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Thesis Summary 
The Internet and social media have undoubtedly improved our abilities to keep in touch with 
friends and loved ones. Additionally, it has opened up new avenues for journalism, activism, 
commerce and entertainment. The unbridled ubiquity of social media is, however, not without 
negative consequences and one such effect is the increased prevalence of cyberbullying and 
online abuse. While cyberbullying was previously restricted to electronic mail, online forums 
and text messages, social media has propelled it across the breadth of the Internet, 
establishing it as one of the main dangers associated with online interactions. Recent 
advances in deep learning algorithms have progressed the state of the art in natural language 
processing considerably, and it is now possible to develop Machine Learning (ML) models 
with an in-depth understanding of written language and utilise them to detect cyberbullying 
and online abuse. Despite these advances, there is a conspicuous lack of real-world 
applications for cyberbullying detection and prevention. Scalability; responsiveness; 
obsolescence; and acceptability are challenges that researchers must overcome to develop 
robust cyberbullying detection and prevention systems.  

This research addressed these challenges by developing a novel mobile-based application 
system for the detection and prevention of cyberbullying and online abuse. The application 
mitigates obsolescence by using different ML models in a “plug and play” manner, thus 
providing a mean to incorporate future classifiers. It uses ground truth provided by the end-
user to create a personalised ML model for each user. A new large-scale cyberbullying dataset 
of over 62K tweets annotated using a taxonomy of different cyberbullying types was created 
to facilitate the training of the ML models. Additionally, the design incorporated facilities to 
initiate appropriate actions on behalf of the user when cyberbullying events are detected.  

To improve the app’s acceptability to the target audience, user-centred design methods were 
used to discover stakeholders’ requirements and collaboratively design the mobile app with 
young people.  Overall, the research showed that (a) the cyberbullying dataset sufficiently 
captures different forms of online abuse to allow the detection of cyberbullying and online 
abuse; (b) the developed cyberbullying prevention application is highly scalable and 
responsive and can cope with the demands of modern social media platforms (b) the use of 
user-centred and participatory design approaches improved the app’s acceptability amongst 
the target audience.  

Keywords: cyberbullying detection, cyberbullying prevention, deep learning, participatory 
design, Twitter, mobile application. 
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Chapter 1: Introduction

1.1 Research Motivation

On August 2nd, 2013, Jo Smith discovered the dead body of her 14-year-old younger

sister, Hannah, in their family home in Lutterworth, Leicestershire, UK. According to her

family, Hannah suffered extensive abuse online on the social website Ask.fm, including

several anonymous messages encouraging her to commit suicide (BBC News, 2013).

Ask.fm is a social media website that allows users to post questions and solicit

responses; respondents can choose to be anonymous when replying to a question. A

month later in Florida, USA, 12-year-old Rebecca Ann Sedwick jumped to her death after

being repeatedly harassed online by a group of similarly-aged girls. According to police

investigators, Rebecca’s tormentors used various means to harass her, including hacking

her Facebook account, sending abusive messages via text and Instant Messaging (IM)

platforms and even following her across various social networking sites posting hateful

comments about her (Alvarez, 2013). Brandy Vela, an 18-year-old student, shot herself

dead in front of her parents at their home in Texas, USA, following years of relentless

online abuse, including fake profiles created using her pictures offering ’sex for free’

(Pasha-Robinson, 2012).

Unfortunately, incidents such as these have become part of the ongoing narrative about

cyberbullying, and it is estimated that as much as 59% of young people will have

experienced some form of cyberbullying by the time they become young adults (Pew

Research Center, 2018). Nowhere is cyberbullying more prevalent than on social media,

where 69% of reported cyberbullying incidents occurred (Ofcom Research, 2019). In

recent years, reports of cyberbullying-related suicides have increased in the media

(Hinduja and Patchin, 2010) and, unsurprisingly, this has focussed significant attention on

cyberbullying and its prevention. Cyberbullying has been linked to mental health issues
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such as low self-esteem, depression, anxiety and substance abuse (Hinduja and Patchin,

2010; Khine et al., 2020; Martı́nez-Monteagudo et al., 2020) and the pervasiveness of

social media that has allowed online abuse to extend beyond geographic boundaries has

introduced additional complications in the efforts to prevent it.

Social media platforms like Twitter, Facebook, and Instagram have responded to this

increased proliferation of online abuse by introducing policies and features to combat and

mitigate cyberbullying and its effects. These have included preventing the creation of

multiple accounts using similar details and frequent suspension of abusive users. Online

social networks also employ human moderators to review thousands of posts daily for

inappropriate content. Unfortunately, despite these efforts, cyberbullying and online

harassment remain a significant online risk for many young people. Furthermore, as

cyberbullying is highly subjective, what is deemed offensive differs amongst people and

human moderators can only apply common-sense rules in making a judgement.

Research efforts on cyberbullying detection have been primarily focused on developing

algorithms for detecting cyberbullying and offensive language automatically. While this

has contributed to advancing the state-of-the-art in the automated detection of

cyberbullying, it has largely overlooked the development of novel, viable tools that can

use these state-of-the-art algorithms to tackle online abuse in the real world.

Researchers face four key challenges in developing cyberbullying detection systems:

scalability; responsiveness (Rafiq et al., 2018); obsolescence; and acceptability.

Research investigating how these challenges can be resolved is rare and is certainly an

area in need of attention to improve the availability of automated online abuse prevention

solutions. This research programme, therefore, focuses on addressing these challenges

as outlined in the following sections.

1.2 Research Question and Objectives

Scalability is the ability of a system to increase its capacity by expanding the quantity of

lower-level resources (e.g., memory, CPU) consumed (Lehrig et al., 2015) while

responsiveness is defined as a system’s ability to complete a set of tasks within an

allotted time (Sweet et al., 2001). Both are properties expected of performant systems

and are often not considered by researchers when designing cyberbullying detection
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systems (Rafiq et al., 2018; Zois et al., 2018). Subsequently, developed systems to date

are unable to cope with the large user volume and scalability demands of modern social

media platforms or respond promptly to enable real-time communications (Yao et al.,

2019).

Existing cyberbullying prevention systems are primarily focused on improving classifier

accuracy (Rafiq et al., 2020), and their implementation has typically involved a tight

coupling between the classifier and the encompassing system. This introduces

obsolescence into a system’s design as the classifier cannot be easily changed (when

better machine learning models become available), often necessitating a redesign of the

entire system and consigning a limited lifespan to the system from inception. Finally,

acceptance by end-users is critical for a system’s success and, as many online abuse

detection systems are often developed in isolation without consultation with potential

end-users (Dinakar et al., 2012), they struggle to gain acceptance amongst the intended

audience due to not meeting their expectations (Ashktorab and Vitak, 2016). Only by

resolving these concerns will viable automated cyberbullying prevention tools become not

only widely available to the public but also widely accepted by the public.

Creating a viable cyberbullying detection and prevention system that addresses the four

key challenges of responsiveness, scalability, obsolescence and acceptability as identified

above requires a multidisciplinary approach that marries core HCI principles for designing

user-focused applications using collaborative design methods with the development of

scalable systems that can dynamically utilise various machine learning models for the

detection of different types of cyberbullying and offensive language.

This is a non-trivial task, the difficulty of which is highlighted by the lack of such systems

despite significant research efforts invested in the automated detection and prevention of

cyberbullying and online abuse in recent years.

Within the context of the issues highlighted above, the main research question investigated

by this research is:

How can cyberbullying and online abuse be detected and prevented on social media

platforms such that the key challenges of scalability, responsiveness, obsolescence

and acceptability are adequately addressed?

Two further research questions posed specific to the acceptability challenges are:
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1. What are stakeholders’ needs and expectations for a cyberbullying

prevention application and does the use of user-centred and participatory

design approaches to design and develop the application result in an

application that is an accurate reflection of the stakeholders’ expectations as

measured by their perception of the tool’s usability and usefulness?

2. What constitutes effective practice for engaging stakeholders in user-centred

research for the design and development of the cyberbullying prevention

mobile application?

The research reported in this dissertation was aimed at achieving the following objectives:

(i) understand what cyberbullying prevention tools are currently available and how

effective these are;

(ii) generate a large-scale cyberbullying dataset that can be used to train machine

learning models to robustly detect different types of cyberbullying on social media;

(iii) develop a responsive and scalable cyberbullying detection system that utilises a

framework that allows the use of the classifiers trained using the dataset sourced in

(ii) and other ML models in a ‘plug and play’ manner (thus mitigating system

obsolescence) to detect cyberbullying instances on social media;

(iv) incorporate a mechanism to utilise ground truth provided by end-users to create

personalised cyberbullying detection classifiers for users;

(v) apply a user-centred design approach to gain insight into stakeholders’ opinions on

cyberbullying and its prevention and in so doing understand their requirements for the

proposed mobile-based cyberbullying prevention application;

(vi) use participatory design to collaboratively design the mobile app with young people,

creating a design prototype in the process;

(vii) implement the design prototype as an Android application that is made available to the

public via the Google Play Store as a free-of-charge cyberbullying prevention mobile

app; and

(viii) conduct evaluation studies to assess the system’s performance in terms of its

responsiveness, scalability, and acceptability
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1.3 Contribution to Scientific Knowledge

In answering the above questions, this research has made significant contributions to

scientific knowledge. These are summarised below and discussed in more depth in

Chapter 9.

Conducting a survey that investigated the availability of real-world cyberbullying

prevention mobile applications and the effectiveness of the discovered mobile apps.

This highlighted the dearth of practical applications that can be used to aid cyberbullying

detection and prevention and provides a starting point for future researchers aiming to

address this lack of practical online abuse prevention tools. This aspect of the research is

discussed in Chapter 2.

Creation of a new large-scale English multi-label dataset that contains annotated

instances of various forms of online abuse and cyberbullying and a significant proportion

of offensive content to facilitate the training of cyberbullying and foul language classifiers.

The dataset captures different types of online abuse, including less frequent examples of

cyberbullying like the use of sarcasm to ridicule, social exclusion and threats that are not

typically present in existing datasets. Furthermore, the proportion of offensive content in

the dataset (over 80%) is more than that of existing datasets allowing for the training of

classifiers without the need for oversampling methods to improve the distribution of

offensive samples in the dataset. The dataset’s generalisability was validated by

cross-domain experiments conducted with two other popular cyberbullying datasets. This

dataset expands knowledge and available resources for other researchers in this domain;

it is now available to the scientific community at large to further research in this area. The

discussion on the activities undertaken to create this dataset is presented in Chapter 3.

Conducting experiments with various traditional machine learning and

deep-learning models trained using the created dataset to identify different forms of

online abuse on social media. The investigations led to the selection of the pretrained

RoBERTa model as the best performing model and also demonstrated the created

dataset’s usefulness as a resource for training classifiers to identify online abuse on

online social networks. This provided a repeatable process that can be used to evaluate

classifiers and datasets for various NLP tasks as outlined in Chapter 3.
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Engagement with stakeholders such as young people, parents, clinicians and law

enforcement to understand their opinions on cyberbullying and its prevention. This study

is the first to engage all the identified stakeholder groups to devise automated strategies

for the mitigation and prevention of cyberbullying and online abuse. These strategies

were subsequently implemented in the cyberbullying prevention mobile app. The

qualitative and quantitative data derived from this engagement reinforced and extended

existing scientific knowledge on cyberbullying and the effectiveness of existing prevention

strategies and proposed new strategies to aid cyberbullying mitigation and prevention.

Crucially, it identified essential features for the cyberbullying prevention application to

implement to increase its acceptance by the stakeholders. A detailed account of this

phase of the research program is presented in Chapter 4.

The design and implementation of a novel cyberbullying detection and prevention

application (Bullstop), which comprises:

• a highly scalable and responsive cloud backend that is capable of utilising different

ML models and can generate personalised online abuse detecting classifiers for end-

users; and

• an Android application designed collaboratively with young people using a

participatory design approach to ensure that the final product is representative of

the target audience’s needs and is acceptable to them.

This novel application has been validated by target stakeholders and is (a) available for

societal good and (b) contributes technical advances and know-how for other researchers

working in this and related fields. The findings from this could be used by others to bring

cyberbullying detection algorithms into real-world use. Chapters 5 and 6 are focussed on

these areas of the research conducted.

The development of an approach for incorporating ethics by design into the

development of Artificial Intelligence (AI)-based systems by continuously assessing

the human impact of technical decisions made during the development of BullStop. There

has been ongoing debates about the ethicality of AI use in everyday application and now

more than ever, it is critical that AI-based applications are not only evaluated in terms of

their technical performance but also their impact on the society.
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Conducting a multi-dimensional evaluation study of BullStop to assess its

responsiveness, scalability, and acceptability. The computer-based experiments and the

human-based evaluation studies conducted to evaluate the system’s performance

provide a set of repeatable processes that future researchers can adopt and extend to

perform similar evaluation exercises to assess a system’s fitness for purpose along both

technological and human dimensions. These evaluation activities and their output are

discussed in Chapter 7.

Methodological reflections and recommendations from the use of UCD techniques

to engage with stakeholders in this domain. This methodological know-how (presented in

Chapter 8) will assist future researchers considering similar endeavours.

1.4 Thesis Structure

Chapter 2 presents a review of relevant scientific literature on cyberbullying and its

automated detection. It begins with an overview of the pertinent issues relating to

cyberbullying, its prevalence on social media and the negative consequences attributed

to its perpetuation. This is followed by a discussion of cyberbullying detection approaches

that explores the various techniques in use, including traditional machine learning- and

deep learning-based methods. Research focussed on developing automated

cyberbullying prevention solutions is reviewed, and this is followed by a detailed overview

of a novel survey conducted to scope existing commercial and free of charge mobile

applications for cyberbullying prevention and social media platform-led initiatives for

tackling online abuse.

Chapter 3 describes the creation of the large-scale multi-labelled cyberbullying dataset

that was generated to facilitate the training of the Machine Learning (ML) models used in

the cyberbullying detection system. It reports on the classification experiments conducted

to select the best performing model for use in the application and the results of the cross-

domain experiments performed to demonstrate the dataset’s generalisability.

Chapter 4 reports on qualitative and quantitative research activities conducted to

understand stakeholders’ opinions on cyberbullying prevention strategies and how these

could and should be best implemented in the mobile application. The output of these

activities established the user requirements for the cyberbullying prevention mobile
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application developed as part of the research programme, shedding light on previously

unexplored issues.

Chapter 5 discusses the participatory design approach adopted to create a prototype for

the proposed mobile application by working collaboratively with a group of young people

as co-designers. An evaluation of the process in the form of participants’ reflections is also

presented.

Chapter 6 introduces the BullStop application, its key components and functions. It

describes the application screens and sub-systems and discusses the technical

challenges encountered when developing the application and the limitations introduced

by these challenges.

Chapter 7 reports on the computer-based experiments conducted to evaluate the

system’s performance in terms of its responsiveness and scalability, and the

human-based evaluation studies conducted to investigate the application’s perceived

usefulness and usability. It also reports on an analysis of the application usage data

recorded by the mobile application over the course of a field trial.

Chapter 8 presents learning outcomes based on the researcher’s experience utilising the

user-centred design approach adopted to develop the mobile application.

Finally, Chapter 9 concludes the dissertation by summarising main findings from the

research and outlining future work identified as a consequent of completing the reported

research programme.
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Chapter 2: Literature Review

2.1 Introduction

According to the bullying prevention charity, Ditch The Label, an estimated 5.43 million

young people in the UK have been exposed to online bullying in the last year, and more

than a million young people are subjected to severe cyberbullying daily (Ditch The Label,

2020). A staggering 69% of reported cyberbullying incidents occurred on Online Social

Networks (OSN) like Facebook, Twitter and Instagram (Ofcom Research, 2019)

establishing Social Media Platforms (SMP) as the dominant means through which online

abuse is perpetuated

Today, there are two key aspects to cyberbullying: sociological and technological. The

sociological aspects of cyberbullying encompass areas such as the definition of

cyberbullying, its prevalence amongst different segments of society, its impact and

predictors, and the ways by which it can be mitigated and prevented. The technological

aspects of cyberbullying arise due to the use of technology as its primary means of

perpetuation and research in this area focuses on developing automated means to

identify, prevent and mitigate its occurrence.

This chapter details a review of relevant literature on the critical issues concerning

cyberbullying, its detection and prevention using automated means. Section 2.2 begins

by examining the sociological aspects of cyberbullying including its definitions, prevalence

and the effects of gender, race and age on its prevalence. Sections 2.3 and 2.4 then

examine cyberbullying from a technological perspective, beginning with a review of the

literature on the techniques used to automatically detect cyberbullying in Section 2.3 and

the various applications, systems and tools designed for cyberbullying prevention in

Section 2.4. Section 2.4 also reports on the results of a survey of mobile applications
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(currently available on the mobile app stores 12 ) that can aid the prevention and

mitigation of cyberbullying that was conducted as part of this research agenda. Finally,

Section 2.5 provides a summary of the chapter.

2.2 Definition, Prevalence and Consequences of

Cyberbullying

Cyberbullying is “an aggressive, intentional act carried out by a group or individual using

electronic forms of contact, repeatedly against a victim that cannot easily defend him or

herself ” (Smith et al., 2008, pg. 376). It is wilful and repeated harm inflicted through the

use of electronic devices (Hinduja and Patchin, 2008) and is often characterised by the

posting of comments online to defame an individual, including the public disclosure of

private information to inflict intentional emotional distress on the victim (Willard, 2005).

Berger (2007) (as cited in Abeele and Cock 2013, pg. 95) distinguishes two types of

cyberbullying: direct and indirect cyberbullying. He identified direct cyberbullying as when

a victim is engaged directly by the bully (typified by sending explicit offensive and

aggressive content) and indirect cyberbullying as a relational form of cyberbullying that

involves subtler forms of abuse such as social exclusion and the use of sarcasm to

ridicule.

While cyberbullying is regarded as a distinct and separate entity from traditional bullying

(Guerin and Hennessy, 2002; Wingate et al., 2013; Hinduja and Patchin, 2012; Law et al.,

2012), Olweus (2012) challenged this notion, claiming instead that cyberbullying should

be classified as a subset of traditional bullying in the same manner as physical (bullying

via physical violence or the threat of it) and relational (bullying someone by manipulating

the social networks around them) bullying. He argued that online abuse could only be

considered bullying if it satisfies three key conditions, namely: (i) the presence of a

deliberate intent to harm; (ii) repeated acts of aggression; and (iii) an imbalance of power

between bully and victim (Solberg and Olweus, 2003).

This argument, however, ignores the crucial role played by technology in the perpetuation

of cyberbullying. Technology introduces additional elements to cyberbullying, many of
1apple.com/uk/app-store
2play.google.com

24

S.D.Salawu, PhD Thesis, Aston University 2021.



which are irrelevant to traditional bullying and, as such, the three conditions above cannot

always be applied in the same strict manner. For example, uploading an embarrassing

picture or video to ridicule a person could qualify as cyberbullying due to its availability for

repeated viewings (and causing ongoing distress to the victim) even though the

originating act is a single isolated incident. Similarly, ascertaining a power differential

within an online interaction can be difficult as the traditional roles of oppressor and the

oppressed are more fluid in online social networks as observed in the many reports of

high profile individuals being subjected to online abuse (BBC News, 2020). The

cyberbullying definition by Hinduja and Patchin (2008) as wilful and repeated harm

perpetrated via electronic means is, therefore, more reflective of technology’s influence

on cyberbullying and, as such, is the definition adopted by this thesis. Crucially, this

definition identifies the deliberate and repeated nature of cyberbullying, which are

fundamental characteristics of the phenomenon while relaxing the power differential

requirement, an element of bullying that is quite difficult to measure in electronic

communications.

An implication of the differences in cyberbullying definitions can be seen in the

cyberbullying prevalence rate reported by many studies. The cyberbullying definition

adopted by a given study and how cyberbullying questions are framed in surveys could

impact reported frequencies. For example, in Coelho et al. (2016), respondents were

provided with a small list of specific cyberbullying examples, and the study reported a

lower victimisation rate (10%) compared to that of Zhou et al. (2013) which provided

respondents with an extensive list of cyberbullying examples and discovered a higher

victimisation rate of 57%. Equally, the classification of a cyberbullying victim by Olweus

(2012) as someone that has been bullied electronically at least “once in the past four

weeks” resulted in a lower victimisation rate (4%) compared to the 62% victimisation rate

reported by Gkiomisi et al. (2017) that defined a victim as someone that has experienced

at least one incident of online abuse in the previous six months. Furthermore, the time

reference used with these questions (e.g., the six months time reference utilised by

Gkiomisi et al. (2017) compared to three months used by Olweus (2012)) plays a

significant role in the number of cyberbullying incidents reported.

Interestingly, a similar trend was not observed with regards to cyberbullying offending

rates. While studies such as those by Lianos and McGrath (2018) and Zhou et al. (2013)

which provided survey respondents with several typical examples of abusive behaviours
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reported high offending rates of 80% and 35%, respectively, other studies such as those

by Machimbarrena and Garaigordobil (2018) and Twardowska-Staszek et al. (2018)

which used similar survey instruments reported lower perpetration rates (0.7% and 5.2%,

respectively). A possible explanation for the low rates reported by Machimbarrena and

Garaigordobil (2018) and Twardowska-Staszek et al. (2018) could be a tendency for

respondents to provide desirable answers when questioned on behaviours they believe

are socially unacceptable (Hinduja and Patchin, 2013) and/or could reflect the sample’s

demographic distribution (Slonje and Smith, 2008).

While age, gender, race, and sexual orientation are believed to impact reported

frequencies of cyberbullying (Griezel et al., 2012; Young and Govender, 2018; Hong

et al., 2016; DeSmet et al., 2018b), substantial relationships between these demographic

parameters and cyberbullying are yet to be consistently established. As girls

demonstrated a higher involvement in relational forms of bullying such as social exclusion

and emotional harassment (Hinduja and Patchin, 2008), the expectation is that they may

similarly exhibit a higher cyberbullying perpetration rate due to the similarity in the ways

both cyberbullying and relational bullying are perpetrated. The relationship between

gender and cyberbullying is quite remarkable in its inconsistency. While studies such as

those by Baldry et al. (2016), Gao et al. (2016), Guo2016, Li (2007), Beckman et al.

(2013), Eden et al. (2013), Fanti et al. (2012) and Calvete et al. (2010) reported that girls

are more likely to be victims of cyberbullying compared to boys, others like those of Snell

and Englander (2010), Kowalski and Limber (2007), and Navarro and Jasinski (2013)

discovered increased involvement of girls as both victims and perpetrators and some –

Williams and Guerra (2007); Griezel et al. (2012); Hinduja and Patchin (2008); Tokunaga

(2010) – found no gender differences at all in cyberbullying. The above studies, however,

do not account for previous experience as victims of traditional bullying, and when this

was taken into account, boys were found more likely to become cyberbullies than girls

(Ágnes Zsila et al., 2019).

The age of participants and the type of online social networks (OSNs) studied could also

introduce variations in findings. For example, boys were found to experience more bullying

on video game chatrooms while girls reported being bullied more on social media sites

like Facebook and Instagram (Foody et al., 2019). This suggests that gender proclivity

for certain types of online social activities and the OSNs on which cyberbullying is being
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studied may influence the gender distribution observed in cyberbullying victimisation and

perpetration.

Race and ethnicity are common themes used to perpetuate cyberbullying (Dinakar et al.,

2011) and yet only a handful of studies examined the connection between race, ethnicity

and cyberbullying. Consequently, much is still unknown about the nature of this

relationship. While studies such as those of Lee and Shin (2017) and Edwards et al.

(2016) discovered low prevalence rates for both cyberbullying victimisation and

perpetration amongst Asian, Hispanic and African Americans, others like those of Hong

et al. (2016) found African Americans are more likely to be bullied online compared to

European Americans. Goebert et al. (2011) also reported a higher victimisation rate

amongst ethnicities like Filipinos and Caucasians compared to Samoans and native

Hawaiians in a Hawaiian high school sample. Similarly, Yousef and Bellamy (2015)

reported that Arab Americans experienced cyberbullying victimisation more than African,

Hispanic or European Americans in American middle and high schools. This implies that

children from ethnicities considered foreign to the native culture are at a higher risk of

cyberbullying victimisation.

Much as for race and ethnicity, research investigating the relationship between sexual

orientation and cyberbullying is limited. DeSmet et al. (2018b) found higher levels of both

traditional bullying victimisation and cyberbullying offending amongst lesbian, bisexual,

gay and transgender (LBGT) youths compared to non-LGBT youths. Conversely, other

studies such as those by Ybarra et al. (2015) and Elipe et al. (2018) found no such or any

substantial relationship.

The prevailing cyberbullying victimisation and offending rates as reported by several

studies (Tokunaga, 2010; Young and Govender, 2018; Kowalski and Limber, 2007; Dehue

et al., 2008; Slonje and Smith, 2008; Ybarra and Mitchell, 2008) suggest that young

people’s involvement with cyberbullying increases with age up to ages 15 and 16 years,

after which a sharp decline is observed. This initial increase could be fuelled by improved

access to electronic devices (Slonje and Smith, 2008) and reduced parental supervision

as children grow older. The reduction in cyberbullying-related behaviours could then be

due to changing and expanding interests as young people transition out of teenagehood

and prepare for life after secondary school education.
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With regards its effects on young people, cyberbullying has been consistently linked to

many adverse outcomes including depression, anxiety, loneliness, low self-esteem,

suicide ideation, substance abuse and poor academic performance (Dehue, 2013;

Hinduja and Patchin, 2010; Berne et al., 2014; Hoff and Mitchell, 2009; Şahin, 2012; Fahy

et al., 2016; Kim et al., 2017; Wright, 2016; Khine et al., 2020; Martı́nez-Monteagudo

et al., 2020). It breeds a desire for revenge in male adolescents (Caetano et al., 2016),

causes social media exhaustion and abandonment in young people (Cao et al., 2019),

and negatively impacts young people’s overall engagement with ICT (Camacho et al.,

2018). Hinduja and Patchin (2019) found that adolescents bullied in school or online were

significantly more likely to have suicidal thoughts, and those that have experienced both

forms of bullying were more likely to attempt suicide. As cyberbullying victims are also

often victims of traditional bullying, the extent to which these adverse effects can be

attributed to cyberbullying has been questioned (Olweus and Limber, 2018). Kim et al.

(2018), however, established that, after controlling for traditional bullying, cyberbullying

was still found to be a significant predictor for emotional and behavioural problems. Smith

(2015) posited that only via longitudinal studies such as that of Gámez-Guadix et al.

(2013) can the isolated effects of cyberbullying be determined. Gámez-Guadix et al.

(2013) conducted a 6-month longitudinal study and found that participants who

experienced cyberbullying at the start of the study were more likely to suffer from

depression by the end of the six months compared to those that were not bullied online.

Likewise, Pabian and Vandebosch (2016) discovered that cyberbullying victims in their

sample became perpetrators within six months of being abused online as part of an

elaborate cycle of victimisation and offending.

A lack of affective empathy (Renati et al., 2012; Çiğdem Topcu and Özgür Erdur-Baker,

2012), moral disengagement (Yang et al., 2018), and problematic Internet use (e.g.,

visiting inappropriate websites) (Gámez-Guadix et al., 2016) have been positively

correlated with cyberbully offending. Cyberbullying has also been found to be more

prevalent in children with disruptive home lives (Subrahmanyam and Greenfield, 2008)

and is strongly influenced by the behaviours of peers and authoritative adults in children’s

lives (Hinduja and Patchin, 2013). Poor parental communication (Wang et al., 2009) and

restrictive supervision (Sasson and Mesch, 2014) have been found to increase the risk of

cyberbullying involvement while children that enjoy constructive relationships with parents

and guardians were found to be less likely to be involved in cyberbullying as victims or
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perpetrator (Doty et al., 2018).

Despite receiving considerable research attention in recent years, there is still much that

is unknown about cyberbullying. Compared to traditional bullying, it is still a relatively new

area of study (as can be attested to by the many inconsistent findings). As its

perpetration is facilitated by technology, it is not inconceivable that the lasting solutions to

its mitigation and prevention may also very well rely on technology. Indeed, the

automated detection of cyberbullying and online abuse has become a key subfield of

Natural Language Processing (NLP) and one that has witnessed considerable growth, as

is highlighted in the following sections.

2.3 Cyberbullying Detection Techniques

Schools’ responses to cyberbullying are typically aimed at raising awareness, fostering

positive values and interpersonal relationships amongst young people, as well as the

creation of policies and guidelines to govern the use of electronic devices for

extracurricular activities (Ortega-Ruiz et al., 2012; Cassidy et al., 2018; Doty et al., 2018).

Under the Education and Inspection Act 20063, schools in the United Kingdom are

required to provide a safe and healthy environment for all students, and this includes a

documented anti-bullying policy. While cyberbullying is covered within this, the reality is

that many schools are not well equipped to deal with cyberbullying and quite often there

is a disconnect between what teachers and school administrators know about

cyberbullying and its reality amongst students. Schools’ assemblies, technology use

guidelines, smart device usage restrictions and anti-cyberbullying posters are some of

the tools used by educators to mitigate cyberbullying.

As noted, it is typically the case that teachers have not been suitably trained and

educated on cyberbullying, its mitigation and prevention (BBC News, 2019).

Consequently, it often remains undealt with by schools and exists as an underbelly to

ordinary school experiences. The pervasive nature of cyberbullying also means that it

frequently occurs outside school boundaries, rendering educators somewhat powerless

in its mitigation.
3legislation.gov.uk/ukpga/2006/40/contents
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While initial technological efforts to combat cyberbullying have also sought to emulate the

same fundamental strategies used by schools (typically in the form of electronic

educational material or videos), there is now a paradigmatic shift to actively tackle

cyberbullying by applying computing techniques such as Machine Learning (ML) to detect

and prevent it. In this regard, the detection of cyberbullying and online abuse can be

formulated as a text classification problem that seeks to separate abusive and offensive

content from a larger text corpus.

Cyberbullying detection can, therefore, be formally defined as the automated identification

of bullying attacks perpetrated via electronic media, and it is concerned with performing

one or more of the following tasks:

i. identification of online harassment;

ii. computing the severity of the bullying incident;

iii. identification of the roles involved in a cyberbullying incident; and

iv. the classification of resulting events that occur after a cyberbullying incident (e.g.,

detecting the emotional state of a victim after receiving a bullying message).

Identifying online harassment involves detecting offensive language in messages and

posts and is sometimes required as an initial stage before further cyberbullying detection

tasks can be performed. The presence of offensive content within a message can be

used as the basis of computing a score symptomatic of the bullying severity, and it is

often the next in a sequence of cyberbullying detection activities following the successful

identification of cyberbullying attacks. In (iii) – roles identification – the aim is to decipher

how the actions of the parties involved affect the cyberbullying incident outcome and to

use this as the basis to assign bullying roles. Elements of the three tasks above are then

required in (iv) to associate the cyberbullying attack to seemingly unrelated events (e.g.,

associating past cyberbullying incidents to the manifestation of suicide ideation behaviour

on social media).

An extensive literature search was conducted across Scopus, ACM, IEEE Xplore and

Google Scholar digital libraries to discover relevant academic literature on the automated

detection of cyberbullying, online anti-social behaviour and harassment. In total, 105

papers were examined in detail as part of the literature review (Table 2.1)
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The literature on cyberbullying and offensive language detection can be broadly

categorised into two groups: those that use traditional machine learning approaches and

those that utilise deep-learning methods. Traditional machine learning approaches make

use of techniques such as supervised and semi-supervised learning; they represented

the state-of-the-art in offensive language detection for many years but have now been

largely surpassed by deep-learning methods. The following subsections discuss both

traditional ML and deep learning approaches to cyberbullying detection.

Transformer-based methods, a sub-category of deep learning approaches that has

recently emerged as the new state-of-the-art in many NLP tasks, are also discussed in a

separate subsection.
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Yin et al., 
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Bosse and 
Stam, 2011 
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Dinakar et al., 
2011 
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Bayes, 
SVM, J48, 
JRip 

English 

Sanchez and 
Kumar, 2011 

                   Naïve Bayes English 

Serra and 
Venter, 2011 

                   Neural 
Networks 

English 

Burn-Thorton 
and Burman, 
2012 
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Chen et al., 
2012 

                   Naïve 
Bayes, SVM 

English 

Dadvar and 
De Jong, 2012 
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Dadvar et al., 
2012a 
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Dadvar et al., 
2012b 

                   SVM English 

Dinakar et al., 
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Xu et al., 
2012a 
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Regression, 
LDA, 
Conditional 
Random 
Fields (CRF) 

English 

Xu et al., 
2012b 
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Bayes, 
SVM, 
Logistic 
Regression, 
LDA 

English 

Dadvar et al., 
2013a 
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Dadvar et al., 
2013b 
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Kontostathis, 
2013 
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2013 
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Bayes, 
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SVM, J48 
Nahar et al., 
2013 

                   SVM, LDA, 
HITS 

English 

Sheeba and 
Vivekanandan, 
2013 

                   Maximum 
Entropy, 
Fuzzy 
Systems 

English 

Bretschneider 
et al., 2014 

                    - English 

Dadvar et al., 
2014 

                   Naïve 
Bayes, 
SVM, C.45, 
MCES 

English 

Del Bosque 
and Garza, 
2014 

                   Multi-Layer 
Perceptron 
(MLP) 
Neural 
Network  

English 

Fahrnberger 
et al, 2014 

                    - English 

Huang et al., 
2014 

                   Radom 
Forrest, K-
FSVM, 
Naïve 
Bayes, 
Logistic 
Regression 

English 

Munezero, 
2014 

                   SVM 
(Linear) 

English 

Nahar et al., 
2014 

                   Naïve 
Bayes, 
SVM, J48 

English 
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Parime and 
Suri, 2014 

                   SVM, Multi-
Layer 
Perceptron 
(MLP) 
Neural 
Network 

English 

Potha and 
Maragoudakis, 
2014 

                   SVM, 
Logistic 
Regression 

English 

Chavan and 
Shylaja, 2015 

                   SVM-
PolyKernel, 
J48, SVM-
NormalizedP
olyKernel, 
RandomFor
est 

English 

Galán-García 
et al., 2015 

                   J48, Naïve 
Bayes, 
SMO, ZeroR 

English 

Hosseinmardi 
et al, 2015 

                   Naïve 
Bayes, SVM 

English 

Mangaonkar 
et al., 2015 
 
 
 
 

                   Naive Bayes 
(NB), 
Logistic 
regression,  
SVM 

English 

NaliniPriya 
and Asswini, 
2015 

                    English 

Nandhini and 
Sheeba, 
2015a 

                   Naïve Bayes English 
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Nandhini and 
Sheeba, 
2015b 

                   Naïve Bayes English 

Rafiq et al., 
2015 

                   Naïve 
Bayes, 
AdaBoost, 
Decision-
Tree, 
RandomFor
est 

English 

Rajadesingan 
et al., 2015 

                   - English 

Squicciarini et 
al., 2015 

                   C4.5 
Decision 
Tree 

English 

Al-Garadi et 
al., 2016 

                   Naive 
Bayes, 
SVM, 
Random 
Forest, KNN 

English 

Hosseinmardi 
et al., 2016 

                   Logistic 
Regression 

English 

Potha et al., 
2016 

                   SVM English 

Rafiq et al., 
2016 

                   AdaBoost, 
DecisionTre
e, Random 
Forest, SVM 
Linear, SVM 
Polynomial, 
SVM RBF, 
SVM 
Sigmoid, 

English 
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KNN, Naive 
Bayes, 
Perceptron, 
Ridge 
classifier, 
Logistic 
Regression. 

Singh et al., 
2016 

                   Probabilistic 
Information 
Fusion  

English 

Waseem and 
Hovy, 2016 

                   Logistic 
Regression 

English 

Zhang et al., 
2016 

                   PCNN English 

Zhong et al., 
2016 

                   SVM, 
Random 
Forest, CNN 

English 

Dani et al., 
2017 

                   Custom English 

Davidson et 
al., 2017 

                   Logistic 
Regression, 
Linear SVM 

English 

Foong and 
Oussalah, 
2017 

                   SVM English 

Ptaszynski et 
al., 2017 

                   CNN Japanese 

Sarna and 
Bhatia, 2017 

                   SVM, K-
Nearest 
Neighbour, 
Naïve 
Bayes, 
Decision 

English 
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Trees. 
Ting et al., 
2017 

                    English 

Zhao and 
Mao, 2017 

                   SVM 
(Linear) 

English 

Zhao et al., 
2017 

                   SVM 
(Linear) 

English 

Agrawal and 
Awekar, 2018 

                   CNN, LSTM, 
BLSTM, 
BLSTM with 
Attention 

English 

Bu and Cho 
2018 

                   CNN + 
LRCN 

English 

Chandra et al., 
2018 

                   RNN English 

Chen et al., 
2018 

                   SVM Linear, 
K-Nearest 
Neighbour, 
Random 
Forest, 
Logistic 
Regression 
Stochastic 
Gradient 
Descent, 
Naïve Bayes 

English 

Chen et al., 
2018 
 

                   CNN English 

Gorro et al., 
2018 
 

                   SVM English 
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Ibrahim et al., 
2018 

                   LSTM+CNN
+GRU 

English 

Lee et al., 
2018 

                   - English 

Pawar et al., 
2018 

                   Multinomial 
Naïve 
Bayes, 
Stochastic 
Gradient 
Descent 

English 

Ptaszynski et 
al., 2018 

                   Custom 
algorithm 

English 

Raisi and 
Huang, 2018a  
 

                   - English 

Raisi and 
Huang, 2018b  
 

                   LSTM, 
BOW, word 
embeddings 
and 
doc2vec, 
node2vec 

English 

Rakib and 
Soon, 2018 

                   Random 
Forrest 

English 

Rosa et al., 
2018 

                   CNN English 

Van Hee et al., 
2018 
 
 

                   SVM Linear English, 
Dutch 

Ventirozos et 
al., 2018 

                   Hidden 
Markov 
Model, SVM 

English 
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Yao et al., 
2018; 2019 

                   Custom 
CONcISE 

English 

Zois et al., 
2018 

                   Custom English 

Aci et al., 
2019 

                   MLP, 
Logistic 
Regression, 
Stochastic 
Gradient 
Descent 
SGD 

English 

Anand and 
Eswari 2019 

                   LSTM, CNN English 

Andleeb et al., 
2019 

                   SVM, Naïve 
Bayes 

English 

Anindyati et 
al., 2019 

                   CNN, LSTM, 
Bi-LSTM 

Indonesia 

Anitha et al., 
2019 

                   Naïve Bayes English 

Balakrishnan 
et al., 2019 

                   Random 
Forrest 

English 

Banerjee et 
al., 2019 

                   CNN English 

Chatzakou et 
al., 2019 

                   Naïve 
Bayes, 
LADTree, 
LMT, 
NBTree, 
Random 
Forest, 
Functional 
Tree; 
Random 

English 
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Forest + 
BayesNet + 
Naive Bayes 
+ AdaBoost, 
RNN 

Cheng et al., 
2019 

                   Custom English 

Cheng et al., 
2019 

                   GRU-RNN English 

Cheng et al., 
2019b 
 
 
 

                   Logistic 
Regression, 
Random 
Forest SVM 
Linear 

English 

Gutiérrez-
Esparza et al., 
2019 
 

                   OneR, 
Radom 
Forest, 
Variable 
Importance 
Measures 
VIM 

Spanish 

Haidar et al., 
2019 
 
 
 

                   SVM, K-
Nearest 
Neighbour, 
Random 
Forest, 
Bayesian 
Logistic 
Regression, 
Stochastic 
Gradient 
Descent 
 

Arabic 
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Kumari et al., 
2019 

                   CNN English 

Li, 2019                    - Chinese 
Mouheb et al., 
2019 

                   Naïve Bayes Arabic 

Novalita et al., 
2019 

                   Random 
Forest 

English 

Ousidhoum et 
al., 2019 

                   Logistic 
Regression, 
Bi-LSTM 

English, 
French, 
Arabic 

Saha and 
Senapati, 
2019 

                   LTSM English, 
German, 
Hindi 

Singh and 
Kaur 2019 
 
 

                   Cuckoo 
Search + 
SVM 

English 

Tomkins et al., 
2019 
 

                   SVM English 

Zhong et al., 
2019 

                   CNN English 

Chatterjee and 
Das, 2020 

                   - English 

Kargutkar and 
Chitre, 2020 

                   CNN English 

Niu et al., 
2020 

                   Bi-LSTM Chinese 

Purnamasari 
et al., 2020 

                   SVM English 
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Van Bruwaene 
et al., 2020 
 

                   SVM, CNN, 
XGBoost 

English 

Wu et al., 
2020 

                   fastText Chinese 

TABLE 2.1: Discovered literature on cyberbullying detection and the approaches used. 
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2.3.1 Traditional Machine Learning Approaches

Yin et al. (2009) appear to have pioneered work utilising supervised learning techniques

for cyberbullying detection. They theorised that, due to the low number of harassment

posts within a text corpus, a harassment post would appear significantly different from its

neighbouring posts. On this basis, they used a document’s immediate neighbourhood of

k posts (k = 3) as a classification feature to identify cyberbullying documents as those

exhibiting substantial difference from their neighbours. They used a Support Vector

Machine (SVM) classifier to analyse posts from social websites like Slashdot4 ,

Kongregate5 , and MySpace6 . A Support Vector Machine is a discriminative algorithm

that uses provided training data to output a hyperplane that separates the data into

different classes (Suthaharan, 2016). As offensive documents within a corpus share

similar characteristics, they will naturally be segregated by the hyperplane, effectively

classifying them as members of an offensive class. Since then, supervised learning has

emerged as the most frequently used machine learning technique for cyberbullying

detection (Salawu et al., 2017). The aim in supervised learning is the inference of a

mapping function from a labelled set of data (referred to as training data) such that

Y = f(X)

where X and Y are input and output variables, respectively. The mapping function makes

use of learned characteristics of the data (called features) to predict Y for new instances

of X. A feature is a measurable property of the data, for example, age, employment

status, credit score, and income level could be characteristics of a dataset used by a

model to make a mortgage decision. An integral part of training traditional ML models is

identifying the features to represent the data. These features often require tuning and

enhancing to derive the most benefits from them; this process is typically referred to as

feature engineering and can be as important to supervised learning as the choice of

algorithm used.

Unsupervised learning utilises algorithms that model the underlying structure of data to

learn more about it without a training sample, and semi-supervised learning techniques
4Slashdot.org
5Congregate.com
6myspace.com
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use elements of both supervised and unsupervised learning. Semi-supervised learning

is used when only a small subset of a large amount of data is labelled and involves first

using unsupervised learning techniques to discover and learn the structure of the data.

Supervised learning methods are then used to make best guess predictions for a sample

of the unlabelled data and the predictions fed back into the learning algorithm as training

data to develop a model for predicting the rest of the unseen data.

Following on from the work of Yin et al. (2009), other researchers like Dinakar et al.

(2011); Dadvar and Jong (2012); Dadvar et al. (2012a,b); Choudhury et al. (2013); Sood

et al. (2012a); Munezero et al. (2013); Nahar et al. (2014); Hosseinmardi et al. (2015);

Zhao et al. (2016) and Foong and Oussalah (2017) expanded on the use of SVMs for

detecting various forms of harassment and cyberbullying. Aside from SVMs, other

machine learning algorithms used for cyberbullying detection include Naı̈ve Bayes,

Logistic Regression, Decision Tree and Random Forests. Naı̈ve Bayes is a probabilistic

classifier that classifies data by finding models that segregate data based on the

assumption that the presence of one feature in a class is unrelated to the presence of any

other features (Rish, 2001). Logistic regression is a statistical method for analysing data

that contain independent variables that result in one of two possible outcomes (Dreiseitl

and Ohno-Machado, 2002). For example, in a mortgage application, an applicant’s age

can make them ineligible if they are younger than 18 years irrespective of their income. A

Decision Trees algorithm repeatedly splits data into a tree-like structure (hence the name)

according to a function that continuously maximises the separation of the data in such a

way that different classes of data are in different branches (Breiman et al., 2017).

Random Forests is an ensemble learning method that creates multiple decision trees

during training and predicts an output by combining the results of individual trees (Ho,

1995). These algorithms enjoyed huge popularity in cyberbullying detection research

and, as previously mentioned, represented the state-of-the-art in cyberbullying detection

for many years but are now more likely to be used as baseline classifiers.

Dinakar et al. (2011) improved on the work of Yin et al. (2009) by segregating the training

data into smaller clusters based on themes such as racism, culture, sexuality, and

intelligence. They theorised that the performance of an SVM classifier could be improved

by improving the homogeneity of the training data, resulting in improved performance by

the classifiers on the individual clusters compared to the superset of all training data. The

merits of this approach were corroborated by other researchers such as Dadvar and Jong
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(2012); Dadvar et al. (2012a); Nahar et al. (2014) and Romsaiyud et al. (2017) who

similarly segregated the training data before using it to train the classifier. The

improvement achieved by this method is due to the specialism introduced into the trained

model via the segregate training data, but this is achieved at the cost of the model’s ability

to generalise well on other topics. This exposed a critical failing of early work developing

machine learning models for cyberbullying detection: the models developed did not

generalise well when predicting unseen data from different domains. In attempting to

resolve this common issue, researchers devised innovative techniques to improve the

performance of classifiers. One such method is the use of feature selection algorithms

like Chi2 (Liu and Setiono, 1995), ReliefF (Sikonja and Kononenko, 2003), MRMR (Peng

et al., 2005), and SVM-RFE (Huang et al., 2014) to discover the most impactful features

within the training data as seen in the work of Zois et al. (2018); Yao et al. (2018, 2019)

and Çiğdem Aci et al. (2019). Trained models use these features to generate the

mapping functions employed to categorise text; therefore, by focusing on the most critical

features, a model can potentially improve its performance.

The use of voting functions (or ensemble learning) to combine the output of multiple

models is another performance-enhancing technique used across many studies. As

machine learning algorithms often excel at different aspects of the same task, combining

the outputs in this way could potentially improve overall performance. It is a technique

that is well used in many areas of NLP and has also gained traction in cyberbullying

detection. The work by Sood et al. (2012a,b); Mangaonkar et al. (2015); Nandhini and

Sheeba (2015) and Chavan and Shylaja (2015) are examples of studies that trained

multiple models for cyberbullying detection and combined the outputs of the different

models to achieve a better performance compared to that of a single model. While the

additional computational processes required to generate multiple predictions and train

multiple models makes the approach computationally expensive, it remains one of the

key strategies used in sensitive predictions such as medical diagnosis (Khuriwal and

Mishra, 2018) and financial decision-making (Randhawa et al., 2018). The subjectivity

involved in identifying cyberbullying could also introduce sensitivity to its automated

detection, and therefore, ensemble learning methods are similarly used to reduce the

possibility of false positives.

As previously mentioned, machine learning models represent data as a function of the

observed features, and the number of features used can vary from a few to tens of
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thousands. Conventionally, ML models developed for cyberbullying detection have used

feature extraction techniques like Bag of Words (BoW), TF-IDF (Term Frequency Inverse

Document Frequency) and N-grams to facilitate learning. BoW represents a document as

the count of its words while TF-IDF is the product of the term frequency (i.e., frequency of

a word – a raw word count in its simplest form) and inverse document frequency (a

measure of how important the word is) for a document. An N-gram is simply a sequence

of N-words, for example, “patient dog” and “fattest bone” are bi-grams of “the patient dog

eats the fattest bone”. More recently, word embeddings as popularised by vector space

models like word2vec (Mikolov et al., 2013), GloVe (Pennington et al., 2014), SSWE

(Tang et al., 2014) and fastText (Joulin et al., 2016) have emerged as standard features

used in text classification tasks. A word embedding is a real-valued vector presentation of

a word such that words that have the same meaning have a similar representation

(Bahdanau et al., 2017). A vector space model represents documents as vectors with the

vectors’ dimensions representing a word’s or phrase’s occurrence within the document.

Vectors are typically generated on large volumes of data and then used as features in

classifiers for downstream tasks such as offensive language and cyberbullying detection.

Zhao et al. (2016) are early pioneers in the use of these models for cyberbullying

detection and, more recently, studies like those of Rakib and Soon (2018) and (Wu et al.,

2020) have used word embeddings for similar purposes. These studies achieved superior

performance in cyberbullying detection tasks compared to conventional textual

representation like BoW, N-grams and TF-IDF and, since embeddings are typically

generated from large corpora of generic text, the ensuing models demonstrated a better

understanding of written language and are thus able to generalise better on different

types of data.

The use of bullying wordlists (human-curated lists of offensive terms) can be found in

some of the early work in cyberbullying detection research including that of Pérez et al.

(2012); Fahrnberger et al. (2014) and Kontostathis et al. (2013). It is, therefore, interesting

to discover its use in more recent work like that of Raisi and Huang (2018b); Lee et al.

(2018); Hang and Dahlan (2019) and Li (2019). That the use of wordlists has endured

for so long in cyberbullying detection research attests to its practicality in detecting online

abuse. Its efficacy somewhat lies in its simplicity and, while the presence of an offensive

term does not on its own indicate cyberbullying, when combined with other methods it can

augment the models’ overall effectiveness.
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The research discussed so far has predominantly focused on the use of what can be

described as content-based features in the detection of cyberbullying. These are features

generated from the actual content of messages. Cyberbullying detection is, however, not

limited to the use of these types of features alone. Aside from the text content of messages,

multi-modal information like image, video, user profile, number of followers, frequency of

comments and uploads can be mined from social media data. Such information has been

used successfully in studies such as those of Serra and Venter (2011); Nahar et al. (2014)

and Squicciarini et al. (2015) as features for cyberbullying detection. It should, however,

be noted that, while platform metadata like time and location of posting, number of posts,

etc. are reliable data provided by the SMP, user profile information like age and gender

is unreliable as it can be easily falsified and is not validated. The relative importance

assigned to such user-provided information should, therefore, be carefully considered to

avoid misrepresentation. This is likely why studies utilising multi-modal features (Dadvar

et al., 2013; Hosseinmardi et al., 2015; Rafiq et al., 2015; Al-Garadi et al., 2016; Ting et al.,

2017; Cheng et al., 2019) have favoured platform-generated data over user-provided ones.

As cyberbullying detection researchers continuously explored ways to improve the

performance of traditional ML models, their work became more multi-disciplinary, and

techniques were borrowed from other areas of NLP to advance the state-of-the-art in

cyberbullying detection. Sentiment analysis, a sub-field of natural language processing

that involves the analysis of opinions, sentiments, attitudes, and emotions expressed in

written language (Liu, 2012), is one such discipline. It has been successfully used in

areas such as detecting sentiments in informal product reviews on social media (Saif

et al., 2012) and analysing market trends in financial forecasting (Oliveira et al., 2013)

and has also found usage in cyberbullying detection.

In one of the notable works in this area (Munezero et al., 2013), it was discovered that the

use of sentiment-based features alone achieves lower performance than other feature

types. This is perhaps not surprising as the presence of negative sentiments within a

message is rarely a sufficient predictor for cyberbullying and harassment. These

sentiments could have been expressed in jest or sarcastically, and this is a likely reason

for why sentiment analysis techniques are often combined with other features like TF-IDF,

BoW and N-grams (Sanchez and Kumar, 2011; Nahar et al., 2013; Sheeba and

Vivekanandan, 2013; v Bosque and Garza, 2014; Munezero et al., 2014; Rafiq et al.,

2015; Squicciarini et al., 2015) when used for cyberbullying detection. The improvement
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in performance achieved in these studies by augmenting the detection process with such

sentiment analysis techniques was marginal at best and perhaps not worth the efforts

required to incorporate them. This could have contributed to the decline in the use of

these techniques in cyberbullying detection.

As mention above, the sentiments expressed within a message should not always be

interpreted literally as they could have been intended sarcastically. The ability to identify

sarcasm is, therefore, a useful trait for a cyberbullying detection classifier to possess.

Sarcasm detection is a sub-field of sentiment analysis that deals with the prediction of

sarcasm in text and the work done in this area could prove very beneficial to cyberbullying

detection. While sarcasm can be used to ridicule and by extension bully a person, it is

interesting that none of the existing cyberbullying datasets include sarcasm and other less

explicit forms of cyberbullying like social exclusion as labels. This highlights a critical area

of cyberbullying detection research that is currently being overlooked and in need of more

research attention. The techniques developed in studies such as those by Rajadesingan

et al. (2015); Amir et al. (2016); Cai et al. (2019); Pant and Dadu (2020); Jena et al. (2020)

and Potamias et al. (2020) to identify sarcasm in text have the potential to be explored

and adapted to improve the abilities of cyberbullying classifiers to correctly detect when

sarcasm is being used to perpetrate bullying.

Another area of cyberbullying detection that could benefit from more research is the

development of novel mechanisms by which to identify a pattern of harassment within a

conversation spanning several posts and messages. This involves identifying the

temporal characteristics of messages and posts and using them to facilitate cyberbullying

detection. Whilst studies by Potha and Maragoudakis (2015); NaliniPriya and Asswini

(2015); Potha et al. (2016); Soni and Singh (2018) and Gupta et al. (2020) are notable

works in this area, they simultaneously illustrate the paucity of research in this field. In

their work detecting sexual predation and harassment, Potha and Maragoudakis (2015)

and Potha et al. (2016) modelled offenders’ messages as a time series while NaliniPriya

and Asswini (2015) used ego networks to compute temporal changes in users’

relationships, and used the detected changes as features for cyberbullying detection.

Soni and Singh (2018) and Gupta et al. (2020) studied the temporal aspects of online

abuse by examining properties like messaging intervals, frequency of posting, and the

incident’s duration.
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Similar to the use of wordlists, expert and rule-based systems are two other non-ML

methods explored by researchers to enhance the performance of cyberbullying detection

classifiers. As these approaches allowed the injection of human-based knowledge into

the detection process, researchers were able to study areas of cyberbullying detection

that receive limited attention, such as the detection of subtler forms of cyberbullying.

BullySpace – developed by Dinakar et al. (2012) – represents one of the earliest attempts

at this; it uses a sparse matrix representation of assertions based on stereotypes derived

from LGBT-related instances of bullying. The assertions are statements like “lipstick is

used by girls”, “lipstick is part of makeup”, “makeup is used by girls” and so on. These

assertions then allowed the system to infer that a statement such as “did you go lipstick

shopping with your mum today” addressed to a heterosexual male can be classed as

bullying. While it was certainly an innovative attempt at augmenting cyberbullying

detection with real-world awareness, BullySpace’s reliance on a finite number of

assertions limits its usefulness to a narrow range of scenarios since the available

assertions cannot possibly cover the full range of bullying situations.

As cyberbullying detection researchers have become multi-disciplinary in their approach

to innovate and improve performance, the implication is that traditional ML models are

struggling to advance the state-of-the-art for cyberbullying detection. This has coincided

with the increasing popularity of deep learning models in NLP and consequently has

ushered in the present era of utilising deep-learning methods for cyberbullying detection.

2.3.2 Deep Learning Approaches

Deep learning is a computational technique for classifying patterns, based on sample

data, using artificial neural networks with multiple layers (Marcus, 2018). Neural networks

consist of a number of input units connected to multiple hidden layers (where the learning

takes place) which are then connected to a set of output units. The term deep refers to the

hidden layers of a neural network, thus the more hidden layers a network has the deeper it

is (see FIGURE 2.1). Inputs to a neural network can be images, parts of an image, words

or phrases. The network learns various relationships about its inputs and then uses this

to make predictions when exposed to unseen data.
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FIGURE 2.1: Neural Network vs Deep Neural Network.

While the historical roots of deep learning can be traced back to the late seventies and

early eighties (Schmidhuber, 2015), it was not until 2012 when the use of Deep Neural

Networks (DNN) achieved state-of-the-art results in the ImageNet object recognition

competition (Krizhevsky et al., 2017) that interest in its use was reignited along with

recent computing discoveries such as the use of the computer’s Graphical Processing

Unit (GPU) – a component developed for games and 3D graphics – for mathematical

computation.

A Convolutional Neural Network (CNN) is a deep neural network that uses convolution

and pooling functions to analyse their inputs (Kalchbrenner et al., 2014). The convolution

function is an operation between a vector of weights and an input vector, essentially

modifying the input vectors via a dot product. The pooling function is used to

down-sample the input, reducing its dimensionality and allowing for assumptions to be

made about properties of the discarded dimensions. CNN has been used in studies such

as those by Ptaszynski et al. (2017); Agrawal and Awekar (2018); Rosa et al. (2018); Bu

and Cho (2018); Anand and Eswari (2019); Zhong et al. (2019); Anindyati et al. (2019)

and Chen and Li (2020) to detect online abuse, outperforming traditional ML classifiers

such as SVM, Logistic Regression, Random Forest and Naı̈ve Bayes in cyberbullying

detection. While word embeddings have traditionally been used as inputs for CNN

models (Banerjee et al., 2019; Kargutkar and Chitre, 2020), studies such as those by

Zhang et al. (2016); Chen et al. (2018) and Zhao et al. (2020) have identified limitations

with their use and instead proposed alternative forms of text representations for use as

features.
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Zhang et al. (2016) proposed the use of an adapted CNN – Pronunciation-based CNN

(PCNN) – which used phoneme codes as input. A phoneme is a sound that is perceived

to have the same function by speakers of a language or dialect. In this way, the model

was able to compensate for misspelt words since the phoneme codes for both the correct

and misspelt words will be similar, thereby reducing the noise and errors commonly

present in social media data. The merits of their approach were demonstrated in its

improved performance compared to two other CNN models and traditional ML models.

Zhao et al. (2020) shared similar motivations (i.e., reducing noise introduced by misspelt

words) in their work experimenting with an alternative word embedding method called

Locality Sensitive Hashing-Based Word Embedding (LSHWE). Their method ensured

that the word representations for misspelt words are very similar to the correct spellings.

For example, both f*ck and fcukk will have similar representations allowing models to

process their occurrence identically. When used as features to a number of traditional ML

and DNN models, LSHWE performed better than other word embeddings representations

like word2vec, GloVe and SSWE. The inherently noisy nature of social media data has

been previously acknowledged (Zhang et al., 2016) and has become something of a

common issue faced by many researchers; hence, techniques such as these that are

aimed at reducing this noise can significantly improve the quality of prediction.

In their work, Chen et al. (2018) identified the short-form nature of tweets and social media

posts as a hindrance to the performance of word embeddings-based models as the context

relied on by these models might not be easily discerned in single tweets. To mitigate this,

they proposed the use of 2-dimensional TF-IDF features, and they demonstrated that this

outperforms models based on pre-trained word2vec vectors.

The use of CNN was not limited to detecting textual cyberbullying only; Kumari et al. (2019)

used text and images as inputs to a CNN model to detect cyberbullying situations where a

bullying message is accompanied by an image and vice versa. Hosseinmardi et al. (2016)

had previously experimented with image-based features for cyberbullying detection but

concluded that their contribution to the detection process was insignificant. Singh et al.

(2017) also included image-based features such as the presence of text signs, abstract-

rectangles and outdoor scenery in pictures and discovered an improvement when the

image-based features were combined with text features but that the use of image-based

features alone degrades performance (compared to text features). Kumari et al. (2019) and

Paul and Saha (2020) adopted a different approach in their use of image-based features
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to that of Hosseinmardi et al. (2016) and Singh et al. (2017). Using the Vine7-based

dataset created by Rafiq et al. (2015), Paul and Saha (2020) extracted visual features

from videos by decomposing the videos into frames and extracting image features from

the individual frames. These were combined with text features and used as input to a

hybrid BiLTSM-CNN model which achieved better performance compared to models using

text or visual features only. In the study by Kumari et al. (2019), both image and text were

separately converted into two-dimensional matrices and then merged into a single matrix

that served as the input to the neural network. They achieved their best results using

a single layer CNN compared to multi-layer models. As the experiments did not include

control experiments using text features only, it is difficult to determine the contributions

of the images to the detection process, but it nevertheless demonstrated the possibility

of using actual images as inputs for cyberbullying detection and, along with the work of

Paul and Saha (2020), both studies could herald more research in the use of multi-media

features for cyberbullying detection.

A Recurrent Neural Network (RNN) is another deep neural network architecture that has

been successfully applied to cyberbullying and online abuse detection (Chandra et al.,

2018; Zhang et al., 2019). RNNs are multilayer neural networks that maintain a vector of

hidden activations that are propagated through time (Bai et al., 2018) with each layer

representing observations at specific times. They differ from CNN, which are feed-forward

neural networks (i.e., connections between the nodes do not form a cycle), as the

connection between the nodes forms a directed graph. One way to think about an RNN

model is that it can store information about what has been calculated so far. RNNs,

however, do have a short-memory problem which means they can forget previously

processed information in longer sequences (e.g., a paragraph of text).

To address this short-memory problem, RNN-variants like LSTM (Long Short-Term

Memory) (Hochreiter and Schmidhuber, 1997; Graves and Schmidhuber, 2005) and GRU

(Gated Recurrent Unit) (Cho et al., 2014) were invented. These use mechanisms called

gates to regulate information flow, allowing them to decide which information is vital and

what to discard. GRU is computationally less expensive than LTSM, and its ability to

process long text sequences makes it very attractive as an NLP technique. Both LSTM

and GRU have been used for cyberbullying detection in recent works such as that of

Cheng et al. (2019); Saha and Senapati; Ibrahim et al. (2019); Anindyati et al. (2019); Niu
7vine.co
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et al. (2020) and Raisi and Huang (2018a) with impressive results. Agrawal and Awekar

(2018) experimented with different LTSM models (along with a CNN) model to detect

cyberbullying on three different datasets sourced from Formspring, Twitter and Wikipedia

and surpassed previous state-of-the-art results achieved on these datasets by traditional

ML models. Their work was significant as it was the first to attempt to transfer the

learning of DNN models across domains; while the results of their experiments were

mixed, they crucially demonstrated the possibility of transferring knowledge gained by a

DNN model on one social media platform to another. The same experiments were

repeated and validated to an extent by Dadvar and Eckert (2020); notably, they used the

same DNN models on another dataset sourced from YouTube, and the DNN models

outperformed traditional ML models that were trained on the YouTube dataset. The

implication is that in addition to improving on the state-of-the-art results achieved by

traditional ML, DNN models can generalise better on different types of data, which is

essential to making cyberbullying detection models available in tools accessible to the

public. Furthermore, unlike traditional ML models, deep learning models do not require

the extensive feature engineering associated with traditional ML algorithms, thus saving

valuable time and effort in the training process.

2.3.3 Transformer-Based Cyberbullying Detection

In 2017, a new neural network architecture called Transformer was released by Vaswani

et al. (2017) ushering in an era of Transformer-based advances in natural language

processing. A Transformer is a neural network model that improves on the foundations

laid by earlier deep neural networks models like the GRU and LSTM discussed in the

previous section. Like RNNs, they are designed to handle large sequential data (like a

paragraph of text) but, unlike RNNs, Transformers do not require that the sequential data

is processed in order. Transformers examine the data passed into the network and make

decisions about the importance of various parts of the data. Important parts are kept and

contribute to the learning, while unimportant parts are ignored and discarded. The

process by which a Transformer performs this selective leaning is called an attention

mechanism. The use of an attention mechanism is not novel; it has been successfully

used in RNNs and LSTMs to improve performance (Luong et al., 2015). Transformers,

however, dispense with recurrent and convolutional networks and rely solely on attention
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mechanisms as the primary means to facilitate learning (Vaswani et al., 2017). FIGURE

2.2 illustrates a Transformer model architecture.

FIGURE 2.2: The Transformer Model Architecture. Source: Vaswani et al., 2017.

The left side of FIGURE 2.2 is called the Encoder and is a network layer that takes an

input sequence (e.g., an English sentence) and maps it into a higher dimensional vector

which is then fed into another network layer (the Decoder – on the right side of the

diagram) that converts it to an output sequence. The output sequence can be the

sentence in another language if the task being performed is a language translation task

or values representing attributes of the sentence as per cyberbullying detection. Pradhan

et al. (2020) repeated the experiments conducted by Agrawal and Awekar (2018) using a

Transformer model in place of the CNN, and LSTM variant models used in the original

experiments and the Transformer model outperformed the results achieved by the DNN
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models in the original experiment. This suggests that the performance improvement

witnessed in many NLP tasks by Transformer-based models can be replicated in

cyberbullying detection. Within the last year, research in detecting cyberbullying and

offensive language has almost exclusively used Transformer-based models. This attests

to their superior performance in various NLP tasks, including cyberbullying detection

compared to other machine learning models. Rather than using the original Transformer

model as performed by Pradhan et al. (2020), the norm for researchers now is to utilise

Transformer-based models that already ‘understand’ the language of the target task due

to being pre-trained on a large text corpus written in the target language.

BERT (Bidirectional Encoder Representations from Transformers) is an example of such

pre-trained models. It is a multi-layer bidirectional language representation model based

on the Transformer (Devlin et al., 2018). A language representation model (discussed in

Section 2.3.2) is a way to represent natural language so it can be digested by ML models.

Traditionally, machine learning methods predict a word token in a sequence based on the

n tokens before or after the word. BERT, however, utilised different training strategies,

namely Masked Language Modelling (MLM) and Next Sentence Prediction (NSP), and

achieved better state-of-the-art results on many standard NLP tasks compared to other

models at the time. In Masked Language Modelling, the model is trained to predict a word

based on the tokens (i.e. words) before and after it. This is done by selecting a random

sample of tokens in the input sequence and replacing them with a special mask token. The

objective of MLM is to therefore calculate the cross-entropy loss on predicting the masked

tokens.

NSP involves training the model to learn the relationship between a pair of sentences.

Positive training data is created by extracting consecutive sentences from the same

document, while negative samples are created by sentence pairs constructed from

different documents. The training objective in NSP is to calculate the binary classification

loss for predicting if two sentences follow each other in the original text. The BERT

framework provided two modes of operations, namely pre-training and fine-tuning.

Pre-training allows the model to be trained on unlabelled data to fundamentally

understand a language. A 3.3 billion-word corpus sourced from the BooksCorpus (Zhu

et al., 2015) and Wikipedia was used to pre-train BERT to ‘teach’ it the English language.

Fine-tuning is a supervised learning process whereby the pre-trained model is further
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trained on domain-specific data to perform downstream tasks such as question

answering, sentence completion and text classification.

The success of BERT has led to the development of BERT-like models such as

DistilBERT, XLNet and RoBERTa, which were all designed to improve on BERT.

DistilBERT (Distilled BERT) is a compacted BERT-based model (Sanh et al., 2019) that

requires fewer computing resources and training time than BERT due to using about 40%

fewer parameters than BERT. DistilBERT preserves most of BERT’s performance gains

with only about 3% loss in language understanding compared to BERT. Similarly, AlBERT

(Lan et al., 2019) used parameter-reduction techniques to improve the original BERT’s

memory consumption and training speed while improving on the state-of-the-art results

achieved by BERT on many NLP benchmark test. XLNet (Yang et al., 2019) is an

autoregressive BERT-like model designed to overcome some of BERT’s limitations.

XLNet was pre-trained on over 32 billion-words and achieved a 2%-15% improvement on

the results attained by BERT on various standard NLP tasks.

RoBERTa (Robustly Optimized BERT pretraining Approach) is an optimised BERT-based

model (Liu et al., 2019) that improves on BERT’s performance via four key adjustments to

the training process. The first is using a dynamic masking strategy that generates a new

masking pattern every time a training sequence is fed to the model. In comparison,

BERT’s static masking strategy results in the same mask being used four times on each

text sequence during training. Another adjustment made compared to BERT was

removing the NSP Loss during training. The NSP Loss is an auxiliary measure that

indicates if sentence pairs are from the same document or different ones. The developers

of RoBERTa discovered that the removal of this NSP Loss resulted in an improvement in

downstream task performance. BERT uses a character-level Bytes-Pair Encoding (BPE)

(Sennrich et al., 2016) scheme to generate text representations. BPE represents word

tokens by substituting common pairs of characters by another that is not present in the

token. For example, the pair “aa” in “faaaat” can be represented by “Z” such that “faaaat”

becomes “fZZt”. Instead of using a character-level encoding, RoBERTa utilises a

bytes-level strategy that substitutes consecutive bytes of data with a byte that does not

occur in the data resulting in millions of additional parameters for RoBERTa. Finally,

RoBERTa was pre-trained on substantially more data (161GB versus BERT’s 16GB)

using larger data batches than BERT, allowing for a more efficient training process
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through parallelisation. The resultant effect of these modifications is an up to 20%

performance improvement on standard NLP state-of-the-art tests compared to BERT.

BERT appears to be exceedingly popular amongst Transformer-based models for use in

cyberbullying and offensive language detection as seen in recent works like that of Malte

and Ratadiya (2019); Sohn and Lee (2019); Liu et al. (2019); Mozafari et al. (2020);

Yadav et al. (2020); Paul and Saha (2020); Tanase et al. (2020); Elmadany et al. (2020)

and Dadas et al. (2020). It has been successfully used in detecting online abuse in

different languages including English (Malte and Ratadiya, 2019; Yadav et al., 2020; Liu

et al., 2019), Hindi (Malte and Ratadiya, 2019), Mexican-Spanish (Tanase et al., 2020;

Guzman-Silverio et al., 2020), Chinese (Sohn and Lee, 2019), Polish (Dadas et al., 2020)

and Arabic (Elmadany et al., 2020) and, in all instances, it improved on the results

achieved by traditional and DNN models. While the pre-trained version of BERT is more

frequently used, fine-tuning the model has also been explored (Sohn and Lee, 2019;

Elmadany et al., 2020; Mozafari et al., 2020) to equally impressive results. Aside from

BERT, other Transformer-based models used in detecting online abuse include

DistilBERT and ALBERT as seen in the work of Zinovyeva et al. (2020) Tripathy et al.

(2020).

Since its introduction in 2017, the Transformer has progressed the state-of-the-art in

many NLP tasks, and it is therefore not surprising that its popularity has extended into the

field of cyberbullying and online abuse. As recent innovations in machine learning such

as massively deep language models like Turing NLG8 and GPT-39 continue to push the

boundaries of NLP, it is not inconceivable that the boundaries of cyberbullying detection

research could be similarly pushed. Existing models like BERT and RoBERTa have

already demonstrated the high performance achievable by deep language models, and

the massive deep language models promise even better performance. The challenge for

researchers is to think beyond experimental results to developing practical tools that

make use of these models to provide viable and accessible solutions to cyberbullying and

online abuse.
8microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
9openai.com/blog/openai-api/
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2.4 Systems, Tools and Applications for Preventing

Cyberbullying

The mitigation and prevention of cyberbullying using technology can be approached from

two perspectives, namely:

i. Raising awareness and encouraging positive emotions such as empathy amongst

users; and

ii. Detecting online abuse and mitigating its effect using punitive actions such as blocking,

reporting and deleting abusive messages and senders.

In the former category, studies like those of Mancilla-Caceres et al. (2012, 2015);

Calvo-Morata et al. (2018); Garaigordobil and Martı́nez-Valderrey (2018) and DeSmet

et al. (2018a) adopted a serious games approach to combating bullying. Serious games

are games intended for purposes other than pure entertainment. They are educational

tools designed to impart learning that can be transferred into the real world and as

cyberbullying prevention tools; they adopt a reflective approach by making users aware of

the impact of inappropriate behaviour.

Conectado (Calvo-Morata et al., 2018) is a serious game designed to increase students’

cyberbullying awareness. The game places students in the role of bullying victims and

encourages them to reflect on how this makes them feel and develop strategies for

managing the process. A game like this can be an effective tool for increasing empathy

amongst children and help reinforce a moral core, especially amongst young children.

The Friendly ATTAC (Adaptive Technological Tools Against Cyberbullying) game

developed by DeSmet et al. (2018a) is similarly aimed at encouraging positive attitudes

amongst young people; it places them in a made-up scenario involving online abuse with

players expected to make decisions at key points in the game. When the correct choice is

selected from a list of options, the player is rewarded with a pleasant buzz, and poor

decisions are accompanied by a negative buzz. Likewise, Cybereduca (Garaigordobil

and Martı́nez-Valderrey, 2018) is a trivia pursuit game designed to raise cyberbullying

awareness amongst young people and encourage positive behaviours.
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CyberBullet (Mikka-Muntuumo et al., 2018), Cyberhero Mobile Safety (Hswen et al., 2014)

and SimSafety (Cebolledo and Troyer, 2015) simulates a fictitious Online Social Network

(OSN) and is aimed at teaching teenagers how to recognise cyberbullying situations and

deal with such situations. Serious games are just one way to positively influence young

people’s attitudes to cyberbullying. Other works in this category include that of Dinakar

et al. (2012) who advocated the use of reflective interfaces to make apparent the impact

of offensive remarks when communicating online and Fan et al. (2016) proposal of a new

social media platform (SMP) designed from the onset to discourage cyberbullying. Social

media has essentially become a platform for people to showcase their living experiences

and an intrinsic part of their identity (Gündüz, 2017). As discovered by Kumar et al. (2011),

social media users exhibit a herd mentality when migrating to new platforms. Users are

more likely to migrate to a new online social network after a substantial number of their

friends on an existing network have moved to the new platform. As such, a proposal such

as that of Fan et al. (2016) would likely face an adoption barrier in attracting significant

numbers of users from major OSNs like Facebook, Instagram, Twitter and TikTok to the

new SMP. The use of a reflective user interface as suggested by Dinakar et al. (2012) is

a more practical solution that can be implemented into existing platforms as well as new

tools. The effectiveness of reflective user interfaces can be seen on popular SMPs like

Facebook, Instagram and Twitter where they are used to hide sensitive content from users

by default (see FIGURE 2.3) or identify tweets glorifying violence (FIGURE 2.4). A natural

extension for this feature would therefore be to display similar warnings for other forms of

online abuse such as cyberbullying.

FIGURE 2.3: Use of reflective interface on Instagram, Twitter and Facebook to warn users
of sensitive content.

Studies that favoured the punitive actions approach included the work by Lempa et al.

(2015) that developed a ‘sentence checker’ mobile app to check text messages for
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FIGURE 2.4: Example of a tweet identified as glorifying violence by Twitter.

offensive content before sending. The app, however, cannot be used to send messages

and is not integrated with other messaging applications; as such, users have to re-type

out the checked message to send via a messaging application. This introduces usability

and efficiency concerns and is highly likely to serve as an adoption barrier for the app.

The McDefender app developed by Vishwamitra et al. (2017) improves on attempts such

as that of Lempa et al. (2015) by integrating to the Facebook app. Their MCDefender app

‘listens’ to keystrokes directed at the Facebook app and analyses the words entered in

the Facebook app for offensive content. The McDefender app can then initiate actions

such as displaying a warning to the user, blocking the Facebook app or even alerting an

adult if cyberbullying is detected. While this is an improvement on the approach adopted

by Lempa et al. (2015), the app’s implementation introduces a number of concerns. By

listening for keystrokes entered in the Facebook app, McDefender operates in a similar

manner to spyware which may cause reputational issues for the app and discourage

potential users. It is also doubtful that an app operating in this manner would be accepted

in major app stores. Additionally, as the app can only detect keystrokes entered within the

Facebook app, it can be easily thwarted by accessing Facebook via a web browser or

using one of the many ‘unofficial’ Facebook mobile apps. Moreover, the app would have

to be updated in tandem with the Facebook app, and if a future update to the Facebook

app changes its internal identifier (which is used by McDefender to identify which app to
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monitor), the McDefender app will no longer be able to detect text entered in the

Facebook app.

Weider et al. (2016) designed a messaging app with an inbuilt cyberbullying detector as

an alternative to messaging tools like WhatsApp, Snapchat and Telegram. This, however,

places the app in direct competition with established messaging platforms with millions of

existing users, thus affecting the app’s likely uptake amongst potential users. Social Net

(Shome et al., 2019), an OSN designed to discourage cyberbullying and promote positive

online behaviours, would likely face similar adoption concerns. As a cyberbullying

prevention approach, the creation of new systems and tools to compete with existing and

popular SMPs is always likely to encounter difficulty enticing users. Users already have

deep connections (via their contacts and friends) to existing social media platforms, and

for a user to consider adopting a new online SMP, a significant proportion of their existing

social network must be present on the new platform. Integrating cyberbullying prevention

tools to existing platforms is, therefore, a better strategy as the adoption barrier is

significantly lower in this case.

Furthermore, a new platform will have to provide a fundamentally different social

proposition to what is currently available on existing platforms, and the potential to reduce

instances of online abuse (which affects a minority) is unlikely to sway the majority of

users in this regard. There could also be potential privacy concerns with Social Net as

the platform includes a component that continuously takes pictures of users while on the

social network. These facial expressions are then analysed to determine the users’

emotional state, and this is used to predict if they are engaging in abusive behaviour. It is

difficult to imagine users being comfortable with this ‘big brother’ like monitoring for an

application designed for social networking, regardless of the reasoning behind this. While

the system achieved impressive results in determining when users are engaged in

abusive behaviour from the capture of facial expressions, the authors did not perform

controlled experiments with other types of features (e.g., text features) for comparison.

Talukder and Carbunar (2018) AbuSniff and Silva et al. (2016, 2018) BullyBlocker are

other cyberbullying prevention tools designed to work with Facebook. Both improved on

McDefender’s approach by integrating to the Facebook API instead of the app itself.

AbuSniff was designed to identify potentially abusive contacts from a user’s friends list. It

makes such judgements based on users’ responses to a series of questions about their
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friends and social media usage. While integrating to the Facebook API is undoubtedly an

improvement over McDefender, expecting users to answer the same set of questions for

every contact on their friends lists (which can include hundreds of contacts) is impractical.

An approach like that of BullyBlocker (Silva et al., 2018) is perhaps a preferable option.

The system extracts and analyses data from a Facebook account and uses this

information to compute a cyberbullying risk score for the user. Similarly, CyberDect

(López-Martı́nez et al., 2019) uses the Twitter API to retrieve tweets for specified users

and their followers and analyses the tweets to decide if they are being bullied or engaging

in abusive behaviour. As such, it is less of a cyberbullying prevention tool than an

analysis tool that can potentially be used by human moderators to investigate bullying

reports. In this regards, it shares similarity with the Cyberbullying Response System

proposed by Oh (2019), a system that can retrieve data about users from multiple online

social networks and determine if they are engaging in abusive behaviours.

The most significant limitation of these studies, however, is that of the availability of the

tools developed. None of the tools and applications described in the studies above is

available to the public for use, highlighting a need for researchers to think beyond the

process of detection to the viability and practicability of making their work available for

use. An overview of these studies is presented in TABLE 2.2
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Study Approach Implementation
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Chatzidaki et al. (2011) X X

Dinakar et al. (2012) X

Mancilla-Caceres et al., (2012; 2015) X X

Hswen et al. (2014) X X

Lempa et al. (2015) X X

Cebolledo and Troyer (2015) X X

Fan et al. (2016) X

Weider et al. (2016) X X

Vishwamitra et al. (2017) X X

Calvo-Morata et al. (2018) X X

Garaigordobil and Martı́nez-Valderrey (2018) X X

DeSmet et al. (2018b.) X X

Mikka-Muntuumo et al. (2018) X X

Lazarinis et al. (2019) X X

Shome et al. (2019) X

López-Martı́nez et al.( 2019) X X

Oh (2019) X X

TABLE 2.2: Automated cyberbullying prevention studies reviewed.

2.5 Mobile Apps for Cyberbullying Prevention and Mitigation

In recent years, mobile applications have become central to the use of social media. It is

estimated that 42% of global social media usage is via a mobile device, with regions like

East Asia, America and Europe demonstrating even higher rates of 70%, 61% and 59%,

respectively (Statista, 2019). In the UK, 86% of the time spent online by people aged 13+

years is via mobile apps (Ofcom Research, 2019). This popularity of mobile apps also

extends into the field of cyberbullying prevention and a simple search for the word
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“cyberbullying” on the major mobile app stores reveals a varied selection of software

applications, games and educational tools related to cyberbullying prevention and

mitigation. With there being so many apps on the apps stores purporting to prevent

cyberbullying, validating the veracity of these claims is of utmost importance to this PhD

research. A survey was, therefore, conducted to discover and review existing mobile

applications that can assist with cyberbullying and are available to the public to assist

cyberbullying prevention.

2.5.1 Method

The main objective of the survey was to explore the mobile apps that have been developed

to detect and prevent cyberbullying and online abuse, the functionalities provided by these

applications, and their effectiveness in typical cyberbullying scenarios. The survey was,

therefore aimed at answering the following questions:

Q1: What mobile apps are available to combat cyberbullying?

Q2: What are the approaches used by these apps to tackle cyberbullying?

Q3: How effective are these apps in their approaches?

The survey method comprised 3 phases which were:

(i) initial search for cyberbullying prevention apps;

(ii) filtering and shortlisting of search results; and

(iii) evaluation of the apps.

The activities conducted within each phase are discussed below and illustrated as a flow

chart in FIGURE 2.5.

Phase 1: Initial search for cyberbullying prevention apps

Searches using the keywords “bully”, “cyberbully” and “cyber-bully” were conducted on

the Google Play and Apple App stores in July 2020 to discover cyberbullying prevention

and mitigation mobile apps. An initial list comprising 239 apps across both app stores

was compiled after eliminating duplicate entries from the search results. Apps that do not

provide automated features that can help detect and prevent online abuse and
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FIGURE 2.5: Mobile apps survey search and selection process flow chart.
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cyberbullying (e.g., entertainment games and information-only apps) were removed from

the list resulting in a shortlist of 76 apps. The 76 apps were then used in a snowballing

technique to discover more qualifying apps. This was done by reviewing the apps

included in the “Similar Apps” (Google Play Store ) and “You May Also Like” (Apple App

Store) lists (see Figures 2.6 and 2.7) on the app page for each one of the 76 apps. For

each of these apps, any previously undiscovered app featured in the “Similar Apps” and

“You May Also Like” list that met the selection criteria was included, resulting in an

expanded list of 81 apps.

FIGURE 2.6: ‘Similar Apps’ listing on an app’s page on the Google Play Store.

FIGURE 2.7: ‘You May Also Like’ apps listing on an app’s page on the Apple App Store.
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Phase 2: Filtering and shortlisting of search results

Of the 81 mobile apps shortlisted, 79 of them can be categorised as parental monitoring

applications. These are apps that allow parents to monitor children’s activities on their

mobile phones (in the same manner as spyware) and enforce device usage restrictions.

They are usually implemented as a pair of linked apps: a parent app with a monitoring

dashboard and a companion app installed on the child’s mobile phone. The companion

app sends detailed usage statistics to the parent’s app and enforces restrictions set by the

parent on the child’s phone. This is achieved using the following tactics:

(i) preventing access to inappropriate websites (e.g., pornography, gambling);

(ii) preventing access to websites blacklisted by parents;

(iii) preventing access to mobile apps blacklisted by parents;

(iv) enforcing usage restriction set by parents;

(v) detecting inappropriate and risky behaviours on social media; and

(vi) detecting the use of inappropriate language.

While controlled and supervised Internet usage is sometimes used as a cyberbullying

prevention strategy (Mazari, 2013), its efficacy as a long-term solution has been

questioned (Sasson and Mesch, 2014). Additionally, the primary risk posed by

inappropriate websites like pornographic and gambling websites is not that of

cyberbullying; as such, preventing access to these sites is not a valid cyberbullying

prevention strategy. Of the above tactics, detecting inappropriate and risky behaviours on

social media (v) and detecting improper language use (vi) are the most relevant features

that can assist with cyberbullying prevention and mitigation. An assessment of the mobile

apps was conducted to identify the ones that meet these two requirements. This was

done by reviewing all the available product literature for these apps including websites,

app store descriptions, user reviews and testimonials and checking for references to

these two functionalities (i.e., (v) and (vi)). If it was not possible to ascertain the presence

or absence of these features in the app from the product literature, then the app was

installed and a quick appraisal conducted by running the app for a short period to make
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the determination. Five parental monitoring apps (Bark for Kids10 11, Bosco Family Safe12

13, Sentry Parental Control14, Surfie Parental Control15 16, MMGuardian Parental

Control17 18) and two non-parental monitoring apps (BBC Own It19 20 and ReThink21 22)

met these requirements and made up a final shortlist of 7 apps.

Phase 3: Apps Evaluation

To evaluate the efficacy of these apps for cyberbullying prevention and mitigation, tests

relating to the two functionalities of interest were created and applied. The tests were

designed to evaluate the apps’ abilities to accurately detect different types of abusive

messages when sent or received on a number of dummy social media accounts created

to facilitate the evaluation. Eight Gmail accounts were created for this purpose with five

accounts designated as ‘child’ accounts and the other three as ‘parent’ accounts. The

child accounts were used to create dummy profiles on Twitter, Instagram and Facebook,

which were then used to conduct the tests. The three ‘parent’ accounts were used to

monitor the ‘child’ accounts’ social media activities via the parental monitoring

applications. Details of all eight accounts are provided in TABLE 2.3.

Two Android smartphones and two iPhones were used to conduct the tests with one

phone per mobile Operating System (OS) designated as the parent phone and the

remaining two phones (one per OS) designated the child phones. The accompanying

parent apps for the parental monitoring applications were installed on the parent phones

while the child variants of the apps were installed on the child phones. All phones were

assigned working mobile numbers with activated data plans so that SMS and WhatsApp

could also be used to send messages. The tests devised to evaluate the apps were

based on the apps’ functionalities advertised in the product literature and are therefore

not exhaustive of what is possible with regards to cyberbullying prevention. The tests

involved sending messages containing apparent and subtle offensive content (see
10apps.apple.com/us/app/bark-connect/id1477619146?ls=1
11play.google.com/store/apps/details?id=cm.pt.barkparent
12apps.apple.com/il/app/bosco-family-safety-locator/id1169993252
13play.google.com/store/apps/details?id=com.bosco.boscoApp
14play.google.com/store/apps/details?id=com.sentry.parental
15apps.apple.com/gb/app/surfie-parent/id997309073
16play.google.com/store/apps/details?id=com.puresight.surfie.parentapp
17apps.apple.com/app/apple-store/id951476346
18play.google.com/store/apps/details?id=com.mmguardian.parentapp
19apps.apple.com/gb/app/bbc-own-it-keyboard-and-diary/id1444459647
20play.google.com/store/apps/details?id=uk.co.bbc.ownit
21apps.apple.com/us/app/rethink-stop-cyberbullying/id1035161775
22play.google.com/store/apps/details?id=com.rethink.app.rethinkkeyboard
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Account Identifier Role
Online Social Network

Description
X X X

Bullstoptest1@gmail.com Explicit
Cyberbully

X X X A dummy online abuser
account used to send
explicitly offensive
messages to the
victim account and has
also shared explicitly
offensive content
publicly

Bullstoptest2@gmail.com Subtle
Cyberbully

X X X A dummy online
abuser account used
to send subtle bullying
messages to the
victim account and
has also shared subtle
but offensive content
publicly

Bullstoptest3@gmail.com Victim X X X A dummy cyberbullying
victim account that
receives the sample
abusive messages sent
by the bullying account.

Bullstoptest4@gmail.com Neutral X X X
Bullstoptest5@gmail.com Neutral X X X
Bullstoptest6@gmail.com Parent

Dummy parent
account.

Bullstoptest7@gmail.com Parent

Dummy parent
account.

Bullstoptest8@gmail.com Parent

Dummy parent
account.

TABLE 2.3: Overview of dummy accounts used to conduct the tests.
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Test Description Functionality Being Tested Evaluation Criteria
1 Bullstoptest1 sends ten

explicit, offensive
messages via Twitter,
Instagram, Facebook,
WhatsApps and SMS to
Bullstoptest3.

Detect the presence of
offensive content in the
messages sent by
Bullstoptest1.

The number of
messages that were
correctly detected.

2 Bullstoptest2 sends ten
subtle but abusive
messages via Twitter,
Instagram, Facebook,
WhatsApps and SMS to
Bullstoptest3.

Detect the presence of
offensive content in the
messages sent by
Bullstoptest2.

The number of
messages that were
correctly detected.

3 Bullstoptest3 receives ten
explicit, offensive
messages from
Bullstoptest1.

Detect the presence of
offensive content in the
messages received by
Bullstoptest3.

The number of
messages that were
correctly detected.

4 Bullstoptest3 receives ten
subtle but abusive
messages via Twitter,
Instagram, Facebook,
WhatsApps and SMS
from Bullstoptest2.

Detect the presence of
offensive content in the
messages received by
Bullstoptest3.

The number of
messages that were
correctly detected.

5 Bullstoptest4 follows
Bullstoptest1 on social
media.

Detect that Bullstoptest4
is interacting with a user
(Bullstoptest1) that has
shared explicit and
offensive content publicly
on Twitter, Facebook and
Instagram.

The number of
connection attempts to
a publicly abusive user
that was detected
across the three social
media platforms.

6 Bullstoptest5 follows
Bullstoptest2 on social
media.

Detect that Bullstoptest4
is interacting with a user
(Bullstoptest2) that has
shared subtle but
offensive content publicly
on Twitter, Facebook and
Instagram.

The number of
connection attempts to
a publicly abusive user
that was detected
across the three social
media platforms.

TABLE 2.4: Description of tests conducted to evaluate the apps.

Appendix A.1 for examples of the messages) using the dummy accounts and rating the

apps on their performance on each test. The number of offensive messages or

inappropriate behaviours detected was assigned as the app’s score for each test. Six

tests were conducted in all, and these are detailed in TABLE 2.4 with the results

presented in TABLE 2.5 It should be noted that Tests 3 and 4 are the same as Tests 1

and 2 but with the app’s performance evaluated from the receiver’s perspective.
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Number of messages detected (out of 10)
App T1 T2 T3 T4 T5 T6
BBC Own It 10 4 - - 0 0
ReThink 9 1 - - 0 0
Bark for Kids 10 3 10 3 0 0
Bosco Family Safety 10 1 10 1 0 0
Sentry Parental Control 8 0 8 0 0 0
Surfie Parental Control 10 0 10 0 0 0
MMGuardian Parental Control 9 0 9 0 0 0

Legend
Score Number of offensive messages detected.
- The feature is not available in the app.

TABLE 2.5: Results of evaluation for cyberbullying prevention apps.

The apps can be broadly divided into two categories based on the functionalities

provided: parental monitoring apps and reflective keyboards. All the apps performed well

in detecting the use of common offensive terms as indicated by their scores for Tests 1

and 3 but performed poorly with regards detecting subtle forms of abuse as seen in their

performance on Tests 2 and 4 (the feature tested in Tests 3 and 4 are not available in the

BBC Own It and ReThink apps). The apps’ overall performance strongly suggests the

use of wordlists to identify offensive content as they struggled to detect misspelt swear

words (e.g., sluuut) and the use of non-profane terms to abuse. BBC Own It

demonstrated the best performance in detecting non-profane abusive messages (e.g.,

“ha ha you are so fat” ) followed by Bark for Kids. They were the only apps that

demonstrated the presence of additional logic apart from the use of wordlists.

As the only two apps that were not parental monitoring applications, BBC Own It and

ReThink provided similar functionalities. Both are implemented as virtual keyboards that

can be used instead of the default phone’s virtual keyboard, thus providing the apps with

the ability to monitor all words typed on the mobile phone regardless of the app being

used. When an offensive term is detected, a message advising against the use of such

terms is displayed to the user (see Figures 2.8 and 2.9). In this manner, the apps serve

as reflective tools that seek to educate young people about the potential impact of the

way they communicate. Both apps are capable of detecting the use of common offensive

terms but, as previously mentioned, BBC Own It performed better at detecting subtler

forms of abuse. It also featured additional content such as educational videos and text on

mental health, general well-being and staying safe online and a daily mood tracker that can
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suggest additional resources depending on the user’s (self-reported) mood. In contrast,

the ReThink app’s only function is to serve as a reflective virtual keyboard. Between

the two, BBC Own It appears the better app, it is better designed, intuitive and includes

additional features not present in Rethink. Crucially, it also outperformed ReThink (and all

the other apps) in the detection of offensive messages.

All five parental monitoring apps – MMGuardian Parental Control, Bark For Kids, Sentry

Parental Control, Surfie Parental Control and Bosco Family Safety – performed well in

detecting offensive messages containing profane words but only Bark for Kids

demonstrated a performance close to that of BBC Own It in detecting subtler forms of

abuse. Along with Bosco Family Safety, the two apps featured well-designed user

interfaces that were easy to navigate and use. It (Bark for Kids) was the only app to

perform fine-grained detection of different types of offensive content by associating the

offensive messages with different labels indicating the type of offensive content detected

(see FIGURE 2.10) and can be used with an extensive list of social media, messaging

and email platforms (more than any of the other mobile apps). Unlike the BBC Own It and

ReThink apps, it is not a free app, a trait it shares with all the other parental monitoring

apps.

All five parental monitoring apps are capable of monitoring a child’s social media

accounts, including Twitter, Instagram, Facebook, and WhatsApp and alerting the parents

when inappropriate content is detected. The key differentiator between these five apps

and the several other parental monitoring apps available on the apps stores is that these

apps claimed to monitor and detect risky online behaviours. In practice, their

interpretation of this claim appears to be alerting parents when the time spent online by a

child is over a configured threshold, or the child visits inappropriate web sites (e.g.,

gambling or pornographic sites). None of the apps alerted the parent when the monitored

account started following a publicly abusive social media user.

At the beginning of this section, three key questions were identified, the answers to which

are the objectives of this survey. The questions and the answers provided by the survey

are summarised as follows:

Q1: What mobile apps are available to combat cyberbullying?

Answer: The survey uncovered seven mobile applications that stand out amongst the 81

apps included in the review. Of these, BBC Own It demonstrated the best performance
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in identifying different types of offensive and bullying content and is followed by Bark For

Kids in terms of the ability to detect offensive content. Both apps are intuitive and well

designed.

Q2: What are the approaches used by these apps to tackle cyberbullying?

Answer: Without examining the applications’ source code, it is impossible to fully confirm

the approach used by the apps to detect offensive language, but the results of the tests

conducted suggest the use of wordlists is common to all the applications.

Q3: How effective are these apps in their approaches?

Answer: All the apps correctly identified offensive messages containing common profane

terms, but they all struggled in detecting abusive messages when profane terms are not

used.

FIGURE 2.8: BBC Own It sample screens
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FIGURE 2.9: ReThink sample screens

FIGURE 2.10: Bark For Kids sample screens

75

S.D.Salawu, PhD Thesis, Aston University 2021.



FIGURE 2.11: Bosco Family Safety sample screens

FIGURE 2.12: Sentry Parental Control sample screens
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FIGURE 2.13: Surfie Parental Control sample screens

FIGURE 2.14: MMGuardian Parental Control sample screens

2.6 Cyberbullying Prevention by Social Media Platforms

As the overwhelming majority of cyberbullying and online abuse occur on online social

networks, platform providers are often derided for not doing enough to stem the onslaught

of cyberbullying (BBC News, 2017, 2018). In response to these accusations, SMPs have

increased efforts in combating online abuse in recent years. In 2013, Facebook launched

its Bullying Prevention Hub23to provide parents, educators, and teens with resources to
23facebook.com/safety/bullying
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deal with cyberbullying and since then it has increased efforts to discourage online abuse

on the platform by removing posts promoting violence and hate speech and banning users

that share such content. Similarly, Twitter introduced enhancements to its platform to help

users combat online abuse; these enhancements include an online abuse help centre,

filtering of inappropriate content (e.g., adult-related content are hidden by default for all

Twitter users), preventing the creation of multiple accounts with the same email address or

phone number, and aggressively identifying and banning accounts used to send offensive

tweets (this resulted in some of the dummy accounts used in the evaluation of the mobile

apps being banned for posting offensive content).

Perhaps, the most significant indication of SMPs resolve to tackle online abuse is Twitter

and Instagram’s trial of new features that analyse content before it is shared and then

displaying reflective messages imploring the user to edit the message before posting if the

post is deemed offensive (Porter, 2019; Statt, 2020). This could significantly reduce the

amount of online abuse on this platform. And yet, these features have been undergoing

testing for over a year and are yet to be released to the public while many other features

unrelated to tackling online abuse have been released on these platforms during the same

period. It is possible that the sensitive and subjective nature of online abuse necessitate

additional considerations and hence the prolonged testing period. It is also likely that

these platforms that are commercial entities and rely on the continuous patronage of their

multitude of users to generate revenue via advertising are cautious about being accused

of censoring free speech and the potential loss of users that may accompany this and thus

it may become a waiting game to see which of the platforms is brave enough to implement

this feature first. And while the waiting continues, so does cyberbullying.

2.7 Summary

Compared to the mature literature on traditional bullying, cyberbullying research could be

considered to be in a state of vibrant adolescence. A substantial amount of research effort

has been expended to understand this modern scourge of the Internet. Despite this, there

are still a great many inconsistencies about cyberbullying. Researchers disagree about

how it should be defined, its prevalence as reported across several studies, and to what

extent its negative consequences can be genuinely attributed to it alone.
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In presenting a review of the pertinent literature on cyberbullying and its automated

detection, this chapter has chronicled the development of the various techniques used for

the automated detection of cyberbullying. As researchers continuously seek to improve

the performance of cyberbullying classifiers, they have explored a range of diverse

techniques that extended from the use of traditional ML algorithms like SVM, Logistic

Regression and Naı̈ve Bayes to augmenting these algorithms with ideas borrowed from

different fields like sentiment analysis, expert systems and decision support applications.

These later gave way to DNN models like CNN, GRU and LTSM that demonstrated better

abilities to generalise and understand written text contextually. Additionally, these DNN

models are capable of transferring knowledge learned on one task or domain to another,

exposing even more opportunities to improve the detection process. This and other

developments have contributed to progressing cyberbullying detection research to a point

where it is now possible to predict the presence of various forms of offensive content to a

reasonable degree of accuracy.

With regards to the prevention and mitigation of cyberbullying using technology, two key

strategies were uncovered from the literature. These are: the use of reflective techniques

to prevent the occurrence of cyberbullying by raising awareness of its consequences

amongst young people, and the use of punitive actions to protect victims and discourage

perpetrators from re-offending. The innovative propositions discovered are, however,

severely limited by a failure to fully consider the practical implications of their

implementations. Consequently, these tools have not achieved the desired impact in the

lives of many cyberbullying victims. Indeed very few of these tools progress beyond being

research prototypes. The literature review also uncovered a disparity between the

number of studies focused on improving the performance of cyberbullying detection

algorithms and those directed at building tools that make use of these algorithms to

prevent cyberbullying in favour of the former. This can be likened to an ‘arms race’ where

researchers are focused on attaining better cyberbullying detection performance metrics,

but less attention is devoted to creating cyberbullying prevention tools to utilise the

models resulting from such research to curb the real-world damage being caused by

cyberbullying.

This has thus revealed an underserved area of research, namely the creation of viable

and practical tools for the prevention and mitigation of cyberbullying – tools that can

achieve the impact many existing studies desired but could not achieve due to adoption
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barriers created by their implementations. To achieve this level of impact requires

adequate consideration for the needs and desires of the young people whose lives are

the most affected by cyberbullying as well as practical considerations on the usability and

technical challenges posed by the SMPs where it is most prevalent.

This dissertation, therefore, contributes to knowledge in this underserved area. It reports

on the development of a mobile-based cyberbullying prevention system designed to be

highly scalable and responsive to make it viable for use with modern OSN and provide

users with a similar level of performance as typically experienced on popular social media

mobile apps. In creating the system, the research agenda focused on developing a

method that allows the use of different ML models for cyberbullying detection. This

deviates from the majority of existing research in cyberbullying detection, which are

focused on devising new algorithms and models to detect online abuse. By proposing an

application framework that enables the tool to use the results of these other research

works (and their future iterations), the research program imbued the tool with

unprecedented longevity. As the state-of-the-art in cyberbullying and offensive language

detection is advanced by the development of new models, the tool benefits by adopting

these models to improve its performance. The system is also novel in its ability to

generate a personalised online abuse classifier for each user. These personalised

classifiers are initially trained using a large scale cyberbullying and offensive language

dataset that uses a fine-grained annotation scheme to identify various types of

cyberbullying. This dataset was purposely created by the research program to serve as

the mechanism to impart relevant contextual knowledge about the different forms of

cyberbullying on social media to the classifiers (see Chapter 3). Ground truth provided by

end-users in the form of messages re-classified by them is then used to retrain the

personalised classifiers providing them with additional insight into end-users’ behaviours

and communication styles.

As previously mentioned, the implementation of existing cyberbullying prevention tools

may introduce adoption barriers, thus negatively impacting their acceptance amongst the

intended audience. To ensure that the tool meets its potential end-users’ requirements,

collaborative design methodologies were used to capture the stakeholders’ requirements

and guide the design and technical development of the proposed novel mobile-based

cyberbullying prevention application.
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Chapter 3: Fine-Grained Detection of Cyberbullying

on Social Media

3.1 Introduction

The standard supervised method when using machine learning techniques for

cyberbullying detection is to train a model using a suitable corpus and to then predict

unseen data based on the trained model. In the previous chapter, the four key tasks

performed in cyberbullying detection were discussed. While all these tasks can be

achieved using NLP techniques, a paucity of large, labelled datasets remains a crucial

challenge for cyberbullying detection research (Dadvar and Jong, 2012). The

domain-bias, composition and taxonomy of a dataset can impact the suitability of models

trained on it for cyberbullying detection purposes, and therefore the choice of training

data plays a significant role in the performance of these tasks. A key deliverable of this

research is a novel mobile application that uses a deep learning model to identify different

forms of cyberbullying and online abuse. The model’s ability to predict cyberbullying

instances is made possible via knowledge acquired by training it on a new English

language dataset created as part of this research to facilitate the deep learning model’s

understanding of different types of online abuse and how these are manifested on social

media.

This chapter details the methods and processes employed in sourcing, creating and

annotating the new dataset and is broadly divided into four sections. Section 3.2 reviews

existing cyberbullying datasets initially considered for use for this research and the

reasons why they were deemed unsuitable for training the model. In Section 3.3, the

dataset and the method used for creating it are discussed. Section 3.4 reports on the

experiments conducted to train and evaluate different machine learning models with the
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dataset to select the best performing model to use in the mobile application. The

cross-domain evaluation experiments conducted to assess the dataset’s suitability for the

intended task in comparison to two other popular datasets are also discussed in this

section. Finally, Section 3.5 concludes the chapters with a summary of the contents.

3.2 Existing Cyberbullying Datasets

As a suitable dataset was required to facilitate the training of the ML models used in the

developed cyberbullying prevention system, existing cyberbullying and offensive

language datasets were reviewed to identify potential candidates to use as training data

for the models. The requirement was for a large labelled dataset that contained a

substantial proportion of online abuse samples and utilised a labelling scheme that

allowed for identifying different forms of online abuse including less frequent types such

as social exclusion, threat and sarcasm.

Existing cyberbullying and offensive language datasets can be categorised into three

groups based on the annotation scheme used. These are binary, multi-class and

multi-label. When the aim is to simply determine if a document contains bullying content,

then this is formulated as a binary classification problem with two classes (bullying and

non-bullying). This approach is widely used in literature, as seen in the work of

Kontostathis et al. (2013); Mangaonkar et al. (2015); Rafiq et al. (2015) and Zhao et al.

(2016). An observed limitation of binary-labelled datasets is the low sophistication

exhibited by models trained on such datasets. This is because of the limited choice of

labels available; all documents can only belong to one of two classes, restricting

opportunities to explore the finer details of the identified abuse (e.g. racism or sexism).

Furthermore, these types of datasets are predominantly focused on the identification of

profane and aggressive text; while cyberbullying is often associated with profanity and

online aggression, its highly subjective nature means that its accurate detection extends

beyond the mere identification of swear words since cyberbullying can be perpetrated

without the use of profane or aggressive language. Binary-labelled datasets are therefore

often unable to capture this complexity. Multi-class and multi-label classification are the

two other text categorisation approaches used to annotate datasets, and both improve on

the limitations of binary classification.
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A multi-class approach expands the number of classes to more than two, and documents

are assigned to only one of the possible classes. This is the approach taken by Waseem

and Hovy (2016); Chatzakou et al. (2017); Founta et al. (2018); Rezvan et al. (2018) and

Bruwaene et al. (2020). The limitation with this approach is that a document can

simultaneously belong to more than one class and, as a multi-class approach can only

associate a document with a single class, other applicable classes are ignored, resulting

in a less refined classifier. In a multi-label classification approach, documents are

associated with one or more classes and, in so doing, more information about the

documents is made available. This is the approach favoured by recent studies such as

those by Hee et al. (2018) and Ousidhoum et al. (2019).

The Barcelona Media corpus1, a cyberbullying and offensive language dataset sourced

from a number of websites and online forums including Kongregate, Slashdot, Formspring

and MySpace, featured heavily in earlier work (Dadvar and Jong, 2012; Nahar et al., 2014;

Huang et al., 2014; Nandhini and Sheeba, 2015) on cyberbullying detection. This dataset

was created over ten years ago, and many of the social networks used to source the data

are now defunct. This dataset is also no longer representative of contemporary social

media usage, which is now typified by social media platforms like Instagram, Twitter and

Facebook. More recently, studies such as those by Chatzakou et al. (2017); Founta et al.

(2018) and Davidson et al. (2017) have created newer cyberbullying datasets sourced from

popular SMPs. As mentioned earlier, the composition of a dataset can impact its relevance

to target tasks. For example, a model trained on data sourced from websites like Wikipedia

and online blogs — where content is typically in article format with several hundreds and

thousands of words — may not readily lend itself to use on unseen data sourced from

platforms like Twitter and Instagram where content is considerably shorter (the maximum

number of characters allowed in a tweet is 280) due to the possibility of the model using

features learnt from the longer documents that are not present in the short documents;

this difference in the documents’ lengths can therefore affect a model’s performance.

The distribution of classes within a dataset may also be inadequate. For example, the

number of documents assigned the bullying label may be so small compared to those

classified as not bullying that the model struggles to extract meaningful features to

represent the minority class and may even acquire a bias in what it associates with the

minority class. In such situations, oversampling techniques like SMOTE (Synthetic
1caw2.barcelonamedia.org
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Minority Over-Sampling Technique) (Chawla et al., 2002) and ADASYN (Adaptive

Synthetic) (He et al., 2008) may be required to improve the number of minority

observations within the dataset. Oversampling, however, repeats or generates new

documents based on existing ones which makes the resulting dataset less natural in its

textual composition.

Twitter is one of the most widely used social media platforms globally (Statista, 2020b); it

is, therefore, unsurprising that it is frequently used to source cyberbullying data.

Bretschneider et al. (2014) annotated 5,362 tweets, 220 of which were found to contain

online harassment; the low proportion of offensive tweets present within the dataset (less

than 0.05%), however, limits its efficacy for classifier training. More recently, studies such

as those by Rajadesingan et al. (2015); Waseem and Hovy (2016); Davidson et al.

(2017); Chatzakou et al. (2017); Hee et al. (2018); Founta et al. (2018) and Ousidhoum

et al. (2019) have produced datasets with higher positive samples of cyberbullying and

online abuse (see TABLE 3.1). Rajadesingan et al. (2015) labelled 91,040 tweets for

sarcasm. This is noteworthy because sarcasm is rarely featured as a label in existing

cyberbullying datasets even though it is regularly used to perpetrate online bullying; it

remains undetected in many instances due to the difficulty in detecting sarcasm using

conventional NLP techniques like sentiment analysis. As the dataset was created for

sarcasm detection only, this is the only context that can be learned from the dataset. As

such, any model trained with this dataset will be unable to identify other forms of

cyberbullying, thus limiting its usefulness.

In creating their bi-lingual dataset sourced from ASKfm, Hee et al. (2018) used a

comprehensive labelling scheme that acknowledges the different types of cyberbullying

discovered in the retrieved post types. The dataset’s effectiveness in training classifiers

may, however, be affected by the low percentage of abusive documents present. The

dataset created by Founta et al. (2018) contained a substantial number of abusive

documents but suffered the same limitations mentioned above as other multi-class

labelled datasets (Chatzakou et al., 2017; Rezvan et al., 2018; Bruwaene et al., 2020).

Ousidhoum et al. (2019) used one of the most comprehensive annotation schemes

encountered in an existing dataset and additionally included a very high percentage of

positive cyberbullying samples in their dataset but, regrettably, the number of English

documents included in the dataset is small in comparison to other datasets and not of a

sufficient proportion to ensure adequate training for English language models.
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Zampieri et al. (2019) used a hierarchical annotation scheme that, in addition to

identifying offensive tweets, also identifies if such tweets are targeted at specific

individuals or groups and what the type of target it is (i.e., individual - @username or

group – “. . . all you republicans”). Hierarchical annotation schemes have indeed shown

promise as observed in their use in recent offensive language detection competitions like

hatEval2 and OffensEval3; that said, however, a hierarchical scheme could inadvertently

filter out relevant labels depending on the choice of a first-level label and the

subjectiveness of the sentence. For example, if the first-level classification objective is to

determine if a post is bullying or not then a post like “That’s worth a sh*t load of money ”

would be (correctly) classified as “not bullying” and go no further along the hierarchy. In

contrast, a flat annotation scheme will at least identify “sh*t” as a profane word ensuring

that any applicable label is still assigned, subsequently improving the context that can be

learned from the document.

Finally, Kaggle4 , an online resource for machine learning and NLP owned by Google,

provided the Kaggle Insult (Kaggle, 2012) and Kaggle Toxic Comments (Kaggle, 2018)

datasets to aid offensive language detection. The Kaggle Insult dataset contains about

4,000 posts labelled using a binary annotation scheme and thus inherits the limitations

observed with this type of annotation scheme. The Kaggle Toxic Comments dataset is a

large corpus of almost 160,000 Wikipedia comments labelled using a multi-label

annotation scheme. The dataset is, however, focused on obscene, toxic and hate-speech

content and ignored other subtler forms of online abuse that are of interest to this

program of research, thus limiting its suitability for the program’s purposes.

While a number of these datasets (see TABLE 3.1) possess some of the attributes

desired by the research (e.g., large number of samples, fine-grained annotation scheme,

high proportion of labelled offensive instances), no single dataset captured all the

research program’s requirements. The dataset created by Hee et al. (2018) was the most

appropriate dataset for the research study’s purposes but as mentioned above the total

number of English documents and the percentage of this that were positive abusive

samples were lower than the desired magnitude for the research program. This,

therefore, necessitated the need for a novel large-scale cyberbullying and offensive
2competitions.codalab.org/competitions/19935
3sites.google.com/site/offensevalsharedtask
4kaggle.com
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language dataset that contains a sizeable proportion of abusive content and also

explored less common forms of online bullying like sarcasm, social exclusion and threats.

3.3 A Twitter-Based Dataset for Detecting Cyberbullying and

Offensive Language

This section discusses the creation of a new large-scale Twitter-based dataset for detecting

instances of cyberbullying and offensive language. The dataset was used to train various

machine learning models as part of a series of experiments to identify the best performing

model for use in the novel cyberbullying prevention mobile application.

3.3.1 Dataset Objective

The key objective for creating this novel dataset was to provide a dataset that included

a substantial proportion of different forms of bullying and offensive language so that ML

models can be trained to predict these types of online abuse and to do so without the

need for oversampling techniques. In reviewing various samples of offensive tweets, it was

discovered that a single tweet could simultaneously contain elements of abuse, bullying,

hate speech, sex talk and many other forms of objectionable content. As such, attributing

a single label to a tweet ignores other salient labels that can be ascribed to the tweet.

Consequently, this research proposed a multi-label annotation scheme that identifies the

many offensive content elements present in a single tweet. Twitter, being one of the largest

online social networks with a user base in excess of 260 million (Statista, 2020b) and highly

representative of current social media usage, was used to source the data.

3.3.2 Labels

As mentioned in the previous chapter, cyberbullying can be direct and indirect with direct

cyberbullying typified by targeted aggression involving the use of profanity and

inappropriate language. This type of cyberbullying is evident and more frequently

encountered and is often the only type of cyberbullying captured in many existing

datasets. In contrast, indirect cyberbullying is a subtler form of online abuse that is not
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Dataset Source Size % of
Abusive
samples

Labels
Annotation

Bretschneider
et al. (2014)

Twitter 5,362 0.05 Harassment, Not Binary

Rajadesingan
et al. (2015)

Twitter 91,040 9.99 True, False Binary

Waseem and
Hovy (2016)

Twitter 16,907 31.6 Racism, Sexism,
None

Multi-class

Davidson et al.
(2017)

Twitter 25,296 81.5 Hate speech,
offensive, neither

Multi-class

Chatzakou et
al. (2017)

Twitter 9,484 40.9 Aggressor, Bully,
Spammer,
Normal

Multi-class

Van Hee et al.
(2018)

ASKfm English
(13,698)
Dutch
(78,387)

English
(4.73)
Dutch
(6.97)

Threat/blackmail,
Insult,
Curse/Exclusion,
Defamation,
Sexual Talk,
Defense,
Encouragement
to harass

Multi-label

Rezvan et al.
(2018)

Twitter 24189 12.9 Harassment,
Non-
Harassment,
Other

Multi-class

Founta et al.
(2018)

Twitter 99,800 46.1 Abusive, Hateful,
Normal, Spam

Multi-class

Zampieri et al.
(2019)

Twitter 14000 - Offensive (Yes,
No), Targeted
(Yes, No), Target
(Individual,
Group, Other)

Multi-class

Ousidhoum et
al. (2019)

Twitter English
(5,647)
French
(4,014)
Arabic
(3,353)

English
(75.9)
French
(71.9)
Arabic
(64.3)

26 labels
covering 5
attributes

Multi-label

Kaggle Insult Various 3,947 26.6 True, False Binary
Van Bruwaene
et al. (2020)

Various 14,900 25.1 Bullying (True,
False),
Cyberaggression
(True, False)

Multi-class

Kaggle Toxic
Comments Wikipedia

159,570 10.2 Toxic,
Severe toxic,
Obscene, Threat,
Insult,
identity hate

Multi-label

TABLE 3.1: Comparison of cyberbullying and offensive content datasets.
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always apparent and is, therefore, more challenging to capture. As a result, existing

datasets rarely contain examples of this type of cyberbullying. The annotation scheme

developed was, therefore, designed to not only capture both direct and indirect bullying

but also the presence of offensive and abusive language in the tweets. For example, a

tweet such as “f*ck you @username, you f*cking loser ” would be labelled as bullying,

profanity and insult as it is a profane and insulting tweet with a clear intended target (i.e.

the individual identified by @username) while a tweet such as “sh*t, sh*t, sh*t” is just a

profane utterance without an obvious target and would only be labelled as profanity. The

labels used to annotate the dataset are presented in TABLE 3.2.

Label Description Example
Bullying Tweets directed at a

person(s) intended to
provoke and cause offence.

@username You are actually
disgusting in these slutty pictures
Your parents are probably
embarrassed. . .

Insult Tweets containing insults
typically directed at or
referencing specific
individual(s).

@username It’s because you’re a
c*nt isn’t it? Go on you are aren’t
you?

Profanity This label is assigned to any
tweets containing profane
words.

@username please dont become
that lowkey hating ass f**king
friend please dont

Sarcasm Sarcastic tweets aimed to
ridicule. These tweets may
be in the form of statements,
observations and
declarations.

@username Trump is the most
innocent man wrongly accused
since O.J. Simpson. #Sarcasm

Threat Tweets threatening violence
and aggression towards
individuals.

@username Let me at him. I will
f*ck him up and let my cat scratch
the f*ck out of him.

Exclusion Tweets designed to cause
emotional distress via social
exclusion.

@username @username You must
be gay huh ? Why you here ? Fag
!! And I got 2 TANK YA !

Porn Tweets that contain or
advertise pornographic
content

CLICK TO WATCH [link] Tinder Sl*t
Heather Gets her A*s Spanks and
Spreads her C*nt

Spam Unsolicited tweets containing
and advertising irrelevant
content. They typically
include links to other web
pages

HAPPY #NationalMasturbationDay
#c*m and watch me celebrate
Subscribe TODAY for a free #p*ssy
play video of me [link]

TABLE 3.2: Annotation scheme with examples.
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3.3.3 Data Collection

As mentioned earlier, a key objective in creating the dataset was ensuring it contained a

significant portion of offensive and cyberbullying samples to facilitate training without the

need for oversampling; this, therefore, influenced querying strategies. Rather than

indiscriminately mining Twitter feeds, a series of searches formulated to return tweets

with a high probability of containing the various types of offensive content of interest was

executed. For insulting and profane tweets, Twitter was queried using the 15 most

frequently used profane terms on Twitter as identified by Wang et al. (2014). These are

fuck, shit, ass, bitch, nigga, hell, whore, dick, piss, pussy, slut, puta, tit, damn, fag, cunt,

cum, cock, blowjob, retard. To retrieve tweets containing sarcasm, the hashtag #sarcasm

was used to query the Twitter Streaming and Search APIs. This strategy is based on the

work of Rajadesingan et al. (2015) which discovered that sarcastic tweets often

include#sarcasm and #not hashtags to make it evident that sarcasm was the intention

To discover prospective query terms for threatening tweets, 5,000 tweets were randomly

selected from the streaming API using the ’account home’ metadata as the filtering

criteria. Account home identifies the location set by the user on their profile and countries

classed as English-speaking were used as filters. From the 5,000 tweets, 326 tweets

were classified as threatening; the hashtags used in these tweets were then retrieved and

used as query terms to extract other threatening tweets. The hashtags were #die,

#killyou, #rape, #chink, #muslim, #FightAfterTheFight, #cops, #karen

and#karensgonewild. These hashtags were then used as the initial seed in a snowballing

technique to discover other relevant hashtags. This was done by querying Twitter using

the hashtags and inspecting the returned tweets for violence-related hashtags. The

following additional hashtags were subsequently discovered through this process:

#killallblacks; #killallcrackers; #blm; #blacklivesmatter ; #alllivesmatter ; #bluelivesmatter ;

#killchinese; #bustyourhead ; #fuckyouup; killallwhites; maga; killallniggas; and nigger.

Formulating a search to retrieve tweets relating to social exclusion was challenging as

typical examples were hard to come by. A similar strategy was therefore used to retrieve

tweets relating to social exclusion; from the 5,000 tweets sample, six were identified as

relating to social exclusion and the following hashtags retrieved from these tweets were

used as query terms: #alone; #dontcometomyparty ; #idontlikeyou; and #stayinyourlane.

Due to the low number of tweets returned for these hashtags, we also extracted the
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replies associated with returned tweets and discovered the following additional hashtags

– #notinvited and #thereisareasonwhy – which were subsequently used as additional

query terms. Rather than excluding retweets when querying, as is common practice

amongst researchers, our process initially extracted original tweets and retweets and

then selected only one if a tweet and its retweets are included in the results. This ensured

relevant content was not discarded in situations where original tweets were not included

in the results, but retweets were. Our final dataset contained 62,587 tweets published in

the period April to June 2019.

3.3.4 Annotation Process

Language use on social media platforms like Twitter is often colloquial; this, therefore,

influenced the desired annotator profile as that of an active social media user that

understands the nuances of Twitter’s colloquial language use. While there is no universal

definition of what constitutes an active user on an online social network, Facebook

defined an active user as someone who has logged into the site and completed an action

such as liking, sharing and posting within the previous 30 days (Cohen, 2015). With one

in every five minutes spent online involving social media usage and an average of 39

minutes spent daily on social media in the UK (Ofcom Research, 2019), this definition is

inadequate in view of the increased users’ activities on social media. An active user was

therefore redefined as one that has accessed any of the major social networks (e.g.,

Twitter, Instagram, Facebook, Snapchat) at least twice a week and made a

post/comment, like/dislike or tweet/retweet at least once in the preceding two weeks. This

new definition is more in keeping with typical social media usage.

Using personal contacts, a pool of 17 annotators whose self-reported online social

networking habits met our definition of an active social media user were recruited to label

the dataset. Since the presence of many profane words can be automatically detected, a

program was written to label the tweets for profane terms based on the 15 profane words

used as query terms (fuck, shit, ass, bitch, nigga, hell, whore, dick, piss, pussy, slut, puta,

tit, damn, fag, cunt, cum, cock, blowjob, retard), and the Google swear words list5 . The

profanity-labelled tweets were then provided to the annotators to alleviate this aspect of

the labelling task. The annotators were assigned to ten groups of three, with each
5code.google.com/archive/p/badwordslist/downloads
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annotator assigned to at least one group and others to more depending on their

availability. The dataset was divided into batches of at least 6,000 tweets, and each

annotator in a group was provided with the same set of tweets, ensuring that each tweet

was labelled by three different annotators. Inter-rater agreement was measured via

Krippendorff’s Alpha (α) and the majority of annotators’ agreement was required for each

label. Krippendorff’s Alpha is a reliability coefficient used in measuring the agreement

amongst annotators/raters (Krippendorff, 2011). Its general form is:

α = 1− Do

De

Where Do is the observed disagreement among values assigned to the tweets and De is

the disagreement if the annotations were left to chance. The value of α lies between 1 and

0 such that α = 1 indicates perfect agreement and α = 0 means there was no agreement

between annotators which occurs when Do = De – i.e., the annotators’ agreement is as if

by chance. The Krippendorff python library6 was used to compute α, which was found to

be 0.67.

3.3.5 Preprocessing

Preprocessing was performed on the dataset to remove irrelevant and noisy data that

may hamper classifier training. As is standard for many NLP tasks, punctuation, symbols

and non-ASCII characters were removed. This was followed by the removal of mentions

(including a username with the @ symbol inside a tweet) and URLs. We also discovered

many made-up words created by combining multiple words (e.g., goaway, itdoesntwork,

gokillyourself) in the tweets. These are due to hashtags, typos and attempts by users to

mitigate the characters limit imposed by Twitter. The wordsegment python library7 was

used to separate these into individual words. The library contains an extensive list of

English words and is based on Google’s 1T (1 Trillion) Web corpus8 . Lastly, the text was

converted to lower case.
6pypi.org/project/krippendorff
7pypi.org/project/wordsegment/
8pypi.org/project/krippendorff/

91

S.D.Salawu, PhD Thesis, Aston University 2021.



3.3.6 Dataset Analysis

Profanity emerged as the dataset’s majority class, with 81.5% of tweets labelled as such.

This is unsurprising as many profane words were used as query terms to extract the

tweets. Exclusion was found to be the least assigned label, accounting for only ten tweets.

About a sixth of the tweets in the dataset belonged to the None class – i.e., tweets that

were not assigned any labels and bullying was the fifth most prominent label. As described

in Table 3.2, a tweet is only labelled bullying if, in addition to being offensive, it is targeted

at an identifiable person or group; as such, not all tweets labelled as profanity or insult

were labelled as bullying. For example, the tweet “yall just nasty hos shut the f*ck up” was

assigned profanity and insult but not bullying as it appears to be directed at all women.

In all, 82.8% of the tweets contained some form of offensive content which is higher than

any existing cyberbullying dataset to date. The tweets count for each label is as shown in

TABLE 3.3.

Label Count
Profanity 51,1014
Porn 16,690
Insult 15,201
Spam 14,827
Bullying 3,254
Sarcasm 117
Threat 79
Exclusion 10
None 10,768

TABLE 3.3: Total number of tweets each label was assigned to.

Prior to preprocessing, the maximum document length for the dataset was 167

characters, with an average document length of 91 characters. After preprocessing, the

maximum document length reduced to 143 characters (equating to 26 words), with an

average document length of 67 characters. There are a total of 37,453 distinct word

tokens in the dataset. Single label tweets make up more than a third of the dataset, and

this can be attributed to the large number of tweets singly labelled as Profanity.

Furthermore, a significant number of tweets were jointly labelled as Profanity and Insult

or Insult and Cyberbullying, and this contributed to double-labelled tweets being the

second-largest group of the dataset. Interestingly, there were more tweets associated

with quadruple labels than there were with triple and this was discovered to be due to the
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high positive correlation between Porn + Spam and Profanity + Insult. FIGURE 3.1

illustrates tweets counts and the number of tweets assigned.

FIGURE 3.1: Distribution of tweet counts and number of labels assigned.

The correlation matrix for the labels is illustrated in FIGURE 3.2. Porn and Spam

exhibited the highest positive correlation, and some positive correlation is also evident

between the two labels and Profanity. Since pornography and spam share a lot in

common and typically feature profane language, this correlation is not unexpected.

Indeed, many pornographic tweets are essentially profanity-laden spam. Insult also

exhibited a positive correlation with Bullying and Profanity, a fact that can be attributed to

the frequent use of profanity in insulting tweets as well as the use of insults to perpetrate

bullying. Only one negative correlation was identified in the dataset, and this is between

Bullying, and Porn + Spam, implying a mutually exclusive relationship between the labels.

Bullying tweets are often personal attacks directed at specific individuals and typified by

the use of mentions (i.e., tagging another user in a tweet), person names or personal

pronouns. By contrast, pornographic and spam tweets are devoid of these since they are

rarely directed to specific individuals. This inverse relationship is evident in the dataset as

no bullying tweet was classified as Porn or Spam. Minority classes like Sarcasm, Threat

and Exclusion demonstrated no correlation with the other classes.
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FIGURE 3.2: Distribution of tweet counts and number of labels assigned.

3.3.7 Bias and Practical Usage Implication

Most datasets carry a risk of demographic bias (Hovy and Spruit, 2016), and this risk can

be higher for datasets created using manually-defined query terms (such as the one

created as part of this research program). This bias can be in the form of gender, ethnic

or cultural identities contained in the dataset, which may possess certain attributes that

could be inadvertently adopted by the model and subsequently influence its predictions.

For example, a National Institute of Science and Technology (NIST) study (Grother et al.,

2019) discovered that many US-developed facial recognition algorithms generated

significantly higher false positives for Asian and African-American faces compared to

Caucasian faces. Similar algorithms developed in Asian countries did not show any such

dramatic differences in false positive rates between Asian, African-American and

Caucasian faces. The study concluded that the use of diverse training data is critical to

reducing bias in such AI-based applications. Researchers, therefore, need to be aware of
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potential biases in datasets and address them where possible. Discovering potential

biases within the created dataset (as far as possible) was therefore of interest as

offensive content often have racial and sexist undertones.

Since Twitter does not collect users’ gender information, secondary means were used to

infer the gender of the users incorporated in the dataset. The Gender API9 was used

to deduce users’ gender based on whether the users’ first names are traditionally male

or female: which was assumed as an accessible and feasible measure of users’ gender

identity. The authorship of 13,641 tweets (21.8% of the dataset) could be processed in this

way, and it was inferred that 31.4% of the authors of these tweets identified as female and

68.6% male (at least in so far as was apparent from their Twitter account).

This suggests a male-bias in the authorship of the tweets in the dataset. The limitation of

this approach is acknowledged as the names provided by users cannot always be regarded

as truthful, and as gender extends beyond the traditional binary types, a names-based

approach such as this cannot be used to deduce all gender identities.

To mitigate potential racial and ethnic bias, variants of queries that used ethnicity-specific

keywords were created for other ethnicities and used to retrieve tweets. For example,

#asianlivematters, #whitelivematters, #bluelivesmatter and #alllivematters were all used

as query terms to help mitigate any bias that may have been inadvertently introduced

by the use of #blacklivematters as a query term. It should, however, be noted that the

popularity and topicality of certain keywords may still introduce an unintended bias. For

example, #blacklivematters returns several more tweets than #asianlivematters.

While the collection strategy used to create the dataset ensured a high concentration of

offensive tweets, a potential consequence of the imbalanced distribution of the classes

is that it may reinforce the unintentional bias of associating minority classes to specific

hateful and abusive terms. Dixon et al. (2018) defined unintended bias as when a model

performs better for comments containing specific terms over others. For example, the

phrase “stay in your lane” was found in 4 of the 10 tweets identified as exclusion (due to

the presence of the hashtag stayinyourlane in the tweet’s content), and this can cause a

model trained on the dataset to overgeneralised the phrase’s association with the exclusion

label, thus introducing a false positive bias in the model. To mitigate biases such as these,
9gender-api.com
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the proposed cyberbullying prevention system allows users to reclassify messages and

utilise the reclassified messages for online training of the ML models.

3.3.8 Dataset Availability

The final dataset of 62,587 tweets is publicly available as a csv file at

https://bitbucket.org/ssalawu/cyberbullying-twitter. Twitter’s usage terms restrict the mass

distribution of tweet contents directly; as such, each tweet’s unique ID is provided instead

along with the assigned labels (see TABLE 3.4).

ID Bullying Insult Profanity Sarcasm Threat Exclusion Porn Spam
1134515 1 1 1 0 0 0 0 0

TABLE 3.4: Example row from the dataset.

3.4 Best Performing Model Selection

A number of traditional ML and deep-learning models were experimented with to perform

multi-label classification on the dataset. The traditional ML algorithms used were

Multinomial Naive Bayes, Linear SVC, and Logistic Regression while BERT, DistilBERT,

RoBERTa, XLNET were the chosen deep-learning models. Standard performance

metrics and observed predictions on unseen data were then used to select the best

performing model to use in the cyberbullying prevention mobile application developed as

part of this programme of research.

3.4.1 Models Evaluation and Best Performing Model Selection

Macro ROC-AUC (Area Under ROC Curve), Accuracy, Hamming Loss, Macro and Micro

F1 Score, were the metrics selected to evaluate the models’ performance. These metrics

are typically used to evaluate a model’s performance in imbalanced classification tasks and

additionally, when computed alongside other performance metrics during several iterations

of the experiments performed, these metrics returned consistent results.

Macro ROC-AUC (Area Under Receiver Operating Characteristic Curve) (Hanley and

McNeil, 1982), Accuracy (Bratko, 1997), Hamming Loss (Destercke, 2014), Macro and
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Micro F1 Score (Opitz and Burst, 2019) were the metrics selected to evaluate the models,

as is standard for imbalanced classification tasks. A ROC curve is a graphical plot of the

true positive rate against the false positive rate for a classifier’s predictions at various

threshold settings (see FIGURE 3.3). The area under this curve is the ROC-AUC value.

When performing multi-label classification (as was the case in the experiments

conducted), the macro ROC-AUC which combines the mean true positive and false

positive rates for all the labels, is typically used.

FIGURE 3.3: Example of ROC Curve.
Source: Choudhary et al. (2019)

Accuracy is defined as the proportion of correct predictions (both true positives and true

negatives) among the total number of samples classified (Metz, 1978) and is represented

by the formula:

Accuracy =
(TP + TN)

(TP + TN + FP + FN)

where TP = True positive; FP = False positive; TN = True negative; FN = False negative.

Instead of computing the number of correctly predicted instances (like accuracy), the

Hamming Loss reports on the loss generated in the predicting labels. It is the result of an

XOR operation between bit strings representing the actual and predicted labels for a

sample and is represented by the equation

HL =
1

NL

N∑
i=1

L∑
j=1

XOR(Yi,j Ŷi,j)
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where N and L represents the number of samples and labels respectively and Yi,j , Ŷi,j

represents the actual and predicted bit representation of the label j in the data instance

i. F1 Score is the harmonic mean of precision and recall. The Macro F1 Score (also

referred to as the average F1) is computed by calculating the F1 Score for each class and

is represented by the formula:

MacroF1 =
1

n

∑
x

2PxRx

Px +Rx

The Micro F1 Score (also called the F1 of averages) is calculated by computing the

precision and recall for each class and calculating their harmonic mean (Opitz and Burst,

2019). It is represented by the formula:

MicroF1 = 2
(
1

n

∑
x Px)(

1

n

∑
xRx)

(
1

n

∑
x Px) + (

1

n

∑
xRx)

where Px andRx are the precision and recall for each class in both equations. A classifier’s

precision is intuitively defined as its ability not to label a negative sample as positive while

the recall provides a measure of its ability to find all the positive samples. Both metrics are

represented by the formulas below:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

where TP, FP, and FN are as defined above for accuracy. Stratified K-fold cross-validation

was used as the validation strategy. Cross-validation involves randomly shuffling the

dataset into K groups and then training the model with K-1 groups and using the

remaining group for testing. The process is repeated until each group has been used for

testing, and the results averaged over all the runs. For an imbalanced dataset such as

the one created, stratified K-fold is the preferred cross-validation method. This is because

unlike K-fold cross-validation, which simply divides the dataset into K parts without

consideration for the distribution of the dataset classes, stratified K-fold cross-validation
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maintains the percentage distribution of classes across the K groups. Therefore, if K is 5

and class A contains 20 samples, the dataset is divided into 5 equal parts with each part

containing 4 samples of Class A. As is standard for many NLP tasks, K was set to 10.

This also ensures that one sample of the minority class (exclusion – which was only

assigned to 10 tweets) is included in each generated subsets. In addition to the

pre-trained models, fine-tuning was performed for each of the Transformer-based models

using the text extracted from the tweets. The results of the experiments are presented in

TABLE 3.5.

Model Macro
ROC-AUC
(↑)

Accuracy
(↑)

Hamming
Loss (↓)

Macro
F1(↑)

Micro
F1(↑)

Multinomial Naive
Bayes

0.8030 0.4568 0.1014 0.2618 0.7200

Linear SVC 0.8353 0.5702 0.0866 0.3811 0.7674
Logistic Regression 0.8354 0.5743 0.0836 0.3587 0.7725
BERTpre−trained 0.9657 0.5817 0.0736 0.6318 0.7998
DistilBERTpre−trained 0.9675 0.5802 0.0764 0.5202 0.7855
RoBERTapre−trained 0.9695 0.5785 0.0722 0.5437 0.8081
XLNetpre−trained 0.9679 0.5806 0.0738 0.5441 0.8029
BERTfine−tuned 0.9651 0.5822 0.0725 0.5300 0.8022
DistilBERTfine−tuned 0.9633 0.5834 0.0753 0.5040 0.7872
RoBERTafine−tuned 0.9670 0.5794 0.0724 0.5329 0.8044
XLNetfine−tuned 0.9654 0.5819 0.0741 0.5308 0.8037

TABLE 3.5: Results of classification experiments.
(↑: higher the better; ↓: lower the better)

The best macro ROC-AUC, Micro F1 and Hamming Loss scores were achieved by

RoBERTaPre−trained, while the best Macro F1 and accuracy scores were attained using

BERTPre−trained and DistilBERTfine−tuned models, respectively. DistilBERT was the only

fine-tuned model to achieve the best result for any metric. As expected, the deep learning

models outperformed the baseline classifiers, with Multinomial Naive Bayes providing the

worst results across the experiments. Interestingly, the pre-trained models performed

better than the equivalent fine-tuned models, implying that fine-tuning the models on the

dataset degrades rather than improves performance. This is similar to the results of the

experiments conducted by Radiya-Dixit and Wang (2020), which discovered that

fine-tuned networks do not deviate substantially from the pre-trained one. A possible

reason for the performance degradation experienced when using the fine-tuned models

could be due to the language gap between the datasets used for pre-training the models
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(i.e., BooksCorpus (Zhu et al., 2015) and Wikipedia) and the created Twitter dataset used

here. Large pre-trained language models thus have high generalisation performance.

As would be expected, the models performed better at predicting majority classes (i.e.,

Profanity, Spam, Porn, Insult, Bullying) than minority classes. RoBERTA and XLNet

performed better at predicting minority classes like Sarcasm, Threat and Exclusion than

the other models. All the models performed well in predicting the none class, i.e. tweets

with no applicable labels.

Overall, RoBERTaPre−trained emerged as the best performing model, achieving the best

results in three out of the five evaluation metrics. Following the evaluation experiments

conducted, all twelve classifiers were used to predict the 8 labels for a sample of 250

unseen offensive and inoffensive tweets and the results manually compared to identify

from a ”human perspective” which of the models provide predictions that are most

acceptable for human consumption. A key consideration was how well the models

discriminate between mildly offensive to very offensive tweets. RoBERTaPre−trained and

XLNetPre−trained were the two models that excelled in this exercise. Consequently,

RoBERTaPre−trained was the final model selected for use in the cyberbullying prevention

mobile application since it performed as well as XLNetPre−trained in the ”human

perspective” evaluation and achieved the best results for three evaluation metrics while

XLNetPre−trained in comparison did not achieve the best score for any of the evaluation

metrics.

3.4.2 Evaluating the Dataset’s Fitness for Purpose

As the proposed cyberbullying prevention system would be used to detect cyberbullying

and online abuse on various social media platforms, it is essential that the knowledge

acquired from the Twitter-based dataset can be used to detect cyberbullying on other

SMPs like Facebook and Instagram. To assess the dataset’s generalisability;

cross-domain experiments were conducted to evaluate if the knowledge acquired by a

model trained on the Twitter-based dataset can be used to perform similar tasks (e.g.,

cyberbullying detection) on another domain (e.g., Wikipedia). RoBERTaPre−trained as

the best performing model from the earlier experiments was used to predict the labels on

two other unseen datasets. New instances of RoBERTa models were then trained on
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these two datasets and used to predict labels for the Twitter-based dataset and the

results of the two set of experiments compared.

The dataset created by Davidson et al. (2017) and the Kaggle Toxic Comments dataset

Kaggle (2018) were selected for the experiments; herein referred to as the Davidson (D)

and the Kaggle (K) datasets, with the newly created dataset referred to as the

Cyberbullying (C) dataset. The Davidson dataset is a multi-class-labelled dataset

sourced from Twitter where each tweet is labelled as one of hate speech, offensive and

neither. In contrast, the Kaggle datasets contained Wikipedia documents labelled using a

multi-label annotation scheme with each document associated with any number of

classes from toxic, severe toxic, obscene, threat, insult, identity hate. Due to the

difference in the number of labels for each dataset (Cyberbullying dataset – 8 labels,

Davidson dataset – 3 labels, Kaggle dataset – 6 labels), it was necessary to amend the

input and output layers of the RoBERTa model to allow it to predict the relevant labels for

the Davidson and Kaggle datasets.

For the reverse experiments, new instances of RoBERTa were trained on both the

Davidson and Kaggle datasets and used to predict labels for the Cyberbullying dataset.

As control experiments, in-domain evaluation was also performed. This involved training

RoBERTa models on the Davidson and Kaggle datasets and using these to predict the

labels on the same datasets. The results of the experiments are presented in Table 3.6.

Model Macro
ROC-AUC
(↑)

Accuracy
(↑)

Hamming
Loss (↓)

Macro
F1(↑)

Micro
F1(↑)

RoBERTaC→D 0.9923 0.8809 0.0288 0.8802 0.8810
RoBERTaD→C 0.9681 0.5831 0.0708 0.5330 0.8076
RoBERTaD→D 0.9905 0.8814 0.0300 0.8427 0.8758
RoBERTaC→K 0.9916 0.5924 0.0123 0.5670 0.7436
RoBERTaK→C 0.9651 0.5811 0.0727 0.5352 0.8054
RoBERTaK→K 0.9733 0.8449 0.0174 0.5026 0.6354

TABLE 3.6: Results of cross-domain experiments.
(↑: higher the better; ↓: lower the better)

Overall, models trained on the Cyberbullying dataset (RoBERTaC→D and RoBERTaC→k)

perform better on the Davidson and Kaggle datasets than the models trained on these

two other datasets and tested on the Cyberbullying dataset (RoBERTaD→C,

RoBERTaK→C). Interestingly, models trained on the Cyberbullying dataset achieved better

ROC-AUC, Macro and Micro F1 values on both the Davidson (D) and the Kaggle (K)
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datasets compared to in-domain results on those datasets (i.e., models trained and

evaluated on the same datasets – RoBERTaD→D and RoBERTaK→K). The results indicate

that the Cyberbullying dataset sufficiently captures enough context for classifiers to

distinguish between cyberbullying and non-cyberbullying text across different social

media platforms. Even more impressive is that the cross-domain results achieved by the

RoBERTa model trained on the Cyberbullying dataset, which comprises short-form

content from Twitter, are better than the in-domain results achieved by another RoBERTa

model trained on the same long-form based dataset (the Davidson dataset).

3.5 Summary

The standard practice when creating cyberbullying datasets is to emulate the real-world

distribution of cyberbullying on social media, with researchers going to great lengths to

emulate this distribution as closely as possible. The research presented here proposes a

novel approach that differs from standard practice. Using a series of targeted queries

executed on the Twitter Search and Streaming APIs, potentially abusive and bullying

tweets were extracted and annotated. The resulting dataset contained over 82% abusive

and offensive content, and two sets of experiments were performed to determine the

dataset’s suitability for training classifiers. The first group of experiments evaluated a

variety of traditional and deep learning classifiers and was used to identify the best

performing model to use in the cyberbullying prevention mobile app developed as part of

this research. This was found to be the pre-trained RoBERTa model.

The second set of experiments was aimed at determining the new dataset’s suitability for

training models to predict online abuse on different social media and messaging platforms.

The results are extremely positive and validate the dataset’s suitability for training models

to generically detect online abuse. The research presented in this chapter is novel and

represents the first attempt to create a cyberbullying and offensive language dataset with

such a high concentration of cyberbullying and offensive language. Furthermore, a model

trained using the dataset achieved better performance on a different domain than the in-

domain performance of a model trained on the target domain.

The implication is that the dataset’s imbalanced nature did not affect the model’s ability to

learn both offensive and non-offensive content. Instead, it improved the model’s
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performance and, in some instances, surpassed in-domain results on different datasets.

Moreover, the effort that would have been expended in simulating a real-word distribution

for the dataset has been saved and oversampling to improve the proportion of bullying

content within the dataset is not required given the high proportion intrinsic to the dataset.

The recent success and popularity of deep learning models in many areas of machine

learning have designated them state-of-the-art for natural language processing tasks.

The findings from the experiments conducted as part of this reported research reaffirm

this assertion. The deep learning models outperformed traditional classifiers and

RoBERTa – an optimised BERT-like model – emerged as the best performing classifier.

This is in agreement with experiments performed in other studies where RoBERTa

outperformed other Transformer-based models like BERT, DistilBERT and XLNET; it,

therefore, influenced the decision to use it as the classifier in the novel cyberbullying

detection system developed as part of this programme of research.
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Chapter 4: Stakeholders’ Perspectives on

Cyberbullying Prevention

4.1 Introduction

As discussed in Chapter 2, there have been considerable research efforts devoted to the

development of machine learning algorithms to detect cyberbullying and online abuse;

unfortunately, the scientific advances represented by these algorithms are yet to result in

a proliferation of practical software applications for cyberbullying mitigation and

prevention. Existing cyberbullying prevention systems such as those developed by

Lempa et al. (2015), Weider et al. (2016), Vishwamitra et al. (2017), Talukder and

Carbunar (2018) and Shome et al. (2019) (see Section 2.7.3) suffer common

shortcomings such as poorly implemented integration to online social networks, an

inability to understand language contextually (due to a reliance on wordlists to detect

offensive language) and usability concerns. Some of these failings are due to a poor

understanding of end-user requirements and a lack of consideration for users’ opinions

during the design process.

The literature on technology-based prevention of cyberbullying is conspicuously devoid of

discussion on how systems’ requirements were captured and the means by which potential

users were engaged (if at all) in the design and evaluation process. This highlights a failing

in existing attempts to develop cyberbullying and online abuse prevention tools that are fit

for purpose, and that effectively meet end-user needs. Capturing the desires, needs and

aspirations of end-users should be an integral part of the design process for any interactive

tool – as noted by Maguire and Bevan (2002, pg. 133) “successful systems and products

begin with an understanding of the needs and requirements of the users”. Adopting a

User-Centred Design (UCD) approach is crucial to achieving this understanding. UCD is
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a system design approach that emphasises the importance of the end-user to the design

process and identifies that the purpose of a system is to serve the user. Norman (1986,

pg. 61) succinctly summarised the relationship between end-users and a system when he

observed that “the needs of the users should dominate the design of the interface, and

the needs of the interface should dominate the design of the rest of the system.” The first

consideration when applying UCD methods is to therefore understand the end-users and

the potential interactions that will occur between them and the system.

This chapter reports on the activities undertaken as part of this research to gain an

understanding of users’ requirements for the proposed mobile application. As identified in

Chapter 1, the key stakeholders for the mobile app include parents, educators, law

enforcement, mental health professionals and adolescents; collectively, these are broadly

categorised as adult and young stakeholders. Due to the difference in age and the

sensitive nature of the topics being discussed, different UCD methods were used with the

two groups. Questionnaires and interviews were the tools used to engage with the young

participants to gain insight into their views and experiences of cyberbullying. For the adult

stakeholders, a number of focus group sessions were held to discuss pertinent issues

about cyberbullying and how it can be prevented using a tool like the proposed mobile

app. The rest of the chapter is divided into three main sections; Section 4.2 presents the

discussions and findings from the focus groups, and Section 4.3 explores adolescents’

views on cyberbullying and its prevention. Finally, Section 4.4 provides a summary of the

chapter’s discussions

4.2 Adult Stakeholders’ Perspectives on Cyberbullying

Prevention

While adolescents are the primary target audience for the mobile app, adults entrusted

with their care, mental wellbeing and protection are other stakeholders. Such adults

include parents or guardians, educators, law enforcement and mental health

professionals. The views of parents and guardians of young children are of interest to the

research programme due to their influence on the young people who are the intended

audience of the proposed cyberbullying prevention application. They are also likely to
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procure mobile devices for young people and are thus well placed to recommend a

cyberbullying prevention tool like the one proposed to young people.

Teachers are part of schools’ prevention strategies for cyberbullying and are often

entrusted with implementing prevention guidelines. They may have also witnessed

cyberbullying incidents and thus provide a different perspective from parents and

guardians. Severe cases of all forms of bullying (including cyberbullying) and its negative

consequences are often referred to mental health specialists. Clinicians could therefore

contribute their knowledge on cyberbullying involvement for young people, how reported

cases are managed from a clinical perspective and help explore ways by which some of

the clinical strategies can be implemented in the proposed mobile application. Finally, as

cyberbullying is considered an electronic misdemeanour, law enforcement officers,

particularly cybercrime specialists, can provide a unique perspective borne out of their

experience enforcing the applicable laws for cyberbullying.

Incorporating the views of this group of stakeholders into the design process and winning

their trust in the process will hopefully lessen the adoption barrier for the mobile app. The

following subsections discuss the design, implementation, findings and limitations of a

focus groups study conducted to understand adult stakeholders’ attitudes to cyberbullying

and its prevention using technology.

4.2.1 Focus Group and Participant Recruitment

A focus group study is an organised discussion with a group of individuals to gain

information about their views and experiences in relation to the topic(s) of discussion.

Focus groups are used in UCD approaches to gather end-user requirements and gain a

deeper understanding of the problem being studied. The merits of focus groups as a

means of understanding users’ requirements for a system have been espoused by

studies such as those of Biediger-Friedman et al. (2018), Tresser (2017) and Harder et al.

(2017). Biediger-Friedman et al. (2018) used focus groups to understand participants’

current use of healthy living apps as the initial phase of their UCD approach to designing

an app to promote healthy lifestyles; they discovered that participants’ willingness to use

health apps is dependent on the app’s ease of navigation and the inclusion of specific

features like health tips targeted at their specific demography (e.g., English- and
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Spanish-speaking nursing mothers). They were then able to leverage this information in

the later phases of the app development. Similarly, Tresser (2017) used interviews and

focus groups to engage with clinicians and technology experts to gather requirements for

a Virtual Reality (VR) game designed to assist in the physical therapy of children with

cerebral palsy. Through the approach, they discovered the importance of practising

sustained upper body and trunk movements and consequently concentrated their

development efforts on these areas in their VR game.

In Harder et al. (2017), users’ requirements for a mobile app to support post-surgery

recovery in breast cancer patients were gathered using focus groups. The researchers

were able to capture a prioritised list of application features desired by the users, which

was used to improve the user experience. Within cyberbullying literature, focus groups

have been used to understand parents’ and teachers’ perspectives on cyberbullying

(Monks et al., 2016; Jäger et al., 2010) as well as its impact on young people (Agatston

et al., 2012; Smith et al., 2008). Gibbs (1997) posited that, by providing participants with

an opportunity to discuss research topics with each other and researchers, a focus group

could be an empowering experience for participants. It can imbibe a sense of pride for

being valued as experts and contributing meaningfully to the research (Goss and

Leinbach, 1996), which can make participants more inclined to share personal views with

other individuals. Focus groups were, therefore identified as the ideal vehicle to engage

the adult stakeholders to elicit their various perspectives on cyberbullying and how the

proposed mobile app can assist in its prevention.

Before the commencement of the study, ethical approval was sought and granted by the

Aston University Research Ethics Committee for all stages of the study (see Appendix

B.1). There were four types of adult stakeholders recruited as participants: mental health

professionals; educators; law enforcement officers; and parents. To recruit the mental

health professionals, the researcher initiated contact with local Child and Adolescent

Mental Health Services (CAMHS) units. CAMHS is an NHS service that assesses and

treats young people with emotional, behavioural or mental health difficulties including

depression, bipolar disorder, schizophrenia, self-harm, anxiety, abuse and many more.

This engagement was facilitated by a personal contact who worked in one of the units.

Five clinicians indicated an interest in taking part in the study, and each was sent an

invitation email (see Appendix B.2) and a Participant Information Sheet (PIS) (see

Appendix B.3) that provided information about the focus group study and the overall
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research objectives. Three clinicians (a psychiatrist, a child psychologist and a mental

health nurse) confirmed that they would like to participate in the study. The researcher

met with the clinicians to provide more information about the research and to understand

how the services offered by CAMHS are provided to the community, especially with

regards to cyberbullying concerns raised by young people and their parents. These

discussions revealed the following information:

1. the primary means to access CAMHS services is via a referral from the patient’s

local general practitioner (GP);

2. some CAMHS units will also accept referrals from schools and social workers; and

3. some GPs with mental health specialisms can provide initial care for bullying-related

complaints.

The above points highlight the crucial roles played by local GPs and educators in

providing young people dealing with cyberbullying (as victims and offenders) with access

to professional mental health services. While teachers have already been identified as

stakeholders for the cyberbullying prevention mobile application, GPs were not initially

included. Based on the discovered information, it was decided that the inclusion of a GP

as a participant would be beneficial to the study. Personal contacts were then explored to

this end, and a GP with mental health specialism was successfully recruited to take part

in the study.

Running in parallel to the clinicians’ recruitment were efforts to engage local secondary

schools to recruit teachers as participants. Secondary schools in Birmingham,

Wolverhampton and Walsall, were contacted to participate in the study. In addition to this,

the researcher reached out to personal contacts in the teaching profession to publicise

the study as part of efforts to engage educators. These activities resulted in two schools

agreeing to take part in the research and four teachers and a private tutor getting in touch

with the researcher to indicate their interests.

With regards to the engagement with law enforcement, the researcher contacted the

West Midlands Police Research Unit, and an official request for research support was

submitted (see Appendix B.4). The proposal was subsequently approved, and the Cyber

Crime Manager for the West Midlands Regional Cyber Crime Unit (a Detective Inspector)

assisted with the study.
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The final type of stakeholders were parents. The researcher attended a number of school

assemblies to inform the students about the research and seek their assistance in

recruiting parents for the focus group study. The PIS was given to the students to take

home to their parents, but after several unsuccessful attempts to recruit parents through

the students in this manner, the decision was made to use a convenience sampling

method for the parents. The lack of interest amongst the schools’ parents was believed to

be due to the sensitive nature of cyberbullying and that many parents may not be

comfortable discussing such a topic with a stranger (i.e., the researcher). By utilising

personal contacts, this barrier would be significantly reduced. Moreover, the parents’

within the convenience sample are essentially the same demography as those being

recruited through the schools (i.e., parents with children in local secondary schools). The

study was therefore publicised (via WhatsApp) to parent groups that the researcher

belonged to (as a parent) such as school and extra-curricular activities groups and a total

of eighty-two parents were made aware of the research (based on the membership of

these groups). Nine parents indicated an interest in the study and were sent invitation

emails and the PIS. The researcher then spoke with the nine parents over the phone to

answer questions and provide additional details about the study.

While research has been conducted to understand adults’ perception of cyberbullying

(Dehue et al., 2008; Eden et al., 2013; Makri-Botsari and Karagianni, 2014), rarely has all

the stakeholder groups (i.e., parents, teachers, clinicians and law enforcement) identified

by this study been engaged by a single study to explore their opinions together within the

same gathering. The study by Moreno et al. (2018) was one of the few discovered that

attempted this, and their engagement was focused on exploring the stakeholders’

understanding of cyberbullying as a means to validate the uniform definition of bullying

proposed by Gladden et al. (2014). This research is, therefore, novel in its engagement

with the stakeholders to devise strategies to prevent and mitigate cyberbullying through

the use of an automated online abuse prevention tool.

All prospective participants were contacted to agree on a schedule and dates for the focus

group sessions. Unfortunately, some prospective participants (including the two secondary

schools) withdrew from the study due to scheduling conflicts. Overall, eleven participants

comprising three clinicians (a psychiatrist, a child psychologist and a GP), three educators

(2 teachers and a private tutor), four parents and a law enforcement officer took part in the

study. All participants were, coincidentally, parents, but only seven had a child aged 11
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years or older. While a focus group size of 10-12 participants is often advocated (Stewart

and Shamdasani, 2014), studies such as those by Kitzinger (1995), Krueger (2014) and

Halcomb et al. (2007) proposed smaller group sizes (4 - 8), especially when working with

a single moderator. Likewise, Barbour and Kitzinger (1998) believed that a focus group of

more than six participants might be too large for sociological studies and that researchers

should instead be flexible with regards group sizing as factors outside of their control may

limit the feasible size of the group. This recommendation was adopted by the study and

ten participants (not including the law enforcement offer) comprising the seven female, and

three male participants were divided into two groups of five (designated Groups A and B),

and each group contained both male and female participants.

Although three sessions were planned for each group, due to the limited availability of

some participants, Group B only met twice. The objectives of the planned second and third

sessions for Group B were thus covered during the second meeting, the duration of which

was extended to accommodate this. A total of five sessions were therefore held across

the two groups. Due to the restricted availability of the law enforcement representative,

the officer worked with both focus groups, attending two sessions with Group A and the

final (extended) session with Group B. The sessions were held between October 2017 -

February 2018.

In assigning participants to the groups, it was ensured that key stakeholders types were

represented within each group. Each group, therefore, included at least one of the

following:

• Parent with a child of 11 years or older;

• An educator; and

• A mental health professional.

All participants signed consent forms (see Appendix B.5) and, although they were offered

a £10 Amazon voucher per session (as indicated in the PIS) in token appreciation of their

time, all participants waived this.

Each session lasted between one and a half to two hours and was audio-recorded and

transcribed. The researcher provided hot beverages and snacks for all sessions. Content

analysis was performed based on the work of Marshall and Rossman (2014), Moretti
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et al. (2011) and Wilkinson (2011) and is discussed further in Section 4.2.2. Each

session started with a review of the study’s objectives, followed by a discussion of the

session’s specific objectives (see Appendix B.6) to help focus participants. Additionally,

the researcher/moderator thanked participants for their time and reinforced to them the

importance of their contributions in furthering cyberbullying prevention research.

As the first phase of a user-centred design approach to the development of a

mobile-based cyberbullying prevention tool, the focus group sessions were aimed at

gaining a good understanding of the adults’ perception of cyberbullying, its perpetuation

on social media and their views on how it can be prevented. Another objective of the

focus groups was to understand how much control parents exert over their children’s use

of mobile devices, and if they feel this is an effective strategy for mitigating cyberbullying.

The first sessions for both groups were focused on gaining an insight into participants’

perceived significance of cyberbullying and what they understood to be its critical issues.

The second sessions explored cyberbullying prevention strategies and participants’

experience dealing with cyberbullying and implementing prevention strategies, while the

final session of Group A and second half of Group B’s final session focused on the

proposed cyberbullying prevention mobile app and the participants’ desired features for

the app.

4.2.2 Content Analysis

Before coding could commence, a unit of analysis had to be identified. A unit of analysis

is a comprehensible piece of a transcript that contains an idea or a piece of information

(Schilling, 2006) and is used as the basis of developing a coding system (Wilkinson,

2011). Marshall and Rossman (2014) proposed a six phased thematic analysis process,

as shown in TABLE 4.1, which maps these six phases to the actual tasks performed by

the researcher at each stage of the process. NVivo software was used to store, manage

and facilitate the analysis of the qualitative data.

4.2.3 Emergent Themes

Content analysis of the focus group data revealed four major themes. These are discussed

in detail in the following sections and the coding tables are presented in Appendix B.7.
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Phase Tasks
1 Organise data

• Transcripts across both groups were collated in
chronological order – i.e., Session 1 transcripts
for both groups were placed together.

• Transcripts were read carefully several times to
gain a clear and accurate sense of the
discussions.

2 Generate categories or
themes

• Highlight phrases that contain an idea or
important information about the topic and
assign a code.

3 Code the data

• Group highlighted phrases that expressed
similar concepts into categories.

• Review the categories, merge related
categories and formulate new ones if required.

• Organise linked categories into a hierarchical
structure and review again to identify overlaps
or if further division is necessary.

4 Test emergent
understanding of the
data • Place emerging themes within the context of

existing theories from the literature or create
new theories.

5 Search for alternative
explanations of the
data • Challenge current understanding of the data

and explore alternative explanations

6 Write up the data
analysis

• Create a report of the analysis using extracts
from the data as well as the literature to
support interpretations.

TABLE 4.1: Thematic Analysis Phases and Tasks.
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4.2.3.1 Concerns About Cyberbullying

The participants demonstrated a high level of awareness of young people’s engagement

with social media and how this can expose them to cyberbullying and other forms of online

abuse. From the discussions in the first sessions of both groups, it was clear that many

parents regarded cyberbullying as a major concern in relation to their children’s social

media usage. Some of the parents in the groups said:

“It seems like it’s just everywhere now, especially on Twitter and Facebook. I
haven’t experienced any myself or my kids, at least that I know of but I see a
lot of nasty comments all over the place even on LinkedIn which is meant to be
like a sensible and professional site”.

“There is more about it on the news now, which I think is good. I saw on the
news about a girl that was being bullied by her mates, they were sending nude
pictures of her, but the funny thing is they weren’t even her pictures. They just
got some porn pic and cut her face on it, just like that. I felt that was just mean,
and these are like 12, 13 year olds”.

I get so worried and anxious with all the stuff online, sometimes I see things on
some pages and [I’m] like wow”.

This high level of awareness exhibited by participants is a welcome improvement over

findings of earlier studies such as that of Bauman (2010) and is in concert with the

discoveries of recent studies such as those of Macaulay et al. (2020) and van Verseveld

et al. (2020) which found teachers to be aware of the dangers posed to young by

cyberbullying people. This is indicative of the changing awareness and attitudes of adults,

particularly parents and teachers, with regards to young people’s involvement with

cyberbullying. Two participants reported that their children had been victims of

cyberbullying and that they got involved in resolving the situation, with one parent noting:

“She didn’t tell me about it for some time, and I had to prod her a bit, and it
turns out it’s even one of her close friends that I’m friendly with the mom, so I
got the mum to have a word [. . . ] I don’t think they are friends anymore, but
she stopped sending silly stuff to my girl anyway, and that’s all I cared about,
to be honest”.

While none of the parents felt their children could have been involved in cyberbullying as

the perpetrator, one participant admitted discovering their child sharing an inappropriate

Internet meme about another child in school, noting:
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“He thought it was just funny and not a big deal, but we talked, and I got him
to think about how he would feel if he was on the receiving end of something
like that. I think there’s an element of them not fully understanding the impact
of some of their actions on the Internet”.

This inability to fully comprehend the negative consequences of sharing inappropriate

material on the Internet was identified by Smith et al. (2008) as one of the factors

contributing to young people’s involvement as perpetrators of cyberbullying. While the

number of cyberbullying incidents reported by participants was admittedly low, there was

no apparent gender-related relationship in the children’s involvement as either victims or

perpetrators. This is in line with the findings of Hinduja and Patchin (2008) and Tokunaga

(2010) who discovered no relationship between gender and the likelihood of being a

cyberbully or victim but is in contrast to the conclusions of others such as Foody et al.

(2019), Griezel et al. (2012), Baldry et al. (2016) and Navarro and Jasinski (2013) who

uncovered gender-related relationships. Some parents admitted to being anxious over

the dangers posed by cyberbullying to their children. Two parents said:

“I get so worried and anxious about how I can protect my kids from it. I’m like
am I doing enough because sometimes you see things on some pages and
[I’m] like wow, why would you put up something like this”.

“Once you’re being bullied on Facebook, maybe you should go off from
Facebook, and then it can come from Twitter. It can get [to be] too much. It’s
everywhere”.

A similar view was shared by another participant who advised his children to adjust their

behaviour online to reduce the chance of them becoming cybervictims, saying:

“I tell them not to post pictures of themselves or things that can make others
jealous or get involved in debates online”.

In discussing the pervasiveness of cyberbullying, a participant that works as a psychiatrist

said:

“It is surprising how many cases of cyberbullying I see in the clinic. To be
honest, when I started, I didn’t expect I will see this many, and some are quite
severe”.

Just as reported in Bauman (2010), cyberbullying incidents often go unreported in schools.

The teachers in the group confirmed as much, with one teacher noting:
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“I’ve probably seen more fights and maybe just normal bullying. The students,
they don’t want to be a snitch, so they don’t really tell teachers. And that’s just
how it is sometimes, actually in my school, we have had quite a lot of
assemblies and seminars about sexting, grooming and cyberbullying. The
thing is we like to think we don’t have a bullying problem, but if I’m honest I
don’t know”.

Whilst another added:

“We have had fights that started because of something posted online. They do
that a lot, that’s actually quite common, funny enough. So you could say we
end up with the aftermath of all the cyberbullying in the school. We sometimes
call the parents in, but that doesn’t mean it ends there”.

4.2.3.2 Current Strategies and Solutions are in Need of Improvement

In exploring participants’ views on preventing cyberbullying and the effectiveness of the

common strategies in use, it was evident that participants felt that social media companies

are not doing enough to protect their young users from online abuse. Similar findings were

reported in a study conducted by the charity organisation – The Children Society – which

found that 83% of its 1,089 respondents wanted social media companies to do more to

tackle the problem (BBC News, 2018).

Similar sentiments were expressed by many of the parents with regards schools’ efforts

on cyberbullying prevention. A participant recounted a cyberbullying incident in which her

daughter was a victim and said that she had “to make a big deal” to compel the school

to act. The clinicians, however, sympathised with school authorities and highlighted the

complicated nature of cyberbullying intervention as illustrated by the following quotes:

“It’s quite difficult for the schools sometimes because it’s constantly changing.
The only thing they can do is to refer to us and then when you try to engage
the parents, things don’t always go the way you expect them to, and you have
to be very sensitive”.

“The schools have to stay objective as no parents will readily agree that their
child is bullying another. No one wants to be the bully’s dad or mom, there is a
stigma to that as well so, you know. It’s a bit complicated”.

“The children are aware that because the schools have no control over the
Internet, they can bully more people over social media than if they have to walk
up to them in school”.
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From a law enforcement perspective, the cybercrime officer commented that the number

of cyberbullying complaints received is significantly lower compared to other forms of

cybercrime like online fraud, sexual grooming, and revenge porn. He added that

complaints are usually made by parents or guardians but are often withdrawn after some

time as the threat of prosecution serves as a good deterrent and typically dissuades the

perpetrators. He spoke of the general advice provided to parents in such situations:

“We tell them to take screenshots, and as a first step they can send it back to
the bully to say I have taken pictures of your texts and sent them to the police
and nine times out of ten, that puts a stop to it”.

The use of software as an online safeguarding strategy was uncommon amongst

participants with only two participants reporting any experience of this. They said:

“I installed this app on [child]’s phone, it was meant to send me alerts when he
uploads pictures on Instagram and things like when he sends messages and
his location, but it kept crashing the phone, so we took it off. I’m sure he was
very happy”.

“I used the Vodafone parental control on our broadband, just because I felt I
had to do something. Like I can’t just let them be browsing without any form of
control. It blocks site and stuff”.

The remaining participants admitted to not having thought of using software applications

in this manner:

“Nothing really, I wasn’t aware there were things like that, to be honest”.

“I didn’t even think there would be an app to do something like that”.

“I use to check their phones, but I never found anything. I would have probably
used one of these [software] if I knew about them”.

While these responses suggest low awareness of the use of technology for the protection

of children online, it is worth noting that parents will generally not consider the use of such

tools unless cyberbullying and risky Internet use is a concern. Overall, while participants

showed a high level of awareness of cyberbullying and its prevalence on social media,

many are unsure of what steps to take to proactively protect young people from its many
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dangers. The general strategy for tackling cyberbullying appears to be blocking and

ignoring cyberbullies, and in more severe cases, school authorities, law enforcement and

mental health professionals tend to get involved. Finally, while participants concur that

advice on how to manage cyberbullying situations is available online, they would like such

advice to be presented in a more “easily digestible” form like a “cheat sheet”.

4.2.3.3 Encouraging Positive Behaviours and Online Safeguarding are Key

Features for the Proposed App

All participants were enthusiastic about the prospect of an app designed to help young

people combat cyberbullying and emphasised the importance of features that protect

children when they are online and those that promote positive online behaviours. The

clinicians particularly welcomed the idea and volunteered their time to assist further in the

development of the proposed mobile app. The researcher presented an overview of the

proposed app, as well as screenshots of some parental monitoring and social media

apps to serve as visual cues for the participants. Discussions were focused on the

functionalities that participants would like included in the app. The features suggested by

participants can be broadly grouped into two categories, namely features that allow

reflection, educate and empower users (discussed in this section), and features that

apply punitive actions against abusive users (discussed in the next section). The

following quotes illustrate the participants’ suggestions for features in the reflective,

educational and empowerment category:

“I think like a safe browsing option will be good, so anything offensive is not
shown to you when you are on Facebook and the likes”.

“ I once read about having like a time out period from mobile phones and social
media [. . . ] I like that idea if you can put that in the app, it can just block out
social media for like an hour or something”.

“ [. . . ] maybe it can rate children on how well they behave online”.

“It will be good if you can add links to some educational stuff about
cyberbullying. It would be nice having all the information in one place”.

“I have an inspirational quotes app that I read in the morning. If the app can
show something like that every day”.

“It can include some videos on how to treat people when they are online ”.
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As all participants were parents, it was unsurprising that their suggestions centred around

protective and reflective features. An opinion shared amongst many of the participants was

that children often engage in online abuse unintentionally and under peer pressure. They,

therefore, felt that tools that can highlight inappropriate behaviour would be beneficial.

Additionally, participants favoured features that can protect young people while on social

media, such as hiding inappropriate content from their news feed.

4.2.3.4 Report and Block Online Abusers

While participants favoured features aimed at encouraging positive attitudes amongst

young people, they also suggested a number of the punitive actions that the mobile app

could take against cyberbullies, including:

“ [. . . ] report people to Facebook so they can be banned [. . . ]”.

“If it can automatically block Internet trolls, I think that would be great”.

“ [. . . ] for really serious cases maybe report to the police or even just send
them a text that you will be reported to the police”.

Interestingly, only one participant would like the app to include the ability to monitor a

child’s phone remotely. This suggestion was, however, opposed by other participants who

felt the use of content filters to restrict the type of websites that can be accessed on the

phone would be more appropriate.

4.2.4 Discussion

The focus group study was the first phase of a user-centred design approach to

developing a cyberbullying prevention mobile app using participatory design. It was

aimed at gaining an insight into adult stakeholders’ understanding of cyberbullying, its

prevalence on social media and how the proposed mobile app might assist in its

mitigation and prevention. Throughout the study, the participants demonstrated

continuous improvement in terms of their knowledge and understanding of cyberbullying,

both via interaction with other participants and personal research. One participant

declared:
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“I feel like I’m an expert on cyberbullying now. There’s so much going on that I
didn’t know about”.

Another said that she has become more observant about her children’s online habits, and

she attributed this to the focus group discussions. The law enforcement officer concurred

and said that the sessions have made him more “sensitive to what young people go

through”. He noted that:

“When we think of cybercrime, on the force, we mostly think in terms of financial
costs and the links to organised crime, but really this stuff needs to be put at a
similar level”.

This was an unplanned but very positive corollary of the focus groups, the immediate

impact of which was an improved level of engagement and contributions from all

participants as the sessions progressed. The hoped-for long term impact is the

cascading effect that these participants could have on other adults in the community with

regards attitudes to cyberbullying and its prevention, and that could be a significant

contribution to the fight against cyberbullying.

The study uncovered some interesting findings with regards adults’ attitude to

cyberbullying. Adults, particularly parents, displayed a good awareness of cyberbullying

and the risks young people could be exposed to on social media. This awareness is,

however, not matched by knowledge on how to proactively protect young people against

online abuse or how to manage cyberbullying situations when they occur. While

participants acknowledged that there is information available about cyberbullying on the

Internet, many indicated a preference to have this information presented in a simple,

digestible format like a cheat sheet. In subsequent interactions after the study, the

researcher provided some online resources such as the downloadable PDF guides

available on the BullyingUK website1, and the participants responded positively to the

guides’ format. The implication of this is that advice on preventing and managing

cyberbullying and online abuse is best presented in a question and answer format similar

to a FAQ. This can assist anti-bullying organisations’ efforts in raising awareness by

making information resources more accessible.

The majority of the participants had not previously used software programs to manage

risks associated with the Internet and social media, and many were not aware that it is
1bullying.co.uk/
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possible to use a computer program for such purposes. There are two key implications

from this finding. Firstly, there is a lack of software tools to assist in cyberbullying

prevention and, secondly, there is minimal awareness of the ones that do exist. Efforts to

tackle this paucity by developing more automated tools should also, therefore, be

accompanied by campaigns to make the public aware of their existence.

The participants reacted positively to the proposed mobile app, and the clinicians

believed that the proposed app could be very useful in their work as a tool to assist

cyberbullying victims to use social media safely. It is interesting that participants’ initial

suggestions for application features are reflective, and punitive elements were only

suggested afterwards. The implication is that the preferred cause of action for adult

stakeholders is to encourage positive attitudes amongst young people first and to only

apply sanctions if this was unsuccessful. This helped form a conceptualisation of the kind

of features desirable in the proposed app from the adult stakeholders’ perspective, as

outlined in TABLE 4.2 below.

Reflective, educational
and empowerment

Punitive Others

• Safe browsing mode
when using social
media apps

• Provide links to
educational material
including videos

• Display daily
motivational quotes

• Social media “time
out”

• Online behaviour
scorecard

• Block offensive users

• Report offensive users
to the social network

• Report offensive users
to law enforcement

• Threaten offensive
users with legal
prosecution

• Content filters to
restrict access to
inappropriate
websites

• Work with
multiple social
media platforms

TABLE 4.2: Adult stakeholder’s desired features for the proposed app.
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4.2.5 Study Limitations

The focus groups successfully contributed to the knowledge about adults’ attitudes to

cyberbullying and its prevention and the capabilities required in the proposed

cyberbullying prevention application to gain their acceptance. While attempts were made

to engage with the broader population of parents and teachers, these were ultimately

unsuccessful, and personal contacts were used to facilitate recruitment. As the study

utilised a convenience sample, the implication is that the participants’ views may not be

entirely representative of the wider population of parents, teachers, clinicians and law

enforcement officers.

The participants’ share similar views on cyberbullying and its prevention. They perceive

cyberbullying as a concern and an online risk for young people, and as such, they are in

favour of its prevention. This would have contributed to their overwhelmingly positive

response to the proposed app. Adults with different views on cyberbullying and its

prevention may not share a similarly positive attitude towards the proposed app. Their

expectations and requirements for the app may therefore be different, and as such, there

is a limitation that the views captured by the study are only reflective of adults positively

disposed to preventing cyberbullying. Furthermore, the researcher’s presence as the

moderator in all sessions may have also encouraged an overall optimistic outlook about

the proposed app’s prospects from participants.

That said, ensuring a relaxed and positive atmosphere is critical to the success of a focus

group (McLafferty, 2004), and the researcher’s presence achieved this, allowing for an

engaging discussion amongst participants. Cyberbullying is a sensitive subject, and as

discovered by the researcher in the recruitment efforts, one that not many people are

willing to discuss openly with strangers. A study of this nature requires well-motivated

participants to openly discuss their views and concerns about the topic and commit to

attending the multiple sessions required. It is, therefore, doubtful that these type of

participants could have been recruited without shared trust and some familiarity.

A crucial part of enabling this is creating the right environment, and from the output of

the study, the researcher was successful in making this possible. The focus group study

was aimed at gaining an insight into adults’ attitudes to cyberbullying and its prevention

using technology, and this was achieved. Armed with this information, the researcher was
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able to embark on the next phase of the research study, which was to understand young

people’s perspective of the same topic.

4.3 Understanding Young People’s Attitudes to Cyberbullying

and its Prevention

As adolescents are the primary target audience for the proposed mobile app, their views

are critical to the success of the app. After adequately considering the sensitive nature

of the topic being studied and the age of potential participants, it was felt that interviews

were the more appropriate vehicle to engage with the young stakeholders. In a one-on-

one interview, participants can freely discuss their experience and views on cyberbullying

without peer influence or judgement. It provides a safe and confidential environment for

the young participants to have an honest discussion about cyberbullying.

This phase of the research study was initially devised as a schools’ project, and a number

of local secondary schools were contacted to explore the possibility of collaborating on

the project. One of the schools (a co-educational comprehensive school) agreed to take

part in the study. Ethics approval was subsequently granted by the University Ethics

committee to conduct the school project and, specifically, for the researcher to conduct

individual interviews (with the school’s counsellor in attendance) with students from Year

7 upwards to gain an insight into their opinions on cyberbullying and how the proposed

mobile app could assist in its prevention and mitigation. Unfortunately, despite several

fruitful meetings with the school authorities and favourable engagements with students by

the researcher in the form of giving talks at school assemblies and seminars about

cyberbullying and the research study as part of a staged recruitment process, progress

slowed and eventually halted due to ultimate non-engagement on the part of the school.

In order to progress the research, and mindful of the delay this had caused to the

research, a decision was then made to, instead, recruit first-year Aston University

undergraduates as the study participants. As young adults, many of whom just recently

graduated from secondary school, first-year undergraduates are the closest in age to

secondary school students amongst the undergraduate student population. Their views

on cyberbullying are therefore likely to be representative of those of the initially targetted

secondary schools students. A new ethics application was submitted to conduct
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individual interviews and participatory design sessions with first-year undergraduates

which was granted by the University Ethics Committee (see Appendix B.8).

A total of 25 interviews were conducted in the period December 2017 - July 2018, the

findings of which are discussed in the following sections. Participant recruitment was

performed via research invitation posters (see Appendix B.9) placed in various locations

on the University campus and also via invitation emails (see Appendix B.10) sent to

first-year undergraduates. Due to the University’s data protection policies, the students’

email addresses were not shared with the researcher; instead, the invitation email was

forwarded to the research liaison of the University’s Schools. The invitation emails were

then sent by each School to all of their first-year undergraduates. As a result of this

arrangement, the exact number of students emailed is not known; data provided by the

University’s Planning and Student Management Information unit indicated that 6065

students were admitted into the first year of the University in 2017 and so it is anticipated,

therefore, that approximately this many students received the research invitation. The

invitation email included a link to an online pre-study questionnaire (see Appendix B.11)

that gathered demographic and social media usage information from respondents and

was used to determine their suitability for the research interviews.

4.3.1 Pre-Study Questionnaire

Seventy-two respondents completed the online pre-study questionnaire, of which 51

identified as female (70.8%), 20 as male (27.8%), and one respondent preferred not to

say. Forty-three respondents (59.7%) were aged 17 – 21 years, 26 (36.1%) were aged 22

– 24 years, and the rest were at least 25 years old. As illustrated in FIGURE 4.1,

WhatsApp was the most popular social media/messaging platform used amongst

respondents, followed by Instagram and Facebook. The popularity of Instagram amongst

young people has also been highlighted by a study conducted by the UK’s Office of

Communication (Ofcom Research, 2019) where it was found that, while Facebook

remains the social media platform with the highest number of registered users, this is

mainly due to a high number of legacy user accounts and that adolescents and young

adults in the UK are more likely to use Instagram, WhatsApp and Snapchat.
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FIGURE 4.1: Social media platforms used by respondents.

Many of the adults in the focus group study shared the view that young people spend a

significant amount of time on social media, and this opinion was confirmed given that

three-quarters of the students surveyed indicated that they check their social media

accounts several times a day (see FIGURE 4.2). Mobile phones’ dominance as a means

of accessing social media platforms and the Internet at large was also affirmed, with

nearly all respondents selecting mobile phones as a means of accessing social media

platforms (see FIGURE 4.3). This is in concert with Ofcom’s findings (Ofcom Research,

2019) that 75% of the total time spent online in the UK is via mobile devices.

FIGURE 4.2: Frequency of social media interaction.

As discussed in Chapter 2, variations observed in reported cyberbullying victimisation and

offending rates can sometimes be attributed to the timescale across which young people

are asked to reflect in terms of their cyberbullying experience; usually, the longer the

timeline, the higher the cyberbullying prevalence. Of the 41 respondents that admitted

being previously bullied online or were unsure (see FIGURE 4.4), 31 of them said that the

abuse occurred over a year ago, and the rest experienced online bullying within the last 3

- 12 months as shown in FIGURE 4.5.

124

S.D.Salawu, PhD Thesis, Aston University 2021.



FIGURE 4.3: Means of accessing social media.

FIGURE 4.4: Number of participants that have been cyberbullied.

When queried on the specifics of how they had been bullied, the majority had had offensive

comments posted about them online; this was followed by being abused via offensive text

(SMS) messages and the sharing of inappropriate pictures online (see FIGURE 4.6).

Ignoring cyberbullies was the typical response of many victims (51.4%), but many

respondents also said they did not know what to do (43.2%) while some were too scared

or upset to do anything (21.6%). None of the cyberbullying victims in the survey reported

the abuse to the school authorities, and only a handful confided to their parents or

guardians. Similar to the findings of Bauman (2010) which noted that students rarely

report cyberbullying incidents to teachers, the survey discovered that the majority of

cyberbullying victims were passive in their response to being bullied and would rather
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FIGURE 4.5: Period when the cyberbullying incident occurred.

FIGURE 4.6: Type of online abuse experienced.

endure the abuse than report it to teachers or parents, as illustrated in see FIGURE 4.7.

This has significant implications for cyberbullying prevention; rather than hoping that

young people will confide in them and then being reactive, adults should actively engage

with young people and create an environment where young people feel safe enough to

open up about online abuse. Not all cyberbullying victims reacted submissively: about a

fifth of them confronted the cyberbullies and told them to stop, while a handful retaliated

by sending offensive messages back to the bullies.

Confiding in a friend also appeared to be a common reaction to being abused online.

When considered alongside the fact that 13 out of the 40 respondents that had witnessed

a friend being cyberbullied (see FIGURE 4.8) reported it to a teacher (see FIGURE 4.9),

it can be seen that the support of friends is a critical aspect in combating cyberbullying.

Encouraging strong positive relationships with peers should, therefore, be included as

a crucial component of cyberbullying mitigation. To emphasise this further, the survey

showed that more participants reported the abuse of a friend to a teacher than to another

friend.
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FIGURE 4.7: Respondents’ response to cyberbullying when they are the victim.

FIGURE 4.8: Number of respondents that have witnessed a friend being cyberbullied.

FIGURE 4.9: Respondents’ response to cyberbullying when a friend is the victim.

Again, ignoring cyberbullies was a common tactic as respondents were as likely to advise

their friends to ignore the bullies as they were to report the bullying to a teacher.

Retaliating or advising the victim to retaliate were found to be the fourth most common

tactics, preferred ahead of reporting to parents or doing nothing out of fear of being

targeted as well. As discussed in Chapter 2, the low cyberbullying offending rate
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recorded by many studies can be attributed to participants’ desire to provide socially

desirable answers (Hinduja and Patchin, 2013). This could be the case for this survey as

well, as only three students admitted bullying someone online, and they did this by

sending offensive SMS messages or posting something distasteful about the victim

online. Finally, with regards the likelihood of using a cyberbullying prevention app like the

one proposed, 69.6% of the students affirmed that they would use such an app.

4.3.2 Interviewees

Sixty-nine survey respondents indicated an interest in being contacted by the researcher

to engage in follow-up individual interviews. The students were contacted via email and

provided additional information about the research interviews in the form of a dedicated

Participant Information Sheet (see Appendix B.12). Of these, forty-one students agreed

to be interviewed, and interview sessions were arranged with all students at a mutually

convenient time. Sixteen students, however, did not attend the original interviews nor

re-scheduled sessions. In all, 25 individual interviews were conducted. The interviews

took place on the University campus in small meeting rooms and study rooms to ensure

privacy and limit the possibility of disturbance. Drinks and snacks were provided by the

researcher. The interviews were structured as open discussions so that interviewees were

at ease and the first 5-10 minutes were spent discussing common interests to build rapport

between the researcher and the interviewee. A sample of the interview guide is presented

in Appendix B.13. There were thirteen female, ten male, one trans female and one non-

binary interviewee from the ethnic backgrounds summarised in TABLE 4.3. Twenty-two

participants were aged 17 – 21 years, two were in the 22 – 24 years age range, and one

student was 25 years or older. All participants consented to the interviews via the provided

consent forms (see Appendix B.14 for a sample) and received a £10 amazon voucher for

participation.

Ethnic Group Number of Interviewees
Asian or Asian British 7
Black, African, Black British or Caribbean 5
Mixed or multiple ethnic groups 1
White 12

TABLE 4.3: Summary of interviewees’ ethnic groups.
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4.3.3 Emergent Themes

The interviews were audio-recorded, transcribed verbatim and stored in Nvivo. Similar

to the analysis of the focus group data, an inductive analysis process was performed

using the procedure established in Section 4.2.2. The eight key themes uncovered by the

analysis are discussed in the following subsections, and the coding tables are presented

in Appendix B.15.

4.3.3.1 Cyberbullying Occurrence Intensifies in Early Teenhood and

Extends into the Late Teens

Williams and Guerra (2007) and Tokunaga (2010) suggested a curvilinear relationship

exists between victims’ age and victimisation rate in young people. They theorised that

cyberbullying typically starts amongst children aged 10 – 11 years, peaking in ages 13

and 14 years, and declines rapidly at 14 years and above. The cause of this curvilinear

relationship was, however, not expatiated on by the aforementioned studies. While the

study findings here do support the possibility of a curvilinear relationship, the accounts

of interviewees indicate that the nature of the decline in older teens is less steep than

suggested as inferred from the comments below:

“The mean, malicious stuff didn’t continue past year 12”.

“There were some [incidents] in sixth form. Not as much as before but still quite
a few. Some girls posted some stuff online about another girl, and she and her
friends beat them up. It was quite a big deal at the time I think”.

“I think there was a big age thing about it. I think a lot of it was start of
secondary schools, I’m thinking year seven, year eight or toward year 10, 11”.

“We were in sixth form when they created those pages to rate girls on their
‘hotness’”.

“My first year of sixth form, I was harassed by an ex and her family on Facebook
Messenger quite badly”.

“Thankfully, it stopped when we got older [. . . ] most of the people that I’ve
heard about, they stopped taking it serious[ly] because then we were like
around 16, 17. They never took it seriously, so I didn’t either. Online stuff
didn’t affect us as much as the younger generation. I think it was bigger for
year 9 or 10”.
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It appears that as young people enter a transitional period in the final years of secondary

school, their focus shifts to other concerns outside of secondary school like higher

education and employment. This theory is substantiated by one of the student’s

observation:

“To be honest, I think when we got to sixth form, people couldn’t be bothered.
We were more concerned about college and Uni”.

Another noted that:

“As we got older and obviously became more aware of things like mental
health. I think people just sort of tone things down a bit. There was less of the
cyberbullying definitely”.

This study, therefore, identifies a shift in priorities and the awareness of the negative

consequences of cyberbullying that comes with maturity as the two leading causes for

this reduction in cyberbullying activities as children grow older.

Contrary to studies such as those by Olweus (2012) and Olweus and Limber (2018), the

young people interviewed considered the impact of cyberbullying worse than that of

physical bullying. Many of the students interviewed were very vocal about their opinions

regarding this as exemplified by the following quotes:

“The effect that one person’s comment can have on you, it can be huge really.
A lot of people could end up killing themselves regarding it”.

“Cyberbullying is, if anything, I find it more of a serious problem [than physical
bullying] because it’s almost undetectable at the moment”.

“Physical bullying and all that is bad, but there’s a lot of people who
underestimate the harm that cyberbullying can bring.”

This higher impact of cyberbullying (compared to physical bullying) as perceived by the

students is primarily linked to the pervasive nature of the Internet and its ability to reach a

broader audience. One student noted that:

“The thing is that on the internet, everyone can see it. Normal bullying, there’s
probably about ten people all around you. You would see what’s going on but,
on the Internet, literally, the entire world can see”.
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This difference in the potential number of witnesses highlights a crucial distinction between

physical and online bullying and one that is often ignored by studies such as that by Olweus

and Limber (2018). The possibility of an online bullying act being witnessed by such a

large number of people and also being electronically preserved indefinitely can increase its

potency and, consequently, the impact on victims. Smith (2012) made similar conclusions

in disputing Olweus (2012) views on the reduced importance of cyberbullying compared

to physical bullying. Equally as discovered in the literature (Fahy et al., 2016; Kim et al.,

2017; Khine et al., 2020; Martı́nez-Monteagudo et al., 2020), the study uncovered similar

concerns about the mental health dangers of cyberbullying for young people as illustrated

by the following statements:

“My cyberbullying didn’t start until I was about 11. It was when I first got a
phone, and at the time, in year six, everyone seemed to have Facebook [. . . ]
for me, my mom always took me out of school when I was 11 because of the
constant abuse. It was pretty bad [. . . ] that was when my mental health issue
started because that gave me major anxiety. I didn’t want to go to school. My
mom had to take me into school and pick me up from the reception. I was only
11. That’s pretty bad to be too scared to go to school”.

“I’ve had different friends saying they have been bullied online to an extent
where it’s kind of overtaken their lives”.

Additionally, the study found these concerns to be well-justified as observed in the tragic

case narrated by one of the participants:

“ [. . . ] he’s not really a close friend, sort of someone I knew. He was in year
11. On Facebook, there were allegations going on about him. That he was gay
and that he had sexually assaulted someone. It sorts of spiralled out of control;
there was a lot of aggression directed towards him, particularly on Facebook.
He ended up killing himself. He hung himself in a tree in the local park”.

While suicide ideation as a consequence of cyberbullying has been identified in the

literature (Iranzo et al., 2019; Brailovskaia et al., 2018), this study, unfortunately,

substantiated this claim highlighting that the disastrous conclusion of such a horrific

association is, unfortunately, a possibility. Out of the twenty-five students interviewed,

twenty-four (96%) had experienced cyberbullying as victims, bystanders or perpetrators.

This staggering statistic implies a prevalence rate much higher than suggested in the

literature. As one student put it:

“I think everyone knows someone probably, who has been cyberbullied or they
may have been bullied themselves”.
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4.3.3.2 Appearance and Identity are Common Bullying Themes

Physical appearance, sexuality, race, culture and ethnicity were identified as common

cyberbullying themes in the studies of Dinakar et al. (2011) and Dadvar et al. (2012a),

and this became evident in the students’ responses as illustrated by the following quotes:

“We were just debating, and I let it slip out that, ‘Yes, I’m a mixed-race person.’
So after I said I was a mixed-race person that’s when the abuse came in [. . . ]
It just seemed strange because suddenly, okay, we’re debating this thing, but
then suddenly you find out that I am mixed-race and suddenly the debate is
over. This is when you start hurling the abuse”.

“ [. . . ] it was always very subtle, but you could tell that she was being unkind to
maliciously hurt my friend. It was really sad to see. It was more picking on and
making comments about her weight or bad hair or things like that. It was more
subtle. I think that one is more dangerous because it’s subtle.”

“It was Facebook. They were just calling her names, and there was a picture of
her. She doesn’t look really great in it. People thought she looked ugly basically
and so they made fun of it”.

“They said he was gay and that he had sexually assaulted someone”.

“ [. . . ] repeated comments about things like my weight, my accent, my
appearance”.

It would appear that anything that makes a young person different in any way could be

potentially used by bullies to offend. This could be physical features, accent, race, culture,

identity and medical conditions. The typical student profiles associated with traditional

bullying are also quite fluid in cyberbullying; for example, popular students who are

generally unlikely to be bullying victims have been subjected to online abuse. A

participant recounted a situation involving a popular student in her former school:

“I knew this girl, she quit the school, that was probably because of all the
cyberbullying she got, I don’t even get why they were picking on her, she’s
quite pretty I think that’s why, weird right”.

Another student with cerebral palsy narrated his experience being bullied about his

condition:
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“You know Breaking Bad [a TV series]. Walter White’s son, Junior has cerebral
palsy in the series and I have that, so they used to call me Junior”.

He went on to say that his abusers later apologised to him in the following year and

became his friends. This further substantiates the study’s finding that as children grow

older and become more aware of the impact of their actions, their proclivity for

cyberbullying offending reduces. The implication, therefore, is that reflective tools and

activities that encourage empathy amongst young people (as suggested by the adult

stakeholders) are key strategies for preventing cyberbullying.

4.3.3.3 Cyberbullying on Facebook and Twitter is More Public Compared to

Snapchat and Instagram, Where it is More Personal and Targeted

As revealed by the pre-study questionnaire, WhatsApp, Facebook, Twitter, Instagram and

Snapchat were the most frequently used social media and messaging platforms by young

people. Although WhatsApp was the most popular messaging application used, none of

the participants experienced or witnessed any form of online abuse on the platform. This

is likely because, as reported by the students, WhatsApp is mainly used to communicate

with close friends and family. Facebook, however, was frequently cited as the platform on

which many of the cyberbullying incidents occurred. With Facebook accounting for 58%

of the monthly Internet traffic for social networking (Statista, 2020b) and as many as 80%

of the pre-study survey respondents reporting that they use Facebook, it is not surprising

that a substantial proportion of the online abuse experienced by interviewees happened

on Facebook, as typified by statements such as:

“There was a Facebook page created by some kids in school [. . . ] I found my
name written multiple times, but mostly it was nice things. Then there was that
one time when someone didn’t say something quite as nice”.

“A friend of mine had a Facebook account made for him; someone else made
it under his name they were pretending to be him saying things like ‘Oh, I’m
gay and such an idiot.”

In addition to Facebook, Twitter, Instagram, and Snapchat are some of the other social

media platforms where interviewees had experienced or witnessed cyberbullying. The

manner of the abuse on these networks varied and included hacking:
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“When I was in sixth form last year. It was on Instagram and Snapchat. What
happened was I think, so a person logged into my friend’s Instagram account
and saw our messages and then they obviously used that as information
against me. They moved that to Snapchat so everyone could see it, within a
few minutes a lot of people could see the Instagram private messaging”.

stalking:

“She [the tormentor] would also try and get to her through other people. I don’t
think she was trying to be nasty. She was just obsessed with her like some
people are. She was basically stalking her on Instagram and Twitter but she
kind of forced her to close down a lot of her online life as a result”.

and sending offensive messages:

“Snapchat is a bad one I think for cyberbullying because it’s very personal and
once that snap’s gone, it’s gone”.

“Twitter is quite vile. It is not a nice site at all. Twitter people are just not nice
I have just like posted inspirational stuff, and random people will start sending
you abuse for no reason”.

“They were sending me DMs [Direct Messages] saying that they were going
to post all sorts of horrific untrue accusations about me on social media and
things like that in order to discredit me”.

The different types of cyberbullying experienced or witnessed by participants coincide with

the categorisation proposed by Bauman (2015), highlighting the various manners in which

cyberbullying can be manifested. A crucial distinction was, however, observed by the study

in the way cyberbullying is perpetrated on Facebook and Twitter compared to Instagram

and Snapchat. The types of online abuse experienced and witnessed by participants on

Facebook and Twitter can be likened to publicity stunts designed to offend the victim in a

very public manner. These types of abuse are often perpetrated by creating a page or a

fake account as a means of ridiculing and causing distress for the victim. The comments

from participants indicate that the more people who are aware of a cyberbullying incident,

the higher the distress caused by the incident, thus attributing public forms of abuse as the

more severe form of cyberbullying. This is in concert with the findings of other studies like

those of Nocentini et al. (2010), Slonje and Smith (2008) and Sticca and Perren (2013)

which similarly found public forms of cyberbullying the most distressing for victims. The

dangers of this type of bullying have been highlighted in the media (Davis et al., 2012;
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Evans, 2018) thankfully these forms of online abuse are now quickly taken down by social

media platforms once discovered (Cheng et al., 2019).

The other type of cyberbullying, which is more frequent on instant messaging-oriented

online social networks like Snapchat and Instagram, is targeted messages sent directly to

the victim typically from anonymous accounts. While not publicly visible and thus only seen

by the victims, they represent an intimate form of abuse and can contribute to a feeling of

isolation for the victim. A student that admitted bullying an ex-partner online via Instagram

said this:

“She was utterly bombarded by me like five or six times a day, all these things
because I used the Internet effectively as my tool to have that effect on her”.

By understanding how cyberbullying is perpetrated on different social media platforms,

cyberbullying prevention tools such as the proposed mobile app can be specifically

designed to target these forms of cyberbullying on the relevant platform, thereby

improving their effectiveness. As discussed in Chapter 2, this research favours a

redefinition of the repeatability criteria often used to qualify cyberbullying to include single

incidents where offensive material is publicly shared and made available for repeated

viewing. The data from this study certainly supports this. Such is the speed of

propagation of social media that content available for mere seconds can be instantly

captured and shared to a multitude of people. As noted by one participant:

“I went to an all-girls school; it was very frequent. In my school, when there’s an
argument, people start exposing people and different things on social media.
They posted indecent pictures of a girl [. . . ] Everyone saw it. She just said
that it wasn’t her, but it was. She didn’t do anything other than that. It was
just the one time. She took it down. Everyone already saw it; everyone had
screenshotted it and all that. It was too late; the damage had already been
done. They will put it as their display picture so all their contacts could see it”.

4.3.3.4 Cyberbullies are Often Known to Their Victims

Only two participants admitted to bullying other people online. In both instances, the

bullies were male, and the victims were people known to them. One of them electronically

harassed his ex-girlfriend for several months: he said at the time it never occurred to him

that what he was doing amounted to abuse. In his words:
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“I was probably a really nasty person to, I guess, one of my ex-girlfriends. I kind
of did that without realising it. I was discovering how useful the Internet was
and became enamoured with the girl and effectively tracked down everything
she had online and tried to get in touch with her by all those means. She asked
me to leave her alone, but I didn’t. I wasn’t trying necessarily to do anything
like bullying, [...] it really wasn’t until she screamed at me to leave her alone
that I realised what an a*s I have been.”

As stated by Smith et al. (2008), the absence of immediate visual or aural feedback from

the victim can often hide from an offender the impact of their actions, and this certainly

appears to be the case with the two interviewees in this study. In narrating his own

experience, the other student stated:

“What did I do? I was probably 14-ish. They were my friend weirdly enough.
We had split apart a little bit. I found his email address. I thought it’d be really
funny to, this is terrible by the way, especially in today’s means, but I sent loads
of emails. God. Like, say I was a random person. That I was going to go to his
house. I was going to blow him up. Really bad. Awful, awful, awful stuff. I don’t
know why I did it. I did it in order to rile him a little bit because we’d fallen out.
I thought it was funny. The intent was to upset him but with the effect that we
would laugh about it”.

“I don’t know what the situation was in my head, I don’t know, but along the
lines of make a joke about it and then they would stop, and we would be friends
again”.

In proposing their “revenge of the nerds” hypothesis, Ybarra and Mitchell (2004) suggested

that online bullies may have previously been victims of physical bullying who then use the

electronic medium to retaliate against their tormentors; this was not the case for the two

cyberbullies in this study, albeit it is recognised that perpetrators only accounted for two

interviewees. For the cyberbullying victims, many reported that they knew their tormentors

who were former boyfriends and girlfriends, classmates and “people from school”:

“I had a MySpace account back when it was cool many years ago, and I moved
to Facebook at some point when Facebook came in. When I left MySpace,
that snapshot of my life, I had certain things on my mind. I said some stuff on
there, I forgot about the page and never went back to it. Then, about a couple
of years later, a friend of mine had obviously gone and found that and used it
against me [. . . ] he threatened to copy it to Facebook as a screenshot”.

“I’ve been slightly cyberbullied, but it was by an ex-boyfriend. It was on a couple
of different platforms. It was Facebook Messenger and Tumblr. It wasn’t exactly
directed at me, just on posts which I could see. Being unkind about me for
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everyone to see. They didn’t tag me, but there were a couple of times when he
said my name. I knew it was about me because it was specific to things that
happened”.

“My first year of sixth form, I was harassed by an ex and her family on Facebook
Messenger quite badly”.

In some cases, the abuse was extended to other members of the victim’s family:

“My ex and some of her friends. It was just repeated comments about things
like my weight, my accent, my appearance. If I blocked them, then they’d create
new accounts. It wasn’t just on social media; it’s also over phone calls and text
messages and things like that. They were sending messages to my parents.
My little brother”.

The quotes below from two interviewees who were severely abused online represents a

rather succinct summation of the most likely culprits of cyberbullying:

“I didn’t experience cyberbullying from people I don’t actually know. They were
always people I know. Always”.
“ [. . . ] they were in my class. it was awful, what they did say. I did know it was
them, there wasn’t anonymity involved”.

While the perceived severity of anonymous and non-anonymous cyberbullying have been

studied and anonymous cyberbullying identified as the more severe of the two

(Vandebosch and Cleemput, 2008; Smith et al., 2008; Dooley et al., 2009; Barlett, 2015),

little is known about the prevalence of both forms of cyberbullying. Hence, this study’s

finding that the majority of the victims knew their perpetrators contributes new knowledge

to the literature and exposes an area of cyberbullying research that has not been well

explored.

4.3.3.5 Fear of Reprisals and Inadequate Responses Discourages

Cyberbullying Reporting

“If you tell your parents, they tell the teachers. Then obviously the teachers
tell the bullies, and it creates this sort of situation. I know if you look at it on
paper it makes sense because when you’re telling a person in authority about
it, their idea is although they will be able to help you, the fact that you don’t live
in the kind of environment where the authority is always there to help means
that in the times when they are not there, then the retribution for what you did
in the first place makes it worse, makes it not really worth telling at all in the
first place”.
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The above quote summarises young people’s attitude to reporting cyberbullying to an

authoritative adult. The data from the interviews support similar findings from studies

such as those by Gao et al. (2016) and Sticca and Perren (2013) and indicates that

young people do not report cyberbullying to adults out of fear that adults may overact or

that adults lack the relevant knowledge about social media and are thus ill-equipped to

deal with cyberbullying. In discussing their reluctance to involve school authorities, some

of the interviewees said:

“People who haven’t witnessed it or haven’t experienced it don’t really know
much about it. Especially parents who haven’t been through when they were
younger, they are just like, ‘It’s normal, just ignore it’”.

“We never did really talked to the teachers. You go to the teachers, what are
they going to do? As soon as they tell these people off, it’s just going to start
right back up again and maybe worse because now they actively hate you at
the same time”.

For the majority, however, the reluctance to report cyberbullying to teachers is out of fear

of reprisals from the bullies if discovered, as well as the general stigma associated with

reporting and being labelled a “grass” or “snitch” by other students. Some of the students

recounted:

“I didn’t want to go to school because I know there’d be a chance they’d tell
my parents, and also there’s definitely an element of not wanting to be a grass.
I typically tell my friends. Not that they could do much about it because they
were also typically being cyberbullied at the same time”.

“I typically do report things that I think have been particularly harmful. If it
looks like a lot of stuff could be focused at me if I intervened then I will report
anonymously. I just don’t want to have that sort of stuff directed towards me”.

Not all the students were, however, averse to reporting cyberbullying. The results for those

that did were, however, mixed. While some achieved positive outcomes:

“My parents got involved, they essentially threaten legal action against them if
they don’t stop this [. . . ] it was particularly bad, but it did get sorted”.

“I’ve had friends who’ve been affected badly because they’ve received
messages like harassment. The harassment was in a sexual nature, so we
got the evidence, and we went to the school head to report, and the guy got
kicked out”.
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“I reported them, and then I blocked them because I didn’t want to see anything
else, then I got my friends to also report it, but it got taken down in like hours, so
that was good, but I think we were lucky because some other times, Facebook
didn’t respond at all.”

For others, however, the experience was not as positive. One participant said:

“I told the assistant principal of my sixth form, and then she said that hacking
is impossible of an Instagram account [..] and she was like, It’s not hacking,
it’s a fight. Get over it’. I find it quite hilarious, but I was done with that school
within a month, this happened last May, and I was finishing June so, I knew I
was out of there. This is the assistant principal, I went to her. I was crying, she
shouted, “Get over it. It’s normal”.

There is undoubtedly a sense of helplessness on the part of the victims. They feel that

since the abuse is not physical, there is very little the school can do:

“When it’s at home with your phone your school can’t do anything about it so
why bother to tell teachers”.

“Teachers don’t know how to deal with it. The teachers aren’t educated properly
about what it’s like to grow up in the time like us. Some of them want to help;
some of them don’t care. The teachers that really do care about pupils really
do stand out, but most of them just don’t get that. They don’t think that they can
help. They see pupils getting bullied or other stuff, and there’s stuff happening,
and they think, there’s nothing I can do about it, I’m just a teacher”.

“We don’t go to our teachers asking for support, so we get bullied more every
day, and this keeps going on, there is a certain mental pressure on you. For
example, I felt sick because I was very scared, it reaches a point when you
can’t take it anymore, you have to share it with someone. If you’re not being
able to do that, it just makes you devastated, frustrated”.

4.3.3.6 School Should Intensify Cyberbullying Prevention Efforts

When questioned about their schools’ strategies for mitigating and preventing

cyberbullying, the general opinion of the students was that schools need to do more than

“a few assemblies” and “the odd poster”. They said:

“We probably had a few talks about depression, speaking out, but I’m not so
sure about cyberbullying specifically”.

“We did have a few assemblies about cyberbullying in our citizenship lessons;
we had some documentary, kind of an informative film about cyberbullying”.
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“I never knew the school to ever intervene with anything, cyberbullying or
otherwise. Not at all. There were no posters or anything. Nothing. Not that I
remember. If there was, it didn’t stand out enough for me to see it”.

“Sometimes I feel like schools are afraid to deal with the bad children because
the parents are just as bad”.

“In year seven, we were told that, if they wanted to, they could look at our social
media records with the police. I don’t think that deterred anyone”.

With the students having similar opinions to the focus group adults about schools’ efforts

to prevent cyberbullying, it is clear that more needs to be done by schools to support both

students and parents in terms of cyberbullying via education and raising awareness

about cyberbullying. It is therefore critical that schools adopt a zero-tolerance attitude to

cyberbullying, enabling an environment where students feel safe enough to report

cyberbullying without fear of reprisals from the bullies. It is also vital that students are

adequately reassured that their complaints will be fairly heard and treated seriously – i.e.,

that because the abuse occurred online does not mean it will be minimalised and that

they cannot rely on the school for support.

4.3.3.7 Relevant Advice and Punitive Actions are the Critical Features for

the Proposed App

In discussing the proposed app, many commonalities were observed in the students’

suggestions on how the app can assist cyberbullying victims. Many felt that it was

important for the app to support cyberbullying victims with relevant advice on how to

tackle the situation. They were, however, very critical of existing advice on dealing with

cyberbullying. One student noted:

“I think if advice were to be given and used on the app, it would be important
whoever is writing the advice. Wherever it’s coming from, they understand not
just the victim’s mentality but the bully’s mentality as well because they are
finding that the people doing the bullying are often raised in places where they
have had violence and aggression towards them, they pass it on. I’ve seen
advice, and they said things like - Just say no. Firmly say to your bully ‘Please
stop’. That’s just not going to work. That’s written by somebody who has no
idea. Has no idea why it’s happening, how it’s happening and how to stop it”.

The quality of the advice and the manner in which it is provided was therefore identified

as a key aspect of delivering this feature. The students favoured advice that was relevant
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and tailored to specific situations. Interestingly, while the students were quick to propose

different types of sanctions that can be applied against online bullies by the app, unlike

the adult stakeholders, they did not suggest features to encourage positive attitudes and

empathy amongst potential users of the app. When the use of reflective interfaces was

suggested by the researcher, only a small number (four) were enthusiastic about this. Of

these four users, three have witnessed close friends being bullied, and one has been a

victim of cyberbullying. The remaining students were of the opinion that reflective

interfaces would not deter a bully from offending. One said:

“I don’t think there’s any way of preventing cyberbullying. At the end of the day,
no matter what you’re saying to people, teach people, they’re always going to
go do their own thing”.

The two students that have bullied others online before were of similar opinions. They

said it is doubtful that a reflective interface would have dissuaded them from performing

the actions as they did not feel they were doing anything wrong at the time. After the

researcher clarified that the typical use for such reflective interfaces would be to reduce

instances of unintentional abuse or the use of inappropriate language during an emotional

outburst or in the heat of the moment, the students were more appreciative of the feature’s

potential. As the interviews progressed and explored specific ways that the app can be

used to reduce online abuse, the students were asked the question: how do you defend

yourself against a cyberbully? The participants’ key recommendation can be summarised

as to “block and ignore” online bullies. In narrating their experience dealing with online

abuse, some of the students said:

“I just started ignoring it and stopped responding. I stopped letting it affect me”.

“What she did, she just literally left the account and made a new one. Made
one that only her friends knew her from. That went quite well”.

“I think she blocked her in the end”.

“I think my mom actually found out. She saw all insults on the messages, and
she got quite upset about it. She told me to block him, and so I did”.

They followed these up by suggesting that the app should implement features that

automatically sanction abusive users:

“If it can delete and block stuff, then that’s good if you are being bullied [. . . ],
but if you are a bully I don’t think an app will make you think twice”.
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“I think developing an app that could protect them or maybe just help them sort
things out, I think would be a noble cause. Blocking the bullies is very good”.

“Getting them [bullies] banned will be good, I think. Because they are always
creating new accounts so if there’s a way to just keep banning the new accounts
till they get the message”.

4.3.3.8 Young People Would Rather Report Cyberbullying Anonymously

than get Directly Involved

The influence of defenders (individuals that stand up to bullies in support of victims) on the

possible outcomes of a cyberbullying incident has received some attention in the literature

and empathy has been positively correlated to the likelihood of a witness defending the

victim (Machackova and Pfetsch, 2016; DeSmet et al., 2016). When questioned on what

their initial reactions would be if they witnessed cyberbullying, the majority of participants

said they would avoid a confrontation with the bullies but would consider reporting the

incident if there were ways to do so anonymously:

“My instinct is to say yes because you would want to be the kind of person who
would say yes. Without knowing the situation, it would be difficult I would think.
Because, you know, what would you say? It might even spark it into being more
aggressive, in all honesty”.

“Is this going to come back and hurt me in a certain way? If It would be more
like yes. I wouldn’t. I’m not an online superhero. That’s not me”.

“I’m not sure I would to be honest. I like to think I would but the bystander factor,
meaning people generally just tend to ignore things that aren’t happening to
them or aren’t important to them. I like to think I would, but I’m not sure”.

“If there was a way to report it that was anonymous or wouldn’t get me involved,
I would probably report it”.

“I would definitely complain and go to some authority and inform them about
the cyberbullying, but I won’t engage them [the bullies] directly”.

This implies that, in addition to empathy, self-preservation is another factor influencing

young people’s decision to intervene when witnessing cyberbullying. Not all students share

this opinion, however, as a few students said they would take a more active role and speak

out in defence of the victims or contact them to offer support as seen in their comments

below:
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“I would tell them to stop Yes. Obviously, I would be, kind of, scared but I would
think that’s the right thing to do, certainly, yes. I would tell them to stop”.

“I like to think, like, I’d definitely want to do something, and I definitely do want
to”.

“If I thought it was a bit serious, it was getting a bit too much. I would personally
message the victim”.

4.3.4 Discussion

It is clear from the literature, and the studies conducted, that cyberbullying is a complex

issue and one that requires multiple strategies to manage different situations. The

interviews provided an enriched insight into cyberbullying from the perspective of young

people. Whilst many of the findings reinforce those from the literature, the study also

uncovered some contradictions and discoveries.

The notion that cyberbullying prevalence amongst young people reduces significantly

after ages 14 – 15 years was found not to be the case as many of the study interviewees

reported experiencing or witnessing cyberbullying up until they graduated from secondary

school. Furthermore, while the students believed that there was a reduction in the overall

occurrence of cyberbullying incidents during the period they were in sixth form, their

accounts suggest this was more likely a steady decline that the steep reduction

suggested in Tokunaga (2010) and Williams and Guerra (2007). The reduced but

sustained cyberbullying activities witnessed during this period can be attributed to two

opposing influences. Firstly, as they grow older, and their maturity increases, children

become more aware of the negative impacts of cyberbullying. Additionally, as they

prepare for life outside secondary school, there is a shift in their focus as they look ahead

towards higher education and employment. These combine to reduce their penchant for

engaging in cyberbullying activities resulting in a subsequent reduction in cyberbullying

prevalence at these ages. In contrast, the increased access to mobile devices as well as

improved knowledge and sophistication in the use of the Internet, coupled with reduced

supervision provide older teenagers with more opportunities to engage in abusive

behaviour online. The resultant effect of these two factors is the continued cyberbullying

occurrence in late teenhood as observed by the study.

While a lot has been said about the anonymous nature of the Internet and the ability of

cyberbullies to use this to torment their victims (Smith et al., 2008) thereby increasing the
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perceived severity of bullying incidents (Dooley et al., 2009; Barlett, 2015), the majority

of the interviewees who had been bullied online revealed that their abusers made little

attempt to hide their identities. This is an interesting discovery that suggests a parallel

narrative to that of the anonymous abuser typical in the literature. As to why an abuser

would knowingly choose to allow their identities to be discovered, this is likely related to the

motivations for bullying. Of the two participants that admitted bullying others online, one

made concerted efforts to hide his identity to increase the level of distress to the victim. In

discussing his motivations, the student said:

“ [. . . ] like, say I was a random person. That I was going to go to his house. I
was going to blow him up. Really bad. Awful, awful, awful stuff. I don’t know
why I did it. I did it in order to rile him a little bit because we’d fallen out”.

Based on these comments, it can be seen that anonymity was an intrinsic part of the

attack, which was designed to make the victim paranoid about the possibility of a sudden

attack from an unknown assailant. Furthermore, this incident also represents a form of

online bullying that is largely ignored in literature, which is the threat of violence thus

validating the inclusion of a threat label in the taxonomy of the cyberbullying dataset

created in the previous chapter.

In the case of the other student, the motivation for harassing an ex-partner was to rekindle

a broken romantic relationship. The student had convinced himself of the legitimacy of

his actions, and therefore it was important for the victim to view the harassment as a

declaration of continued romantic interest, hence the decision to reveal his identity. It

was also discovered from the students’ accounts that for some forms of cyberbullying

where the intention is to publicly humiliate the victim, for example creating “rating” pages

to rate physical appearances or fake profiles to spread malicious content, it is common for

abusers to not hide their identities to recruit collaborators and demonstrate their lack of

fear of reprisals from the victims. The motivations for online abusers’ to reveal or conceal

their identities is, therefore, an area of cyberbullying research that should be explored

more. Cyberbullying victims also tended not to report the abuse to parents or teachers out

of fear of reprisal from the bullies or because they were unconvinced of adults’ abilities to

protect them. This, unfortunately, creates a feeling of helplessness amongst victims which

can cause further damage to their mental health as observed in the following students’

accounts:
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”I told the assistant principal of my sixth form [..], and she was like, ‘It’s not
hacking, it’s a fight. Get over it’. [. . . ] This is the assistant principal, I went to
her. I was crying, she shouted, “Get over it. It’s normal”.

“We don’t go to our teachers asking for support, so we get bullied more every
day, and this keeps going on, there is a certain mental pressure on you. For
example, I felt sick because I was very scared, it reaches a point when you
can’t take it anymore, you have to share it with someone. If you’re not being
able to do that, it just makes you devastated, frustrated”.

The students were very critical of their schools’ policies on cyberbullying, and believe that

much improvement is required in schools’ efforts in mitigating and preventing

cyberbullying. Their views in this regard are similar to those of the adult stakeholders,

which suggests current cyberbullying prevention efforts by schools are not seen as being

effective.

While empathy has been positively correlated with attitudes to defending cyberbullying

victims (Cleemput et al., 2014; Machackova and Pfetsch, 2016; DeSmet et al., 2016), this

study identified self-preservation as another factor influencing young people’s decisions to

intervene in cyberbullying situations. As is to be expected, the need for self-preservation

is strongly linked to a young person’s propensity to defend a cyberbullying victim. The

reluctance of a witness to assume the defender role does not necessarily indicate a low

level of empathy (as is often suggested in the literature); rather, another possibility is that

self-preservation desires are more potent than the feelings of compassion towards the

victims. Furthermore, the self-confidence possessed by the witness plays a significant

role in the decision to intervene. The three students in the study who said they would

intercede on behalf of the victims appeared very self-assured. They were very confident

in their opinions about cyberbullying and its prevention, and this would have contributed to

their inclination to become defenders. This finding implies that providing an environment

where students can safely report cyberbullying incidents without fears of reprisal should

be adopted by educational institutions as a fundamental aspect of the overall cyberbullying

prevention strategy.

In suggesting desired features for the proposed mobile app, the students’ suggestions

were primarily focussed on punitive actions such as automatically blocking and reporting

abusive users and deleting offensive messages. As would be expected given they are

more familiar with technology in comparison to the adult stakeholders, the students were

more specific when discussing their desired features for the proposed app. When
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questioned on the level of performance expected of the proposed app, the majority said

they would expect the app to detect at least half of the abusive messages accurately with

many saying they would stop using the app if the performance drops below this level.

About a fifth of the students, however, said that they would continue using the app even if

the performance falls below this level. Four of these five students were former

cyberbullying victims, and their past experiences as victims may have played a role in

their desire to continue using the app as long as it provides some form of protection.

While all of the interviewees confirmed that their secondary schools used content filters

and web monitoring software on the schools’ computers and wireless networks, only a

handful (three students) had used similar software on their mobile devices. For these

students, the software was installed by the parents; two of them managed to disable the

monitoring software themselves, and the third protested and got her parents to remove

the software. The students were aged 14 -15 years at the time. Unsurprisingly, the

students were very vocal about their objection to the notion of the proposed app featuring

parental monitoring elements. Apart from this contradiction, many of the young people’s

desired features (see TABLE 4.4) overlap with those suggested by the (adult) focus

group participants implying that both stakeholder groups identify similar and

complementary needs for the proposed app.

The ages of the students interviewed (17 – 25 years) are higher than those of the

secondary school students (11 – 17 years) initially planned as the study participants; as

such, the level of maturity possessed by the first-year undergraduates would be absent in

the secondary school students. This maturity is evident in their views on cyberbullying

and how the proposed app can tackle it. Furthermore, the students’ perspective is wholly

retrospective as they recall incidents from their past. Eighty-eight per cent of the

participants are 17 – 21 years and would have been secondary schools students within

the last three year; as such, their views are still very much relevant and representative of

a large section of current secondary school students. The maturity of the students also

provides them with an objectivity that would be missing in younger secondary school

students, and each interviewee provided the study with the benefits of their accumulated

experience across different stages of secondary school and how cyberbullying affected

them through these different stages. Additionally, it is doubtful that younger secondary

school students will reveal as much about their experience as online bullies to the

researcher in the presence of a member of the school staff (as planned in the original
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Reflective, educational
and empowerment

Punitive Others

• Display daily
motivational quotes

• Provide access to
relevant advice and
help for cyberbullying
victims

• Block offensive users

• Report offensive
users to the social
network

• Automatically delete
offensive messages

• Allow ‘whitelisting’ of
contacts

• The app’s design
should not be too
childish

• Keep copies of
deleted messages

• Users should be able
to review deleted
messages

• Permanently remove
deleted messages
after a configured
period

TABLE 4.4: Young People’s desired features for the proposed app.

study protocols) as some of the participants have. Whilst the study participants are older

than those of other studies on cyberbullying, a key distinction between this study and the

literature is that the current study is not investigating present cyberbullying prevalence

amongst participants, rather it is exploring participants’ views of cyberbullying as

influenced by their historical experience with the phenomenon.

The researcher, therefore, does not believe that the age of participants has adversely

impacted the study or any of its conclusions, rather the research has benefited from the

objectivity introduced by the participants’ age and experience.

4.3.5 Study Limitations

As previously noted, the original intention for the study was to conduct interviews with

students of a local secondary school, but this strategy had to be revised due to

circumstances outside the control of the researcher; given that recruiting one school to

the study had proven difficult, the decision was made in the interests of progressing the

research to refocus attention on Aston University’s first-year undergraduate student

cohort. The consequence of this is that, rather than interviewing students currently in
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secondary school, the interviews were conducted with students that recently left

secondary school. Given most of these undergraduates recently progressed from

secondary school, it is felt that their experience of cyberbullying remains relevant and

representative of those of secondary school students. Their current views on the subject

may, however not be representative of secondary school students. Despite this, the

insight gained from the interviews is critical to understanding how young people feel

about cyberbullying, its impact on their lives and their opinions on how it can be

prevented using technology. Furthermore, the sample contained young people who have

experienced cyberbullying as victims, perpetrators and bystanders, providing a range of

perspectives that is only possible via experience.

4.4 Summary

This chapter presents the findings from studies conducted to understand key stakeholders’

views on cyberbullying and the ways via which the proposed mobile app can assist in its

prevention.

While the profiles of stakeholders involved across the studies are vastly different, the

studies uncovered substantial overlap in stakeholder opinions and desires, particularly in

terms of the functionalities desired in the proposed mobile app. Though adults believed

that there is adequate information available online about cyberbullying, they are of the

opinion that the information can be improved by making it available in easily digestible

formats. It was also suggested that schools should be more responsive in their approach

to tackling reported incidents of cyberbullying and online abuse. To facilitate this,

teachers would require access to specialised training and resources on managing

cyberbullying amongst students. Social media companies were also criticised for their

inability to adequately address the abuse that occurs on their various platforms.

Young people shared similar sentiments about social media companies and their

approach to confronting online abuse. Their reluctance to report online abuse to parents

and teachers could potentially be obscuring how pervasive cyberbullying truly is amongst

young people. Encouraging cyberbullying victims to be more forthright in reporting the

abuse may be challenging for schools, but, as discovered in this chapter, young people

are more likely to report online abuse suffered by their friends; this suggests that this is
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an area where schools have the potential to be more successful by enabling an

environment where students can safely report abuse. It is also crucial that when online

abuse is reported, it is treated seriously and given adequate attention by the school

authorities. A situation like the one experienced by an interviewee whose complaints

were ignored by the assistant principal is not acceptable.

The functionalities desired within the app by all stakeholders are very similar.

Interestingly, features that facilitate restrictive supervision were not popular, even

amongst adult participants. This suggests that adults are not in favour of app features

that may reduce the app’s acceptance amongst young people; instead, they prioritised

reflective and protective features that encourage positive attitudes while keeping young

people safe on social media at the same time. Raising awareness about cyberbullying

and providing access to specialist support for cyberbullying victims were also identified as

essential features for the cyberbullying prevention app.

In the next chapter, these findings are incorporated into the design process as part of the

participatory design approach adopted for the design of the proposed mobile application.
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Chapter 5: Participatory Design of the BullStop

Mobile Application

5.1 Introduction

The previous chapter outlined the investigative activities undertaken to gain insight into

stakeholders’ perspectives on cyberbullying prevention, the outcome of which was an

initial list of desired functionalities for the proposed mobile app. This chapter reports on

the use of Participatory Design (PD) methods in the development of BullStop. The use of

PD enhanced the development process in two key areas. The first is that by

collaboratively creating design prototypes with a cohort of Aston University first-year

undergraduate students as co-designers; the developed application is a manifestation of

the features and functionalities desired by the target audience resulting in a final product

that is acceptable to the target audience.

Secondly, the engagement of both adult and young stakeholders in defining the behaviour

of the application is injecting human sensibilities into the design of an Artificial Intelligence

(AI)-based system. Often, when AI-based systems are designed, the primary focus of the

developers are the performance gains introduced by the use of AI and the impact of such

a system on the human users are rarely given adequate consideration. The approach

adopted by this research ensured that the impact of the decisions made by the system on

humans are adequately considered and used as the primary driver for the design of the

system.

Section 5.2 provides an overview of Participatory Design and how it facilitated creating

an acceptable and impactful tool to assist cyberbullying victims. Section 5.3 discusses

the study design, while Section 5.4 reports on the recruitment of the co-designers. The

design and prototyping activities are detailed in Section 5.5, and Section 5.6 reflects on
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the PD approach used in developing the prototype. The limitations of the approach used

to develop the application’s prototype are considered in Section 5.7. Finally, the chapter’s

concludes with a summary in Section 5.8.

5.2 Participatory Design

Participatory Design (PD) refers to a set of theories and practises aimed at engaging

end-users as full participants in activities leading to technological solutions to real-world

problems (Muller and Kuhn, 1993; Clemensen et al., 2007). It started life as part of the

Scandinavian workplace democracy movement to include employees in the

decision-making process for introducing new technologies into the workplace (Floyd,

1993; Gregory, 2003). It recommends that computerisation in the workplace should be

providing workers with better tools to do their jobs rather than the isolated automation of

work processes without consulting the workers (Schuler and Namioka, 1993). PD is a

diverse endeavour drawing on ideas from various fields, including computer science,

psychology, engineering, anthropology, and many more. It has been shown to improve

technology acceptance in the design of computer systems for sensitive and

disempowered users such as medical patients, young children, the elderly, refugees

(Waller et al., 2006; Boyd-Graber et al., 2006; Ruland et al., 2008; Hakobyan et al., 2014)

and for bringing together a range of diverse views to improve products and services

(Gregory, 2003).

In developing technology-based solutions, it is critical that designers prioritise end-users’

needs and do not fall into the trap of designing the solution based solely on their own

experiences and preferences. PD affords researchers additional opportunities to learn

more about the problem domain while designing the solution and has been widely used

in developing a variety of technology solutions for young people (Moraveji et al., 2007;

Ruland et al., 2008; Hussain, 2010; Frauenberger et al., 2011; Benton et al., 2012; Read

et al., 2014; Iversen et al., 2017). Its use in cyberbullying and online abuse detection

system is, however, rare.

Ashktorab and Vitak (2016) used a participatory design approach to work with teenagers

to design potential cyberbullying prevention solutions. Similarly, Bowler et al. (2014)

worked with teens and university undergraduates to propose design recommendations for
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cyberbullying intervention for social media sites. Qonitatulhaq et al. (2019) utilised a PD

approach to collaboratively create an educational video about the dangers of

cyberbullying with children aged 9 – 13 years. Finally, McNally et al. (2018) employed PD

to engage children as co-designers in their study, which proposed design

recommendations for parental monitoring software to improve acceptance amongst

young people. While the above studies highlight the merits of adopting a PD approach to

engaging young people in the design of cyberbullying prevention solutions, in all the

studies there appears to be an absence of an actual implementation of the designs and

recommendations elicited via PD. There is little evidence to suggest that these few

studies that explored the use of PD techniques to ideate cyberbullying prevention

solutions actualised these proposals in any form. As such, there is no data on the

effectiveness, acceptability or impact of these designs in reality. Furthermore, none of the

existing abuse detection tools (Lempa et al., 2015; Vishwamitra et al., 2017; Talukder and

Carbunar, 2018; Silva et al., 2018; Oh, 2019) was developed using active end-user

participation approaches like UCD and PD. This highlights a disconnect between the

active participation of young people in the design of cyberbullying technology to meet

their needs and the realisation of such technology for their use and thus empirical

evidence of the efficacy of the approach; in so doing, it underscores the novelty of the

research reported here in terms of adopting user-centred and participatory design

methods to ensure that the needs and desires of cyberbullying victims and young people

are heard and taken into consideration when designing and then developing a tool to

combat online abuse.

In adopting a PD approach, the aim was to focus the scientific knowledge acquired from

literature through the lens of insight gained from various stakeholder engagement

activities to ensure that the proposed novel cyberbullying prevention app was designed

and developed to address critical areas for the target audience.

5.3 Study Design

FIGURE 5.1 illustrates the design process for the proposed mobile application and

highlights the importance of the PD phase to the entire process by serving as the means

through which the user requirements gathered via the focus groups and interviews are

married to the technical activities required to develop the mobile application.
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FIGURE 5.1: Overview of the design process.

The PD phase comprises three key stages, namely design conceptualisation, low-level

prototyping and high-level prototyping. A prototype is a model created to develop and test

ideas. Walker et al. (2002) defined fidelity as how distinguishable design artefacts are

from the final product and the corresponding ease with which they can be manipulated

during the design process. The closer (in appearance) to the final product, the higher the

fidelity of the prototype. Low-fidelity artefacts differ from the final product in many ways,

including the level of detail, appearance, and form of interaction; their power is that they

allow designers to focus on users’ interactions with the system instead of visual details

(Landay and Myers, 2001) and are very useful for quickly facilitating the expression of

ideas and concepts; furthermore, users tend to be more honest regarding their opinions
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of low-fidelity prototypes because they appreciate the ease with which changes can be

made. A common form of low-fidelity prototype is a paper prototype, created using office

tools such as paper, coloured pens, Post-It Notes and markers.

The design conceptualisation stage aimed to devise a high-level logical structure for the

application, including screen navigation within the app and how key features can be

accessed. The low-fidelity prototyping stage, as described above, made use of simple

tools like paper, marker and Post-It notes to add more details to the concepts created in

the conceptualisation stage. Its aim was to create a wireframe prototype that provides a

general sense of how the app will look like in terms of the ‘screens’ layout. The

high-fidelity prototyping stage creates the final design before the development of the

mobile application. It is aimed at producing a prototype that closely resembles the

finished product, and that can be used to assess the possible experience of end-users.

Three to four sessions were initially planned for the PD phase. The first and last sessions

would be dedicated to design conceptualisation and high fidelity prototyping, respectively,

and the middle session(s) would focus on low fidelity prototyping. Unfortunately, only two

of these sessions could take place. This was due to the difficulty experienced in getting

the student co-designers to attend subsequent sessions after the initial session. On a

number of occasions, PD sessions were scheduled with the students, and none showed

up. Rather than cause further delays to the research program (in addition to those

caused by the non-engagement of the secondary school partnered with for the students’

interviews – as discussed in Chapter 4), a high-fidelity prototype was developed by the

researcher using the outputs of the first session (discussed in Sections 5.5.1 - 5.5.3).

Simultaneously, continued attempts were made to engage the students, which eventually

yielded a second and final meeting with all six co-designers present. This session was

therefore used to review and amend the high-fidelity prototype created.

5.4 Recruitment of Participants

Six of the twenty-five undergraduates interviewed during the previous knowledge elicitation

phase (see Chapter 4) were invited to participate in the PD study. Participatory design

requires a high level of commitment and engagement from participants; therefore, it is

important to select participants to promote active and complementary participation of all

members while also ensuring adequate representation. The selected participants were
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Id Gender
Cyberbullying Experience

Ethnicity
Victim Bully Witness None

P1 Female X Caucasian
P2 Trans

Female
X X Caucasian

P3 Male X X Black
P4 Non-Binary X Caucasian
P5 Female X X Asian
P6 Male X X Caucasian

TABLE 5.1: Summary of PD participants profiles.

chosen based on observations (during the previous phase) of their enthusiasm as well

as their personal experiences of cyberbullying. Additionally, the group’s composition was

designed such that the key cyberbullying roles (based on their past experiences) were

represented. A summary of the participants’ profiles is presented in TABLE 5.1

Participants attended two design sessions, each of which lasted up to three hours; each

participant was remunerated by means of a £20 Amazon voucher per session. To

familiarise participants with the concept and ethos of participatory design, links to

youtube videos (see Appendix C.1) on participatory design were emailed to the

participants to watch before the sessions. The sessions took place in one of the

University’s meetings rooms, where drinks and refreshments were provided for all

participants. Design tools in the form of standard office supplies (e.g., Post-It notes,

paper, and markers) were made available in the meeting room along with a whiteboard

and a shared work surface comprising brown paper taped to tables. The meeting room

was arranged to have the work surface in the centre of the room, providing ample space

for all group members to work together and breakout areas if required at the room’s sides

(see FIGURE 5.2). A video camera was positioned to capture the work surface, and a

separate voice recorder was placed in the room to capture discussions. In addition, the

researcher took notes based on the discussions that took place in the sessions.

5.5 Design and Prototyping

As previously mentioned, two participatory design sessions were held with the six

participants. The first session was devoted to design conceptualisation and low-fidelity

prototyping, while the second design meeting focused on high-fidelity prototyping using
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FIGURE 5.2: Room arrangement showing work surface and breakout areas.

proto.io, a mobile app prototyping software. These activities are discussed in detail in the

following subsections.

5.5.1 Design Conceptualisation

The first PD session was used to organise the concepts uncovered in the earlier qualitative

studies into a single visual representation of the proposed app. The session started with

the researcher providing an overview of participatory design, the overall aims of the study,

and the specific goals of the design session. This was followed by a brainstorming session

where the group collaboratively developed different concepts and ideas for the app and

wrote these down on the work surface (see FIGURE 5.3).

Participants were then provided with copies of the combined features list from the focus

groups and interviews (see TABLE 4.7) to reflect on. The group reviewed the list, refining,

enhancing and removing features. Participants then added items from the features list to

the work surface, and a dot voting process was used to prioritise the ideas written down

on the work surface. Dot voting is a simple decision-making and prioritising technique

used to decide an order amongst multiple items by a group of people. Each group

member was assigned six votes and instructed to place a dot next to the item they wished

to prioritise. Team members could use as many of their votes as they wished on

individual items. This was an interesting and enlightening exercise as it helped uncover

156

S.D.Salawu, PhD Thesis, Aston University 2021.



FIGURE 5.3: Participants working collaboratively and writing down ideas.

the criticality of specific features to the participants. It was interesting to discover that,

when restricted to a fixed number of votes, some features that participants were initially

passionate about received fewer votes than others. For example, whitelisting contacts

(thereby instructing the app not to analyse messages received from them) was

considered a critical feature by five participants during brainstorming/discussion, yet it

received only two votes during the prioritisation process. Similarly, an on/off switch that

allows users to enable or disable the app without having to uninstall the application and a

feature to selectively disable protection for specified social media accounts, which were

favourites for many participants, received two and one votes respectively during the

process. The features and their associated votes are presented in TABLE 5.2.

After the prioritisation exercise, the group created a spider map of the application using

the prioritised features (see FIGURE 5.4). The spider diagram identified vital elements of

the app, their relationships, and the high-level navigation between the application

screens. The spider diagram revealed additional logical relationships between the app’s

components necessitating a second review and re-prioritisation of the app’s features by

the group.

The re-prioritised features list is depicted in TABLE 5.3 (with the old and new rankings)

and FIGURE 5.5. This reprioritisation promoted a number of features with low votes. For

example, the accounts toggle feature got elevated to the first rank from tenth. The group

identified this feature as a unique feature for the proposed mobile app. They believed that
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Rank Feature Votes
1 Give users the ability to review deleted messages. 5
2 Reassure users that the app is s2cmecure and that their

personal data is safe.
4

3 Give users the ability to adjust the sensitivity of the
offensive message detection

4

4 Provide a friendly and welcoming interface. 3
5 Give users the ability to block contacts manually. 3
6 Allow users to whitelist contacts. 2
7 Provide a toggle switch so that the app can be disabled

without uninstalling.
2

8 Provide details of support helplines that cyberbullying
victims can call.

2

9 Provide an account toggle switch to selectively
enable/disable protection for individual social accounts.

1

10 App tutorial. 1
11 Cool character/logo to represent the app. 0
12 Minimise patronisation 0

TABLE 5.2: Features prioritisation using dot voting.

FIGURE 5.4: Spider diagram of key features created during the first PD session.

the feature will endear the app to prospective users as it will allow them to manage the

protection of their social accounts more efficiently. It was also noted that the feature would

likely reduce the likelihood of users uninstalling the app as they can simply disable and

enable the app depending on their online social activities at specific instances. It can also

be seen that the contacts whitelisting feature that was a favourite amongst the participants

but received low votes was re-instated as a key feature. The ability to adjust the app’s
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sensitivity to offensive content and a friendly and welcoming UI maintained their ranks

while the importance of branding in the form of the app’s logo was reinforced by promoting

“having a cool logo” from twelfth position to fifth. Three new features were also introduced.

These were a setting to prevent the app from sharing details of deleted messages with

parents or relevant authorities, not being patronising to the young target audience and the

need to reassure them that the app is secure and that their data is safe.

Rank
FeatureOld New

10 1 Provide an account toggle switch to selectively
enable/disable protection for individual social accounts

7 2 Allow users to whitelist contacts
3 3 Give users the ability to adjust the sensitivity of the

offensive message detection
4 4 Provide a friendly and welcoming interface
12 5 Cool character/logo to represent the app
- 6 Provide an option not to send deleted messages to

parents or the relevant authorities
- 7 The app should not be patronising of the target audience
5 8 Automatically flag and block abusive contacts.
- 9 Reassure users that their data is safe and that no one will

know that they are using the app.

TABLE 5.3: Re-prioritised features.

5.5.2 Low Fidelity Prototyping

After the design conceptualisation activities, the rest of the first session was devoted to low

fidelity prototyping. Using the spider diagram as a guide, the group started by creating the

FIGURE 5.5: Essential features shortlist compiled during the first PD session.
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prototype for the Home screen and worked outwards to the other screens implementing

the prioritised app features. Due to time restrictions, only the Home and Deleted Messages

screens could be designed on the day, and the creation of the remaining screen prototypes

was planned for following sessions (which did not take place for the reasons discussed in

Section 5.3). The participants identified the proposed mobile app’s home screen as a

critical factor in convincing users to persist with the app on first use. One of them said:

“I’ve downloaded apps before that when I opened them; I just didn’t like the
look, what I saw wasn’t what I expected. I deleted them straight off.”

After discussing ideas for the home screen, some of which were conflicting (for example,

a participant wanted to include a scrolling newsfeed-type feature of deleted messages

on the home screen while others argued that presenting users with a selection of their

deleted offensive messages from the onset might be distressing for users), the researcher

proposed the use of Pair Design (Bellini et al., 2005) to facilitate a cohesive start to the

home screen design process. Pair Design is a technique used within the digital creative

industry to develop design prototypes. It is a method borrowed from the Pair Programming

practice (Williams and Kessler, 2003) in software engineering. Pair programming is a

software engineering procedure where two software engineers work side-by-side on one

computer collaborating on the same programming problem. For several years now, it has

been successfully used to deliver higher quality code faster (Williams et al., 2000; Williams

and Kessler, 2003). Such was the success of pair programming that it had been adopted

by the design industry as a means of delivering higher-quality designs at a quicker pace

(Yao, 2015). Pair design is, therefore, by extension, the practice of two designers working

together on the same design problem to achieve an improved output. It is sometimes

used as a technique to channel the different design perspectives of multiple designers into

the creation of competing prototypes of equal importance that can then be deliberated

upon (Chapman, 2018). The use of this technique in prototyping the home screen was

therefore based on the idea that it would be more productive for three pairs of designers to

deliberate on three completed prototypes than for six designers to reflect on the multiple

UI elements of a single screen. The researcher has several years of industry experience

in pair programming and pair design and facilitated the process. The six participants were

paired into three paired groups (see TABLE 5.4), and each group created a version of

the home screen. The groups were paired to reflect a combination of competing and

complementary views in each pair based on the researcher’s observation of the home
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screen design’s initial discussions. The three designs created from these paired design

sessions are shown in Figure 5.6.

Group Designer 1 Designer 2
Team 1 Participant 1 Participant 3
Team 2 Participant 2 Participant 5
Team 3 Participant 6 Participant 4

TABLE 5.4: Pair Design teams’ composition.

FIGURE 5.6: Home screen prototypes from created using Pair Design.

As the session aimed to create a single design prototype for the home screen, Layered

Elaboration (Walsh, 2009) was used to generate a single unified model from the three

prototypes. Layered Elaboration is a design technique that enables design groups to

expand on ideas presented by others by layering new ideas on top of earlier ones (Walsh

et al., 2010). The technique can be likened to adding layers of transparencies with

drawings on top of each other. Layered Elaboration has its roots in storyboarding for

interactive media and was originally conceived during the design of a motion-controlled

video game for the Nintendo Wii video game system (Walsh, 2009).

A base prototype was required to start the Layered Elaboration process. The group

reviewed the three prototypes to decide on the prototype to use as the base prototype.

After some deliberation, the group settled on Prototype 1 because it shared UI elements

with the other two prototypes such as featuring a means to access the help screens

(similar to Prototype 3) and the ‘On/Off’ toggle (shared with Prototype 2). Elements of the

prototype that were not universally agreed were removed, and the base prototype was

redrawn, as shown in FIGURE 5.7.
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FIGURE 5.7: Home screen base prototype.

The design team then took turns to add elements from their prototypes onto the base

model, as illustrated in FIGURE 5.8. After some deliberation, Team 2 added four key

elements from their design to the home screen’s base prototype: buttons to access the

screens to manage deleted messages, contact groups, social media accounts and the

app’s tour. The last team introduced an extended side navigation menu, a button to access

the settings screen and smiley faces to indicate “welcoming designs and images” on the

home screen.

FIGURE 5.8: Home screen base prototype.

After finalising the home screen design, the group created the prototype for the Deleted

Messages screen. The impact of the pair design and layered elaboration activities
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become immediately apparent as the group’s collaboration was more natural and the

Deleted Message screen prototype (see FIGURE 5.9) evolved at a faster pace. Due to

the similarity between the Deleted Messages screen and the Sent and Received

Messages screen, it was suggested that the Deleted Messages prototype should also be

used as the basis of the design of the Sent and Received Messages screen.

FIGURE 5.9: Deleted Messages screen prototype.

5.5.3 Findings from the First Participatory Design Session

In addition to the design outputs, the voice recording of the group’s discussions provided

additional data in the form of views, observations and design recommendations. These

were transcribed, coded and analysed to discover key themes to guide the high-fidelity

prototype design.

5.5.3.1 Use a Cool and Symbolic Logo

A common theme that was repeated by the participants was the need to have an app logo

that personifies the app’s brand and one that the young target audience can identify with

as exemplified by the following comments:

“You should design a cool logo for the app”.

“I think especially for like younger children. A nice logo, even like a character,
will be attractive to them”.
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“An image like a padlock to show that the app is safe. Or like a shield. I think my
antivirus logo is a shield and people automatically associate that with security”.

These suggestions were grouped under the theme “having a cool logo” and subsequently

identified as a key design consideration for the next design phase.

5.5.3.2 The App’s Name Should be Short and Catchy

In addition to the logo, the participants advised that the app’s name should also be

symbolic of the app’s core function and complement the logo. One co-designer noted:

“The [app’s] name should be short and catchy. Like Reddit and Pinterest. The
name tells you what the app is all about”.

Another participant, however, disagreed with this view:

“I don’t think the actual name matters too much. It can even be silly. The name
just needs to be cool. There are so many apps out there that are really popular
with stupid names”.

This opinion was supported by another participant, who said:

“Do you remember the Yo app. It was a very stupid app, and all it did was
send yo to people. How stupid is that but it became trendy for a short while. So
anything can be”.

While the co-designers differed in their opinions on how the app’s name should be derived,

there was a consensus that whatever name chosen for the app should be selected to

create a strong initial impression with the target audience.

5.5.3.3 Use a Neutral but Friendly and Welcoming Colour like Blue

Some participants suggested the colour blue as a good choice for the app’s interface. In

supporting this recommendation, they said:

“Facebook and Twitter both use blue, and I see blue in a lot of apps too”.

“It’s [blue] kind of neutral in a way, so it’s safe. I know it’s meant to attract like
kids as well, but if it’s like too bright, yellow and stuff like that, it can be very
dividing. Some people will like it and others won’t. Blue is safe, I think.”
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5.5.3.4 The App Should Not Look Childish or be Patronising to the Young

Target Audience

The co-designers were unequivocal in their recommendations that the app should not be

patronising to the target audience. Some of them said:

“Even when I was younger like 12 and 13, I hated anything that we were shown
in school that was childish. I remember then all the PowerPoint we were shown
were all cartoony with that squiggly text font.”

“That’s quite important. You need to treat them like they are not kids or else
they will just say this is another thing that thinks they know us”.

“I remember that at that age, I was quite rebellious. I just didn’t want to listen
to adults. Even though I was getting bullied, I didn’t tell anyone. I didn’t read
any of the bullying advice then because they looked childish. Cartoon pictures
and all that”.

This finding was, therefore, identified as a key design consideration when creating the

high-fidelity prototype.

5.5.4 High-Fidelity Prototyping

As previously mentioned, a high-fidelity prototype provides a depiction of the final product

that is much closer in visual appearance/form factor to the final product than a low-fidelity

prototype. With the use of specialist prototyping software, high-fidelity design prototypes

that provide a detailed and accurate representation of the final product can be created

quickly. As mentioned in Section 5.3, the proposed sessions to create low-fidelity

prototypes for the other app’s screen could not be held due to non-engagement of the

students recruited as co-designers. Using the spider diagram and the Home and Deleted

Messages screen prototypes produced in the first session as a guide, the researcher

used the web-based prototyping tool, proto.io, to create an interactive prototype of the

app. Proto.io is web-based software that allows people with little to no design and

software programming knowledge to create detailed interactive prototypes for mobile

applications. It provides a simple drag and drop interface that allows designers to quickly

create mobile app prototypes that can be shared and viewed on mobile devices. The

spider diagram was subsequently refined by the researcher during the high-fidelity

prototyping phase to accommodate the practical re-arrangement of some screens during

the prototype creation (see Figure 5.10).
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As the Deleted Messages screen shared many features with the Sent and Received

Messages screen, the low-fidelity prototype created in the first session was used as the

foundation of all the app’s messages-related screens. Additionally, the findings and

co-designers’ design suggestions from the first session served as input into the

interactive high-fidelity prototype created by the researcher: in essence, in lieu of a full

participatory design approach, an evidence-based user-centred design (UCD) approach

was used to ensure the progression of the research agenda. Ultimately, the second

design session was, therefore, aimed at reviewing and refining this interactive prototype

with the co-designers.

The session began with a review of the previous session, the study aims, and the

session’s objectives. The group used two Windows laptops and one MacBook to work on

the interactive prototype. Another advantage of using the proto.io tool is the ability to view

changes made in real-time via a companion mobile app, the co-designers therefore

downloaded and installed the proto.io mobile app onto their phones. This allowed them to

view the changes made on the laptops on their mobile phones in real-time, providing

them with a mobile-based experience of the prototype similar to the way prospective

users will experience the proposed mobile app. The researcher presented a walkthrough

of the prototype using the updated spider diagram and starting from the first screen

displayed after the app was installed. The group collectively reviewed and amended each

screen as they progressed through the app. In addition to individual screens, the overall

design of the app’s interface was reviewed as well, especially in terms of the group’s

design suggestion from the first session. The group responded positively to the app’s use

of a stylised shield as a logo (see FIGURE 5.11) and the app’s name (BullStop).

They believe that the app’s name and logo would help it stand out in the app store and

attract the attention of the intended audience. The co-designers identified with the overall

design of the prototype’s user interface and said it was not patronising or childish. They

welcomed the use of the colour blue in the prototype, as suggested in the first session

and commented that the colour makes the prototype feel familiar like social media apps

they have used before. While the PD sessions supported the ideation/generation of a

high-fidelity prototype that reflects the target audience’s vision for the app, further

refinements were still required to ensure that the embedded UI elements conform to

sound HCI principles.
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FIGURE 5.11: The logo for the Proposed mobile app.

The Splash screen (FIGURE 5.12) is designed to be presented to users the first time

the application is launched as the mobile phone loads the app into its memory. As most

phones’ computing capabilities are such that apps are loaded into memory quickly, this

process should be unnoticeable to most users. The EULA (End User License Agreement)

(FIGURE 5.13) will therefore be the more likely screen that most users will see after

installation. The user will then be prompted to read and accept the license agreement

(this is required to use the app) as well as the app’s privacy policy (see FIGURE 5.14).

FIGURE 5.12:
Splash Prototype.

FIGURE 5.13:
EULA Prototype.

FIGURE 5.14:
Privacy Prototype.
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On accepting the license agreement, the user can create a BullStop account (FIGURE

5.15). The account will be used to store the user’s profile and application settings. Once

the account has been successfully created, the user will be presented with the home

screen (FIGURE 5.16) from where other areas of the app can be accessed including the

app’s settings (FIGURE 5.17) which can be accessed via the cogwheel in the top right

corner of the screen.

FIGURE 5.15:
Account Prototype

FIGURE 5.16:
Home Prototype.

FIGURE 5.17:
Setting Prototype.

From the Settings screen, the user will be able to access additional settings such as the

Message (FIGURE 5.18), Detection (FIGURE 5.19) and Social Account (FIGURE 5.20)

Settings screens. From these settings screens, the user would configure the app’s

operations including how deleted offensive messages are handled, the app’s sensitivity to

objectionable messages, how abusive users are handled and connecting social media

accounts to the app for protection.

Figures 5.21, 5.22, 5.23 depict the Received, Sent and Deleted Messages screen

prototypes, respectively. The Received and Sent Message screens would list messages

synchronised from the social media accounts while offensive messages automatically

deleted by the app will be accessible via the Deleted Messages screen.

The Message Review window (FIGURE 5.24) will be displayed as a pop-up screen when

the user taps on any message in the messages-related screens and will allow users to
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FIGURE 5.18:
Message Settings
Prototype.

FIGURE 5.19:
Detection Settings
Prototype.

FIGURE 5.20:
Social Account
Settings Prototype.

FIGURE 5.21:
Received Prototype.

FIGURE 5.22: Sent
Prototype.

FIGURE 5.23:
Deleted Prototype.
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review and update the offensive labels assigned to a message. The prototype of the

Message Checker, a reflective tool designed to help users determine the appropriateness

of messages they are about to send, is shown in FIGURE 5.25.

The app will allow users to manage contacts retrieved from their social media accounts

through the Contacts screen (FIGURE 5.26) and the Help screen (FIGURE 5.27) will

allow users to access the application’s tutorial pages (FIGURE 5.28) and the anti-bullying

charity organisations’ helplines (FIGURE 5.29).

FIGURE 5.24:
Message Review
Prototype.

FIGURE 5.25:
Message Checker
Prototype.

FIGURE 5.26:
Manage Contacts
Prototype.

Finally, the prototype of a sample error message is shown in FIGURE 5.30.
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FIGURE 5.27: Help
Prototype.

FIGURE 5.28: Tour
Prototype.

FIGURE 5.29:
Helplines Prototype.

FIGURE 5.30: Error Message Prototype

5.5.5 Findings from the Second Participatory Design Session

The analysis of the second PD session transcripts unearthed further design considerations

to guide the final stage of development of the proposed mobile application.
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5.5.5.1 Provide Shortcuts to Key Components to Facilitate First-time Use

After interacting with the prototype for some minutes, one of the co-designers made the

following observation:

“I tapped on the disabled text ‘cause it was in red. I expected that to do
something, but nothing happened”.

The group reflected on this and agreed that it is natural for users to expect that tapping on

the ‘Disabled’ text on the home screen should perform an action (in this case, enabling the

app so that social media accounts can be protected). The students also recommended

that the social media icons at the bottom of the home screen should serve as shortcuts to

link the relevant social media account to the app. They reasoned that the inclusion of these

shortcuts would accelerate the app’s initial set-up for first-time users. These UI elements

are indicated (in red outline) in FIGURE 5.31.

FIGURE 5.31: Suggested shortcuts

5.5.5.2 Use familiar Icons to Signpost Actions

While the co-designers did not experience issues identifying the functions associated with

the app icons, a few commented that the Received and Sent Messages icons might

confuse some users. They suggested exploring alternative icons that would be

universally recognisable to represent these functions.
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5.5.5.3 Reassure Users that the App is Secure

“You’ll need to convince people that their socials are safe with your app”.

The above comment highlighted a key challenge that the proposed app may encounter –

that is, convincing users that the app is secure and that their data is safe when using the

app. Another student noted:

“Probably the worst thing that can happen to you online is to get your account
hacked, and I think that would be one of the first things on people’s mind. Can
my account get hacked through this app?”

One co-designer, however, had a different view:

“To be honest, I think any account can get hacked. I mean Twitter accounts get
hacked all the time, so I’m not sure what extra stuff the app can do”.

It was therefore decided that the app should, as a minimum, implement standard online

security measures including:

(i) enforcing the use of strong passwords;

(ii) verification of identity via email address; and

(iii) allowing password reset only via email.

5.5.5.4 Emphasise that the App Supports Multiple Social Media Platforms

The participants believed that integrating with multiple online social networks is a critical

proposition of the mobile app and one that should be emphasised.

“When I saw the friends page, I thought that’s cool. To have all your friends
from your socials in one place is quite nice”.

A similar comment was made about the messages screens:

“People can get bullied on different platforms. My ex and her friends sent me
Snapchats and posted comments on my insta. So if everything is deleted and
in one place, it’s easier to handle”.
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When challenged to propose ways that the app can do this, the group suggested that the

social media icons displayed on the home screen should also be emphasised on the app

store listing and highlight the various social media platforms supported on the app’s page

on the store.

5.5.5.5 Creating a Comprehensive Online Presence for the App can

Reassure and Attract Potential Users

Expanding on the above suggestion, the group advised that establishing an online

presence for the app across the various social media platforms can help reassure

potential users of the app’s authenticity and assist in attracting potential users. Two of the

students noted:

“It’s important to have a brand for the app. You can use that to market the app”.

“If it [the app] popped up in their feeds then I think they are more likely to trust
it”.

Overall, there was a strong suggestion from the discussions that reassuring potential users

that the app is secure is critical to it acceptability amongst the target audience. This

validated similar findings from the earlier work about the need to project a safe and secure

image for the proposed mobile app.

5.6 Reflections on Participatory Design with Young People

Designing technological solutions for young people is challenging as the way they interact

with technology is often vastly different to adults (Ashktorab and Vitak, 2016). Existing

literature on online abuse detection systems for young people displays a conspicuous

lack of involvement of young people in any phase of the design process. The study

reported here aimed to address this by directly involving young people in the design

process and, in so doing, attain a deeper understanding of their specific needs which

could then be translated into tangible requirements that could be implemented in the

mobile app. The qualitative studies conducted prior to the PD sessions helped establish a

set of core features for the mobile app.
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In the first PD session, the students were tasked with suggesting key features for the app

without seeing the features list compiled based on the earlier studies. This results of this

exercise were complementary to the core features list, indicating that the qualitative

studies comprehensively captured the features perceived as critical for the mobile app

and provided validation that these features are indeed relevant to the target audience. An

interesting observation about the two features lists is that, while the features suggested

as a result of the earlier studies were in the form of general ideas and concepts (e.g.,

“Work with multiple social media platforms”), those suggested during the first PD session

included implementation details (e.g., “Provide an account toggle switch to selectively

enable/disable protection for individual social accounts”). This difference highlights an

additional benefit of going beyond focus groups and interviews to actively engage

stakeholders in the design process.

In assuming co-designer roles, the participants became more invested in the process and

began to visualise the app as they would like to see it implemented. This became more

apparent as the session progressed to the dot voting activity. This exercise was extremely

useful in identifying critical features for the young stakeholders as, when forced to choose,

some of the initially popular features were demoted by the students. By encouraging an

in-depth reassessment of the application’s features in this manner, co-designers became

more aware of their roles as representatives of young people in the design process and

considered features more holistically in terms of their overall usefulness to young people

rather than just based on their personal preferences. Interestingly, the features list was

reviewed again and the app’s features reprioritised following the spider diagram activity

where the group mapped out the logical relationships between the app’s components. The

group’s multiple reprioritisations highlight the importance of adopting an iterative review

process with stakeholders to identify the critical components of the system necessary for

users’ acceptance.

A democratic design approach, such as participatory design, assigns equal rights to all

group members and sometimes conflicting visions and personalities can threaten to slow

or even derail the design process. The use of pair design, while not a PD method per se,

allowed the group to progress past the initial acclimatisation stages as group members

collaborated for the first time. Working in pairs allowed the group as a whole to quickly

progress from debating six different design perspectives for the home screen to working

with a partner to create a shared vision. Alongside pair design, layered elaboration was
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instrumental in achieving a unified vision during the design process. It emerged as a

design method that is a natural fit for collaborative design. It is hugely surprising that the

use of technique did not expand beyond the work of Walsh et al. (2010). This is a shame as

this study found it extremely useful in facilitating the condensation of the three home screen

prototypes into a unified representation of the co-designers visions. Future researchers

engaged in similar endeavours would do well to explore the use of this technique.

The merits of adopting a PD approach were apparent in the design sessions, as the

interactive nature of the sessions allowed a free flow of creative ideas that may not have

necessarily occurred to the researcher if the app was designed without end-user

involvement. It also represented a learning experience for not only the co-designers but

the researcher as well. While the benefits of the approach were later validated via the

evaluation studies (see Chapter 7), co-designers, opinions about their involvement in the

process provided some early insight into the value (from their perspective) of the use of

PD approaches in context such as this, and these are discussed in the following sections.

5.6.1 Self-pride

The participants said that they felt “honoured” and “special” that their opinions about

cyberbullying were solicited and that they have been directly involved in designing a

mobile app to aid its prevention. Many were proud that their contributors would be used to

help young people experiencing online abuse. One of them noted:

“It feels good to be able to do something for people being abused, especially
as I experience it myself”.

Others said:

“I never thought that like you know people are researching stuffs like this
[cyberbullying] and it’s really nice to be part of it”.

“I will look forward to the app, and I can tell people [that] I worked on that app”.

Some of the students admitted that the self-pride they felt taking part in the study

contributed to their willingness to continue with the study after the first participatory

design session:
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“I know I was difficult to get hold of for a while [. . . ] I felt like we started
something and I was a part of that, and I want to see how the app looks like.”

“I really liked the first session, and from it, I knew a lot more about designing
apps and stuff. As I’m studying Computer Science and Biz [Business] I wanted
to know more. I felt like this is something I could look into for projects and stuff.”

5.6.2 Learning

The learning aspects of the experience also emerged as a key outcome for the

co-designers, as evidenced by some of their comments:

“It was quite interesting to learn how we all came up with different ways of
doing the same thing. And I think in the future I’ll try to apply that in like group
assignments because usually, I’m like why are you guys so slow, can’t you see
what I’m saying but you know, I saw that everyone has a valid point and it’s
based on how you look at things”.

“Using the software was quite good. I have never done anything like that before,
and it showed me a lot on how apps are created”.

Another student said he wants to learn more about participatory design and write about it

for his university coursework. The students were also curious about the researcher’s

experience with PD and were surprised to discover that this was the first time the

researcher was using the approach. One of the students wondered why the method is not

used more often. The researcher cited the difficulty experienced in arranging sessions for

the study as a typical example of why developers are wary of using user-centred

approaches. The group briefly discussed how such issues could be mitigated, and some

of their suggestions are presented in Chapter 8.

5.6.3 Empowerment

Some students said they gained more confidence in their abilities as a result of taking part

in the design sessions. One of them said:

“I got a confidence boost from doing the app’s design. I didn’t think it was
something I was capable of”.
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Another co-designer spoke about previously having ideas for mobile apps but being unsure

how to represent these visually:

“I will definitely spend more time thinking about my app ideas and maybe use
the proto software to sketch them out”.

5.7 Study Limitations

Part of the novelty of this research program is the engagement of young people as

co-designers in the design of the proposed cyberbullying prevention mobile application.

The process resulted in a high-fidelity prototype that encapsulated the target audience’s

requirements as represented by the co-designers. It was, however, not without its

limitations. Common to many PD studies were difficulties experienced in arranging

successive meetings with the co-designers to complete the low-fidelity prototype of the

proposed app; this necessitated the process of designing many of the high-fidelity

prototype screens without the benefit of an equivalent low-fidelity, co-designed model and

could be argued as a divergence away from true PD and thus a limitation of the work.

While the decision to eschew the low-level models was borne out of pragmatism to

prevent further delays to the research programme, it is recognised that there is a risk the

high-fidelity prototype may have been different had the co-designers been more fully

involved in lower-fidelity prototyping as was initially planned. Additionally, as mentioned in

Section 5.3, users may have been less honest regarding their opinions of high-fidelity

prototypes due to their perception of how much effort would be required to make changes

to the prototype.

Upon reflection, however, the limitations noted above are mitigated by a number of

factors. Firstly, all the co-designers’ design suggestions from the first session were

implemented in the prototype and subsequently reviewed and validated by the

co-designers themselves in the final session. Secondly, the co-designers actively

reviewed and refined all the screens of the high-fidelity prototype. During this process,

the co-designers actively contributed to the prototype design – adding, enhancing and

removing UI elements and reshaping the prototype into an accurate reflection of their

vision. Lastly, the researcher demonstrated the ease with which the high-fidelity prototype

could be amended during the second session and encouraged the co-designers to use

the prototyping tool to amend the prototype as they deemed fit. This was done to ensure
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that co-designers did not hesitate to make changes to the high-fidelity prototype and was

effective at achieving this goal.

In using a hand-selected sample of Aston University’s first-year undergraduates, it could

be argued that the sample may not be representative of the larger population of young

people. Collaborative design approaches, such as participatory design, require a high

level of commitment and engagement from participants, and substantial rapport is

necessary amongst co-designers and the researcher for the process to work. The rapport

established from the onset during the interviews and the relationship built with the

students by the researcher facilitated the success of the PD sessions. Indeed,

engagement with participants to build rapport ahead of PD activities was one of the key

recommendations of Lumsden et al. (2017) for designing assistive technologies using

participatory design. Even with this established rapport, ongoing non-engagement on the

part of the co-designers was, as noted above, an issue. It is felt that it would not,

therefore, have been possible to conduct the study with an entirely random sample

selected from the larger population of young people who had no prior engagement with

the research programme.

The final potential limitation of the study relates to the ages of the co-designers, who were

older than the typical adolescent, and thus their appropriateness as a representative

sample for the primary target audience could be questioned. It is felt that the

generalisability of the resulting design and the group’s suitability in terms of representing

the design visions of young people in general have been validated during the evaluation

studies (see Chapter 7) and as such it is not felt that this limitation is significant.

5.8 Summary

Understanding the needs of end-users is critical to the successful adoption of a product.

The researcher’s experience with the use of participatory design as a design technique has

been very positive. This view was shared by the participants who found the experience

to be empowering and rewarding. By involving adolescents with different experiences of

cyberbullying, the study gained multiple perspectives on cyberbullying. This allowed the

app’s design to be tailored to accentuate features essential to the target audience.
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This chapter reports on the participatory design of the cyberbullying prevention application.

It details the collaborative design activities conducted with the co-designers leading to the

creation of a high-fidelity prototype for the proposed mobile application. PD requires a

high level of engagement and rapport amongst participants, and the interviews conducted

before the PD sessions helped establish a positive relationship with the co-designers.

Additionally, the interviews and focus groups provided an initial set of requirements for the

app that was built on and expanded in the PD sessions. The result of the use of PD in this

study was a high-fidelity prototype that captured participants’ desires for a cyberbullying

prevention tool and, by extension, the desires of the broader target audience.

Young people are naturally creative and expressive and, like previous studies (Ruland

et al., 2008; Benton et al., 2012; Iversen et al., 2017), PD was found to be a natural

fit when designing for this audience. Rather than restricting their creative inclinations,

participants were allowed to flourish in the first design session and then collaboratively

finalised the high-fidelity prototype in the final session. While young people as the primary

audience for the proposed app served as co-designers, the adults participants (especially

the mental health professionals) also contributed to the design process. This was in the

form of comments, feedback and suggestions provided after the high-fidelity prototype

was shared with them and some of these helped shaped the final version of the app’s user

interface. For example, in an early iteration of the app, the deletion threshold (i.e., the value

on which basis a message is deemed offensive and automatically deleted) setting was

initially implemented as a drop list with 3 discrete values (i.e., low, medium and high) but

following feedback from the psychologist that implementing the deletion threshold setting

as a continuous range (rather than 3 discrete values) would be more empowering to online

abuse, the deletion threshold setting was re-implemented as a slider control instead of the

drop list. The psychologist’s suggestion was based on their view that the physical act of

increasing (or decreasing) the deletion threshold through the range of values could be an

empowering activity for online abuse victims as this is providing them with a high level of

control on the type of messages they receive through the configuration of the threshold

at which offensive messages are deleted. This highlighted the importance of involving

all stakeholders in the design process thereby ensuring that all stakeholders’ views are

adequately considered and incorporated into the final product.

In the next chapter, the technical development of BullStop – the cyberbullying prevention

application developed based on the activities reported in this chapter, is discussed.
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Chapter 6: The BullStop Mobile Application

6.1 Introduction

As discussed in Chapter 2, considerable research effort has been invested in the

development of algorithms and models to automatically detect cyberbullying and online

abuse; there is, however, a conspicuous lack of research focused on the design of

systems and tools capable of utilising these algorithms for real-world use. A key objective

of this research program was, therefore, the design and development of a computational

system for identifying and preventing cyberbullying and online abuse built on findings

drawn from academic research and commercial computing tenets. The combination of

these two areas resulted in the development of BullStop, a mobile-based cyberbullying

prevention system.

This chapter describes the architecture and components of BullStop, the cyberbullying

detection and prevention mobile app developed as part of this research programme. It

begins, in Section 6.2, with a review of the application requirements, as suggested by

the stakeholders, and their implementation status. This is followed by a description of

the application’s high level architecture in Section 6.3 and an overview of the Android

Application Framework that serves as the mobile application’s operating system in Section

6.4. Sections 6.5 – 6.8 describe the various application components, while the technical

challenges faced in developing the app and the limitations introduced as a consequence

are considered in Section 6.9. Finally, Section 6.10 concludes the chapter.
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6.2 Application Features Implementation

The UCD and PD activities conducted (as discussed in Chapters 4 and 5) generated

a set of application requirements and a high-fidelity prototype of the mobile application.

These then served as inputs into the development phase of the research programme.

In developing the mobile application, technology constraints and practical considerations

enforced compromises in the implementation of some of the application functionalities,

resulting in a number of features not being included or implemented in the manner initially

envisioned.

One such compromise was the choice of social media platforms that the app can be used

with. Twitter is currently the only social media platform supported by the application, and

this is due to restrictions on the APIs of Facebook and Instagram; this is discussed in

Section 6.8. As a result, the account toggle feature became irrelevant (as there is only

one social media account in use) and was subsequently not implemented. Automatically

reporting abusive users could also not be implemented because the abuse reporting

facility on Twitter (and other social media platforms) cannot be used in an automated

fashion (i.e., there is no API for BullStop to call to report a user). Other suggestions that

were not implemented in the current version of the app are: displaying daily motivational

quotes which was considered a non-prioritised requirement that could be delegated to

implementation in a future version of the application; a social media ‘safe browsing’ mode

that was technically impossible to implement; a social media ‘time out’ mode which

required highly intrusive security permissions on the mobile phone to be implemented

and was rejected by the Google App store; reporting users to law enforcement which

cannot be done automatically and was technically impractical as there are at least 45

different territorial police forces in the UK; and restricting access to websites, which is a

parental monitoring feature that is beyond the app’s focus.

TABLE 6.1 presents the originally suggested application features, along with an indication

of the implementation status of each.
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Prioritised User Requirements Suggested By ImplementedAdult Young
People

Y Automatically delete offensive
messages

X Y

Y Users should be able to review
deleted messages

X Y

Y Keep copies of deleted messages X Y
Y Reassure users that the app is

secure and that their personal data
is safe

X Y

Y Give users the ability to adjust the
sensitivity of the offensive message
detection

X Y

Y Provide a friendly and welcoming
interface

X Y

Y Automatically block offensive users X X Y
Y Give users the ability to block

contacts manually
X Y

Y Allow ‘whitelisting’ of contacts X Y
Y Provide a toggle switch so that

the app can be disabled without
uninstalling

X X Y

Y Provide details of support helplines
that cyberbullying victims can call

X Y

Y Provide an account toggle switch
to selectively enable/disable
protection for individual social
accounts

X N

Y App tutorial X Y
Y Cool character/logo to represent

the app
X Y

Y The app’s design should not be too
childish

X Y

N Report offensive users to the social
network

X X N

N Display daily motivational quotes X X N
N Provide access to relevant advice

and help for cyberbullying victims
X X Y

N Permanently remove deleted
messages after a configured period

X Y

N Safe browsing mode when using
social media apps

X N

N Social media ‘time out’ X N
N Online behaviour scorecard X N
N Report offensive users to law

enforcement
X N

N Content filters to restrict access to
inappropriate websites

X N
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Prioritised User Requirements Suggested By ImplementedAdult Young
People

N Work with multiple social media
platforms

X N

TABLE 6.1: Overview of suggested application features and their implementation status.

6.3 Overview of the BullStop Mobile Application

BullStop comprises two application sub-systems: an android mobile app that serves as

the primary interface for users and a cloud backend that houses a number of components,

including the BullStop APIs, the machine learning model, and the remote database. The

cloud backend is hosted on the Microsoft Azure1 cloud platform. A logical depiction of the

two sub-systems regarding the flow of data is presented in FIGURE 6.1. The arrows in

the diagram indicate the movement of data within the system, and it can be seen that data

flows from the social media platforms into the cloud backend end via the BullStop APIs or

from the mobile app. The data is then sent to the ML model for prediction and the results

stored in the remote database, which is synchronised with the mobile app.

FIGURE 6.2 provides a more detailed view of the system, illustrating key components and

activities. The mobile app allows users to perform actions such as linking their social media

accounts to the app, setting personal preferences, managing messages and contacts and

more. A local SQLite2 database is used to store the app’s data locally on the smartphone.

The app connects to online social networks via APIs and regularly (every three minutes)

retrieves new and updated data such as messages and contacts from the social media

platforms. The retrieved messages are sent to a message queue in the cloud backend,

where they are retrieved for analysis by the Abuse Detection Module which contains the

ML models used for prediction. Each predicted label (see Section 3.3.3) is associated with

a weight, the cumulative value of the predicted labels’ weight is the offensiveness score

for the message. Users can configure a threshold value for this score and the Marshaller

automatically deletes any messages with an offensiveness score equal to or above the

threshold by initiating the relevant function via the social media platform APIs. Additionally,

the sender of an offensive message can be blocked if so configured by the user.
1azure.microsoft.com
2sqlite.org
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FIGURE 6.1: Logical overview of the BullStop Application System.

FIGURE 6.2: Key components of the BullStop System and their functions.
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As discussed in Section 2.5 of Chapter 2, BullStop was designed to address the flaws

identified in existing cyberbullying prevention systems. Specifically, it improves on existing

cyberbullying prevention systems in the following ways. Firstly, BullStop is novel in its

ability to analyse messages in real-time, protecting users while they use instant messaging

applications. Secondly, in existing cyberbullying prevention systems, the classifier used to

identify cyberbullying instances is tightly integrated with the rest of system, and it is only

through significant effort that the classifier can be modified or a new one introduced; in

contrast, BullStop’s flexible architecture allows the use of machine learning models in a

‘plug and play’ manner meaning that different machine learning models can be quickly and

easily introduced into the system with minimal or no change. Thirdly, BullStop is novel in

its provision of a dedicated and personalised machine learning model for each user. When

a user reviews a message and updates the assigned offensive labels, these are marked as

potential training data to improve the model. When a sufficient number of training samples

have been collected for the user (n = 1000) messages, a new instance of the model is

created for the user and re-trained using the accumulated training samples. The resulting

model is thus a personalised variant of the original classifier that has been specially trained

to understand the user’s communication patterns and sensibilities. Fourthly, the use of a

cloud computing platform (in this case, Microsoft Azure) provides BullStop with the ability

to scale to meet the high data traffic demands of popular online social networks. Finally, as

reported in Chapters 4 and 5, the app was designed using a collaborative design process

with key stakeholders to ensure that the final product represents the needs of the target

audience.

6.4 Android Application Framework

The Android mobile operating system is the dominant mobile operating system

worldwide, installed on approximately 1.031 billion mobile devices and thus representing

86% of global mobile devices (IDC, 2020). The platform architecture for Android

comprises five key layers (as illustrated in FIGURE 6.3). The Application Layer is

essentially where all apps are hosted. There are broadly two types of apps, system apps

and user apps. System apps are core apps included in the operating system by default

that provide core functionalities like SMS messaging, email, internet browsing, contacts

and more. User apps are third-party apps installed from an external source like the
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Google Play app store. Although included by default, system apps have no special status

within the platform; a third-party app can be installed to replace a system app or share

responsibility with the system app. In such situations, the third-party app may require

elevated privileges to perform the core functions. For example, for BullStop to

automatically analyse and delete SMS messages, it required elevated privileges to

access SMS messages, effectively becoming the default messaging app. A user app can

also instruct system apps to perform core functions on its behalf. For example, the

BullStop Help screen allows users to call cyberbullying prevention charities directly from

the screen by instructing the Dialer system app to complete the action initiated within

BullStop.

FIGURE 6.3: Android Platform architecture.
Source: developer.android.com.

The Java API Framework provides access to the Java language upon which Android is
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built. The Native C/C++ Libraries serve as an interface to the smartphone’s hardware

drivers. For example, mobile games often use these libraries for drawing and manipulating

images on the screen.

The Android Runtime provides the ‘virtual container’ within which apps run and are

allocated mobile phone resources like memory and storage.

The Hardware Abstraction Layer provides access to the smartphone’s hardware via an

abstracted layer ensuring that an app works in the same way on different devices. For

example, an app can access the smartphone’s camera in the same way regardless of the

type of camera on the phone.

Finally, the Linux Kernel is the foundation of the Android platform and provides low-level

functionalities like threading (running multiple apps concurrently) and memory

management.

6.5 User Interface

As discussed in Chapter 5, the app’s user interface evolved from designs developed using

a participatory design approach. The resulting application screens from this work are

discussed in the following sections. An overview of the app’s screens and their relationship

to each other is illustrated in FIGURE 6.4.

6.5.1 End User Licence Agreement

The EULA screen is the first screen displayed to the user after installing the app (see

FIGURE 6.5). It presents the app’s terms and conditions (see Appendix D.1) to the user,

and acceptance of the terms is required to use the app.

6.5.2 Forgot Password

This screen provides a means for users to change their password using the registered

email address. The user supplies the required email address and taps the ‘RESET

PASSWORD’ button. An email is then sent to the registered email address with a weblink
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FIGURE 6.4: Navigational map of the app.

to a secure webpage to create a new password. If an unregistered email address is

provided, the ‘Change Password’ email will not be sent. The Forgot Password screen is

shown in FIGURE 6.6.

6.5.3 Sign In

The Sign In screen is displayed after the user accepts the app’s terms and conditions.

Users can login to the app or create a new account via the ‘Sign Up’ link. They can also

change their password using the ‘Forgot Password’ link. Rather than storing and managing

user accounts locally, the app outsources this functionality to the Okta identity platform.
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FIGURE 6.5: End User Licence
Agreement Screen.

FIGURE 6.6: Forgot Password
Screen.

Okta3 is a secure identity and user authentication platform that can be leveraged by mobile

and web applications to manage and authenticate users securely. By using Okta, the app

can take advantage of standard security features such as password management, email

and SMS verification, and malicious threats protection. The app communicates with the

Okta platform via APIs. FIGURE 6.7 depicts the Login screen.

6.5.4 Sign Up

A BullStop account is required to use the app; this account is the mechanism used to store

personal preferences and is associated with the user’s social media accounts. The Sign

Up screen allows the user to create a new BullStop account. The Sign Up screen is shown

in FIGURE 6.8.
3okta.com
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FIGURE 6.7: Sign Up Screen. FIGURE 6.8: Sign In Screen.

6.5.5 Home

The Home screen (FIGURE 6.9) provides access to all the app screens available to an

authenticated user. An authenticated user is one that has successfully logged in to the

app using their BullStop Account.

6.5.6 Social Media Login

The Social Media Login screen allows an authenticated user to link social media accounts

to BullStop so that the accounts can be monitored for online abuse. When users tap the

Login button, they are securely transferred to the social media website to log in using their

social media accounts and provide any required consent. The Social Media Login screen

is depicted in FIGURE 6.10.

6.5.7 Enable BullStop

After installation, BullStop defaults to a disabled state. This means that social media

and SMS messages are not being monitored. The user is required to enable BullStop

to activate message monitoring. If a social media account is not already linked, the user
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FIGURE 6.9: Home Screen. FIGURE 6.10: Login Screen.

is prompted to connect a social media account. The Enable BullStop screen is shown in

FIGURE 6.11.

6.5.8 Sent Messages

This screen (FIGURE 6.12) displays messages sent by the user via SMS and social media

accounts. All sent messages are automatically analysed for cyberbullying, and offensive

content and the offensive labels assigned to the message by the classifier can be viewed

by tapping on the message as illustrated in FIGURE 6.13. The assigned labels can be

updated by selecting the relevant checkboxes. Such changes will be flagged by the app

and saved for use as training data to improve the classifier.

6.5.9 Received Messages

SMS and social media messages received are displayed on the Received Messages

screen. Similar to the Sent Messages screen, tapping on the message shows the full
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FIGURE 6.11: Enable BullStop
Dialog.

FIGURE 6.12: Sent Messages
Screen.

FIGURE 6.13: Message Review Screen.
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message content and the offensive content labels assigned to the message by the

classifier. As BullStop can automatically delete objectionable messages, the screen only

shows messages that have not been deleted by BullStop. The Received Messages

screen is shown in FIGURE 6.14.

FIGURE 6.14: Received
Messages Screen.

FIGURE 6.15: Deleted Messages
Screen.

6.5.10 Deleted Messages

When an offensive message received by the user exceeds the configured offensiveness

threshold, it is automatically deleted by BullStop. The message is no longer available on

social media or the phone (for SMS messages). BullStop, however, maintains copies of all

deleted messages and these are available for viewing via the Deleted Messages screen.

Similar to the Sent Messages and Received Messages screens, the labels assigned to a

deleted message can be viewed and updated (if desired) by tapping on each message. As

the messages have been deleted from the online social network, they cannot be reinstated

back to the platform if the user feels they should not have been deleted, but by updating the

assigned labels, the user is providing the classifier with additional training data for it to learn

more about how to classify such messages in the future. Users can permanently remove
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messages using the ‘Delete’ button or configure BullStop to automatically remove them

after a set time. Messages removed from the Deleted Messages screen are permanently

removed from BullStop unless the labels have been updated by the user. For messages

such as these, they will no longer be displayed in the Deleted Messages screen but will

be kept by the system until they have been used to re-trained the ML model, they are then

permanently removed. FIGURE 6.15 depicts the Deleted Messages screen.

6.5.11 Message Checker

The Message Checker serves as a reflective interface to discourage users from sending

inappropriate messages. Users can compose messages and analyse them for offensive

content in real-time using the cloud-based classifier. After analysis, relevant offensive

labels (if any) are highlighted, and the Send button is disabled to prevent users from

sending such messages. If the message is inoffensive, users can send the message to

their contacts via SMS or social media. This behaviour of the app (i.e. preventing the

sending of offensive messages through the Message Checker) cannot be overridden.

The Message Checker screen is shown in FIGURE 6.16.

6.5.12 Manage Contacts

Phone and social media contacts are automatically imported into BullStop and presented

via a single view in the Manage Contacts screen (see FIGURE 6.17). This unified view

allows users to manage their contacts across multiple social media platforms from within

a single screen in BullStop. Contacts can be assigned one of three statuses, namely

Blocked, Trusted or Normal. Blocked contacts are prevented from messaging the user

while messages from Normal and Trusted contacts are not blocked. The difference

between Trusted and Normal contacts is that messages from Trusted contacts are not

analysed for offensive content (whereas they are for Normal contacts) as such contacts

have been ‘whitelisted’. This ‘whitelisting’ functionality allows a user to receive messages

from Trusted contacts regardless of the message content. For example, parents can be

marked as Trusted contacts to ensure their messages are never automatically deleted by

BullStop.
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FIGURE 6.16: Message Checker
Screen.

FIGURE 6.17: Manage Contacts
Screen.

6.5.13 Report

The Report screen summarises the number of SMS and social media messages deleted

and contacts blocked. This is illustrated in FIGURE 6.18.

FIGURE 6.18: Report Screen. FIGURE 6.19: Help Screen.

6.5.14 Help

The Help screen is a menu screen that provides access to the Helplines and Tour screens,

as shown in FIGURE 6.19.
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6.5.15 Helplines

The Helplines screen details the telephone numbers for charity organisations that offer

assistance to cyberbullying victims. The charities can be called directly from the screen

by tapping on the listed telephone number. The Helplines screen is depicted in FIGURE

6.20.

FIGURE 6.20: Helplines Screen. FIGURE 6.21: Settings Screen.

6.5.16 Settings

Similar to the Help screen, the Settings screen (see FIGURE 6.21) serves as a menu

providing access to various application settings. The additional screens accessible from

the Settings screen are the Message Setting, Detection Setting and Account Setting

screens; these are discussed below.

6.5.17 Message Settings

The Message Settings screen allows the user to configure if and how often deleted

messages should be permanently removed. The Message Settings screen is displayed in

FIGURE 6.22.

6.5.18 Detection Settings

The Detection Settings screen allows the user to control how BullStop manages abusive

contacts and sets the offensiveness threshold for messages. As described in Section 6.

198

S.D.Salawu, PhD Thesis, Aston University 2021.



FIGURE 6.22:
Message Settings
Screen.

FIGURE 6.23:
Detection Settings
Screen.

FIGURE 6.24:
Social Account
Settings Screen.

2, this determines if the message is deleted by the Marshaller. The Detection Settings

screen is depicted in FIGURE 6.23.

6.5.19 Social Account Settings

Users can link BullStop to their social media accounts and authorise the app to monitor

the accounts for offensive messages via the Social Account Settings page. The screen is

depicted in FIGURE 6.24.

6.5.20 Tour

The Tour screens provide instructions on how to use the mobile app and some of the tour

screens are shown in FIGURE 6.25.

6.6 Application Logic

The application logic governs the app’s behaviour. It is responsible for screen navigation

and manages interaction with the local database and external platforms, including

synchronising data with the remote database. It communicates with social media

platforms and the cloud backend via the APIs and manages the schedule for data

retrieval from online social networks.
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FIGURE 6.25: Tour Screens

6.7 SQLite Database

SQLite is a file-based, open-source Relational Database Management System (RDBMS)

designed for portability and reliable performance in low-memory environments. This

makes it ideal for use in mobile applications. The database serves as the local data store

for messages, contact details, user preferences and other application data. When social

media data is retrieved from online social networks, it is first saved in the local database

and then synchronised with the cloud database.

6.8 Cloud Backend

The cloud backend is the ‘brain’ of the system and is responsible for all activities outside

of the mobile app. It hosts both the Abuse Detection Module and the Marshaller, two

components critical to the entire system’s operation. As mentioned in Section 6.2,

BullStop was designed to address some of the weaknesses identified in existing

cyberbullying prevention systems. Notably, it was designed to be resilient and highly

scalable to cope with the high data traffic volume experienced on social media platforms.

Furthermore, it ‘future-proofs’ itself by allowing the use of different machine learning

models in a ‘plug and play’ fashion. These capabilities have been made possible through
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a microservices architecture that allows the backend to be implemented as a set of

self-contained application services that communicate with each other using a defined

messaging protocol.

Offloading the computing-intensive operations (e.g., predicting the offensive labels for

messages and re-training the ML models) to the cloud backend made it possible for the

mobile app to be implemented as a ‘thin’ client (i.e., no complex capabilities) that simply

serves as a graphical interface for users to interact with the complex functionalities

housed in the cloud backend. This significantly reduces the demand on the mobile

phone’s resources, ensuring that even low-powered mobile devices can run the mobile

application. This, however, means that the mobile app cannot operate without being

connected to the Internet. As an Internet connection is required to use social media, the

app’s Internet requirement is not in addition to the basic requirement for online social

networking.

Microservices are independently deployable application services that exchange

information via messages and are usually supported by a deployment and orchestration

framework (Pahl and Jamshidi, 2016). As a software architecture paradigm,

microservices have gained tremendous popularity in recent years, emerging as an

evolution of the Service-Oriented Architecture (SOA) software movement of the early

2000s. The popularity of cloud computing platforms like Amazon Web Services4 ,

Microsoft Azure and Google Cloud Platform5 , and containerisation technologies such as

Kubernetes6 , Docker7 and OpenShift8 have contributed to the widespread use of

microservices architectures in implementing complex computing systems. Containers

provide a means of hosting a microservice within an isolated computing unit, with multiple

containers sharing the host computer’s resources. When implemented on a cloud

computing platform, containers can potentially access an almost limitless source of

computing resources along with the ability to rapidly replicate themselves when required.

As microservices are designed to be independent entities, the containerisation service

(called an orchestrator) can create and maintain multiple instances of the same

microservice. If an instance dies, it is simply removed from the cluster and replaced with
4aws.amazon.com
5cloud.google.com
6kubernetes.io
7docker.com
8openshift.com
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FIGURE 6.26: High Level Architecture of the Cloud Backend

a newly created one. The number of concurrent containers is limited only by the available

computing resources.

Microservices are designed to be single-purpose and, as such, provide benefits like the

ability to deploy and scale different components of a system independently, resulting in an

improvement of the overall reliability and resilience of the system. Social media platforms

use microservices to enable them to operate at the scale required to meet the demands of

millions of online users and so, by utilising such an architecture, BullStop similarly benefits,

providing it with the ability to be deployed at a scale to match that of a modern social media

platform. The cloud backend is illustrated in FIGURE 6.26, and its key components are

discussed in the following sections.

6.8.1 Webhook

In addition to the mobile app’s regular data retrieval, the Webhook provides an alternative

entry point for new data into the system. Unlike the mobile app which retrieves information

on a schedule via a pull mechanism, the webhook receives new data via a push from the

social networks. When supported by the social media platform, this is an event-triggered
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feature that allows the social network to send new data to an external interface when

certain events are detected – for example, when a new message is received. The received

data is then placed on the Message Queue for onward processing.

6.8.2 Message Queue

While microservices are designed to be independent entities, they do require a means of

communicating with one another. The Message Queue provides this means within the

cloud backend. It enables the microservices to communicate with each other by

exchanging small packets of information in JSON format. When new messages are

retrieved from the social network, they are placed on the Message Queue and

subsequently picked up for processing by the Abuse Detection Module (ADM). The

Message Queue is a persistent and fault-tolerant data store that improves the system’s

resilience and scalability by ensuring that message analysis does not become a

bottleneck for the rest of the system. This is done by monitoring the rate at which

messages are enqueued and dequeued. If there are too many messages waiting to be

processed, then the processing capacity is increased by creating more ADM instances to

handle the increased load. The newly created instances are then destroyed when the

message volume drops below a threshold.

6.8.3 Abuse Detection Module (ADM)

The ADM encapsulates the trained machine learning models used to analyse messages

for offensive content. It retrieves messages from the Message Queue and predicts the

offensive labels for each message. In the current implementation, the ADM includes the

following machine learning models: Multinomial Naı̈ve Bayes; Logistic Regression; Linear

SVC; BERT; XLNET; RoBERTA; and DISTILBERT (all discussed in Section 2.3.3).

RoBERTA, being the best performing model (as discussed in Section 3.4.1), is set as the

default classifier, but any other models can equally be used. The model analyses each

message and predicts values for the eight offensive labels. The prediction is then

outputed in JSON format by the ADM. For example, for a message such as: You must be

gay huh? Why you here? Fag!! And I got 2 TANK YA. The ADM will return an output

similar to the one below:
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{"Cyberbullying": 1,

"Insult": 1,

"Profanity": 1,

"Sarcasm": 0,

"Threat": 0,

"Exclusion": 1,

"Porn": 0,

"Spam": 0}

As discussed in Section 6.3, each label is assigned a weight which is used to compute the

message’s offensiveness score for the message (i.e., the value on which basis a message

is deemed offensive and automatically deleted). The weights assigned to each label are

as shown in TABLE 6.2. The offensiveness score for the above example message will,

therefore, be calculated as 11. Thus, if the user’s offensiveness threshold is set to 11

or less, the message will be flagged for deletion. The offensiveness threshold for the

system defaults to 2, but this can be changed by the user in the mobile app. To determine

the weights, a selection of tweets were shown to the young co-designers to identify the

tweets that they would like the app to automatically delete by default (i.e. if the user

has not configured the deletion threshold). The offensive labels for these tweets were

then predicted using the RoBERTA model. Using the tweets selected for deletion by the

participants as a guide, the labels were assigned weights to ensure that all the tweets

marked for deletion would breach the threshold and trigger a deletion. As all single-labelled

tweets apart from those assigned a single label of ‘Porn’ or ‘Spam’ were selected for

deletion, the ‘Porn’ and ‘Spam’ labels were assigned the lowest weight (i.e., 1) and the

default deletion threshold was set as 2 to ensure that tweets that are assigned only the

‘Porn’ and ‘Spam’ labels are automatically deleted (as suggested by the participants).

‘Sarcasm’ and ‘Exclusion’ being labels often associated with tweets containing indirect

forms of online abuse were each assigned weights of 2 and the remaining labels (which

were all associated with direct forms of online abuse) were assigned a weight of 3 each.
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Label Weight
Cyberbullying 3
Insult 3
Profanity 3
Sarcasm 2
Threat 3
Exclusion 2
Porn 1
Spam 1

TABLE 6.2: Weights for offensive labels.

6.8.4 Model Repository

The Model Repository is used to store the machine learning models used by the ADM. It is

essentially an optimised file store that supports the fast retrieval of the binary model files.

When an instance of the ADM is created, the model files are simultaneously loaded into

memory. This ensures that the ADM can start processing messages immediately. The

Model Repository is critical to supporting the system’s ability to use different ML models in

a ‘plug and play’ manner. A default ML model configuration variable is used to inform the

ADM of the ML model to use for prediction; by simply changing this variable, therefore, a

new ML model can be dynamically loaded into memory by the ADM. The ADM checks the

value of the default ML model variable at regular intervals (currently set to an hour).

6.8.5 Online Training Module

Whenever a user amends the labels assigned to a message, such messages are flagged

as training data in the database. When there are a sufficient number of these in the

database (referred to as num and currently set to 1,000), a copy of the model is created

and re-trained using the amended labels. This copy of the model then becomes a user’s

personalised classifier and is exclusively used to analyse the user’s messages only. The

Online Training Module will continuously re-train this bespoke classifier as more training

data becomes available, resulting in a highly personalised model specifically trained for

the user using his/her judgement as ground truth.

In order to determine the appropriate value of num to trigger the initial creation of a

personalised classifier, a simulated experiment in which a new instance of the model was
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created and re-trained with data including the user-updated labels was conducted with

various values of num . Starting with num = 100, the Online Training Module was

configured to create a new personalised model for every hundredth increment of num and

it was not until num = 1000, that a noticeable improvement was detected in the

personalised model’s predictions compared to the base model. This was then

subsequently adopted as the value of num for the Online Training Module.

6.8.6 Remote Database

The Remote Database is a PostgreSQL database that serves as a remote copy of the

mobile app’s local SQLite database. PostgreSQL is an open-source RDBMS commonly

used for web applications due to its high stability and support for popular programming

languages. The Remote Database makes it possible to synchronise a user’s data across

multiple devices if the same BullStop account is used on multiple mobile devices.

Besides holding a synchronised copy of the Local Database, it also stores system-wide

configurations such as the default machine learning model and social network APIs’

details.

6.8.7 Synchroniser

The Synchroniser performs regular data synchronisation between the local and remote

databases. It is implemented as an API that is called regularly by the mobile app after it

has retrieved data from online social networks to its local database. New data stored in

the local database is replicated to the remote database and vice versa.

6.8.8 Real-Time API

In addition to classifying messages retrieved from the Message Queue, the ADM can

perform real-time message analysis. In this mode, messages are received directly through

the Real-Time API and are immediately analysed. The mobile app’s Message Checker

(see Section 6.5.11) uses this API to perform real-time analysis.
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6.8.9 Marshaller

The Marshaller coordinates the post-message activities of the platform. It reviews the

user’s personal preferences to determine what actions to take after a message has been

analysed. A user’s personal preferences include the offensiveness threshold and

post-analysis actions (e.g., deleting offensive messages or blocking abusive users). The

Marshaller will then initiate the appropriate action using APIs to communicate with the

online social network and the mobile app.

6.9 Limitations and Challenges

Navigating the intricacies of software development for mobile and cloud-based

applications while staying true to the original ideals of BullStop presented a number of

challenges. These included supporting a diverse range of devices running the Android

operating system, online social network API restrictions and the Google Play Store’s

policies.

As previously noted, as the most popular mobile operating system Android is installed on

over a billion mobile devices. Unlike in Apple’s iOS mobile ecosystem, whereby devices

running iOS versions older than two years are rare, the Android ecosystem includes

devices using older versions released many years ago. Furthermore, iOS is only installed

on Apple devices with strictly regulated screen sizes, whereas Android runs on a plethora

of devices with a wide range of screen sizes. This, therefore, presents a challenge when

designing user interfaces for Android mobile apps due to the need to cater to a large

number of device screen sizes. To alleviate this issue, Google broadly categorises

Android devices into a number of groups based on the screen size (Small, Normal, Large,

Xlarge) and pixel density (ldpi, mdpi, tvdpi, hdpi, xhdpi, xxhdpi), as illustrated in FIGURE

6.27. The size measure relates to the physical dimensions of the mobile phone’s screen,

while pixel density is the number of pixels per inch of screen, with higher values signifying

better display quality. Thus a device designated as xlarge and xxhdpi represents the

largest possible screen size and highest pixel density for an Android device.

To ensure adequate coverage of as many Android device types as possible, BullStop was

targeted at devices with screen sizes of Normal and Large, and pixel densities hdpi, xhdpi
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FIGURE 6.27: Android device categorisation based on screen size and pixel density.
Source: developer.android.com

and xxhdpi. This approach required significantly more development effort than if a smaller

range of size and pixel densities had been targeted, but it ensured that all UI elements are

rendered correctly in devices that fall within these groups, with the subset being considered

reasonable within the scope of this research agenda. UI elements may be displayed in

lower quality for devices outside of these groups, but the app’s core functionalities will

operate as expected.

The minimum version of the Android operating system required to run BullStop is Android

Version 7.0 (released in 2016). This was selected because 75% (approximately 2.25

billion) of all Android devices are using this version or higher. The implication of this
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decision, however, is that the app could not take advantage of performance-enhancing

features introduced in more recent versions of the Android operating system, forcing the

app to run in a ‘backward compatible’ mode so it can be used on phones running older

versions of Android. As devices running older versions of Android are typically older and

cheaper, targeting a legacy version of the Android operating system ensures that children

with such phones (who may also be from less affluent backgrounds) are not

disadvantaged.

As BullStop integrates with online social networks via their APIs, its features are heavily

reliant on the functionalities exposed by these APIs. In April 2018, Facebook introduced

wide-ranging changes to its APIs and that of Instagram (which is owned by Facebook) as

part of its response to its complicity in allowing unfettered access to users’ data by

Cambridge Analytica (Facebook, 2018). These changes severely restricted access to

critical features (from BullStop’s perspective) of both the Facebook and Instagram

platforms. Specifically, it was no longer possible to retrieve a list of the user’s contacts

and messages, and operations such as deleting messages and blocking contacts via the

APIs were no longer possible. As the original intention was for BullStop to support

Facebook, Instagram and Twitter from the onset, these API restrictions severely hindered

the app’s ability to integrate with Facebook and Instagram. The decision was made,

therefore, to remove support for both Facebook and Instagram leaving Twitter as the only

social media platform currently supported by the app for this research. While the

proportion of Twitter users aged 13 – 17 years and 18 – 24 years are about 9.1% and

21.6% respectively (Statista, 2020b), it is not believed that having Twitter as the only

social media platform that can be used with the app significantly limits its ability to

engage the target audience for research purposes as the population of these age groups

on Facebook (13 – 17 years: 5.8%, 18 – 24 years: 23.5%) (Statista, 2020a) and

Instagram (13 – 17 years: 7.1%, 18 – 24 years: 29.6%) (Statista, 2020c) are similar. It is

hoped that the reach of BullStop can be expanded in the future but, within the context of a

research agenda, the use of Twitter would still permit credible exploration and validation

of the research concepts.

The Google Play Store is the official store for Android applications and is the main

distribution channel for Android apps. Google recently changed the policies regarding

sensitive permissions required by apps (Google, 2020), and one of these changes relates

to necessary permissions to view and manage SMS messages. The change required an
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app to become the phone’s default messaging application to view and compose SMS

messages. This effectively means that for BullStop to access the SMS messages on the

phone, it has to become the default messaging application. As BullStop is not designed

to be a messaging application, and efforts to agree on a workaround with Google were

unsuccessful, the ability to manage SMS messages and phone contacts was temporarily

disabled in BullStop to allow a successful submission to the Google Play Store and the

research to continue. This feature will be enabled in a future release of the app, and

discussions are ongoing with Google to facilitate this.

The above challenges highlighted some of the practical issues affecting the development of

impactful cyberbullying prevention tools. Interestingly, the majority of these challenges are

not technological; rather, they are due to the policies and actions of technology and social

media corporations. Facebook’s near-total restriction of its APIs is a gross overreaction on

the organisation’s part in response to data misappropriation practices that they facilitated

– a decision that has rendered many legitimate uses of these APIs impossible. There

are several ways in which controlled and managed access to the APIs could have been

implemented instead of a blanket removal of crucial features. Undoubtedly, personal data

is precious and should be protected at all times; however, many mechanisms are available

(some of which were developed by Facebook) that allow users to provide consent and

authorise applications that they use to access their data securely. While it is disappointing

that Facebook’s policy change negatively impacted the reach of BullStop, it is hoped that

this can be addressed in the future and it is not felt it impeded the research focus being

reported here.

Google and Apple have been criticised in the past for their overbearing app stores’

policies, with accusations of innovation stifling levelled at both corporations (Ranger,

2016; Low, 2018; Solsman, 2019; Warren, 2020; Aten, 2020). The experience gained in

publishing BullStop on the Google Play Store would certainly give credence to this. For

example, despite several attempts (spanning four months) to convince Google of

BullStop’s requirement for requesting SMS messages access, the only way to get the app

approved was by removing this feature, thus limiting one of the app’s core functions.

While these issues may limit some of BullStop’s features, the app still fulfils its core

objective of providing a means for potential cyberbullying victims to protect themselves
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from online abuse. Future enhancements to the app will target reducing the impact of

some of these limitations, and these are discussed in more detail in Chapter 9.

6.9.1 Summary

BullStop has been developed with the principal objective of providing cyberbullying

victims with a means of protecting themselves from online abuse. As a cyberbullying

detection and prevention application, it has been designed to overcome identified

shortcomings of existing tools. It is composed of two sub-systems – an Android mobile

application and a cloud backend. The mobile application is the key interface for users to

interact with the system and features a novel UI designed collaboratively with

stakeholders using a participatory design methodology. The cloud backend utilises

industry-leading technologies such as containerisation, cloud computing and

microservices to improve the system’s resilience and scalability, thus ensuring that it can

cope with the high data traffic volume of modern online social networks.

Unlike existing cyberbullying prevention systems that are based on a specific classifier

and are unable to change machine learning models without significant effort, BullStop is

designed to be highly flexible and can use different machine learning models in a ‘plug

and play’ manner. This novel functionality improves the system’s versatility and has never

been used before in a cyberbullying prevention tool. Furthermore, by hosting the classifier

in the cloud backend, the system is able to offload the intensive computational demands of

running a machine learning model to the cloud platform, ensuring that the typically minimal

computing resources available on mobile devices do not negatively affect the performance

of the app. Unlike existing work on cyberbullying prevention tools, BullStop is not merely

an experimental prototype; it is a viable cyberbullying prevention tool that is ready and

available for use and one that has been openly evaluated on the Google Play Store by

hundreds of users.

Some practical challenges encountered in the app’s development phases enforced some

compromises in the released version of the app. While these compromises do not detract

the app from its key objectives, they nevertheless reduce the available app’s features.

Many of these compromises were, however, due to the operating practices of technology

and social media companies rather than constraints of technology. This highlights an
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urgent need for these corporations to remove practices that impede innovative use of their

platforms, especially those intended for research and altruistic purposes.
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Chapter 7: Evaluation of the BullStop Mobile

Application

7.1 Introduction

Utilising user-centred and participatory design approaches helped identify the pertinent

issues for stakeholders regarding how cyberbullying is being perpetrated, their opinions

on current prevention strategies, and how the innovative mobile application (Bullstop)

should be implemented to provide the maximum benefits for users. This chapter details

the evaluation studies conducted to explore the responsiveness, scalability and perceived

usability of the BullStop app. Sections 7.2 and 7.3 reports on the computer-based

experiments performed to evaluate the system’s responsiveness and scalability. The

ways by which the system mitigates obsolescence by design is considered in section 7.4.

To access the mobile app’s acceptability amongst the target audience, two types of

evaluation study were conducted, namely ‘lab’-based and field-based evaluations.

Section 7.5 reports on the ‘lab’-based evaluation study, which comprised a series of

exploratory sessions conducted with parents, children, clinicians, and law enforcement

during which they were provided with the mobile app and their initial impressions

solicited. In the field-based evaluation study, the app was made available to the public via

the Google Play Store and beta users were essentially invited to complete an online

questionnaire about their experiences with the app: this is discussed in Section 7.6. The

chapter concludes with a summary in Section 7.7.
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7.2 Evaluation of the System’s Responsiveness

The Real-Time API was the mechanism chosen to evaluate the system’s responsiveness.

The Real-Time API is an API interface to the ADM (Abuse Detection Module) that

accepts text input, predicts the offensive labels for the text and returns the output

immediately in JSON format (see Section 6.8.8 in Chapter 6). It is, therefore, an

appropriate component of the system to demonstrate this capability of the application.

Postman1 , an API client tool used to send web requests to an API, was used to perform

the evaluation experiments. Multiple messages to classify were provided in a text file, and

Postman was configured to iterate through the file and send the messages to the API.

The messages comprised a random collection of tweets retrieved via the Tweeting

streaming API using the procedure described in Section 3.3.4. The time taken by the API

to return the prediction is the ‘response time’, and this was recorded for each message.

Three experiments sending varying numbers of tweets (100, 500, 1000) to the API were

conducted, and the average response time for each experiment was calculated. For each

experiment, the tweets were provided in a separate text file to Postman for processing.

While there is no officially agreed value for an adequate response time for an API, and

acceptable values vary depending on the operations being performed by the API, a value

of 1 – 3 seconds is widely regarded as an adequate response time for an API (Nielsen,

1994; StackOverflow, 2008); this was therefore adopted as the expected range of values

to demonstrate responsiveness. The same system configuration used in the field-based

evaluation study (see Section 7.5) was used. In this configuration, the system can access

14GB of memory and four 2.4GHz virtual Intel processors. The results of the experiments

are presented in TABLE 7.1.

Experiment 1 (100 tweets) 2 (500 tweets) 3 (1000 tweets)
Average Response Time (sec.)
[95% Confidence Interval]

1.068 ± 0.075 1.013 ± 0.049 1.039 ± 0.038

TABLE 7.1: Results of Responsiveness Evaluation Experiments.

As shown in the table above, an average response time of about 1 second was calculated

in all three experiments, placing the average response time within the expected range and

thus demonstrating the system’s responsiveness. It could perhaps be argued that instead

of the computed average response time, users’ perception of the system’s responsiveness
1postman.com
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is a better indicator for evaluating this attribute; as such, this is considered in Section

7.5.6.4 as part of the field-based evaluation study.

7.3 Evaluation of the System’s Scalability

As mentioned in Chapter 1, scalability relates to a system’s ability to increase its capacity

by increasing the amount of computing resources in use. To evaluate the system’s

scalability, the ADM was utilised in its asynchronous operation mode (see Section 6.8.3).

The BullStop system manages the amount of computing resources it requires by

monitoring the rate at which messages are enqueued and dequeued. If the enqueuing

rate exceeds that of dequeuing, new ADM instances are created to handle the additional

load. This rate is referred to as Message Consumption Rate (edC) and denoted by the

equation:
e
dC =

Me

Md

which is simply the division of the number of messages enqueued per second Me by the

number of messages dequeued per second Md. e
dC can therefore be used as a measure

of the system’s responsiveness as e
dC > 1 implies that the system is under heavy load

and additional instances of the ADM should be created to reduce the value of e
dC closer

to 1. At e
dC = 1, the system is at a perfect equilibrium with the exact amount of resources

required to process messages provisioned while e
dC < 1 means that the system has over-

provisioned resources.

An experiment was performed to assess the scalability of Bullstop by artificially enqueuing

messages onto the Message Queue using a computer program developed to test the

system by putting messages onto the queue at an approximate rate of 20 messages/sec

for three hours and monitoring the values of (edC) as the system’s load was increased.

FIGURE 7.1 illustrates the results of the evaluation experiment and shows (edC) increasing

as Me exceeds Md during the initial period when the system struggled to cope with the

increasing number of messages. New instances of the ADM were therefore created to

handle the additional load, bringing the value of (edC) closer to 1 and thus demonstrating

the system’s ability to scale and acquire additional computing resource as required. This

is a significant differentiator between the BullStop application and existing cyberbullying
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prevention systems as it provides BullStop with a theoretical ability to match the scale of

modern social networking platforms.

FIGURE 7.1: Graph illustrating Message Consumption Rate under artificially-induced
load.

7.4 Mitigating System’s Obsolescence

Obsolescence mitigation is built into the design of BullStop. This is achieved via two key

means; allowing the use of different ML models in a dynamic manner and the system’s

ability to generate a personalised classifier for each user. As previously discussed in

Chapter 6, the choice of the ML model used for predictions is governed by a configurable

value which when updated allows the system to retrieve a different model to use as the

classifier from the model repository. This design mitigates system’s obsolescence as it

decouples the classifier from the rest of the system thereby allowing the use of newer ML

models as they become available. In addition, by generating personalised classifiers, the

system provides a means to continually learn from the users ensuring that the ML model

evolves as the user interacts with the system.
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Finally, transfer learning - the use of a source domain and learning task to improve a

predictive function for a different target domain (Pan and Yang, 2009), has the potential

to be used as an additional means for mitigating obsolescence as knowledge from a new

domain can be introduced into the system in this way thus providing a means for the

system to expand beyond abuse detection and prevention to areas such as preventing

sexual grooming and stalking. In incorporating obsolescence mitigation into the design,

BullStop is a very unique tool as designing to address obsolescence in an online abuse

detection or prevention tool is a novel endeavour that has not been previously attempted.

7.5 ‘Lab’-Based Evaluation of the Application’s Acceptability

to Users

This section reports on the activities conducted during the ‘lab’-based evaluation study.

7.5.1 Study Design

The ‘lab’-based evaluation study was aimed at gaining insight into first-time users’

impressions of the app and garnering detailed feedback about how well the app meets

the stakeholders’ expectations. It was essentially a controlled study using lab-based

techniques but conducted in more comfortable settings for the benefit of users. Building

on the rapport previously established with the focus group participants, the researcher

was able to arrange the evaluation sessions quickly and with relative ease. In addition,

the participants were genuinely interested in exploring and experiencing the mobile app,

which had been based on their input. After confirming their interest in participation by

replying to the invitation email, a telephone conversation took place between the

researcher and each adult participant. This call was to provide an overview of the

evaluation session and to answer any questions that the participants had. Seven

sessions took place at the home of participants, and two were held over coffee at a café.

All participants (including the young participants) were entitled to a £10 Amazon voucher,

but all the adult participants waived this and received no compensation for their time.

Participants were provided with an Android smartphone with the BullStop app pre-installed

but not configured. To remove the need for participants to share their personal data and
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online social networks information for evaluation purposes, dummy Twitter and BullStop

accounts were created for the use of participants. Information on how to configure the app

and a list of tasks they were asked to perform were provided to participants (see Appendix

E.1). Each session lasted about two hours, the first hour of which involved participants

familiarising themselves with the app and performing the tasks detailed in the instruction

sheets. They were also encouraged to explore the app and discuss their observations.

Afterwards, the researcher interviewed the participants about their observations from their

use of the app (a copy of the interview guide is presented in Appendix E.2).

7.5.2 Participant Recruitment

Ethics approval for the ‘lab’-based evaluation study was granted by the University Ethics

Committee (see Appendix E.3). Participants for the ‘lab’-based evaluation study were

recruited from the previous focus groups (see Section 4.2.1 in Chapter 4) as well as the

original pool from which the focus group participants were sourced. All participants were

invited via email (see Appendix E.4 and E.5) with attached Participant Information Sheets

(see Appendix E.6, E.7, E.8) and Consent Forms (see Appendix E.9, E.10, E.11). The

study consisted of nine evaluation sessions between January and February, 2020. Five

sessions were designed as paired exploration sessions with a parent and child, and four

were individual evaluation sessions of the mobile app with the psychiatrist, child

psychologist, general practitioner (GP) and law enforcement officer who took part in the

focus group study (discussed in Section 4.2). An overview of the study’s sessions and

participants is presented in TABLE 7.2.

7.5.3 Findings and Discussion

Thematic analysis using the procedure established in Section 4.2.2 was performed on the

transcripts, and six key themes were uncovered. These, along with the resulting codes,

are presented in Appendix E.12 and discussed in the following subsections.
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Session Venue ID Role Gender Age
(Child
only)

Original
Focus
Group
Participant?

1
Participant’s
Home

P1 Parent Female N/A No
P2 Child Female 11 No

2
Participant’s
Home

P3 Parent Male N/A Yes
P4 Child Female 16 No

3
Participant’s
Home

P5 Parent Male N/A Yes
P6 Child Male 13 No

4
Participant’s
Home

P7 Parent Female N/A Yes
P8 Child Male 15 No

5
Participant’s
Home

P9 Parent Female N/A No
P10 Child Male 17 No

6 Participant’s
Home

P11 Psychiatrist Female N/A Yes

7 Cafe P12 Law
Enforcement
Officer

Male N/A Yes

8 Participant’s
Home

P13 General
Practitioner

Female N/A Yes

9 Cafe P14 Child
Psychologist

Female N/A Yes

TABLE 7.2: Overview of evaluation study participants

7.5.3.1 Easy to Use

Participants’ initial impressions of the app were that the UI is simple and easy to use.

They were very positive about their experience setting up the app for the first time. The

law enforcement officer noted that:

“It’s easy to set up an account initially, and then to log in, it’s quite easy and
quick. There’s not a lot of confusing stuff, and it’s really quick to create an
account. That’s very good”. [Law Enforcement Officer]

The Child Psychologist commented that the app was “easy to set up” and that “it connects

well with Twitter ”. It was particularly reassuring that one of the parents that confessed to

not being “good with technology ” reported a similarly positive experience with the app:

“I think it was quite good for a techy challenged person, easy to use, and
straight forward, and not too busy”. [Parent]

The perceived learnability of a system is often a key determinant of users’ satisfaction

(Calisir and Calisir, 2004). The provision of help and documentation to assist with the
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system’s use is, therefore, a crucial element in increasing an application’s learnability and

appeal to users. The app’s tour is the embodiment of this principle, and with remarks such

as those below, the tour has certainly been beneficial in improving the overall appeal of

the mobile app.

“I like the tour. I generally struggle with apps or anything techy, but with a few
screens of the tour, I understood the app completely”. [Psychiatrist]

“My initial impression was very good. You start the app; you can see the tour.
As a user, or even as perhaps a guardian, I can go through the tour and
understand very quickly what the app is trying to achieve. That is a very good
start because some apps can be confusing when you first open them, and
that makes this good”. [Law Enforcement Officer]

7.5.3.2 Well Designed

Participants commended the app’s user interface with many saying that it is well designed

and of equal or better quality to apps that they have purchased from the app store, as

illustrated by the quotes below:

“It certainly looks like a paid app I would have downloaded from the app store”.
[Young Participant, 17]

“It looks very professional. Like apps [that] I have paid for before”. [GP]

An application’s user interface plays a significant role in users’ satisfaction (Hiltz and

Johnson, 1990) and, for BullStop, the need to satisfy both primary (young people) and

secondary (adult stakeholders) audiences introduces additional complexities. In addition

to appealing to young people and their parents to gain their acceptance, the app must

equally demonstrate its utility to the professional stakeholders so they can promote the

app amongst the primary audience via recommendations and word of mouth. On the

strength of the comments below from the young participants, the app’s interface meets

their expectations:

“I like the design and the colours. It’s very subtle, not in your face”. [Young
Participant, 13]

“I like the pictures of the kids on the home page. And the settings, it’s
straightforward.” [Young Participant, 11]

“It’s simple. It’s like Twitter but also different. I get it from the beginning. I like
the settings”. [Young Participant, 15]
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The parents and clinicians views were also aligned with those of the young participants,

as evidenced by the statements below:

“I like the simplicity of the UI. I ’don’t like cluttered apps with too many things
going on the screen”. [Parent]

“I like the way everything is set out”. [Child Psychologist]

7.5.3.3 Appropriate Branding

A key finding from the PD sessions was the significant role played by an app’s brand in

attracting potential users to the app on the app store. Often, an app’s name and logo are

the only means of differentiating it from millions of other apps on the app store, and both

must capture the interest of potential end-users from the onset. An app’s logo personifies

its image and participants’ reactions to it provided us with a measure of its suitability to

represent the app’s brand. Participants liked Bullstop’s logo; it was immensely popular

amongst the young participants and clinicians who appreciated the symbolism represented

by the shield image used in the logo as exemplified by their comments below:

“I like the shield. It has a strong message about what it is stopping”. [GP]

“I like the logo too. It’s a strong image. Secure and safe. It’s good”. [Law
Enforcement Officer]

“I like the shield because ’it’s like you have a knight protecting you”. [Young
Participant, 11]

“Actually, that logo is very apt. I like it.” [Psychiatrist]

The app’s name was similarly well-liked. The child psychologist remarked:

“I like the name; BullStop. When I heard the name, it resonates because
cyberbullying and stopping cyberbullying. I just like the name. In short, I think
its children friendly”. [Child Psychologist]

One of the parents also said:

“The name is very clever. I got it immediately”. [Parent]

The young participants said the name was “cool” and “clever ”. In clarifying these

comments, one of the young participants said:

221

S.D.Salawu, PhD Thesis, Aston University 2021.



“You don’t want an app that says ‘Cyberbully Stopper’ or something like that,
that’s just in your face. BullStop is like Reddit or Twitter. You know what it’s
all about from the name, but they don’t make a fuss about it. It’s just there.
BullStop. That’s it.” [Young Participant, 16]

This is very encouraging for the app’s prospects amongst the target audience. Additionally,

participants remarked that the app projects an image of a “safe and secure environment” in

their minds, which is a useful quality for an app that requires users to entrust their personal

and social media data to it.

7.5.3.4 Good Overall Performance

Alongside the key dimensions of the user interface design, learnability and relevance, a

system’s performance is another determinant of end-user satisfaction (Hiltz and Johnson,

1990; Gatian, 1994). It provides the user with a measure of the application’s suitability for

its intended purpose. Participants were impressed with how responsive the app’s interface

was to touch commands and the speed of real-time predictions by the Message Checker.

One participant said of the Message Checker:

“It’s quite fast. I timed the message checker a few times, and it was like 1 or 2
seconds. That’s impressive”. [Young Participant, 17]

Another passed the following comment about navigating between the app’s screens:

“Going from screen to screen, it was quite smooth”. [Law Enforcement Officer]
With regards to the app’s offensive content detection, participants were generally satisfied

with the app’s ability to detect and delete offensive messages. Some, however, reported

that the app sometimes generalises on the type of abusive content detected, ignoring

the finer details of subtle or more complex messages. For example, one participant said

that the app is “quite good at picking abuse and bullying, but it didn’t get the threatening

messages”. This was found to be due to the low number of threatening tweets within the

dataset (as identified in Chapter 3) used to train the app’s ML model negatively impacting

its ability to detect these types of messages.

7.5.3.5 User Empowerment

Participants were impressed with the level of control afforded users by the mobile app.

They said that this contributes to the empowerment of cyberbullying victims by providing
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them with a means to control how people interact with them online. The young participants

particularly liked the ability to manage contacts from different social media platforms from

within the app. Some of them said:

“I like that you can make contacts trusted or blocked. And that it can
automatically block people if they are being offensive”. [Young Participant, 15]

“It’s quite handy to manage friends from different social networks in one place”.
[Young Participant, 17]

They also liked that they could control the app’s sensitivity to offensive messages as shown

by the statements below:

“It’s good that with the app, I can control what kind of messages I receive”.
[Young Participant, 11]

“The fact that you can adjust the app settings is very good. That way you can
control what type of messages are deleted”. [Young Participant, 16]

Bullying (in all its forms) is an assertion of interpersonal power by the bully over the victim

(Craig and Harel, 2001) and the clinicians were of the opinion that, by allowing users

significant control over its configurations, the app is disrupting this relationship thus

allowing victims to wrestle back control from potential online abusers. The psychiatrist

said:

“A thing like this, it’s putting the young person in control, and giving them some
trust, and saying, ‘Actually, you know what? You’ve got this, you can take care
of yourself’”. [Psychiatrist]

Likewise, the child psychologist shared a similar opinion and explained that, in providing

young people with the means to filter abusive messages rather than forcing them to avoid

the Internet altogether, the app is an improvement on the advice typically offered to parents

on mitigating cyberbullying:

“What we say to parents is instead of having this effect on your child, why ’don’t
you switch off the Internet at home, take off the device from the child. But in a
way that can sometimes contribute to the feeling of powerless in young people
because now they have lost their phones and Internet because of this, so it is
key to demonstrate to them that they do have the power to fight this and I think
this app can provide that”. [Child Psychologist]
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A similar view was echoed by the GP, who said:

“I think having something like this gives the child some measure of control back,
and I think that’s key in fighting bullying”. [GP]

As is to be expected, the young people welcomed the absence of parental monitoring

features in the app. Interestingly, and in line with the focus groups’ findings, the adult

participants were also not in favour of including parental monitoring facilities in the app.

They believe that providing young people with a tool to manage their online interactions

is a superior tactic than monitoring them. Some of their comments in support of this view

include:

“I ’don’t think any child will install an app if they know it allows their parents
access to what they are doing on social media. So, I think the decision not
to include parental monitoring in the app is the right one”. [Law Enforcement
Officer]

“I think it’s good to give children some control instead of sending parents copies
of their messages. No child likes that, and they probably won’t use the app”.
[Parent]

“I think not having a parents’, or companion app is very good and should be
used as a selling point of this app, and ‘’that’s useful because you want young
people to use it, otherwise, there’s no point for it in the first place. Teenagers
will never use it if they know ’there’s parent supervision in the app”. [Law
Enforcement Officer]

7.5.3.6 Reflective and Educative

The Message Checker emerged as one of the favourite aspects of the app for many

participants. The younger participants welcomed the idea of being able to check their

messages for appropriateness before sending. The youngest participant (aged 11 years)

in the study said this when questioned about her favourite feature of the app:

“I think the one when I was sending a text, and then it checked for me because
as much as I ’don’t want to be hurt, I ’don’t want to hurt people either. Also, if
people don’t want to get in trouble for sending something, they can use the app
to tell them if what they are sending is bad”. [Young Participant, 11]

Other participants expressed similar sentiments about the Message Checker. One parent

said:
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“The best thing for me about the app is I think it tells you to stop and think
before sending a message, which I think young people struggle with. Some
people might not have the intention to bully, but at the end of the day, what you
have said has gone a long way to hurt or to bully another child. The fact that it
has a stop and think section, which for any child who does not directly want to
bully or does not have the intention of bullying, that is positive”. [Parent]

This statement perfectly describes the reflective ideals of BullStop. The Message

Checker’s purpose is to educate and allow users (particularly the younger ones) to reflect

on the potential impact of how they communicate and to serve as a “second pair of eyes”

when composing messages. Overall, it can be seen that participants felt that the app is

not only a useful tool for cyberbullying victims but that it also serves as a learning tool,

educating young people on how to communicate appropriately so as not to offend others.

7.5.3.7 Useful and Unique

In concluding the evaluation sessions, participants were asked about their overall

impressions of the app and their intention to use or recommend the app to others. While

none of the young participants involved in the ‘lab’-based evaluation study reported

suffering online abuse, they said if they were, they would use the app as typified by the

comments below:

“Overall, I think that it’s a very good app. I would definitely use it”. [Young
Participant, 13]

“I’m not being cyberbullied, but if I am, I will definitely use the app”. [Young
Participant, 15]

“Yes, I guess if I have been harassed. Maybe not so much now, but when I was
younger, I can see myself installing something like this if it was available then”.
[Young Participant, 17]

Some of them also said they would recommend the app to friends:

“I really like it, and I know a few people that I think this will be good for.” [Young
Participant, 17]

“It’s pretty good, the BullStop app. It protects young people from the dangers
of social media. I will tell my friends about it”. [Young Participant, 11]

One young participant said she “would definitely use it”. The parents were equally

complimentary about BullStop:
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“For my kids, I would suggest to them that why ’don’t you just filter all your
messages through this app because you might be chatting with a friend and
jokingly say something offensive or vice versa but an app like’s this just act as
a filter, a shield”. [Parent]

“This is an app I can tell my children about. To be honest, I know adults that
can benefit from an app like this. What you are doing is life-changing really”.
[Parent]

The clinicians and law enforcement officer were very optimistic about the app and its

prospects. They said it is unique and would gladly recommend the app to young people

who can benefit from it. In their words:

“Definitely, I can recommend this [app] to them because it is putting the advice
we provide into effect; block offensive contacts, review connection requests,
etc., these are all the practical things we tell the parents to do”. [GP]

“It is within our professional capacity to recommend apps like this because
we know that these are tools that can help in their everyday lives”. [Child
Psychologist]

“If someone is being bullied online, I would definitely recommend this app to
them, and if this tool is publicly available, it’s something the police can suggest
to people as a safeguarding tool”. [Law Enforcement Officer]

“I’m not aware in my professional capacity of any software or app that
particularly addresses cyberbullying. This is something we can recommend to
our patients because we know that it can improve lifestyles”. [Psychiatrist]

7.5.3.8 Suggested Improvements

The study also unearthed a number of suggested improvements for the mobile app.

Perhaps unsurprisingly, incorporating support for other social media platforms in the app

emerged as a common request amongst participants. One of the young participants said:

“I really like the app [. . . ] I think it’s great, but I don’t actually use Twitter. I am
on Instagram and use WhatsApp a lot, and my friends are the same. I think
if you can have Instagram and WhatsApp, I can see a lot of teenagers using
this”. [Young Participant, 15]

As discussed in Chapter 4 (Section 4.5), contrary to initial aims, a number of technical

challenges such as API restrictions introduced by Facebook and Instagram and the

absence of a WhatsApp API, prevented the integration of BullStop to these platforms.

Participants’ desire for the app to integrate with these platforms has, however, provided
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additional motivation to explore these limitations and the ways by which a satisfactory

compromise might be achieved (see further research discussion in Chapter 9). The other

feature popularly requested by participants was to allow the Message Checker to be used

across all applications on the phone to serve as an “offensive content checker ” for the

phone as a whole.

In explaining the popularity of icons in computer programs, Hemenway (1982) likened

them to geographical symbols on a map. Icons are easier to distinguish between one

another than say a set of words and, as such, can convey essential information (such as

a warning or command) very quickly. On a mobile phone’s screen, where the display area

often needs to be used with parsimony, icons allow mobile applications to signpost users

to key areas of the app using the least display area possible. Most of the participants

said they understood what the icons used in the app signified from the onset as they have

encountered identical icons providing similar functionality in other apps, thus justifying

the decision to use the Android Materials Icons in the design (as discussed in Section

6.5). One participant, however, admitted being initially confused with the Sent Messages

and Received Messages icons (see FIGURE 7.2) but acclimatised after the “first few

minutes”. This corroborates the findings of Hemenway (1982), who discovered that while

the initial performance of users on icons-only interfaces was poor compared to labels-only

and icon-label interfaces, the icon-only interface users very quickly achieved the same level

of performance as the other users once they understood what the icons meant. Familiarity

with an icon can, therefore, play a part in how users respond to it.

FIGURE 7.2: Sent Messages and Received Messages icons.
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7.6 Field-Based Evaluation of the Application’s Acceptability

This section reports on the field-based evaluation study of the app that was conducted via

the Google Play Store. The study was conducted for fifteen weeks in July - October 2020.

Prior to its commencement, the University Ethics Committee reviewed the study protocols,

and it was deemed that a separate ethics application was not required (see Appendix

E.13).

7.6.1 Study Design

The field-based evaluation study aimed to engage a larger proportion of the target

audience to gain an insight into their opinions about the app based on actual app usage

in their daily lives. Specifically, it was designed to answer the following research

questions:

1) Were the intended target audience sufficiently motivated to use the app?;

2) What is the perceived usefulness of the app?;

3) What is the perceived usability of the app?;

4) What are users’ favourite aspects of the app?; and

5) What areas of the app do users believe require improvement?

Data from the study was gathered via three means: an online questionnaire; application

usage data automatically recorded and provided by Google Play Store; and users’ in-app

actions recorded by the mobile application. The online questionnaire (a copy of which is

available in Appendix E.14) was created to capture users’ feedback about their

experiences using the app. An invitation to complete the questionnaire (in the form of a

pop-up window) was displayed to users five days after installation. The questionnaire’s

prompt window (see FIGURE 7.3) included ’Yes’ and ’No’ buttons and on tapping ’Yes’,

the mobile phone’s web browser was launched and navigated to the online questionnaire

(FIGURE 7.4). If the user selected ’No’, then the prompt was displayed as a daily

reminder until the questionnaire was completed.
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FIGURE 7.3: Sent Messages and Received Messages icons.

FIGURE 7.4: Online questionnaire welcome page.
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App store data was extracted from the Google Play Console (see FIGURE 7.5) which is a

feature of the Google Play Store that records information such as user traffic to the app’s

listing page, demographic data (e.g., country, age, etc.) and application usage data (e.g.,

installation, uninstallation, crashes, etc.).

Users’ actions within the application (e.g., screens visited, button taps, navigation patterns,

etc.) are recorded by the mobile app using Google Firebase Analytic2 , an analytic platform

for recording user-based events within an Android application (See FIGURE 7.6).

FIGURE 7.5: Google Play Console page for BullStop.

FIGURE 7.6: Firebase Dashboard Play for BullStop.

The mobile app was made freely available on the Google Play Store (see FIGURE 7.7),

and the study was publicised via a press release3 issued to media organisations by Aston
2console.firebase.google.com
3aston.ac.uk/latest-news/cyberbullying-shield-app-uses-ai-combat-social-media-trolls
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University’s Press Office. Additionally, the researcher and his supervisory team shared the

press release with personal contacts, including those that participated in the study.

FIGURE 7.7: BullStop listing on the Google Play Store.

7.6.2 Online Presence

Establishing an authentic online presence for the app was identified by the co-designers

(during the participatory design phase of the research) as a crucial part of reassuring

potential users of the application of its legitimacy (see Section 5.5.5.5). In furtherance of

this recommendation, a website (see FIGURE 7.8) and social media pages on Facebook,

Instagram and Twitter were created for the mobile app, and a consistent design theme was

utilised across all the online channels. As shown in FIGURE 7.9, there was a significant

increase in the number of website visitors in the month leading up to the evaluation study

(i.e., June 2020) with website traffic peaking in July 2020 when the evaluation study began.

This was followed by a sharp decline the month after (i.e., August 2020) and a gradual

reduction in traffic in subsequent months during the later periods of the evaluation study.

The Google search results for the term ‘bullstop’, of which the first eight results are related

to the app (see FIGURE 7.10), provide an additional attestation of the success of efforts

to improve the app’s online presence and thus serve as a vehicle for recruiting participants

to the study.
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FIGURE 7.8: BullStop app website.

FIGURE 7.9: Traffic to the BullStop website during the evaluation period.

7.6.3 Analysis of Users’ Engagement with the Mobile App

As previously mentioned in Section 7.5.1, the application usage statistics available on

the Google Play Store and Firebase Analytics were used to understand users’ behaviour

within the application. FIGURE 7.11 illustrates the number of users gained and lost, active

users and visitors to the app’s page during the evaluation study. The figures, as well as

the definition of the metrics used, were provided by the Google Play Store which defines

a new user as a uniquely identifiable person (as identified via their Google account) who

installs the app for the first time. This metric ensures that a person who installs, uninstalls,
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FIGURE 7.10: Google search results for ‘bullstop’.

and then re-installs the app is only counted once. Likewise, a user who installs the apps

on multiple devices is counted as a single entity. A lost user is a user that uninstalls the

app from all their devices, and a visitor is a person that visits the app’s page on the Google

Play Store (see FIGURE 7.7). An active user is a user who installed the app on one or

more devices and has used it in the past 30 days.

FIGURE 7.11: Total number of active, lost and acquired users and visitors.

During the field-based evaluation study period, there were 795 unique visitors to the app’s
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Google Play Store page, and 384 of these visits resulted in a new person installing the app

(a conversation rate of 48%) with the app being installed 557 times (this figure includes

multiple installations by the same user). The impact of the publicity generated by the

press release in attracting users is demonstrated by the user acquisition rate before and

after the press release as illustrated in FIGURE 7.12 which showed that the majority of

users installed the app in the two weeks following the press release.

FIGURE 7.12: Users acquisition and loss before and after the press release.

The sheer volume of apps on the app store creates an extremely competitive

environment and one in which new mobile apps often struggle to make an impact. As the

usage intentions of mobile apps’ consumers are heavily influenced by their perception of

the app’s ability to meet their requirements (Stocchi et al., 2019), a mobile application’s

app store presence is often the only opportunity available to convince a potential user of

its ability to meet their needs. An app’s brand then becomes a critical component of its

ability to succeed in the app store (Smith and Chen, 2018). This was similarly highlighted

by the co-designers’ suggestions that the app should have a “cool logo” (see Section

5.5.3.1), “short and catchy name” (see Section 5.5.3.2), and reassure potential users of

the app’s authenticity (Section 5.5.5.3). The appropriateness of the app’s logo and name

was validated by the ‘lab’-based evaluation study that found participants responded

positively to the app’s name and logo (see Section 7.4.3.3) and this was further reinforced

by the field-based study where 18% of searches for the app used the app’s name as the

query term (see FIGURE 7.13). This is a remarkable achievement for a new mobile app

and implies that despite its infancy, the app’s brand was sufficient in attracting users.
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FIGURE 7.13: How the app was discovered on the app store by users.

7.6.4 Analysis of Users’ Gender and Age Demography

The gender and age profiles of users (based on their Google account information) suggest

that males aged 18 – 24 years make up the largest portion of the app’s users. As this is

the lowest age range reported by Google Play store, the figure for users younger than 18

years was not available. The male gender’s high proportion is not restricted to the 18 – 24

years segment alone. The same pattern is repeated across other age groups, resulting in

a predominantly male (80.7%) user base, as illustrated in FIGURE 7.14.

As no consistent interdependency has yet been established between cyberbullying and

gender (Calvete et al., 2010; Baldry et al., 2016; Foody et al., 2019), this discovery is not

believed to be symptomatic of increased involvement of the male gender in cyberbullying.

It may, however, suggest a higher interest level in mobile applications amongst males,

as per the study by Seneviratne et al. (2015) in which higher male participation rates

were discovered when investigating the information revealed about a person by the apps

installed on their phones.

Interestingly, the proportion of users younger than 25 years was smaller than expected

(35%). A possible explanation of this can be inferred from the age distribution of Twitter

users (Statista, 2020b) where under twenty-fives are represented in a similar proportion

(i.e., 31%) as shown in FIGURE 7.15. It is therefore understandable that this age group’s

demand for an app that currently only protects Twitter accounts is lower compared to older

age groups. This potentially, however, also makes the app in its current form appealing to

older users as they make up the majority of Twitter users.
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FIGURE 7.14: Age groups and gender of app users.

FIGURE 7.15: Age distribution of Twitter users.

7.6.5 Analysis of Application Usage Patterns

The average daily time spent using the app is 2 minutes and 42 seconds and the

maximum daily time spent by a single user was 33 minutes and 20 seconds. On average,

most time was spent on the Received Messages screen and the least amount of time

was spent on the Splash screen, which is displayed when the app is starting on older

mobile phones. Of screens that contain interactive UI elements (i.e., text boxes, buttons,

links, etc.), the Sign In screen was the screen that users spent the least amount of time

on. Again, this is understandable as the Sign In screen is only used to login to the
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application after installation and, unless a user explicitly signs out, their session is

maintained indefinitely (similar to the behaviour of social media apps like Facebook,

Twitter and Instagram).

The users’ actions recorded on the Received Messages screens suggest that users

typically spend their time on this screen reading the messages, with only about 16% of

users selecting or deselecting the offensive label checkboxes to correct the app’s

predicted labels. In comparison, 57% of the users that visited the Sent Messages screen

interacted with the offensive labels’ checkboxes and 7% of the users that viewed the

Deleted Messages screen tapped on the labels’ checkboxes. The implication is that users

are more likely to reclassify received and sent messages than deleted messages. This

could be because they were sufficiently satisfied with the app’s predictions for deleted

messages or less invested in improving the app’s detection of offensive messages than

they were in updating the predicted labels for received and sent messages. This is likely

because users feel received and sent messages are more personal and can furnish the

app with a more in-depth insight into their communication styles. As such, they may have

felt that investing the time to update predictions for these messages would result in more

accurate predictions. Furthermore, deleted messages are typically very offensive

messages, and users found little reason to dispute the reason for their deletion.

The Message Checker also experienced substantial use as nearly all the users that visited

the screen interacted with the UI elements. The Check button (see FIGURE 7.16) was

the UI element users interacted with the most on the page, implying that users composed

messages and used the real-time offensive content classifier to predict offensive labels

for their messages. The Message Checker’s popularity amongst users corroborates a

similar finding from the ‘lab’-based evaluation study and supports the findings of Dinakar

et al. (2012) that the use of reflective interfaces encourages more empathic behaviour in

cyberbullying situations amongst users, thus reducing their proclivity to offend.

Table 7.3 presents a list of the top ten screens based on the average daily time spent

there by users. The second-highest average time was spent on the Detection Settings

screen, and most of this time was spent by users adjusting the Deletion Threshold slider

control to different values. The inference from the recorded events around this activity

suggests that users adjusted their Deletion Threshold setting and then visited the Deleted

Messages screen moments later. This is likely so that they can access the new settings’
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FIGURE 7.16: The Message Checker screen’s check button.

Screen Average Time Spent by Users
(seconds)

Received Messages 26
Detection Settings 19
Sent Messages 17
Message Checker 16
Sign-Up 13
Tour 8
Reports 7
Home 5
Anti-Bullying Helplines 4
Forgot Password 4

TABLE 7.3: Top Ten screens users spent the most time on.

impact, perhaps by sending themselves messages with varying levels of offensiveness.

As is to be expected, the Sign-Up and Home screens were also frequently accessed by

users. The Sign-Up screen is used to create a BullStop account after installation of the

app, and as this is a prerequisite to using the app, all users will visit this page. Likewise,

the Home screen, which as the application’s main interface, is used to access other areas

of the app.

While the app’s Tour, Anti-Bullying Helplines and Report screens could be considered

secondary to the app’s core purpose of online abuse detection, their inclusion in the top

ten screens list indicates more user activities on these screens than anticipated. The

average time spent by most users on the Tour screens is less than was envisaged it would

take to read the tour’s content, which suggests that many users visited the screens out
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of curiosity rather than to understand how to use the app in detail. This could imply that

users found the app easy enough to use without the need to consult the tour screens.

Three calls were initiated from the Anti-Bullying Helplines screen to two of the listed charity

organisations, namely Bullying UK and SupportLine . There is no more information beyond

this regarding these calls as the information collected by the app does not extend beyond

users’ interaction with UI elements. The Reports screen provides a simple count of the

number of messages deleted and contacts blocked and requires little user interaction, yet

surprisingly it accounts for seven seconds of the time spent by users on the app.

The Forgot Password screen was another unexpected inclusion in the list, and this can

be attributed to users using the password reset facility to change their BullStop accounts’

passwords. Interestingly, the contacts screen which generated many discussions during

the design sessions was not amongst the ten screens. This could be because of the way

people typically use Twitter. It is primarily used as a means of keeping abreast of new

developments in areas of interest and less as a means to stay in touch with friends and

acquaintances in the same manner as Facebook and Instagram.

7.6.6 Findings and Discussion

Subjective feedback from the application users was gathered via an online questionnaire

accessed from within the app through a web link. This link contained a unique code

generated for each user that was used to monitor questionnaire completion for each user

(so that the questionnaire reminders could be disabled). The questionnaire response rate

was approximately 11%, representing 43 out of the 384 app users. The questionnaire

responses and the application usage data recorded were used to answer the research

questions posed as investigative directions for the field-based evaluation study. These are

discussed in the following subsections.

7.6.6.1 App Usage by Young People

Of the forty-three completed questionnaire responses received, users aged 13 – 15 years

and 16 – 18 years represented 35% and 21%, respectively. The target audience, therefore,

represented more than half of the survey respondents (56%) and over a third of all users.

Additionally, the gender distribution for the questionnaire respondents was more evenly
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distributed compared to the gender distribution for all users. There were 19 female, and

24 male respondents with an age distribution as shown in FIGURE 7.17 which equates to

a higher proportion of overall female users completing the questionnaire (about 26%) than

male users (8%).

FIGURE 7.17: Age groups and gender of respondents.

About 30% of respondents had experienced online abuse, and 19% had bullied others

online before. The majority of users that had been involved in cyberbullying as either

victims or abusers were 18 years and under and many of these incidents had occurred as

recently as within the preceding seven months. These findings suggest that the primary

target audience was sufficiently motivated to use the app and report their observations via

the questionnaire thus validating the results’ representativeness.

Respondents’ use of social media (see FIGURE 7.18) is similar to earlier findings from

the pre-interview survey. As reported in Chapter 5 (Section 5.3.1), Instagram, Facebook,

WhatsApp, Twitter and Snapchat remained the most popular social media platforms used

and 98% of all respondents noted accessing these platforms a least a few times a day.

Word of mouth and the app store emerged as the two primary means via which

respondents found out about the app, followed by online articles about the app and web

searches (see FIGURE 7.19). As these are not mutually exclusive, it is more likely that a

combination of these contributed to raising awareness of the app amongst potential

users.
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FIGURE 7.18: Social media platforms usage amongst BullStop users.

FIGURE 7.19: How BullStop users found out about the app.

7.6.6.2 Perceived Usefulness of the App

In seeking to understand users’ impressions of the app, they were asked the question

“Do you think the app is a good idea?” All respondents answered in the affirmative and

provided the following example comments as to why they thought so:

“Because people can get hurt from cyberbullying and it can cause mental
issues”.

“It is very educative and can help teenagers to fight bullies”.

“It can help alot of people with cyberbullies”.
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“Bullying is a big problem and the social media companies are not doing
enough about it”.

“It’s good to educate people about cyberbullying”.

“I think ’it’s a very good idea and ’I’m happy I found it”.

“Because it protects people from cyberbullying”.

“It’s protects from abusive words on social media”.

“It is a good idea because it will help prevent people using it from being
cyberbullied as it blocks such messages from coming through”.

“In this era of social media and the influence it has on people, cyberbullying has
become a thing in many homes and has affected individuals mental health”.

“Cyberbullying is real, and have a significant impact on victims. It is one of the
types of abuse that has deep underlying damage which takes time to surface
and as such needs to be taken seriously”.

“Because cyberbullying is a big problem”.

“Good app for stop cyberbullying”.

The comments and responses indicate respondents had a very positive disposition to

the app and in a following question that asked “Do you think the app would be useful to

people of your age?”, all but one respondent responded with a “Yes”. Further analysis

revealed that the user who answered “No” was aged over eighteen years (according to

his/her self-reported age) and as the reason provided for this response was: “I think it

is more appropriate for teenagers as I can handle trolls by myself” ; this is, therefore,

actually considered a positive response as it still indicates the app’s appropriateness for

the primary target audience.

The app’s ability to automatically detect and remove offensive messages is fundamental

to its usefulness as a cyberbullying detection and prevention tool. Users were therefore

questioned about their perception of the app’s performance in this regard. Twelve users

indicated that the app deleted offensive messages for them. Five of these users rated

the app’s ability in this regard as “very good”, six rated it “good”, and one user felt it was

“average”. No respondent thought it was “bad” or “very bad”. The maximum number of

offensive messages deleted by the app for a single user was thirteen, and five users said

they updated the app’s prediction for some of their deleted messages. These updates were

to further qualify the deleted messages by associating additional labels with the messages;
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as such, no inoffensive message was mistakenly deleted by the app during the evaluation

study.

Eleven users said they updated the predictions for their received messages by

associating other applicable offensive labels to the messages, while eight users did the

same for their sent messages. The higher number of users who reported updating the

predicted labels for received and sent messages compared to those that did the same for

deleted messages corroborates the increased user events recorded by the app for the

offensive label checkboxes in both Received and Sent Messages screens compared to

the Deleted Messages screen (see Section 7.5.5). A possible explanation for this could

be that users updated the predictions for their sent and received messages more than the

deleted messages because they believe the app could learn more about how they

communicate from sent and received messages.

As reported in Chapter 4, correctly identifying inoffensive messages so that they are not

mistakenly deleted is equally as important (or more, for some interviewees) as detecting

offensive messages. Users’ opinions about the app’s performance in this task were,

therefore, crucial in reflecting their perceptions of the usefulness of the app. Most users

(81%) rated the app as “good” or “very good” on this task, and the lowest rating received

for the app on this was “average”.

Finally, when asked to provide an overall rating for the app, 88% of users rated the app as

“very good” or “good” and the remaining users awarded an “average” rating (see FIGURE

7.20). Additionally, 63% of respondents said they would continue using the app, and for

the respondents who indicated they would discontinue use, not being able to use the app

with other online social networks was the main reason cited for their decision; given this

limitation was imposed on rather than within the immediate control of the research, it is

not considered a negative reflection on the core principles the app is trying to support.

Findings in relation to the research question “What is the perceived usefulness of the

app?” would therefore indicate that it was generally perceived to be useful, at least within

scope.
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FIGURE 7.20: Users overall rating for the app.

7.6.6.3 Perceived Usability of the App

86% of respondents said they found the app “easy ” or “very easy ” to use, while 12%

said it was “neither easy nor difficult”. Only one respondent said (s)he found the app

“difficult” to use. The same individual confirmed that (s)he took the app tour, which (s)he

found useful, and would have struggled to use the app without the tour. Three other

respondents also confirmed that the tour was vital in educating them about using the app.

For these individuals, the app was “easy ” or “neither easy nor difficult” to use. The majority

of respondents, therefore, found the app easy or very easy to use and, for those who did

not, the app tour served its purpose by bridging the knowledge gap for such users.

When asked the question: “Do you feel that the app was well designed for people your

age?”, all respondents replied “Yes” – an affirmative response – and, in so doing, validated

the PD-led approach used when designing the mobile app. It is particularly encouraging

that the mobile app meets respondents’ design expectations considering their diverse age

groups.

While the majority of respondents were satisfied with the icons used, three complained

that not all of the app’s icons were self-explanatory. Since a participant in the ‘lab’-based

evaluation study had expressed a similar sentiment, it would appear that even the use of

standard and recommended icons such as the Android Material Icons does not

guarantee total acceptance amongst users, highlighting a potential area for future work in
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improving user satisfaction with the app icons, perhaps in the form of additional end-user

engagement to agree on a set of icons.

7.6.6.4 Perceived Responsiveness of the App

As mentioned in Section 7.3, users’ perception of the application’s responsiveness is a

critical factor that is perhaps more important than the actual average response time

recorded in the responsiveness evaluation experiments (see Section 7.2). The

‘lab’-based study had already provided some indication of users’ positive opinions on the

app’s responsiveness (see Section 7.4.2.4). The field-based study was therefore used to

expand on this and garner more feedback regarding this from the beta users.

Respondents were asked to provide a rating for the system’s responsiveness, and all the

surveyed users rated the app as “very good” (the majority) or “good” (FIGURE 7.21).

Considered in tandem with the average response time of about 1 second achieved in the

computer-based evaluation experiments conducted, the application can be judged to be

highly responsive based on these findings.

FIGURE 7.21: Sent Users responsiveness rating for the app.

7.6.6.5 Users’ Favourite Aspects of the App

To gain insight into users’ preference for the app’s various components, feedback was

solicited from respondents on the features of the app they liked the most. Their
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responses provided a rich set of data, highlighting the popularity of app features amongst

respondents’. They liked the app’s design and ease of use. The Message Checker,

Contacts and Anti-Bullying Helplines emerged as favourites for many respondents, many

of whom also appreciated that the app did not only flag offensive content in received

messages but did so for messages sent by the users as well (another reflective feature of

the app). Respondents liked that (a) the app runs in the background without draining the

phone’s resources, (b) being able to update the predicted labels, (c) the app’s integration

with Twitter, and (d) its ability to automatically block abusive contacts. Sample comments

relating to the respondents’ favourite aspects of the app include:

“I like the message checker, that is quite good”.

“The helplines are a good idea”.

“Being able to tick the boxes so I can improve the app”.

“That it can block bullies automatically”

“I like that it can bring in all my Twitter followers with their pictures. That’s pretty
cool”.

“Flagging my comments as being offensive. This will further entrench the
culture of thinking before posting on social media platforms”.

“The idea that it works in the background with minimal data usage and
reviewing battery usage, that was minimal too”.

“Its ability to sync easily with the social media apps”.

“The AI”.

“Simplicity to install and use”.

“I like the design; it’s very nice”.

7.6.6.6 Suggested Areas for Improvement

While the study discovered some variety in respondents’ favourite aspects of the app,

there was considerable consensus regarding the area most in need of improvement. The

app feature most often suggested as an improvement was the need to make other social

media platforms available within the app, as illustrated below:

“Not everyone uses Twitter”.

“I would like more social media networks”.
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“If it can work with WhatsApp.”

“Please add Instagram, YouTube and TikTok”.

“I don’t use Twitter”.

“It would be nice if [the app] works with other social media networks”.

As previously identified, a small number of respondents expressed some confusion about

some of the app icons and this was found to be the second area identified for improvement,

as typified by the following comments:

“Some icons were confusing, but I like the drop menu”.

“Not all the icons are not self explanatory”.

7.7 Summary

This chapter details the evaluation studies (and associated results) conducted as part of

this PhD research to evaluate the scalability, responsiveness, acceptability, and usability

of BullStop. Technical experiments conducted to assess the system’s scalability and

responsiveness demonstrated that the system adequately addressed these concerns. In

addition to the computer-based evaluation studies, two human-focused evaluation studies

were conducted to assess users’ perceptions of the application’s user interface design,

performance, perceived ease of use, responsiveness and brand. The first human-focused

evaluation study was ‘lab’-based and comprised a series of exploratory sessions with

selected participants representing stakeholders, followed by in-depth discussions of their

experience using the app for a limited period. The second (field-based) evaluation study

was expanded to the general public at large and used mechanisms embedded in the

application to collate information about how people discovered and used the app, and an

online questionnaire to gather users’ opinions about the app.

The most frequently requested extension to the app’s functionalities across both

evaluation studies was expanding the app’s integration to other online social networks,

aside from Twitter. The Message Checker emerged as the favourite component of the

app for most users, with the ‘lab’-based evaluation participants requesting for this feature

to be expanded such that it can serve as an“offensive content checker” for all applications

installed on the phone. As the Message Checker is an educational tool that allows users
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to reflect on how they communicate with others, its popularity among users suggests that

using reflective interfaces to reduce cyberbullying offending is a viable strategy.

While users rated the app highly for its ability to correctly detect and delete offensive

messages, its performance in identifying instances of sarcasm, social exclusion, and

threat within these messages was identified as an area for future improvement. The app’s

performance in this regard is heavily influenced by the low number of examples of these

types of offensive content present in the training data used to train the classifier; as such,

increasing their distribution in the training data is an area for future research.

Furthermore, the subjective nature of cyberbullying necessitates additional consideration

of how its detection is framed. Thus the app provides the means for users to update the

offensive labels predicted for messages, and over time this will improve the app’s ability to

identify different forms of online abuse.

Users also appreciated the app’s responsiveness, a feature that can be directly attributed

to the app’s use of a distributed microservices architecture that makes use of

cloud-based technologies to offload computing-intensive operations, such as offensive

content detection, to the cloud (as discussed in Chapter 6). Finally, brand appeal and

positive publicity have been shown to be a key component in attracting potential users to

the mobile application.

The use of UCD and PD approaches in designing the mobile application led to a

comprehensive understanding of the stakeholders’ requirements for the application and

provided valuable insight from the unique perspectives of young people who have

experienced cyberbullying as offenders, victims, and/or bystanders. This knowledge has

proven invaluable in the design of the app, in informing the functionalities to include, and

in determining how these should be implemented. The proportion of young (36% for

‘lab’-based evaluations and 56% for the field-based study) and adult users that

participated in the evaluation studies ensured inclusion of both adult and young

stakeholders’ opinions of the mobile app. The overwhelmingly positive feedback received

from the evaluation studies has demonstrated the merits of both user-centred and

participatory design approaches in designing applications, not just for young people, but

any audience, and will hopefully encourage other researchers to adopt similar techniques

in the future.
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Chapter 8: Reflections on the Design Approach

8.1 Introduction

The adoption of user-centred design (UCD) and participatory design (PD) approaches in

the design of BullStop was born out of a desire to address the paucity of research into the

development of cyberbullying prevention tools the focus of which extend beyond the

implementation of state-of-the-art algorithms to improving the usability and fitness for

purpose of the cyberbullying prevention tools themselves. The methods used have been

instrumental in understanding and subsequent implementation of the stakeholders’

collective desires in the developed mobile app. While the research has derived and

evidenced tangible benefits from application of these methods in the form of users’ high

levels of perceived usefulness and usability of BullStop, researchers (especially those in

the computing field) may still be wary of adopting UCD and PD techniques on account of

the high level of end-user engagement required, especially when dealing with sensitive

topics such as cyberbullying amongst young people. This chapter presents the learning

outcomes realised during the process and reflects on the researcher’s observations and

experience of applying these methods, as well as the experience of the various

participants involved at different stages of the process, in the hope that it will inspire (and

help) other researchers to follow suit.

8.2 Learning Outcomes

The transcripts from the various recordings of participants’ engagement activities yielded

a rich collection of qualitative data that was repeatedly referenced throughout the app’s

design and development process. While the participants’ views during the discussions

directly shaped the requirements for the mobile app, their remarks about the process
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itself provided an insight into their opinions about the knowledge elicitation activities. The

learning outcomes reported here can be considered part reflections and part

recommendations expanding on existing recommendations for implementing participatory

design.

8.2.1 Reflection #1: Inclusion and Representation are Vital

While cyberbullying is often viewed as a concern for young people, parents, and teachers

(Dehue et al., 2008; Eden et al., 2013; Makri-Botsari and Karagianni, 2014; Łukasz and

Anna, 2019), its negative consequences on society extend beyond the impacts felt by

these groups. It was, therefore, crucial to fully explore all the relevant groups affected or

interested in cyberbullying and its prevention to ensure adequate representation of the

different views on the subject. In identifying this study’s stakeholders, the process started

with the aforementioned groups (young people, parents, and teachers) as the initial

subset of stakeholders and, via initial conversations with these groups, other potential

stakeholder groups such as clinicians and law enforcement were identified. Further

discussions with the additional stakeholder groups revealed sub-divisions within some of

the groups, providing opportunities for the study to explore other perspectives and thus

further enriching the acquired data and the findings derived from them. For example, this

study’s initial clinician recruits were mental health professionals but, in exploring how

these professionals engage with cyberbullying victims, the role played by General

Practitioners (GPs) as the initial point of contact for cyberbullying victims was realised.

The direct consequence of this was an expansion of the focus groups to include a GP,

thus enriching the ensuing discussions with an additional and unique perspective.

Additionally, in engaging with the different stakeholder groups to understand their

expectations of the proposed mobile application, the study acquired a varied set of

requirements for the application that contributed to its appeal to not only the primary

target audience (i.e., young people) but also to age groups older than the primary target

audience as evidenced by the substantial proportion of adults who were motivated to

install and use the app.

Based on the practical experience of this research, it is therefore recommended that

when engaging in UCD/PD, it is crucial to fully explore who the interested parties might

be for the topics being investigated. Researchers must be open to seeking out different
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perspectives by engaging with a broad cross-section of people whose lives may be

impacted by the researched topic. Furthermore, it should be recognised that

sub-divisions may exist within stakeholders’ groups and identifying these can be the key

to discovering additional perspectives.

8.2.2 Reflection #2: Build Rapport with Participants from the

Onset Via Frequent Communication

MacDougall and Fudge (2001) proposed a prepare, contact, and follow-up process when

recruiting participants for interviews and focus groups, and this study’s approach bears

similarities to their proposition. The recruitment process started by identifying personal

contacts who belonged to potential stakeholder groups and initiating contact with them.

For other stakeholder types for which the researcher did not have personal contacts (e.g.,

law enforcement), potential recruitment sources were identified and engaged (e.g., the

College of Policing in Coventry). This extended engagement approach embodies the

recommendation by Lumsden et al. (2017) to avail opportunities to work with existing

support organisations as part of the recruitment process. Once prospective participants

had been identified, regular communication was maintained up to and following the

UCD/PD sessions. This contact was not just in the form of reminders about the

scheduled sessions, but continued throughout the different research stages and included

regular updates about the research progress to participants. The importance of keeping

participants informed about the process was reinforced by Kensing and Blomberg (1998)

Kensing (1998) who identified access to relevant information as a key PD requirement.

Similarly, Lumsden et al. (2017) advocated communicating the nature of their involvement

to participants and, by ensuring that participants remained well informed through the

process, this study encouraged ‘buy-in’ from participants. One of the focus group

participants noted:

“ I wanted to drop off [. . . ], but your updates were very interesting. I kind of
wanted to know how things end.”

This ‘buy-in’ ensured good rapport with the participants and subsequently created a very

interactive environment resulting in in-depth discussions and valuable insight.
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Based on practical experience, the importance of regular communication with participants

from initial contact through the different stages of the process is highlighted as key to

keeping participants engaged and ensuring a sociable environment conducive for

collaborative work. Ensuring a friendly atmosphere was identified by Lumsden et al.

(2017) as a crucial component of PD and the above recommendation extends their

guideline by proposing frequent communication with participants as a means to provide

this.

8.2.3 Reflection #3: When Soliciting Knowledge from

Participants, Be Prepared to Introduce Procedural

Flexibility to Progress

The knowledge gathering phase involved the use of both qualitative and quantitative

methods, where methods were selected to be appropriate to the profile of participants,

their availabilities, and the aims of specific engagements. In the focus groups, the adult

participants reflected on each other’s views and exposed new areas of inquiry for the

researcher to explore in the subsequent sessions. By interviewing adolescents

individually, they were able to discuss past experiences (such as them bullying other

people) in a way that may not have been possible within a group. The pre-interview

survey allowed the study to acquire relevant background information about interviewees

and create a shortlist of participants for the interviews. Finally, the PD sessions were

integral to bringing together all the various forms of acquired knowledge into the design of

the app’s prototype.

Challenges encountered at different stages of the research required introducing some

procedural flexibility in the approach. Examples of these include the difficulties

experienced in recruiting secondary school students as participants which necessitated

using first-year university undergraduates instead. Additionally, some ‘lab’-based

evaluation sessions were held at cafés close to some of the professionals’ workplaces to

resolve their limited availability. Likewise, the law enforcement officer was offered the

option of video-calling into one of the focus groups when he initially thought he would not

be able to attend in person but this later proved not to be necessary.
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The use of Pair Design and Layered Elaboration to manage conflicting ideas during the PD

sessions and motivate co-designers towards a common design vision is another example

of a situation where it became necessary to introduce procedural flexibility to advance

the study. While these techniques are not PD methods per se, their use at a critical

moment was crucial to progress the design. Researchers should, therefore be aware that

it may become necessary to amend their approach to progress their research. Crucially,

this reinforces Hakobyan et al. (2014) acknowledgement of the methodical concessions

required to advance the work in their PD approach to developing assistive technology for

vision-impaired older adults.

8.2.4 Reflection #4: Maximise Opportunities to Engage with

Participants

Co-designers are the essence of participatory design, yet can simultaneously represent

some of the approach’s strengths and weaknesses. While their inputs enrich the design

process with valuable perspectives that would otherwise be missing, poorly engaged

participants can delay or even derail the process (Massimi and Baecker, 2006). This

heavy reliance on well-engaged participants was an issue that the researcher had to

grapple with on several occasions during the research programme. It is also likely a

contributor to developers’ wariness for the process and the restricted use of PD within the

software industry (Kensing and Blomberg, 1998). Researchers should treat participants

as scarce resources available only for a small amount of time.

Related to Reflection #3’s recommendation for researchers to be prepared to incorporate

flexibility in their adoption of PD is the need to understand how best to maximise the

engagement with participants while considering individual circumstances. For example,

in dividing the focus group participants into the two groups as performed in this research,

participants with limited availability were placed in the same group and attended two

sessions instead of the three held for the second group. The second session for the

limited availability group was extended to accommodate discussions on the topics

planned for the third session. When reflecting on the PD approach with the co-designers

during the final PD session, the group indicated that the non-engagement on their part

that impacted aspects of the research could potentially have been mitigated by organising

the three planned PD sessions as a day-long event to progress the design through
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conceptualisation to low-fidelity prototyping and on to the final high-fidelity prototype on

the same day.

Of course, the applicability of such proposals depends on the type of participants

involved. While the co-designers in this case were young adults who may have been able

to cope with and accommodate a day-long design session, the same cannot be said of

other demographics. In seeking to maximise engagement with participants, researchers

must give due consideration to participants’ welfare and circumstances.

8.2.5 Reflection #5: Participants Empowerment Encourages

Active Participation

It was discovered that being involved in the study was an empowering experience for

participants, and this, in turn, encouraged more active contributions from participants as

exemplified by the remark below:

“I feel like I’m an expert on cyberbullying now [. . . ] I enjoyed the discussions,
so I wanted more.”

Some of the co-designers also noted that:

“I got a confidence boost from doing the app’s design. I didn’t think it was
something I was capable of”.

“I will definitely spend more time thinking about my app ideas and maybe use
the proto software to sketch them out”.

Researchers can, therefore improve participants’ engagement with the study by

incorporating the means for them to acquire skills or knowledge that they may find useful

outside of the study.

8.3 Summary

As previously noted, PD has a heavy reliance on highly motivated and well-engaged

participants, and researchers should start the process by nurturing a shared vision with

co-designers. To gain the full benefits of PD, researchers must be prepared to embrace
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its democratic underpinnings wholeheartedly, while simultaneously making co-designers

aware of the technological impacts and constraints of design proposals and serving as

the ‘voice of reason’ to mediate conflicting co-designers’ visions. Additionally,

co-designers must be suitably empowered as part of the decision-making process, and

their contributions valued even if they represent different positions to that of researchers.

The recruitment of participants should seek to address all relevant perspectives equally

to ensure adequate representation of all stakeholders.

This chapter presents key learnings from the research programme’s use of a participatory

design approach to the development of the BullStop mobile application. These reflections

are provided as suggestions to assist future researchers to overcome some of the

challenges inherent in adopting a PD approach when designing technological solutions

for young people. It is hoped that these can signpost potential problems before they occur

and help researchers successfully implement PD.
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Chapter 9: Conclusions, Contribution to Knowledge,

and Further Research

9.1 Thesis Conclusion

This dissertation has detailed research conducted to design, develop, and evaluate a

novel mobile application to detect and prevent and mitigate cyberbullying and online

abuse on social media. Primarily targetted at young people, the innovative application

has been co-designed with stakeholders to ensure it will appeal to users of all ages. The

research explored stakeholders’ opinions on cyberbullying and its prevention and the

specific ways that the mobile application can assist and protect online abuse victims. The

research presented in this dissertation was conducted via five key phases: (1) the

creation of a novel large-scale cyberbullying dataset to capture various forms of online

abuse and facilitate the training of ML models which serve as cyberbullying detection

classifiers; (2) discovery of end-users’ and other stakeholders’ expectations for the

proposed cyberbullying prevention mobile application; (3) the use of participatory design

techniques (novel within this field) to create a high-fidelity prototype of the proposed tool;

(4) the development of the innovative BullStop mobile application and the extensible and

scalable framework that it uses to address the challenges of scalability, responsiveness,

and obsolescence; and (5) evaluation of the BullStop application to validate its capacity to

address these challenges, especially from the perspective of end-users (such evaluation

being exceptionally rare in this field).

Following a review of cyberbullying detection approaches that use various machine

learning techniques, and the datasets used to facilitate the implementation of these

techniques, this research programme developed a novel, large-scale cyberbullying

dataset to address some of the observed shortcomings of existing datasets for use in this
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research domain, such as low proportion of offensive content and inadequate

consideration for less frequently encountered forms of online abuse. A new labelled

dataset comprising 62,587 tweets was created and used to train different deep-learning

and traditional ML models. A range of experiments conducted using the dataset identified

RoBERTa as the best performing model and demonstrated the dataset’s cross-domain

applicability. The collection strategy for creating the dataset was designed to target

cyberbullying and offensive tweets and ensure that these tweets constitute the majority

class. As the occurrence of cyberbullying documents is naturally low, classifiers trained

on this dataset can benefit from a high concentration of cyberbullying and offensive

documents without the need for oversampling techniques. The imbalanced nature of the

dataset was not found to affect the abilities of models trained with it to learn both offensive

and non-offensive content. Using the dataset, therefore, saves researchers the effort of

simulating real-world distributions of offensive content and implementing oversampling

techniques to improve offensive content proportions within existing datasets.

In furtherance of the research programme’s aim of creating a viable and impactful tool for

cyberbullying prevention, a series of UCD-based activities were conducted in the second

phase to solicit stakeholders’ perspectives on cyberbullying prevention and gain insight

into their vision for actualising these in the proposed mobile application. Analysis of the

study findings revealed some key strategies to aid cyberbullying detection and prevention,

particularly in educational settings. These include promoting an environment where

young people can safely report cyberbullying incidents to school authorities without fear

of reprisals from the perpetrators, and fostering positive relationships with peers since

cyberbullying victims were found more likely to confide in their friends about experienced

online abuse than they would confide in authoritative adults in their lives. In addition, the

availability and presentation of relevant advice on cyberbullying prevention were

highlighted by participants as key issues negatively impacting the success of existing

cyberbullying prevention strategies. Adult participants indicated a preference for

cyberbullying prevention advice to be presented in an easily digestible format like a ‘cheat

sheet’ while young people emphasised the importance of cyberbullying advice to be

non-patronising and created by people with a good understanding of how cyberbullying is

perpetrated amongst young people and its effects on them. Focus groups and interviews

were conducted that facilitated the identification of a core set of reflective and punitive

features desired in the mobile application by stakeholders. Reflective elements that
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encourage positive online behaviour amongst young people emerged as the most

popular feature for all stakeholder groups, and the use of monitoring facilities to ‘spy’ on

young people was identified as the least popular feature across the studies. These then

formed the basis of the next (and third) phase of the conducted research, which

employed participatory design techniques to work collaboratively with young people as

co-designers to create high-fidelity prototype designs for the mobile application

The outcome of the participatory design phase guided the development of the innovative

BullStop mobile application in the fourth phase. The PD sessions were also used to identify

essential features key to the app’s acceptance amongst the target audience. The process

of identifying these core features also highlighted the importance of reviewing the outputs

of the UCD/PD iteratively; the co-designers amended the list of core features a number

of times as their understanding of the proposed application increased. The mobile app

provides users with a graphical interface to interact with a cloud backend that houses the

ML models trained with the new dataset to predict cyberbullying and offensive language.

As the system’s visible component to the end-users, their perception of its usefulness and

usability is critical for the application’s success.

To investigate the system’s performance in terms of its scalability and responsiveness, a

range of experiments was conducted to evaluate these. The system demonstrated high

responsiveness by returning prediction results through the Real-Time API in about a

second and validated its ability to scale under heavy load by acquiring additional

resources to cope with the increased load. Potential system obsolescence was shown to

be successfully mitigated by the ability to use different classifiers dynamically and the

generation of personalised classifiers by retraining the base classifier using ground truth

supplied by users. A two-stage evaluation process was then conducted to evaluate the

application’s acceptability amongst end-users. This comprised a ‘lab’-based study with a

hand-selected number of users representing the stakeholders and a more extensive

field-based study with beta users recruited via the Google Play app store. Findings

revealed that the perceived ease of use and usefulness for the application are high, and

its acceptability amongst the primary audience (i.e., young people) as well as other age

groups (stakeholder groups) was similarly high. The app’s acceptance by different age

groups and stakeholders alike validates the use of UCD techniques for eliciting the

requirements of the app as perceived by different types of stakeholders and the use of a

PD approach to design the application.
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A key difference between cyberbullying and other forms of online abuse is its repetitive

nature. Cyberbullies are known to continuously torment their victims via social media.

While the ML models trained and used in BullStop do not specifically address the

repetitiveness of the detected instances of abuse, the application system that

encompasses the ML model takes care of this by providing users with the option to

automatically block repeat offenders and in so doing BullStop is able to tackle both

repeated and isolated incidents of online abuse.

The three research questions posed in Chapter 1 as areas of inquiry for the research

to explore are answered by the relevant scientific output from the work performed in the

manner discussed below.

How can cyberbullying and online abuse be detected and prevented on social media

platforms such that the key challenges of scalability, responsiveness, obsolescence

and acceptability are adequately addressed?

The development of BullStop demonstrated the feasibility of performing scalable and

responsive detection and prevention of cyberbullying on modern social media platforms.

The evaluation experiments and studies conducted (see Chapter 7) demonstrated the

system’s responsiveness and ability to scale under heavy load. Furthermore, the

extensible design that allows it to use different classifiers provides mitigation for system

obsolescence. By creating a personalised classifier for users and allowing them to

supplement the system’s predictions with their own classifications, users provide the ML

model with a means to gain insight into the way they communicate and use social media.

This is a novel feature that has not been previously attempted in cyberbullying detection

research and distinguishes this work from others.

The evaluation studies discovered that users found the app very useful and easy to use

and in so doing demonstrated the app’s acceptability among not only the primary target

audience (i.e., young people) but also the other age groups that make up the secondary

target audience.

What are stakeholders’ needs and expectations for a cyberbullying prevention

application and does the use of user-centred and participatory design approaches

to design and develop the application results in an application that is an accurate
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reflection of the stakeholders’ expectations as measured by their perception of the

tool’s usability and usefulness?

The focus groups and interviews conducted (as reported in Chapter 4) provided the

answers to the first part of this question in the form of the stakeholders’ requirements for

the app. The requirements solicited from both adult and young stakeholders during the

knowledge elicitation activities were combined and further refined by the co-designers

during the PD sessions, resulting in a prioritised list of essential features for the app (see

Table 5.3 in Chapter 5).

With regards, the second part of this research question, the conceptualising and

modelling of the stakeholders’ requirements performed as part of the PD activities

resulting in a design prototype that is a manifestation of the stakeholders’ needs. This fed

into the development of BullStop and resulted in an application that the human-based

evaluation studies (see Chapter 7) scored highly on its perceived usability and usefulness

across all users’ age groups, with all surveyed users agreeing that the mobile application

is well-designed for people of their age group. 88% of respondents in the field-based

study provided a rating of very good or good for the app, and the remaining users (22%)

rated the app as average. The UCD-led approach has, therefore, been very successful in

ensuring that stakeholders’ vision for the app has been accurately captured and

translated via the PD activities into the developed mobile application.

What constitutes effective practice for engaging stakeholders in the user-centred

research for the design and development of the cyberbullying prevention mobile

application?

Reflections on the UCD/PD activities (Chapters 4 and 5) conducted as part of this research

highlighted the importance of methodological flexibility when managing the engagement

with the stakeholders and building rapport with participants from the outset to encourage

active and productive participation. Recommendations based on these reflections were

to:

• ensure adequate representation of all interested parties and stakeholders;

• build rapport with participants from the outset via frequent communication and

providing them with access to information relevant to their participation;
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• build flexibility into the design of the study protocols so that the study can progress

with research integrity when faced with challenges;

• maximise opportunities to engage with participants while giving adequate

consideration to the individual circumstances of the participants; and

• incorporate the means to empower participants within the study to encourage active

participation

9.2 Contributions to Scientific Knowledge

This research identified and tackled (and thus contributed to scientific knowledge on) a

number of challenges that negatively impact the availability of viable and effective

cyberbullying detection and prevention tools, summarised as follows.

1. The survey of real-word cyberbullying prevention mobile apps conducted revealed

the lack of practical applications for cyberbullying mitigation and prevention and

highlighted the need for research programs such as this to address this issue. It

provides a snapshot of the current real-world availability of mobile-based

cyberbullying prevention applications and serves a resource to guide future

researchers interested in developing similar tools.

2. The creation of a novel, large-scale multi-label dataset provides a robust resource

for the training of ML models for the detection of online abuse and cyberbullying.

The dataset was specifically designed to contain a large proportion of offensive

content annotated for different forms of online abuse and cyberbullying. The dataset

was successfully used to train a deep-learning model to detect online abuse in a

corpus sourced from another online social network, and the high proportion of

offensive content means it can be used without the need for oversampling

techniques to boost the distribution of offensive content within the dataset. The

dataset is publicly available for the use of other researchers in the field.

3. The machine learning experiments conducted to identify the best performing model

and validate the generalisability of the created dataset demonstrated best practices

in conducting performance evaluations for ML models and datasets and can aid

future researchers embarking on similar endeavours.
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4. Cyberbullying prevention systems are often developed in isolation without

consultation with potential end-users. Subsequently, these tools struggle to gain

acceptance amongst the intended audience due to not meeting users’ expectations.

This study is the first to engage all the identified stakeholder groups to devise

automated strategies to mitigate and prevent cyberbullying and online abuse. This

engagement made it possible to uncover valuable insight into what young people

and adults feel about cyberbullying and how prevention and mitigation strategies

can be automated in a cyberbullying prevention application to meet their

expectations. Crucially, the study reinforced and extended existing scientific

knowledge on cyberbullying and the effectiveness of existing prevention strategies

and proposed new strategies to aid cyberbullying mitigation and prevention.

5. In recognising the importance of the developed system’s impact on users and

maintaining a focus on their interactions with the system throughout the

development process, the application is assessed not only for its technical

performance but also in terms of how its predictions can impact the lives of the

users and their social networks. This study therefore established an approach for

implementing ethics by design in the creation of AI-based systems. Future

researchers can adopt a similar approach to ensure that the relevant ethical issues

are duly considered when developing AI-based systems.

6. The design and implementation of Bullstop resulted in the creation of a novel

cyberbullying detection and prevention application. BullStop uses a highly scalable

and responsive cloud backend that can dynamically utilise different ML models and

generate personalised cyberbullying detection classifiers for end-users. Its user

interface is implemented as an Android application that was designed

collaboratively with young people to ensure that it fully captures their needs and

meets their expectations. BullStop is an impactful tool that provides real-world

benefits, and the PD approach adopted for its creation offers other researchers a

methodology for implementing research-backed systems that deliver real-world

benefits. BullStop is freely available on the Google Play Store and has been

installed over 400 times with an increasing active user base of just under one

hundred.

7. The multi-dimensional evaluation study conducted to assess BullStop performance

contributes to the knowledge on understanding an application’s impact on its target
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audience and its perceived usefulness and usability. The procedures and methods

used in conducting the study can be adopted and adapted by future researchers to

perform similar evaluation exercises.

8. Finally, reflections and recommendations from the research programme’s use of

UCD techniques to engage with stakeholders that ultimately resulted in the

development of BullStop are provided as guidelines to assist future researchers in

this domain.

9.3 Future Research

This research provided novel contributions to scientific knowledge and, in creating

BullStop, produced a viable cyberbullying detection and prevention tool that has already

impacted the lives of its users by helping them tackle online abuse and cyberbullying.

During the course of the research, a number of areas have been identified as future

research directions (themselves contributions to scientific knowledge that would not have

been possible without the research) to extend the current work. These are discussed

below.

1. Enhancement of the Mobile Application. Since the release of BullStop, the

researcher has received emails (see FIGURE 9.1 for examples) directly from users

asking for the inclusion of specific application features. When combined with the list

of additional features and design refinements that were identified during the

evaluation studies, the list of ways in which the app can be enhanced include:

• supporting mobile devices running older versions of the Andriod operating

system;

• implementing the Message Checker feature as a virtual keyboard (similar to the

ReThink and BBC Own It app discussed in Section 2.5);

• integrating with other social media platforms like YouTube, Facebook and

Instagram, even if the features available with these platforms are limited

compared to the integration with Twitter;

• providing an online chat feature by implementing a chatbot trained using advice

content provided by bullying prevention organisations;
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FIGURE 9.1: Sample email messages from BullStop users

• reinstating the SMS/text feature that was disabled to achieve Google Play Store

acceptance;

• providing access to more online resources on cyberbullying prevention and

mitigation; and

• displaying daily motivational messages.

2. Explore the Use of Federated Learning by Leveraging a Network of

Compacted Deep-Learning Models Running on the Mobile Client.

Federated Learning (Yang et al., 2019) is an area of machine learning that has

recently been gaining attention due to its ability to utilise the local knowledge

learned by multiple decentralised classifiers to improve the collective training of the

entire system. Since the introduction of a federated learning architecture by Google

in 2017 (McMahan and Ramage, 2017), it has only recently emerged as a viable

technique for performing a range of machine learning tasks (Yang et al., 2019; Li

et al., 2020). The research conducted can be extended to explore the possibility of

accommodating the use of compacted ML models running on the mobile device

instead of the cloud backend. Compact ML models like DistilBERT, ALBERT and

MobileBERT (Sun et al., 2020) are variants of deep-learning models such as

RoBERTa and BERT that require a fraction of the computing resources of larger

deep-learning models while retaining most of their performance. While DistilBERT

was considered and discounted for use as a classifier in the BullStop system due to

its poor performance compared to the other deep-learning models, a network of

similar compact ML models in a federated learning configuration could potentially

improve performance. Such a design would allow the mobile application to

download a compacted deep-learning model from the cloud backend and train the

model on the device using the ground truth provided by the user. The ground truth
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data would stay local to the device and user, preserving the user’s privacy, but the

knowledge gained by the model would be shared across the network, thus

improving the training of all the connected compact ML models.

3. Explore the use of computing cost as an evaluation metric for ML models .

The RoBERTa model used as the classifier in BullStop was selected based on its

measured performance across several NLP experiments using a number of

evaluation metrics and manual observation of its predictions on a sample of unseen

tweets. while the deep learning models achieved better performance than the

traditional ML models, they require significantly more computing resources and

training time and for a system such as BullStop that is designed to avail online

training to improve its performance, the time and the computing resources required

to retrain models becomes a factor for consideration when assessing the system’s

long-term viability. A future research direction could be to develop a metric that

assess the computing cost of a model as a factor of the GPU and training time.

4. Extension of the Dataset.

An obvious extension to the reported research would be to further increase the

number of samples in the dataset. It would be especially beneficial if the numbers

of minority classes like social exclusion, sarcasm and threat are improved to

improve the performance of ML models trained using the dataset on the detection of

these infrequent forms of online abuse. As the natural occurrence of these types of

abuse on social media is low, samples from existing datasets like those of Oprea

and Magdy (2019) and Rajadesingan et al. (2015) (for sarcasm-related tweets)

could be extended by annotating them for the other labels used in the created

dataset and the newly annotated documents added to the dataset created by this

research program to improve the distribution of minority classes within the dataset.

5. Clustering Cyberbullying Attacks.

In the current implementation, the system’s ML models identify online abuse and

cyberbullying as isolated incidents. An extension of this could be associating each

incident as part of a sequence of abuse that may involve multiple parties and

determining the involved parties’ roles. This could then be used to present a

complete view of the online abuse and potentially used as evidence to aid legal

prosecution.
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6. Re-purposing BullStop for detecting and preventing other forms of online

harms.

The same design that helps BullStop mitigate obsolescence can be easily

re-purposed to expand its use into other areas of online harms such as sexual

grooming, stalking and ’catfishing’ (using a fake online identity to start romantic

relations). Different ML models can be created by training on data sourced and

annotated for different types of online harms and in this way, the system can be

used to tackle these other forms of online dangers. Additionally, the UI can be

amended such that instead of a fixed set of labels as is currently the case with

online abuse detection and prevention, predicted labels are dynamically created

based on the ML models’ outputs and associated with the relevant messages.
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Mairéad Foody, Lian McGuire, Seffetullah Kuldas, and James O’Higgins Norman. 2019.

Friendship quality and gender differences in association with cyberbullying involvement

and psychological well-being. Frontiers in Psychology, 10.

Yee Jang Foong and Mourad Oussalah. 2017. Cyberbullying system detection and

analysis. volume 2017-January, pages 40–46. Institute of Electrical and Electronics

Engineers Inc.

275

S.D.Salawu, PhD Thesis, Aston University 2021.

https://doi.org/10.1080/00918369.2017.1333809
https://doi.org/10.1080/00918369.2017.1333809
https://competitions.codalab.org/
https://www.abc.net.au/news/2018-03-16/children-using-fake-instagram-accounts-to-bully-others/9553548?section=technolog
https://www.abc.net.au/news/2018-03-16/children-using-fake-instagram-accounts-to-bully-others/9553548?section=technolog
https://about.fb.com/news/2018/04/restricting-data-access/
https://doi.org/10.1109/I4CS.2014.6860557
https://doi.org/10.1016/j.jadohealth.2016.06.006
https://doi.org/10.1016/j.jadohealth.2016.06.006
https://doi.org/10.1145/2851581.2892398
https://doi.org/10.1145/2851581.2892398
https://doi.org/10.1080/17405629.2011.643169
https://doi.org/10.1080/17405629.2011.643169
https://go.gale.com/ps/i.do?p=AONE&sw=w&issn=00010782&v=2.1&it=r&id=GALE%7CA13946061&sid=googleScholar&linkaccess=fulltext https://go.gale.com/ps/i.do?p=AONE&sw=w&issn=00010782&v=2.1&it=r&id=GALE%7CA13946061&sid=googleScholar&linkaccess=abs
https://doi.org/10.3389/fpsyg.2019.01723
https://doi.org/10.3389/fpsyg.2019.01723
https://doi.org/10.1109/EISIC.2017.43
https://doi.org/10.1109/EISIC.2017.43


Antigoni-Maria Founta, Constantinos Djouvas, Despoina Chatzakou, Ilias Leontiadis,

Jeremy Blackburn, Gianluca Stringhini, Athena Vakali, Michael Sirivianos, and Nicolas

Kourtellis. 2018. Large scale crowdsourcing and characterization of twitter abusive

behavior.

Christopher Frauenberger, Judith Good, and Wendy Keay-Bright. 2011. Designing

technology for children with special needs: bridging perspectives through participatory

design. CoDesign, 7:1–28.

Minghui Gao, Xu Zhao, and Mark McJunkin. 2016. Adolescents’ experiences of

cyberbullying: Gender, age and reasons for not reporting to adults. International

Journal of Cyber Behavior, Psychology and Learning (IJCBPL), 6:13–27.

Maite Garaigordobil and Vanesa Martı́nez-Valderrey. 2018. Technological resources to

prevent cyberbullying during adolescence: The cyberprogram 2.0 program and the

cooperative cybereduca 2.0 videogame. Frontiers in Psychology, 9.

Amy W. Gatian. 1994. Is user satisfaction a valid measure of system effectiveness?

Information and Management, 26:119–131.

Anita Gibbs. 1997. Focus groups. Social research update, 19:1–8.

Athanasia Gkiomisi, Maria Gkrizioti, Athina Gkiomisi, Dimitrios A. Anastasilakis, and

Panagiotis Kardaras. 2017. Cyberbullying among greek high school adolescents.

Indian Journal of Pediatrics, 84:364–368.

R. Matthew. Gladden, Alana M. Vivolo-Kantor, Merle E. Hamburger, and Corey D.

Lumpkin. 2014. Bullying surveillance among youths : uniform definitions for public

health and recommended data elements, version 1.0.

Deborah Goebert, Iwalani Else, Courtenay Matsu, Jane Chung-Do, and Janice Y. Chang.

2011. The impact of cyberbullying on substance use and mental health in a multiethnic

sample. Maternal and Child Health Journal, 15:1282–1286.

Google. 2020. Use of sms or call log permission groups.

Jon D. Goss and Thomas R. Leinbach. 1996. Focus groups as alternative research

practice: Experience with transmigrants in indonesia. Area, 28:115–123.

276

S.D.Salawu, PhD Thesis, Aston University 2021.

www.aaai.org
www.aaai.org
https://doi.org/10.1080/15710882.2011.587013
https://doi.org/10.1080/15710882.2011.587013
https://doi.org/10.1080/15710882.2011.587013
https://doi.org/10.3389/fpsyg.2018.00745
https://doi.org/10.3389/fpsyg.2018.00745
https://doi.org/10.3389/fpsyg.2018.00745
https://doi.org/10.1016/0378-7206(94)90036-1
https://doi.org/10.1007/s12098-016-2256-2
https://stacks.cdc.gov/view/cdc/21596
https://stacks.cdc.gov/view/cdc/21596
https://doi.org/10.1007/s10995-010-0672-x
https://doi.org/10.1007/s10995-010-0672-x
https://support.google.com/googleplay/android-developer/answer/9047303?hl=en-GB
https://doi.org/10.2307/20003647
https://doi.org/10.2307/20003647


Alex Graves and Jürgen Schmidhuber. 2005. Framewise phoneme classification with

bidirectional lstm and other neural network architectures. Neural networks,

18:602–610.

Judith Gregory. 2003. Scandinavian approaches to participatory design. International

Journal of Engineering Education, 19:62–74.

Lucy Griezel, Linda R. Finger, Gawaian H. Bodkin-Andrews, Rhonda G. Craven, and

Alexander Seeshing Yeung. 2012. Uncovering the structure of and gender and

developmental differences in cyber bullying.

Patrick J Grother, Mei L Ngan, and Kayee K Hanaoka. 2019. Face recognition vendor test

(frvt) part 3: Demographic effects.

Suzanne Guerin and Eilis Hennessy. 2002. Pupils’ definitions of bullying. European

Journal of Psychology of Education, 17:249–261.

Aabhaas Gupta, Wenxi Yang, Divya Sivakumar, Yasin Silva, Deborah Hall, and

Maria Nardini Barioni. 2020. Temporal properties of cyberbullying on instagram. pages

576–583. Association for Computing Machinery.

M Guzman-Silverio, A Balderas-Paredes, and A P López-Monroy. 2020. Transformers
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APPENDIX A.1: Messages used to evaluate Cyberbullying Prevention Mobile Apps. 

Obvious Abusive Messages 
Ha ha u r so fat 

Go kill yourself 

You are such a loser 

I hate you 

Me and my guys gonna smash your head in 

Dude how gay r you lol 

Shut up u fag 

U r such a retard 

U r so annoying 

I will whoop  

Less Obvious Abusive Messages 
You are not the smartest bulb, are you? 

U look preggers lol 

U r sooooo faaaaat 

Have you ever thought of a face transplant 

U r nothing but an empty headed daft punk 

Have some class 

clearly wit is a skill you r yet to master 

You have got a face on you like sour lemons 

You are quite cute until you opened your mouth 

U look so pretty with makeup on 
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From: Christopher Buckingham <c.d.buckingham@aston.ac.uk>  
Sent: 27 September 2016 16:18 
To: Salawu, Semiu (Research Student) <salawusd@aston.ac.uk> 
Cc: Lumsden, Joanna (Jo) <J.LUMSDEN@aston.ac.uk>; Leigh, John <j.leigh@aston.ac.uk>; Doughty, 
Susan <s.m.doughty@aston.ac.uk> 
Subject: Ethics Application 952 

Dear Semiu, 

Thank you for your resubmission, which the ethics committee has now reviewed. In general, you 
have made considerable improvements and we are happy for the research to go ahead on the 
understanding that it conforms with the statements you have made in the ethics submission and 
accommodates our original feedback. However, we would also like to clarify the following conditions 
for the research: 

1) There will be NO videos of any student participants for any stage of the project. Videos of the
designs are fine but not of the people doing them.

2) The Participatory Design must NOT discuss or explore in any way the attitudes or experiences of
students relating to bullying (for the reasons given in the original feedback).

3) Although you have improved the explanation of who will be selected for the various stages, we
still think it could be better. To stop anyone feeling they have been left out, please put in a
statement along the following lines: "if we have more volunteers than places for each stage of the
research, we will draw names out by chance so apologies in advance if your name is not one of
them". Then they know random selection is involved and that they have not been rejected.

4) There must be an explicit statement from the school counselling service that it will provide
support for any students who need it as a result of participating in the project.

Good luck with the project and stay in touch if you need any further help or advice. 

Best wishes, 

Chris 
EAS Ethics Chair 

--------------------------------------------------------------------- 
Christopher Buckingham    TEL: 0121-204-3450 
Senior Lecturer          email: C.D.Buckingham@aston.ac.uk 
Computer Science, Aston University  Fax +44 (0)121 204 3681 
Aston Triangle, Birmingham B4 7ET    
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Dear [ name ], 

We would like to invite you to participate in a research project entitled Detection and 
Prevention of Cyberbullying in Social Networks. 

The purpose of this research project is to understand how bullying is perpetrated on social 
media and how best to detect and prevent it. A key part of this research is developing a new 
mobile app capable of detecting various forms of cyberbullying and taking actions on behalf of 
the user to reduce them. 

Should you choose to participate, you will be asked to take part in the following activities: 
• Focus Groups

The focus group sessions will involve discussing your views on cyberbullying and how 
cyberbullying can be prevented with the researcher and other participants. This research will 
benefit young people being bullied across the world, and by taking part, you will have 
contributed to advancing the research in cyberbullying prevention. Each session will last up to 
two hours, and it is envisaged that there will be 3 – 4 sessions. All sessions will be audio 
recorded. As token appreciation of your participation in this research, you will be entitled to a 
£10 Amazon voucher per each attended session.  

If you want to be part of this research, please complete the attached consent form and email 
back to the researcher at salawusd@aston.ac.uk. A Participant Information Sheet is also 
attached, and this provides additional information about the research. 

If you have any pertinent questions about your rights as a research participant, please contact 
the Aston University Research Ethics Committee via the details available at the link below: 

https://www.ethics.aston.ac.uk/content/committee-officers  

If you have any questions, please feel free to contact me at salawusd@aston.ac.uk. 

Thank you, 
Semiu Salawu, PhD Researcher. 
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Participant Information Sheet 

Invitation 
We would like to invite you to take part in a research study. 

Before you decide if you would like to participate, take time to read the following information carefully 
and, if you wish, discuss it with others such as your family, friends or colleagues.  

Please ask a member of the research team, whose contact details can be found at the end of this 
information sheet, if there is anything that is not clear or if you would like more information before 
you make your decision. 

What is the purpose of this study? 
You are being asked to participate in a study to evaluate the usability and usefulness of a mobile app 
designed to detect and combat cyberbullying on social media.  The app uses novel computing 
technology to detect various forms of cyberbullying and take appropriate actions (such as deleting 
offensive messages and blocking cyberbullies and trolls) on behalf of the user. The target audience for 
this mobile application will be young people in the UK aged 11 – 17 years. We hope that this app will 
help protect vulnerable people, especially children, from the damage caused by cyberbullying. 

Why have I been chosen? 
You are being invited to take part in this study because as a [profession], we believe your input will be 
very valuable in assessing the mobile app from the perspective of responsible adults in the lives of the 
young people targeted by the app.   

What will happen to me if I take part? 
You will be asked to evaluate the app by using an Android smartphone to complete a series of tasks 
within the app. After using the app to complete the tasks, you will be asked to discuss your opinions 
of the app with the researcher in an interview.  This interview will be audio recorded so that we can 
maintain an accurate record of what you thought about the app. 

To protect your identity, you will be provided with a dummy account to login and use the app, and 
you will also be provided with a dummy Twitter account to which to connect the app. In other words, 
none of your personal contact information or your social media activity will be visible to the 
researchers or recorded as part of this study. 

As the app is designed to be intuitive and simple to use, no special skills are required to use the app. 
It is designed for the same level of app competence as any social media app. You can however ask 
questions or request assistance from the researcher if required at any time. In addition, the app 
includes a tutorial on how to use the app which you can refer to whenever you wish.  

EVALUATION OF BULLSTOP: A MOBILE APP FOR THE DETECTION AND PREVENTION OF 
CYBERBULLYING ON SOCIAL MEDIA  
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The app is designed to record and track user actions such as screen navigation and taps. Keystrokes 
are however NOT recorded and so anything you type into the app is not recorded.  

The entire session is expected to last between 60 – 90 minutes. 

Do I have to take part? 
No. It is up to you to decide whether or not you wish to take part.  If you do decide to participate, you 
will be asked to sign and date a consent form. You will still be free to withdraw from the study at any 
time without giving a reason. 

Will my taking part in this study be kept confidential? 
Yes. A code will be attached to all the data you provide to maintain confidentiality. 

Your personal data (name and contact details) will only be used if the researchers need to contact you 
to arrange study visits or collect data by phone. Analysis of your data will be undertaken using coded 
data.  

The data we collect will be stored in a secure document store (paper records) or electronically on a 
secure encrypted mobile device, password protected computer server or secure cloud storage device. 

To ensure the quality of the research, Aston University may need to access your data to check that the 
data has been recorded accurately. If this is required, your personal data will be treated as confidential 
by the individuals accessing your data. 

How will the conversations that take place during the interview be recorded and the information I 
provide managed?  
With your permission we will audio record the interview and take notes.  

The recording will be typed into a document (transcribed) by the researcher. This process will involve 
removing any information which could be used to identify individuals e.g., names, locations, etc.  

Audio recordings will be destroyed as soon as the transcripts have been checked for accuracy. We will 
ensure that anything you have told us that is included in the reporting of the study is anonymous. 

You of course are free not to answer any questions that are asked without giving a reason. 

What are the possible benefits of taking part? 
While there are no direct benefits to you of taking part in this study, the data gained will contribute 
to knowledge that will allow us to make this app as good as it can be and, in future, design other 
applications to mitigate and prevent cyberbullying.  

What are the possible risks and burdens of taking part? 
There are minimal risks associated with participating in this study beyond that of normal everyday 
usage of social media. The app (BullStop) is targeting a sensitive issue and, in order to allow 
participants to properly evaluate its use, the app has been pre-populated with ‘fake’ bullying content. 
A small portion of these offensive messages may contain one or more of the following profane words 
– damn, hell, sh*t, fu*k. None of the messages include racist, homophobic, transphobic, sexist and
offensive content about age, weight, physical appearance and religion.

Whilst the fake content will be carefully selected to avoid being unduly offensive, it is recognised that 
it could be offensive for some and/or could trigger memories of personal bullying for some 
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participants. If any of the bullying messages make you feel uncomfortable then you should let the 
researcher know immediately; similarly, if the researcher observes you exhibiting behaviour indicative 
of psychological discomfort, he will suspend your involvement until convinced that you are able to 
and wish to continue.  If participation in the study causes distress, you will be directed to a range of 
help resources (links to which are also embedded in the app itself).  

You can at any point stop your participation in the study. This does not affect any payments to which 
you are entitled. 

What will happen to the results of the study? 
The results of this study may be published/presented in scientific journals and/or presented at 
conferences. If the results of the study are published, your identity will remain confidential. 

A lay summary of the results of the study will be available for participants when the study has been 
completed and the researchers will ask if you would like to receive a copy. 

The results of the study will also be used in the PhD thesis of Semiu Salawu. 

Expenses and payments 
You will be entitled to £10 worth of Amazon vouchers for taking part in this study. No expenses 
payments will be made. 

Who is funding the research? 
This research is self-funded by the researcher (Semiu Salawu). 

Who is organising this study and acting as data controller for the study? 
Aston University is organising the study and acting as data controller for the study.  You can find out 
more about how we use your information in Appendix A. 

Who has reviewed the study? 
This study was given a favourable ethical opinion by Aston University Research Ethics Committee. 

What if I have a concern about my participation in the study? 
If you have any concerns about your participation in this study, please speak to the research team and 
they will do their best to answer your questions. Contact details can be found at the end of this 
information sheet. 

If the research team are unable to address your concerns or you wish to make a complaint about how 
the study is being conducted, you should contact the Aston University Research Integrity Office at 
research_governance@aston.ac.uk or telephone 0121 204 3000. 

Research Team 
If you have any questions, you may contact the PhD student researcher or his supervisor at: 

Semiu Salawu (PhD Student), School of Engineering & Applied Science, Aston University, e-Mail: 
salawusd@aston.ac.uk.  

Dr Jo Lumsden (Supervisor), School of Engineering & Applied Science, Aston University, e-Mail: 
j.lumsden@aston.ac.uk. Tel: 0121 204 3470
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Thank you for taking time to read this information sheet. If you have any questions regarding the 
study, please don’t hesitate to ask one of the research team. 
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Aston University takes its obligations under data and privacy law seriously and complies with the 
General Data Protection Regulation (“GDPR”) and the Data Protection Act 2018 (“DPA”).  

Aston University is the sponsor for this study based in the United Kingdom. We will be using 
information from you in order to undertake this study.  Aston University will process your personal 
data in order to register you as a participant and to manage your participation in the study.  It will 
process your personal data on the grounds that it is necessary for the performance of a task carried 
out in the public interest (GDPR Article 6(1)(e).  Aston University may process special categories of 
data about you which includes details about your health.  Aston University will process this data on 
the grounds that it is necessary for statistical or research purposes (GDPR Article 9(2)(j)).  Aston 
University will keep identifiable information about you for 6 years after the study has finished. 

Your rights to access, change or move your information are limited, as we need to manage your 
information in specific ways in order for the research to be reliable and accurate. If you withdraw from 
the study, we will keep the information about you that we have already obtained. To safeguard your 
rights, we will use the minimum personally identifiable information possible. 

You can find out more about how we use your information at www.aston.ac.uk/dataprotection or by 
contacting our Data Protection Officer at dp_officer@aston.ac.uk.  

If you wish to raise a complaint on how we have handled your personal data, you can contact our Data 
Protection Officer who will investigate the matter. If you are not satisfied with our response or believe 
we are processing your personal data in a way that is not lawful you can complain to the Information 
Commissioner’s Office (ICO).  
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WEST MIDLANDS POLICE RESEARCH 
APPLICATION 

 The Academic Research Team is responsible for monitoring all research 
undertaken within the force using force data, facilities, resources or staff and 
officer duty time. 

This is to ensure force data is used according to our statutory obligations under 
Data Protection and to co-ordinate research activities, avoiding duplication and 
maximising the benefits to the organisation and the communities we serve. 

This application form must be completed by any individual seeking to carry out 
a research project using Force data, systems or consulting with staff or officers.  
Applications are evaluated using several criteria including:- 

 Legal frameworks (Data Protection)
 Security of Information
 Value of the research
 Availability of data/information
 Ease of data abstraction/abstraction of resource from core duties
 Reputation and expertise of the researcher/research institution

If you experience any difficulties in completing this form please contact a 
member of the Research Team using email address: 
academic_research@west-midlands.pnn.police.uk 

RESEARCH CANNOT BE COMMENCED UNTIL APPROVED BY WMP 

OFFICE USE ONLY: 

 Reference  

 Decision & Date 

APPENDIX B.4: WEST MIDLANDS POLICE RESEARCH APPLICATION
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Section 1 – Your Details 
 

- Your Details: (All Non WMP Employee Applicants To Complete)   
 
Name:  
 

 
Semiu Salawu 

Home Address:  
 
 
 
 
 

 
 
30 Oval Drive, Wolverhampton, WV10 6AX 

Landline Number: 01902651160 

Mobile Number:  
 

 
01902651160 

Email Address:  
 

salawusd@aston.ac.uk 
 

 

- Contact Details for WMP to use if different from above: 
 
Contact Address:  
 
 
 
 
 

 
 
 

Landline Number:  

Mobile Number:  
 

 
 

Email Address:  
 

 
 

 
 
Will the research form part of your:  
(please delete one) 
 
School or College Studies 
 
Undergraduate Studies 
 
Post Graduate Studies 
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- If this research will not form part of an educational qualification, please state
your reasons for undertaking the research:

Please state the subject you are studying and qualification you are undertaking (e.g. 
Criminology PhD): 

Subject: Computer Science 

Qualification: PhD 

Final Qualification Date: October 2019 

Please give a) The name of your tutor b) The educational facility where you are 
studying c) The city/town location of the educational facility: 

Tutor’s Name: 
Dr. Jo Lumsden 

Educational Facility: Aston University 

City/Town of Education Facility: Birmingham 
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Section 1 – Your Details 

- Your Details  (For WMP Employees to complete only)

This section is for members of West Midlands Police (officers and staff).  
If you are external to the organisation, please skip this section and continue your  
application in section 2. 

Name:

Title/Rank:

LPU or Dept: 

Internal Ext. Number: 

Is the research required for or part of an academic qualification?  (Please delete one) 

Yes 

No 

If ‘Yes’ what is the qualification? 

- Are WMP supporting/funding this qualification? (Financial/Study Leave)?
(Please delete one)

Yes 

No 

If ‘Yes’ what is the nature of the support you are receiving? 

To progress your application to conduct research in West Midlands Police we require an endorsement from a 
member of your LPU/Department command team.  This must be a senior member of staff of Superintending 
rank (or police staff equivalent). There is a section in the ‘Your Research’ part of the application for them to 
comment on the research you are proposing and it’s value.  If your application to conduct research is 
approved they may be asked to act as a sponsor and provide oversight on the appropriate use of force data, 
systems and resources used in the course of conducting this research. 
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Section 2 – About Your Research 
 
What is the title of your proposed research project? 
 
 
 
Detection and Prevention of Cyberbullying in Social Media 
 
 
 
Please summarise the purpose or aims of your research  
(Context for research including identification of key gaps, research question/s, aims 
and objectives, expected contribution to knowledge) 
 
 
The key aims of the research are as follow: 
 

 To develop a mobile app that uses machine learning classifiers to detect cyberb
enable the app take preventive actions on behalf of the victims 

 To gain insight into what UK adolescents understand by cyberbullying and wha
perceive are the effects of cyberbullying  

 To use participatory design methods to incorporate inputs from key stakeholde
(adolescents, parents, teachers, law enforcement) into the design and developm
cyberbullying prevention tools 

 
 
What are the envisaged benefits to WMP as an organisation or to policing?  
 
 
The proposed mobile app is aimed at detecting cyberbullying directed to the user on 
social media websites. Once a cyberbullying incident has been detected, the app can 
then perform a range of configured actions. This can include automatically  
deleting or quarantining the message, blocking usage or forwarding the message to 
a nominated third party (e.g. a parent). The app can also be configured to record  
evidence that can be used by the Police to pursue prosecution. It is therefore  
important to get law enforcement’s input  and incorporate this into the app’s design.
 
 
 
 
 
 
When do you need to start and complete your research?  
(if appropriate, attach a Gantt Chart or similar outlining key stages) 
 
Start Date: September 2016 
 
Completion Date:  April 2017 
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What methodology will be used to complete the research?  
(Please delete as appropriate) 

Analysis of force documents/policy 

Analysis of Force Data 

Surveys/Questionnaires/Interviews/Focus Groups with officers and/or staff 

Pilot Studies 

Other (please specify) : Participatory design. This is a design approach that 
democratically and actively involves stakeholders in the design process to help 
ensure the end result meets their needs and is likely to be accepted into use. 

How will the data be analysed?  
(Theoretical/critical framework, statistical techniques and/or analytical tools (e.g. content  
analysis)) 

The key outputs from the participatory design sessions will be a list of features  
accompanied by the relative importance of each feature to the participatory design  
group. This data does not need analysis, rather the final version of the developed app
 will be accessed by the participatory design group in terms of these documented 
features. 

Has your research been granted ethical approval? 

Yes 

No 

Please give details of the support from or access you require to West Midlands 
Police - including data, facilities, systems or resources (including staff and officers 
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to complete questionnaires, interviews etc).  If you require force data, please be 
specific as you can about the exact nature of the data and append a separate sheet 
if necessary.  

A maximum of 2 representatives of West Midlands Police to attend all participatory 
design sessions. It is currently envisaged that there will be 8 sessions in all, each 
lasting approximately 90 minutes. The sessions are to be held between September 
2016 and April 2017 and will take place at Great Barr School, Aldridge Rd, 
Birmingham B44 8NU. 

Please select one or more of the appropriate notified purposes below that state  
under which circumstances force data can be used: 
(Please delete as appropriate)  

The prevention and detection or crime 

Apprehension and prosecution of offenders 

Protection of life and property 

Maintenance of law and order 

Vetting and licensing 

Public safety 

Rendering assistance to members of the public in line with force policy 
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Are you seeking access to data where individuals are identified (personal data) 
(Please delete one) 

 
Yes 

 
No 

 
 
Who will be funding the research? 
 
 
Self-funded. 
 
 
Please give details of any experience you have in researching this area and your 
expertise.  If you have authored published papers, please note them below or attach 
a publication list. 
 
 
I started my research in this area in October 2013 and currently have a submitted 

paper titled “Approaches to Cyberbullying Detection” currently in review with ACM 

(Association for Computing Machinery) Transactions on Intelligent Systems and 

technology  and a 2nd paper titled “A Survey of Cyberbullying Prevention Software 

” undergoing supervisory review. 
 
 
 
 
 
 
 
 
 
Please use the space below to add any other comments in support of your 
application or reference any other supporting documents you are submitting (e.g. – 
research brief, publication list) 
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FOR COMPLETION BY APPLICANT’S WMP LPU OR DEPARTMENT 
MANAGERS ONLY 

This must be a senior member of staff of Superintending rank (or police staff 
equivalent). 

Please comment on the value of this research proposal      

Semiu is a very capable PhD student who is tackling a timely and necessary issue. 
His approach could see significant inroads to cyberbullying detection/prevention by 
using ubiquitous technology and, most importantly, by including target end users 
(teenagers) in the design of the software.  His inclusion of law enforcement as 
stakeholders in the process is critical and valuable to ensuring the final solution 
meets needs from all perspectives and he would really value the input of members 
of your team in this respect. 

Managers Name 

Dr Joanna Lumsden 

Rank/Role 

Reader & Aston Interactive Media (AIM) Lab Manager 

Signature  

Date 

24/5/2016 
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Section 3 – How We Use Your Research 

By working in association with West Midlands Police, West Midlands Police will 
have an interest in the outcome of the research as well as the finished product.  

Upon completion of your research, a copy of your finalised research paper must be 
sent to the Academic Research Team (academic_research@west-
midlands.pnn.police.uk). This will be kept on record with the force, published onto 
our force internal intranet research page and potentially referenced to or utilised in 
the future. 

You may also be asked to present your findings or recommendations from your 
paper to the West Midlands Police Command Team or at a force meeting or event.  

By signing the below section you are confirming that you have read, understood 
and agree with the above requests: 

Signed:

Print Name: 

Date:
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Section 4 – Code of Ethics 

If your application for research is successful, you will be considered as working in 
partnership with West Midlands Police, therefore, we will expect you to adhere to 
our Code of Ethics for the duration of your work with us. 

The College of Policing developed the Code of Ethics on behalf of every member of 
the policing profession of England and Wales.  

The main components of the Code are sets of principles and standards of professional 
behaviour.  

The 9 policing principles are:  

• Accountability
You are answerable for your decisions, actions and omissions

• Fairness
You treat people fairly

• Honesty
You are truthful and trustworthy

• Integrity
You always do the right thing

• Leadership
You lead by good example

• Objectivity
You make choices on evidence and your best professional judgement

• Openness
You are open and transparent in your actions and decisions

• Respect
You treat everyone with respect

• Selflessness
You act in the public interest

Should your conduct whilst working in conjunction with West Midlands Police be 
deemed as contravening our Code of Ethics, we shall review the complaint and take 
the necessary action. This may include revoking your vetting status and terminating 
the research project with you.  

If you would like further information on our Code of Ethics, please do not hesitate to 
contact us.  

Please sign the below box to indicate that you have read and understood the above 
and that you agree for the duration of your academic research project with West 
Midlands Police you shall adhere to the Code of Ethics.  

Signed:

Print Name: 

Date:

318S.D.Salawu, PhD Thesis, Aston University 2021.



Section 5 – What Happens Next? 

Thank you for completing the research application form.  Your application will be 
considered by a Commissioning Board which will deliberate the value, impact and 
data security issues arising from your request.  The board meets monthly so it 
could be up to four weeks before your application is considered.  

If you wish to check on the progress of your application, please contact the 
Research team using academic_research@west-midlands.pnn.police.uk or calling 
101 and asking for Inspector Richard Harris. 

The Board often need to re-contact applicants to clarify aspects of the proposed 
research, and this can add further delay, so please make sure: 

 You have described accurately the potential benefits of the research
 You have described the type of support or access you require
 That your contact details and contact numbers are correct.

Successful applicants will be required to enter into further processes and complete 
additional documentation.  These are likely to include vetting and a criminal records 
background check, a baseline security questionnaire and a data processing 
agreement.  These processes and documentations may take a further four weeks to 
complete.  In most circumstances they are required of the force and can not be 
circumvented.  If the time scales for your research are particularly short you should 
consider alternative sources of information.  
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CONSENT FORM 
for 

participation in the research study entitled: 

Detection and Prevention of Cyberbullying in Social Networks 

Name of Researcher: Semiu Salawu 
Participant ID: 

Please initial the boxes if you agree (DO NOT tick).  One signed copy of the form will be 
for you and the other will be kept by the researcher. 

1. I have read and understood the information sheet for the above project. I know that I
can ask the researcher questions about the project.  
2. I know that taking part is voluntary and I can stop taking part in the project at any
time without giving reasons.  
3. I understand that all information I give to the project will be kept private and my name
and details will not be publicised.  
4. I understand that my participation will be audio recorded.  
5. I understand that, if I disclose information that would require disciplinary action under
Aston University’s normal policies and procedures, appropriate action will be taken by
the University.  
6. I agree for anonymised extracts from the audio recording to be used in any reports,
publications or events where results from the study will be used.  
7. I agree to take part in the above study.  

_________________________________________________ ____________ 
Name (printed) and Signature Date  

_________________________________________________ ____________ 
Name of Researcher Obtaining Consent and Signature Date  
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FOCUS GROUPS 

Basic Information 

Moderator: Semiu Salawu 

Moderator email address: salawusd@aston.ac.uk 

Participants:  

• Parents.

• Teachers

• Mental Health Professionals

• Representatives of West Midlands Police.

Expected No. of Participants: 6- 8 

Recording: Sessions will be voice recorded. 

Duration: 60 – 90 minutes  

No of Sessions: 2 - 3 

Schedule: Schedule will be guided by the availability of participants. 

Invitation to Participate 
Parents, teachers, mental health professionals and law enforcement representatives will be invited 
via personal contact to participate.  There are no inclusion criteria beyond their involvement in these 
roles. 

Venue 
The researcher will provide a comfortable space where participants can feel relaxed and that is 
spacious enough to allow for a circular seating arrangement.  

Agenda 

Introductions   – 10 mins
Discussion Part 1 – 20 - 30 mins
Break   – 5 - 10 mins
Discussion Part 2 – 20 - 30 mins
Closing Remarks  – 5 mins

Sessions Overview 
Session 1:  
Theme:  What is cyberbullying and how can it be prevented? 
Objective:  

• To gain an insight into what the group understand by cyberbullying and their opinions about
it.

• To understand what they perceive are the effects of cyberbullying and the impact it has on
adolescents.
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• To generate prevention strategies from participants and compare these to current
cyberbullying prevention strategies in use.

• To collectively assess the effectiveness of these prevention strategies and propose ways to
improve the strategies.

Key questions: 
• What do we understand by the term “Cyberbullying”?
• How important would you say preventing cyberbullying is to you?
• Is cyberbullying always malicious or just “teasing”?
• When does “teasing” becomes cyberbullying?
• Have you or do you know of anyone that has ever been cyberbullied?
• Have you or do you know of anyone that bullied someone?
• Please elaborate on these?
• What do we think are the effects of cyberbully?
• How can you tell that someone is being bullied online?
• What would you do if you discovered your child is being bullied online?
• What advice would you give to some that has been cyberbullied?
• What are the things we can do to prevent cyberbullying?
• If someone is being cyberbullied, what can they do to stop it?
• If someone we know (not our child) is being cyberbullied, would we do anything about it?
• What would we do?
• Are we aware of a situation where someone that was being bullied got the bully to stop?
• If yes what did the person do?
• Let’s create a list of suggested actions to reduce cyberbullying and rate these in order of

preference?

Session 2:  
Theme:  Cyberbullying Prevention Software 
Objective:  

• To find out if participants currently use or will use anti-cyberbullying tools and their views
about such tools.

• To collectively identify gaps in current anti-cyberbullying tools
• To present an overview of the proposed app to the group.

Key questions: 
• Let’s review what we talked about in the previous session?
• Has anyone’s views on cyberbullying changed?
• How have these changed?
• Has anyone used a cyberbullying prevention tool before?
• If yes, which ones?
• If no, why?
• Do we think the anti-cyberbullying actions we developed last session can be automated?
• How will you like these actions to be implemented; by the service provider (e.g. Facebook),

the school, as part of the device itself (pc or mobile) or as a software you can install and set
up yourself.
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• If implemented as a software, how confident are we that our children install and configure it
by themselves?

• If we were to design an app to reduce cyberbullying, what are the things we will want in the
app? Let’s rate this in order of importance?

Session 3:  
Theme:  The Cyberbullying Prevention App 
Objective:  

• To review the proposed app with the group.
• To gather feedback about the proposed app
• To create a features “wish list” for the app
• To arrange the features “wish list” in order of importance

Key questions: 
• If an app such as the one proposed was available on the app stores today, what would be our

initial reactions to it?
• Would we encourage our children/students to use such an app?
• If no, what are the reasons?
• If the app detects a bullying message that has been sent to a child, what should it do? Should

the message be automatically deleted? Should it be shown to the child with a warning?
Should bad words in the message be removed/replaced before it is delivered? Should it be
automatically forwarded to the parents?

• What about the senders of such messages? Should the app automatically block them or just
block the messages? Or block them after a certain number of messages?

• Would you as a parent like the ability to remotely review and re-classify all messages flagged
as bullying by the app?

• How important is such a feature to you
• Would you like the app to learn from this review and then base future decisions on your re-

classification?
• How important is such a feature to you?

Moderator’s Script 
Ensure consent form for all participants are duly completed and signed. Remind participants of 
confidentiality of content discussed in the group. 

Introduction (10 mins) 
• Introduce self and provide study background
• Get participants to introduce themselves.

Discussion 1 (20 - 30 mins) 
• Introduce the session’s topic and objectives and start with the section’s lead question.
• Gently progress discussion with additional questions.

Break (5 - 10 mins) 
Discussion 2 (20 - 30 mins) 
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• Quick recap of Discussion 1 then proceed with the section’s lead question.
• Gently progress discussion with additional questions.

Closing Remarks (05 mins) 
• Quickly summarise point raised.
• Thank and inform group of the date and time of the next session.
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Theme Concerns about cyberbullying 

Sample Quotes Coded As 
“She didn’t tell me about it for some time, and I had to prod her 
a bit, and it turns out it’s even one of her close friends that I’m 
friendly with the mom, so I got the mum to have a word […] I 
don’t think they are friends anymore, but she stopped sending 
silly stuff to my girl anyway, and that’s all I cared about, to be 
honest”. 

“We get so many reports about stalking, abuse, nudes, all 
sorts […], it’s impossible to keep up. We don’t have anywhere 
near the resources we need to handle all of it”. 

“There is more about it on the news now, which I think is good. 
I saw on the news about a girl that was being bullied by her 
mates, they were sending nude pictures of her, but the funny 
thing is they weren’t even her pictures. They just got some porn 
pic and cut her face on it, just like that. I felt that was just mean, 
and these are like 12, 13 year olds”. 

“I get so worried and anxious with all the stuff online, 
sometimes I see things on some pages and [I’m] like wow”. 

1. Worried about the safety of
children

2. Unable to keep up
3. Increased number of online attacks

Theme Current strategies and solutions are in need 
of improvement 

Sample Quotes Coded As 
“I think the government should force them to do more”. 

“I get freedom of speech, but some of these stuffs should be 
taken down immediately […]”. 

“I think my daughter reported someone that was sending these 
silly messages, but nothing really happened”. 

1. Social media companies need to
do more

2. Government intervention is
required

“I wouldn’t know what to do really, maybe tell my kids to ignore 
it”. 

“Nothing really, I wasn’t aware there were things I could use”. 

“If it’s really bad we sometimes recommend staying off social 
media for a while”. 

“I went to school once to report a child for posting something 
on [child] Facebook and actually nothing really happened at 
first. I had to make a big deal, like go all crazy mum to get 
them to take it seriously”. 

“I have searched online, and I found information on what to do, 
but they are not easily digestible. Something like a cheat sheet”. 

1. Unsure about what to do
2. Lack of information on available

cyberbullying prevention tools
3. Schools are unwilling to get

involved

“I installed this app on [child]’s phone, it was meant to send me 
alerts when he uploads pictures on Instagram and things like 
when he sends messages and his location, but it kept crashing 
the phone, so we took it off. I’m sure he was very happy”. 

“I used the Vodafone parental control on our broadband, just 
because I felt I had to do something. Like I can’t just let them 
be browsing without any form of control. It blocks site and 
stuff”. 

“I tell them to block, and I check their phones behind their 
backs”. 

“I will like if it can tell me what my kids are doing online”. 

1. Ineffective prevention tools
2. Use of spyware
3. Constant monitoring
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Theme Encouraging positive behaviours and online 
safeguarding are key features 

Sample Quotes Coded As 
“I think like a safe browsing option will be good, so anything 
offensive is not shown to you when you are on Facebook and 
the likes”. 

“I once read about having like a time out period from mobile 
phones and social media […] I like that idea if you can put that 
in the app, it can just block out social media for like an hour or 
something”. 

“I have an inspirational quotes app that I read in the morning. If 
the app can show something like that every day”. 

1. Making social media safer
2. Taking a break
3. Online safeguarding

“ […] maybe it can rate children on how well they behave online”.  

“It will be good if you can add links to some educational stuff 
about cyberbullying. It would be nice having all the information 
in one place”. 

“It can include some videos on how to treat people when they 
are online”. 

1. Promote positive behaviours
2. Increase empathy
3. Encourage Reflection

Theme Report and block online abusers 

Sample Quotes Coded As 
“If it can automatically block Internet trolls, I think that would be 
great”. 

1. Block abusive users

“Can it report people to Facebook so they can be banned”? 

“ […] for really serious cases maybe report to the police or 
even just send them a text that you will be reported to the 
police”. 

1. Report bullies automatically
2. Involve the police
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From: Christopher Buckingham <c.d.buckingham@aston.ac.uk>  
Sent: 27 October 2017 12:48 
To: Salawu, Semiu (Research Student) <salawusd@aston.ac.uk> 
Cc: Lumsden, Joanna (Jo) <J.LUMSDEN@aston.ac.uk>; Leigh, John <j.leigh@aston.ac.uk> 
Subject: Ethics resubmission 952 

Dear Semiu, 

We are happy with the extension of the proposal to first-year undergraduate students on the 
grounds that the same conditions apply to them as to the school students regarding the protocol. 
The one thing we would like to stress, because of the ambiguity in your statement, is that all 
participants should receive the SAME financial reward, whatever that may be. 

Best wishes, 

Chris 
EAS Ethics Committee Chair 
--------------------------------------------------------------------- 
Christopher Buckingham          TEL: 0121-204-3450, Room MB211N 
Reader in Computer Science   email: C.D.Buckingham@aston.ac.uk 
Computer Science, Aston University  Fax +44 (0)121 204 3681 
Aston Triangle, Birmingham B4 7ET    
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CYBERBULLYING IS 
HAPPENING RIGHT NOW

Get up to £70 Amazon vouchers 
taking part in research investigating 

Cyberbullying on Social media. 
Please contact 

salawusd@aston.ac.uk 
if you would like to take part.

Thousands of young people get 
bullied on social media everyday.

If you are a 
first year undergraduate, 
we would like your help 

in reducing cyberbullying.

APPENDIX B.9: Research Invitation Poster
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Dear student, 

We would like to invite you to participate in a research project entitled Detection and Prevention of 
Cyberbullying in Social Networks. 

The purpose of this research project is to understand how bullying is perpetrated on social media and 
how best to detect and prevent it. A key part of this research is developing a new mobile app that is 
capable of detecting various forms of cyberbullying and taking actions on behalf of the user to reduce 
them. 

Should you choose to participate, you will be asked to take part in the following activities: 
• One on one interview
• Participatory design sessions

The interview will involve discussing your views on cyberbullying and how cyberbullying can be 
prevented with the researcher. This session will last up to an hour and will be audio recorded. 

Participatory Design (PD) is an exciting design approach that democratically and actively involves 
potential users in the design process to help ensure the end result meets their needs and is likely to 
be accepted into use. Thus the participatory design sessions will involve working with other 
participants (all first-year undergraduates) and the researcher to design the key areas of the proposed 
mobile app. Each PD session will last up to 2 hours and 2 sessions are currently planned. All PD sessions 
will be audio and video recorded but please note that the video camera will not be directed at you, 
rather it will be pointed at a paper surface representing the app’s user interface. 

As token appreciation of your participation in this research, you will be entitled to up to £70 Amazon 
vouchers (£10 for the interview and £20 for each of the 3 PD sessions). In addition, this research will 
benefit young people being bullied across the world and by taking part you will have contributed to 
advancing the research in cyberbullying prevention. 

If you will like to be part of this research then please complete this questionnaire. The questionnaire 
will allow us to get to know a little bit about you and your suitability to take part in the research. Please 
be aware that due to the need to ensure an appropriate distribution of participants, we will not be 
able to invite everyone that submit the questionnaire to progress to the interview and PD sessions 
stage but, at the end of this study, once we have developed the app, everyone will be given an 
opportunity to test the app and tell us what you think of it, regardless of whether they took part in 
the interview and PD sessions or not. 

If you have any pertinent questions about your rights as a research participant, please contact the 
Aston University Research Ethics Committee via the details available at the link below: 

https://www.ethics.aston.ac.uk/content/committee-officers 

If you have any questions, please feel free to contact me at salawusd@aston.ac.uk. 

Thank you, 
Semiu Salawu, PhD Researcher. 
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Pre-Study Cyberbullying Questionnaire 

1. What is your gender?
 Male 
 Female 
 Prefer not to say 

2. Are you a first-year undergraduate?
 Male 
 Female 
 Prefer not to say 

3. Please provide an email so we can contact you? _____________________

4. Which of the following do you use (select all that apply)?
 Twitter 
 Facebook 
 Myspace 
 Snapchat 
 WhatsApp 
 Instagram 
 Other (please specify):_____________________ 

5. How often do you use these social networks?
 Several times a day 
 A few times a day 
 A few times a week 
 Rarely 

6. How do you access these social networks (select all that apply)?
 From my mobile phone 
 From my tablet 
 From my computer 
 From a University desktop computer 

7. Please select which of the following do you think is NOT Cyberbullying (select
all that apply):

 Calling someone rude names online. 
 Sharing an embarrassing story or pic about someone online. 
 Sharing an embarrassing video of someone online. 
 Creating a website to embarrass someone. 
 Recording a fight you witnessed and sharing it with your friends. 
 Calling someone a silly nickname that they don’t mind. 
 Telling other people someone’s secret online. 
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 Sending rude messages or pics to someone. 
 Using someone's mobile phone to get them into trouble. 
 Pretending to be someone online so you can talk to their friends. 
 Pretending to be someone online and saying things to get them into 

trouble. 
 Adding a rude comment on someone’s picture or post 

8. Have you ever been cyberbullied?
 Yes 
 No (skip to question 11) 
 Not sure  

9. When was this?
 Within the last 3 months 
 Within the last 6 months 
 Within the last year 
 Over a year ago 

10. How did this cyberbullying occur? (select all that apply)
 They sent offensive text messages to me 
 They said something offensive about me online  
 They shared an offensive picture about me online 
 Other (please explain):___________________________ 

11. What did you do (select all that apply)?
 I told my parents 
 I told a friend 
 I just ignored them 
 I told them to stop 
 I retaliated (please explain):  ___________________________ 
 I didn’t know what to do 
 I didn’t do anything because I was too scared/upset 

12. Has this cyberbullying stopped?
 Yes 
 No 

13. Have you witnessed a friend being cyberbullied?
 Yes 
 No (skip to question 14) 

14. How did this cyberbullying occur? (Select all that apply)
 They sent offensive text messages to my friend 
 They posted an offensive tweet about my friend 
 They sent my friend offensive private Facebook messages 
 They posted something rude on my friend ‘s Facebook wall 
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 They said something rude about my friend on their own wall 
 They sent offensive messages to my friend on Snapchat 
 They sent offensive messages to my friend on WhatsApp 
 They shared rude pictures about my friend on Instagram 
 Other (please explain):___________________________ 

15. What did you do (select all that apply)?
 I reported it to someone in authority (e.g. a teacher, school’s 

administration, etc.) 
 I told my parents 
 I told another friend 
 I told my friend to ignore them 
 I told the bullies to stop 
 I told my friend to retaliate 
 I retaliated on behalf of my friend 
 I didn’t know what to do 
 I didn’t do anything because I was scared they would bully me too 

16. Have you ever cyberbullied someone?
 Yes 
 No (skip to question 16) 

17. How did this cyberbullying occur? (Select all that apply)
 I sent offensive text messages to them 
 I posted an offensive tweet about them 
 I sent them offensive private Facebook messages 
 I posted something rude on their Facebook wall 
 I said something offensive about them on my Facebook wall 
 I sent offensive messages to them on Snapchat 
 I sent offensive messages to them on WhatsApp 
 I shared rude pictures about them on Instagram 
 Other (please explain):___________________________ 

18. Please select all of following statements that you agree with:
  I don't know what cyberbullying is. 
  Cyberbullying is no big deal. 
  Friends of mine have been cyberbullied. 
  We've had cyberbullying incidents in my secondary school. 
  I have cyberbullied others. 
  I have said nasty things to others online, but don't consider it 

cyberbullying. 
  I have been cyberbullied by a close friend. 
  I have had someone steal my password/mobile phone and pretend to 

be me. 
  I sent a joke to someone, but they thought it was cyberbullying. 
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  I've cyberbullied someone with my friends just for fun 
  Others have said mean things to or about me online, but I don't 

consider it cyberbullying. 

19. Are you happy to talk about cyberbullying with the researcher?
 Yes 
 No 

20. If there was an app that detects when people are being cyberbullied, would
you use it?

 Yes 
 No 

21. Finally, in about ten words tell us what you think of cyberbully?
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INFORMATION FOR RESEARCH PARTICIPATION 

Study Title: Detection and Prevention of Cyberbullying in Social Networks 

Principal Investigator: Semiu Salawu 

Please read this permission form carefully and ask as many 
questions as you like in order to help you decide whether or not to 
participate in this research study. Your participation is entirely 
voluntary and there is no penalty or consequence for choosing not to 
participate. You are free to ask questions at any time before, during, 
or after your participation in this research.  Even if you decide to 
participate, you are free to withdraw from the study at any time 
without penalty or reason. 

Dear Prospective Student Participant, 

We would like to invite you to take part in our research study.  This form has important 
information about the reason for doing this study, what we will ask you to do, and the way we 
would like to use information about you if you choose to take part in the study.  

Why are we doing this study? 
You are being asked to take part in a research study to help reduce cyberbullying. This 
research is aimed at creating a new smartphone app. This app will help people that are being 
bullied online and through their phone by detecting when bullying messages are being sent. 
We are, therefore looking for volunteers such as yourself to help us identify what they would 
and would not like in this app. Any first year undergraduate student can take part, and you do 
not need to have been bullied or know someone that has been bullied to take part.   

What will I be asked to do in this study? 
We will first ask you to complete the attached questionnaire. This will allow us to get to know 
a little bit about you.  We will review all questionnaire responses to decide who we will then 
invite to the next phase interview in which we will discuss what you think about cyberbullying. 
Due to time constraints and the fact that we need to talk to a range of different students, we 
will not be able to interview everyone who completes the questionnaire but, at the end of this 
study, once we have developed the smartphone app, you will be given an opportunity to test 
it out and tell us what you think of it, regardless of whether you took part in the interview or 
not.  

If you are asked to take part in the interview, it will last up to 60 minutes and will be held onsite 
at Aston University. The discussion will mainly be about online bullying and how we can help 
people that are being bullied online and through their phones. This discussion will be audio 
recorded so we do not miss any of your contributions. We will then use these recordings in 
our work to create the app. Your name and details will be removed when using these 
recordings.  

After the interview, you may be invited to take part in some group activities. In these activities, 
you (along with other students) will take part in what is called a participatory design session 
which is aimed at capturing your thoughts about the proposed mobile app, its interface and 
features. Three participatory design sessions are currently planned, and you may be invited 
to take part in all sessions. Each session can last up to two hours. These sessions will also 
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take place onsite at Aston University and will be audio and video recorded. Just like the 
interview recordings, we will use the activities’ recordings to help us create the app, and your 
name and details will be removed when using these recordings. All recordings will be kept 
securely at Aston University only until the end of the project after which they will all be 
destroyed. In addition, for the video recordings, the video camera will not be directed at you, 
rather it will be pointed at a paper surface representing the app’s user interface.  

What are the possible risks or discomforts to taking part? 
Your participation in this study may involve the following risks:  

• You may get tired during the tasks. The sessions are designed to include a break after
every 30 minutes, and you can rest/take a break at any time if so required.

• You may feel emotional or upset when talking about cyberbullying and some aspects
of it. If this is the case, you can inform our researcher at any time if you want to take a
break or stop participation. Also if the researcher feels that it is not in your best interests
to continue participating, you will be removed from the study and provided details of
the University’s Counselling and Mental Wellbeing services and other relevant support
organisations.  You can also choose to stop taking part in the study at any time without
having to give a reason.

• If, during discussion, you reveal something that would necessitate disciplinary
measures under the University’s normal policies and procedures, then the researcher
present will take appropriate course of action in relation to the information revealed.

What are the possible benefits for me or others? 
By taking part in this study, you will be helping us gain a better understanding of cyberbullying, 
how it affects young people and how it can be prevented. The end result of this study will be 
a new app to help reduce cyberbullying. This app will first be made available to all participants 
and then later on to the general public via the app store. You will have contributed to creating 
this app that will eventually help young people all around the world. Your participation in the 
study will also help raise awareness in a positive way on this very important issue. 

How will you protect the information you collect about me, and how will that information 
be shared? 
All recordings will be stored securely at Aston University and will only be available to the 
researcher and his supervisors.  All audio and video recordings will be destroyed at the end 
of the study, and any reports from the study will not contain any information that can be used 
to identify you. The results from this study may be used in publications and presentations but 
you will not be identifiable in any publication.   

Financial Information 
Participation in this study will involve no cost (beyond the donation of time) to you. You will be 
entitled to up to £70 worth of Amazon vouchers for taking part in this study. The vouchers will 
be allocated as below: 

• £10 voucher for completing the interview.
• £20 voucher for completing a participatory design session.

Thus, if for example, you completed all three participatory design sessions and the interview 
you’ll be entitled to £70 worth of Amazon vouchers. The vouchers will be given to you at the 
end of each session. Please note that you will only receive a voucher if you successfully 
complete a session. 
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What are my rights as a research participant? 
Participation in this study is voluntary. You may stop participating in this study at any time. If 
you decide not to be involved in this study, this will not affect the relationship you have with 
the University in any way. Your grades will not be affected if you choose not to be in this study. 
Equally, participation in this study will not accrue any course credits.  
 
It is important to note that, if you decide to withdraw from this study, your contribution up to 
that point cannot be withdrawn where it has been part of a group activity. 
 
Who can I contact if I have questions or concerns about this research study? 
If you have any questions, you may contact the researcher at: 
 
Semiu Salawu (PhD Researcher), Room MB267, School of Engineering & Applied Science, 
Aston University. 
e-Mail: salawusd@aston.ac.uk 
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Interview Script 
Background 
1. Hi, my name is Semiu Salawu and I’m doing research on detecting cyberbullying on social

media here in Aston University. I would like to ask you some questions about your views,
personal experiences and observations on cyberbullying and, crucially, your opinions on how
cyberbullying can be reduced.

2. This interview will take roughly about 60 minutes but we can break or stop at any time you
want.

3. My aim is to use the information you provide to me to assist me in developing a new app
that can help reduce cyberbullying by first detecting when someone is being bullied online
and then taking action on behalf of the victim.  If you are uncomfortable answering any of
my questions, please just let me know and we can move on to the next question.

Demographic Info 
4. [Confirm interviewee name, age and university year]
5. What do you understand by cyberbullying?
6. Have you ever experienced cyberbullying or witnessed someone being cyberbullied?
7. Can you tell me what happened during the incident?

Views on Cyberbullying 
8. If you say something bad about someone online but you don’t really mean it, do you

consider that cyberbullying?
9. What about if that person has been nasty to you before or started it?
10. How can you tell if someone did not like what you said about them online?
11. How important would you say preventing cyberbullying is to you? [Very, Somewhat, Don’t

Know, Not so much, I don’t really care about it]
12. Tell me more on why you gave it that level of importance?
13. What do you think are the effects of cyberbullying?

Social Media Use 
14. Which social media sites/apps do you use?
15. Why do you prefer those sites?
16. What do you mainly use these sites for?
17. How many times in a day do you use these sites?
18. How long have you been using these sites?
19. Have you ever seen anyone being bullied on any of these sites?
20. Have you ever been bullied on any of these sites?
21. Have you bullied anyone on any of these sites before?
22. Do you use these sites via an app on your mobile phone or on the computer?
23. If these sites were somehow blocked on your phone and computer, what will you do?
24. When you were still in secondary school, were there any restriction on the type of websites

and apps that you could use on your home computer and phone?
25. If they were restrictions, who put these restrictions in place and why?
26. Did you attempt to bypass these restrictions?
27. If yes, were you successful?
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Preventing Cyberbullying 
28. If someone you know is being cyberbullied, would you do anything about it?
29. If yes, what would you do?
30. Do you know of any cyberbully that was made to stop by the person being bullied?
31. What did the person do?
32. If you were in the position of the bully, would these actions discourage you from continuing

the bullying?
33. How do you think cyberbullying can be reduced?

Cyberbullying Prevention App 
34. Have you ever reported anyone or know anyone that got reported for cyberbullying?
35. Could the reporting process be made easier and how?
36. Can you think of new features to add to the social media sites/apps you use to help reduce

cyberbullying?
37. Do you know of any software or app that can help people that are being cyberbullied?
38. If you are told to design an app to help reduce cyberbullying, what kind of features would

you include in the app?
39. Would you want the app to first check all received messages do not contain bullying before

delivering them to you?
40. If the app detects a bullying message that has been sent to you, what should it do? [Should

the message be automatically deleted? Should it be shown to you with a warning? Should
any offensive words in the message be removed/replaced before it is delivered to you?]

41. What about the senders of such messages? Should the app automatically block them?
42. Would you like the app to show you everything first and then you can tell it what to do next

time you receive a message like that?
43. Would you want the app to also check the messages you are sending for bullying content

before they are sent?
44. If bullying content is detected in the messages you are sending? What should the app do?

[Should it prevent you from sending it? Or show you a warning? Or replace any offensive
word in the message?]

45. If the app makes a mistake and wrongly thinks a good message is an offensive one or fails to
spot a bullying message, would you stop using the app?

46. What would make you stop using the app?
47. Would you like the option to view all blocked messages and flag them as bullying or not in

order to help the app become more accurate?
48. How important is such a feature to you?
49. If the app is capable of learning your general use of language and behaviour on social media

so that it is able to filter offensive content better, would you be comfortable enabling such a
feature in the app?

50. Would you consider such a feature good or bad?
51. Why do you think so?
52. Regardless of your views about this feature, would you consider such a feature a “killer

feature” of the app?
53. Is there anything else you would like to add?
54. [Thank interviewee for their time].
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CONSENT FORM 
for 

participation in the research study entitled: 

Detection and Prevention of Cyberbullying in Social Networks 

Name of Researcher: Semiu Salawu 
Participant ID: 

Please initial the boxes if you agree (DO NOT tick).  One signed copy of the form will be 
for you and the other will be kept by the researcher. 

1. I have read and understood the information sheet dated for the above project. I know
that I can ask the researcher questions about the project.  
2. I know that taking part is voluntary and I can stop taking part in the project at any
time without giving reasons.  
3. I understand that all information I give to the project will be kept private and my name
and details will not be publicised.  
4. I understand that I will be asked to complete a questionnaire to find out more about
me and how I can help the project.  
5. I understand that, depending on the results of the questionnaire, I may or may not be
invited to take part in other parts of the project.  
6. I agree to complete the pre-study questionnaire.  

_________________________________________________ ____________ 
Student’s Name (printed) and Signature  Date  

_________________________________________________ ____________ 
Name of Researcher Obtaining Consent and Signature   Date  
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CONSENT FORM 
for 

participation in the research study entitled: 

Detection and Prevention of Cyberbullying in Social Networks 

Name of Researcher: Semiu Salawu 
Participant ID: 

Please initial the boxes if you agree (DO NOT tick).  One signed copy of the form will be 
for you and the other will be kept by the researcher. 

1. I have read and understood the information sheet for the above project. I know that I
can ask the researcher questions about the project.  
2. I know that taking part is voluntary and I can stop taking part in the project at any
time without giving reasons.  
3. I understand that all information I give to the project will be kept private and my name
and details will not be publicised.  
4. I understand that my participation will be audio and/or recorded.  
5. I understand that, if I disclose information that would require disciplinary action under
Aston University’s normal policies and procedures, appropriate action will be taken by
the University.  
6. I agree for anonymised extracts from the audio and/or video recording to be used in
any reports, publications or events where results from the study will be used.  
7. I agree to take part in the above study.  

_________________________________________________ ____________ 
Student’s Name (printed) and Signature Date  

_________________________________________________ ____________ 
Name of Researcher Obtaining Consent and Signature Date  
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Theme Cyberbullying occurrence intensifies in early 
teenhood and extends into the late teens. 

Sample Quotes Coded As 
“The effect that one person's comment can have on you, it can 
be huge really. A lot of people could end up killing themselves 
regarding it”. 

“I think it's in some ways; it’s worse than school bullying”. 

“It’s something that you can’t switch off. Bullying face to face [..] 
It’s something that you can escape but with cyberbullying its 
really bad […]” 

“I feel like cyberbullying is a subject that isn't given much 
awareness about and especially people who are affected by it, 
are affected very deeply”. 

1. Worse than face to face
2. Pervasive
3. Not given adequate attention

“The mean, malicious stuff didn't continue past year 12”. 

“I think there was a big age thing about it. I think a lot of it was 
start of secondary schools, I'm thinking year seven, year eight 
or toward year 10, 11”. 

1. Cyberbullying is most frequent in
years 7-10

4. Drops off in sixth form

Theme Appearance and identity are common 
bullying themes. 

Sample Quotes Coded As 
“They were posting comments about her weight or bad hair or 
things like that”.  

“It was Facebook. They were just calling her names, and there 
was a picture of her. She doesn’t look really great in it. People 
thought she looked ugly basically and so they made fun of it”.  

“Do you know Breaking Bad [TV servies]. Walter White’s son, 
Junior has Cerebal Palsy in the series, and I have that, so they 
use to call me Junior. Funny thing is we are all now friends”. 

“I said I was a mixed-race person that's when the abuse came 
in […]” 

1. Physical appearance
2. Accent
3. Disability
4. Racial abuse
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Theme Cyberbullying on Facebook and Twitter is 
more public compared to Snapchat and 
Instagram, where it is more personal and 
targeted.  

Sample Quotes Coded As 
“Twitter is what I'd go on mostly. It's quite topical It’s what's 
happening right now”. 

“Probably, Snapchat the most. I think is just really accessible 
quite easily. It's short 10 seconds, even less than that”. 

“I use Facebook Messenger the most, but in terms of social 
media things, probably Twitter”. 

“I do have Facebook, but I don't use it […] I follow some people 
on Twitter just to know what’s going on”. 

“Facebook is just for family and parents. No one I know uses 
Facebook for anything serious”. 

“Snapchat is a bad one I think for cyberbullying because it's very 
personal and once that snap’s gone, it's gone”. 

“She was basically stalking her on Instagram and Twitter”. 

“Twitter is quite vile. It is not a nice site at all.Twitter people are 
just not nice. I have just like posted inspirational 

1. Facebook is less popular
2. Twitter - topical
3. Favourite platforms - Snapchat and

Instagram
4. Public bullying on Facebook
5. Snapchat and Twitter – offensive

messages sent directly (DM)

Theme Cyberbullies are often known to their victims. 

Sample Quotes Coded As 
“I was probably a really nasty person to, I guess, one 
of my ex-girlfriends […] she was utterly bombarded by 
me like five or six times a day, […] it really wasn’t until 
she screamed at me to leave her alone that I realised 
what an a*s I have been ”.  

“I sent loads of emails. God. Like, say I was a random 
person. That I was going to go to his house. I was 
going to blow him up. Really bad. Awful, awful, awful 
stuff”. 

“[…] they were in my class. it was awful, what they did 
say. I did know it was them, there wasn't anonymity 
involved”. 

“I've been slightly cyberbullied, but it was by an ex-

boyfriend. It was on a couple of different platforms. It 

was Facebook Messenger and Tumblr”. 

1. Bullied by ex
2. Bullying an ex
3. Known to victims
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Theme Fear of reprisals and inadequate responses 
discourages cyberbullying reporting. 

Sample Quotes Coded As 
“ I didn't want to go to school because I know there'd 
be a chance they'd tell my parents, and also there's 
definitely an element of not wanting to be a grass. I 
typically tell my friends. Not that they could do much 
about it because they were also typically being 
cyberbullied at the same time”. 

“I typically do report things that I think have been 
particularly harmful. If it looks like a lot of stuff could 
be focused at me if I intervened then I will report 
anonymously. I just don't want to have that sort of 
stuff directed towards me”. 

“We never did really talked to the teachers. You go to 
the teachers, what are they going to do? As soon as 
they tell these people off, it's just going to start right 
back up again and maybe worse because now they 
actively hate you at the same time”. 

“Teachers don't know how to deal with it. The teachers 
aren't educated properly about what it's like to grow up 
in the time like us. Some of them want to help; some 
of them don’t care”.

1. Anonymous reporting
2. Fear of reprisals (can lead to physical

bullying)
3. Stigma for reporting

Teachers are ill-equipped 

Theme School should intensify cyberbullying 
prevention efforts.  

Sample Quotes Coded As 
“We did have a few assemblies about cyberbullying [...]”. 

“[…] There were no posters or anything. Nothing. Not that I 
remember. If there was, it didn't stand out enough for me to 
see it”. 

“There were blockers on the Websites and stuff. There were 
no social media, so no Facebook on the WiFi”. 

School’s effort at fighting cyberbullying 
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Theme Relevant advice and punitive actions are the critical 
features for the proposed app. 

Sample Quotes Coded As 
“I think if advice were to be given and used on the 
app, it would be important whoever is writing the 
advice. Wherever it's coming from, they understand 
not just the victim's mentality but the bully’s mentality 
as well […]”. 

“I wouldn't like it to be too childish […] If I see anything 
childish, then I'll just ignore it. […]”. 

1. Relevant advice
2. Pitched at the right level

“[…] if they're given an official warning that they've 
been blocked from using the app, not by that person, 
but in general by like Facebook. Yes, then they would 
be like - Oh okay, I'm going to be careful right now”. 

1. Ban bullies
2. Report bullies

Theme Young people would rather report 
cyberbullying anonymously than get directly 
involved 

Sample Quotes Coded As 
"Is this going to come back and hurt me in a certain way? If It 
would be more like yes. I wouldn't. I'm not an online superhero. 
That's not me”. 

“I'm not sure I would to be honest. I like to think I would but the 
bystander factor, meaning people generally just tend to ignore 
things that aren't happening to them or aren't important to them. 
I like to think I would, but I'm not sure”. 

“If there was a way to report it that was anonymous or wouldn't 
get me involved, I would probably report it”. 

1. Report anonymously
2. Avoiding confrontation
3. Staying out of it
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https://www.youtube.com/watch?v=DF2sZ_EC4PU 

https://www.youtube.com/watch?v=2DV_LHq_pPs 

https://www.youtube.com/watch?v=U3Hn-sONiRg 

https://www.youtube.com/watch?v=k7CX2JYxfE8 
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End User Licence Agreement 

Please read this EULA carefully, as it sets out the basis upon which we license the App for use. 

By clicking "Agree” below, you agree to be bound by the provisions of this EULA. If you do not agree 
to be bound by the provisions of this EULA, you must click the "Disagree” button below and 
promptly uninstall the App.   

App store terms also apply 
The ways in which you can use the App may also be controlled by the rules and policies of the 
relevant app store from which you have downloaded the App. 

1. We grant you license to install and use this App on compatible devices.

2. The App is protected by the copyright laws of the United Kingdom and other countries, and we
retain all intellectual property rights in the App. You may not separately publish, sell, market,
distribute, lend, lease, rent, or sublicense the App code including the license key. However, this
license is not to be construed as prohibiting or limiting any fair use sanctioned by copyright law, such
as permitted library and classroom usage.

Limited Warranty 

3. We warrant that the App will provide the features and functions generally described in the
product specification on the App store where you installed it from and in the product
documentation.

4. We have taken reasonable steps to keep the App free of viruses, spyware, "back door" entrances,
or any other harmful code. The App will not download or install patches, upgrades, or any third party
App without getting your permission. We will not intentionally deprive you of your ability to use any
features of the App or access to your data.

5. You will be required to create an account to use this app. The account created will be securely
stored.

6. This App may collect minimal information about how you use the App; this information will be
securely stored and only used to provide the functionalities of the App. At no point will this
information be passed on to a third party for the intention of advertising or marketing

7. In order to function fully, you will be required to authorize this App to access your social accounts.
This authorization is done via your social account provider. This app will not see or store your social
account passwords. Once authorized, the App will be able to access the information in your social
account. Crucially, the App can delete messages, posts, status updates, etc. from your social
account. Anything deleted can be viewed in Deleted Messages but cannot be re-instated to your
social account. You can de-authorize this app from accessing your social accounts at any time.
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8. We do not warrant that the App or your ability to use it will be uninterrupted or error-free. To the
extent permitted by applicable law, we disclaim any implied warranty of merchantability or fitness
for a particular purpose.

Limitation on Liability 

9. The App is created as part of educational work and as such is provided on an "AS IS" basis and to
the maximum extent permitted by applicable law, this material is provided AS IS AND WITH ALL
FAULTS. To the fullest extent permitted by applicable law, we disclaim all liabilities, warranties and
conditions, either express, implied or statutory, including, but not limited to, any (if any) implied
warranties, duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or
completeness of responses, of results, of workmanlike effort, of lack of viruses, and of lack of
negligence. In no event will any author, developer, licensor, or distributor of this App be liable to any
other party for the cost of procuring substitute goods or services, lost profits, loss of use, loss of
data, or any incidental, consequential, direct, indirect, punitive, or special damages whether under
contract, tort, warranty, or otherwise, arising in any way out of this or any other agreement relating
to this material, whether or not such party had advance notice of the possibility of such damages.

General Provisions 

10. If any part of this agreement is found to be invalid or unenforceable, the remaining terms will
stay in effect. This agreement does not prejudice the statutory rights of any party dealing as a
consumer.

11. This agreement does not supersede any express warranties we made to you. Any modification to
this agreement must be agreed to in writing by both parties.

12. This agreement will apply from the date of the installation of the App.
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Privacy Policy 

This App (BullStop) is the output of PhD research at Aston University, Birmingham.  It is provided as a 
free App.  The App is designed to help young people combat cyberbullying in a proactive manner. 
This page is to inform users regarding the policies governing the collection, use, and disclosure of 
Personal Information when using the App. If you choose to use the App, then you agree to the 
collection and use of information in relation to this policy. The Personal Information that is collected 
is used for providing, evaluating and improving the App. Your information will not be used or shared 
with anyone except as described in this Privacy Policy. 

Information Collection and Use 

To use the App, you will be required to create an account by providing an email address and 
password. The information requested will be securely stored and is used to provide you with 
personalisation within the App. 

In order to fully function, you will be required to authorise this App to access your social media 
accounts. This authorisation is done via your social media account provider. The App will not see or 
store your social media account passwords. Once authorised, the App will be able to access 
information in your social media account. Crucially, the App can delete messages, posts, status 
updates, etc. from your social media account. Anything deleted can be viewed in Deleted Messages 
but cannot be re-instated to your social media account. You can de-authorise this App from 
accessing your social media accounts at any time.  

After a period of at least 10 days of using the App, you may be asked to complete an online 
questionnaire about the App.  Your questionnaire responses are not stored against any personal 
identifiable information. Rather a unique identifier is generated and your questionnaire responses 
are stored against this identifier. 

Service Providers 

The App may employ third-party companies and individuals due to the following reasons: 

• to facilitate the services provided by the App;
• to provide the services on our behalf;
• to perform App-related functions; or
• to assist in analysing how the App is used.

You should be aware that some of these third parties may have access to the same data available to 
the App through your usage of the app. This is to allow them to perform the tasks assigned to them 
on the App’s behalf. They are, however, obligated not to disclose or use the information for any 
other purpose. 

Usage and Log Data 

The App collects information about how you use the App, such as screen navigation, button taps, 
and swipes. Other information that may be collected include your device Internet Protocol (“IP”) 
address, device name, operating system version, the configuration of the app, the time and date of 
your use of the App. Any textual data that you input into the app is not monitored. None of the data 
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collected can be used to identify you: rather a unique randomly generated identifier is associated 
with the collected data. All collected information will be securely stored and only used to evaluate 
and improve the App. At no point will this information be passed on to a third party for the intention 
of advertising or marketing.  A third-party service provider (Firebase Analytics) is used to collect and 
analyse this data. The Firebase Analytics privacy policy is available here. 

Security 

We value your trust in providing us with your Personal Information, thus we use commercially 
acceptable means of protecting it. We have put secured processes in place to ensure your data is 
adequately protected and not liable to data breaches.   

External Links 

The App may contain links to other sites. If you click on a third-party link, you will be directed to that 
site. Note that these external sites are operated by third parties and we have no control over and 
assume no responsibility for the content, privacy policies, or practices of any third-party sites or 
services.  

Changes to This Privacy Policy 

We may update our Privacy Policy from time to time. Thus, you are advised to review this page 
periodically for any changes. We will notify you of any changes to this Privacy Policy via email. Any 
changes are effective immediately after they are posted on this page. 

Contact Us 

If you have any questions or suggestions about this Privacy Policy, do not hesitate to contact the 
developer at salawusd@aston.ac.uk. 
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APPENDIX E.1: Instructions for Lab-Based Evaluation Study  
 

BullStop Hands-On: Tasks to Perform (Parent-Child) 

The app currently syncs with Twitter every 5 minutes so you should allow that much time for 
new messages to appear in the app. 
 

1. You will be provided with an android phone/tablet with BullStop already installed. Launch the 
BullStop app. You will be prompted to create a BullStop account. Use the details below: 
 
Parent:  
Email: bullstoptest1@gmail.com 
Password: bullstop  
 
Child:  
Email: bullstoptest2@gmail.com 
Password: bullstop  
 
 

2. Next, you should connect BullStop to the following Twitter account. 
 
Parent:  
Email: bullstoptest1@gmail.com 
Password: bullstop  
 
Child:  
Email: bullstoptest2@gmail.com 
Password: bullstop  
 

3. BullStop starts off in Disable mode, so your first task is to configure BullStop to the protect 
your text messages. 
 

4. Go to the Messages Received screen, there will be some messages in the inbox, open the 
messages and see what checkboxes BullStop assigns to the message, do you agree with the 
ticked checkboxes. Please, be aware that BullStop reviews messages in real time so there will 
be a delay of a some seconds while it analyses each opened message. 
 

5. Go to the settings screen, set the Detection Sensitivity slider to any value you like. This will 
determine how aggressively BullStop deletes offensive messages sent to you. How does the 
Detection Sensitivity setting affect the way these messages are treated? Were any messages 
moved to Deleted Messages. Change the Detection Sensitivity slider value to a high value 
(maximum is 20), how has this affected the received messages?   
 

6. Go to the Manage Contacts screen. Find the contact “bullstoptest3” and block it. Inform the 
researcher once you have done this and he will send you some test messages as bullstoptest3. 
 

7. Go to the Received Messages screen. Confirm that no new messages have been received from 
“bullstoptest3”.   
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APPENDIX E.1: Instructions for Lab-Based Evaluation Study  
 

8. Open the Twitter app on the mobile device. The app is already configured with the account 
detailed above.  Send some direct messages (DM) to the other participant. 
 

9. Return to BullStop and go to the Sent Messages screen. Confirm that you can see the 
messages you sent to the other participant in the list. Open the messages and let BullStop 
review the messages, do you agree with the ticked checkboxes?   
 

10. Go to the Deleted Messages screen. Open the deleted messages (if any) and let BullStop 
review the messages, do you agree with the ticked checkboxes?   
 

11. Go to the Message Checker screen. Compose a message and check the message for offensive 
content. Do you agree with the ticked checkboxes?  Send a message via the Message Checker 
to the other participant? 
 

12. Go to the Reports screen. Verify the correctness of the reported figures. 
 

13. Go to the Settings screen. Review the various settings available. 
 

14. Go through the Tour screens. Can you think of anything that would make the tour better? 
 

15. Explore the app as you wish until we are ready to discuss it as a group. 
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APPENDIX E.1: Instructions for Lab-Based Evaluation Study  
 

BullStop Hands-On: Tasks to Perform (Others) 

The app currently syncs with Twitter every 5 minutes so you should allow that much time for 
new messages to appear in the app. 
 

1. You will be provided with an android phone/tablet with BullStop already installed. Launch the 
BullStop app. You will be prompted to create a BullStop account. Use the details below: 
 
Email: bullstoptest1@gmail.com 
Password: bullstop  
 
 

2. Next, you should connect BullStop to the following Twitter account. 
 
Email: bullstoptest1@gmail.com 
Password: bullstop  
 

3. BullStop starts off in Disable mode, so your first task is to configure BullStop to the protect 
your text messages. 
 

4. Go to the Messages Received screen, there will be some messages in the inbox, open the 
messages and see what checkboxes BullStop assigns to the message, do you agree with the 
ticked checkboxes. Please, be aware that BullStop reviews messages in real time so there will 
be a delay of a some seconds while it analyses each opened message. 
 

5. Go to the settings screen, set the Detection Sensitivity slider to any value you like. This will 
determine how aggressively BullStop deletes offensive messages sent to you. How does the 
Detection Sensitivity setting affect the way these messages are treated? Were any messages 
moved to Deleted Messages. Change the Detection Sensitivity slider value to a high value 
(maximum is 20), how has this affected the received messages?   
 

6. Go to the Manage Contacts screen. Find the contact “bullstoptest3” and block it. Inform the 
researcher once you have done this and he will send you some test messages as bullstoptest3. 
 

7. Go to the Received Messages screen. Confirm that no new messages have been received from 
“bullstoptest3”.   
 

8. Open the Twitter app on the mobile device. The app is already configured with the account 
detailed above.  Send some direct messages (DM) to the other participant. 
 

9. Return to BullStop and go to the Sent Messages screen. Confirm that you can see the 
messages you sent to the other participant in the list. Open the messages and let BullStop 
review the messages, do you agree with the ticked checkboxes?   
 

10. Go to the Deleted Messages screen. Open the deleted messages (if any) and let BullStop 
review the messages, do you agree with the ticked checkboxes?   
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APPENDIX E.1: Instructions for Lab-Based Evaluation Study  
 

11. Go to the Message Checker screen. Compose a message and check the message for offensive 
content. Do you agree with the ticked checkboxes?  Send a message via the Message Checker 
to the other participant? 
 

12. Go to the Reports screen. Verify the correctness of the reported figures. 
 

13. Go to the Settings screen. Review the various settings available. 
 

14. Go through the Tour screens. Can you think of anything that would make the tour better? 
 

15. Explore the app as you wish until we are ready to discuss it as a group. 
 

 

 

 

353S.D.Salawu, PhD Thesis, Aston University 2021.



APPENDIX E.2: Questions Guide for ‘Lab’-based Evaluations 

 
 

1. What are your initial impressions of the app? 
2. How easy was it for you to use the app? 
3. Did you find the app icons intuitive? 
4. Were there app icons that you did not like?  
5.  (If yes) Which ones and how would you improve them? 
6. What do you think of the app’s name? 
7. What do you think of the app’s logo? 
8. What do you think of the colours used in the app? 
9. Did you take the app tour? 
10. (If yes) Did you find the app tour useful? 
11. What do you think about the app’s accuracy in detecting offensive and 

bullying messages? 
12. Did you correct any of the Deleted Messages? 
13. (If yes) How many? 
14. Did you correct any of the Received Messages? 
15. (If yes) How many? 
16. Did you correct any of the Sent Messages? 
17. (If yes) How many? 
18. What do you think of the Message Checker? 
19. What do you think of the Reports? 
20. What was your favourite thing in the app? 
21. What was your least favourite thing in the app?  
22. How would you improve the app? 
23. Do you think the app will be useful to other young people? 
24. If you were being cyberbullied would you use the app? 
25. If yes) Why? 
26. Would you use the app even if you are not being cyberbullied? 
27. (If yes) Why? 
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Aston University 
Aston Triangle 

Birmingham 
B4 7ET 

0121 204 3000 

Date: 16 October 2019 

Dr Jo Lumsden 
Student: Semiu Salawu 

Dear Jo, 

Study title: Detection and Prevention of Cyberbullying on Online Social Networks 

REC REF: # 1544 

Confirmation of Ethical Opinion 

On behalf of the Committee, I am pleased to confirm a favourable opinion for the 
above research based on the basis described in the application form, protocol and 
supporting documentation listed below. 

Approved documents  

The final list of documents reviewed and approved by the Committee is as follows. 

Document Version Date 
Participant Information Sheet: Teenager 1.C 03/09/2019 
Consent Form: Teenager: Teenager 1.C 03/09/2019 
Participant Information Sheet: Parent 1.P 03/09/2019 
Consent Form: Parent 1.P 03/09/2019 
Participant Information Sheet: Professional 1.PR 03/09/2019 
Consent Form: Professional 1.PR 03/09/2019 
Recruitment Text: Aston 1 16/10/2019 
Recruitment Text: Parent 1 16/10/2019 
Recruitment Text: Professional 1 16/10/2019 
Phase 1 App Tasks 1 16/10/2019 
Phase 1 Focus Group Protocols 1 16/10/2019 
Phase 1 Focus Group Questions 1 16/10/2019 
Phase 1 Interview Questions 1 16/10/2019 
Phase 1 Paired exploration protocols 1 16/10/2019 
Phase 1 Pared exploration questions 1 16/10/2019 

APPENDIX E.3: 'Lab'-based Evaluation Ethics Approval.
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After starting your research please notify the University Research Ethics Committee 
of any of the following: 

• Amendments.  Any amendment should be sent as a Word document, with the
amendment highlighted or showing tracked changes.  The amendment
request must be accompanied by a covering letter along with all amended
documents, e.g. protocols, participant information sheets, consent forms etc.
Please include a version number and amended date to the file name of any
amended documentation (e.g. “Ethics Application #100 Protocol v2 amended
17/02/19.doc”).

• Unforeseen or adverse events e.g. disclosure of personal data, harm to
participants.

• New Investigators

• End of the study

Please email all notifications or queries to research_governance@aston.ac.uk and 
quote your UREC reference number with all correspondence. 

Wishing you every success with your research. 

Yours sincerely 

Ali Alshukry 
Acting Chair, University Research Ethics Committee 
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APPENDIX E.4: Invitation Email for Lab-Based Evaluation Study (Professionals). 
 

Invitation to Participate 

Evaluation of BullStop: A Mobile App for The Detection and Prevention of 
Cyberbullying on Social Media  

 

Hi [name], 

As we discussed, I would like to invite you to participate in a research study to evaluate 
a mobile app designed to help young people combat cyberbullying on social media 
sites.  

I am looking for [educators/cybercrime enforcement officers/child mental health 
professionals] such as yourself to take part in the study. The session will last between 
60 – 90 minutes and will involve you using an Android phone pre-installed with the app 
for a period of up to 30 minutes. After this we will then spend between 30 minutes to 
an hour talking about your impressions of the app and any feedback you may have. 
We can do the session at a local café or any venue convenient to you. 

I have attached a participant information sheet (which provides additional information 
about the study) to this email. Please read it and feel free to ask as many questions 
as you need in order to decide if you wish to take part.   

I have also included a consent form for you to preview. If you agree to take part, you 
will be required to sign a hardcopy of the consent form before we start the session.  

If you like to take part, please let me know. We can then arrange a suitable date, time 
and location for the session.  

If you have any question, please don’t hesitate to contact me. Thank you. 
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APPENDIX E.5: Invitation Email for Lab-Based Evaluation Study (Parents). 

Invitation to Participate 

Evaluation of BullStop: A Mobile App for The Detection and Prevention of 
Cyberbullying on Social Media  

 

Hi [name], 

As we discussed, I would like to invite you to participate in a research study to evaluate 
a mobile app designed to help young people combat cyberbullying on social media 
sites.  

I am looking for young people aged 11 – 17 years and their parents to take part 
together in the study. The session will last between 60 – 90 minutes and will involve 
you and your child collaboratively using an Android phone pre-installed with the app 
for a period of up to 30 minutes. After this we will, as a group, then spend between 30 
minutes to an hour talking about your impressions of the app and any feedback you 
may have. We can do the session either at your home, a local café or any venue 
convenient to you. It is important that both you and [Child Name] want to take part: 
please don’t place [Child Name] under any pressure to participate.  You will be with 
[Child Name] at all times during the study. 

I have attached two participant information sheets (these provide additional 
information about the study) to this email – one for you and one for [Child Name].  
Please read it and feel free to ask as many questions as you or [Child Name] need in 
order to decide if you each wish to take part.  Please discuss participation carefully 
with [Child Name] before deciding whether to participate. 

I have included 3 consent forms for you to preview as specified below: 

• Adult consent form for you; 
• Parent consent form for you to complete and sign on behalf of your child 

(required for children under 13 years); and 
• A teenager consent form (required for children 13 and over to complete by 

themselves). 

If you and [Child Name] agree to take part, you will be asked to sign hardcopies of the 
appropriate consent forms before we start the session.  

If you and [Child Name] would like to take part, please let me know. We can then 
arrange a suitable date, time and location for the session.  

If you have any question, please don’t hesitate to contact me. Thank you. 
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Participant Information Sheet 

 
Invitation 
We would like to invite you to take part in a research study. 
 
Before you decide if you would like to participate, take time to read the following information carefully 
and, if you wish, discuss it with others such as your family, friends or colleagues.  
 
Please ask a member of the research team, whose contact details can be found at the end of this 
information sheet, if there is anything that is not clear or if you would like more information before 
you make your decision. 
 
What is the purpose of this study? 
You are being asked to participate in a study to evaluate the usability and usefulness of a mobile app 
designed to detect and combat cyberbullying on social media.  The app uses novel computing 
technology to detect various forms of cyberbullying and take appropriate actions (such as deleting 
offensive messages and blocking cyberbullies and trolls) on behalf of the user. The target audience for 
this mobile application will be young people in the UK aged 11 – 17 years. We hope that this app will 
help protect vulnerable people, especially children, from the damage caused by cyberbullying. 
 
Why have I been chosen? 
You are being invited to take part in this study because as a [profession], we believe your input will be 
very valuable in assessing the mobile app from the perspective of responsible adults in the lives of the 
young people targeted by the app.   
 
What will happen to me if I take part? 
You will be asked to evaluate the app by using an Android smartphone to complete a series of tasks 
within the app. After using the app to complete the tasks, you will be asked to discuss your opinions 
of the app with the researcher in an interview.  This interview will be audio recorded so that we can 
maintain an accurate record of what you thought about the app. 
 
To protect your identity, you will be provided with a dummy account to login and use the app, and 
you will also be provided with a dummy Twitter account to which to connect the app. In other words, 
none of your personal contact information or your social media activity will be visible to the 
researchers or recorded as part of this study. 
 
As the app is designed to be intuitive and simple to use, no special skills are required to use the app. 
It is designed for the same level of app competence as any social media app. You can however ask 
questions or request assistance from the researcher if required at any time. In addition, the app 
includes a tutorial on how to use the app which you can refer to whenever you wish.  
 
The app is designed to record and track user actions such as screen navigation and taps. Keystrokes 
are however NOT recorded and so anything you type into the app is not recorded.  

EVALUATION OF BULLSTOP: A MOBILE APP FOR THE DETECTION AND PREVENTION OF 
CYBERBULLYING ON SOCIAL MEDIA  
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The entire session is expected to last between 60 – 90 minutes.  
 
Do I have to take part? 
No. It is up to you to decide whether or not you wish to take part.  If you do decide to participate, you 
will be asked to sign and date a consent form. You will still be free to withdraw from the study at any 
time without giving a reason. 
 
Will my taking part in this study be kept confidential? 
Yes. A code will be attached to all the data you provide to maintain confidentiality. 
 
Your personal data (name and contact details) will only be used if the researchers need to contact you 
to arrange study visits or collect data by phone. Analysis of your data will be undertaken using coded 
data.  
 
The data we collect will be stored in a secure document store (paper records) or electronically on a 
secure encrypted mobile device, password protected computer server or secure cloud storage device.  
 
To ensure the quality of the research, Aston University may need to access your data to check that the 
data has been recorded accurately. If this is required, your personal data will be treated as confidential 
by the individuals accessing your data. 
 
How will the conversations that take place during the interview be recorded and the information I 
provide managed?  
With your permission we will audio record the interview and take notes.  
 
The recording will be typed into a document (transcribed) by the researcher. This process will involve 
removing any information which could be used to identify individuals e.g., names, locations, etc.  
 
Audio recordings will be destroyed as soon as the transcripts have been checked for accuracy. We will 
ensure that anything you have told us that is included in the reporting of the study is anonymous. 
 
You of course are free not to answer any questions that are asked without giving a reason. 
 
What are the possible benefits of taking part? 
While there are no direct benefits to you of taking part in this study, the data gained will contribute 
to knowledge that will allow us to make this app as good as it can be and, in future, design other 
applications to mitigate and prevent cyberbullying.  
 
What are the possible risks and burdens of taking part? 
There are minimal risks associated with participating in this study beyond that of normal everyday 
usage of social media. The app (BullStop) is targeting a sensitive issue and, in order to allow 
participants to properly evaluate its use, the app has been pre-populated with ‘fake’ bullying content. 
A small portion of these offensive messages may contain one or more of the following profane words 
– damn, hell, sh*t, fu*k. None of the messages include racist, homophobic, transphobic, sexist and 
offensive content about age, weight, physical appearance and religion. 
 
Whilst the fake content will be carefully selected to avoid being unduly offensive, it is recognised that 
it could be offensive for some and/or could trigger memories of personal bullying for some 
participants. If any of the bullying messages make you feel uncomfortable then you should let the 
researcher know immediately; similarly, if the researcher observes you exhibiting behaviour indicative 
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of psychological discomfort, he will suspend your involvement until convinced that you are able to 
and wish to continue.  If participation in the study causes distress, you will be directed to a range of 
help resources (links to which are also embedded in the app itself).  
 
You can at any point stop your participation in the study. This does not affect any payments to which 
you are entitled. 
 
What will happen to the results of the study? 
The results of this study may be published/presented in scientific journals and/or presented at 
conferences. If the results of the study are published, your identity will remain confidential. 
 
A lay summary of the results of the study will be available for participants when the study has been 
completed and the researchers will ask if you would like to receive a copy. 
 
The results of the study will also be used in the PhD thesis of Semiu Salawu. 
 
Expenses and payments 
You will be entitled to £10 worth of Amazon vouchers for taking part in this study. No expenses 
payments will be made. 
 
Who is funding the research? 
This research is self-funded by the researcher (Semiu Salawu). 
 
Who is organising this study and acting as data controller for the study? 
Aston University is organising the study and acting as data controller for the study.  You can find out 
more about how we use your information in Appendix A. 
 
Who has reviewed the study? 
This study was given a favourable ethical opinion by Aston University Research Ethics Committee. 
 
What if I have a concern about my participation in the study? 
If you have any concerns about your participation in this study, please speak to the research team and 
they will do their best to answer your questions. Contact details can be found at the end of this 
information sheet. 
 
If the research team are unable to address your concerns or you wish to make a complaint about how 
the study is being conducted, you should contact the Aston University Research Integrity Office at 
research_governance@aston.ac.uk or telephone 0121 204 3000. 
 
Research Team 
If you have any questions, you may contact the PhD student researcher or his supervisor at:  
 
Semiu Salawu (PhD Student), School of Engineering & Applied Science, Aston University, e-Mail: 
salawusd@aston.ac.uk.  
 
Dr Jo Lumsden (Supervisor), School of Engineering & Applied Science, Aston University, e-Mail: 
j.lumsden@aston.ac.uk. Tel: 0121 204 3470  
 
Thank you for taking time to read this information sheet. If you have any questions regarding the 

study, please don’t hesitate to ask one of the research team. 
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Aston University takes its obligations under data and privacy law seriously and complies with the 
General Data Protection Regulation (“GDPR”) and the Data Protection Act 2018 (“DPA”).  
  
Aston University is the sponsor for this study based in the United Kingdom. We will be using 
information from you in order to undertake this study.  Aston University will process your personal 
data in order to register you as a participant and to manage your participation in the study.  It will 
process your personal data on the grounds that it is necessary for the performance of a task carried 
out in the public interest (GDPR Article 6(1)(e).  Aston University may process special categories of 
data about you which includes details about your health.  Aston University will process this data on 
the grounds that it is necessary for statistical or research purposes (GDPR Article 9(2)(j)).  Aston 
University will keep identifiable information about you for 6 years after the study has finished. 
 
Your rights to access, change or move your information are limited, as we need to manage your 
information in specific ways in order for the research to be reliable and accurate. If you withdraw from 
the study, we will keep the information about you that we have already obtained. To safeguard your 
rights, we will use the minimum personally identifiable information possible. 
 
You can find out more about how we use your information at www.aston.ac.uk/dataprotection or by 
contacting our Data Protection Officer at dp_officer@aston.ac.uk.  
 
If you wish to raise a complaint on how we have handled your personal data, you can contact our Data 
Protection Officer who will investigate the matter. If you are not satisfied with our response or believe 
we are processing your personal data in a way that is not lawful you can complain to the Information 
Commissioner’s Office (ICO).  
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Participant Information Sheet 

 
Invitation 
We would like to invite you to take part in a research study. 
 
Before you decide if you would like to participate, take time to read the following information carefully 
and, if you wish, discuss it with others such as your family, friends or colleagues.  
 
Please ask a member of the research team, whose contact details can be found at the end of this 
information sheet, if there is anything that is not clear or if you would like more information before 
you make your decision. 
 
What is the purpose of this study? 
You are being asked to participate in a study to evaluate the usability and usefulness of a mobile app 
designed to detect and combat cyberbullying on social media.  The app uses novel computing 
technology to detect various forms of cyberbullying and take appropriate actions (such as deleting 
offensive messages and blocking cyberbullies and trolls) on behalf of the user. The target audience for 
this mobile application will be young people in the UK aged 11 – 17 years. We hope that this app will 
help protect vulnerable people, especially children, from the damage caused by cyberbullying. 
 
Why have I been chosen? 
You are being invited to take part in this study because you are a parent with a child that falls within 
the age range of the target audience for the app. As a parent, we believe your input will be very 
valuable in assessing how well the mobile app meets the needs of our target audience and to 
represent the opinions of parents. Please note that we make no assumptions about any experience 
you or your child may have had with cyberbullying in the past – you are not being invited because we 
think you or your child may have had any experience of cyberbullying. 
 
What will happen to me if I take part? 
You will be asked to evaluate the app alongside your child. In this session, you will be asked to use an 
Android smartphone to interact with the app to complete a series of tasks. After using the app to 
complete the tasks, you and your child will be asked to discuss your opinions of the app with the 
researcher in a paired interview.  This interview will be audio recorded so that we can maintain an 
accurate record of what you and your child thought about the app. 
 
To protect your identity, you will be provided with a dummy account to login and use the app, and 
you will also be provided with a dummy Twitter account to which to connect the app. In other words, 
none of your personal contact information or your social media activity will be visible to the 
researchers or recorded as part of this study. 
 
As the app is designed to be intuitive and simple to use, no special skills are required to use the app. 
It is designed for the same level of app competence as any social media app. You and your child can 
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however ask questions or request assistance from the researcher if required at any time. In addition, 
the app includes a tutorial on how to use the app which you can refer to whenever you wish.  
 
The app is designed to record and track user actions such as screen navigation and taps. Keystrokes 
are however NOT recorded and so anything you type into the app is not recorded.  
 
The entire session is expected to last between 60 – 90 minutes.  
 
Do I have to take part? 
No. It is up to you to decide whether or not you and your child wish to take part.  If you do decide to 
participate, you will be asked to sign and date a consent form. If your child is under 13 years, you will 
also be required to sign and date a consent form on their behalf.  You and your child will still be free 
to withdraw from the study at any time without giving a reason. 
 
Will my taking part in this study be kept confidential? 
Yes. A code will be attached to all the data you provide to maintain confidentiality. 
 
Your personal data (name and contact details) will only be used if the researchers need to contact you 
to arrange study visits or collect data by phone. Analysis of your data will be undertaken using coded 
data.  
 
The data we collect will be stored in a secure document store (paper records) or electronically on a 
secure encrypted mobile device, password protected computer server or secure cloud storage device.  
 
To ensure the quality of the research, Aston University may need to access your data to check that the 
data has been recorded accurately. If this is required, your personal data will be treated as confidential 
by the individuals accessing your data. 
 
How will the conversations that take place during the interview be recorded and the information I 
provide managed?  
With your permission we will audio record the interview and take notes.  
 
The recording will be typed into a document (transcribed) by the researcher. This process will involve 
removing any information which could be used to identify individuals e.g., names, locations, etc.  
 
Audio recordings will be destroyed as soon as the transcripts have been checked for accuracy. 
 
We will ensure that anything you have told us that is included in the reporting of the study is 
anonymous. 
 
You of course are free not to answer any questions that are asked without giving a reason. 
 
What are the possible benefits of taking part? 
While there are no direct benefits to you of taking part in this study, the data gained will contribute 
to knowledge that will allow us to make this app as good as it can be and, in future, design other 
applications to mitigate and prevent cyberbullying.  
 
What are the possible risks and burdens of taking part? 
There are minimal risks associated with participating in this study beyond that of normal everyday 
usage of social media. The app (BullStop) is targeting a sensitive issue and, in order to allow 
participants to properly evaluate its use, the app has been pre-populated with ‘fake’ bullying content. 
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A small portion of these offensive messages may contain one or more of the following profane words 
– damn, hell, sh*t, fu*k. None of the messages include racist, homophobic, transphobic, sexist and 
offensive content about age, weight, physical appearance and religion. 
 
Whilst the fake content will be carefully selected to avoid being unduly offensive, it is recognised that 
it could be offensive for some and/or could trigger memories of personal bullying for some 
participants. If any of the bullying messages make you or your child feel uncomfortable then you 
should let the researcher know immediately; similarly, if the researcher observes you or your child 
exhibiting behaviour indicative of psychological discomfort, he will suspend your involvement until 
convinced that you or child are able to and wish to continue.  If participation in the study causes 
distress, you will be directed to a range of help resources (links to which are also embedded in the app 
itself).  
 
If your child has been subjected to cyberbullying in the past, you should think carefully about allowing 
their participation in this study so as not to risk them reliving the experience.  We would strongly 
advice talking this over with your child first before agreeing to their participation in the study.  
 
Also, please be aware that you or your child can at any point stop your participation in the study. This 
does not affect any payments to which you are entitled. 
 
What will happen to the results of the study? 
The results of this study may be published/presented in scientific journals and/or presented at 
conferences. If the results of the study are published, your identity will remain confidential. 
 
A lay summary of the results of the study will be available for participants when the study has been 
completed and the researchers will ask if you would like to receive a copy. 
 
The results of the study will also be used in the PhD thesis of Semiu Salawu. 
 
Expenses and payments 
You and your child will be entitled to £10 worth of Amazon vouchers each for taking part in this study. 
No expenses payments will be made. 
 
Who is funding the research? 
This research is self-funded by the researcher (Semiu Salawu). 
 
Who is organising this study and acting as data controller for the study? 
Aston University is organising the study and acting as data controller for the study.  You can find out 
more about how we use your information in Appendix A. 
 
Who has reviewed the study? 
This study was given a favourable ethical opinion by Aston University Research Ethics Committee. 
 
What if I have a concern about my participation in the study? 
If you have any concerns about your participation in this study, please speak to the research team and 
they will do their best to answer your questions. Contact details can be found at the end of this 
information sheet. 
 
If the research team are unable to address your concerns or you wish to make a complaint about how 
the study is being conducted, you should contact the Aston University Research Integrity Office at 
research_governance@aston.ac.uk or telephone 0121 204 3000.  
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Research Team 
If you have any questions, you may contact the PhD student researcher or his supervisor at:  
 
Semiu Salawu (PhD Student), School of Engineering & Applied Science, Aston University, e-Mail: 
salawusd@aston.ac.uk.  
 
Dr Jo Lumsden (Supervisor), School of Engineering & Applied Science, Aston University, e-Mail: 
j.lumsden@aston.ac.uk. Tel: 0121 204 3470  
 
Thank you for taking time to read this information sheet. If you have any questions regarding the 

study, please don’t hesitate to ask one of the research team. 
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Aston University takes its obligations under data and privacy law seriously and complies with the 
General Data Protection Regulation (“GDPR”) and the Data Protection Act 2018 (“DPA”).  
  
Aston University is the sponsor for this study based in the United Kingdom. We will be using 
information from you in order to undertake this study.  Aston University will process your personal 
data in order to register you as a participant and to manage your participation in the study.  It will 
process your personal data on the grounds that it is necessary for the performance of a task carried 
out in the public interest (GDPR Article 6(1)(e).  Aston University may process special categories of 
data about you which includes details about your health.  Aston University will process this data on 
the grounds that it is necessary for statistical or research purposes (GDPR Article 9(2)(j)).  Aston 
University will keep identifiable information about you for 6 years after the study has finished. 
 
Your rights to access, change or move your information are limited, as we need to manage your 
information in specific ways in order for the research to be reliable and accurate. If you withdraw from 
the study, we will keep the information about you that we have already obtained. To safeguard your 
rights, we will use the minimum personally identifiable information possible. 
 
You can find out more about how we use your information at www.aston.ac.uk/dataprotection or by 
contacting our Data Protection Officer at dp_officer@aston.ac.uk.  
 
If you wish to raise a complaint on how we have handled your personal data, you can contact our Data 
Protection Officer who will investigate the matter. If you are not satisfied with our response or believe 
we are processing your personal data in a way that is not lawful you can complain to the Information 
Commissioner’s Office (ICO).  
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Participant Information Sheet 

 
Invitation 
We would like to invite you to take part in a research study. 
 
Before you decide if you would like to take part, take time to read the following information carefully 
and, if you wish, discuss it with others such as your family, friends or colleagues.  
 
Please ask a member of the research team, whose contact details can be found at the end of this 
information sheet, if there is anything that is not clear or if you would like more information before 
you make your decision. 
 
What is the purpose of this study? 
You are being asked to take part in a study to assess how usable and useful a mobile app designed to 
detect and combat cyberbullying on social media is.  The app uses new computing technology to 
detect types of cyberbullying and take action to protect its user (such as deleting upsetting messages 
and blocking cyberbullies and trolls). The target audience for this mobile application will be young 
people in the UK aged 11 – 17 years – i.e., people like you.  We hope that this app will help protect 
young people from the negative effects of cyberbullying. 
 
Why have I been chosen? 
You are being invited to take part in this study because you are someone of the age this app is designed 
for. We believe your input will be very useful in assessing how well the mobile app meets the needs 
of young people like you. Please note that we are not assuming that you have any experience of 
cyberbullying in the past – you are not being invited because we think you may have had any 
experience of cyberbullying. 
 
What will happen to me if I take part? 
You will be asked to assess the app alongside your parent. In this session, you will be asked to use an 
Android smartphone to interact with the app to complete a series of tasks. After using the app to 
complete the tasks, you and your parent will be asked to discuss your opinions of the app with the 
researcher in a paired interview.  This interview will be audio recorded so that we can accurately 
record what you and your parent thought about the app. 
 
To protect your identity, you will be provided with a dummy account to login and use the app, and 
you will also be provided with a dummy Twitter account to which to connect the app. In other words, 
none of your personal contact information or your social media activity will be visible to the 
researchers or recorded as part of this study. 
 
As the app is designed to be simple to use, no special skills are required to use the app. It is designed 
to be usable by the same people who use any social media app. You can however ask questions or 
request assistance from the researcher if required at any time. In addition, the app includes a tutorial 
on how to use the app which you can refer to whenever you wish.  
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The app is designed to record and track user actions such as screen navigation and taps. Keystrokes 
are however NOT recorded and so anything you type into the app is not recorded.  
 
The entire session is expected to last between 60 – 90 minutes.  
 
Do I have to take part? 
No. It is up to you to decide whether or not you wish to take part.  If you do decide to take part, you 
will be asked to sign and date a consent form (if you are under 13, your parent will sign this on your 
behalf).  You will still be free to stop taking part in the study at any time without giving a reason. 
 
Will my taking part in this study be kept confidential? 
Yes. A code will be attached to all the data you provide to make sure you can’t be identified from the 
data. 
 
Your personal data (name and contact details) will only be used if the researchers need to contact you 
to arrange study visits or collect data by phone. Analysis of your data will be undertaken using coded 
data.  
 
The data we collect will be stored in a secure document store (paper records) or electronically on a 
secure encrypted mobile device, password protected computer server or secure cloud storage device.  
 
To ensure the quality of the research, Aston University may need to access your data to check that the 
data has been recorded accurately. If this is required, your personal data will be treated as confidential 
by the individuals accessing your data. 
 
How will the conversations that take place during the interview be recorded and the information I 
provide managed?  
With your permission we will audio record the interview and take notes.  
 
The recording will be typed into a document (transcribed) by the researcher. This process will involve 
removing any information which could be used to identify individuals e.g., names, locations, etc.  
 
Audio recordings will be destroyed as soon as the transcripts have been checked to make sure they 
are correct. 
 
We will ensure that anything you have told us that is included in the reporting of the study is does not 
include your name. 
 
You of course are free not to answer any questions that are asked without giving a reason. 
 
What are the possible benefits of taking part? 
While you won’t benefit directly from taking part in this study, the information you provide us with 
will contribute to knowledge that will allow us to make this app as good as it can be and, in future, 
design other applications to reduce and/or prevent cyberbullying.  
 
What are the possible risks and burdens of taking part? 
There are very few risks associated with taking part in this study beyond that of normal everyday use 
of social media. The app (BullStop) is targeting a sensitive issue and, in order to allow participants to 
properly evaluate its use, the app has been pre-populated with ‘fake’ bullying content. A small portion 
of these offensive messages may contain one or more of the following words – damn, hell, sh*t, fu*k. 
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None of the messages include racist, homophobic, transphobic, sexist and offensive content about 
age, weight, physical appearance and religion. 
 
Whilst the fake content will be carefully selected to avoid being too offensive, we realise it could upset 
some people and/or could bring up memories of personal bullying for some people. If any of the 
bullying messages make you feel uncomfortable then you should either let your parent/guardian or 
the researcher know immediately; similarly, if the researcher thinks that you look like you are 
uncomfortable, he will pause your involvement until he thinks that you are able to and/or wish to 
continue.  If participation in the study causes you to become upset, the researcher will point you 
towards to a range of help resources (links to which are also embedded in the app itself). 
 
You can at any point stop taking part in the study. This does not affect whether or not you will be given 
your £10 Amazon voucher. 
 
What will happen to the results of the study? 
The results of this study may be published/presented in scientific journals and/or presented at 
conferences. If the results of the study are published, your identity will remain hidden. 
 
A summary of the results of the study will be available for you if you like when the study has been 
completed and the researchers will ask if you would like to receive a copy. 
 
The results of the study will also be used in the PhD thesis of Semiu Salawu. 
 
Expenses and payments 
You will be entitled to £10 worth of Amazon vouchers for taking part in this study. No expenses 
payments will be made. 
 
Who is funding the research? 
This research is self-funded by the researcher (Semiu Salawu). 
 
Who is organising this study and acting as data controller for the study? 
Aston University is organising the study and acting as data controller for the study.  You can find out 
more about how we use your information in Appendix A. 
 
Who has reviewed the study? 
This study was given a favourable ethical opinion by Aston University Research Ethics Committee. 
 
What if I have a concern about my participation in the study? 
If you have any concerns about your taking part in this study, please speak to the research team and 
they will do their best to answer your questions. Contact details can be found at the end of this 
information sheet. 
 
If the research team are unable to address your concerns or you wish to make a complaint about how 
the study is being conducted, you should contact the Aston University Research Integrity Office at 
research_governance@aston.ac.uk or telephone 0121 204 3000. 
 
Research Team 
If you have any questions, you may contact the PhD student researcher or his supervisor at:  
 
Semiu Salawu (PhD Student), School of Engineering & Applied Science, Aston University, e-Mail: 
salawusd@aston.ac.uk.  

370S.D.Salawu, PhD Thesis, Aston University 2021.

mailto:salawusd@aston.ac.uk


APPENDIX E.8: Participant Information Sheet for Lab-Based Evaluation Study 
(Young People). 
 

REC: [xxxxxx], Evaluation of Bullstop Participant Information Sheet Version 1.C / 03.09.2019  Page 4 
                                                                                                             

 
Dr Jo Lumsden (Supervisor), School of Engineering & Applied Science, Aston University, e-Mail: 
j.lumsden@aston.ac.uk. Tel: 0121 204 3470  
 
Thank you for taking time to read this information sheet. If you have any questions regarding the 

study, please don’t hesitate to ask one of the research team. 
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Aston University takes its obligations under data and privacy law seriously and complies with the 
General Data Protection Regulation (“GDPR”) and the Data Protection Act 2018 (“DPA”).  
  
Aston University is the sponsor for this study based in the United Kingdom. We will be using 
information from you in order to undertake this study.  Aston University will process your personal 
data in order to register you as a participant and to manage your participation in the study.  It will 
process your personal data on the grounds that it is necessary for the performance of a task carried 
out in the public interest (GDPR Article 6(1)(e).  Aston University may process special categories of 
data about you which includes details about your health.  Aston University will process this data on 
the grounds that it is necessary for statistical or research purposes (GDPR Article 9(2)(j)).  Aston 
University will keep identifiable information about you for 6 years after the study has finished. 
 
Your rights to access, change or move your information are limited, as we need to manage your 
information in specific ways in order for the research to be reliable and accurate. If you withdraw from 
the study, we will keep the information about you that we have already obtained. To safeguard your 
rights, we will use the minimum personally identifiable information possible. 
 
You can find out more about how we use your information at www.aston.ac.uk/dataprotection or by 
contacting our Data Protection Officer at dp_officer@aston.ac.uk.  
 
If you wish to raise a complaint on how we have handled your personal data, you can contact our Data 
Protection Officer who will investigate the matter. If you are not satisfied with our response or believe 
we are processing your personal data in a way that is not lawful you can complain to the Information 
Commissioner’s Office (ICO).  
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EVALUATION OF BULLSTOP: A MOBILE APP FOR THE DETECTION AND PREVENTION OF 
CYBERBULLYING ON SOCIAL MEDIA 

Consent Form 
Name of Chief Investigator: Semiu Salawu 

Please initial boxes 

1. I confirm that I have read and understand the Participant Information 
Sheet (Version #1.P 03/09/2019) for the above study. I have had the 
opportunity to consider the information, ask questions and have had these 
answered satisfactorily. 

 

2.  I understand that my participation is voluntary and that I am free to 
withdraw at any time, without giving any reason and without my legal 
rights being affected. 

 

3. I agree to my personal data and data relating to me collected during the 
study being processed as described in the Participant Information Sheet 

 

4. I agree to my interview being audio recorded and to anonymised direct 
quotes from me being used in publications resulting from the study. 

 

5. I agree to my anonymised data being used by research teams for future 
research. 

 

6. I agree to my personal data being processed for the purposes of inviting 
me to participate in future research projects. I understand that I may opt 
out of receiving these invitations at any time.  

 

7. I agree to take part in this study.  

 

 

_________________________ ________________ ___________________ 
Name of participant Date Signature 
 
 
_________________________ ________________ ___________________ 
Name of Person receiving Date Signature 
consent. 
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EVALUATION OF BULLSTOP: A MOBILE APP FOR THE DETECTION AND PREVENTION OF 
CYBERBULLYING ON SOCIAL MEDIA 

Consent Form 
Name of Chief Investigator: Semiu Salawu 

Please initial boxes 

1. I confirm that I have read and understand the Participant Information 
Sheet (Version #1.X 03/09/2019) for the above study. I have had the 
opportunity to consider the information, ask questions and have had these 
answered satisfactorily. 

 

2.  I understand that my participation is voluntary and that I am free to 
withdraw at any time, without giving any reason and without my legal 
rights being affected. 

 

3. I agree to my personal data and data relating to me collected during the 
study being processed as described in the Participant Information Sheet 

 

4. I understand that if during the study I or my child tell the research team 
something that causes them to have concerns in relation to his/her health 
and/or welfare they may need to breach my confidentiality. 

 

5. I agree to my interview being audio recorded and to anonymised direct 
quotes from me being used in publications resulting from the study. 

 

6. I agree to my anonymised data being used by research teams for future 
research. 

 

7. I agree to my personal data being processed for the purposes of inviting 
me to participate in future research projects. I understand that I may opt 
out of receiving these invitations at any time.  

 

8. I agree to take part in this study.  

 

 

_________________________ ________________ ___________________ 
Name of participant Date Signature 
 
 
_________________________ ________________ ___________________ 
Name of Person receiving Date Signature 
consent. 
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EVALUATION OF BULLSTOP: A MOBILE APP FOR THE DETECTION AND PREVENTION OF 
CYBERBULLYING ON SOCIAL MEDIA 

Consent Form 
Name of Chief Investigator: Semiu Salawu 

Please initial boxes 

1. I confirm that I have read and understand the Participant Information 
Sheet (Version #1.X 03/09/2019) for the above study. I have had the 
opportunity to consider the information, ask questions and have had 
these answered satisfactorily. 

 

2. I understand that my child’s participation is voluntary and that I am free 
to withdraw my child’s participation at any time, without giving any 
reason and without my or my child’s legal rights being affected. 

 

3. I agree to my child’s personal data and data relating to my child 
collected during the study being processed as described in the 
Participant Information Sheet. 

 

4. I understand that if during the study my child tells the research team 
something that causes them to have concerns in relation to his/her 
health and/or welfare they may need to breach my child’s 
confidentiality. 

 

5. I agree to my child’s interview being audio recorded and to anonymised 
direct quotes from my child being used in publications resulting from 
the study. 

 

6. I agree to my child’s anonymised data being used by research teams 
for future research. 

 

7. I agree to my child’s personal data being processed for the purposes 
of inviting my child to participate in future research projects. I 
understand that my child may opt out of receiving these invitations at 
any time.  

 

8. I agree for my child to take part in this study.  
 

 

_________________________ ________________ ___________________ 
Name of Parent/Legal Guardian Date Signature 
 
 
_________________________ ________________ ___________________ 
Name of Person receiving Date Signature 
consent. 
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Theme Easy to use 

Sample Quotes Coded As 
“I like the simplicity of the UI. I don't like cluttered apps 
with too many things going on the screen”. 
 
“It's simple. The whole app is simple. I like the settings”. 
 
“I like the look. It looks very professional and clean”. 
 
“I like the design and the colours. It’s very subtle, not in 
your face”. 
 
“I like the pictures of the kids on the home page. And the 
settings, it’s straightforward.” 
 
“It's simple. It’s like Twitter but also different. I get it from 
the beginning. I like the settings”. 
 
“It's easy to set up an account initially, and then to log in, 
it's quite easy and quick. There's not a lot of confusing 
stuff, and it’s really quick to create an account. That’s very 
good”. 
 
“I like the way everything is set out”. 
 
“I think it was quite good for a techy challenged person, 
easy to use, and straight forward, and not too busy”. 
 
“Easy to set up the account and it connects well with 
Twitter”. 

1. Simple interface  
2. Easy to use 

 

“I like the tour. I generally struggle with apps or anything 
techy, but with a few screens of the tour, I understood the 
app completely”. 
 
“My initial impression was very good. You start the app; 
you can see the tour. As a user, or even as perhaps a 
guardian, I can go through the tour and understand very 
quickly what the app is trying to achieve. That is a very 
good start because some apps can be confusing when 
you first open them, and that makes this good”. 

1. Helpful 
2. Guides the user. 

 

 

Theme Well designed 

Sample Quotes Coded As 
“I like the look. It looks very professional and clean”. 
 
“It certainly looks like a paid app I would have downloaded 
from the app store”. 
 
“It looks very professional. Like apps [that] I have paid for 
before”. 

1. High quality 
2. Well designed 
3. Appealing 

 

“I like the tour. I generally struggle with apps or anything 
techy, but with a few screens of the tour, I understood the 
app completely”. 
 

1. Helpful  
2. Guides the user 
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“My initial impression was very good. You start the app; 
you can see the tour. As a user, or even as perhaps a 
guardian, I can go through the tour and understand very 
quickly what the app is trying to achieve. That is a very 
good start because some apps can be confusing when 
you first open them, and that makes this good”. 

 

Theme Appropriate branding 

Sample Quotes Coded As 
“I like the shield. It has a strong message about what it’s 
stopping”. 
 
“I like the logo. It is a strong image. Secure and safe. It’s 
good”. 
 
“I like the shield because it's like you have a knight 
protecting you”. 
 
“Actually, that logo is very apt. I like it.” 

1. Safe and secure image 
2. Strong message 

 

“I like the name; BullStop. When I heard the name, it 
resonates because cyberbullying and stopping 
cyberbullying. I just like the name. In short, I think its 
children friendly”. 
 
“The name is very clever. I got it immediately”. 
 
“It’s quite a smart name”. 

1. Apt name 
2. Clever 

 

Theme Good overall performance 

Sample Quotes Coded As 
“It correctly picked out the offensive sentences I typed”. 
 
“Even when I tried to be sneaky with a bad word. It got 
it. I wasn’t expecting that”. 
 
“I like that you can tick the checkboxes to improve the 
app.” 

1. Accurate predictions 
2. Consistent 
3. Able to update predictions  

“It’s quite fast. I timed the message checker a few times, 
and it was like 1 or 2 seconds. That’s impressive”. 
 
“I don’t know why I keep expecting it to hang. I know 
that’s bad, but it didn’t at all”. 
 
“Going from screen to screen, it was quite smooth”. 

1. Responsive 
2. Exceeds expectations – ‘not 

hanging’ 
3. Exceeds expectations – fast 

 

 

 

Theme User empowerment. 

Sample Quotes Coded As 
“I think it's really good because if you want to see a text 
message and you don't know what you're in for, it might 

1. Being in control 
2. Feeling protected 
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be something weird. It might just be something silly but 
still cheeky, and before you read that message, you can 
quickly scan the checkboxes, and you know what you're 
in for, and you know what you're supposed to do before 
you actually read the message”. 

 
“It’s good that with the app, I can control what kind of 
messages I receive”. 
 
“I like that you can make contacts trusted or blocked. 
And that it can automatically block people if they are 
being offensive”. 
 
“It’s quite handy to manage friends from different social 
networks in one place”. 
 
“The fact that you can adjust the app settings is very 
good. That you can control what type of messages are 
deleted”. 
 
“I think having something like this gives the child some 
measure of control back, and I think that’s key”. 
 
“A thing like this, it's putting the young person in control, 
and giving them some trust, and saying, ‘Actually, you 
know what? You've got this, you can take care of 
yourself’”. 
 
“What we say to parents is instead of having this effect on 
your child, why don't you switch off the internet at home, 
take off the device from the child. But in a way that can 
sometimes contribute to the feeling of powerless in young 
people because now they have lost their phones and 
Internet because of this so it is key to demonstrate to 
them that they do have the power to fight this and I think 
this app can provide that”. 

3. Configurable 

“I like the fact that there’s no parent companion app”. 
 
“I don't think any child will install an app if they know it 
allows their parents access to what they are doing on 
social media. So, I think the decision not to include 
parental monitoring in the app is the right one”. 
 
“I think it’s good to give children some control instead of 
sending parents copies of their messages. No child likes 
that, and they probably won’t use the app”. 
 
“I think not having a parents’ or companion app, is very 
good and should be used a selling point of this app, and 
that's useful because you want young people to use it, 
otherwise, there's no point for it in the first place. 
Teenagers will never use it if they know there's parent 
supervision in the app”. 

1. Focussed on young people  
2. Promoting independence 
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Theme Reflective and educative 

Sample Quotes Coded As 
“I think the one when I was sending a text, and then it 
checked for me because as much as I don't want to be 
hurt, I don't want to hurt people either. Also, if people 
don’t want to get in trouble for sending something, they 
can use the app to tell them if what they are sending is 
bad”. 
 
“I like the message checker a lot too. I think it is a key 
feature”. 
 
“The charity list is a nice touch. That could become quite 
helpful”. 
 
“The best thing for me about the app is I think it tells you 
to stop and think before sending a message, which I think 
young people struggle with. Some people might not have 
the intention to bully, but at the end of the day, what you 
have said has gone a long way to hurt or to bully another 
child. The fact that it has a stop and think section, which 
for any child who does not directly want to bully or does 
not have the intention of bullying, that is positive”. 
 

1. Reflective 
2. Educative  
3. Supportive 
4. Access to additional help 

 

 

Theme Useful and unique. 

Sample Quotes Coded As 
“I’m not aware in my professional capacity of any 
software or app that particularly addresses 
cyberbullying. This is something we can recommend to 
our patients because we know that it can improve 
lifestyles”. 
 
“I haven’t come across anything similar to this”. 
 
“It's pretty good, the BullStop app. It protects young 
people from the dangers of social media. I will tell my 
friends about it”. 

1. Lack of alternatives 
2. Unique 
3. Useful 

 

“Overall, I think that it's a very good app. I would 
definitely use it”. 
 
“I’m not being cyberbullied, but if I am, I will definitely 
use the app”. 
 
“Yes, I guess if I have been harassed. Maybe not so 
much now, but when I was younger, I can see myself 
installing something like this if it was available then”. 
 

1. Intention to use 
 

“For my kids, I would suggest to them that why don't you 
just filter all your messages through this app because 
you might be chatting with a friend and jokingly say 
something offensive or vice versa but an app like this 
just act as a filter, a shield”. 
 

1. Intention to recommend  
2. Helpful  
3. Fits with common advice 
4. Safeguarding 
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“I really like it, and I know a few people that I think this 
will be good for.” 

“If someone is being bullied online, I would definitely 
recommend this app to them, and if this tool is publicly 
available, it’s something the Police can suggest to 
people as a safeguarding tool”. 

“Definitely, I can recommend this [app] to them because 
it is putting the advice we provide into effect; block 
offensive contacts, review connection requests, etc., 
these are all the practical things we tell the parents to 
do”. 

“It is within our professional capacity to recommend 
apps like this because we know that these are tools that 
can help in their everyday lives”. 

Theme Suggested improvements 

Sample Quotes Coded As 
“I really like the app […]. I think it’s great, but I don’t 
actually use Twitter. I am on Instagram and use 
WhatsApp a lot, and my friends are the same. I think if 
you can have Instagram and WhatsApp, I can see a lot of 
teenagers using this.” 

“If other social networks like Instagram can work with it, I 
think more people will want to use it”. 

“Working with different social networks will be key to this 
going viral. Sometimes bullies hop from one platform to 
another”. 

1. Provide support for other online
social networks

“I wasn’t sure about some icons”. 1. Confused by icons

“I would like if the message checker can be used in 
other apps like WhatsApp”. 

“It will be good if it can check as people are texting”. 

1. Provide support for instant
messaging and texting

“There are some messages that I sent that I expected 
like 4-5 checkboxes, but it picked 2.” 

“It’s quite good at picking abuse and bullying, but it didn’t 
get the threatening messages”. 

1. Improve predictions precision
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From: Alshukry, Ali  
Sent: 30 October 2019 08:56 
To: Lumsden, Joanna (Jo) <J.LUMSDEN@aston.ac.uk>; Richards, Matthew 
<m.richards3@aston.ac.uk> 
Cc: Salawu, Semiu D (Research Student) <salawusd@aston.ac.uk> 
Subject: RE: Your advice....before you go! 

Hi Jo, 

I can confirm that the user testing is not research activity and therefore does not require research 
ethics review.  This is more comparable to market research where the word “research” comes up 
but it is not meant for academic research.    For this piece of work the academic research aspect is 
being done under research ethics.  The next stage is to evaluate the product (in this case the app), 
therefore, as long as the legal aspects are covered, I do not see why you can’t go ahead with it.   

You might want to think about liability insurance should the app damages someone’s device.  Even if 
you covered this in the EULA you will still need some form of insurance should someone decides to 
take legal action for any other reason. 

I have minor comments: 
Privacy policy:  

First paragraph – fifth line “collect” should be “collected” 

Under “Changes to This Privacy Policy” there must an option to notify users of the change to go and 
change, otherwise this may be considered a GDPR breach as there is not active consent to the change. 

Best wishes 

Ali 

Ali Alshukry 
Research Integrity Manager 

Research Integrity Office 
Research and Knowledge Exchange 
Aston University, Birmingham, B4 7ET, UK 
0121 204 3738 
Research_Governance@aston.ac.uk  
www.aston.ac.uk 

APPENDIX E.13: Field-Based Evaluation Research Approval
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APPENDIX E.14: Field-Based Evaluation Study Questionnaire 

1. How old are you?  
 13 – 15 
 16 – 18 
 Over 18 

 
2. What is your gender? 

 Male 
 Female 
 Other non-binary 
 Prefer not to say 

 
3. Which of the following do you regularly use (select all that apply)?  

 Twitter 
 Facebook 
 Myspace 
 Snapchat 
 WhatsApp 
 Instagram 
 Other (please specify): _____________________ 

 
4. How often do you use these social networks? 

 Several times a day 
 A few times a day 
 A few times a week 
 Rarely 

 
5. Have you ever been cyberbullied?  

 Yes 
 No (Skip to question 11) 

 
6. Who cyberbullied you?  

 A friend 
 Someone I know 
 Someone I don’t know 

 
7. When was this?  

 Within the last 3 months  
 Within the last 4-6 months 
 Within the last 7-12 months 
 Over a year ago 

 
8. How did this cyberbullying occur? (select all that apply) 

 They sent offensive text messages to me 
 They sent offensive private messages to me on social media 
 They shared something offensive about me online publicly 
 Other (please explain): ___________________________ 
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9. What did you do (select all that apply)? 

 I told my parents 
 I told a friend 
 I just ignored them 
 I told them to stop 
 I didn’t know what to do 
 I didn’t do anything because I was too scared/upset 
 I retaliated (please explain):  ___________________________ 

 
10. Has this cyberbullying stopped? 

 Yes 
 No 

 
11. Have you ever cyberbullied someone? 

 Yes 
 No (Skip to question 14) 

 
12. Who did you cyberbully? 

 A friend 
 Someone I know 
 Someone I don’t know 

 
13. How did this cyberbullying occur? (Select all that apply) 

 I sent offensive text messages to them 
 I posted something offensive about them online publicly 
 I sent them offensive private messages on social media 
 Other (please explain): ___________________________ 

 
14. Please select all of following statements that you agree with: 

 I don't know what cyberbullying is. 
 Cyberbullying is not a big deal. 
 Friends of mine have been cyberbullied. 
 We've had cyberbullying incidents in my school. 
 I have said things to others online that they didn’t like but I don't 

consider it cyberbullying. 
 Others have said mean things to or about me online, but I don't 

consider it cyberbullying. 
 

15. How did you find out about the app? 
 I saw a report about it (TV, newspaper or online) 
 Through a charity organisation 
 Word of mouth 
 An online search (e.g. Google) 
 A Play Store search 
 Other (please specify) _____________________________ 
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16. Do you think the app is a good idea? 

 Yes 
 No 

 
17. Please tell us why you selected your answer in Question 16. 

 

 

 

 

 

18.  How easy was it for you to use the app? 

 

19. Did you take the app tour? 
 Yes  
 No (Skip to question 22) 

 
20. Did you find the app tour useful? 

 Yes 
 No 

 
21. Do you think you would have been able to confidently use the app without the 

tour? 
 Yes 
 No 

 
22. In the period that you have been using the app, did it delete any offensive 

message? 
 Yes 
 No (Skip to question 26) 

 
23. Approximately how many messages were deleted? ______________ 

 
24. Did you have to correct the ticked checkboxes for the deleted messages (i.e., 

did you disagree with the app in terms of some of the messages it thought 
were cyberbullying)? 

 Yes 
 No 

 
25. How many deleted messages did you do this for? ______________ 

 

Very Difficult             Difficult  Neither Easy Difficult  Easy  Very Easy          

     1                       2                  3                                         4                    5         
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26. How would you rate the app’s ability to correctly delete offensive messages? 
 
 
 
 

27. Did you have to correct the ticked checkboxes for your received messages 
(i.e., did you disagree with the app in terms of some of the messages it 
allowed through but you thought were cyberbullying)? 

 Yes 
 No (Skip to question 29) 

 
28. How many received messages did you correct? ______________ 

 
29. The app flags sent messages in terms of how offensive it thinks they are: do 

you think this is a good idea? 
 Yes 
 No 

 
30. Did you have to correct the ticked checkboxes for your sent messages (i.e., 

did you disagree with the app in terms of what it thought of some of your own 
messages)? 

 Yes 
 No (Skip to question 32) 

 
31. How many sent messages did you correct? ______________ 

 
 

32. How would you rate the app’s ability in terms of correctly identifying offensive 
messages?  

 

33. How would you rate the app’s ability in terms of correctly identifying non-
offensive messages?  
 

 
34.  Did you find the app icons self-explanatory?  

 Yes 
 No 

 

Very Bad  Bad  Average       Good  Very Good           

     1                        2        3                            4                   5         

Very Bad   Bad  Average  Good  Very Good           

     1                       2        3                      4                   5         

Very Bad   Bad  Average  Good  Very Good           

     1                       2        3                      4                   5         
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35. Do you feel that the app was well designed for people your age? 
 Yes 
 No 

 
36. How would you rate the app in terms of how quickly it responds? 

 
37. Do you think the app will be useful for people your age?  

 Yes 
 No 

 
38. What was your favourite feature of the app.? 

 

 

 

 

39. What was your least favourite feature of the app?  

 

 
 
 
 
 
 

 
40. How would you improve the app? 

 

 
 
 
 
 

41. Would you continue using the app?  
 Yes 
 No 

 
42.   Please tell us why you selected your answer in Question 40. 

 

 

 

Very Bad   Bad  Average  Good  Very Good           

     1                       2        3                      4                   5         

386S.D.Salawu, PhD Thesis, Aston University 2021.



APPENDIX E.14: Field-Based Evaluation Study Questionnaire 

 

 

 

 

43. Overall, how would you rate the app?  

 

 

 
44.   We would love to hear anything else you want to tell us about the app and 

what you think about it so that we can improve the app. Please leave us 
general comments below. 

 

 

 

 

 

Very Bad  Bad  Average  Good  Very Good           

     1                     2        3                      4                   5         

 

387S.D.Salawu, PhD Thesis, Aston University 2021.


	0_thesis_front
	thesis_front
	Thesis_front_page_3
	Thesis_front_page_4
	thesis_front

	1_thesis_main
	1_thesis_main
	1_thesis_main
	1_thesis_main
	1_thesis_main
	Table_2_1_new
	1_thesis_main

	2_Appendices
	Appendix A
	Appendix B
	appendix_B_1
	appendix_B_2
	appendix_B_3
	appendix_B_4
	appendix_B_5
	appendix_B_6
	appendix_B_7
	appendix_B_8
	appendix_B_9
	Slide Number 1

	appendix_B_10
	appendix_B_11
	appendix_B_12
	appendix_B_13
	appendix_B_14
	appendix_B_15

	Appendix C
	Appendix D
	End User Licence Agreement

	Appendix E
	appendix_E_1
	appendix_E_2
	appendix_E_3
	appendix_E_4
	appendix_E_5
	appendix_E_6
	appendix_E_7
	appendix_E_8
	appendix_E_9
	appendix_E_10
	appendix_E_11
	appendix_E_12
	appendix_E_13
	From: Alshukry, Ali  Sent: 30 October 2019 08:56 To: Lumsden, Joanna (Jo) <J.LUMSDEN@aston.ac.uk>; Richards, Matthew <m.richards3@aston.ac.uk> Cc: Salawu, Semiu D (Research Student) <salawusd@aston.ac.uk> Subject: RE: Your advice....before you go!

	appendix_E_14


	2_Appendices.pdf
	Appendix A
	Appendix B
	appendix_B_1
	appendix_B_2
	appendix_B_3
	appendix_B_4
	appendix_B_5
	appendix_B_6
	appendix_B_7
	appendix_B_8
	appendix_B_9
	Slide Number 1

	appendix_B_10
	appendix_B_11
	appendix_B_12
	appendix_B_13
	appendix_B_14
	appendix_B_15

	Appendix C
	Appendix D
	End User Licence Agreement

	Appendix E
	appendix_E_1
	appendix_E_2
	appendix_E_3
	appendix_E_4
	appendix_E_5
	appendix_E_6
	appendix_E_7
	appendix_E_8
	appendix_E_9
	appendix_E_10
	appendix_E_11
	appendix_E_12
	appendix_E_13
	From: Alshukry, Ali  Sent: 30 October 2019 08:56 To: Lumsden, Joanna (Jo) <J.LUMSDEN@aston.ac.uk>; Richards, Matthew <m.richards3@aston.ac.uk> Cc: Salawu, Semiu D (Research Student) <salawusd@aston.ac.uk> Subject: RE: Your advice....before you go!

	appendix_E_14

	Appendix E.pdf
	appendix_E_1
	appendix_E_2
	appendix_E_3
	appendix_E_4
	appendix_E_5
	appendix_E_6
	appendix_E_7
	appendix_E_8
	appendix_E_9
	appendix_E_10
	appendix_E_11
	appendix_E_12
	appendix_E_13
	From: Alshukry, Ali  Sent: 30 October 2019 08:56 To: Lumsden, Joanna (Jo) <J.LUMSDEN@aston.ac.uk>; Richards, Matthew <m.richards3@aston.ac.uk> Cc: Salawu, Semiu D (Research Student) <salawusd@aston.ac.uk> Subject: RE: Your advice....before you go!

	appendix_E_14


	0_thesis_front.pdf
	thesis_front
	Thesis_front_page_3
	Thesis_front_page_4
	thesis_front




