are also shown in
Harris et al. (2020) for CRU TS v4.03, a gridded observation
product. Beck et al. (2020) demonstrated that many of the
widely used precipitation datasets (GPCC V2015, GPCP V2.3,
and MERRA-2) severely underestimate precipitation in some
areas of complex orography. Beck et al. (2017) reported poor
correlation between reanalysis and in situ observations in areas
sensitive to subgrid processes (e.g., convection), due to the rela-
tively coarse resolution of reanalyses, but also showed poor
agreement between high-resolution remotely sensed data and
ground measurements at high latitudes and altitudes, due to the
known limitations of satellites in snow covered areas. In addition,
Stephens et al. (2012) suggested that global precipitation is at least
10% larger than previously estimated in the light of newdata from
CloudSat satellites, and when snowfall is accounted for.

As both observed and simulated orographic precipitation
are uncertain, we seek to evaluate it indirectly against another
component of the land water budget, river discharge, which is
directly affected by any increase of orographic precipitation
and for which we possess reliable observations. Choosing river
discharge for this purpose presents several advantages: (i)
its measurements integrate the water balance in the whole
catchment into a single time series, while precipitation obser-
vations depend on the density of gauge stations (probably
scarce over mountains); (ii) rivers are strongly sensitive to
changes in orographic precipitation; and (iii) river discharge
compensates the atmospheric moisture transport from ocean
to land. One limitation, however, is that roughly 50% of the
global land is covered by nonmonitored catchments (Fekete

and Vörösmarty 2007). Moreover, the number of gauge sta-
tions is gradually declining since the 1980s (Dai et al. 2009), and
satellites still do not capture narrow river channels (Pavelsky
et al. 2014). Thus, the use of model simulations, starting from
reanalyses and going to free-running GCMs, is inescapable in
order to obtain global estimates of river discharge. Inferences
based on available observations of river flow, or based on dif-
ferences between precipitation and evapotranspiration, were
themost common global estimates of river discharge in the past
(e.g., Lvovitch 1973; Chahine 1992; Oki et al. 1995; Grabs et al.
1996; Perry et al. 1996; Dettinger and Diaz 2000; Syed et al.
2009). More recent estimates involve direct model estimations
(e.g., Oki et al. 2001; Nijssen et al. 2001; McCabe and Wolock
2011; Munier et al. 2012), and the combinations of model with
observations (e.g., Dai and Trenberth 2002; Fekete et al. 2002;
Clark et al. 2015; Ghiggi et al. 2019; Lin et al. 2019; Harrigan
et al. 2020). Our approach is to constrain model simulations
with observations using geographical and orographic infor-
mation of catchments to fill gaps in ungauged areas.

To answer the question raised above, the objective of this
work is twofold. The first objective is to evaluate climatological
precipitation biases at the catchment scale, in the low- and
high-resolution (LR and HR) configurations of a state-of-the-
art GCM, HadGEM3-GC3.1, against monitored river dis-
charge. To make this evaluation possible, we calculate the
GCM river discharge with a river routing model, forced by the
long-term model runoff. The second objective is to estimate
the global river discharge based on a bias correction of the
GCM river flow. Observations will be used to correct the biases
of the GCM river flow in monitored rivers, but also to infer a
value of discharge in ungauged rivers using a novel method-
ology that considers observations and catchments’ orography.
Two bias correction methods (linear scaling and CDF map-
ping) are applied to each simulation to give robustness to
the proposed methodology. By doing this research, we ex-
pect to identify the potential and limitations of high-
resolution simulations, to suggest where, should there be a
conscious investment in additional river discharge obser-
vations, this might help the climate modeling community to
constrain even better the GCMs results, and to derive ac-
curate estimates of the water budget.

Figure 1 summarizes the roadmap followed in this article to
achieve the stated objectives. Section 2 describes the models’
simulations, the observations, the orographic information, and
the river routing model. Next, the paper has two main parts
directly linked to the two objectives. The first part addresses

FIG. 1. Paper roadmap.

2132 JOURNAL OF HYDROMETEOROLOGY VOLUME 22

�'&)!"(�(&�+&)��+�����������������
����,��%�)(" %(#��( ��,�&*%$&�� �������������	���������



the assessment of simulated river flow inmonitored rivers (O1)
and includes sections 3 and 4. Section 3 explores the role of
resolution in the simulation of the hydrologic cycle, while
section 4 evaluates the model’s capability to simulate the river
flow in monitored rivers. The second part uses the lessons
learnt from the first part to optimally combine model simula-
tions and observations to constraint the global river discharge
(O2). This part is detailed in section 5, where we describe the
methodology to estimate the global discharge, analyze the re-
sults, and discuss the importance of river flow observations.
Finally, section 6 presents the overall discussion and conclud-
ing remarks.

2. Models and observations

a. GCM simulations and river routing model

Climate model simulations produced with the Hadley
Centre Global Environment Model version 3 (HadGEM3-
GC3.1, Williams et al. 2018), within the framework of the High
Resolution Model Intercomparison Project (HighResMIP v1.0)
for CMIP6 (Haarsma et al. 2016), are used to evaluate the water
budget, and to force a river routing model. A full description
of HadGEM3-GC3.1 simulations for CMIP6-HighResMIP is
found in Roberts et al. (2019). The HadGEM3 family of models
comprises a range of specific model configurations incorporating
different levels of complexity but with a common physical
framework. The subversion GC3.1 uses the Unified Model (UM;
Cullen 1991) with the Global-Atmosphere 7.1 configuration with
85 vertical levels. The ocean is simulated with the Nucleus for
European Modeling of the Ocean (NEMO; Madec and NEMO
Team 2016) configuration Global-Ocean 6.0. The land surface

model is the Joint U.K. Land Environment Simulator (JULES;
Best et al. 2011) with the Global-Land 7.1 configuration. JULES
represents the soil column with four layers up to 3.0-m depth. A
parameterization based on the Topography-Based Hydrological
Model (TOPMODEL) is used to represent an extra layer beneath
the soil column that simulates groundwater fluxes. Using this
configuration, total runoff is the sum of saturation-excess (or
surface) runoff and groundwater (or subsurface) runoff.

The GCM simulations are organized in two ensembles: low-
and high-resolution (LR and HR, respectively; see Table 1).
Each ensemble is composed of two simulations: atmosphere–
land (AMIP) and ocean–atmosphere–land (COUPLED). The
simulations are named by three letters, indicating resolution
and simulation type: low- and high-resolution AMIP (LRA
and HRA, respectively), low- and high-resolution COUPLED
(LRC and HRC, respectively). The goal of including AMIP
and COUPLED simulations is to provide members to the en-
sembles. Two members per ensemble is little, but the maxi-
mum possible for CMIP6-HighResMIP models. It is known
that AMIP and COUPLED present different atmospheric
dynamics, due to their differences in sea surface temperatures
(observed versus simulated), that may alter the water budget
components. For this reason, the methodology followed in this
paper (analysis of water budget, river routing, bias correction,
etc.) is done for each individual simulation; however, some
results are presented as ensemble mean, given that the GCM is
more sensitive to resolution than to the use of coupling with
the ocean.

The GCM’s configuration (e.g., vertical levels, parameteri-
zations, schemes) remains identical in both resolutions, except
by the necessary reduction in time step from 20min at LR to
10min at HR. LR uses a regular latitude/longitude grid at N96

TABLE 1. GCM configurations.

Ensemble Simulation Simulation type Atmosphere horizontal resolution at 508N Ocean resolution Time step

LR
LRA AMIP N96 (;135 km) — 20min
LRC COUPLED N96 (;135 km) ORCA1 20min

HR
HRA AMIP N512 (;25 km) — 10min
HRC COUPLED N512 (;25 km) ORCA025 10min

FIG. 2. (a) TRIP river network in blue (given by the sequence parameter; see its definition in section 2a), including discharge points into
oceans/seas (exorheic systems) and lakes (endorheic systems). (b) Monitored rivers with black dots indicating the observation sites for
river flow and colors highlighting the catchment area that contributes to each monitored point according to the TRIP river network.
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(;135 km at 508N) in the atmosphere and 18 in the ocean for
the COUPLED configuration, while HR uses N512 (;25 km at
508N) in the atmosphere and 0.258 in the ocean component.
AMIP simulations are forced by HadISST2 daily SST at 0.258
(Titchner and Rayner 2014). The period of simulation is 1950–
2014. Further details are in Roberts et al. (2019).

The total (surface and subsurface) runoff produced by each
GCM simulation in each land grid cell is used to force a river
routing model that collects the runoff to estimate the river
discharge. The model is a stand-alone implementation of the
Total Runoff Integrating Pathways model (TRIP; Oki and Sud
1998). TRIP uses a simple advection method to route total
runoff along a prescribed river network (Falloon et al. 2011).
The advection method is explained in detail in the appendix.
The river network (see Fig. 2a) is defined at 0.58 resolution
based on two parameters set at each grid cell: direction and
sequence. Direction indicates the flow direction when in the
range [1 . . . 8], or that the grid cell is a discharge point, 9 for
exorheic rivers that discharge into ocean/sea, or 12 to rivers
discharging into lakes. Sequence is an integer label that indi-
cates the hierarchy of the grid cell in the river catchment, being 0
for grid cells that do not receive input from neighbors and maxi-
mum (in the catchment) at river mouth. To solve the advection/
routing equations the model also requires the definition of two
global fixed parameters: meandering ratio and flow velocity
(further details are in the appendix). Themeandering ratiom is
set to 1.4 (dimensionless) while the flow velocity y is set to
0.4m s21 following the range of values used in Oki and Sud
(1998), Oki et al. (1999), and Falloon et al. (2011). Note that 1)
the river routing model runs at 0.58, which implies that runoff
fields are interpolated to that resolution and 2) TRIP does not
consider any loss or gain of water, it just translates runoff values
into river discharge allowing a comparison against observations,
and thereby, a validation of runoff at catchment scale.

b. Observations

A selection of 344 near-coast river discharge observa-
tions from Dai (2017) is used to assess the river flow. The
original dataset contains time series of monthly river flow
for the world’s largest 925 rivers collected from different
sources (see Dai et al. 2009 for more details) in the period
1900–2014. The selection criteria focused on data availability, a
minimum size of the catchment, and an agreement between

catchment area in model and observations. Specifically, ob-
servation sites that do not meet any of the following rules are
excluded:

d Minimum of 120 observed values in the period 1950–2014.
d Minimum catchment area of 3 pixels in the river rout-
ing model.

d Minimum of 65% agreement in catchment area between the
area contributing to the river discharge point in the model
and the area reported in the observational dataset.

d No other gauge station located in the same model grid cell.

Figure 2b presents the selected gauge stations and the
catchment areas based on the river network of our model
(Fig. 2a), which cover 41.7% of the global land. The mean
total observed discharge from selected rivers is 21.4 3
103 km3 yr21, while 1.65 3 103 km3 yr21 is the flow contrib-
uted by the 584 excluded observations.

c. Orographic precipitation

One of the mechanisms that is most sensitive to GCM’s
resolution is the enhancement of orographic lifting due to a
better definition of the orography in high-resolution models.
To analyze the sensitivity of the simulated global land water
budget to orographic precipitation we define a global oro-
graphic precipitation mask and an orographic precipitation
index per catchment. For an objective comparison across
simulations, we calculated both, the mask and the index, based
on ERA-Interim data (Dee et al. 2011), i.e., a reanalysis
product independent from the GCM simulations.

The orographic precipitation mask is a time-invariant binary
mask that separates regions with strong influence of orographic
precipitation from regions dominated by nonorographic pre-
cipitation. It is calculated based on the orographic enhance-
ment data taken from Vannière et al. (2019), who applied the
diagnostic model developed by Sinclair (1994) to daily ERA-
Interim data in the period 1980–2019. In the Sinclair (1994)
model, the vertical orographic uplift at the surface is deter-
mined as a function of the dot product of horizontal surface
wind and orographic slope. The vertical wind profile is a
function of the orographic uplift and set to decrease vertically
up to 200 hPa following a power law of atmospheric pressure.
The condensation rate, which is function of the vertical
wind, specific humidity, and relative humidity at each level, is

FIG. 3. (a) Binary mask, highlighting regions influenced by orographic precipitation in black, which covers 27% of global land.
(b)Orographic precipitation index in TRIP catchments (1means the catchment is dominated by orographic precipitation, 0 the contrary).
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integrated vertically from the lifting condensation level to the
top of the atmosphere, to give an estimate of orographic pre-
cipitation [i.e., R in the Eq. (4) of Sinclair 1994]. We made the
further approximation that the large-scale vertical wind was
zero, to retain only the orographic enhancement. Once the
orographic precipitation is estimated, we calculate the time-
average field, and apply a threshold of 0.3mm day21 to obtain
the orographic precipitation mask. The mask, presented in
Fig. 3a, clearly segments areas of high-altitude, but it differs
from masks defined only based on terrain height or terrain
slope (for instance the mask used in Adam et al. 2006). The
main difference is that the model we used considers the
horizontal wind to estimate the vertical orographic uplift,
which retains the windward side of mountain chains where
precipitation occurs and excludes leeward sides and dry high-
altitude areas (Vannière et al. 2019). This is evident in
Southeast Asia, where the mask identifies the southwest side
of the Himalayas, but it does not consider the arid Tibetan
Plateau. Therefore, the method yields a very accurate mask
that distinguishes in detail areas prone to orographic pre-
cipitation from others.

As river catchments usually cover areas with and without
orographic precipitation we define the orographic precipita-
tion index (OPI) as the fraction of total precipitation that falls
over the orographic part of the catchment c:

OPI
c
5

!
"(i,j)2c

P(i, j)M(i, j)

!
"(i,j)2c

P(i, j)
, (1)

where P is the time mean precipitation of ERA-Interim and
M is the orographic precipitation mask presented in Fig. 3a.
The index varies in the range [0, 1], where 0 indicates null
contribution of orographic precipitation and 1 indicates
the contrary. Figure 3b shows that catchments with high
index values are in general small (e.g., those located in the
Maritime Continent, Southeast Asia, Europe, or the Pacific
coast of the Americas), while small index values (OPIc , 0.5)
dominate in large basins (e.g., Amazon, Congo, Yenisey, Lena)
suggesting these catchments have a weak influence of oro-
graphic precipitation.

3. Global water budget and GCM resolution

The land water budget can be expressed as

dS

dt
5P2E2R , (2)

where dS/dt is the change of water storage (soil moisture and
groundwater), P is the precipitation by rain and snow, E is the

FIG. 4. Spatial difference of mean climatological water budget components between low and high resolution: (a) land precipitation,
(b) evapotranspiration, and (c) runoff. The mean global value for each resolution and their difference is added as inset. Note that (a)–(c)
use the same color bar allowing a direct comparison of changes in precipitation, evapotranspiration, and runoff. (d) Runoff changes
between low and high resolution as fraction of land precipitation changes, which is equivalent to the fraction between (c) and (a). Gray
shades indicate grid cells that are masked out because of the little changes in precipitation (jDPj , 0.4 km3 yr21) that may affect the
diagnostic interpretation.
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evapotranspiration, and R is the runoff (surface and subsur-
face). Averaged over a long period of time, the storage term is
negligible and Eq. (2) becomes

P5E1R , (3)

or

P5E1Q , (4)

where P, E, R, and Q are climatological mean precipitation,
evapotranspiration, runoff, and river discharge, respectively.
Equations (3) and (4) are valid for individual catchments, and
thereby, for the global land. Note that R and Q are conceptu-
ally equivalent, given that rivers integrate the catchment runoff

(subsurface runoff feeds the river baseflow, while surface
runoff feeds the quickflow). Although there are human inter-
ventions that may alter this equivalence in the real world (e.g.,
evaporation from dam reservoirs), they are insignificant at the
large scale, and are not represented in most climate and
hydrological models.

Figure 4 shows that the enhancement of resolution affects
differently each component of the climatological water budget.
Precipitation (Fig. 4a) presents the largest differences in areas
of high orography (e.g., the Andes and the Himalayas) and
islands, in particular insular regions located between the
tropics (e.g., Maritime Continent, Madagascar). At the global
scale, the simulated precipitation is greater at HR, but there
is a combination of both positive and negative differences in
space. The differences are mainly due to the better defini-
tion of the orography, which alters the moisture transport,
and thereby, precipitation patterns and timing. It explains
changes over high orography, but also in flat areas sensitive
to changes in atmospheric circulation such as the Sahel
(Müller et al. 2021), central Africa, and La Plata basin.
Focusing on high orography areas, there is an increase of
precipitation in the windward side at HR, accompanied with
drying in rain shadows (e.g., Mexican and Tibetan Plateaus).

Evapotranspiration presents a spatial sensitivity to resolu-
tion similar to precipitation, but remarkably weaker in mag-
nitude (see Fig. 4b). Instead, the runoff field (Fig. 4c) shows a
notable resemblance to precipitation, both in magnitude
and in spatial distribution. The prevalence of precipitation
impact on runoff over evapotranspiration is also evidenced
in Fig. 4d. It presents the changes in runoff due to resolution
as fraction of precipitation changes. A fractional value of
one means that the change in precipitation affects only
runoff, zero means the precipitation change impacts only
evapotranspiration, 0.5 means both runoff and evapotrans-
piration are affected equally. The predominance of blue
colors (fraction . 0.5) confirms the strong link between
precipitation and runoff differences, revealing that the extra
precipitation at HR mostly ends up in rivers. In summary,
we found a strong effect of resolution on global land pre-
cipitation and runoff, and conversely, a weak impact on
evapotranspiration (in agreement with Vannière et al.
2019). Land precipitation is on average ;10% higher at HR
but produces ;28% more runoff. All these results support
the premise that the assessment of river discharge offers a
clear insight about precipitation amount biases at the
catchment scale.

Figures 5a and 5b summarize the sensitivity of global
land precipitation and runoff to resolution for AMIP and
COUPLED simulations, quantifying the contribution of
orographic and nonorographic regions to such sensitivity.
Both AMIP and COUPLED present a clear increase of
precipitation and runoff at HR, although AMIP shows
larger differences. It is remarkable that between 70% and
98% of the net increase in precipitation and runoff at high
resolution is given by increases in regions prone to oro-
graphic enhancement. On the other hand, regions of flat
land present little sensitivity to resolution. Beyond the
effect of resolution, it is also interesting to note that at

FIG. 5. Low- and high-resolution mean climatological (a),(c) pre-
cipitation and (b),(d) runoff (top) for the global land and (bottom) for
selected catchments presented in Fig. 2b. The simulated variables are
shown in total values, and their decomposition into orographic and
nonorographic according to the mask presented in Fig. 3a. In addi-
tion, estimates based on gridded observations, reanalysis or optimized
combinations between models and observations are included in cyan
for precipitation and in blue for runoff. Note that theGloFAS-ERA5
value (* in the legend) is based on the period (1997–2014). Previous
years were discarded given that ERA5presents a significant imbalance
in the global water budget (see section 9.2 in Hersbach et al. 2020),
producing high precipitation, which in turn produces unrealistic high
values of runoff.
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least 40% of global land precipitation and 50% of the
global runoff in HadGEM3-GC3.1 is produced in just the
27% of global land area characterized by orographic en-
hancement, which highlights the importance of reducing the
uncertainty in such regions. Comparing against observation-
based datasets (e.g., gridded observations and reanalysis) the
net precipitation increase in high-resolution simulations mag-
nifies the wet biases, mainly in areas sensitive to orographic
precipitation (not shown). In particular, observation-based
land precipitation estimates are in the range [108–120] 3
103 km3 yr21, close to the low-resolution value (119 3
103 km3 yr21), but below the high-resolution estimates
(130 3 103 km3 yr21). Similarly, global runoff or river dis-
charge based on observations is in the range [37–49] 3
103 km3 yr21 in agreement with low-resolution (39.6 3
103 km3 yr21), but smaller than high-resolution estimates
(50.5 3 103 km3 yr21). On the basis of these results, and
given the uncertainty of observational products discussed
in section 2, we next assess the simulated river discharge at
the catchment scale, using it as a proxy to understand
precipitation biases.

4. River discharge assessment in monitored rivers

As our first goal is to understand climatological biases of
total precipitation as integral quantities, through the assess-
ment of river flow, the evaluation focuses on mean absolute
and percent errors. By doing so, some considerations should be
taken into account. First, a correct river discharge value in
large catchments can be the result of compensating biases,
thereby, inferences about spatial biases can only be done in

regions with small catchments, but not in areas dominated
by large catchments. Second, the temporal variability of
precipitation cannot be assessed using river discharge,
given the lag between precipitation events and river dis-
charge. Third, monitored catchments are not fully repre-
sentative of what is observed globally. Figures 5c and 5d
show the decomposition of land precipitation and runoff
into their orographic and nonorographic components for
the area covered by selected rivers. The figure shows that
the land covered by gauged rivers is less sensitive to res-
olution (and orographic enhancement) than the global
land. Precipitation in monitored basins is on average ;4%
higher at HR, and produces ;12% more runoff, while global
land precipitation is;10% higher at HR, and produces;28%
more runoff. This is because of 1) many of the gauged rivers
correspond to large basins dominated by nonorographic pre-
cipitation such as Amazon, La Plata, Mississippi, and Congo,
all of which have an orographic index below 0.4, and 2) the
impossibility of monitoring the large number of small moun-
tain rivers. Nevertheless, there are data from a number of
monitored rivers in key regions such as Southeast Asia, the
Alps, and the Andes that can help to constrain the precipita-
tion uncertainty in such regions.

Although there is a good agreement between LR and ob-
servations in Fig. 5d (22.9 3 103 and 21.5 3 103 km3 yr21, re-
spectively), this is the result of compensating positive and
negative biases (see Fig. 6a). Wet biases in North America,
southeast South America, and China are combined with dry
biases in Siberia and Central andWest Africa. Figure 6b shows
in orange that HR is able to reduce biases in small catchments
with strong influence of orographic precipitation such as

FIG. 6. Mean climatological river discharge percent bias for selected catchments: (a) LR ensemble and (b) LR minus HR ensemble
(orange indicates HR reduces the bias, blue the contrary). The marks show the location of gauge station, black squares for the 156
catchments dominated by nonorographic precipitation (OPI # 0.5), pink triangles for the 188 catchments with strong influence of oro-
graphic precipitation (OPI . 0.5). Antarctica is excluded due to the lack of observations.

TABLE 2. Number of nonorographic and orographic rivers that perform better at low or high resolution.

Nonorographic (OPI # 0.5) Orographic (OPI . 0.5) Total

No. LR performs better 85 67 152
No. HR performs better 71 121 192
Total 156 188 344
HR performs better 46% 64% 56%
Obs discharge (103 km3 yr21) 14.6 6.9 21.5
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Southeast Asia and Maritime Continent, Europe, South
Africa, the Andes, the northwest Rockies and highlands in
Canada, Alaska, and southeast Brazil, but it increases the
biases in large catchments such as Amazon, Congo, Paraná,
and Mississippi. Table 2 quantifies the number of rivers,
with and without influence of orographic precipitation,
which performs better at each resolution. The results indi-
cate that HR is closer to observations in 56% of rivers, and
this number rises to 64% in mountain rivers. However,
monitored rivers with high orographic index only represents
32% of the total (orographic 1 nonorographic) observed
discharge, a much smaller fraction than that estimated at the
global scale, which is at least 50%.

Figure 7 complements the previous results with a normalized
skill score (the overlapping coefficient OC) as a function of the
catchments’ orographic precipitation index. Given the proba-
bility distribution of simulated river flow and the probability
distribution of observed river flow, the overlapping coefficient
measures the overlapping area below the curves of the two
distributions (Weitzman 1970). The discrete version can be
expressed as

OC5!
"i
min

!
nmod

i

N
,
nobs

i

N

"
, (5)

where nmodi 5 count(q 2 ith bin) is the histogram of the
monthly model time series of length N, while nobsi is the same
for the observed data. This skill score has the advantage of
being normalized in the range [0–1], being zero when there is
no overlap, and one when the histograms are identical.
Figures 7a and 7b show OC . 0.5 for most rivers in both res-
olutions. However, the plots evidence that the performance of
LR decrease for rivers dominated by orographic precipitation,
while the score in such rivers notably improves in HR.
Figure 7c presents the score difference between high and low
resolution. Circles above zero in the ordinate indicate a better
score for HR, while circles below zero mean the contrary. The
plot suggests that the enhancement of resolution leads to a
general improvement of the river flow simulation, which is

particularly evident when the topographic complexity of the
catchments increases. On the other hand, catchments with low
orographic precipitation index (OPI, 0.4) present, in general,
slightly better scores at low resolution. The exception is Congo
[second in size circle with OC(HR) 2 OC(LR) ’ 20.49],
where the extra precipitation at high resolution (Fig. 4a)
overcompensates, in excess, for the negative bias shown at low
resolution (see Fig. 6a).

Given these results, we focus the assessment on six regions
prone to orographic precipitation (Fig. 8), and thereby, highly
sensitive to model resolution: Southeast Asia (Figs. 8a,b), the
MaritimeContinent (Fig. 8c), the southernAndes (Fig. 8d), the
Alps (Fig. 8e), and the Alaska Range (Fig. 8f). From this re-
gional zoom-in, we find three deficiencies of LR that are clearly
improved at HR: 1) compensation of errors, 2) high underes-
timation of runoff, and 3) poor spatial distribution of runoff.

1) If we aggregate catchments ahead and behind the Himalayas
(Figs. 8a and 8b together) and evaluate the total river flow,
LR is closer to observations than HR for the wrong reason.
At LR, there is a compensation of negative biases in the
rivers of India and Pakistan (ahead of the Himalayas), with
positive biases in rivers located east of the Himalayas. The
better representation of the orographic barrier and the
Plateau in HR simulations likely improves the simulation of
atmospheric monsoon circulation and moisture fluxes [as
found in Schiemann et al. (2018) and Vannière et al. (2019)],
producing more precipitation and runoff in India and
Pakistan, and reducing rain, snow, and runoff behind the
Himalayas. It notably reduces the negative biases at LR in
Indian rivers (Fig. 8a), and slightly improves the perfor-
mance in rivers originating in China (Fig. 8b).

2) Figure 8c presents the evaluation for rivers in the Maritime
Continent, one of the regions with the greatest discrepancy
between low- and high-resolution simulations. Although
there are only five monitored rivers in the region, they are
enough to demonstrate that the high precipitation amount
at HR is much more realistic than that estimated at LR. It
has been shown for earlier versions of HadGEM that the

FIG. 7. Performance of simulated river flowmeasured by the overlapping coefficient as function of the orographic precipitation index of
river catchments. (a) Low-resolution simulations: LRA (blue) and LRC (orange), (b) high-resolution simulations: HRA (blue) and HRC
(orange), and (c) the difference between low- and high-resolution overlapping coefficients. Rivers with insignificant contribution (Q ,
0.03 3 103 km3 yr21) were excluded. The circles’ size is proportional to the mean observed discharge of each river. The lines plot the
unweighted linear regressions.
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FIG. 8. (center) Evaluation of low- and high-resolutionHadGEM3-GC3.1 estimates ofmean river flow vsDai (2017) observations for six
regionswhere orographic precipitation, and thereby, (left) runoff is strongly sensitive to resolution. (right)As in the center column, but for
accumulating river flow in each region. The regions are (a) India and Pakistan, (b) Southeast Asia, (c) Maritime Continent, (d) southern
Andes, (e) Alps, and (f) AlaskaRange. Note that the bar plots in the center column are shown in square root scale tomake the small rivers
visible. The rivers IDs follow the IDs defined in the observational dataset. The legends in the top panels are valid for all regions.

AUGUST 2021 MÜLLER ET AL . 2139

�'&)!"(�(&�+&)��+�����������������
����,��%�)(" %(#��( ��,�&*%$&�� �������������	���������



sensitivity to resolution in small islands is in part due to the
better definition of coastlines and orography. This en-
hancement of surface boundary conditions constitutes an
improvement in the simulated precipitation in areas like the
Maritime Continent (Schiemann et al. 2014; Johnson et al.
2016). The southern part of the Andes Chain is a region
exposed to westerlies that bring moisture from the Pacific,
raining over the western slopes and drying over the eastern
side (Viale et al. 2019), a process that is magnified at HR
(see 5a). The evaluation of three small catchments shows
that the river discharge generated at HR, which is almost
double compared to LR, is closer to the observed river
discharge (see Fig. 8d).

3) Last, in Southeast Asia, the Alps, and the Alaska Range
(Figs. 8d–f), low- and high-resolution models produce a
similar total amount of river flow; however, the estimates
for individual catchments show, in general, a better agree-
ment with observations at high resolution. A plausible ex-
planation is that rain and snow are placed in the correct
catchment when the resolution is enhanced.

In summary, the overall assessment over 344 monitored
rivers shows that LRperforms better in large catchments, while
HR improves the estimation in small catchments with strong

influence of orographic precipitation. Given the strong impact
of total precipitation changes on runoff (shown in section 3),

the interpretation is that the improvement in river discharge at

HR can be associated with a more realistic simulation of pre-

cipitation amount. First, the increased orographic precipitation

helps reduce dry river discharge biases of LR simulations in

many regions (e.g., Maritime Continent, southern Andes).

Second, the better-defined orography favors the placement of

precipitation in the correct catchment in areas of complex

orography, wetting the windward side and drying the leeward

side of mountain chains, leading to a more accurate simulation

of river discharge of individual catchments (e.g., Southeast

Asia, Alps, AlaskaRange). These results give good evidence to

support that the increase of precipitation in mountain or near-

mountains regions at HR goes in the correct direction; how-

ever, it is not enough to draw definitive conclusions given the

high fraction of unmonitored mountain catchments. For instance,

the Maritime Continent, strongly affected by orographic rain,

has a notable reduction of biases atHR in the five small riverswith

observations, which contribute a small fraction of global runoff.

However, it is highly probable that similar improvements can be

found in the rest of the region, exposed to the same precipitation

regime, which would have a more significant impact in the global

FIG. 9. Examples of bias correction methods applied to the Amazon (at Obidos) time series in the period 1950–59. (left) CDF of
the observation, the model, and the model after bias correction with (a) linear scaling and (c) CDF mapping. (b),(d) As in (a) and
(c), but for the Amazon time series. The arrows in (c) summarize the mapping process applied to model CDF to match obser-
vations CDF.
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discharge. Therefore, we need a method to upscale what we have
learned in this section for the entire land, in order to answer the
question that motivates this research: do observations underesti-
mate the amount of orographic precipitation?

5. Global river discharge

a. Constraining global river discharge with observations

The total global discharge QG for each GCM is the integral
of the river flow at all points that discharge into the oceans or
lakes (red and pink pixels in Fig. 2a). To improve the direct
GCM estimates, we propose a method to constrain the simu-
lated values at monthly time scale with observations of the
river flow available at inland points. The approach has two
main steps: first, a model bias correction is applied to grid cells
with observations (black pixels in Fig. 2b) and, second, the bias
correction is extended to all outlet points. The following
subsections present the two bias correction methods tested in
this work [sections 5a(1) and 5a(2)], and a detailed description

of the overall process to constrain the global discharge with the
available observations [section 5a(3)].

1) BIAS CORRECTION WITH LINEAR SCALING

Given the river flow observation time series of a monitored
river Qobs and the corresponding simulated flow Qmod, the
linear-scaling approach forces the simulated time series to have
the same mean value as the observations:

QmodLS
i 5Qmod

i
3 c

m
, (6)

where QmodLS
i is the bias corrected value (with linear scaling)

at time i,

c
m
5

Qobs

Qmod
(7)

is the correction factor (constant) for monitored river m, and
Qobs and Qmod are the long-term mean value (excluding
observed missing months) of the observation and model time

FIG. 10. Schematic diagram of linear scaling bias correction process exemplified in
Australia for LRA simulation. The main task is to set a bias correction factor for each
outlet point co based on the known factors obtained in monitored sites cm [see Eq. (7)].
See explanation about the method in the sub section 5a(3).
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series, respectively (Lenderink et al. 2007). Note that we do
not include in the cm denominator the ratio between the
drainage area informed in the observations and that used in
the model, as done in Clark et al. (2015), because we directly
discarded stations that do not match the reported drainage
area with the catchment area defined in the model (as ex-
plained in section 2b).

Figure 9b shows an illustrative example of bias correction
with linear scaling at Obidos (Amazon basin). It is evident
from the time series and from the cumulative density functions
(CDFs) in Fig. 9a that the model overestimates the river flow.
After linear scaling, the mean value of the corrected simula-
tions matches, by construction, the mean value of the obser-
vations (5.6 3 103 km3 yr21).

2) BIAS CORRECTION WITH CDF MAPPING

While linear scaling accounts for the mean bias, it does not
correct biases in other features of the distribution function
(e.g., extremes). A more sophisticated method is CDF

mapping [also called CDF matching in Reichle and Koster
(2004), or CDF-t in Michelangeli et al. (2009), or quantile
mapping in Maraun (2013)], which corrects the distribution
function of the simulated values to agree with the observed
distribution function (Teutschbein and Seibert 2012) as
follows:

QmodCM
i 5CDFobs21[CDFmod(Qmod

i
)] , (8)

where QmodCM
i is the bias corrected value (with CDFmapping) at

time i,CDFobs21 is the inverse functionof theCDFof theobserved
record, and CDFmod is the CDF of the simulated time series.

The arrows in Fig. 9c help to clarify the method. The Qmod
value is transformed into QmodCM by adopting the inverse
value of the observation CDF (black) at the quantile where
Qmod falls in the simulated CDF (solid red). In that way,
the CDF of the corrected time series (dashed red) is equal
by construction to the CDF of the observations (black). By
using this method, the corrected time series not only matches
the mean value of the observations, but also all the statistical

FIG. 11. Scatterplots of (top) observedmean vsmodel mean river discharge inmonitored locations and (bottom) low- vs high-resolution
mean river flow in outlet points (a),(d) before bias correction and after bias correction using (b),(e) linear scaling and (c),(f) CDFmapping.
The plots are complemented with the L2-norm across all the (model, obs) pairs shown in (a)–(c), and (HR, LR) pairs in (d) and (e).
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properties of the distribution (e.g., kurtosis, skewness). The
advantages of the method appear clearly in Fig. 9d, which shows
how extreme values agree in magnitude between observations
and the corrected simulation, while preserving the differences
in time variability.

3) FROM INLAND TO COASTAL CONSTRAINT

The simulated global river discharge is the sum of discharge at
all TRIP outlet points. On the other hand, river flow observations
are available near the rivermouth. Therefore, amethod is needed
to extrapolate the correction done at the observation sites to the

river mouth, and then to the rest of the outlet points. The general

approach to achieve this goal is summarized in Fig. 10, just for the

linear scaling method over Australia. Australia has 20 monitored

rivers m, and 233 outlet points o, 22 of them belonging to endo-

rheic systems. The overall process requires that we define a bias

correction coefficient co for each outlet point o, and then apply the

bias correction to the corresponding time series. The recipe is as

follows:

d Step 1: Calculate cm for inland points with observations by
applying Eq. (7), and assign the same value co 5 cm for the

corresponding outlet o located downstream of each point

with observationm.When an outlet has two ormore possible

m (no case in Australia), co is given by the weighted average

of the involved cm, where the weights are the fractional

contribution of each involved river to the total observed
discharge of all of them. Number of coefficients set at this
step: 20.

d Step 2: A ‘‘coastal interpolation’’ is applied to set the
coefficients along the coast. It requires (i) to trace the coastal
path for indexing. The path starts at any point with a coef-
ficient already set in step 1, and finishes at its predecessor
outlet. (ii) For practical reasons, the coastal path is converted
into a vector containing the position (latitude, longitude) of
each point. (iii) A vector of the same length is filled with
known co (from step 1), and with a miss when the point is not
an outlet. (iv) Unknown coefficients are then calculated by
linear interpolation. (v) The coefficients are placed on the
map using the index array. Number of coefficients set at this
step: 211.

d Step 3: There are two exceptional cases where previous steps
are not enough to set all co. (i) Coasts without observations
upstream. It occurs typically on lakes (e.g., Eyre, Chad),
small islands (e.g., Hawaii, Cuba, etc.), or remote lands
(e.g., Antarctica, Greenland). In these cases coefficients are

FIG. 12. River discharge percentage bias for (a) LR ensemble mean, (b) HR ensemble mean, and (c) their difference (jLRj 2 jHRj),
considering the ensemble mean of all bias corrected simulations with both methods as reference. The circles size is proportional to the
river flow produced at each outlet. (d) Accumulated river flow per 0.58 of longitude for the ensemble mean of LR and HR simulations
(solid blue and orange), their respective corrected version with both methods (dotted and dashed), and the ensemble mean of all bias
corrected simulations with both methods (black) with its respective uncertainty band calculated as one standard deviation of the involved
simulations. The colored numbers indicate the accumulated river flow of each longitudinal segment for the original LR andHRensembles
and the bias corrected ensemble. Labels indicating the location of largest rivers are included as reference.
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defined based on the orographic index: co is set as the mean
cm of all rivers withOPI falling in a close range to the index of
the river under evaluation (OPIm 2OPIo 6 0.05). (ii) Coasts
with one observation upstream (usually small islands). In this
case, the same co value is extended along the coast. Number
of coefficients set at this step: 233.

d Step 4: Each outlet time series is corrected by applying
Eq. (6), but using the corresponding co, instead of cm.

The previous steps can also be adapted to estimate a global
discharge value, but constraining the simulated time series with
the CDF mapping method. The difference is that an array of
coefficients is set per outlet point, instead of only one coeffi-
cient as shown for linear scaling. Let us imagine we want to
extend the bias correction from a monitored point, which was
corrected as in Fig. 9c, to its outlet (step 1). To perform the CDF
mapping, we first need to estimate the target CDFmodCM as

CDFmodCM
q 5CDFmod

q
3 sc

q
, (9)

where scq is the scaling coefficient for the quantile q. These
coefficients are the scale factor that needs to be applied to
each quantile of CDFmod to get CDFobs in the upstream
monitored point, i.e., the horizontal arrow (of each quantile)
in Fig. 9c. Having the target CDF defined, we proceed with
the CDF mapping process given in Eq. (8), but replacing
CDFobs with CDFmodCM. Thus, sc is the array that can be
set following similar steps to those described before, to set
the coefficient c.

b. Testing the proposed methodology

Following the proposed methodology, we constrained the
hydrological simulations in monitored points, and then, all
outlet points, which allows to calculate a global discharge value
for each simulation. Figure 11a compares observed versus
predicted river flow in the 344 monitored sites for each simu-
lation. The scatterplot shows an overall good agreement, al-
though with positive and negative biases in most rivers, which
can occasionally duplicate the observed amount. These biases
are virtually eliminated with both bias correction methods (see
Figs. 11b,c). The remaining biases are explained by the fact that
model means are based on complete time series, while the bias
correction parameters were calculated by masking out non-
observed monthly values in simulated time series. Note that
the Euclidean distance between simulations and observations
are notably reduced from [1.15–1.78] 3 103 km3 yr21 to ;0.19
and;0.123 103 km3 yr21 for linear scaling and CDFmapping,
respectively.

The results of themethod inmonitored points are promising,
given that all simulations converge to observed estimates,
but expected, given that the uncertainty in the bias corrected
version is only produced by missing monthly values in the
observations. Instead, in outlets, an extrapolation of the bias
correction is needed, which notably increases the difficulty of
the challenge, as it implies going from monitored points to the
corresponding outlets, and extrapolating to ungauged basins
along the coast. Figure 11, bottom row, shows that both
methods, but mainly the linear scaling, tend to reduce the
differences between low- and high-resolution simulations in
the 5992 outlets. There are many dots overlapped in Figs. 11e
and 11f, which make the convergence not evident visually,
mainly when Q , 0.5 3 103 km3 yr21, but the L2-norm dem-
onstrates that the simulated mean river flow converges to
similar values in all simulations after bias correction. In par-
ticular, the Euclidean distance between low and high resolu-
tion is reduced by ;54% in average (from ;1.5 to ;0.7 3
103 km3 yr21) with linear scaling, and by ;32% in average
(from ;1.5 to ;1.0 3 103 km3 yr21) with CDF mapping. This
means that the proposed methodology remarkably reduces the
uncertainty caused by resolution, in each outlet, and thereby,
globally.

The global river discharge from the low-resolution ensemble
mean is 39.63 103 km3 yr21, but increases by 28%, up to 50.53
103 km3 yr21, in the high-resolution ensemble mean. This dis-
crepancy is notably reduced to 47.46 1.63 103 km3 yr21 when
all the simulations are constrained by observations (see Fig. 12d
and Table 3). According to this estimation, the global runoff is
between the original LR and HR estimations, but closer to HR,
in particular toHRC.Moreover, when bias correction is applied,
both resolutions converge to a very similar global value, 46.33
103 km3 yr21 for linear scaling, and 48.6 3 103 km3 yr21 CDF
mapping. In other words, the remaining uncertainty of the new
estimate is completely independent of resolution, and it is
mostly explained by the uncertainty introduced when the bias
correction is extrapolated from gauged to ungauged rivers. In
Fig. 12d, the numbers in color and the curves help to identify
where the biases arise. LR underestimates runoff across all
longitudes, while HR performs very well in Asia and slightly
overestimates in the Western Hemisphere. This overestima-
tion at HR is mostly explained by AMIP positive biases in
southeast Brazil (not shown), the region where AMIP and
COUPLED present the largest differences. Figures 12a and
12b present the percentage bias of LR andHR ensembles using
the bias corrected ensemble mean as reference, and Fig. 12c
presents their difference, with blue colors indicating an

TABLE 3. Global river discharge (103 km3 yr21) simulated by HadGEM3-GC3.1 at different resolutions and constrained by observations.

Simulation Original estimate Linear scaling CDF mapping

LRA 38.7 45.0 46.8
LRC 40.5 46.9 50.0
HRA 52.1 46.0 47.7
HRC 48.7 47.2 49.6
Ensemble mean 6 ensemble std dev 45.0 6 5.6 46.3 6 0.9 48.5 6 1.3
Bias-corrected ensemble mean 6 ensemble std dev 47.4 6 1.6
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improvement at HR, and red colors the contrary. The LR bias
map brings out the compensation of biases, with high dry biases
in Southeast Asia, the Maritime Continent, Central America,
and the southern Andes compensated with high wet biases in
Southern Africa and most of South America. Instead, HR
notably reduces LR dry biases, although some positive biases
remain. The main improvement of HR is in the intertropical
belt, but also in northern Asia, Europe, and the southern
Andes.Most of these improvements are attributable either to a
better distribution of rain and snow (e.g., Southeast Asia, Alps,
Alaska Range), or to the increase of orographic precipitation
(e.g., Maritime Continent, Andes). The main weakness of HR
is the overestimation of river discharge in some large catch-
ments like La Plata or Congo.

To highlight the importance of orographic precipitation in
the global generation of runoff, we plot in Fig. 13 similar curves
to that showed before, but now, as function of catchments
orographic precipitation index. The bias corrected simulations
(gray and green bands) shows that ;50% of the global dis-
charge is contributed by small catchments having a strong
component of orographic precipitation (OPI . 0.5). Based on
the bias correction done in this work, the runoff produced by
this kind of precipitation is correctly simulated in high-
resolution simulations, but it is underestimated by ;30% in
low-resolution simulations. Conversely, the evolution of the
curve in flat catchments (OPI , 0.5) for the bias corrected
simulations is similar to that presented by low-resolution, but is
slightly overestimated by high-resolution simulations, such as
for the Congo and La Plata rivers with comparatively large

biases (see their respective jumps at OPI 5 0.12 and OPI 5
0.28 in Fig. 13).

c. Sensitivity of the methodology to the number
of gauge stations

So far, we applied a methodology to constrain the river flow
in 5992 outlets, using only 344 gauge stations where river flow is
measured. The catchments of monitored rivers cover about
;40% of the global land and represent ;40% of the global
river discharge. As a significant proportion of the river flow is
not directly constrained by observations upstream, it is im-
portant to understand to what extent the methodology is sen-
sitive to the lack of observations. At the same time, this will
help to determine the potential benefits of including more
observations in the procedure. To evaluate this, we re-estimate
the global river discharge following the same methodology as
before (with linear scaling and CDF mapping) but randomly
discarding a percentage of the gauge stations. In this cross-
validation approach, we randomly discarded five times 5%,
10%, 15%, and 20% of the gauge stations, which represent 17,
34, 52, and 69 monitored rivers, respectively. It produces a
total of 160 estimations: 5 random selections 3 4 discarding
percentages 3 4 simulations 3 2 bias correction methods.

Figure 14 summarizes the result of this experiment for linear
scaling in the top panel and CDFmapping in the bottom panel.
Note that there is no direct relation between the percentage of
gauge stations discarded and the percentage of flow that those
rivers represent for the total monitored discharge (21.5 3
103 km3 yr21). Next, we present the new estimates QLS

G and

FIG. 13. Accumulated river flow discharge as function of catchments orographic precipitation
index for the ensemble mean of LR simulations (solid blue), LR corrected with linear scaling
(dotted blue), and LR corrected with CDF mapping (dashed blue). The same curves in orange
for high resolution ensembles, and the ensemble mean of all (LR and HR) bias corrected
simulations in blackwith its respective uncertainty band calculated as one standard deviation of
the involved simulations.
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QCM
G as a function of the total monitored flow Qm, which is

more relevant than the number of gauge stations involved in
each estimation. For linear scaling, the plot shows the method
is robust even to discarding observation sites of rivers with high
contribution of flow. About;50% of the estimates converge in
the range ofQLS

G 6 1 std5 46:3 6 0:9 3 103 km3 yr21 (Table 3;
std 5 standard deviation), which is obtained when all gauge
stations are included, and more than 76% in the range of
QLS

G 6 2 std. The estimations that fall outside this range are, in
general, based on low-resolution coupled (LRC) simulations. For
CDF mapping,;38% of the estimates fall in theQCM

G 6 1 std5
48:5 6 1:3 3 103 km3 yr21 (Table 3) range and ;73% in the
QCM

G 6 2 std interval. This suggests that CDF mapping is more

sensitive to the lack of observations, probably due to the fact that
it corrects the extremes of each time series. Thus, a small change
of extremes in a large river catchment can produce a significant
change in the final integration. As for linear scaling,most outliers
are related to estimations based on LRC, but also with LRA.

Beyond the differences between the two bias correction
methods, some features are shared by both. In any case the
minimum QG is 43.8 3 103 km3 yr21, suggesting that the
initialQG of low-resolution simulations is an underestimate.
The overall method is robust even discarding up to 1.0 3
103 km3 yr21, and it suggests that the remaining uncertainty
can be reduced further if more near-mouth observations
were included. On the other hand, the uncertainty increases

FIG. 14. Global river flow estimations based on the bias correction of each simulation by
applying (a) linear scaling and (b) CDF mapping to constrain with the complete set of obser-
vation sites used in this study, and also, randomly discarding 5%, 10%, 15%, and 20% of the
gauge stations. The filled markers show the original estimates using the 344 monitored rivers.
The x axis shows the cumulative observed flow once some gauge stations are discarded, while
the y axis shows the corresponding global estimates. The green and gray band are indicative of
the range of values where the global river discharge estimate varies when all monitored rivers
are used to constrain the estimate. See further details of this experiment in section 5c.
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when rivers with high biases are discarded, e.g., Paraná
(tributary of La Plata), Nile, and Indus. The lack of obser-
vations for these key rivers can exacerbate their biases when
the coastal interpolation from adjacent rivers corrects the
bias in the opposite direction.

6. Discussion and concluding remarks

The assessment of global precipitation patterns from GCMs
is usually done by direct comparison against reanalyses, grid-
ded observations, and/or remotely sensed data. While these
products are suitable in most cases, it has been shown in pre-
vious studies that they present high uncertainty on areas (i) of
low density of ground observations (e.g., in mountainous re-
gions) (ii) with occurrence of subgrid processes (e.g., convec-
tive storms), and (iii) in high latitudes (e.g., satellites). Given
that our focus is on the evaluation of precipitation sensitivity to
model resolution, we proposed an indirect method of evalua-
tion, through the assessment of river flow, a natural integrator
of the water balance at the catchment scale, whose observa-
tions are particularly useful to understand the water budget in
catchments with low density of in situ measurements of pre-
cipitation and/or evapotranspiration. With the final goal of
advancing the understanding of precipitation biases in low and
high-resolution HadGEM3-GC3.1 simulations submitted to
CMIP6-HighResMIP, we have 1) assessed the river discharge
in monitored rivers, and 2) extended the knowledge acquired
in step 1 to ungauged rivers, to produce a global discharge
estimate. The enhancement of model resolution increases the
orographic precipitation due to a better definition of oro-
graphic features. It leads to higher positive biases when com-
pared with most products based on observations, except with
Stephens et al. (2012), who suggest that the lack of in situ ob-
servations over mountains produce an underestimation of
orographic precipitation in reanalysis products. Combining the
GCM simulations with river flow observations and orographic
information, we have developed a novel methodology to con-
strain river discharge globally, which allows us to shed light on
runoff biases, and thereby, on precipitation biases.

The analysis of the water balance sensitivity to resolution
showed that HadGEM3-GC3.1 HR simulations produce;10%
more global land precipitation, which in turn, increases runoff by
;28%, but does not produce significant changes in evapo-
transpiration, in agreement with the findings of Demory et al.
(2014) forHadGEMandVannière et al. (2019) forHighResMIP
GCMs. The main changes in precipitation occur in regions
sensitive to orographic precipitation, typically over mountains,
where horizontal surface fluxes prevail. This feature ex-
plains the strong and direct impact of precipitation changes
on rivers, which amplify the differences observed in precipita-
tion.Moreover, we have shown that the orographic precipitation
accounts for ;40% of global land precipitation, but produces
more than;50% of global runoff. Thus, the strong sensitivity of
river flow to orographic precipitation,makes it ideal to assess the
potential benefits of resolution in climatemodels, in particular to
qualitatively infer precipitation biases at the catchment scale.

The direct comparison of low- and high-resolution simulations,
against the set of 344 near-coast river discharge observations,

showed that LR offers an overall better estimate of river dis-
charge compared to HR; however, we have found common
cases where the enhancement of resolution brings clear bene-
fits. HR improves the individual catchments assessment in re-
gions where LR compensates biases. For instance, in Southeast
Asia, there is a compensation of negative biases upwind of the
Himalayas, with positive biases in the lee, in LR simulations.
Instead, HR simulates wetter conditions in the windward side
of the Himalayas, which notably reduces the biases in Indian
rivers, and drier conditions over the Tibetan Plateau, which
slightly improves the simulation of river discharge in rivers that
originates over the Plateau. Similarly, the assessment of
catchments in the Alps and in the Alaska Range suggests that
HR places the precipitation in the correct catchment,
providing a more realistic spatial distribution of runoff, and
thereby, a better agreement between simulated and observed
river discharge in individual catchments. Another common im-
provement evidenced at HR, is given in rivers where orographic
precipitation is notably enhanced. For instance, in the southern
Andes and the Maritime Continent, there are large differences
between low- and high-resolution simulations of total precipi-
tation and runoff. The assessment suggests that the HR wetter
conditions are more realistic, probably due to a better resolved
coastline and orography.

The global river flow produced in catchments with oro-
graphic complexity is more than 50%; however, the monitored
river flow is dominated by the contribution of large catchments
(Amazon, Congo, Paraná, Nile, etc.) that lay mostly on flat
terrain, which does not allow to draw definite conclusions at
global scale. In other words, the set of monitored rivers is not
representative (in terms of orographic influence on precipita-
tion and runoff formation) of the set of all global rivers. To
obtain a global discharge estimate, we therefore carried out a
bias correction in monitored rivers, and extended the bias
correction to nonmonitored rivers with a coastal interpolation.
We followed this novel approach using two different bias
correction methods to constrain river flow, linear scaling, and
CDF mapping. The results showed that this procedure remark-
ably reduces the differences between the discharge estimates
from low- and high-resolution models in most of the 5992 out-
lets, and thereby globally.Moreover, themethod remains robust
and independent of resolutionwhen discarding observation sites
that represent up to 13 103 km3 yr21, or even excluding more, if
the discarded sites are not those that require strong bias cor-
rection. Comparing the bias correction techniques, CDF map-
ping is more sensitive to the lack of observations, probably
because the correction of extremes in major rivers produce a
significant change in the global discharge value. The robustness
of the proposed method, as well as its independence from res-
olution in the estimation of global discharge estimate, makes the
methodology promising for application in other CMIP6 models
in future work, in particular those that follow the HighResMIP
protocol. An accurate estimate of global river discharge is key to
constraint the global water budget, a challenge that has been,
and still is, subject of many papers (Lvovitch 1973; Trenberth
et al. 2007, 2011; Rodell et al. 2015, among others).

Our best estimate of global discharge is 47.4 6 1.6 3
103 km3 yr21. This suggests that the real global runoff is between
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the original LR and HR estimates (39.6 and 50.5 3
103 km3 yr21, respectively), but closer to HR. Note that the
final estimation is based on eight different estimates that in-
clude variations in GCM resolution (low and high), simulation
type (AMIP and COUPLED) and bias correction method
(LS and CM), variations that strengthen the final result. In
the light of the river discharge observations, the main ad-
vantage of high-resolution simulations is the proficiency in
areas of complex orography. In these areas, the better-
defined orography increases the orographic precipitation
and runoff amounts, which helps reduce the high negative
biases of river flow in low-resolution simulations, but also
favors the placement of precipitation in the correct catchment.
The highest biases of HR simulations appear in the Nile,
Congo, and La Plata basins. Although excess of rain may ex-
plain part of the biases in the Nile, it is a river where models
used to overestimate its flow when compared to observations
(e.g., Dai and Trenberth 2002; Clark et al. 2015; Ghiggi et al.
2019) probably due to its strong intervention for pumping, and
also to its exposure to high temperatures over Sahara, which
facilitates the direct evaporation from the river channel, pro-
cesses that are not represented in models. Beyond this partic-
ular case, an important aspect to consider in the analysis of
biases atHR, is that themodel tuning is done in LRmodels, but
not in HR. This requirement of the HighResMIP protocol al-
lows us to understand changes in model simulations only ex-
plained by the change of resolution, but at the same time,
provides room for additional reduction of biases in HR simu-
lations with model tuning. In terms of model development,
preliminary results of JULES (the HadGEM3-GC3.1 land
surface model) uncoupled simulations showed that the re-
placement of the soil hydraulic model, along with a more

realistic definition of soil minerals and properties, decreases
the runoff in the tropics and increases it in high latitudes. This is
expected to reduce the remaining biases in high resolution
simulations.

Figure 15 compares the estimates of global discharge based
on low- and high-resolution simulations and the final estimate
of this study with previous estimates by different authors in-
cluding Dai and Trenberth (2002), Rodell et al. (2015), Clark
et al. (2015), Ghiggi et al. (2019), and Harrigan et al. (2020).
Our global discharge estimate is higher compared to most
previous estimates with different methodologies, which are in
the range [37–46]3 103 km3 yr21. A significant difference from
those estimates is that they are based on coarse-resolution
reanalysis products ($0.58). Our results show that the extra
orographic precipitation in high resolution models, alter-
natively characterized as positive biases when compared to
reanalysis precipitation, systematically reduces biases in
simulated river flow. The global discharge based on a recent
river flow reanalysis (GloFAS-ERA5; Harrigan et al. 2020)
is 48.8 3 103 km3 yr21. GloFAS-ERA5 does not correct
biases: it just calibrates the hydrological model to match the
seasonal variability of the observations. However, it is im-
portant to note that it is based on runoff produced by the
reanalysis ERA5 at a resolution of 0.288, which suggests that
also reanalyses tend to produce wetter conditions with the
increase of resolution. Evapotranspiration processes make it
impossible to directly link biases in runoff with biases in pre-
cipitation; however, given that evapotranspiration is almost
insensitive to resolution in our simulations, we can infer that
biases found in runoff have a strong resemblance to total
precipitation biases. Thus, our results suggest that HadGEM3-
GC3.1 at high resolution (;25 km) slightly overestimates land

FIG. 15. Global river discharge estimated by different authors in gray and those derived in this study in colors:
HadGEM3-GC3.1 LR and HR (blue and orange) and our combined estimate (green). A complete set of estimates
can be found in (Clark et al. 2015). GloFAS-ERA5 (with * in the legend) 48.83 103 km3 yr21 is based on the period
1997–2014, while 54.5 3 103 km3 yr21 is based on the period 1979–2014. From 1979 to 1996 ERA5 presents a
significant imbalance in the global water budget (see section 9.2 in Hersbach et al. 2020), which produces un-
realistically high values of runoff. Therefore, we consider 48.8 3 103 km3 yr21 as a better estimate for
GloFAS-ERA5.
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precipitation, but notably reduces the dry biases produced at
low resolution (;135 km), mainly in areas of complex orog-
raphy, in agreement with the results reported by Adam et al.
(2006) and Beck et al. (2020).

The developments that enabled this research offer a new
capability to HadGEM3-GC3.1. TRIP is an important part of
the GCM as it provides freshwater input to drive the ocean
component. However, due to the lack of a better option, the
routing model is conventionally run at a fixed resolution of 18,
independently of the resolution used in the GCM. The reso-
lution discrepancy causes many estuaries to be located inland
or displaced, which distorts the ocean inflow. Here, we have
developed a 0.58 version of the river routing model that mini-
mize the mismatch with the coastal points of the ocean model
in high-resolution simulations. In future applications, we plan
to move a step forward and develop a routing model with a
river network derived from the model’s orography and using
the same resolution as JULES.

Last, we would like to emphasize the importance of river
flow monitoring. This research has shown that river flow ob-
servations, even those measuring small catchments, are key to
constrain the water balance at the catchment scale, but also at
the global scale. Thus, river flow observations are relevant for
climate modeling, but also for many sectors including climate
change monitoring, flood monitoring, water supply, and hy-
dropower energy. Dai et al. (2009), based on statistics of the
Global Runoff Data Centre, reported that the number of sta-
tions with discharge data have continuously declined since
1979, just the year when comprehensive satellite observations
began. But satellite observations do not replace river moni-
toring: they are complementary, and many advantages can be
obtained by optimally combining different sources of obser-
vations (Lavers et al. 2019). The recovery of abandoned river
flow gauge stations, as well as, monitoring more catchments,
especially in places strongly affected by orographic precipita-
tion, is crucial for the assessment of the hydrologic cycle
in GCMs.
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APPENDIX

TRIP Equations

The main TRIP equations are reported in Oki et al.
(1999). Here, we complement that work with a detailed
derivation of the equations. The river flow is calculated in
all land grid cells by using a prognostic water balance
model. The change in the water storage S in the river
channel is defined as the difference between the sum of
inflow Qi and the outflow Qo from the river storage in the
grid cell:

dS

dt
5Q

i
2Q

o
. (A1)

The inflow is the sum of the runoff generated within the grid
cell, and the input from upstream neighbor grid cells. The
outflow is estimated as a linear function of the storage:

Q
o
5

y

l
S , (A2)

where y is the flow velocity, and l 5 d 3 m is the length of the
river channel between grid cells, calculated as the distance d
between grid cells centers multiplied by a meandering ratiom.
Substituting Eq. (A2) into (A1):

dS

dt
5Q

i
2

y

l
S . (A3)

Equation (A3) is a nonhomogeneous differential equation,
whose solution is the sum of the solution for the related ho-
mogeneous differential equation and a solution for the non-
homogeneous equation. The homogeneous equation is given
by dS/dt 5 Qo and the solution is

S(t)
h
5Ae2

y
ldt . (A4)

The nonhomogeneous equation is dS/dt 5 Qi and the solution
is given by

S(t)nh 5
l

y
Q

i
. (A5)

Then, the solution to Eq. (A3) is

S(t)5Ae2
y
l t 1

l

y
Q

i
, (A6)

evaluating it at t 5 t0:

A5S(t0)2
l

y
Q

i
, (A7)
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then

S(t)5

#
S(t

0
)2

l

y
Q

i

$
e2

y
l t 1

l

y
Q

i
, (A8)

S(t)5 e2
y
l tS(t0)1

!
12 e2

y
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i
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Consequently, at time step t 1 Dt the storage is estimated by

S(t1Dt)5 e2
y
l DtS(t)1

!
12 e2

y
l Dt

"
l

y
Q

i
. (A10)

It means that the storage at time t 1 Dt is the storage at time t
that still remains in the grid cell after Dt, and the fraction of
inflow that remains in the grid cell after Dt. Once the storage is
known, the outflow can be calculated straightforward by solv-
ing Eq. (A1).
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