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Abstract 
 

Immersive experiences are considered the principal attraction of video games. Achieving a 

healthy balance between the game's demands and the user's skills is a particularly challenging 

goal. However, it is a coveted outcome, as it gives rise to the flow experience – a mental state 

of deep concentration and game engagement. When this balance fractures, the player may 

experience considerable disinclination to continue playing, which may be a product of anxiety 

or boredom. Thus, being able to predict manifestations of these psychological states in video 

game players is essential for understanding player motivation and designing better games. 

To this end, we build on earlier work to evaluate flow dynamics from a physiological 

perspective using a custom video game. Although advancements in this area are growing, 

there has been little consideration given to the interpersonal characteristics that may influence 

the expression of the flow experience. In this thesis, two angles are introduced that remain 

poorly understood. First, the investigation is contextualized in the virtual reality domain, a 

technology that putatively amplifies affective experiences, yet is still insufficiently addressed 

in the flow literature. Second, a novel analysis setup is proposed, whereby the recorded 

physiological responses and psychometric self-ratings are combined to assess the 

effectiveness of our game's design in a series of experiments. 

The analysis workflow employed heart rate and eye blink variability, and 

electroencephalography (EEG) as objective assessment measures of the game's impact, and 

self-reports as subjective assessment measures. These inputs were submitted to a clustering 

method, cross-referencing the membership of the observations with self-report ratings of the 

players they originated from. Next, this information was used to effectively inform specialized 

decoders of the flow state from the physiological responses. This approach successfully 

enabled classifiers to operate at high accuracy rates in all our studies. Furthermore, we 

addressed the compression of medium-resolution EEG sensors to a minimal set required to 

decode flow. Overall, our findings suggest that the approaches employed in this thesis have 

wide applicability and potential for improving game designing practices. 
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1 Introduction 

 

1.1 Background 

Video games are among the contemporary entertainment tools that are largely expanding. In 

the recent decades, the digitization of physical games makes gaming more accessible than 

ever before. What makes video games particularly attractive is their ability to instill immersive 

experiences. The present thesis focuses on flow, a mental state of deep concentration and loss 

of contact with the surrounding world, that is typically experienced during game playing. 

Video game designers acknowledge the importance of flow, by providing content that hooks 

the players for long periods. Flow is commonly viewed as the result of an optimal level of 

challenge relative to the player’s skills. It has been associated with affective components, 

whereby this mental phenomenon becomes highly pleasant. Hence, flow can also be defined 

with the widely adopted dichotomy in the context of emotions, namely arousal and valence 

(e.g., Lang, 1995). Importantly, an engaging video game stimulates willingness to replay the 

game. The games industry is essentially a business; thus, replay intention equates to customer 

loyalty, which further taps into revenue stabilization and increase. 

Game designers are committed to delivering entertainment. Through an array of monetization 

techniques, ranging from one-time purchase and subscriptions to microtransactions, they 

have commercialized digital entertainment. A look at the numbers paints a clear picture. The 

games industry is a multibillion-dollar business with a staggering estimate of $152.1 billion 

revenue for the year 2019 (Newzoo, 2019). Several years are spent into the development cycle 

of a video game (Teipen, 2016); with an average work schedule of 35 hours per week per 

employee (Young, 2018), this would translate to hundreds of thousands of hours expended in 

the development of a single video game. Video game players play on average 13 up to 23 

hours per week (Mills et al., 2018; Yee, 2006). 

Thousands or even millions of players can coexist in an online virtual world at the same time 

(Fernandes et al., 2018). The popular multiplayer game World of Warcraft by Blizzard 
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Entertainment (Irvine, California, United States) has had over a hundred million registered 

accounts (Sarkar, 2014), paid subscriptions from more than 12 million players in 2010 (Molina, 

2011) and 10 million active players (Ojeda et al., 2019). Finally, the cumulative playtime of 

games bought on the popular Steam platform amounts to 1.11 million years (O’Neill et al., 

2016). These gargantuan quantities are only a glimpse at the success of video games. 

What makes the games industry so lucrative is that it satisfies people’s needs (Przybylski et 

al., 2010; Ryan et al., 2006). Video games propitiate the ego, by indulging players into the 

pursuit of recognition, power, sense of belonging and self-esteem, which are primitive needs 

of the human species. These egocentric needs may not be easily attainable in real life; yet, 

video games provide the platform for actualizing them, by utilizing a plethora of game design 

techniques. People demonstrate the occasional need to escape reality, and thus engage in 

video games (Calleja, 2010), even though that very need may prove pathological (Warmelink 

et al., 2009). 

However, video game playing is not evolving into a habit merely as a tool to subdue existing 

problems (see e.g., Plante et al., 2019). Rather, it is chiefly sought because it offers pleasure, a 

positive experience that underlies fundamental aspects of human psychology (Kahneman et 

al., 1999; Russell, 2003b). This is the emergence of homo ludens, where the individual enters 

a fictional reality deprived of the real-life consequences (Huizinga, 1950; Soetaert et al., 2011). 

Games have existed since ancient times and thus entertainment may not merely be a luxurious 

affordance, but instrumental to human optimal functioning (e.g., Ruckenstein, 1991). 

Nowadays, video games have been injected in the pop culture through traditional computers, 

mobile devices, consoles, virtual reality, augmented reality and mixed reality. PlayStation, 

one of the top consoles in the video games scene, boasting nearly 37 million PlayStation Plus 

subscribers, sold approximately 103 million PlayStation 4 units (Sony Interactive 

Entertainment, 2019), 4.2 million units of PlayStation VR (Shuman, PlayStation Blog, 2019), as 

well as 12.2 million games since December 2017 worldwide (Gilyadov, IGN, 2017). 

Virtual reality (VR), in particular, has seen its commercial release in the previous decade. 

Contrary to traditional displays, such as computer or mobile screens, VR can produce richer 
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experiences (e.g., Pallavicini et al., 2019) and compelling virtual worlds. As technology 

advances, we should expect higher graphical fidelity and computational power that are able 

to produce highly realistic virtual environments. In addition, new sensory modalities are 

currently being investigated, including haptics (e.g., Farooq et al., 2019) and olfactory 

stimulation (e.g., Braun, 2019), with which we can further augment the vividness of VR. These 

developments call for a better understanding of the variables factoring in the experience of 

virtual reality users. However, the tools to make such an investigation possible are lacking. 

The importance of ensuring flow's onset in video games is as fundamental for traditional 

displays as it is for virtual reality games. Yet, understanding how flow emerges is not only 

important for the individual user. The success of video games may additionally rely on the 

popularity they amass. With the emergence of "let's play" videos on social platforms, such as 

YouTube (Glas, 2015), the public interest can increase both rapidly and significantly. It might 

take a single person to influence prospective players (Sjöblom & Hamari, 2017). User reviews 

are also important, in that they may determine the arrival and purchase inclination of new 

players (Bond & Beale, 2009). 

Questions such as "What keeps the player concentrated in the game?" or "How to prevent my 

player base from discontinuing our game?" may be very commonly addressed to game 

designers. It is not unusual for the game design to be adjusted such that it favors participation 

in in-game purchases (Hamari et al., 2017; Hooker et al., 2019). Even in this scenario, the flow 

experience becomes important, as it can enhance purchase intention of virtual “goods” (Liu 

& Shiue, 2014). Therefore, video games relying on loot boxes or random reward mechanisms 

(Nielsen & Grabarczyk, 2019) for profitability should similarly rely on forging flow episodes. 

Research in video games has bridged evidence from psychology and neuroscience to elucidate 

the underpinnings of flow. The physiological mechanisms that underlie flow may help game 

designers understand or even predict the conditions under which their game will be 

successfully embraced before release. This process can be facilitated by the development of 

tools that are beneficial to the industry, without imposing the demand for theoretical or 

technical prowess. 
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Assessing when flow occurs in video game play is not only vital to the industry for the obvious 

reasons of revenue increase, optimization of user experience and a better understanding of 

the player base. It is also interesting to the academic world, as it can help design effective 

prevention, intervention and rehabilitation strategies for game addiction. Indeed, many 

studies have asseverated the link between game-induced flow and addiction (e.g., Boniwell, 

2008). Likewise, it is interesting because of a growing body of evidence suggesting that 

enhanced performance and augmented cognitive capacity may result from the flow 

experience (e.g., Kozhevnikov et al., 2018; Stoll, 2018). Flow research may be more complicated 

when dealing with new-generation platforms, as in the case of virtual reality. This is because 

of its novelty, and hence less understood than traditional video games that have been 

commercially available for decades. 

This section provided an overview of video games in the contemporary market. It can be seen 

that digital games stand prominently amongst other forms of media and entertainment, 

further illustrating that flow is a major component of a successful video game. Although there 

are already developments in detecting flow through physiology, they are mostly a prerogative 

of PC and console gaming. Thus, it was stressed that novel technologies, such as virtual 

reality, have not been widely studied in the specific context of flow. In the next section, we 

will discuss methodological concerns in the study of flow and how they can be incorporated 

into a virtual reality setting.  

1.2 Research Problems 

1.2.1 Conceptualization 

The conceptualization of flow remains debated; the principal challenge in investigating this 

mental state stems from its multifaceted nature. Flow is usually compartmentalized into 

antecedent qualities, core dimensions and experiential outcomes (e.g., Hoffman & Novak, 

1996; Hooker et al., 2019). This finer segmentation enables research to operationalize flow by 

targeting specific variables and studying their effects on the suppression or expression of 

game-induced flow. Furthermore, revisiting flow as a system of input – process – output, that 

the antecedents – dimensions – outcomes represent, falls within the longstanding computing 
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metaphor of the mind (Varvatsoulias, 2014). Such conceptualizations can similarly be 

observed in other definitions, including engagement (Bonometti et al., 2020; O’Brien & Toms, 

2008) and immersion (Brown & Cairns, 2004; Ermi & Mäyrä, 2005). Indeed, the inconsistent 

views on flow’s core qualities fosters a predicament that has spawned various definitions of 

similar phenomenology. 

For this reason, there is an abundance of methodological approaches aiming to identify how 

flow-like episodes occur. While assailing the problem from multiple angles is desirable,  the 

diversity of the existing approaches complicates the landscape of flow research and hinders 

the standardization of measurement practices. This is not only problematic for the study of 

flow in general, but also for migrating the study of flow to a VR setting.  

Bringing VR into the flow discourse is of relevance given the former’s connection to presence, 

a term that many researchers agree it refers to a sense being in the virtual world (McCreery et 

al., 2013). Although presence and flow have been considered different states (Weibel & 

Wissmath, 2011), immersion incorporates elements from both (Brown & Cairns, 2004; 

McMahan, 2003). These subtleties in nomenclature may seem innocuous, but they reciprocally 

influence the conceptualization, operationalization, and pragmatic measurement of flow. 

Proponents of immersion have argued that flow is rarer than immersion in video games (e.g., 

Brockmyer et al., 2009). The basis for this argument revolves around the idea that flow is an 

optimal and extreme state (Jennett et al., 2008). Contrarily, it is suggested that immersion is 

sub-optimal, therefore more suitable for video game play, considering negative experiences 

can also be evoked whilst playing (Jennett et al., 2008). According to Brown and Cairns (2004), 

immersion is a gradual state comprising three stages of increasing intensity, i.e., engagement, 

engrossment, and total immersion. In their work, they explained that engagement refers to 

the first-level entry that requires effort, time, and attention. The second stage, engrossment, 

progresses into sustained attention and emotional investment. Finally, total immersion is 

viewed as being equal to presence (Brown & Cairns, 2004). 

In Michailidis, Balaguer-Ballester and He (2018), we argued that the assumed distinction 

between immersion and flow does not have empirical support from a methodological 
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standpoint. Any such claims are either definitional (e.g., Cairns et al., 2014; Jennett et al., 2008), 

speculative over game design elements (e.g., Nacke & Lindley, 2008) or of psychometric origin 

(e.g., Kannegieser & Atorf, 2020; Procci & Bowers, 2011). The obvious conceptual overlap 

between immersion and flow in the literature (Procci & Bowers, 2011), specifically for the 

engagement and engrossment stages, alludes to these states sharing the same neural 

correlates. 

However, in the case of presence, a distinguishable neural representation has been identified 

(e.g., Baumgartner et al., 2008; Clemente et al., 2013) that also clearly separates it from flow on 

a theoretical level (Weibel & Wissmath, 2011). Consequently, total immersion does not present 

an organic physiological connection to the previous stages of engagement and engrossment. 

The separation between flow and immersion is therefore not well justified in the literature. 

In this work, the focus is placed on the flow experience as proposed by Csikszentmihalyi 

(1990), yet the problems identified in this section are not unique to the flow literature. Thus, 

the findings of this work may extend their support to the construct of immersion. For a more 

detailed review of the immersion, flow, and presence concepts, refer to Michailidis, Balaguer-

Ballester and He (2018). 

1.2.2 Individual characteristics 

Video game characteristics can be highly variable and unique to specific video games (e.g., 

Nah et al., 2014). Thus, flow may become highly unpredictable across different players. In 

addition, personal characteristics can instigate differences in the expression of flow episodes. 

For that reason, flow is considered highly subjective (e.g., Webster et al., 1993), which makes 

it definitionally challenging to address at an objective level. The systematic approach at 

defining flow, that upholds its subjective nature, is typically done through self-reports (e.g., 

Rißler et al., 2018). At an attempt to make a more objective evaluation of flow, physiological 

measures are employed either as an alternative to self-reports (e.g., Berta et al., 2013) or as 

complementary measures (e.g., Harmat et al., 2015; Peifer et al., 2014). However, the 

experimentally controlled variables may not consistently account for inter-player differences, 

but rather depend on the design principles with which the trials were structured. 
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In the traditional theory of flow, anxiety and boredom are thought to antagonize flow, since 

they can interfere with or even replace flow (e.g., Massimini & Carli, 1986). Not only can these 

states result from the design of the game, they can also be differentially expressed by players. 

While some players may be more prone to experiencing anxiety, others are more resistant to 

this psychosomatic state, given certain personality traits or player expertise (e.g., Augustine 

& Larsen, 2015; Borderie & Michinov, 2016). For example, personality may determine one’s 

flow proneness, i.e., whether someone can access the flow experience (e.g., Ullén et al., 2012). 

Yet, this is rarely taken into consideration in the video games literature. Instead, flow appears 

to be traditionally approached as a state that anyone can attain, despite evidence suggesting 

otherwise (e.g., Csikszentmihalyi, 1997a). 

A known example is the personality trait of neuroticism, which has been consistently shown 

to be unconducive to flow (e.g., Heller et al., 2015). Research employs a common paradigm 

wherein biometric data from different time points (observations) are fed into complex 

algorithms, which aim to identify patterns amongst them. These patterns are part of a 

classification process, where the observations are grouped together to fit an array of classes to 

which they are thought to belong. For example, they may group observations from 

experimental trials designed to elicit flow, boredom and anxiety (e.g., Berta et al., 2013). 

However, player characteristics can be inadvertently suppressed in the process, and thus the 

classification precision may be compromised due to unaccounted factors in the data – i.e., 

characteristics of the player in addition to game characteristics. Indeed, the game’s 

characteristics are as important as the player characteristics – the interaction of the two result 

in the final player experience (e.g., Nah et al., 2014). 

1.2.3 Physiological study of flow in VR 

Nevertheless, numerous studies have used different psychophysiological measures to address 

flow in video games, but similar experimentations are scarce in the VR domain. Currently, 

there are lacking contributions in this area, with little direction on the integration of flow's 

physiological assessment in VR (see e.g., Bian et al., 2016). This is mainly because of the 

novelty of the VR medium in the market, but also due to the increased equipment 

requirements for carrying out such research. Moreover, the drawback of motion sickness, 
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commonly paired with VR, has only recently become a prominent issue in the studies of user 

experience. These relatively understudied concerns evince a broad area of research. The 

increasing interest in brain-computer interfaces has turned the attention to solutions such as 

electroencephalography (EEG), which gradually become highly coveted in the field of human-

computer interaction (e.g., Li et al., 2017). 

Electroencephalography (EEG) is preferred for portability, high temporal precision and ability 

to convey information that other physiological mechanisms may not. However, in the case of 

VR, it may be treated with reluctance. This is because of EEG’s sensitivity to interference and 

muscle movement (e.g., Motamedi-Fakhr et al., 2014) as well as the time required to set it up. 

Equipment-wise, medical-grade EEG may be inconvenient due to the high number of 

electrodes and wires involved, making research outcomes impractical to the industry. On the 

other hand, lighter alternatives such as Emotiv EPOC+ (Emotiv Inc., San Francisco, California, 

United States) or NeuroSky (NeuroSky Inc., San Jose, California, United States) 

neuroheadsets, that typically feature a limited number of electrodes, may have an insufficient 

spatial distribution for the purpose of detecting flow. Yet, VR headsets are fixed on the head, 

and thus EEG is tempting to integrate due to its reliance on sensors that are similarly fixed on 

the scalp. 

Based on the issues mentioned in this section, the detection of the flow state in a VR setting 

poses considerable challenge. Evidence from non-VR studies is still helpful to guide our study 

in the VR domain, but more customized approaches may be needed towards the successful 

identification of the flow state. The interaction of game and player characteristics, both acting 

as antecedents to flow, should not be dismissed, as they can provide rich information about 

the dynamics of the player’s experience. Taken together, the goals of this research are stated 

in the next section. 

1.3 Research Goals 

The motivation of this research is to detect the flow state in VR game play. The states of 

boredom and anxiety are also considered since they have been widely subsumed under the 

context of flow and video game play. 
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The objectives of this work can be summarized as follows: 

1. The first goal is to investigate the influence of personality on the self-reported 

experience of flow in the context of virtual reality game play. The aim is to understand 

which personality traits best explain the reported experience of flow. Addressed in 

Chapter 4. 

2. The second goal is to identify physiological correlates of the flow state in different 

phases of the game based on design decisions using personality traits as an ancillary 

measure. In this case, we create design rules for different types of game levels, to 

experimentally induce flow, anxiety and boredom. The aim is to identify how the 

physiological responses are generated based on the design rules of each game level. 

Addressed in Chapter 5. 

3. A third goal is to determine electrophysiological activity that is best represented in 

settings where flow, anxiety and boredom are desired to be elicited by design. EEG is 

typically subdivided into frequency bands of neural activity originating from different 

areas of the cortex. In this step, we aim to identify the most relevant bands and to 

roughly locate the associated cortical regions. This includes anatomical inspection of 

laterality (left versus right hemispheric activity) and posteriority (frontal or anterior 

versus posterior regions). Addressed in Chapter 6. 

4. The final goal is to conduct a more scrupulous search to single out electrodes that best 

contribute to the detection of flow, anxiety and boredom. In doing so, we seek to 

identify the optimal minimum number and location of electrodes required for 

decoding the mental states of interest. The idea of starting with a higher EEG spatial 

resolution with the prospect of reducing it to the minimum optimal number of 

electrodes has not been extensively addressed in the context of flow. This is an 

important topic for games research, in that EEG conducted in a commercial setting 

should aim to minimize manufacturing costs. Addressed in Chapter 6. 

The goals mentioned in this section will be approached with the methodological 

considerations addressed in Chapter 3: General Methodology. We consider our findings to 

be beneficial to both the industry and academia, with the broader aims being: 
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a) Improve user experience studies by measuring flow, anxiety and boredom in a variety 

of game settings to pinpoint the areas of the game that are detrimental to player 

retention. 

b) Facilitate the creation of rehabilitation strategies for game addiction. 

c) Provide richer virtual reality experiences, by enabling developers to utilize real-time 

data and adapt their game for sustainable flow episodes. 

d) Foster the effectiveness of VR training programs. 

1.4 Structure of the thesis 

The present manuscript documents our approach toward detecting the flow experience in 

virtual reality. It comprises a chapter that reviews existing work (Chapter 2), in order to 

familiarize the reader with the flow experience in the context of video game design. The 

methodological approach employed in this project is further provided in the following 

chapter (Chapter 3), wherein it is explained how a virtual reality game for PlayStation VR was 

designed to meet the research goals. In addition, information is given on the materials that 

were used to assess flow and personality, as well as the analysis and classification methods 

used to reach the studies’ objectives. 

The second part of this document is the pith of the project, detailing the experiments carried 

out to test our hypothesis. Each subsequent chapter in this part is structured with an 

introduction, a methodology section, their findings and a discussion that reflects and 

concludes on those findings, by making associations with existing literary work. The first 

chapter of this part (Chapter 4) concerns the initial study that was conducted to investigate 

the potential for flow in our custom VR game. In the second chapter (Chapter 5) the 

physiological measures of electrooculography and electrocardiography were used to 

investigate the physiological responses of the players during VR game play. This study was 

also complemented with a dynamic difficulty scaling mechanic to accommodate a more 

balanced game play to players of variable skills. Classification algorithms were used to 

estimate a better representation of the data. We specifically aimed to compare our design 
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choice assumptions of when flow, anxiety and boredom were to occur versus the self-reported 

flow experience of the participants. 

The third chapter of this part (Chapter 6) implemented electroencephalography to identify the 

minimum number of channels, their location and the related frequency bands for the detection 

of flow. Similarly, as in Chapter 5, classification was used to decode the different mental states 

of interest (flow, anxiety and boredom). We also explored frontal EEG alpha asymmetry, 

which has been given very little attention in the literature of flow. The final part of this 

document is a standalone chapter (Chapter 7) that draws conclusions from the work done and 

proposes future work to improve and extend the presented methodology. 



   

 

 

Flow Experience in Virtual Reality Games | 30 

 

2 Research Background 

 

In this chapter, we will review the concept of flow and how it emerges in video game playing. 

We begin by documenting earlier accounts of the flow experience, which supported flow as 

an operationalized form of happiness, and proceed to demonstrate how flow is relevant in the 

domain of video games. Further, we explain game design techniques to help elicit flow 

episodes that maintain player motivation and foster replay intention as a prelude to our 

experimental approach. Finally, we specifically address video game play in virtual reality 

applications and the implications for flow and other mental states. We conclude by detailing 

different approaches to the measurement of flow that are prevalent in existing research. 

2.1 Disambiguating happiness 

Mapping the complexity of human behavior has been the focus of research for decades. 

American psychologist Abraham Harold Maslow theorized the motivation behind human 

behavior and formulated a pyramidal hierarchy of needs (Maslow, 1943). He posited that 

behavior is goal-driven and humans traverse through a range of bio-psychological needs. On 

the lowest level of the hierarchy reside the biological needs, such as food and water 

consumption, as well as reproduction, which are instinctive and uphold an evolutionary 

significance that warrant the organism’s survival and procreation of the species. Low-level 

needs are mechanistic, but also straightforward: they can be modelled as a simple input-

output pair, or stimulus-response, whereby the input may be illustrated as a mere thalamic 

signal. 

However, higher-order needs are more complex, as they aim to assuage psychological drives, 

such as the need for safety and the need to belong (Kunc, 1992). Contrary to their lower-level 

neighbors, those needs are challenging to reduce to a simple input and output, in that the 

output is determined by multiple intermediary factors (e.g., Csikszentmihalyi, 1988). In 

pursuing the fulfillment of higher-order needs, an individual may attain self-actualization 

(Poston, 2009). Self-actualizing individuals are portrayed as being optimally functioning in 
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both intrapersonal and interpersonal contexts (e.g., Leary, 2007; Maslow, 1974). Achieving 

self-actualization has been shown to present a strong relationship with happiness (Beaumont, 

2009). 

The hedonic model, proposed by Diener and Larsen (1993), views happiness as the ratio of 

positive affect to negative affect. Consequently, a dominating numerator would result in a 

better approximation of well-being. According to Kahneman (1999), this ratio is a marker of 

an “objectively happy” person. Larsen (2000) further contributed to this assertion and 

suggested that people have a propensity toward regulating their mood positively, thereby 

engaging in a variety of actions to achieve it. Consistent with the hedonic model, individuals 

appear to have a predilection for experiencing positive affect over negative affect. More 

crucially, happiness appears to be more pertinent to the frequency of experiencing positive 

affect, whereas the duration thereof may have a more subsidiary role (Diener et al., 2009). 

Yet, albeit Diener and Larsen (1993) approached happiness through a quantifiable ratio, the 

challenge is that it becomes murky predicting when the person may experience positive and 

negative affect. Thus, recording the person's positive experiences and modeling their objective 

happiness is somewhat infeasible in practice, as the quantification tools for happiness are 

lacking. Indeed, happiness is a loose construct that is hard to examine directly. This apparent 

gap may be complemented via a concept known as the flow experience, which is reviewed in 

the next section. 

2.2 The flow experience 

Csikszentmihalyi (1975) operationalized a set of measurable phenomena that were identified 

through oral patterns in interviews (also, Csikszentmihalyi, 1988). The emergent pattern was 

that people reported experiencing their happiest moments during their involvement in an 

activity. Csikszentmihalyi coined the term “flow experience” to describe the cognitive and 

affective concomitants of this involvement. The importance of flow lies in its connection to 

satisfaction and hedonism (Peterson et al., 2005). Csikszentmihalyi (1990) postulated that flow 

is a state that can unlock happiness. 
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Flow’s effects on mood improvement may be transient (e.g., Guo et al., 2012; Rodríguez-

Sánchez et al., 2008, 2011) but also long-term whereby they contribute to subjective well-being 

and life satisfaction (Ryff, 1989; Sahoo & Sahu, 2009). To secure a happy life, one has to 

experience flow frequently (Csikszentmihalyi, 1997b, 1997c). These observations corroborate 

the formulaic conceptualization of subjective well-being proposed by Diener and Larsen 

(1993) that was mentioned earlier; experiencing flow frequently would result in a dominant 

numerator, enabling the individual to approach happiness (also, Diener et al., 2009). 

2.2.1 Finding flow – qualifying the experience 

Notably, the flow experience has been regarded as a psychological need per se, “the need to 

seek and master challenges” (Baumann & Scheffer, 2011). The need to seek challenges has also 

been acknowledged outside the flow context (e.g., White, 1959; Deci, 1975). Virtually any 

activity may elicit the flow experience consistently across different individuals as well as 

different activities (Csikszentmihalyi, 1988; Nakamura & Csikszentmihalyi, 2014). For 

example, sports, painting, working, playing games and music composition are all viable 

platforms to flow (Ceja & Navarro, 2011; Csikszentmihalyi, 1997a; Jackson & 

Csikszentmihalyi, 1999). Applying Larsen’s (2000) postulate of a personal tendency to yearn 

for happiness, while also considering the analogy between happiness and the flow experience, 

individuals may demonstrate a desire to experience flow (e.g., Vallerand, 2008). Indeed, Wu 

and colleagues (2013) argued that flow is sought through various outlets. However, 

individuals may develop a dependency on flow (Csikszentmihalyi, 1990) whilst aiming to 

mitigate existing dissatisfaction or emotional dissonance (Wan & Chiou, 2006). 

The factorial nature of flow (Cowley et al., 2008) serves to distinguish it from other mental 

states. In order for an experience to qualify as flow, several criteria have been proposed to 

represent this state. People who experience flow often report loss of self-awareness, which 

causes the cessation of self-directed thoughts and rumination (Carpentier et al., 2012). This 

has been described as hypo-egoic self-regulation that benefits automatic behavior and control 

over the activity, and has clear connections to flow (Leary et al., 2006). During flow, the person 

is highly concentrated in the task and the allocation of attention is directed to a clear goal 

(Harris et al., 2017a). A byproduct that emerges through this intense concentration is a 
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distortion of time perception (Csikszentmihalyi, 1990), where our internal clock seems to 

desynchronize from our casual perception of time. The perception of time has been suggested 

to be contextual and malleable depending on internal circumstances, such as the emotional 

state of the person (Droit-Volet & Gil, 2009). As such, time perception undergoes a 

transformation under the effects of different emotional states. An activity that is experienced 

as being tedious or frustrating instils the illusion of time moving slowly, whereas if the 

individuals enjoy what they are doing, time feels like it passes quickly (Agarwal & Karahanna, 

2000; Ozkara et al., 2017; Sackett et al., 2010). As a result, time perception distortion in video 

game playing can be positive, i.e., engender relaxation, or negative, in which case it can 

generate guilt (Wood et al., 2007). 

During the activity, the individual should be given feedback about their proximity to their 

goals and how well they are performing (Lyons, 2015; Nakamura & Csikszentmihalyi, 2014). 

Performance is mediated by a merging of action and awareness, which gives rise to automatic 

execution of the task (Jackson et al., 2001). Although automaticity has been questioned for its 

proneness to errors (e.g., Toner et al., 2015), it enables an economical allocation of resources 

to mitigate cognitive load (see Feldon, 2007; Moors & De Houwer, 2006). Critically, the activity 

should be manageable with a challenge that is compatible with the individual’s skills (Rani et 

al., 2005). Such a compatibility is regarded as the chief prerequisite for flow’s onset 

(Csikszentmihalyi, 1990; Llorens et al., 2013; Mirlohi et al., 2011) and it gives rise to a sense of 

control (Ghani et al., 1991). Finally, the activity should be autotelic (Csikszentmihalyi, 1990), 

meaning that performing it is intrinsically rewarding without the expectation of external 

rewards (Csikszentmihalyi, 1997a). 

2.2.2 The problem of defining flow 

The nine criteria that synthesize the flow experience remain contentious with respect to their 

individual capacity for triggering flow. For example, Cairns and colleagues (2014) have 

suggested that flow is an “all-or-nothing” experience, during which the individual either 

fulfills all the criteria for flow to kick in, or they do not, in which case flow will not come into 

effect. However, this position has not been widely accepted (e.g., Arzate & Ramirez, 2017; Heo 

et al., 2010; Ozkara et al., 2017; Quinn, 2005). Treating flow as an overarching construct may 
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be a rather extreme approach in that certain experiential components may not be met, without 

necessarily implying the absence of flow (e.g., Csikszentmihalyi, 1990). On the other hand, 

extracting a subset of the criteria selectively may be arbitrary and can have significant 

theoretical implications. For example, the selection of such a subset presupposes knowledge 

over which criteria constitute the necessary conditions versus the sufficient conditions for 

flow to trigger (e.g., Keller & Bless, 2008; Swann et al., 2012), which creates a circular problem 

in defining flow. 

To amend the dimensionality problem of the flow construct, multiple frameworks have been 

devised that segregate flow’s criteria into antecedents, dimensions and outcomes (e.g., Nah et 

al., 2014; Hoffman & Novak, 1996). The antecedents are preconditions that facilitate the onset 

of flow, the dimensions are the core attributes of the flow experience, and the outcomes are 

the results of this experience (e.g., Hoffman & Novak, 2009). However, even this approach has 

stirred controversy. For example, autotelicity’s twofold meaning (Michailidis, Balaguer-

Ballester, & He, 2018) has been interpreted as a dimension of flow (e.g., Kiili et al., 2014; Van 

den Hoot et al., 2018), but also as an outcome of flow (e.g., Quinn, 2005; Rodríguez-Sánchez 

et al., 2011), whereas others have argued that this criterion should not be used for defining 

flow (Engeser & Schiepe-Tiska, 2012). Likewise, the sense of control has been viewed as an 

antecedent (e.g., Hoffman & Novak, 2009; Kiili et al., 2012) and as a dimension (e.g., Nah et 

al., 2014). 

Other studies have embedded additional criteria, which are not listed in the original theory 

of flow. Such examples include telepresence (Shin, 2006; Skadberg & Kimmel, 2004) and 

playability (Kiili et al., 2014). However, the associated risk with the inclusion of criteria that 

may be unique to specific contexts is that those frameworks may be inapplicable beyond the 

domain for which they were developed. Although special activity characteristics may be 

effective facilitators of flow, they should not be entangled with the actual experience 

(Csikszentmihalyi, 1997a; Quinn, 2005), as they can distract us from its structural composition. 

Notably, some of those criteria may be generalizable to most activities, thereby fulfilling flow’s 

alleged plausibility of a state in multiple activities (e.g., Nakamura & Csikszentmihalyi, 2014). 
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These include creativity (Ghani, 1995), improved learning (Ghani, 1995; Hoffman & Novak, 

2009; Kiili et al., 2012) and increased performance (Jackson et al., 2001; Stavrou et al., 2007). 

From these observations, it becomes clear that there is disagreement about the ontology of 

flow (Rodríguez-Sánchez et al., 2008). Notwithstanding flow’s ill-defined construct due to its 

connection to multiple experiential components (Hsu & Lu, 2004), most authors follow a 

generative approach instead of a reductive, which entails the addition of characteristics in 

flow’s conceptualization. Nevertheless, as mentioned earlier, these approaches may be 

intended for and tailored to specific contexts. However, Rodríguez-Sánchez and colleagues 

(2008) identified three criteria that most commonly appear in the flow literature, i.e., deep 

concentration, enjoyment and autotelicity. 

While it is tempting to reduce the flow construct to three dimensions, it is questionable 

whether it can represent the richness of this experience. Perhaps, a more promising way to 

identify the experiential components of flow is through a retrospective assessment of its 

physiological responses. Manipulating task difficulty, immediacy of feedback and clarity 

goals, which clearly act as antecedents to the flow experience (Fullagar et al., 2013; Rodríguez-

Sánchez et al., 2008), may expose signatures of flow that can be evaluated based on existing 

knowledge of the underlying physiological functions. For example, activation in the 

zygomaticus major facial muscle, that has been linked to the emotional expression of smiling 

(e.g., Epstein, 1990; Schmidt et al., 2006), has been interpreted as enjoyment during flow (e.g., 

Nacke & Lindley, 2008). 

2.2.3 The relationship between identity formation and flow 

Experiencing flow during activities in which the individuals partake seems to promote 

habitual engagement (Chou & Ting, 2003) as a function of time and energy invested therein 

(Emmons, 1999). Habit formation may be moderated by the internalization of the activity 

within one’s own identity (e.g., Mao et al., 2016). For instance, an individual who derives 

satisfaction from painting may eventually identify as a painter, whereas one who finds 

pleasure in sports may identify as an athlete (e.g., Vallerand et al., 2003). 
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Linguistically, identification statements take the form of “I am…” and are accompanied by a 

subjective complement, which express identity as a perception of oneself (McCall, 2003). Self-

identification not only does it serve to ascribe a meaning to oneself (Stryker & Burke, 2000), 

that is inherently egocentric, it may also transform into a social identity (Mao et al., 2016). By 

extension, social identities may satisfy the need for belonging (Greenaway et al., 2016) as 

individuals increasingly adopt in-group norms and behaviors (Thorbjørnsen et al., 2007). 

However, not all activities are equally flexible in being socially normative. For example, media 

entertainment use pivots on offering enjoyment (Vorderer et al., 2004), but the specific subcase 

of video game play seems to have been subjected extensively to social stigma (Szablewicz, 

2010; Yates & Littleton, 1999). 

In this section, we reviewed the flow experience. While there are definitional problems with 

this construct, it becomes increasingly clear that flow manifests through an array of cognitive 

phenomena during an activity. The diversity and abundance of interpretations surrounding 

the same construct stem from a correlational perspective. This perspective does not diminish 

the importance of the existing literature; instead, it underlines how the activity’s 

characteristics may increase or decrease the likelihood of experiencing flow. 

The consequence, however, is that flow may heavily depend on the activity, even though 

Nakamura and Csikszentmihalyi (2014) suggested that it is similarly experienced across 

multiple contexts and individuals. We also noted that the activity may be internalized by the 

individual as part of their identity, thereby exposing a potential circuit at play: activity-

individual-flow. Thus, for flow to be experienced, both the activity and the individual should 

maintain some level of cohesion and compatibility. We explore this notion in the following 

sections and address this within a facet of media enjoyment, i.e., video game play. 

2.3 “Synthetic” worlds: The case of video games 

Earlier research instigated the debate on the effects of video game play, focusing on three 

major points: violence and aggression, addiction and social isolation (e.g., Anderson & Ford, 

1986; Ferguson, 2010; Kirsch, 2006; Setzer & Duckett, 1994; Silvern & Williamson, 1987). These 

longstanding concerns were inherently social and helped bring video games in the spotlight 
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rapidly (Williams, 2003). Soon after, video games encroached on the average teenager’s 

routine (e.g., Klimmt & Hartmann, 2006) and the extant criticism was complemented with 

research aiming to identify the positive side of video game play (e.g., Granic et al., 2014; Green 

& Bavelier, 2003; Griffiths, 2002). 

2.3.1 Understanding the controversy behind game playing 

In spite of the debate remaining heated to this day, researchers started espousing the notion 

that video games have more to offer than mere consequences (e.g., Buckley & Anderson, 2006; 

Emes, 1997). This stance was also reinforced by the insertion of video games in education, 

work, rehabilitation, training and clinical settings as tools whose purpose was not to solely 

entertain (e.g., Kirriemuir & McFarlane, 2003; Ritterfeld et al., 2009; Spring, 2015). Naturally, 

the introduction of video games in these domains meant that some form of resolution had 

commenced when counterevidence started surfacing (e.g., Funk, 1993; Griffiths, 2000). Yet, 

the interpretation of video games as simulations of reality (Calleja, 2010; Grodal, 2000) begs 

the question whether enjoyment derived from video games is similarly simulated or 

“synthetic” (e.g., Castronova, 2005). In other words, are video games able to deliver positively 

arousing experiences just as other activities do? 

Contrary to other media forms, the appeal of video games lies in their ability to interact with 

and within a mediated world (Granic et al., 2014). The gratification from such an interaction 

is allegedly higher in real-life scenarios than in their computer-mediated counterparts (Sacco 

& Ismail, 2014). Individuals may resort to computer-mediated environments in order to be 

entertained (Bartle, 2004; Green et al., 2004) and to satisfy their psychological needs 

(Przybylski et al., 2009a; Tamborini et al., 2010). However, earlier research pivoted on negative 

outcomes of video game play and, as such, promulgated the conception that video games are 

inherently addictive (King et al., 2010). More recently, habitual video game play and amount 

of time expended was positively linked to self-reported well-being (Johannes et al., 2021). 

Although video games have largely been discredited in the literature, other activities have not 

historically undergone similar scrutiny.  As an example, studies have traditionally treated 

sports as an activity conducive to psychological well-being (e.g., Snyder & Spreitzer, 1974; 
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Steptoe & Butler, 1996). Yet even sports are not without controversy. Recent research has 

demonstrated that sports can also become addictive (e.g., Freimuth et al., 2011; Landolfi, 2013). 

At the same time, the emergence of e-sports, which refer to professional, competitive video 

game play with characteristics emulating sports (Hamari & Sjöblom, 2017), have allowed the 

parallelism between video games and sports to be made (e.g., Heere, 2018). 

The criteria to qualify an activity as addictive may be mediated by several factors, rather than 

the mere number of hours expended within (e.g., Lemmens et al., 2009; Peters & Malesky, 

2008; Wood & Griffiths, 2007). For instance, a recent account that studying can take the form 

of study addiction (Atroszko et al., 2015) testifies that virtually any activity could devolve into 

being addictive. Indeed, working, that has also been shown to engender the flow experience 

(e.g., Csikszentmihalyi & LeFevre, 1989), has been colloquially referred to as ‘workaholism’ 

when done excessively (e.g., Andreassen et al., 2011). All of the aforementioned activities seem 

to have a common denominator: the flow experience. It should be noted that the current focus 

on addiction is due to the wide assumption that addiction is counterproductive to happiness 

and well-being (e.g., Akın, 2012; Çardak, 2013; Longstreet & Brooks, 2017). 

2.3.2 Putting a positive spin: playing as a "positive" addiction 

A useful consideration in this case is the dualistic model of passion, i.e., harmonious and 

obsessive passion (Vallerand et al., 2003). Flow as an optimal state (Csikszentmihalyi, 1990) 

seems to be similar to harmonious passion; engaging in an activity is volitional and other 

activities are not sacrificed in the process (Vallerand et al., 2003). On the other hand, addiction 

resembles an obsessive passion, whereby the individual engages in an activity because they 

feel compelled to do so (Vallerand et al., 2003). Addiction may thus occur when the activity is 

prioritized over daily activities and the person loses control (Beard & Wolf, 2001; Hellman et 

al., 2013; Vallerand et al., 2003). However, if daily activities are not sacrificed in the process 

(activities are in harmony with each other) and the individual regulates the frequency of 

performing the activity, then it is likely that negative affect is suppressed and positive affect 

is fostered (Vallerand et al., 2003). Taken together, decreased negative affect and increased 

positive affect may be the determinants of happiness (e.g., Diener & Larsen, 1993; Kahneman, 

1999). 
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The dualistic model of passion has also been empirically contextualized in video games (e.g., 

Lafrenière et al., 2009; Przybylski et al., 2009b, Utz et al., 2012; Wang et al., 2008). Studies have 

consistently found a link between video game play as a harmonious passion and life 

satisfaction, positive affect and psychological well-being (Lafrenière et al., 2009; Przybylski et 

al., 2009b). Contrarily, video game play as an obsessive passion was identified as being 

pertinent to negative affect during and after video game play, excessive amount of time 

devoted to playing (Lafrenière et al., 2009; Przybylski et al., 2009b) and low quality of real-life 

social interaction (Utz et al., 2012). More recently, Fuster and colleagues (2014) found that 

exploration, socialization and achievement were characteristic motives of video game play as 

a harmonious passion that has implications in real life. For example, an extraverted individual 

may be equally sociable online as well as offline (e.g., Tosun & Lajunen, 2009). 

Based on these accounts, it may not be an overstatement to suggest that video games are 

potentially platforms to happiness (e.g., Green et al., 2004; Johannes et al., 2021; Ryan et al., 

2006). Although Castranova (2005) dichotomized real life from virtual – or, as he proposed, 

“synthetic”, it appears that video game play is a qualified activity for enjoyment. Blaszczynski 

(2008) argued that the individual might be the primary suspect in the emergence of addiction 

in video game play rather than the content of the games. However, the structural 

characteristics of video games that promote them as outlets to enjoyment should not be 

overlooked. 

This section reviewed the origins of the controversy behind video game play. Based on earlier 

considerations, it appears that video games have been criticized for their content as well as 

their capacity in inculcating obsessive play. However, the riposte from studies highlighting 

beneficial effects is not to be dismissed. More so, it appears that a fine line between healthy 

and unhealthy game playing may be defined, though it is not well understood how this 

transition can occur. Nevertheless, the flow experience seems to modulate repetitive play, 

which further highlights its necessity in video games. These observations suggest that flow 

can be depended on for sustainable business models in the games industry. At a lower level, 

game designers bind design elements that synthesize their game and motivate their 

audience(s). 
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2.4 Video game design: A window to flow 

Playing video games seems to satisfy flow’s criteria (Cowley et al., 2008; Sherry, 2004). Flow’s 

relationship with gaming action (Weibel & Wissmath, 2011) suggests that the gameplay as 

well as the game mechanics are at the core of triggering flow. Notably, gameplay and game 

mechanics are distinct concepts (Desurvire et al., 2004). Gameplay refers to the interaction 

between the player and the game world as well as the outcomes resulting from the enactment 

of said interaction (Fabricatore, 2007). For example, the goals and challenges presented to the 

player are a facet of gameplay (Federoff, 2002). In contrast, game mechanics pertain to the 

ways this systemic interaction is achieved. 

Unlike gameplay, game mechanics are discovered gradually instead of being directly known 

to the player (Adams & Dormans, 2012). Furthermore, game mechanics constitute the 

instrumental blocks that make gameplay possible (Adams & Dormans, 2012). Albeit the 

design alone may be conducive to flow, it does not necessitate that every player will 

experience flow (Cowley et al., 2008). Hence, both the game and the player should present 

characteristics that are compatible with flow (e.g., Finneran & Zhang, 2003; Keller & Bless, 

2008; Whitlock et al., 2014) and the interaction of the two might determine whether and how 

the player will experience flow (e.g., Chen, 2007; Nah et al., 2014). Thus, the structural 

characteristics of video games may explicate the ways in which flow is fostered. 

2.4.1 Reward systems 

Reward systems are a powerful tool to maintain a player’s interest in the game. They are 

disguised abstractions of the Skinner box (Yee, 2001), which aim to hook the players for 

extended periods (Griffiths & Wood, 2000). Essentially, they are operationalized forms of 

reinforcement and may satisfy intrinsic, psychological needs in game playing (Hsu et al., 

2009). Transposing Maslow’s (1943) hierarchy of needs to rewarding mechanisms that abound 

video games, helps clarify the drive behind player commitment. Unlike the low-order needs 

that are biologically significant, higher-order needs are more resistant to satiation (O’Donnell 

& Epstein, 2019) albeit reward omission may also precipitate satiation to higher-order needs 

(e.g, Morgan, 1974; Ronimus et al., 2014). 
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Previous empirical research demonstrated that reinforcement is most effective when the 

rewards are obtained contingently or in specified intervals (Ferster & Skinner, 1957). Yet, 

compensatory rewards for overcoming a challenge may amplify player enjoyment and sense 

of progression in the game (Griffiths & Nuyens, 2017; O’Donovan, 2012). It is worth noting 

that player preference over the consistency of reward provision, i.e., variable or fixed reward 

provision, may vary upon the genre of the game (Kao, 2012). 

2.4.1.1 Symbolic and fiscal rewards 

Existing taxonomies on reward types in video games may have been developed without 

empirical support (Phillips, 2018) or they may be genre-dependent (e.g., Hallford & Hallford, 

2001). However, two broad categories that seem to encompass the majority of reward types 

are symbolic rewards and fiscal rewards. Symbolic rewards in games are geared toward the self; 

they have a personal meaning to the player and can satisfy personal needs. Thus, they can be 

referred to as ego-rewards – an umbrella term Emerson (1962) used for status recognition. 

Conversely, fiscal rewards are more relevant to the progression in the game (e.g., Phillips et 

al., 2013) and could be better characterized as game-centric rewards. 

Albeit game-centric rewards can be self-contained sources of satisfaction, ego-rewards may 

circumstantially depend upon them. For example, a player who is able to afford top-tier gear 

may be able to increase his or her status due to their visual appearance being suggestive of a 

high rank (e.g., Consalvo & Harper, 2009; Ducheneaut et al., 2006; Tosca & Klastrup, 2009). In 

this context, game-centric rewards may influence the desirability of a player in becoming a 

member of a virtual community (Chen et al., 2008), which can promote a stronger sense of 

belonging (Kang et al., 2009). Similarly, virtual clothing accessories, which usually serve to 

enhance an avatar’s outer appearance (Dickey, 2007), may be used as devices to promote 

inclusion in social contexts and to reflect personality traits of the player’s idealized self 

(Banakou et al., 2009). 

2.4.1.2 Ego-rewards to appease intrinsic motivation? 

Based on the distinction between game-centric and ego-rewards, flow’s autotelicity seems to 

be compatible with ego-rewards, if flow is to be regarded as a personal need (e.g., Baumann 
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& Scheffer, 2011). Yet, unlike the elevation of in-game social status as an ego-reward, which is 

mostly relevant within the game domain, flow’s autotelicity has an effect beyond the game’s 

world, since enjoyment succeeds the activity (Csikszentmihalyi, 1996; Peterson et al., 2007). 

The observable difference, in this case, may relate to a known distinction made in the 

literature, namely the extrinsic and intrinsic motivation. Extrinsic motivation alludes to the 

expectation of a reward, i.e., the acquisition of a reward becomes the primary motivator 

(Cameron et al., 2001). In contrast, intrinsic motivation, which has been associated with the 

flow experience, portrays engagement in an activity as being inherently pleasant (Singh et al., 

2005). Hence, albeit both autotelicity and social status may qualify as ego-rewards, the former 

is intrinsic but the latter is extrinsic (e.g., Griffiths & Nuyens, 2017). Notably, rewarding 

mechanisms are widely accepted to be associated with the dopaminergic system (Schultz, 

2002), the same system that has been implicated in the flow experience (e.g., Weber et al., 

2009). 

Extrinsic rewards are allegedly less effective in stimulating motivated behavior compared to 

intrinsic rewards (Garris et al., 2002; Schmid, 2011). However, their distinction from intrinsic 

rewards advocates the existence of two categorical incentives for playing (e.g., Griffiths & 

Nuyens, 2017; Liu, 2017). On the one hand, intrinsic rewards may enable behavioral repetition, 

which is manifested through replay intention across different instances of play (e.g., Bakker, 

2005; Keller et al., 2011b; Wiedemann et al., 2014). On the other hand, extrinsic rewards seem 

to be mostly associated with maintaining the player’s motivation within the same play 

session, thereby prolonging playing (King & Delfabbro, 2009). Bearing in mind that no activity 

is purely intrinsic (Csikszentmihalyi, 1975, 1999; Hidi, 2000), the combination of intrinsic and 

extrinsic motivators may cater for a stronger motivation overall (Cameron et al., 2001; Deci & 

Ryan, 1985). However, designing gameplay with an emphasis on one over the other type of 

reinforcement may prompt adverse effects. For example, an individual may grow dependent 

on the anticipation of extrinsic rewards, thereby causing the significance of intrinsic 

motivation to be diminished (Csikszentmihalyi, 1975; Medler, 2011; Murayama et al., 2010). 

Through this process, the motivation to engage in an activity may perennially default to 

external causes instead of an intrinsic desire (Deci, 1971; Deci et al., 1999). However, this view 
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has been challenged recently in the context of video games (e.g., Cruz et al., 2017). In addition, 

verbal reinforcement of the individual may not necessarily shift the intrinsic value to extrinsic 

(see Albrecht et al., 2014), which is also used in video games as a means of positive 

reinforcement (e.g., Sanchez et al., 2017). 

2.4.1.3 Flow as an amalgam of intrinsic and extrinsic rewards 

The theory of flow presupposes that playing is an intrinsic reward (Csikszentmihalyi, 2014). 

At the same time, certain activities within or qualities about the game may also be intrinsically 

motivating without entailing the provision of a reward, for instance exploration, fantasy and 

curiosity (Griffiths & Nuyens, 2017; Malone, 1981; Phillips et al., 2013). However, game-centric 

rewarding systems, and even ego-rewards, as mentioned earlier, can be extrinsic. Thus, the 

aforementioned observations are seemingly antithetical to flow’s autotelicity. If playing is 

intrinsic, how do extrinsic rewards tap into flow? Cowley and colleagues (2008) subsumed 

reward systems under the immediacy of feedback dimension of flow, whereas Nah and 

colleagues (2014) did not acknowledge in-game rewards in their flow framework applied into 

video game playing. However, viewing game reward systems as mere feedback may be a 

reductive approach. 

To demonstrate using an example, games featuring quests introduce new goals to the player 

(Ashmore & Nitsche, 2007). The reward for completing quests is typically communicated to 

the player before he or she embarks on the deliverable task. In addition, rewards are 

proportional to the difficulty of the task: a task that is harder to achieve offers a higher 

incentive than a challenge that is easy to tackle (Hunicke, 2005; Wang & Sun, 2011). 

Consequently, goal direction, feedback and skills-challenge compatibility seem to all be 

implicated in the design of extrinsic rewarding mechanisms (Wang & Sun, 2011). This 

indicates that game rewards are diffused across several facets of gameplay and are 

consequently entrenched in the game experience. 

This section demonstrated that rewarding mechanisms in games are complementary to the 

self-rewarding experience that flow has to offer. Due to the widespread understanding that 

reward processing is strongly connected to motivated behavior (Mitchell, 1982), designing 
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effective rewards, that players will vie for, requires understanding of what motivates players. 

In addition, increases in the reward magnitude have been shown to proportionally increase 

player enjoyment (e.g., Johnson et al., 2018). However, the relationship between reward 

magnitude and player enjoyment may be mediated by the consistency of the reward’s 

provision. 

For example, Kao (2012) claimed that fixed-schedule rewards with an extensive range of 

values might be an optimal rewarding strategy. Indeed, rewarding the player as a means of 

acknowledging their effort may encourage them to invest more effort in the future – a concept 

that ties to operant conditioning (e.g., Hilgard et al., 2013). However, in spite of the 

differentiation between extrinsic rewards and flow as an intrinsic reward, both seem to share 

the potential outcome of addiction (e.g., Chou & Ting, 2003; Csikszentmihalyi, 1990), which 

may have serious implications for the individual’s happiness (Hull et al., 2013). While Johnson 

and colleagues (2018) found high rewards to be more enjoyable, their cost may be pathological 

reliance upon them (Hsu et al., 2009). Although addiction may be subject to individual 

proneness (Hsu et al., 2009), game designers should implement balanced reward schedules 

and magnitudes. 

2.4.2 Challenge 

Challenge is widely apprehended as a strong predictor of game enjoyment (Klimmt et al., 

2009; Sherry, 2004). Hardy and colleagues (2014) further claimed that measuring challenge 

might be an indicator of the player’s motivation. Though ultimately the sense of challenge is 

in essence a subjective perception, it is generated by the objective expenditure of mental and 

physical effort (Hsu et al., 2007). Thus, challenge can be both subjective and objective 

(Gaillard, 1993; Gastorf, 1981). For example, on a sensory-cognitive level, a task can be 

objectively challenging, when it overloads the working memory with information (Klingberg, 

2009; Lavie, 2005; Paas et al., 2004). When such content is amply available, the individual 

might become susceptible to distraction, anxiety or mind wandering (Forster, 2013; Kane et 

al., 2007; Klarkowski et al., 2015). Thus, in the case of mental overload, the mobilization of 

attentional resources is compromised and individual performance on the task may exacerbate 

(He et al., 2011; Ziakopoulos et al., 2017). 
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On the other hand, physical exertion may also be overwhelming. Physical exertion in video 

games may be challenging not only as a result of the amount of physical energy expended, 

but also proportionally to the number of options available for the user to execute (e.g., Chen, 

2007). It should be stressed that physical exertion, in this context, is not to be confused with 

exergames, i.e., video games promoting physical exercise (e.g., Yang et al., 2008). Instead, 

physical exertion refers to physical activity, which is distinct from exercise in that it 

encompasses any coordinated movement of the muscles (Caspersen et al., 1985; Oh & Yang, 

2010). Traditional video games are more pertinent to physical activity, which is realized via 

handling an input device that establishes the game-player interaction. Moreover, the type of 

controller used may impinge on the perceived sense of control over the game (Limperos et al., 

2011). 

In addition, task novelty is likely to stimulate higher cognitive load, as it requires explicit 

control, whereas familiar tasks are processed in an automated and implicit way (Hodent, 2016; 

Speelman & Maybery, 2013). Overcoming the initial challenge of handling physical controls 

is key to progressing into deeper levels of immersion (Brown & Cairns, 2004). This is also 

reflected in flow theory, which proposes that action execution feels automatic and not 

consciously processed (Singer, 2002). Though automaticity has been predominantly 

interpreted as a dimension of the flow experience (e.g., Nah et al., 2014), Quinn (2005) attested 

to its importance by equating it to the flow experience. However, evidence from a few studies 

do not corroborate Quinn’s interpretation and instead showed that other criteria may be more 

characteristic of flow (e.g., Klasen et al., 2012; Sillaots & Jesmin, 2016; Skadberg & Kimmel, 

2004). Yet, automaticity is still important in that it may help explain the alleged individual 

performance advantages during flow (e.g., Stoll, 2018) as well as the diminution of the adverse 

effects of mental workload, such as anxiety (Cottrell & Barton, 2013). 

2.4.2.1 Challenge, Performance and Enjoyment 

In order to optimize performance and to amplify enjoyment, a balance between the player’s 

skills and the game’s demands should be met, which in turn provides fertile ground for flow 

to trigger (Csikszentmihalyi, 1990). The Four Channel Flow Model (Massimini & Carli, 1986) 

identifies four experiential outcomes resulting from compatibility or incompatibility of the 
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skills-challenge pair. When a balance is achieved, players are more likely to experience flow, 

whereas an incompatibility thereof may engender boredom (low challenge and high skills) or 

anxiety (high challenge and low skills), which result from the perception of an easy or a hard 

game respectively. Although anxiety and boredom are traditionally interpreted as the polar 

opposites of flow and as mutually exclusive (e.g., Csikszentmihalyi, 1990; Jackson et al., 1998), 

skills-challenge incompatibility alone does not guarantee absence of flow, but rather a weak 

flow experience (Fong et al., 2015). 

It should be stressed that possibly only one study has been unable to empirically show that a 

fit between skills and challenge gives rise to flow (e.g., Løvoll & Vittersø, 2014). The authors 

of this study suggested that perfect balance might actually result in boredom rather than flow. 

Finally, apathy may occur when both the player’s skills and the challenge are low. Taken 

together, albeit apathy is made of compatible conditions (low-low), which would imply a flow 

experience, it is instead associated with the absence of motivation to engage with the activity 

altogether (Stavrou, 2008). On the basis of these observations, the game play experience 

appears to be highly influenced by the challenge posed by the game (Mathwick & Rigdon, 

2004). 

2.4.2.2 Personal characteristics influence challenge perception 

Notably, the same task characteristics may bestow differential mental load to different 

players. For example, expertise in a task may enable the individual to cope more efficiently 

under mental load (e.g., Benner, 1984). Indeed, if the perceived difficulty of the task is not 

considered in context with the player’s skills, it may not be intuitively comprehensible. An 

earlier study argued that it is not clear whether expert and novice players experience flow 

similarly (e.g., Kirschner & Williams, 2014). This may be because skilled players expect a 

higher level of challenge compared to novice players (Berta et al., 2013; Chen, 2007; Cox et al., 

2012; Iacovides et al., 2015; Klimmt & Hartmann, 2006). 

Novice players in training studies using action video games have been found to have 

benefited from enhancement of attentional capacity whereby a higher number of visual 

objects are permitted for concurrent processing (cf. Hubert-Wallander et al., 2011). Likewise, 
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increased working memory capacity observed in action video game players (McDermott et 

al., 2014) may entail increased resistance to distraction and mind wandering (Kane & McVay, 

2012). Generally, player expertise may cultivate the ability to suppress distraction and 

negative affective states under mental overload (e.g., Borderie & Michinov, 2016; Bunian et 

al., 2018; Chisholm & Kingstone, 2012), which would diminish the perception of a high 

challenge. 

Bandura (1982) proposed that individuals make personal judgments about their perceived 

likelihood of accomplishing their goals, which is described with the term self-efficacy. High-

efficacy individuals tend to persist more on the challenges they face (Zimmerman, 1995), 

whereas low-efficacy individuals may avoid challenge altogether (Bandura, 1994). This is an 

important observation, which suggests that certain players may not enjoy challenge as much 

as others do (e.g., Klimmt & Hartmann, 2006). Paradoxically, challenge is precisely one of the 

principal appeals of video game play (De Schutter, 2011; Griffiths & Hunt, 1998). 

Klimmt and Hartmann (2006) suggested that low efficacy could impinge on the intrinsic 

motivation to engage in video game playing. This same relationship has been shown for flow, 

where self-efficacy acts as an antecedent to flow (e.g., Rodríguez-Sánchez et al., 2011). Does 

this imply that low-efficacy individuals may prefer low challenge despite having high skills – 

a scenario that flow theory treats as boring? Presumably, as Lee and LaRose (2007) observed 

that, for flow to emerge, self-efficacy should match with the perceived challenge. Hence, a 

low-efficacy player may prefer low challenge, whereas a high-efficacy player may prefer high 

challenge. This corroborates the notion that highly skilled players will prefer high challenges 

in order to experience flow (e.g., Jin, 2012; Rodríguez-Sánchez et al., 2011). Importantly, self-

efficacy has been shown to mediate the relationship between player performance and player 

enjoyment (Trepte & Reinecke, 2011). 

Other prerequisites that may mediate one’s motivation to seek challenge have been shown to 

include personality traits, such as conscientiousness (Johnson et al., 2012; McMahon et al., 

2012; Zeigler-Hill & Monica, 2015) and extraversion (Zeigler-Hill & Monica, 2015). Both traits 

have been related to the flow experience (e.g., Demerouti, 2006; Johnson et al., 2014; Tatalović 

Vorkapić & Gović, 2016; Ullén et al., 2012, 2016). Ullén and colleagues (2016) argued that 
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conscientiousness is relevant to flow, as it relates to motivation, problem solving and 

emotional self-regulation. On the other hand, neuroticism is a trait that relates to a tendency 

in experiencing anxiety and negative emotions (Gray & MacNaughton, 2003), lack of 

motivation (Ryan & Deci, 2000b) and inactivity (D’Zurilla et al., 2011), and is therefore highly 

inconsistent with the state of flow. Other personality factors that presented a strong, positive 

relationship with flow are openness to experience, extraversion and agreeableness, which 

relate to well-being, an active lifestyle, and social desirability (Ullén et al., 2016). 

2.4.2.3 Achieving flow by achieving balance 

From the previous section, it becomes clear that video game designers need to account for 

individual differences and accommodate different player archetypes. Previous studies in 

human-computer interaction have used the umbrella term player modeling that acknowledges 

the role of individual differences in the video game experience (e.g., Charles & Black, 2004; 

Yannakakis et al., 2013). The purpose of player modeling is to dynamically model the player’s 

idiosyncrasies, as they are enacted through in the game world, in order to augment game 

enjoyment (e.g., Yannakakis et al., 2013). Challenge adaptation seems to be a qualified instance 

of player modeling (e.g., Missura & Gärtner, 2009). Anecdotally, balancing the game’s 

challenge is a particularly challenging task for game designers (Moroşan, 2019). 

Hence, another option would be to dynamically adjust the game’s difficulty (e.g., Van 

Lankveld et al., 2009; Zohaib, 2018), which has been shown to be more immersive than 

predefined difficulty settings (Denisova & Cairns, 2015a). Hunicke (2005) found that when a 

game is adjusted to the player’s skills, their performance increases. Based on our previous 

observations, this increase in performance may substantiate a more enjoyable experience. 

Dynamic difficulty adjustment is substantially better than a conventional approach of static 

difficulty, in that it also accounts for the player’s perceived difficulty (e.g., Adams, 2009; 

Hunicke, 2005). Furthermore, dynamic difficulty scaling may encourage long-term 

commitment with the game (Youssef & Cossell, 2009). Although different authors have 

formulated methods for classifying players on the basis of their expertise (e.g., Ip & Adams, 

2002; Manero et al., 2016), it may be more effective to adjust difficulty “on the fly” rather than 

based on a cluster of characteristics that correspond to a class of player expertise. 
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To conclude, designing interesting challenges is essential to game enjoyment. "Interesting" 

challenges should be able to stir curiosity (e.g., Kashdan & Silvia, 2009), introduce unexpected 

events (e.g., Brandtzæg et al., 2018), feature fantasy elements (e.g., Kannetis et al., 2009) and 

be either intrinsically (e.g., a challenge combined with exploration of an innately inaccessible 

area) or extrinsically motivational (e.g., provision of symbolic or fiscal rewards). Yet, as 

previously discussed, the same challenge may not be universally pleasant to different players. 

Hence, challenge should be defined in relation to the player's skills. Notably, challenges may 

differ based on the solicited cognitive and executive demands. For example, increasing the 

health of the enemy units as a tactic to boost challenge is different from increasing the 

frequency and the number of enemies spawned at a time. The former scenario requires 

efficient character resources, which may entail an arduous process to acquire, while the latter 

requires quick reflexes and agility on the player's side. These two scenarios are not mutually 

exclusive, but the nature of the challenge they pose is different. 

2.4.3 Flow’s “competition” with other states 

The skills-challenge compatibility component that has been treated as an antecedent to the 

flow experience (e.g., Csikszentmihalyi, 1990; Fong et al., 2015) and violations of which might 

cause the suspension of flow, suggests that flow remains susceptible to task difficulty 

alterations. Earlier research showed that the anterior cingulate cortex strongly responds to 

such changes in task difficulty (e.g., Barch et al., 1997; Paus et al., 1998). This region has been 

argued to comprise an affective subdivision, which forms projections to brain areas associated 

with affective processing and experience (subgenual anterior cingulate cortex; Vogt, 2005). 

Thus, challenge perception seems to be associated with emotional responses on an anatomical 

level, which corroborates the proposed outcomes of the Four Channel Flow Model (Massimini 

& Carli, 1986). Apart from challenge, affective responses in video games may also result from 

the game’s narrative (e.g., Schneider et al., 2004) and its reward systems (e.g., Mathiak et al., 

2011). Affect has long been viewed as the composition of two dimensions – valence 

(positive/negative) and arousal (low/high) (Lang, 1995). Building on Lang’s two-dimensional 

affective space as a guide to flow, the following can be surmised: boredom is a low-arousal 

negative state (Mikulas & Vodanovich, 1993; Raedeke & Stein, 1994), anxiety is a high-arousal 
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negative state (Raedeke & Stein, 1994), whereas flow is a moderate/high-arousal positive state 

(Nacke & Lindley, 2008; Peifer et al., 2014; Ullén et al., 2010). 

2.4.3.1 A boring game cannot be immersive at the same time 

Boredom has been consistently correlated with negative affect (e.g., Gordon et al., 1997; 

Vodanovich, 2003; Vodanovich et al., 1991). It is considered a state that can emerge as a failure 

to allocate attentional resources in spite of an existing motivation to engage (e.g., Danckert et 

al., 2018; Eastwood et al., 2012). Hence, concentration is much more reduced during boredom 

than during flow (Mathwick & Rigdon, 2004). Traditionally viewed as a long-lasting state that 

characterizes the individual’s life (e.g., Harris, 2000), boredom presents a negative 

relationship with life satisfaction (Farmer & Sundberg, 1986). 

Researchers have posited that boredom can be conceptualized as a trait, suggesting that 

certain individuals may be more prone to experiencing boredom than others (e.g., 

Vodanovich, 2003). However, “boredom proneness” is a relevant topic when the individual 

experiences boredom across multiple contexts and times (Elpidorou, 2014; Watt & Hargis, 

2010). This has also been addressed in the literature, which distinguishes emotion from mood 

(e.g., George, 2011; Warr et al., 2014). For example, boredom may occur as a response to a 

particular situation but can also take the form of a prolonged state over a period of time, in 

which case there is not a direct trigger for that state (Russell, 2003a). In video game play, we 

refer to boredom as a response to the interaction with a computer game, whereby various 

triggers in the game can facilitate the onset of this state. 

Certainly, individuals with boredom proneness may be less likely to experience flow (Harris, 

2000). However, in the case of video game playing, we should refer to boredom as a situational 

state, which makes no assumptions about the individual’s general tendency to experience 

boredom. Such scenarios may be externally driven (see Goldberg et al., 2011) and involve task 

repetitiveness (Smith, 1981), prolonged and monotonous stimulation (Hill & Perkins, 1985; 

O’Hanlon, 1981), and, as seen in the theory of flow, low challenge (Csikszentmihalyi, 1990; 

Massimini & Carli, 1986). 
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Notably, a less popular consideration is boredom as a high-arousal negative state in that it acts 

as a self-motivated state to pursue new goals (Bench & Lench, 2013; Berlyne, 1960). Bench and 

Lench argued that its conventional conception as a low-arousal state originates from a 

misconception between boredom and apathy. As mentioned earlier, the Four Channel Flow 

Model (Massimini & Carli, 1986) treats boredom and apathy as two separate experiential 

outcomes. However, Mikulas and Vodanovich (1993) suggested that high arousal 

automatically suggests the absence of boredom. In a study by D’Mello and colleagues (2007) 

it was shown that, during instances of boredom, the users of a tutor-simulated system tended 

to lean back, away from the computer. On the contrary, flow episodes were characterized by 

a tendency to lean forward, closer to the computer. The authors concluded that boredom’s 

postural pattern was indicative of an inclination to disengage, which can be considered a 

coping strategy to alleviate the effects of boredom (e.g., Smith, 1981). 

These findings corroborate an earlier view that boredom is manifested as disinclination to 

action (Greenson, 1953), which is in direct opposition with the idea that boredom prepares for 

action (Bench & Lench, 2013). Goetz and colleagues (2014) identified five types of boredom. 

Bench and Lench’s definition closely resembles the “reactant boredom” (Goetz & Frenzel, 

2006), which is a combination of high arousal and negative valence that motivates the 

individual to “leave the situation for specific alternatives” (Goetz et al., 2014, p. 413). 

Contrarily, the “calibrating boredom” (openness to distraction from the current situation) and 

the “apathetic boredom” typify the common conception of boredom as a low arousal state 

(Goetz et al., 2014). Perhaps, qualifying boredom, as a high-arousal state, requires more 

information about the context it takes place. A possible disambiguation between apathy and 

boredom in the affective space is that apathy may be viewed as a neutral rather than a negative 

state (e.g., Shirzad & Van der Loos, 2016). Again, it should be noted that apathy and boredom 

are not meant here as individual traits, i.e., internally driven (Goldberg et al., 2011), but as 

transient states. 

2.4.3.2 The detriment of anxiety could also be beneficial 

Likewise, anxiety is also considered a negative affective state (e.g., Raghunathan & Pham, 

1999) and a personality attribute (Spielberger et al., 1971). It is worth noting that other terms 
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have also made appearance in the literature, namely frustration (e.g., IJsselsteijn et al., 2007; 

Nuñez Castellar et al., 2016), stress (e.g., Nijholt et al., 2009) and overload (e.g., Keller et al., 

2011a; Klasen et al., 2012). In some cases, frustration and anxiety have been used 

interchangeably (e.g., Craveirinha & Roque, 2010; Jin, 2012; Knox et al., 2011). Although 

frustration seems to be more similar to the basic emotion of anger (Triberti, 2016), Saadé and 

Kira (2009) grouped frustration, anxiety, anger and confusion together as similar affective 

states. While the differences in the phenomenology of these terms is beyond the scope of this 

section, anxiety and frustration will be preferred for their common appearance in the video 

games literature.  

The connection of boredom and anxiety to negative affect (e.g., Diener & Emmons, 1984; 

Fisher, 1993; Raedeke & Stein, 1994) and flow’s putative connection to positive affect has 

popularized the idea that flow will likely be suspended when a person experiences negative 

affect (e.g., Jennett et al., 2008; Poels et al., 2012). However, Csikszentmihalyi (1990, 1996) 

mentioned that a person might not always receive satisfaction whilst engaging in an activity, 

but rather immediately after (also, Ghani & Deshpande, 1994). In video games, both positive 

and negative emotions have been identified as valid constituents of the game-playing 

experience (e.g., Granic et al., 2014; Kaye et al., 2018; Silpasuwanchai & Ren, 2018). 

These observations challenge the idea that flow is uniquely connected to positive affect 

(Walker, 2010). Thus, flow could also be portrayed as a high-arousal negative emotion, which 

clearly overlaps with anxiety. Interestingly, flow’s competition with anxiety may not be easily 

distinguishable. For example, a few studies have been unable to find a significant 

physiological difference between flow and anxiety (e.g., Keller et al., 2011a; Larche & Dixon, 

2020). While Keller and colleagues did not offer a proper justification for this finding, they 

stressed a distinction previously made in the literature – the positive and negative stress 

(Selye, 1975), alluding to a resemblance between flow and positive stress. 

2.4.3.3 Flow meets anxiety and boredom 

Still, the aforementioned claims do not elucidate the conditions under which frustration and 

boredom can replace the flow experience provided that negative affect does not pose a threat 
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to flow. Yet, Klimmt (2005) contended that players who are unable to achieve a subset of 

challenges in the game will eventually give in to negative emotions. Anxiety and frustration 

may emerge as a result of failure (Gilleade & Dix, 2004; Saadé & Kira, 2009) as well as fear of 

possible failure in a task (Fullagar et al., 2013; Juul, 2009; Sarason, 1984; Schüler, 2007). 

However, the consequences of failure may also be negligible when extrinsic rewards are 

provided (e.g., Miller & Hom, 1990), which is a common design strategy in video games, as 

discussed earlier. Thus, failure alone does not seem to adequately explain how the transition 

from flow to a negative state can occur. This paradox may be clarified using a distinction, 

similar to Selye (1975)’s, between positive and negative frustration (e.g., Allison et al., 2015; 

Gilleade & Dix, 2004; Miller & Mandryk, 2016; Nylund & Landfors, 2015; Roest and Bakkes, 

2015). Whereas positive frustration can maintain the player’s motivation, negative frustration 

may be destructive to flow, leading to disengagement (Miller & Mandryk, 2016). 

Juul (2013)’s observations, which stem from the attribution theory (e.g., Fiske & Taylor, 1991) 

and applied in video games, further elaborate on this scenario. Failure may cause differential 

effects on the emotional experience depending on whom the player will hold responsible for 

their failure. For example, the bipolar pair of external and internal failure suggests that, if 

failure is attributed to external causes, motivation may be suspended, whereas if it were 

attributed to internal causes (e.g., the player holds himself or herself responsible), the person 

may persist in the challenge (e.g., Child, 1994; Gilleade & Dix, 2004). 

What this means for flow is that external failure (e.g., the game being too demanding) would 

place the source of failure outside the player’s control, which indeed violates flow. In that 

case, the player loses their sense of control and its escorting pleasure (Klimmt et al., 2007). 

Moreover, Van den Hoogen and colleagues (2012) provided evidence for another attribution 

pair as a possible explanation for flow’s suspension. The authors found that repetitive failure, 

which is described as stable failure (e.g., Juul, 2013), is likely to be experienced as negative, 

whereas unstable failure might preserve motivation (e.g., Child, 1994; Van den Hoogen et al., 

2012). Likewise, flow may wane if the player is prematurely interrupted during playing, in 

which case negative affect (e.g., annoyance) is more likely to be experienced (e.g., Freeman & 

Muraven, 2010). Similar observations have been made for boredom – the person experiences 
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boredom when the source of boredom is attributed to external factors (e.g., Mikulas & 

Vodanovich, 1993). 

Nevertheless, is it tenable to view flow as being characterized by either positive or negative 

valence? Cacioppo and colleagues (1999) suggested that valence might not be as binary 

(negative/positive) as Lang (1995) originally proposed. Instead, they mentioned that negative 

and positive emotions are processed by different neural systems and thus do not undergo a 

functional limitation on concurrent processing. For example, positive and negative emotions 

may be, to an extent, functionally lateralized via left and right brain circuits respectively 

(Kahneman et al., 2003). This is also manifested in the approach-withdrawal theory, where 

approach behaviors, usually as a result of positive affect are lateralized to the left, and 

withdrawal behaviors, usually resulting from negative affect, are lateralized to the right 

(Davidson, 1992). Empirically, this has been widely known to be reflected through frontal 

alpha asymmetry (for a review, see Briesemeister et al., 2013). 

Hence, even if flow is viewed solely as a state of positive affective valence, negative affect may 

not necessarily compromise it. For example, in the study of Borderie and Michinov (2016), it 

was found that players experienced flow even under failure. The authors further asserted that 

frustration may even be a signature of flow. This may also be viewed from the scope of duality, 

i.e., the simultaneous experience of emotions with opposite valence, which supposes that 

mixed emotions may be experienced if the person is willing to accept such an emotional 

dissonance (Williams & Aaker, 2002). In the same vein, Larsen and colleagues (2001) proposed 

that affective experiences be interpreted as bivariate rather than bipolar entities, considering 

that joy and sadness may be experienced concurrently (Menninghaus et al., 2015). 

The evidence on the triad of flow, anxiety and boredom may be somewhat inconclusive. 

Though boredom seems to be a competitive state to flow's, the same is not necessarily true for 

anxiety and flow. There are authors, for example, who hold that anxiety may be a necessary 

component in games and further suggest that games can be both engaging and frustrating 

(Roest & Bakkes, 2015). This draws a blurry line from the conventional interpretation that 

anxiety supersedes flow (e.g., Massimini & Carli, 1986) and alludes to a paradox that is 

perhaps unique to video games. Indeed, the plethora of video games available narrow the 
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possibility that anxiety and flow are unconditionally incompatible. However, the differences 

between these states may be more pronounced across different technological mediums. An 

example of such a medium is virtual reality, which is purported to engender life-like 

experiences. 

2.4.4 Video games in virtual reality 

Virtual reality (VR) allows users to engage in video game play, by enabling more vivid 

representations of reality than traditional displays (e.g., Pallavicini et al., 2018; Van 

Kerrebroeck et al., 2017). It has been considered a technological innovation of the century 

(Perry Hobson & Williams, 1995). Amongst the distinctive features of VR is that of presence, 

which elicits the illusion of self-location displacement (Sanchez-Vives & Slater, 2005), loss of 

body ownership (Krekhov et al., 2018) and a feeling of being present in the mediated world 

(Steuer, 1992). Although the sense of presence is not bound to head-mounted displays or 

CAVE displays, i.e., stereoscopic projections, which are typically associated with VR (Pausch 

et al., 1997), presence appears to be more pronounced in VR (Carroll et al., 2019; Pallavicini et 

al., 2019; Peng et al., 2019). This is achieved by whelming the user’s sensory system such that 

the information flow emulates information encoding in real life (e.g., Mania & Chalmers, 

2001). The proximity of the virtual world to the physical world facilitates suspension of 

disbelief and the virtual world replaces the real one on a perceptual level (Rizzo & Koenig, 

2017; Saunders et al., 2011). 

In comparison to 2D displays, VR seems to contribute to more arousing and intense 

experiences (Pallavicini et al., 2018, 2019; Tan et al., 2015) that greatly enhance the overall 

gaming experience (Tan et al., 2015). Indeed, user responses in an immersive mediated world 

may approximate real-life responses (Bohil et al., 2011; Feigenson, 2006), making VR 

particularly interesting to study or use as an alternative approach to field experiments (Bohil 

et al., 2011). The connection of presence to enjoyment (Shafer et al., 2019) in conjunction with 

high arousal reported by Pallavicini and colleagues (2018) during VR game play suggests that 

VR may engender highly enjoyable experiences. Presence is an experience that is purported 

to precede the flow experience (Michailidis, Balaguer-Ballester, & He, 2018; Weibel & 

Wissmath, 2011). Thus, virtual reality may act as a launch pad to the flow experience and 
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facilitate the transition to this state. Notably, if user experiences in VR are greatly augmented 

(Shelstad et al., 2017), then VR can be a promising technology to investigate flow. 

The obstruction of real-life visual stimuli, that is achieved with head-mounted displays, 

precludes them from distracting the user. Jennett (2010) found that during immersive 

episodes, susceptibility to distractions is significantly reduced, but the distractor, depending 

on its nature, may still undergo cognitive processing. For example, Jennett employed three 

categories of distractors, namely relevant to the person, relevant to the game, and irrelevant. 

The author found that irrelevant distractors were significantly suppressed while players 

engaged in a game that matched their skills, but distractors relevant to the person or the game 

did not undergo the same suppression as the irrelevant distractors did. It was thus surmised 

that a special attentional filter may be active during an immersive experience, when stimuli 

beyond the game’s environment are not automatically discarded and could lead to potential 

user disengagement. On the basis of this presumption, head-mounted displays engulf the 

user’s visual field, while headphones are used for audio transmission, thus making virtual 

reality a medium that minimizes the existence of environmental distractions (e.g., Izkara et 

al., 2007). As such, VR may enable higher sustainability of experiences which may not have 

been otherwise possible (Baştuğ et al., 2017). 

This may also justify the commercial success of the VR platform – for example, PlayStation VR 

has sold over 4.2 million units since its commercial release (Shuman, PlayStation Blog, 2019). 

Other major platforms include the Oculus series (i.e., Rift, Go and Quest; Oculus VR, Irvine, 

California, United States), HTC Vive (HTC Corporation, Xindian, New Taipei, Taiwan & Valve 

Corporation, Bellevue, Washington, United States), Google Cardboard (Google LLC, Mountain 

View, California, United States) and Samsung Gear VR (Samsung Electronics, Suwon, South 

Korea). More recent developments have embedded additional features within the headsets’ 

capabilities, such as eye-tracking technology in FOVE VR (Fove Inc., Torrance, California, 

United States), HTC Vive PRO, Varjo VR-1 (Varjo HQ, Helsinki, Finland) and Looxid VR (Looxid 

Labs, Gangnam-gu, Seoul, South Korea) and electroencephalography (EEG) sensors in Looxid 

VR and Neurable (Neurable Inc., Boston, Massachusetts, United States). 
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The surge of these technologies indicate that the user is promoted to an active participant of 

the virtual reality experience rather than a passive receiver of stimulation. Though there are 

studies wherein the EEG power is measured in the context of adaptive games (e.g., Ewing et 

al., 2016), similar investigations for the combination of VR, EEG and flow are scant (e.g., 

Monteiro et al., 2018). The commercial availability of these products provides evidence that 

the industry is becoming increasingly interested in outcomes that used to be primarily 

concerns of academic research. 

These accounts suggest that virtual reality may provide an ideal setting for the measurement 

of immersive experiences. Because these experiences have been found to be more intense in 

virtual reality compared to traditional displays, they may be more memorable to the user in a 

similar manner to other highly arousing emotions (e.g., Barnacle et al., 2016; Bradley et al., 

1992), with dedicated neural networks for affective memory (e.g., Dolcos et al., 2004). 

Consequently, in a retrospective setting, wherein user experience questionnaires are 

administered after the game, these affectively loaded experiences may offer an advantage in 

terms of memorability and by extension reliability of the self-reported experience. Those 

approaches, toward the measurement of flow, are described in the next section. 

2.4.5 Game genres 

Video games are often clustered into discrete categories that define their characteristics and 

the game mechanics that typify a particular style of gameplay. These categories, otherwise 

referred to as genres, are reminiscent of other media forms, such as films and literature (Wolf, 

2001). Though the classification of games has been occasionally abused in the past, by 

distinguishing games based on aesthetics in lieu of the ergodic interactive elements (Apperley, 

2006), game genres provide loose boundaries between different play styles. In the recent 

decades, there appears to be a strong presence of hybrid genres (Dale & Green, 2017; Doherty 

et al., 2018) and the implications of what gameplay those genres intend to provide are not 

intuitively interpretable. Calleja (2011) specifically referred to hybrid genres as games within 

games. The absence of a consensus on genre characteristics has also been found to greatly vary 

among well-known online video game databases (e.g., Faisal & Peltoniemi, 2015). 
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2.4.5.1 The problem with categorizing games 

Although the absence of a consensus on the characteristics that define a genre is not inherently 

problematic, it reveals that a common vocabulary is lacking, which can impede our 

understanding on research findings (Doherty et al., 2018). For example, the topic of training 

individual skills using video games garnered ample attention from a study by Green and 

Bavelier in 2003 (Dale & Green, 2017). The study made somewhat bold claims, for its time, 

stating that action video games have the capacity to enhance visual attention (see, Green & 

Bavelier, 2003). However, Latham and colleagues (2013) pointed out that the term "action", 

which was used to describe fast-paced gameplay, typically in the form of a first-person shooter 

(Boot et al., 2011), is problematic. The authors argued that action gameplay comprises multiple 

genres, including role-playing games, racing and sport (Latham et al., 2013), all of which are 

conventionally regarded as distinct genres (Faisal & Peltoniemi, 2015). In a similar vein, the 

ongoing debate of post-game hostility has been found to be probably unique to certain genres 

(Dickmeis & Roe, 2019). 

According to Faisal and Peltoniemi (2015), there appears to be a consensus over the distinction 

of the following genres: action, shooting, role-playing game, strategy, simulation, sports, 

racing and fighting. However, as noted earlier, the action genre is a broad umbrella term and 

may include some of the genres already listed by the authors. Interestingly, Apperley (2006) 

stated that the action genre comprises first-person shooters and third-person games. 

However, these "sub-genres", as he claims them to be, may denote virtual camera perspectives 

(see Denisova & Cairns, 2015b; Taylor, 2002), that blend with the narrative (Bryce & Rutter, 

2002), and are not indicative of their gameplay content. 

Although the author goes on to mention the typical characteristics of games employing these 

types of perspectives, he seems to be grouping them retrospectively, based on existing design 

practices, rather than a concrete set of rules that distinguish action games from other genres. 

In addition, the distinctive element of action games is generally accepted to incorporate fast-

paced gameplay, which requires quick reflexes from the player’s side (Spence & Feng, 2010). 

This signifies the presence of quantifiable properties at play. However, just how fast should 
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the game’s pace be in order to qualify as an action game? These accounts suggest that the 

defining elements of each genre may be equivocal to different authors. 

2.4.5.2 Distinguishing genres based on cognitive expenditure 

In an attempt to bridge the apparent gap in the literature, Doherty and colleagues (2018) 

suggested that genres could be distinguished by the cognitive skills that they marshal. This is 

a sensible approach and is corroborated by Boot and colleagues (2011) who contended that 

expert action video game players may not necessarily benefit from the act of playing action 

games, but instead, they are originally drawn to these games because of their individual 

capacity to meet the requirements of those games. However, classifying games on the basis of 

cognitive demands and/or the cognitive benefits they endow (Doherty et al., 2018) poses two 

issues. First, the genre might become all-inclusive and insensitive to thematic cohesion among 

blatantly different play styles (e.g., Clearwater, 2011). Thus, this classification scheme does 

not view games as entertainment tools entirely and clusters virtually irrelevant games 

together. 

For example, spatial orientation is a cognitive ability that is utilized in survival horror games 

as well as massively multiplayer online role-playing games (e.g., Hsu & Chen, 2009; Tajerian, 

2012). Yet, exemplars from each of these genres testify that their differences may not 

adequately justify their conceptual union (for instance, compare Resident Evil 7: Biohazard 

by Capcom to World of Warcraft by Blizzard Entertainment that exemplify this case). The 

issue here is amplified because we apply a traditional understanding of what a game genre 

entails, as it happens in the case of films (e.g., Wolf, 2001). A second problem arising from 

Doherty et al.’s recommendations is that classifying games based on their cognitive benefits 

is questionable, due to the opposing evidence from studies reporting null effects from video 

game training (e.g., Roque & Boot, 2018; Sala et al., 2018; Van Ravenzwaaij et al., 2014). 

2.4.5.3 Individual traits are still relevant 

To diverge from this theoretical debate, that remains unsettled, we can follow Faisal and 

Peltoniemi (2015)’s view that a number of genres are commonly purported to be distinct: 

action, shooting, role-playing games, strategy, simulation, sports, racing and fighting. 
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However, shooting, sports and racing games could in principle be collapsed to action games 

(Latham et al., 2013). From the aforementioned accounts, a strong takeaway emerges from 

Boot et al. (2011)’s observation: Video game players may exhibit a propensity toward playing 

specific types of games, which may be in harmony with their own skills (also, Ryan et al., 

2006). Essentially, this observation alludes to the competence motive (see Ryan & Deci, 2000b) 

and the skills-challenge compatibility of the flow experience. However, research has 

demonstrated that other variables might also factor in game genre preferences, such as 

personality traits (e.g., Peever et al., 2012), expertise (e.g., Scharkow et al., 2015), gender (e.g., 

Greenberg et al., 2010; Rehbein et al., 2016; Vermeulen & Van Looy, 2016) and age (Bilgihan et 

al., 2013; Greenberg et al., 2010). In addition, taxonomy systems that identify player 

archetypes based on their motivations for play (e.g., Bartle, 2006; Nacke et al., 2014) indicate 

that players who fall under specific archetypes may not enjoy games that fail to satisfy their 

intrinsic needs. For example, in order to accommodate the “killer” player dynamics (Bartle, 

1996), the game should support player-versus-player (most commonly abbreviated as PvP) 

combat. 

The effects of these variables on game genre preferences suggest that they can also strengthen 

the intrinsic motivation toward specific types of games (Joyner & TerKeurst, 2006). By 

extension, increased intrinsic motivation may facilitate the onset of the flow experience 

(Csikszentmihalyi, 1990). These notions may seemingly discount the importance of game 

design, in that individual preferences are beyond a game designer’s control. However, as 

pointed out earlier for flow, the emerging experience during video game play results from the 

combination of user characteristics and the game’s characteristics (e.g., Nah et al., 2014). 

Notably, certain game genres may bestow slightly different experiences than others (Johnson 

et al., 2015), but there is little evidence to suggest that specific games are better at triggering 

flow (e.g., Michailidis, Balaguer-Ballester, & He, 2018). In the next section, we provide a brief 

critical overview of the existing methodology in flow research, illustrating some of the 

challenges associated with its measurement. 
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2.4.5.4 The challenges in measuring flow in video games 

Commercial games are commonly closed source software, which makes content modifications 

implausible. Though commercial games are usually exemplars of established game designing 

practices, their conformity to experimental control or the ability to store game events into log 

files are lacking (Järvelä et al., 2015). This makes it challenging for an experimenter to identify 

the effects of certain game mechanics on the user’s experience. Notably, user experience 

research tackles with this issue via think-aloud protocols or interviews (e.g., Tan et al., 2014). 

However, these approaches typically introduce artificial pauses to the play sessions and do 

not always allow the player to engage naturally with the game (Tan & Pisan, 2012). In 

addition, the variety of game design features there exist in commercial games can produce a 

variety of experiential outcomes, which poses another challenge in comparing data among 

participants. As such, a customized game provides unconstrained development that can be 

tailored to the goals of the study (Järvelä et al., 2015). 

Game genres used in research. The landscape of research in flow is far from standardized 

(e.g., Jackson & Marsh, 1996). In the video games domain, the vast diversity of commercial 

games available has sparked a similar diversity of games employed in the study of immersive 

experiences. For example, Jennett and colleagues (2008) used Half-Life, an FPS shooter game 

to investigate immersion. Likewise, Nacke and Lindley (2008) used modified maps of Half-

Life 2 to induce flow and immersion. On the other hand, Cox and colleagues (2012) used a 

Tower Defense game from the family of strategy games, manipulating time pressure to 

increase perceived challenge and, by extension, immersion. Klasen and colleagues (2012) used 

Tactical Ops: Assault on Terror, which is another game from the FPS shooters genre, to 

investigate brain activity changes during flow. Yun and colleagues (2017) also employed an 

FPS shooter in conjunction with electroencephalography to identify the neural dynamics of 

flow. Finally, Chanel and colleagues (2011) used Tetris, a puzzle game, to distinguish 

emotions elicited by difficulty (boredom, engagement and anxiety) via 

electroencephalography. 

These studies exemplify the variety of games used in flow research. A clearly disproportionate 

trend can be observed toward first-person shooters in this research domain. This may be 
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because FPS games are amongst the most popular genres in the gamer population 

(Cardamone et al., 2011; Clyde & Thomas, 2008). However, as pointed out earlier, first-person 

shooters rely on player-controlled avatar movement, which would be challenging to 

implement in virtual reality without running the risk of motion sickness. While one can 

suppress movement or even disable it entirely in an FPS game, a viable concern from such a 

modification is that the final game may not be representative of the average commercial FPS 

model. As such, research concerns, such as external validity and novelty effect, may pose 

considerable limitations. 

Research approaches. A common practice in video games research is to alter the game’s 

challenge as part of the experimental manipulation (e.g., Denisova & Cairns, 2015). This is also 

a common strategy in the study of flow specifically, where a singular antecedent is isolated to 

study its effects on the overall flow experience. Indeed, balance of skills-challenge has been 

the most common method for achieving experimentally induced flow episodes (e.g., Keller & 

Bless, 2008; Klarkowski et al., 2015; Peifer et al., 2014; Ulrich et al., 2014). This antecedent is 

driven by theoretical support, which suggests that achieving balance between player skills 

and task demands is the chief prerequisite of the flow experience (Csikszentmihalyi, 1990; 

Massimini & Carli, 1986). 

The flow experience has been measured quantitatively with self-reports (e.g., Nacke & 

Lindley, 2010), the experience sampling method (e.g., Csikszentmihalyi & Hunter, 2003; 

Fullagar & Kelloway, 2009), which supports both quantitative and qualitative data (Salkind, 

2010), interviews (e.g., Jackson, 1996) as well as physiological measures (for a review, see Nah 

et al., 2017). Of these, flow has been predominantly measured through self-report scales (Lee 

et al., 2014), but, more recently, there have been studies investigating the physiology behind 

flow, which do not necessarily exclude the administration of self-reports. In the video games 

literature, self-reports have been adapted to three paradigms: (1) stop-and-report (e.g., Drachen 

et al., 2010; Jennett et al., 2008; Kirschner & Williams, 2014), (2) intermittent (e.g., Nacke & 

Lindley, 2010), and (3) retrospective (e.g., Borderie & Michinov, 2016; Rau et al., 2017). 

In the stop-and-report approach, participants are sporadically interrupted from playing, in 

order to report on their most recent experience. The benefit of this approach is that the 
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reported experience is of considerable relevance to the context of the game at the given time. 

Consequently, one can record the most salient responses originating from a specific set of in-

game events. However, this approach may force the players out of flow by directing attention 

to the self, which results in a conflict with the loss of self-awareness constituent of flow (Bian 

et al., 2016). The intermittent paradigm may rely on the design of the game used in the study, 

in that it should comprise artificial pauses (e.g., a loading screen or advancement to the next 

level). Once the player completes one level, the examiner(s) asks them to report their 

experience. Then, they continue to the next level, and the cycle is repeated. This approach is 

advantageous in that it offers insight on the interplay between the particular level design and 

the player’s experience. 

Finally, in the retrospective paradigm, participants are asked to report their experience after 

the play session has finished entirely. Such an approach might be more efficient in giving a 

holistic impression of the player’s experience during the game. Additionally, it ascertains that 

the participants engage naturally with the game, without the interference of research settings, 

which can be invasive to the player's experience (Nuñez Castellar et al., 2016; Yannakakis et 

al., 2013). However, it may also obscure other parameters of interest, such as the length and 

intensity of the flow experience during the game (Rißler et al., 2018). 

Concerns on existing methods. The methodological concern that is often raised in the 

literature is the reliance on self-reports (Rißler et al., 2018). Although self-reports can be of 

complementary value to the study of flow (e.g., Peifer et al., 2014), they may be unreliable 

(Shearer, 2016; Yun et al., 2017). Recent accounts have also identified a strong overlap among 

different questionnaires, suggesting a potential redundancy (Denisova et al., 2016; Nordin et 

al., 2014). The drawbacks of self-report tools can be compensated with neurophysiological 

measures, as they offer an objective way to identify the cognitive functions associated with 

flow (Bian et al., 2016; Engeser, 2012). 

Following Csikszentmihalyi & Nakamura's (2014) proposition that nearly any activity can 

trigger flow, the flow experience has been investigated in multiple contexts. Keller and 

colleagues (2011b) compared flow experiences between two activities, video game playing 

and a knowledge task. The authors posited that flow shall emerge regardless of the activity, 
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as long as there is compatibility between individual skills and task challenge. This finding is 

corroboratory of Csikszentmihalyi's (1997a) suggestion that skills-challenge balance is a 

sufficient condition for the flow experience. It is clear from Keller et al.'s study that the authors 

understand that a knowledge task may not be as intrinsically motivating as video game 

playing: "participants’ attitude toward the knowledge question activity may differ from 

attitudes toward playful computer games" (p. 409). In a follow-up review by one of the 

authors (Landhäußer & Keller, 2012), they raised the concern that skills-challenge balance is 

often equated to the flow experience in the literature. 

This is an important observation that calls several studies into question. For example, mental 

arithmetic tasks have also been used in the study of flow where the only controlled variable 

was the difficulty of the task (e.g., Ulrich et al., 2014, 2016). However, there is little evidence 

supporting the idea that mental arithmetic tasks are intrinsically motivating, i.e., people 

choosing routinely to engage in mental arithmetic tasks (e.g., Ryan & Deci, 2000a). Yet, even 

then, free choice, as a determinant of intrinsic motivation, does not necessarily lead to 

engagement with an activity (Katz & Assor, 2007). Keller and colleagues (2011b) surmised that 

skills-demands compatibility leads to intrinsic motivation and treated intrinsic motivation as 

a consequence to flow. According to the authors, willingness to re-engage with the activity 

lies at the core of intrinsic motivation (also, Patall et al., 2008). Similarly, enjoyment is also 

understood as a consequence to the flow experience (e.g., Csikszentmihalyi, 1990, 1996; 

Rodríguez-Sánchez et al., 2011). 

In light of this position, enjoyment becomes separable from the activity, which is, by 

definition, an extrinsic incentive (see Ryan & Deci, 2000a). Yet, in the study by Rodríguez-

Sánchez and colleagues (2008), intrinsic motivation and enjoyment were found to have a 

bidirectional relationship with each other, i.e., intrinsic motivation fosters enjoyment, but also 

enjoyment fosters intrinsic motivation. Likewise, Reeve (1989) showed that enjoyment fosters 

intrinsic motivation. Thus, it appears that the activity may be pursued in future instances for 

the enjoyment derivative of the flow experience. If both extrinsic and intrinsic motivation have 

ties to the dopaminergic system (e.g., Baldassarre, 2011), then it is unclear what qualifies 

enjoyment as an intrinsic incentive instead of an extrinsic. These accounts give rise to an 
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important question: Does any cognitively challenging activity automatically qualify for a flow 

experience? Perhaps, findings from neural studies of flow employing different tasks may 

require more evidence to be made comparable (cf. Harmat et al., 2015; Klasen et al., 2012; 

Ulrich et al., 2014, 2016). 

In this section, we adumbrated few of the methods toward the measurement of flow in the 

video games literature. Among those, the principal method involves the use of self-reports, 

aiming to capture the subjective essence of flow. However, the extant criticism suggests that 

self-reports may be somewhat insufficient to interpret the richness of the flow experience. We 

also demonstrated three prevalent paradigms that define the order in which questionnaires 

may be administered. While each approach has different advantages, none of them appears 

to ward off the risk of compromising the player’s experience. Nevertheless, the retrospective 

administration of self-reports does seem to minimize the invasiveness of the experimental 

protocol, as it does not interrupt the players midway through the game. 

2.4.6 Conclusion 

Video game design encompasses a set of rules that define the ways the player interaction can 

be realized. This interaction alone is considered a legitimate source of satisfaction (e.g., 

Grodal, 2000). However, it should be noted that vicarious play, i.e., watching someone else 

play, can be also satisfying (Cheung & Huang, 2011; Sjöblom & Hamari, 2017; Wulf et al., 

2018). Thus, there are more elements at play other than player interaction. For example, 

fantasy (Ferguson & Olson, 2013; Kim & Ross, 2006; Malone, 1981), curiosity (Jin, 2012; 

Malone, 1981) and the need to escape from reality, known as escapism (Calleja, 2010), 

constitute only a handful of the motives underlying video game playing. 

Nevertheless, flow’s onset is facilitated by the way games are designed. Its dimensions, clarity 

of goals, balance between player skills and game challenge and immediate and unambiguous 

feedback, have been regarded as antecedents to the flow experience (e.g., Chen, 2006; Quinn, 

2005). These preconditions can be adjusted on a technical level: The game’s difficulty, the 

design of a user interface to effectively communicate game progress to the player, as well as 
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the definition of specific goals for the player to fulfill, can be established at the design and 

development stage. 

However, promoting other flow dimensions through game design, such as automaticity or 

loss of self-awareness, is more challenging and may involve complex techniques, such as 

suspension of disbelief (Whitson et al., 2008) and an intricate narrative (Sweetser & Wyeth, 

2005). Instead, substitutional design strategies may be used to facilitate the emergence of flow, 

such as background music (Sanders & Cairns, 2010; Zhang & Fu, 2015), believable characters to 

stimulate character identification (Hefner et al., 2007; Soutter & Hitchens, 2016), time pressure 

(Cox et al., 2012; Nah et al., 2014; Yildirim, 2016), and the opportunity for social interaction 

(Cowley et al., 2008; Sweetser & Wyeth, 2005). 

To conclude, the building blocks of a game derive fundamental support from psychological 

studies. However, the ultimate experience is highly subjective and cannot always be tamed 

by conventional approaches. From this review, it becomes increasingly clear that individual 

characteristics play an important role in the onset of flow. The games used in different studies, 

as well as commercial games, try to mold the player to the game instead of the opposite: mold 

the game to the player. By aiming for personalized experiences, one can essentially create an 

idealized testbed to investigate flow dynamics. This context may be somewhat challenging to 

generalize, as it departs from the conventional research methodology that aims to minimize 

contingencies across participants. However, this is not limited to the game content, but also 

the platform on which the game operates. Novel technologies such as virtual reality are 

tempting to investigate, not merely because of their relatively recent commercialization, but 

also because they promise richer user experiences (e.g., Baştuğ et al., 2017; Tan et al., 2015). 
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3 General Methodology 

 

3.1 Introduction 

In this chapter, the general methodological aspects, common to all experiments, will be 

described and reviewed in the broader context of flow. Specific methodological details will be 

discussed for each experiment in Chapters 4 to 6. The building blocks of our methodological 

approach encompassed the development of a virtual reality game, the collection of participant 

data and the classification thereof. 

The initial section is dedicated to the description of the game used in the study and the 

strategies employed to associate physiology with the flow experience during video game play. 

First, the reasoning behind the selection of a Tower Defense game is detailed, followed by the 

materials and the data preprocessing steps to reach to the solution of the classification 

problem. An overview of common classification algorithms is also presented, all of which 

have been used to predict flow episodes through electrocardiography, electrooculography 

and electroencephalography. 

3.2 The design of the experimental game 

3.2.1 Design considerations 

Customized video games are not uncommon in video games research, as the experimenter 

can tailor the game’s characteristics to the experimental goals (see The challenges in 

measuring flow in video games). We similarly proceeded with a custom virtual reality (VR) 

game for the purposes of the present work. As argued earlier, VR was chosen for two main 

reasons, its intrinsic immersive value and novelty. The idea that a technology can be 

intrinsically more immersive than others has been propounded by Slater (e.g., Slater & 

Sanchez-Vives, 2016). Because of commercial VR’s head-mounted display, the user is 

immediately impelled to engage with the virtual environment, given that the real, 
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surrounding world is visually inaccessible. This requires that the sensory stimulation 

achieved by VR be an effective substitute for the real world (Slater & Sanchez-Vives, 2016). 

In the case of VR games, studies have found that players report a heightened sense of flow 

whilst in VR than when using desktop displays (e.g., Tan et al., 2015). Similarly, 

environmental, non-interactable objects are paid closer attention to when in VR than when 

using a 2D display (Tan et al., 2015). As per the emotional experiences, they have been shown 

to be more arousing than their desktop-induced equivalents (Pallavicini et al., 2018, 2019). 

Fortunately, the players’ perception of difficulty remains similar despite the type of display 

used (Pallavicini et al., 2019). This is important in the study of flow, considering that game 

difficulty plays a pivotal role in the experimental design. 

In the design of our game, we adopted the general view that skills-challenge balance, presence 

of feedback and clarity of goals constitute flow’s antecedents as earlier research proposed (e.g., 

Chen, 2006; Fullagar et al., 2013; Quinn, 2005; Rodríguez-Sánchez et al., 2008). Each of these 

antecedents generates controllable variables, which would be translated into game difficulty, 

(un)ambiguous or (in)existence of user interface elements for feedback and (un)clear or absent 

goals. To preserve consistency with earlier studies, we focused on the skills-challenge 

antecedent as traditionally approached in most flow studies (e.g., Keller & Bless, 2008; 

Klarkowski et al., 2015; Peifer et al., 2014; Ulrich et al., 2014). 

Selection criteria. First, we aimed to narrow the scope of genres that could be used as 

potential candidates for the design and development of the experimental game in virtual 

reality. These criteria were chosen such that the game in question would demonstrate qualities 

that are compatible with flow, but also for improving the experimental setup without 

compromising the quality of user experience. There were three major considerations for the 

selection and design of gameplay content, i.e., usability, liability to individual differences, and 

virtual reality comfort. Usability describes the ease of interaction with the game and the 

learning curve that goes into the familiarization with the game’s controls and the gameplay 

(Pinelle et al., 2008). The advantage of balancing the learning curve is the minimization of the 

experimental times. 
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Based on prevalent usability practices, usability in this work was accounted for by the 

following dimensions: (a) a short learning curve characterized by gameplay simplicity 

(Desurvire et al., 2004), (b) a finite set of functionally distinct options the player can choose 

from that precludes choice overload (Besedeš  et al., 2015; Carson, 2000; Vriend, 2017), (c) a 

finite set of deterministic actions the player can perform at a time with consistent outcomes 

(Al-Azawi et al., 2013; Yuan et al., 2011), (d) clear and immediate feedback (Desurvire et al., 

2004), and (e) naturalness of controls, where applicable, to accommodate virtual reality 

idiosyncrasies (Skalski et al., 2011; Sutcliffe & Kaur, 2000). 

The purpose of these criteria is to facilitate the onset of flow. We expected that a game with a 

short learning curve would potentiate faster access to flow, preventing the player from idling 

as a result of goal obscurity or unintuitive game controls. On the other hand, limiting the 

number of available options at a time is coveted for reducing the game’s complexity and the 

variability of experiential outcomes. Finally, the usability criterion of feedback’s clarity and 

immediacy ties directly to the antecedent of the flow experience. Once the game’s state 

changes, it should be communicated directly to the player through visual or auditory elements 

(e.g., Jørgensen, 2008). 

Liability to individual differences refers to the attractiveness of a given game to the average 

player. For example, the game should be accessible to players regardless of their previous 

game experience or genre preferences (Klarkowski et al., 2015; Shelley, 2001). In practice, 

neutralizing the game’s content in favor of a broader audience poses a considerable challenge 

to its design. Perhaps this challenge justifies the recent emergence of hybrid genres in the 

games industry (e.g., Dale & Green, 2017; Doherty et al., 2018). The core elements of digital 

games include narrative, mechanics, aesthetics, interface, etc. (e.g., Ralph & Monu, 2015; 

Takatalo et al., 2010). From an experimental standpoint, each of these elements can be treated 

as an experimental variable, which adds to the complexity of interpretation in games research. 

These elements work in a complementary way to one another (Ang, 2006; Ralph & Monu, 

2015), thereby making video games an ergodic form of media (Calleja, 2013). 

Notably, storytelling is not to be dismissed as a mere piece of contextual information, as it can 

also define new goals for the players depending on game progression (Calleja, 2013; Qin et 
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al., 2009). This dynamic relationship between narrative and gameplay (Ang, 2006) can delay 

the player's sense of progression, because the goals can be generated or presented on the fly 

rather than being communicated to the player a priori. As such, the experimental time may 

increase significantly depending on the complexity of the storyline. In addition, different 

narratives or modes of narrative presentation may appease to different players, whereby they 

widen the gap of inter-player preferences. 

Video games that are destitute of narrative can still be engaging (Ang, 2006), without 

sacrificing the advantage of experimental control. While such an omission could potentially 

impinge on the game's ludic elements, research usually favors experimental control while 

acknowledging potential trade-offs (McMahan et al., 2011). In this project, and for the reasons 

highlighted above, narrative-driven games were dismissed. For example, role-playing games 

that are rich in storytelling (Grace, 2005; Roth et al., 2010) were not considered. 

Similarly, games that tax specific resources as determinants of the players' in-game success 

may also be undesirable, if we consider the notion that players may prefer games that are 

attuned to their individual prowess (e.g., Boot et al., 2015; Granic et al., 2014; Steinkuehler & 

Duncan, 2008). For example, game progression in first-person shooters relies heavily on 

individual advantage of aiming accuracy, which typically requires time to develop (Vicencio-

Moreira et al., 2014). This may be an apparent limitation for players who fail at aiming 

correctly, causing delayed game enjoyment (Klimmt et al., 2009). 

However, in the specific case of first-person shooters, external factors such as frame rate, can 

also pose detrimental effects on player performance and enjoyment (Claypool et al., 2006), 

because these games depend on quick reflexes (Buckley et al., 2013; Sweetser et al., 2017). 

Thus, in the present research, the experimental game in question should collapse into a simple 

set of interactions, that transcend innate player advantages. For the aforementioned reasons, 

racing, shooting and sports games were not considered for the purposes of the study. 

Finally, virtual reality comfort pertains to the potential for motion sickness, which may be 

detrimental to the player experience (e.g., Seibert, 2014; Tan et al., 2015). A prominent theory 

behind the etiology of motion sickness is sensory conflict, which suggests that motion sickness 
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may trigger when motion perception (i.e., vection) is not linked to physical self-motion 

(Hettinger & Riccio, 1992). Symptoms include ataxia, dizziness, nausea, and vomiting 

(Akiduki et al., 2003; Cohen et al., 2019; Oman, 1990; Rogers et al., 2018; Sharples et al., 2008). 

In addition, the severity of motion sickness may increase as a function of the depicted 

navigation speed (So et al., 2001). Games which are reliant on player mobility include sports, 

action, role-playing and adventure, due to their intrinsic relation to exploration or physical 

activity depicted through a player-controlled avatar. As such, these genres were excluded 

from potential candidacy.  

3.2.2 Evaluation of selection criteria 

An interesting candidate that obliges with some of the aforementioned criteria are strategy 

games, which offer content that is compatible with the flow experience (Sweetser et al., 2012). 

Strategy games may be preferred by “hardcore” gamers (Gackenbach & Bown, 2011) perhaps 

because of the complexity in their design (Sweetser & Wyeth, 2005). This may be a limitation 

with respect to our consideration of usability, in that strategy games may require time to learn 

to play (Sweetser & Wyeth, 2005). However, a subcategory of strategy games used in earlier 

studies are Tower Defense (TD) games (e.g., Chesham et al., 2017; Cox et al., 2012), also rarely 

classified as puzzle games (e.g., Wetzel et al., 2012). These games are typically viewed from 

above (bird’s eye view) without shifts to the local position of the in-game camera. Hence, they 

are easy to recreate in a VR environment, using the player’s head tilt as the governing view 

input. Essentially, this mode of interaction maintains a camera with a static local position, thus 

precluding physical movement, and exempts from the occurrence of motion sickness. These 

aspects endeavor virtual reality comfort. 

In terms of their usability, they are supported by a single goal that is easy to memorize and 

comprehend. Likewise, their mechanics are easy to learn (Brich et al., 2015). Despite some 

variability in existing TD games on the market, the gameplay of a TD game can be 

summarized as follows: A wave of enemies is spawned at fixed intervals and start from point 

A to an exit point B. The enemies walk along a predefined path and, if any of them escapes, a 

life point is removed from the player’s life pool. Once the player’s life pool reduces to zero, 

the player is defeated. Thus, the goal of the player is to eliminate as many enemies as possible 
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before they escape through the exit point. Enemies can be eliminated via special constructions, 

which are objects placed by the player across the game level, usually depicting towers (hence 

the name Tower Defense). An example of such a game is Kingdom Rush (Ironhide Game 

Studio & Armor Games) (see Figure 1), a highly successful Tower Defense game with an 

“Overwhelmingly Positive” rating on Steam 1 and 9/10 on IGN 2. 

 

Figure 1: Sample screenshot from the successful Tower Defense game Kingdom Rush. The 

visible humanoids on the light gray path are the enemies of the player who walk along the 

path to reach the flags with the shield symbols on top. The structures are scattered across the 

game level whose purpose is to eliminate or slow down the enemies from reaching the exit 

point. Image credits: Ironhide Game Studio and Armor Games. 

 

 

1 https://store.steampowered.com/app/246420/Kingdom_Rush/ 
2 https://uk.ign.com/articles/2012/01/31/kingdom-rush-review 

https://store.steampowered.com/app/246420/Kingdom_Rush/
https://uk.ign.com/articles/2012/01/31/kingdom-rush-review
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Typically, there are multiple types of towers the player can choose from, which add layers of 

complexity and strategy to the game. These layers prevent linear gameplay and allow for 

multiple ways toward winning or losing the game. However, every subsequent enemy wave 

is more powerful than its preceding, therefore the player must balance their damage output. 

This is achieved by upgrading existing towers or by creating pockets of towers across the 

map’s areas that work optimally together. Enemies are also of different types, with diverse 

characteristics ranging from movement type (e.g., ground or aerial) to a unique arsenal of 

abilities. Those abilities may make the enemies vulnerable to certain towers, but more resistant 

to others. Finally, bosses are also typical in TD games. Bosses are very powerful enemies that 

take much longer to eliminate than a common enemy. Because of this discrepancy, they 

reward generously if eliminated. 

Importantly, TD games have been deemed a viable testbed for several research applications, 

including player experience (Avery et al., 2011). In addition, they are usually organized in 

rounds, with finite length, and clear boundaries demarcated by the beginning and end of each 

round. Therefore, they conveniently emulate experimental block design as in the case of 

traditional experiments. A problem that has been pointed out in the literature is that games 

are dynamic and complex, making it virtually impossible to preserve control over the stimuli 

presented on the screen (Yan & El-Nasr, 2006). Hence, researchers may resort to clustering 

techniques (Yannakakis et al., 2013) or coding game events via annotation (e.g., Klasen et al., 

2012) to narrow the scope of their search for behavioral outcomes of interest. Tower Defense 

games compensate for this limitation through their structured, round-based gameplay that is 

exceptionally common to this genre. 

The simplicity of TD mechanics makes them additionally accessible to novice players, 

supporting the liability to individual differences criterion. In a study by Chesham and colleagues 

(2017), TD games were rated among the highest casual video games in terms of “ownership”. 

Ownership is a construct derived from a questionnaire developed by Calvillo-Gámez et al. 

(2015) that denotes player self-attribution of responsibility for the events in the game. In other 

words, ownership relates to the way the player takes advantage of the action affordance to 

reach a goal as well as the utilization of in-game rewards (Chesham et al., 2017). 
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As explained earlier, in-game failure that is attributed to the self may not necessarily lead to 

loss of player motivation (Child, 1994; Juul, 2013; Nylund & Landfors, 2015) and flow. 

Naturally, irrespective of the game, the affective and behavioral consequences of failure 

attribution can vary considerably across individuals (e.g., Singh, 2013). Yet, the incremental 

difficulty that characterizes TD games allows the player to gradually develop tolerance to 

frustration. Nylund and Landfors (2015) discussed that building tolerance can hinder players 

from experiencing the negative effects of frustration, whereby they preserve their motivation 

to overcome a challenge. This is an important advantage, in that frustration may precipitate 

postural disturbance (e.g., Perron, 2005), resulting in signal artifacts, or even quitting the game 

(e.g., Wauck et al., 2017), both being undesired outcomes. 

What makes the TD genre even more interesting as a testbed is that it presents a particularity 

with respect to difficulty management. As opposed to existing methodological approaches of 

flow induction, wherein the condition of boredom is traditionally approached as a low-

difficulty condition, boredom in TD is somewhat trickier to replicate using the same principle. 

Because of the linear difficulty increase that TD games typically implement at each round, 

abrupt suspension of the natural difficulty scaling may be surprising to the player and expose 

the experimental manipulation. Ergo, a different approach must be considered that is perhaps 

specific to this genre. 

Overall, the TD genre appeared to be a promising testbed for the investigation of flow in 

virtual reality. Notably, this genre is not as popular as other genres, such as first-person 

shooters. Nevertheless, TD games satisfy flow's antecedents, i.e., presence of feedback with 

diegetic user interfaces, clarity of goals with their simple gameplay, and skills-challenge 

balance with modifiable attributes of the game actors and structures. In addition, they 

facilitate data annotation based on modifications made across the gameplay experience 

conditions (i.e., flow, anxiety and boredom). 

3.2.3 Tower Defense VR for PlayStation VR 

The game developed in this study, Tower Defense VR (TD-VR), was, to our knowledge, one 

of the first attempts to ever port a TD game in a VR platform. TD-VR game was developed in 
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the Unity 3D (Unity Technologies) game engine for the PlayStation VR platform. The game 

mechanics that were adopted for TD-VR were chosen such that the resulting game did not 

deviate considerably from the average commercial Tower Defense game. The player was 

virtually placed in front of a game table which was allotted for the game action. The remaining 

virtual space was a room emulating a bedroom. Thus, the virtual scene was composed of two 

main elements, the game table and the surrounding virtual space. The surrounding space was 

unrelated to the game progress but was created as a complementary means of contextualizing 

the activity within the 3D space. 

The virtual camera was responsive to the player’s head rotation, but not their physical 

position. Thus, the players were restricted from moving into the virtual room. As a result, the 

overall physical motion was minimized since the game action took place in a static space in 

front of the player. The advantage of this approach is the minimization of motion sickness 

(Kim et al., 2020; Whittinghill et al., 2015). The camera’s field of view was adjusted to 

encompass most of the game table’s contents in its viewing frustum when gazing at the center 

of the table. Thanks to this approach, the player could naturally maintain a constant posture 

throughout the game, thereby reducing the presence of motion artifacts in the physiological 

data. These steps were taken to ensure that the criterion of virtual reality comfort was met. 

The features of TD-VR were made to match the average TD game. However, to keep the 

experimental variables to a minimum, only a few options were given to the player. The game 

had only one type of common enemies, with their appearance emulating a medieval footman, 

and boss enemies, who were significantly harder to defeat. The experimentally manipulated 

variables, as a function of difficulty scaling over time, were the health of the enemies and the 

reward that was bestowed to the player after an enemy was eliminated. The reward 

magnitude was directly associated with difficulty, as it was used for building and upgrading 

towers, which would in turn increase the overall damage output of the player (see also, Cox 

et al., 2012). These two variables are commonly used, either exclusively or partly, to 

differentiate levels of difficulty in commercial TD games. Three tower types were available, 

each having three upgrade levels. All towers were given the same virtual price for building 

and/or upgrading, irrespective of their unique abilities. This was done to prevent players from 
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associating high building/upgrading costs with more power, which could have led to biased 

preference toward specific tower types. The power of the towers was regulated through attack 

frequency (also known as attack speed), attack power (the number of health points removed 

from the enemy on attack – also known as damage dealt) and attack range (distance needed 

for the tower to pick up its target). 

The virtual currency for tower transactions was given to the player in two ways, (a) by 

eliminating an enemy and (b) every 8 seconds of game time. The monetary reward increased 

proportionally to the game stage, i.e., the more powerful the enemies, the higher the gold 

reward. The gold reward that was bestowed intermittently was equivalent to the amount 

granted from eliminating a common enemy from the most recent game round. This amount 

was not given during the inter-round breaks - only during the actual game rounds. The aim 

for these rewards was to compensate the player for their effort with the additional intermittent 

bonus. In that sense, we employed a fixed-reward schedule, as commonly practiced in TD 

games. The aforementioned details were common to all subsequent studies. Specific 

implementation details are mentioned in the Materials: Test Game section of each 

corresponding study. 

In short, the TD-VR game aims to produce varying levels of skills-challenge balance along the 

course of the game. This is done by manipulating two variables that drive the action: the 

health of the enemies and the monetary compensation for eliminating an enemy. To optimally 

capture the connection of personality to flow as per the research goals, it was deemed that the 

game should be denuded of highly idiosyncratic content that would appease to a niche group 

of players. The resulting flow experience is still naturally linked to the game and its 

particularities, but we attempted at abating the potency of the game’s content in favoring 

specific personality types. For example, the presence of aggressive/violent content may lead 

to inflated enjoyment scores in individuals high in neuroticism or those low in agreeableness 

(Chory & Goodboy, 2011). 

Next, TD games have a convenient design principle with artificial pauses between rounds 

and/or game levels. This makes it easier to conceptually separate the three design 

considerations of flow, anxiety and boredom, allowing for distinct content. The onset of each 
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game round offered a natural way to demarcate the physiological recording epochs that were 

considered most valuable, thereby facilitating the annotation process. The principal 

advantage of the TD-VR regarding the biometrics acquisition was the flexibility in using a 

statically placed camera without influencing the gameplay content. This has a two-fold 

benefit, i.e., the virtual elimination of motion sickness and a relatively stable body posture. In 

shooter games, for instance, the player may physically steer toward the direction they are 

moving in the virtual world (Bianchi-Berthouze et al., 2006), and thus risk signal 

contamination. 

3.3 Questionnaires 

3.3.1 Overview 

The questionnaires used in the study were aimed at capturing the most salient features of the 

flow experience and individual personality. Naturally, because the flow experience has 

mainly been studied through questionnaires (Lee et al., 2014), there are several assessment 

scales available. Examples of general flow questionnaires (not bound to a specific activity or 

task) include the Flow State Scale – 2 (Jackson & Eklund, 2002) and the Flow State 

Questionnaire of the Positive Psychology Lab (PPL-FSQ; Magyaródi et al., 2013). Flow 

assessment in video game play includes the Game Engagement Questionnaire (Brockmyer et 

al., 2009), a 6-item questionnaire developed by Choi and Kim (2004), EGameFlow (Fu et al., 

2009) and the Game Experience Questionnaire (IJsselsteijn et al., 2008). 

However, the psychometric properties of those scales incorporate notions that diverge from 

the original conceptualization of flow. For example, the Game Experience Questionnaire 

(IJsselsteijn et al., 2008) entangles the definitions of flow and imaginative immersion, by using 

dedicated statements related to the story of the game. As such, this questionnaire is 

inapplicable to the game used in this work. Omitting the unrelated items to preserve the flow 

construct of the questionnaire results in only five items that aim to capture the dimensions of 

concentration and loss of time perception. We posited that these two dimensions do not 

sufficiently represent the flow experience. A similar observation can be made for Choi and 
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Kim’s (2004) short scale, where the statements translate to the flow dimensions of autotelicity, 

loss of self-reflection, sense of control and concentration. 

Finally, the Game Engagement Questionnaire (Brockmyer et al., 2009) distributes statements 

across multiple constructs, i.e., flow, absorption, immersion and presence. Though 

automaticity has been conceptualized as a dimension of flow (e.g., Csikszentmihalyi, 1990), 

the authors have assigned it under both constructs of flow and presence. Flow, immersion 

and presence have occasionally overlapping elements and definitions in the literature 

(Michailidis, Balaguer-Ballester, & He, 2018). However, the classification of the statements in 

the Game Engagement Questionnaire seems to arbitrarily choose the most characteristic 

constituents of flow. Given these issues, the Flow State Scale – 2 (Jackson & Eklund, 2002) was 

chosen to capture each flow dimension separately, as it adheres to the original flow theory by 

Csikszentmihalyi (1990) without enmeshing the phraseology used in the scale items toward a 

specific activity. 

Though PPL-FSQ (Magyaródi et al., 2013) is also activity-independent, the factor loadings 

exposed only two factors able to explain more than 50% of total variance, which were 

interpreted as skills-challenge balance and absorption. Thus, PPL-FSQ was likewise regarded as 

being inadequate. It should be stressed that these issues do not necessarily reflect our support 

for a holistic flow model, where all dimensions should be simultaneously present for 

qualifying the flow experience. Instead, it was deemed necessary that all dimensions be 

captured regardless of the interpreted necessity different studies have reported for individual 

dimensions. Below are descriptions of the questionnaires used in the present work. 

3.3.2 Flow State Scale – 2 

The Flow State Scale – 2 (FSS-2) was developed by Jackson and Eklund (2002). The 

questionnaire is used to assess the flow experience in an activity that has already happened. 

This is different from the Dispositional Flow Scale (DFS-2), which is used for assessing the 

individual’s tendency to experience flow in a certain activity (Jackson et al., 1998). The long 

version of FSS-2 has two counterparts, one used to assess physical activity (FSS-2 – Physical) 

and the other for any kind of activity (FSS-2 – General). The questionnaire comprises 36 items 
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of statements about the activity that are to be rated on a Likert-type scale ranging from 1 

(Strongly Disagree) to 5 (Strongly Agree). For all nine flow dimensions, there are four 

questions dedicated to each. This questionnaire is commercial, and the appropriate number 

of copies were licensed for administration by the official distributor Mind Garden. The 

questionnaire was administered immediately after the end of the game session. 

The use of DFS-2 remains controversial regarding its applicability in video games research (cf. 

Procci et al., 2012; Hamari & Koivisto, 2014; Wang et al., 2009). Procci and colleagues (2012) 

used the DFS-2 questionnaire to capture the flow experience in experienced players and found 

that the questionnaire did not generalize well in the context of video game play. The authors 

identified a potential overlap between the dimensions, with their model maintaining seven 

out of the original nine factors. In contrast, Wang and colleagues (2009) successfully identified 

all nine factors that converge into a global flow index. 

For FSS-2, Sweetser and Johnson (2019) identified high consistency with other flow 

questionnaires, namely GameFlow (Sweetser & Wyeth, 2005) and the Player Experience of 

Need Satisfaction (PENS; Ryan et al., 2006), suggesting a uniformity in flow’s 

conceptualization across different player experience measures. The authors observed a 

notable discrepancy in the average ratings between the dimension of skills-challenge balance 

of FSS-2 and GameFlow’s equivalent dimension of Challenge. The authors considered the 

skills-challenge balance dimension of FSS-2 to translate poorly to the video games context, 

even though the same disparity was observed between GameFlow and PENS. However, their 

conclusion was based on descriptive statistical summaries rather than an inferential analysis. 

Overall, the FSS-2 questionnaire was chosen for its ability to capture all nine dimensions 

originally proposed by Csikszentmihalyi (1975, 1990) and for being agnostic to the activity 

and domain within which it is administered.  

3.3.3 Big Five Inventory 

The Big Five Inventory (BFI; John & Srivastava, 1999) is a scale used for measuring personality. 

It consists of 44 items which are rated from 1 (Strongly Disagree) to 5 (Strongly Agree) based 

on how much the respondents feel that each statement represents them. The questionnaire 
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comprises five sub-constructs, namely Agreeableness, Conscientiousness, Extraversion, 

Neuroticism and Openness. These personality dimensions have been thought to be efficiently 

capturing the human personality (Gosling et al., 2003). According to John and Srivastava 

(1999), agreeableness captures qualities such as altruism and trust, conscientiousness targets 

goal orientation and self-discipline and extraversion captures sociability and positive 

emotionality. On the other hand, Neuroticism relates to anxiety and negative emotionality, 

while Openness pertains to open-mindedness and creativity (John & Srivastava, 1999). 

The Big Five personality traits have also been adopted in video games research (e.g., Bean & 

Groth-Marnat, 2016; Nagle et al., 2016). For example, Nagle and colleagues (2016) found that 

conscientiousness positively predicted the length of play individuals invested in a game with 

dynamic difficulty adjustment. Similarly, agreeableness may predict the frequency and length 

of play for mobile games (Seok & DaCosta, 2015). In another study, the five dimensions were 

used to predict genre preferences (e.g., Braun et al., 2016; Johnson et al., 2012; Peever et al., 

2012). These findings reflect only a fraction of the application of Big Five in games research. 

Thus, the BFI is a particularly interesting tool in the study of game-induced flow. 

3.4 Data preprocessing pipeline 

3.4.1 Measurement data 

To approach the research questions of this work (see Chapter 1, Research Goals), several 

sources of information were combined: (a) the game’s design in line with the research 

hypotheses, (b) subjective ratings on a battery of psychometric tests, and (c) objective markers 

of physiological origin. 

Multimodal measurement of complex constructs, such as flow, has been found to be more 

effective of an approach than individual methods (Martey et al., 2014; Robinson et al., 2018). 

Physiological tracking offers a way to decode mental and affective states continuously. This 

is in contrast with questionnaires that capture subjective perceptions at discrete times and 

asynchronously to the states they are intended to measure (Holzwarth et al., 2021). Through 

a more holistic lens, our aim was to capture the flow experience from three different 

perspectives and to identify their common ingredients. 
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As objective markers, a plethora of biometrics have been examined in the literature. We opted 

for heart rate variability (HRV), eye blink variability (EBV) and electroencephalography (EEG) 

all of which belong to the family of electrograms (Reilly & Lee, 2010). These metrics can 

potentially be extracted from various locations over the head, making them convenient for 

implementation in a flow-aware VR technology. Heart rate variability is the most widely used 

metric in the objective evaluation of the flow experience (Knierim et al., 2018). It can capture 

information pertinent to physiological arousal and mental workload and it is therefore useful 

in distinguishing varying levels of flow, anxiety and boredom (for more information, see 

Chapter 2, Flow’s “competition” with other states). 

Eye blink variability is less popular, albeit emerging, in the study of flow (e.g., Hild et al., 

2020; Min et al., 2018; Rau et al., 2017). The metrics were computed through 

electrooculography (EOG). Ocular measures are also commonly obtained via a web camera 

(e.g., Cho, 2021; Ngxande et al., 2017). An advantage of this method is its robustness against 

motion artifacts (Li et al., 2018). However, an external camera was impractical for a VR setting, 

in which the head-mounted display (HMD) covers the user’s eyes. 

On the other hand, integrating a camera inside the PlayStation VR HMD would require a 

bespoke approach, and was hence considered less reliable than EOG. Even though EBV has a 

considerable informational overlap with HRV in terms of physiological arousal, affective 

valence and mental load (e.g., Maffei & Angrilli, 2019; Barathi et al., 2020), EBV is also sensitive 

to distractibility, attentional focus, and visual load (Magliacano et al., 2020; Recarte et al., 

2008). All the above have been linked to different facets and degrees of flow, anxiety and/or 

boredom. 

Finally, EEG has been used in many studies involving the measurement of complex states of 

affect and cognitive processes (Babiker et al., 2021). These states correlate with oscillations that 

emerge from neuronal communication of variable frequency and functional significance 

(Klimesch et al., 2005). Packed with its own shortcomings, EEG is still widely adopted for 

human-computer applications into a new wave of applied research known as brain-computer 

interfaces (Lotte et al., 2007). These interfaces see increasing applications in the domain of 
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video gaming (Kerous et al., 2018) for user state recognition and brain-controlled gaming 

(Nijholt, 2008). Hence, they are aligned with the purposes of the present work. 

The theta and alpha rhythms, for example, have shown sensitivity to task difficulty 

manipulations (see review by Antonenko et al., 2010). This makes EEG desirable in the 

measurement of flow, when one considers the prevalence of difficulty manipulation as the 

most widely employed methodological approach toward flow induction (e.g., Peifer et al., 

2014). In a similar vein, attention is central to the concept of flow and EEG has been used 

extensively to measure it (Cisler et al., 2019). It is also worth noting that EEG has versatile 

dimensionality based on the number of channels used during the recordings, which can 

potentially improve the amount of information obtained. 

For the detection of mental workload, eye-related features are the third most widely used 

metrics after cardiac measures and EEG (Tao et al., 2019). However, in terms of their ability to 

recognize different levels of mental workload, Hogervorst and colleagues (2014) found that 

their performance ranks as follows: (1) EEG, (2) EBV and (3) HRV. More specific details about 

these metrics are provided in their corresponding chapters (Chapter 5 for HRV and EBV; 

Chapter 6 for EEG). 
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Figure 2: Semiotic diagram of the data processing pipeline used in this work.3 

 

A standard approach of data collection and analysis was employed (Figure 2). While the game 

was being played on PlayStation VR, the participant’s physiological responses were recorded 

in parallel. The game comprised three design levels aimed to induce flow, anxiety and 

boredom. As such, the timing of those levels was integral to understanding the effects of the 

game design onto the player’s physiology. To synchronize the two sources, the game sent out 

triggers of events that signaled the onset of each game round. 

The data were later submitted to a series of conventional pre-processing steps, including 

filtering, baseline correction, and epoching. The signal in each epoch (window) was 

transformed into discrete information by means of feature extraction. Then, the two 

definitions of subjective flow (based on the self-reports) and game-design flow were used at 

class-level to train and cross-validate the objective data (physiology) in order to estimate their 

separability. Subjective flow was tested at two levels, low- and high- flow, therefore a binary 

configuration. On the other hand, the game-design flow was a three-way configuration, i.e., 

flow, anxiety and boredom. 

 

 

3 Images of depicted devices Courtesy of BIOPAC Systems, Inc. and Brain Products GmbH. 
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3.4.2 Data acquisition 

The devices used to capture the participant’s physiological changes were connected to a 

desktop computer (receiver) for the acquisition of the physiological data (tags 3, 4 and 5 

respectively in Figure 3). The internal clocks of PlayStation 4 and the desktop were 

asynchronous to each other. Hence, a workaround was made to pinpoint the timing of the 

events in the game relative to the timing of the physiological data. PlayStation 4 and the 

desktop receiver were connected to a router to enable non-reciprocal communication via 

messages (triggers). 

Internally, there were four events that were emitted by the Unity software from PlayStation 4 

to a specific port and IP address: Game_Started, Game_Ended, Round_Started and Round_Ended. 

On the desktop, a custom application developed in Visual Studio 2017 (C#/.NET) served as a 

listener to the same port for incoming messages. Both the desktop application and the Unity 

software have had access to a library (.DLL file) that held an enumeration of all event names. 

The messages were encoded within the Unity software into bytes and later deserialized on the 

receiving desktop application to be appended in a file stream. 
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Figure 3: Visual simulation of the experimental setup using virtual reality in Unity 3D. (1) 

PlayStation 4, (2) PlayStation Camera, (3) ECG and EOG devices, (4) EEG amplifier, (5) 

desktop receiver of physiological data, (6) router physically connected to PlayStation 4 and 

the desktop receiver, (7) monitor displaying the visual output from PlayStation 4. The image 

has been intentionally left dark to approximate the lighting conditions of the testing room. 

 

All incoming messages were stored into .csv files, with each event listed in order of reception 

on one column and the time it was received on a second column. Date time was dictated by 

the receiving computer in Coordinated Universal Time (UTC), where the physiological data 

were also acquired. This approach helped demarcate both ends of each game round and the 

overall game session, after each event time was subtracted from the start of the recording time. 

The raw physiological data were exported from the signal recording software and converted 

into MATLAB-compatible files. These data were used to segment the continuous signals into 

30 data structures (as many as the game rounds), and then further partitioned into shorter 

windows. The same procedure was employed for the baseline recordings, except they were 

not linked to any game events nor were they partitioned. 
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Figure 4: Visual simulation of the experiment setup for virtual reality data acquisition in Unity 

3D. (5) Desktop receiver of physiological data, (6) router physically connected to PlayStation 

4 and the desktop receiver, (7) monitor displaying the visual output from PlayStation 4, (8) 

monitor displaying the physiological data acquired in real time. 

3.4.3 Electrooculography Preprocessing and Features 

To detect eye blinks, the raw data were first centered around zero (a). Then, a notch filter was 

applied to remove 50Hz power interference (b). The resulting waveform was band-pass 

filtered with a third-order Butterworth filter of 1 to 10Hz (c). To correct severe baseline 

drifting, a 20th order polynomial curve was fit into the data and then subtracted from (c) (d). 

In order to maintain the morphology of longer blinks, a moving mean filter was applied with 

a window length of 100 samples (e). The signal was later first-order differentiated (f). To 

remove very low peaks, which can be interpreted as noise, (f) passed through a test to detect 

samples beyond three interquartile ranges above the upper quartile or below the lower 

quartile (g). Due to the blinks' amplitude prominence, blinks would most likely fall within the 

estimated outliers. Hence, all non-outliers were zeroed out. 
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The last step was to locate all positive and negative peaks, by detecting changes from positive 

to negative values (h), as proposed by Kong and Wilson (1998). Each sample was processed 

in a loop to retrieve the left bound (positive peak) and the right bound (negative peak). The 

absolute difference between the left and right bounds is considered to reflect the blink's 

duration (Kong & Wilson, 1998). An example of the blink detection approach can be seen in 

Figure 5. 

 

Figure 5: Blinks detected in a sample EOG signal. 

 

The computed features from the post-processed signal are displayed in Table 1. The mean 

inter-blink interval (IBI) was computed as the mean time difference between successive blinks 

from their preceding. Eye blink rates (EBR) or blinks per minute (BPM) were computed 

through the count of blinks multiplied by 60 and divided by the length of window. This was 

done to normalize EBR by the length of the window in one minute. The amplitude (AMP) was 

acquired from the blink locations (x) and the y value of the sample at x from the normalized 

filtered signal in the (e)th step. Finally, the duration of the blinks (DUR) was calculated from 
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the absolute difference between the positive and negative peaks of each identified blink (Kong 

& Wilson, 1998). 

Table 1: Features extracted from electrooculography for data analysis. 

Feature Units Description 

 Mean Inter-blink Interval 

(bIBI) 
Seconds 

The average time difference 

between consecutive eye blinks 

(higher values indicate 

reduced blinking rate) 

Min Inter-blink Interval 

(minbIBI) 
Seconds 

The minimum time difference 

between consecutive eye blinks 

within one window 

Max Inter-blink Interval 

(maxbIBI) 
Seconds 

The maximum time difference 

between consecutive eye blinks 

within one window 

STD Inter-blink Interval 

(stdbIBI) 
Seconds 

The standard deviation of time 

differences between 

consecutive eye blinks within 

one window 

Eye Blink Rate (EBR) Count/Min 
The average number of blinks 

per minute, normalized by the 

window’s length 

Mean Amplitude (AMP) Normalized mV 

The average amplitude of 

blinks within one window, 

with min-max normalization of 

the signal 

Mean Duration (DUR) Seconds The average duration of blinks 

within one window 

  

3.4.4 Electrocardiography Preprocessing and Features 

Although the pipeline used for peak detection in the EOG data was also able to detect QRS-

complex peaks in ECG data, it was decided that a more standardized detection algorithm, 

specific to ECG, was preferable. Hence, the raw ECG data were processed using an algorithm 

proposed by Pan and Tompkins (1985), which has been implemented in MATLAB and is 

publicly available (Sedghamiz, 2014). The resulting data are inter-beat intervals (IBI), which 

are the time intervals between pairs of successive beats (see Figure 6). The process described 

by Pan and Tompkins applies multiple filters to the signal, then differentiates and squares the 

output and finally applies a moving window integration. The authors describe this as the 
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learning phase, followed by the detection stage, where an adaptive threshold is implemented 

as a means of reducing noise. The parameters to identify the QRS morphology include the 

slope, width and amplitude of the QRS complex (for more details, see Pan & Tompkins, 1985). 

Inter-beat intervals were further examined for ectopic beats using a threshold of 0.2, i.e., 

intervals changing by more than 20% of the previous (Malik & Camm, 2005). Ectopic beats are 

treated as abnormal beats and not necessarily as products of the autonomic nervous system 

(Choi & Shin, 2018); hence, they were removed. Typically, IBIs after ectopic beat correction 

are referred to as NNs or normal sinus beats (Shaffer & Ginsberg, 2017). 

 

Figure 6: R-wave detection in a sample ECG signal using Pan & Tompkins QRS detection 

algorithm (1985) and implemented in MATLAB by Sedghamiz (2014). 

 

A common practice in heart rate variability analysis is the extraction of features from the 

frequency domain (e.g., Shaffer & Ginsberg, 2017). Two terms of interest are short-term and 

ultra-short-term HRV. The former refers to the analysis of segments longer than 5 minutes, 

while the latter refers to segments that are less than 5 minutes in duration (Pecchia et al., 2018). 
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For frequency-domain HRV, there are variable durations of segments recommended. The 

high-frequency power requires a minimum of 1-minute segments (ultra-short), the low-

frequency power requires a minimum of 2-minute segments (ultra-short), the very-low-

frequency power requires a minimum of 5-minute segments (short-term), whereas the ultra-

low-frequency power requires a minimum of 24-hour segments (long-term) (Shaffer & 

Ginsberg, 2017). However, the duration of the rounds in the TD-VR game depended on the 

performance of the player and could be as short as 20 seconds long, thereby making the 

computation of frequency-domain measures potentially unreliable (Pecchia et al., 2018). 

However, certain time-domain measures are also inapplicable in this work. For example, 

SDNNI, SDANN and HRV Triangular Index are best computed in 5-minute segments (Shaffer 

& Ginsberg, 2017), which exceed the maximum round duration in our study. The final 

computed features from the post-processed signal are displayed in Table 2. 

Table 2: Time-domain features extracted from electrocardiography for data analysis. 

Feature Units Description 

Mean Inter-beat Interval (IBI) Seconds 

The average interval between 

successive heart beats. Heart 

beats are considered the R-

peaks from the QRS complex. 

Typically, longer intervals 

denote a state of relaxation. 

Min Inter-beat Interval 

(minIBI) 
Seconds 

The minimum inter-beat 

intervals 

Max Inter-beat Interval 

(maxIBI) 
Seconds 

The maximum inter-beat 

intervals 

Standard deviation of 

corrected Inter-beat Interval 

(SDNN) 

Seconds The standard deviation of NNs 

Heart rate (HR) Count/Min Heart beats per minute 

PNN50 % 

Percentage of successive inter-

beat intervals that differ by 

more than 50 ms 

RMSSD Seconds 

The root mean square of 

successive inter-beat interval 

differences 
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3.4.5 Electroencephalography Preprocessing and Features 

The EEG signal was first converted from the vhd format to MATLAB-compatible files using 

the EEGLAB toolbox (Delorme & Makeig, 2004) and the BVA-io plugin 4. First, the signal was 

downsampled to 250 Hz (see e.g., Katahira et al., 2018) and digitally re-referenced to the right 

mastoid. Then, it was bandpass-filtered from 0.1 – 30 Hz using a Hamming-window based 

windowed sinc FIR filter (Widmann, 2006). Baseline correction was further applied to the 

filtered signal and Independent Component Analysis (ICA) was used to extract signal 

components for artifact attenuation. The components were visually inspected for each 

participant for the rejection process and cross-referenced with ICLabel (Pion-Tonachini et al., 

2019), which is a tool that provides an approximation of the component sources (e.g., neural 

source, heart rhythm, eye blinks, motion, etc.). 

The processed signal was split into segments corresponding to the game’s rounds, using the 

triggers file sent from PlayStation 4 and stored in UTC date time on a desktop receiver, where 

the physiological data were also transmitted. Triggers were converted into milliseconds and 

then divided by four to procure the adjusted onsets after the signal was downsampled. For 

the onset of each round, the nearest highest integer was used for millisecond approximation, 

whereas for the end of each round, the nearest lowest integer was used. This was made to 

ensure that that the rounding of the onsets would always fall within the corresponding 

round’s data. For each round, the processed signal was submitted to a Welch periodogram 

with a Hann window of 50% overlap to extract the absolute and relative power from the bands 

of interest. The window size was set to the ratio of the lower edge of the band of interest, 

divided by two, and multiplied by the sampling frequency (250 Hz). 

The relative power is expressed as the percentage of presence of certain frequencies in the 

signal. It is computed by the ratio of the absolute power of each band over the total power of 

the signal. The relative powers were thus extracted for all channels and were preferred over 

absolute in that the latter may reflect variability due to extraneous factors, such as skull 

 

 

4 Available at https://sccn.ucsd.edu/wiki/EEGLAB_Extensions_and_plug-ins. 

https://sccn.ucsd.edu/wiki/EEGLAB_Extensions_and_plug-ins
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thickness (Hagemann et al., 2008). Following the findings of previous studies, the bands of 

interest were narrowed to theta (4-8 Hz), alpha (8-12 Hz) and beta (12-30 Hz), which have 

been extensively used in studies of flow (e.g., Berta et al., 2013; Katahira et al., 2018; 

Yelamanchili, 2018). The features in Table 3 were derived from all EEG channels and then 

later reduced to a minimal set (more details in Chapter 6). 

Table 3: Frequency-domain features extracted from electroencephalograms for data analysis. 

Feature Units Description 

Relative Theta % 

Percentage of absolute theta power over 

the total summed power of theta, alpha, 

beta. 

Frequency range: 4-8 Hz. 

Relative Alpha % 

Percentage of absolute alpha power over 

the total summed power of theta, alpha, 

beta. 

Frequency range: 8-13 Hz. 

Relative Beta % 

Percentage of absolute beta power over the 

total summed power of theta, alpha, beta. 

Frequency range: 13-30 Hz. 

Relative Theta/Beta Ratio 

Also known as the attention ratio index, 

theta/beta is used to assess attentional and 

cognitive control. 

Absolute Alpha μV2 

Used to assess hemispheric asymmetric 

changes across prefrontal sites, as a marker 

of motivation and affect. 

Frequency range: 8-13 Hz. 

 

3.5 Data classification and clustering 

3.5.1 Introduction 

To identify patterns across different classes of data, research typically employs Machine 

Learning methods. Though there is an abundance of existing techniques that approach each 

problem differently, classification algorithms usually attempt to separate observations by 

maximizing their differences or dissimilarities (e.g., Neelamegam & Ramaraj, 2013; Xiong & 

Cherkassky, 2005). This is done to reduce classification ambiguity, i.e., the probability that the 

membership of a sample point is truly representative of a specific class. This training stage is 
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followed by the testing phase, where the classifier is used to predict unseen data. The quality 

of predictions determines the classifier’s generalizability (Gunn, 1998). 

This sequence can be used for internal validation, known as cross-validation, that estimates 

the classifier’s performance and calculates the generalization error. It can be done by splitting 

the data into two parts of unequal size (hold-out method), whereby the e.g., 80% will be used 

for training and 20% for testing. Alternatively, an equally popular approach is the k-fold cross-

validation, where, at its simplest form, the data are randomly partitioned into 𝑘 sets. The 

classifier is thus trained 𝑘 times, and its performance is determined by the mean accuracy 

reported by all folds. Because the retrieval of samples to populate each fold is random, the 

mean accuracy of a classifier trained with k-fold cross-validation is not constant (Wong, 2015). 

Hence, by controlling the randomization seed during the training phase, one can generate 

reproducible results. 

There are other, more intensive cross-validation methods, such as leave-one-out, which only 

reserve a single observation as validation data while training with the remaining n-1 samples 

(Kearns & Ron, 1999). These approaches are used in addition to ruling out overfitting 

problems (Faber & Rajko, 2007), partitioning contingencies (Cawley & Talbot, 2007), but also 

as better estimators of the classifier’s performance (Witten et al., 2016). Importantly, the 

training stage is vital. If the input data used for training are not efficient exemplars of each 

class, the separation of the classes may be inadequate (e.g., Cortes et al., 1995; Kavzoglu, 2009). 

As a result, the predicted outcomes can be highly unreliable. 

In this project, we specifically focused on the training stage and explored parameters that 

could offer enhanced separation between low- and high-flow episodes. These parameters 

included variable window sizes for feature extraction, as well as injection of personality scores 

in order to influence the magnitude of each observation. In addition, we explored a 

combination of supervised learners and clustering techniques to evaluate game design choices 

based on the players’ physiological arousal. In the next section, an overview of the algorithms 

used in the present project is provided, with a brief description of how they work and how 

they have been applied in video games research. 
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3.5.2 Overview of classification algorithms 

3.5.2.1 Support Vector Machine 

Introduction. Support vector machines (SVM; Cortes & Vapnik, 1995) have been widely used 

in the classification of mental states during video game playing (e.g., Fortin-Côté et al., 2018; 

Parsons et al., 2015; Plotnikov et al., 2012) as well as neighboring contexts, such as emotion 

detection (e.g., Mohammadi et al., 2017; Rakshit et al., 2016). Thus, it is a natural choice for 

addressing our multi-class classification problem. SVM belong to the family of supervised 

learning (Caruana & Niculescu-Mizil, 2006), which indicates that the class of each observation 

is known during the training process. SVM is widely applicable, as it can support non-linear 

and high-dimensional data (Paiva et al., 2018). 

For example, heart rate variability parameters derived from electrocardiography data are 

known for non-linearity and SVM kernel functions can help separate them with high accuracy 

(Ghorai & Ghosh, 2017). There are several kernel functions that can be used for SVM models, 

including Gaussian or Radial Basis Function (RBF), linear, quadratic and cubic. The aim of 

these functions is to optimally fit a hyperplane surface to the training data, by maximizing the 

separation boundaries between N classes (Di Bono & Zorzi, 2008) and by mapping the data to 

a potentially high-dimensional space (Lotte et al., 2007). Those boundaries are called support 

vectors (Meyer, 2019). Support Vector Machine benefits from the regularization parameter, 

which makes it more tolerant to outliers and errors, allowing for higher generalizability (Lotte 

et al., 2007). 

SVM in video games research. Support Vector Machines have been widely applied in video 

games research. For example, Plotnikov and colleagues (2012) classified different levels of 

difficulty in Tetris using the average band power from alpha, gamma, delta, beta and theta 

bands. The authors found an average 81% accuracy in a binary SVM using the RBF kernel 

when classifying each participant separately. However, an observable decrement of 

performance was observed when four different levels were added into a multiclass SVM, 

which resulted in an average accuracy of 57%. Likewise, an HRV-based feature set was able 

to discriminate between low- and high-flow episodes with an average accuracy of 72.3% in 
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Rißler et al. (2018). Berta and colleagues (2013) applied SVM on electroencephalography data 

in an aircraft battle game. The authors reported accuracy rates of 50.1% and 66.4% for user-

independent and user-dependent classification respectively in the assessment of flow, 

boredom and frustration. SVMs were therefore chosen in this work due to their wide 

application and robustness in games and other areas of research. 

3.5.2.2 K-Nearest Neighbors 

Introduction. K-nearest neighbors (kNN) is another widely used non-parametric algorithm 

that is preferred for its simplicity. It is also common in affective decoding (e.g., Seo et al., 2019 

as detailed next). The algorithm holds a data point and calculates its distance from the 

remaining data points, whereby it finds the nearest neighbors (Hu et al., 2016). Euclidean 

distance constitutes the most used distance metric, but other metrics have also been 

implemented, such as cosine, correlation and city block (see Chomboon et al., 2015). A known 

challenge with kNN is the occasionally arbitrary selection of k, i.e., the number of nearest 

neighbors, which must be decided a priori (Guo et al., 2003). 

The parameter k may determine the admissibility of a specific data point to a class, which can 

affect the classifier’s performance (Lim & Chia, 2015; Zhang et al., 2017). Lall and Sharma 

(1996) suggested that the square root of the overall number of observations could be used as 

an optimal k. In addition, the input data have been shown to yield most effective classification 

rates when they are z-normalized compared to other standardization techniques (Mohamad 

& Usman, 2013). However, kNN appears to underperform in presence of high-dimensional 

data (Sedeeq & Romano, 2014). Nevertheless, the advantages of kNN include the ability to 

update the training samples online but also its flexibility in resolving multiclass problems 

(Yazdani et al., 2009). 

K-NN in video games research. K-nearest neighbors is also a widely popular algorithm in 

affective and video games research. For example, Seo and colleagues (2019) used EEG to 

discriminate between boredom and non-boredom. The authors found that activity from the 

beta and gamma bands were most helpful in identifying boredom and used them as input to 

a kNN classifier, which achieved an average accuracy of 86.73%. Similarly, in a study by 
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Jimenez and colleagues (2011), the authors were able to identify when a player was engaged 

in a game or was relaxed via EEG frontal activity alone. 

The performance of k-NN reached 84.26% with k = 5 and 82.10% with k = 10. Basic emotions 

and complex affective states have also been investigated using k-NN. For instance, joy, anger, 

sadness, grief, and hatred have been classified using electromyographs (EMG) and respiratory 

data, with respiration occasionally outperforming EMG (e.g., Meftah et al., 2012). Likewise, 

Zheng and colleagues (2018) used k-NN to identify states of high-stress and relaxation with 

an average accuracy rate of 86.7% and 91.26% in Rahman et al. (2015). Finally, Benlamine and 

colleagues (2017) were able to identify instances of player motivation for mastery and 

performance using different classifiers. Though k-NN was outperformed by a random forest 

classifier, it still achieved a promising F1-score of 73%. In this work k-NN was used due to its 

fast computation and simplicity and its promising performance in the literature. 

3.5.2.3 Ensemble of CART Decision Trees 

Introduction. Ensemble of CART (Classification and Regression Trees) decision trees are a 

less popular learning technique in video games research. However, they have been shown to 

yield high accuracy rates in EEG (Sun et al., 2007), ECG (Mert et al., 2012), and EOG (Banerjee 

et al., 2014) signal classification. Therefore, in this study, we considered this technique as a 

candidate for flow classification. 

An ensemble is essentially a cluster of multiple decision trees, whose classification boundaries 

rely on a voting process amongst individual classifiers (Dietterich, 2000). Thus, the advantage 

of ensemble decision trees is their classification superiority (Dietterich, 2000) and reduced 

error rate (Hansen & Salamon, 1990) compared to a single decision tree. Ensemble learning 

implements different algorithms, such as bagging (Breiman, 1996) and boosting (Freund & 

Schapire, 1996). 

Bagging produces subsets (replicates) of the original training set by drawing random samples 

with replacement in a way similar to bootstrapping, allowing each observation to be selected 

more than once during the sampling of each subset (Dietterich, 2000). The number of the 

replicates determines the number of the learning iterations (Quinlan, 1996). The final classifier, 
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the ensemble, outputs the collective decision predicted by the individual classifiers (Bauer & 

Kohavi, 1999). On the other hand, boosting entails the use of moderately accurate individual 

classifiers (error rate less than 50%) that are combined to create a stronger learner (Drucker & 

Cortes, 1996; Freund et al., 1999). Unlike bagging, where the "voting" weights remain constant, 

boosting applies increased weights to misclassified instances, but lower weights to correctly 

classified training examples (Dietterich, 2000; Quinlan, 1996). The final classifier is the sum of 

the applied weights; through an iterative process, the algorithm aims to minimize the 

weighted error (Dietterich, 2000), by relearning the misclassified examples. 

Ensemble CARTs in video games research. Although ensemble learning has been rarely 

applied in the classification of player experience (e.g., Geisler, 2002), a study has shown that 

ensemble decision trees may outperform SVMs when using either bagging or boosting 

methods (Caruana & Niculescu-Mizil, 2006; Vo et al., 2019). Notably, there are also 

experimental approaches in bagging SVMs, instead of decision trees, which have been 

similarly shown to outperform a single SVM learner (Kim et al., 2002). Oh and colleagues 

(2015) investigated cognitive workload in a flight simulator under different levels of 

challenge. The authors found that both bagging and boosting achieved an average of 88% and 

95.7% accuracy rates respectively using different metrics, such as EEG and time-frequency 

HRV. In a related work, mental stress was best classified using an ensemble of SVMs (77.05% 

accuracy) compared to an individual SVM or others, e.g., Naïve Bayes or Artificial Neural 

Networks that remained in the range of 70% or less (Yin et al., 2016). In the context of the flow 

experience in video game play, our work is perhaps the first to decode flow episodes using 

an ensemble learner. 

3.5.2.4 Hyperparameter selection 

The best combination of the classifiers’ hyperparameters were determined using Bayesian 

optimization (Mockus et al., 1978). This method sequentially evaluates an objective function 

such that it minimizes a target criterion. In the estimation of the optimal hyperparameters, 

this criterion would be the misclassification rate that is reported from the objective function, 

i.e., the cross-validation (e.g., Snoek et al., 2012). 
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What is particular to this method, compared to grid-based or random searches, is that it 

maintains an acquisition function, which is maximized through a Gaussian process model in 

order to determine the next evaluation point. The acquisition function identifies whether the 

next evaluation point is appropriate based on a posterior distribution function (e.g., Gelbart 

et al., 2014). Hence, Bayesian optimization was preferred over grid or random search, due to 

its probabilistic sensitivity to previous evaluation tests (Oh et al., 2015). Notably, a recent 

study has also demonstrated that Bayesian optimization for SVM-based classification 

outperforms grid search or heuristic choice (Czarnecki et al., 2015). SVMs were optimized 

through the regularization parameter C and kernel scale. For the BDT ensemble, fine-tuning 

was performed on the number of weak learners and the minimum leaf size. Finally, for k-NN, 

the parameters tested were the number of nearest neighbors and the distance metric (Guo et 

al., 2003; Lora et al., 2003). 

3.5.2.5 Balancing class sizes 

With respect to the multiclass classifiers, the number of observations per class was 

inhomogeneous. In TD-VR, flow was designed to be elicited in 16 trials, whereas anxiety and 

boredom were designed for seven trials each. Imbalanced data may result in a bias toward the 

majority class (i.e., the class comprising the highest number of observations), resulting in weak 

classification precision for the minority class(es) (Bhowan et al., 2012).  To balance the classes 

in the multiclass scenario, the Synthetic Minority Oversampling Technique (SMOTE; Chawla 

et al., 2002) was used. This type of intervention is external, unlike the internal which modifies 

the classifier’s algorithm to incentivize the consideration of the class imbalance issue 

(Estabrooks et al., 2004; Guo et al., 2008). 

This data augmentation algorithm operates on k-nearest neighbors to create additional 

samples for the minority classes. It computes the difference between the nearest neighbor and 

the existing sample and multiplies by a random number in the range of zero to one from a 

uniform distribution. This new value is then appended to the existing feature space as a 

synthetic data point (Chawla et al., 2002). 
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Stratified sampling was further employed for partitioning the data into 𝑘 folds given the 

imbalance of classes (He & Ma, 2013), which preserves the original class distribution across 

the folds. Data from each subsequent fold were reserved for validation, whereas the data 

using the remaining 𝑘 −  1 sets were oversampled using SMOTE. Then, a model was fit using 

both the synthetic data and the original training examples. Hence, the synthetic observations 

were not validated during cross-validation but were instead used to complement the training 

sets. The number of observations equally represented each class after SMOTE, but the 

classifiers' performance measures reported refer to real data and thus are not artificially 

inflated. The resulting prediction for each validation fold was matched against the original 

class the observation belonged to. This procedure was repeated 𝑘 times.  

Notably, the ratio of the majority class (flow) to the minority classes (anxiety or boredom) was 

2.3:1. Following the application of SMOTE on the training data, the three classes were 

represented homogeneously. Indeed, SMOTE defeats data sparsity and can shift the 

distribution skew of the dominant class (Taft et al., 2009). The overall classification 

performance metrics computed for the three-way classification of flow, anxiety and boredom 

were the accuracy, specificity, precision, recall and F1 score. The latter three are sensitive to 

false positives. No misclassification bias was observed in the minority classes, as expected in 

this approach (see results in the following chapters). 

These metrics were extracted through macro-averaging, as a precaution to the stratified 

sampling. Macro-averaging treats all classes equally, by simply computing the arithmetic 

mean of the performance metric for each individual class with respect to the rest, that is, 

dividing by the total number of classes (Sokolova & Lapalme, 2009). Contrarily, micro-

averaging considers the number of true positives, true negatives, false negatives, and false 

positives in all classes at once; hence, it is more sensitive to and favors larger classes or the 

majority class (Sokolova & Lapalme, 2009; Tran et al., 2018). The data augmentation and 

stratified cross-validation, along with the macro-averaging reporting were meant to alleviate 

any bias toward the flow class. Likewise, metrics other than accuracy that involve false 

positive rates are more effective against class imbalance (Guo et al., 2008), thereby supporting 
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the classifier’s evaluation integrity. As a note, the issue of class imbalance was exclusive to the 

multiclass scenario, not the binary classifiers that follow in the next chapters. 

3.5.3 Backtracing misclassification rates with respect to the game’s 

design 

3.5.3.1 Introduction 

Given that the classification solutions employed in this project are supervised, the ground 

truth should be soundly provided. However, due to inter-player differences or other factors, 

such as time, the ground truth may not be guaranteed; erroneous assumptions may therefore 

impact the ability of an algorithm to efficiently classify the input data. As argued earlier, 

different players may respond differently to the same game events. For this reason, a 

clustering approach was employed to investigate potential misclassification rates. 

Clustering methods aim to group observations together based on their distance or similarity 

of the comprising samples and label those data independently in an unsupervised manner 

(Xiao & Yu, 2012). A known issue with clustering techniques is that it may be hard to interpret 

what each cluster represents (Hotho et al., 2002), which has also been pointed out in the 

domain of player behavior modeling (e.g., Drachen et al., 2012). However, the combination of 

unsupervised and supervised learners may be a promising approach for evaluating tentative 

ground truth, as in the case of video game design. In this work, the approach was regarded a 

necessary step to assess game design choices as per their tendency to yield variable effects on 

player experience. In the following studies, the condition (flow/anxiety/boredom) and the 

effect of time (the time point when each condition was introduced) may not consistently meet 

the assumptions of a specific class. 

3.5.3.2 Unsupervised learner: Fuzzy C-means 

Fuzzy C-means is a soft clustering technique (Panda et al., 2012). This is different from other 

clustering methods, such as k-means and k-medoids, which are hard clustering techniques 

(e.g., Patil et al., 2014). Soft clustering acknowledges that the membership of an observation 

may not be exclusive to one cluster, as hard clustering methods assume (Khanmohammadi et 

al., 2017), but may be shared among the desired number of clusters with a degree of 
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membership (Nascimento et al., 2000). Considering that anxiety may not necessitate the 

absence of flow, but rather a mixture of both states (e.g., Borderie & Michinov, 2016; Roest & 

Bakkes, 2015), a single class membership may not provide efficient information to the 

classifier. Given these theoretical observations, these states may be “gradient” and perhaps 

better addressed with a soft clustering technique. The aim was to understand which classes 

could fail to provide consistent results and, more specifically, to identify subjective 

characteristics that may have underlain less reliable outcomes (i.e., increased misclassification 

rates). 

The idea behind FCM (Bezdek, 1981) is that it randomly initializes the center vectors 𝑉, whose 

length is equal to the number of tested clusters 𝐶. The iterative process underlying FCM 

updates the membership degree of each data point 𝑥𝑗  as well as the center vectors 𝑉; this is 

done until a termination criterion ε is achieved through m iterations. The matrix 𝑈 contains 

the degree of membership of each data point 𝑥𝑗 relative to each cluster 𝐶𝑖. A high-degree 

membership indicates that the data point 𝑥𝑗 is close to the center vector 𝑉𝐶𝑖
, whereas a low-

degree membership indicates that the data point lies far from that center. The degrees of 

membership 𝑈𝑖𝑗 for each data point 𝑥𝑗 range from 0 to 1. The purpose is to minimize the 

distance (e.g., Euclidean, Mahalanobis, Cosine) between the data point 𝑥𝑗 and 𝑉𝑘, weighted by 

the membership degree 𝑈𝑖𝑗. 

Although three class outcomes are of interest, that represented flow, anxiety and boredom, 

the number of desired clusters was instead evaluated using the Davies-Bouldin index (DBI; 

Davies & Bouldin, 1979). This was done to prevent the enforcement of our bias on the cluster 

separation criterion. The computation of DBI entails the ratio of within-cluster compactness 

over the between-cluster separation. Thus, DBI attempts to maximize the intra-cluster 

similarities (Sitompul et al., 2019). The lower the value of the Davies-Bouldin index, the better 

the clustering solution is considered (Davies & Bouldin, 1979). Hence, to select the optimal 

number of clusters 𝐶, a function tests through various cluster numbers from a range of values 

𝐶 =  {1, … , 𝑁}, computes the Davies-Bouldin index at each iteration 𝐷𝐵𝑖 = {𝐷𝐵𝐶1

𝑖 , … , 𝐷𝐵𝐶𝑁

𝑛 }, 

and selects C corresponding to the minimum Davies-Bouldin index, min(DB), which is 

considered the function's criterion. 
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3.5.3.3 Combining Fuzzy C-means and self-report ratings 

The input data to FCM were extracted from the three design considerations separately. Thus, 

FCM was performed three times on the feature spaces of flow, anxiety and boredom sample 

data. Using DBI, the optimal number of clusters 𝐶 was determined for each condition at an 

inspection range of 1-6. For each cluster 𝐶𝑖𝑗, where 𝑗 is the condition from which the data set 

was extracted, the degree to which each participant was represented in that cluster was 

evaluated. The degree was defined as the number of all instances belonging to the pth 

participant at 𝐶𝑖 over the total number of pth observations in 𝑗. In other words, the degree of 

representation is the proportion of participant observations in each cluster 𝑖 for condition 𝑗. 

This enables to further identify cohesive subsets of patterns within each condition (round 

type) with different characteristics. The hypothesis is that the emergence of different clusters 

from the physiological responses may explain poor decoding of the round type when all data 

are pooled. 

To interpret the clustering solution of FCM, and the role of each cluster, the user self-report 

ratings were used as explanatory measures. The proportions were submitted to a stepwise 

linear regression as a dependent variable, and FSS-2 and BFI ratings as independent variables. 

For each significant relationship, the direction of the slope, i.e., the sign of the beta coefficient, 

was considered (a). Next, depending on the self-report dimension that was found to 

significantly predict the proportions of observations for each participant, the normalized 

rating of that dimension for the corresponding participant was obtained (b). The 

normalization consisted of the rating of the participant for the self-reported dimension 

divided by the maximum rating that the self-reported dimension can take. Each observation 

in the original data set X was finally multiplied by the coefficient value (b) with the sign from 

(a). The resulting coefficient was thus (1 +  𝑏) for 𝑎 >  0, and (−1 –  𝑏) for 𝑎 <  0. The steps 

of this approach are shown in Figure 7. 
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Figure 7: Summary of the steps taken for the deployment of an unsupervised learner to 

uncover physiological patterns from HRV, EBV and EEG. 

 

The purpose of this approach is to elucidate potential latent factors that may have 

underpinned experiential variability in the game. These factors are then intermixed with the 

actual sample data to enhance their separability. This approach can be seen in chapters 5 and 

6. However, prior to the examination of the physiological correlates of flow, anxiety and 

boredom, a pilot study was conducted to evaluate the effectiveness of TD-VR and to confirm 

the putative relationship of flow with the Big Five personality dimensions of agreeableness, 

conscientiousness, extraversion, neuroticism and openness. The study is detailed in the next 

chapter. 

Step 4: For each observation, combine the normalized self-report rating 
(ranging from 0 to 1) with the slope of the regression and multiply

Step 3: Regress onto the proportions with self-report scores to identify 
mediating variables that explain the clustering solution

Step 2: For each cluster, find how many observations belong to each 
player (i.e., porportion of players represented in each cluster)

Step 1: Cluster using Fuzzy C-means and select the maximum degree of 
membership
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4 Study I: Agreeable individuals are more likely to 

experience flow 

 

4.1 Introduction 

The flow state appears to be experienced similarly across individuals and different types of 

activity (Nakamura & Csikszentmihalyi, 2014). However, the experience may not be 

ubiquitous to every person – approximately 15% of Americans and 12% of Germans have 

reported that they have never had such an experience (Csikszentmihalyi, 1997a). Earlier 

research has indicated that there may be certain particularities that could hinder the 

expression of this state. For example, temperament and personal characteristics may influence 

the likelihood of experiencing flow (Teng, 2011). 

Others have reported that proneness to flow is related to the density of striatal, dopaminergic 

receptors (De Manzano et al., 2013; Mosing et al., 2012b), and more specifically the putamen 

(De Manzano et al., 2013), as well as genetic influences (Mosing et al., 2012a, b). The study of 

flow in video games research is rarely accompanied by supplementary measures that could 

be used as surrogate indicators of flow proneness. For example, it may be challenging to assert 

whether reports of low flow were attributed to the activity characteristics or the individual’s 

proneness to flow. Although the interaction of the activity and the person are expected to 

determine the ultimate flow experience (Chen, 2007; Nah et al., 2014), individual 

characteristics require more attention. 

Five major personality traits have been studied extensively and have been used to identify 

core psychological qualities of individuals (Costa et al., 1991; John & Srivastava, 1999). It has 

been suggested that each personality trait is an abstract construct that comprises multiple 

attributes of behavioral specificity (Costa & McCrae, 1995). Openness to experience has been 

associated with curiosity, imagination, artistic interest, creativity and willingness to try new 

activities and ideas (McCrae, 1987; Proctor & McCord, 2009). Conscientiousness seems to 

relate to planning, self-discipline, goal orientation, achievement, responsibility and 
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perseverance (Costa & McCrae, 1995; Golbeck et al., 2011; Kern & Friedman, 2008). Individuals 

with high levels of Agreeableness are cooperative, empathic, social and altruistic (Bakker et 

al., 2006; Graziano & Tobin, 2009; Graziano et al., 2007; Jensen-Campbell & Graziano, 2001). 

Extraverted individuals, i.e., individuals characterized by increased levels of Extraversion, 

seem to excel in interpersonal contexts, are talkative, sociable, assertive and achieving (Depue 

& Collins, 1999; John & Srivastava, 1999; Wilt & Revelle, 2017). Finally, Neuroticism is a 

construct affiliated with many psycho-behavioral patterns, among which are anxiety, 

emotional instability, irritability, impulse and susceptibility to criticism (Lahey, 2009; Watson 

et al., 1994; Widiger, 2009). 

With regard to the flow experience, the personality traits Conscientiousness (Johnson et al., 

2014; Tatalović Vorkapić & Gović, 2016; Ullén et al., 2012, 2016), Extraversion (Tatalović 

Vorkapić & Gović, 2016; Ullén et al., 2016), Agreeableness (Ullén et al., 2016), and Openness 

to Experience (Tatalović Vorkapić & Gović, 2016; Ullén et al., 2016; Bassi et al., 2014) have been 

found to predict and positively relate to flow, whereas Neuroticism seems to present a 

negative relationship (Heller et al., 2015; Johnson et al., 2014; Tatalović Vorkapić & Gović, 

2016; Ullén et al., 2012, 2016). As discussed previously, neuroticism is typically escorted by 

elevated negative affect, which is counterproductive to flow, a state linked to well-being and 

positive affect (e.g., Collins et al., 2009). The remaining personality traits relate to goal 

orientation, creativity and positive affect, all of which have been shown to have a direct 

relationship with flow (Csikszentmihalyi, 1990, 1997c; Ghani, 1995; Ullén et al., 2016). 

In addition to personality, age and years of video game playing have been examined in 

previous studies as antecedent qualities of the flow experience. These demographic 

characteristics have been shown to influence the self-reported levels of flow to varying 

degrees. Age of participants, albeit considered, has limited evidence that it can effectively 

influence the flow experience. For instance, teenagers aged between 15-19 years were found 

to report significantly lower levels of flow compared to the 30-39 age group (Sillaots et al., 

2020). However, these findings should be carefully interpreted. The range of years considered 

in the younger group was smaller than the older group, and the number of participants per 

group highly dissimilar (N = 8 for 15-19 and N = 63 for 30-39). No other differences in flow 
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were found among other age groups (from 20-29 to 60-69 years of age). Another study by 

Voiskounsky and Wang (2014) found that players younger than 17 years of age reported a 

significantly higher flow experience compared to older players. 

For example, Fong and co-authors (2015) carried out a meta-regression analysis and could not 

infer linear effects of age as a continuous variable on perceived skills-challenge balance and 

flow. However, a small effect was observed when age was dichotomized instead – below 30 

and above 30 years of age. The authors argued that a non-linear relationship between flow 

and age may be likely. Likewise, Payne and colleagues (2011) found no correlation between 

flow and age, and they suggested that flow does not seem to diminish with age. Perhaps, a 

clear picture is challenging to paint, considering that video games are popular across all age 

groups (Johnson et al., 2016; McLaughlin et al., 2012). 

Contrary to age, the link between years of playing games and flow seems more consistent. 

Highly experienced players (as measured in years of experience) are more likely to experience 

flow than novice players (Wu et al., 2013). However, they have also been found to enter flow 

slower as their experience grows (Wallace, 1999). 

In this study, the evaluation of a Tower Defense virtual reality game was made using the five 

major personality traits as well as self-reports of flow experience. It was hypothesized that 

flow would peak during the game wherein an average level of difficulty is introduced but 

drop during the easy and hard difficulty modes (H1). Hence, difficulty of the game was 

modified in three dedicated conditions, with the aim of influencing flow’s dimension of skills-

challenge balance. A second hypothesis was that the normal difficulty mode would elicit 

higher positive affect to the players compared to the easy and hard modes (H2a). Similarly, 

negative affect increases were expected to occur after playing the easy and hard modes, as a 

result of boredom or anxiety (H2b). The third hypothesis was that personality dimensions 

would significantly explain the overall flow experience as well as its individual nine 

dimensions (H3). 
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4.2 Methods 

4.2.1 Participants 

Although a remarkable increase of female players has been observed in the recent years, 

research findings and outputs are disproportionately derived from male participants (Wohn 

et al., 2020). Given the preliminary scope of this study, the participation criteria were limited 

to a focus group of males aged 18 to 45, as they constitute a major, if not the largest, 

demographic of video games-related targeted marketing (e.g., Chess et al., 2017; Williams et 

al., 2008). No familiarity with virtual reality and/or TD games were required. The study 

comprised 31 male participants (M = 27.4 ± 4.9 years old) who were recruited through internal 

mailing lists in Sony Interactive Entertainment in London, UK, and students from 

Bournemouth University in Bournemouth, UK. 

Participants reported an average video game playing experience of 15.1 years (SD = 8.03 

years). The difficulty conditions comprised easy (N = 10), medium (N = 11) and hard (N = 10). 

Eleven participants self-identified as novice players (mean years of experience = 7.1 ± 4.5), 

whereas 20 participants identified as experienced video game players (mean years of 

experience = 19.55 ± 5.8). The experimental procedures were approved by the local ethical 

committee at Bournemouth University (ref: 13325). 

4.2.2 Materials: Self Reports 

The tools used to evaluate the players’ experience included a custom player expertise 

questionnaire (see Appendix, Error! Reference source not found.), the Flow State Scale – 2 [

General] (FSS-2; Jackson & Eklund, 2002), the Positive Affect and Negative Affect Schedule 

(PANAS; Watson et al., 1988), and the Big Five Inventory (BFI; John & Srivastava, 1999). 

The PANAS was used to evaluate enjoyment and overall affective shifts, including negative 

affect. This scale has been previously used either verbatim or modified for games research 

(e.g., Bessière et al., 2007; Mathiak et al., 2013; Wang et al., 2008). PANAS assesses positive 

and negative affect via 20 items ranging from 1 (“Very slightly or not at all”) to 5 

(“Extremely”), depending on the applicability of the statement to the participant’s mood at 
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the time. A description of the FSS-2 and BFI questionnaires can be found in the 

Questionnaires section. 

Analyses of the self-report scores were carried out using SPSS v23.0 (IBM Corporation, 

Armonk, NY). Data normality was investigated using the Lilliefors normality test. 

Significance level was set to α = .05. 

4.2.3 Materials: Test Game 

The virtual reality Tower Defense game has had three options for difficulty: Easy, Medium 

(Normal) and Hard. The selection of the menu option was done in front of the participants. 

However, to prevent potential effects on the player experience, the options were disguised 

using icons that did not expose their purpose. The participants were randomly assigned to 

either condition at the beginning of the experiment regardless of personal characteristics such 

as experience with video games. 

Three tower types were used as options to build in the game: Fire (balanced tower, high attack 

damage), Disease (the lower the health of the attacked opponent, the higher the damage 

output of this tower) and Nova (multiple enemies were shot at once). Towers with special 

abilities (i.e., Disease and Nova) were given lesser base attributes, including attack power and 

attack speed, so that they were more balanced. All towers have had three upgrade levels, 

which made their attack power more powerful. However, Fire towers, which had no special 

ability, further received an increase in their attack range at each level. Disease towers have 

had a naturally long range, but less than a Fire Tower’s. Nova towers have had a short range 

that did not increase per level. There were ten enemies per wave (footmen), except for the boss 

which was a single unit, and had 5 times the health of a unit from the immediately preceding 

game round. Bosses appeared every five rounds in the game. 

The zones where the towers could be constructed were four, corresponding to the cardinal 

directions of North, South, East and West, relative to the player’s view (Figure 8). To build a 

tower, the player had to gaze at any zone, select it, browse through the available grids in the 

zone, select their preferred grid and create the tower of their choice.  Head tracking for head-

driven input has been shown to be highly immersive in VR games (Martel et al., 2015). The 
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zones would remain actively selected even if the player looked away from that zone – a spate 

of “back” key commands (Circle button on DualShock 4) had to be issued by the player in 

order to deselect the active area. A glowing hammer was used as a diegetic display to signal 

that a certain zone was selected. The hammer was selected for its semantic relatedness to the 

build and upgrade commands. A custom shader was used for the object, which allowed it to 

be rendered on top of other elements in the scene that would otherwise occlude it. As in other 

TD games, players were given the ability to accelerate the pace of the game whilst holding 

down a key (R2 on DualShock 4). 

 

Figure 8: Game table area from Tower Defense VR where the game action takes place. The 

white grids are usable for tower construction. The enemies on the left have hovering health 

bars, making it easier to track the damage inflicted by the towers. The gate on the left is the 

entry point, whereas the gate on the right is the exit point. The enemies walk behind the 

portrayed statue in the middle and continue towards the exit. The glowing hammer, that 

follows the player’s head rotation, aims to visually aid the head tilt sensitivity required to gaze 

across different regions for tower construction. 

The surrounding environment in the virtual space (Figure 9) remained unaffected during 

gameplay. 
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Figure 9: Overview of the virtual space surrounding the game table from Tower Defense 

VR. 

For the difficulty, the default health scaling formula that was tested with different users was 

multiplied by x0.7 for the easy mode, x1 for the medium mode and x1.3 for the hard mode. 

The received gold from eliminating enemies was also modified based on the difficulty, 

favoring higher levels of difficulty (proportional to the in-game round number). In addition, 

gold was passively added to the player’s gold pool every eight seconds, the amount of which 

was equivalent to the worth of one opponent from the most recent round. Upon elimination, 

bosses granted eight times more gold than a regular footman. The players had to play through 

40 rounds, with a 7-second inter-round delay but could be defeated at any point if all their 50 

lives were lost. One life point was subtracted once an enemy escaped unless it was a boss. 

Players who made it through all the rounds were victorious. The outcome of the game was 

communicated to the player once the game ended. The text of “Defeat” was colored in red, 

which is a traditional color code used in games to signal undesirable game states (e.g., 

Zammitto, 2008).  

4.2.4 Procedure 

The experiment took place in Sony Interactive Entertainment Europe in London, UK and 

Bournemouth University, Bournemouth, UK. Participants were seated in front of a desk, on 
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top of which the PlayStation VR kit was installed. A thin, cardboard box or a computer screen 

were used to rest the PlayStation VR Camera, which is used for tracking the VR head-mounted 

display. The height of the camera was adjusted until the participant felt that their in-game 

height felt natural. Prior to the experiment, participants were asked to fill in the following 

documents (arranged in order of administration): consent form, games experience 

questionnaire and PANAS. Participants were also let known that if discomfort were to be 

experienced in any way, the experiment would be immediately terminated. The participants 

were then given written instructions for the game’s purpose and controls, regardless of any 

previous experience in Tower Defense games. 

Once the participants reported confidence in recalling the buttons for each action in the game, 

they were asked to demonstrate the controls on the PlayStation controller (DualShock 4). The 

game session commenced after the completion of the aforementioned steps in accordance with 

the designated difficulty level of the randomized assignment (see above, Materials: Test 

Game). The experimenter received visual feedback of what each player was seeing in the 

game through a TV monitor connected to the PlayStation 4 console. This helped guide the 

participants during their first steps of their engagement with the game as well as the game’s 

controls. If more than 10 minutes were lost in the training process, the experimenter would 

restart the game. Volunteers were informed that they would not be interrupted during the 

game. The participants did not receive any compensation for their participation, and they 

were thanked for their time and contribution. 

When the player either won or lost the game, they were asked to fill out the final set of 

questionnaires. In order of administration, these were the PANAS, FSS-2 and BFI. As a note, 

the BFI could have alternatively been administered before the game, but prior to PANAS. The 

reason why it followed the game session was to spread out the experiment’s activities more 

evenly across time. The PANAS questionnaire was administered in an AB design (or pre- and 

post-test), which entails double testing in time point A and time point B, with the game session 

mediating these points (e.g., Mathiak et al., 2011). PANAS was filled out prior to FSS-2, and 

immediately after the game session. 
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This decision was made to ensure that PANAS scores would specifically relate to the game 

experience instead of being polluted with the act of filling out another questionnaire. Multi-

item scales, like FSS-2 with four items of varied rephrasing per subscale, may not be well 

perceived by participants (Robinson, 2018). Contrary to PANAS that asks about one’s mood 

at the present time, such concerns were not present for FSS-2, given that the phrasing of each 

item relates specifically to the activity under study (i.e., the TD-VR). 

4.2.5 Experimental design 

For this study, a retrospective approach was adopted for reporting the flow experience, which 

we identified earlier to be less intrusive to the natural pace of flow (see Research Approaches in 

Chapter 2, The challenges in measuring flow in video games).  This was done through a 

between-subjects experimental design, where participants were exposed to a single condition 

among the three difficulty levels (easy, medium, or hard). This allows us to observe how 

difficulty may mediate the relationship between personality and the self-reported experience 

of flow. 

It is worth noting that we were not merely interested in exposing a relationship between 

personality and flow, but how this relationship is challenged by the game’s difficulty level. 

The assignment to the difficulty conditions was randomized. To assess whether subjects 

assigned to each experimental condition were not different in a systematic way, a multivariate 

ANOVA was used, testing for difficulty group differences on the study’s dependent variables, 

positive and negative affect at baseline - i.e., prior to the game session (see e.g., Rogatko, 2009; 

Suresh, 2011). 

4.3 Results 

In order to verify successful randomized assignment, a one-way MANOVA was used with 

the difficulty group as a between-subjects factor, and Positive affect pre-game (PANAS) and 

Negative affect pre-game (PANAS) as dependent variables. The results did not reveal any 

significant differences in either variable among the groups, suggesting that all groups can be 

treated equally. 
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The player’s progress (round reached divided by 40) as well as the average score of each 

player were similarly tested against the difficulty group. These two variables, player progress 

and player average score, are distinct in that the former determines how far in the game the 

player managed to play, whereas the latter determines how well they did on average. A main 

effect of difficulty group was observed for both the progress [F(2, 28) = 5.32, p = .011] and the 

average score [F(2, 28) = 6.43, p < .01] in a one-way MANOVA. Subsequent pairwise 

comparisons revealed that the progress made was significantly different across conditions, 

except for easy versus medium (p > .05). 

Players in the easy mode progressed an average of 11.3 (±3.54) rounds more than players in 

the hard mode (p < .01). Similarly, players in the medium difficulty group progressed an 

average of 7.7 (±3.46) rounds more than players in the hard mode (p = .034). Though the 

normalized player’s progress and the average score accumulated in the game were naturally 

highly correlated (r = .965, p < .001), the effect of difficulty on the average score was slightly 

different in the pairwise comparisons. Players in the easy mode scored significantly higher 

than players in both medium (p < .05) and hard modes (p = .001). However, no significant 

differences were observed for medium versus hard modes. This was also confirmed with a 

chi-square test, where an association between win-loss condition and game difficulty was 

observed, χ2(2) = 12.87, p < .01. 

4.3.1 Flow scores (FSS-2) 

To test H1, the flow scores from FSS-2 were analyzed using a one-way MANOVA. The 

difficulty condition in which the participants were randomly assigned was set as the 

independent variable and the flow dimensions from FSS-2 were added as dependent 

variables. Although the results showed a trend toward the expected outcomes (as per the 

inverted-U reported in Peifer et al., 2014), they did not yield a statistically significant main 

effect of game difficulty on any of flow’s individual dimensions or their sum, i.e., the overall 

flow score (Figure 10). Hence, H1 was not successfully rejected. These results were also true 

when controlling for age or years of experience. 
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Further, an independent-samples t-test was performed with the game’s outcome as the 

grouping variable. Significant differences were found between flow’s dimension of time 

perception distortion, t(29) = 2.89, p < .01. Winning players reported higher time perception 

distortion than players who lost. When the novice player group (N = 11) was removed from 

the analysis, a second flow dimension reached significance. Experienced players who won 

reported a higher balance between their skills and the game’s demands, t(18) = 2.28, p < .05. 

 

Figure 10: The overall flow score comprising the sum of all flow dimensions from FSS-2. There 

is a visible trend where reported flow score is maximized during the medium difficulty mode, 

which was designed to be optimal. 

 

4.3.2 Positive and Negative Affect (PANAS) 

To examine whether the game was enjoyable as a function of the game’s difficulty (H2), a one-

way ANCOVA test was conducted using the pre-game positive affect (PANAS scores) as a 

covariate, the post-game positive affect as a dependent variable and the flow difficulty 
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condition as between-subjects factor. All variables passed normality tests (Lilliefors). Levene’s 

test was not significant (p = .148), indicating that the assumption of homogeneity of variance 

was met. 

The test revealed a significant main effect of difficulty condition on the adjusted post-game 

positive affect scores, F(2, 27) = 4.006, p < .05, ηp2 = .229. Follow-up pairwise comparisons 

without adjustment showed that the differences found occurred between the Easy and Hard 

difficulty conditions [t(27) = 5.955, p = .025] and Medium and Hard [t(27) = 6.254, p = .017], 

indicating that the easy and medium difficulty modes contributed to higher positive affect in 

comparison to the pre-game equivalent score (Figure 11). The same test was carried out for 

the negative affect scores of the PANAS scale, but they were not significant (p > .05). 

 

Figure 11: Scatterplot of positive affect shifts across the three difficulty game modes. 
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Further, the game’s outcome (Victory/Defeat) was added as a between-subjects factor in a one-

way ANCOVA with PANAS pre-game and post-game scores added as a covariate and a 

dependent variable respectively. Significant differences were observed when controlling for 

pre-game affect between the groups, F(1, 28) = 5.57, p = .026, ηp2 = .166; players who won in the 

game reported higher positive affect (M = 35.71, SD = 1.44) than players who lost (M = 30.8, 

SD = 1.49) (Figure 12). 

 
Figure 12: Scatterplot of positive affective shifts that occurred between the two different 

game outcomes. 

 

4.3.3 Personality scores (BFI) 

To test the relationship between personality traits and the reported flow experience (H3), a set 

of stepwise multiple linear regressions were run. The dependent variables were flow’s 

individual dimensions. All analyses were examined for multicollinearity; the lowest tolerance 
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score found from all the analyses was .745 and the highest Variance Inflation Factor (VIF) 

score was 1.343, suggesting that there were no multicollinearity issues (Hair et al., 2011). 

Except for feedback clarity, sense of control and concentration, the remaining flow dimensions 

were predicted by the BFI scores (Table 4). A final, multiple hierarchical regression was 

conducted on the overall flow score. As expected, the model revealed Agreeableness as the 

most significant predictor of total flow (p < .05), explaining 20.1% of the flow scores’ variance. 

With respect to positive affect and negative affect, a stepwise multiple linear regression was 

run, using the personality traits as independent variables and the positive or negative affect 

pre-game scores as the dependent variables. The results showed that positive affect was 

predicted by agreeableness (β = 4.582, p < .05, R2 = .156) and negative affect by neuroticism (β 

= 2.36, p < .05, R2 = .191). 

To address the influence of personality scores in the flow experience across the difficulty 

conditions, a one-way MANCOVA was conducted with the model built from interaction 

terms of individual personality traits (covariates) and the game difficulty mode (independent 

variable) on flow dimensions (dependent variables). Interaction terms were considered in this 

case because the difficulty mode may have had different effects for different levels of 

personality traits (e.g., Beck & Bliwise, 2014). The results showed that when controlling for 

Openness, Extraversion or Neuroticism, a significant interaction emerged for the flow 

dimension of Automaticity, F(3, 12) = 5.986, p = .01, F(3, 12) = 9.605 , p < .005, and F(3, 12) = 

3.756, p < .05 for each personality trait respectively. 

When controlling for Agreeableness, a significant interaction occurred for the flow 

dimensions of Skills-Challenge Balance, F(3, 12) = 5.174, p < .05 and Clarity of Goals, F(3, 12) = 

4.848, p < .05. No other interaction was significant for the remaining flow dimensions. The 

adjustment of the mean flow dimensions from the collective set of all personality traits 

revealed a significant main effect of game difficulty mode on Clarity of Goals, F(2, 30) = 4.418, 

p < .05. Follow-up pairwise comparisons revealed that significant differences were found 

between the easy and medium difficulty modes – goal clarity was highest in the medium 

difficulty mode. 
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Table 4: Summary of multiple linear regressions using personality traits (columns) as 

independent variables and individual flow dimensions (rows) as dependent variables. Rows 

containing more than one entry for personality traits indicate that a significant model was 

selected, containing all the displayed traits. 

 Agreeableness Extraversion Neuroticism Openness 

Automaticity 

β = .854, p < .01 β = .37, p < .05   

Extraversion and agreeableness 

explained 34.4% of the total variance in 

automaticity; p < .01 

  

Autotelic 

experience 

  β = .333, p < .05  

  

Neuroticism 

explained 15.6% 

of the total 

variance in 

autotelic 

experience. 

 

Clarity of 

goals 

β = .618, p = .012 β = .333, p < .05   

Extraversion and agreeableness 

explained 28% of the total variance in 

clarity of goals; p = .012 

  

Loss of self-

reflection 

β = .811, p = .011    

Agreeableness 

explained 21.1% of 

the total variance in 

loss of self-reflection. 

   

Skills-

Challenge 

balance 

β = .741, p < .01    

Agreeableness 

explained 27.8% of 

the total variance in 

skills-challenge 

balance. 

   

Time 

perception 

distortion 

   β = .817, p < .01 

   

Openness explained 

26.8% of the total 

variance in time 

transformation. 
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4.4 Discussion 

In this study, personality as well as positive and negative affect were examined in relation to 

flow. The results corroborate previous findings suggesting a relationship between personality 

and flow, which may help researchers to better understand individual differences in 

experiencing flow. Agreeableness appeared consistently as a predictor of flow as well as its 

individual dimensions (see Ullén et al., 2016). According to Johnson and colleagues (2012), 

agreeable individuals are more likely to feel enjoyment during video game play and to be 

resistant to annoyance. Agreeableness has also been associated with happiness and well-being 

(Johnson et al., 2012; McCrae & Costa, 1991), both being relevant concepts to the flow 

experience. Extraversion and openness were also significant predictors of flow’s dimensions. 

Openness and Extraversion. Individuals high in openness tend to form connections and 

identify with their characters (Dunn & Guadagno, 2012; Soutter & Hitchens, 2016). Though 

the players did not actively control any avatar in the game, Ermi and Mäyrä (2005) suggested 

that character identification is a facet of emotional investment in the game and part of enjoying 

the fantasy unveiled within. Thus, openness may have related to the fantasy content featured 

in the TD game used in this study as well as the tendency of being strongly motivated (McCrae 

& Costa, 1997). Similarly, extraversion has also been shown to have ties to character 

identification (Soutter & Hitchens, 2016) and by extension the imaginative aspect of the game 

(Ermi and Mäyrä, 2005). Extraverts engage in sensation-seeking which contributes to 

enjoyment during video game play (McCrae & Costa, 1985; Fang & Zhao, 2009). Additionally, 

extraverts derive pleasure from achievement and mastery of challenges (Watson & Clark, 

1997), which constitute intrinsic motivators of digital game play (Wang et al., 2008). 

Importantly, the combination of agreeableness and extraversion as predictors of flow 

dimensions confirms previous work in the area (e.g., Ross & Keiser, 2014). 

Conscientiousness. Earlier research has also identified the role of conscientiousness in flow 

propensity (e.g., Ullén et al., 2012; 2016), which was not confirmed in this study. However, 

Johnson and colleagues (2012) identified an inverse relationship between conscientiousness 

and flow. The authors suggested that conscientious individuals may be less likely to “let go” 
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and may not allow themselves to be fully immersed in the game, as a result of being highly 

goal-driven. Conscientious individuals display high levels of self-discipline and are more 

likely to engage in activities of personal growth than leisure (McElroy et al., 2007; Moore & 

McElroy, 2012). For example, conscientiousness has been shown to relate to flow in the context 

of job performance (e.g., Demerouti, 2006). However, contrary to Johnson et al. (2012), Teng 

(2008) has shown the relevance of conscientiousness in the context of video game playing. 

Insights about the contradictory findings can be seen in Peever and colleagues (2012)’s work, 

who demonstrated that conscientiousness was significantly related to preference toward 

specific genres, i.e., sport, racing, simulation and fighting games. Perhaps, Tower Defense 

games do not conform with the mechanics found in those genres that would make them 

attractive to conscientious individuals. However, conscientiousness has been linked to 

thorough planning (Golbeck et al., 2011), which is reminiscent of the strategy game genre due 

to the high involvement of planning involved in the gameplay. 

Indeed, strategy games may be preferred by conscientious individuals (e.g., Gabbiadini & 

Greitemeyer, 2017). Tower Defense games also incorporate elements that require strategic 

planning (Brich et al., 2015) and are considered a subgenre of strategy games (Avery et al., 

2011). Thus, they could likewise be appealing to players with increased levels of 

conscientiousness. In the game used in this study, selecting the timing and an appropriate 

tower type for construction, the zonal grid to build a tower on as well as the timing for its 

upgrade played a critical role in the progression of the game. Paradoxically, however, 

conscientiousness did not appear to predict flow when playing a Tower Defense game. 

Perhaps, more research is needed to explicate the absence of this relationship. 

The relationship between autotelicity and neuroticism. Another unexpected finding was an 

observed positive relationship between autotelicity and neuroticism. Previous research has 

consistently shown that neuroticism is antithetical to flow (Johnson et al., 2014; Tatalović 

Vorkapić & Gović, 2016; Ullén et al., 2012, 2016). This is because neuroticism has been 

traditionally conceived as a personality trait that is accompanied by elevated levels of negative 

affect (e.g., Giluk, 2009; McNiel & Fleeson, 2006; Smits et al., 1995). Indeed, this was confirmed 

in the present study, where a positive relationship was found between negative affect and 
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neuroticism. Individuals with high neuroticism present a strong tendency towards addiction 

(e.g., Cao & Su, 2007; Hardie & Tee, 2007; Li et al., 2006; Mehroof & Griffiths, 2010). 

This is also true for the flow experience, which has been shown to circumstantially devolve 

into addiction (e.g., Chou & Ting, 2003; Csikszentmihalyi, 1990), perhaps as a result of 

personal characteristics (Blaszczynski, 2008). Hence, it is likely that autotelicity, as a 

dimension of flow, could be used as a surrogate measure for addictive tendencies in 

individuals with high neuroticism. A related observation may be drawn from Conway and 

Rubin (1991)’s work, who found that individuals experiencing high levels of anxiety are more 

likely to engage in media as a means of escaping reality. These accounts may offer an 

interesting angle in the domain of video games addiction and the flow experience. However, 

due to lacking research in the manifestation of a positive relationship between flow and 

neuroticism, these explanations can only be speculative. 

Flow as a result of game difficulty. Critically, the main hypothesis that flow dimensions vary 

as a function of game difficulty was not met. It was only after adjusting for personality that a 

flow dimension reached significance. Though the allocation of participants to each difficulty 

group was randomized, the predefined difficulty settings may have posed a limitation to this 

study. The overall flow score reported by the participants revealed visible trends, yet this was 

not confirmed in the statistical results. There are many possible explanations for the absence 

of evidence. First, the sample size was admittedly small, with roughly 10 participants allotted 

to each difficulty mode. Second, Tower Defense games increase in difficulty at each round, 

and each wave of enemies becomes more resistant than the previous. This automatically 

inherits a model of incremental difficulty, which conforms with an adaptive difficulty 

mechanism. However, the scaling of the enemies’ health over time may have been rather 

drastic and may have not differentiated the three difficulty modes adequately. Klarkowski 

and colleagues (2015) were similarly unable to find substantial differences between two 

conditions of differing difficulty levels. The authors suggested that the flow experience may 

still emerge regardless of a skills-challenge imbalance, but also acknowledged potential 

design flaws. 
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Moreover, in this study, flow ratings were accumulated after the game, and the participants 

may have relied on the experience of the most recent rounds (see Sabet et al., 2019), which 

were admittedly harder than their preceding rounds regardless of the difficulty mode. Finally, 

the player was able to modify the pace of the game by simply holding down a key, which was 

perhaps an unnatural mechanic for VR. It may have been possible that game acceleration took 

place during instances of boredom or anxiety, as a means of skipping predictable or unwanted 

outcomes. Likewise, game acceleration could have impinged on the flow experience, by 

altering the perception of time that is already transformed during flow. The potentially 

confounding effects of the game acceleration mechanic were not originally accounted for and 

no supplementary measures were taken to record the frequency of its use. 

In line with previous research, and as expected, the results suggested that winning contributes 

significantly to positive affect (Rieger et al., 2014). Over 60% of the positive affect shifts were 

explained by victory. Positive affect was best predicted by the personality trait of 

agreeableness, which is in accordance with earlier studies (e.g., Johnson et al., 2012). Notably, 

a similar relationship was not found for negative affect, suggesting that an in-game defeat did 

not significantly contribute to increased negative affect. This may indicate that players were 

not particularly interested in winning or losing, but that a victory was a pleasant outcome, 

whereas a defeat caused indifference rather than frustration. Victorious and defeated players 

reported on average comparable overall flow scores – 34.7 and 33.03 respectively out of a 

maximum score of 45. 

Overall, the study revealed an interesting set of findings, which are mainly in accordance with 

other studies investigating the relationship of similar constructs, such as personality. 

However, flow should be more finely distinguished across the difficulty conditions if it is to 

be detected by means of physiological changes. Participants were only able to play one level 

of predetermined difficulty, which had had uncertain impact on player experience. This may 

be treated as a limitation in the game’s design. Difficulty scaling, imposed by design, is 

perhaps insufficient without extensive testing in large player bases, such as beta or alpha 

testing as traditionally done in the commercial sector. Hence, improvements were made that 

are described in the next study. 
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5 Study II: Decoding flow from heart-rate and eye-

blink variability using personality scores 

 

5.1 Introduction 

In the previous study, we showed that personality was a relevant concept to the flow 

experience in video games. However, there was a potentially deleterious effect originating 

from the way difficulty was determined (see sections Chapter 4, Materials: Test Game and 

Chapter 4, Flow scores (FSS-2)), which hindered our interpretability of the outcomes. In this 

study, we applied a dynamic difficulty adjustment formula in order to allow for the game to 

adapt to the player’s performance. However, to investigate the effects of the adaptation, a self-

report may not suffice, considering it is collected after the game and thus a flat score may not 

be truly representative of specific time periods during game play. Physiological measures may 

bridge this gap and provide valuable insights from patterns that can emerge as a function of 

the game design and difficulty adaptation. This is motivated by earlier research, where 

physiological measures have been employed as a means of assessing flow episodes during 

game play (e.g., Bian et al., 2016). Essentially, the purpose is to match the self-reported 

experience of flow with bodily changes that occur during play.  

5.1.1 Electrocardiography 

The most common physiological measures to have been employed in the study of flow are 

cardiac features (Knierim et al., 2018). The peripheral nervous system includes the autonomic 

nervous system (ANS), which further bifurcates into the sympathetic and parasympathetic 

branches. The functions of ANS are mainly regulatory and involved in metabolic and 

homeostatic processes (Loewy & Spyer, 1990). The sympathetic subdivision is widely known 

to be associated with the fight-or-flight response (McCorry, 2007), which is a stress response 

(Hamill & Shapiro, 2004) and otherwise known as the ergotropic response (Benson et al., 

1974). On the other hand, the parasympathetic branch balances sympathetic activity and 
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produces relaxation, i.e., the trophotropic response (Benson et al., 1974; Moss, 2004; Suter et 

al., 2009). 

Heart rate variability (HRV) is a conglomerate of statistical measures that aim to identify the 

differences between successive heartbeats as a function of time or frequency (McCraty & 

Shaffer, 2015). Based on the distinction between the sympathetic and parasympathetic 

branches of the autonomic nervous system, the former being excitatory and the latter 

inhibitory (Appelhans & Luecken, 2006), a few hypotheses can be formed in relation to the 

Four Channel Flow Model (Massimini & Carli, 1986). Anxiety and frustration, as high-arousal 

states, should engage higher sympathetic activity (Giakoumis et al., 2010). On the other hand, 

flow’s relation to a balanced mental workload is suggestive of parasympathetic modulation 

(e.g., Peifer et al., 2014; Tian et al., 2017). Indeed, Ullén and colleagues (2010) stressed that the 

regulation of the two branches may be an important marker of the flow experience. Finally, 

boredom should relate to decreased sympathetic activity, as a low-arousal state (Tozman et 

al., 2015). Given that the sympathetic and parasympathetic branches may exhibit antagonistic 

effects (Appelhans & Luecken, 2006), boredom should also relate to increased 

parasympathetic activity. The relationship between flow, boredom and anxiety, with respect 

to sympathetic arousal, appears to be quadratic, where flow hovers at the peak of an inverted-

U shape; low arousal indicates boredom and high arousal indicates anxiety (Peifer, 2012; 

Peifer et al., 2014). 

Heart rate appears to increase proportionally to the game’s difficulty (Chanel et al., 2008; De 

Sampaio Barros et al., 2018) and may reflect mental workload (Jorna, 1993; Meshkati, 1988). 

Indeed, increases in heart rate during the flow experience have been consistently reported 

(Bian et al., 2016; De Manzano et al., 2010; Gaggioli et al., 2013). On the frequency domain, 

HRV is typically bisected into the low-frequency and the high-frequency bands (McCraty & 

Shaffer, 2015). Harmat and colleagues (2015) used a computer game in their study and asked 

participants to play three different levels of difficulty, easy, optimal and hard. The authors 

found that the optimal difficulty was characterized by the highest flow scores on a self-report 

scale and lower low-frequency HRV. In presence of mental load, HRV is expected to decrease 

(Dong, 2016). However, in the context of flow, this has not been consistently confirmed (cf. 
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Bian et al., 2016; Keller et al., 2011a). The low-frequency component of HRV remains 

controversial with respect to the underlying physiological mechanisms that it represents – 

e.g., baroreflex activity, sympathetic/parasympathetic interaction or parasympathetic tone 

(e.g., Goldstein et al., 2011; Houle & Billman, 1999; Reyes del Paso, 2013). Nevertheless, 

previous findings typically converge in the relatedness of cardiac measures as potential 

indicators of the flow experience, mental load (Keller et al., 2011a), stress in VR games 

(Ishaque et al., 2020) and automaticity (Peifer, 2012). 

5.1.2 Electromyography 

Another measure often used in flow research is electromyography. Electromyography is a 

method able to differentiate states of varying levels of arousal and valence (Cacioppo et al., 

1986). In an influential study by Ekman and colleagues (1983), the authors were able to 

distinguish different emotions using electromyography. Though emotional expressions have 

long been interpreted as messages occurring mainly in social contexts (e.g., Ekman, 1970; 

Kraut & Johnston, 1979), several studies have shown that they may also form during video 

game playing. For example, contraction of the muscles zygomaticus major and orbicularis 

oculi has been linked to the experience of flow (e.g., De Manzano et al., 2010; Nacke & Lindley, 

2010; Ullén et al., 2010), indicating positive emotions (Ravaja et al., 2006, 2008). On the other 

hand, the corrugator supercilii are highly relevant to negative affect (e.g., Larsen et al., 2003) 

and have likewise been associated with negative events in video game playing (e.g., losing to 

an opponent; Hazlett, 2006). 

It should be noted that, in the study of Hazlett (2006), there was an observable overlap of the 

corrugator muscle group with positive events (e.g., winning) besides negative ones. Van den 

Hoogen and colleagues (2012) reported a similar finding where negative events (in-game 

deaths) potentiated activity in the zygomaticus major. These opposite trends, consistent with 

Ravaja et al. (2006), Salminen and Ravaja (2007), and Kivikangas and Ravaja (2013) findings, 

may suggest that a negative event does not necessitate a negative experience (Ravaja et al., 

2006). Thus, they solidify the possibility that flow’s suspension may not occur under negative 

affect as Jennett and colleagues (2008) suggested. In addition, it might be helpful to consider 

that flow may not have overt ties to a particular direction in the valence spectrum (e.g., 
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Csikszentmihalyi, 1990, 1996). This may also explain the absence of a relationship between 

flow, zygomaticus major and orbicularis oculi reported in a study conducted by Kivikangas 

(2006). 

In summary, electromyography is a promising measure, but robust evidence for flow is 

currently limited. Furthermore, we previously argued that the relatedness of flow to valance 

may not be exclusive to either positive or negative, and thus any inferred positive or negative 

states from facial muscle activation may not necessarily reflect the presence or absence of flow. 

5.1.3 Electrodermal Activity 

Electrodermal activity (EDA), not specifically pertaining to the facial musculature, has also 

been used as a marker of the flow experience. Unlike electromyography, EDA has been 

notoriously inadequate at detecting valence, but reliable for detecting arousal (e.g., Horslen & 

Carpenter, 2011; Kron et al., 2015; Öhman et al., 1993). However, recent studies employing 

techniques from the field of machine learning have claimed to have detected valence with a 

high accuracy (e.g., Canento et al., 2011; Feng et al., 2018; Greco et al., 2016). Electrodermal 

activity has been found to increase during challenging tasks (Frijda, 1986). Though Drachen 

and colleagues (2010) failed to replicate this finding, suggesting that there may have been 

opposing definitions of challenge in the self-report measure that they used, they found EDA 

to have a significant, positive relationship with frustration. 

However, the same positive relationship has been found for flow (Nacke & Lindley, 2010; 

Peifer, 2012). Again, we are confronted with the dichotomy between flow and frustration. 

Although it was stressed earlier that their similarities may have previously been neglected, 

thereby rationalizing the inconsistency of findings reported in the literature, an important 

observation can be drawn from the study of Kron and colleagues (2015). The authors used a 

multidimensional set of features for EDA, in order to discriminate valence indices, which is 

known to provide comparably better classification results than a small set of features (e.g., 

Janecek et al., 2008). Hence, there might be more EDA parameters needed to disentangle flow 

and frustration as two separate high-arousal states. 
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5.1.4 Electrooculography 

A final method of considerable implications for flow is electrooculography (EOG), which 

measures electric potentials evoked by oculomotor activity (e.g., Gratton, 1998). Although this 

approach has surfaced only recently in the study of flow, valuable insights may be drawn 

from its application in neighboring contexts. Typical parameters of interest from ocular 

activity include eye blinks, saccades, fixations and pupil dilation (e.g., Pfleging et al., 2016). It 

was previously thought that eye blinks were only helpful in lubricating the cornea (Stern et 

al., 1994), but studies have established an additional relationship with increased cognitive 

processing (e.g., Rosenfield et al., 2015; Veltman & Gaillard, 1996). 

Eye blinks are thought to reflect endogenous processes, such as mental workload (Chen et al., 

2011) and concentration (Wu et al., 2011), but they are highly variable among different 

individuals (Martins & Carvalho, 2015; Nourbakhsh et al., 2013). Thus, baseline 

measurements are recommended for interpretable outcomes (Egloff & Schmukle, 2002). A 

general rule is that mental workload results from the interplay of mental processes that occur 

whilst one is faced with a difficult task (Mulder, 1979). These processes may be manifested 

through significant physiological changes (Mulder, 1979). Similarly, low gazing dispersion 

(Reimer, 2009), duration of fixations (De Greef et al., 2009), duration of blinks (see Kramer, 

1990), greater pupil dilation (De Greef et al., 2009; Palinko et al., 2010) and fewer saccades 

(Harbluk et al., 2002) have all been correlated with higher levels of cognitive load. 

According to Recarte and colleagues (2008), mental workload is not a meaningful concept 

unless both the user and the task are taken into consideration. Mental workload has been 

shown to produce higher inter-blink rate and lower duration of the eye blinks as a result of 

high visual demand (Veltman & Gaillard, 1998). However, in Recarte et al.’s study, visual load 

and mental load were found to have opposite effects – eye blink rate increased during mental 

load but decreased during visual load (Recarte et al., 2008). This is consistent with previous 

studies, where decreased blink rates were observed under high visual demand (e.g., Charles 

& Nixon, 2017; Chen et al., 2011; Van Orden et al., 2001). The current evidence is therefore 

mixed, especially when considering studies reporting opposite findings, i.e., blinking decline 

during high mental load (e.g., Bednarik et al., 2018; Mallick et al., 2016; Wanyan et al., 2018; 
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Wu et al., 2011, 2014; Zheng et al., 2012). This issue between visual load and mental load was 

recently acknowledged, suggesting that previous research may have misinterpreted a visually 

demanding task as being mentally demanding (Marquart et al., 2015). 

A mechanistic view of humans as systems with limited capacity acknowledges the limitations 

imposed by working memory capacity (Mulder, 1979; Sweller et al., 2011). The Cognitive Load 

Theory suggests that when this capacity is overflown, it leads to what is understood as 

cognitive overload and a difficulty in or a possible suspension of information processing 

(Sweller et al., 2011). Under these conditions, differential blinking patterns may occur, as well 

as performance deficiency (Bernadine et al., 2013). Chen and Epps (2014) suggested that blinks 

are better indicators of perceptual than cognitive load, and blink rates may increase as a means 

of alleviating mental tension. However, in the specific case of the flow experience, cognitive 

load is expected to be moderately high yet attuned to the individual’s skills (Pilke, 2004). 

Chang and colleagues (2017) found that flow is related to germane cognitive load, which is a 

concept derived from the Cognitive Load Theory and describes the effort required for the 

construction of cognitive schemata that relate to learning (Sweller et al., 1998). This finding is 

reminiscent of the automaticity component of the flow experience (e.g., Csikszentmihalyi, 

1990). 

Rau and colleagues (2017) found that participants who reported a high flow experience during 

video game play, demonstrated significant changes in blinking rates throughout the game at 

different times, with a markedly significant decrease relative to a baseline. Notably, the game 

that they used, Warcraft III, involves a visually demanding activity, which is argued to be 

generating lower blink rates (e.g., Marquart et al., 2015; Recarte et al., 2008). Nevertheless, the 

resulting connection between visual load and self-reported flow scores is interesting. In a 

similar vein, but not contextualized to the flow experience, Wu and colleagues (2014) 

employed a video game and monitored ocular activity during playing (high-concentration 

task). In comparison to listening to music, which was deemed a low-concentration task, the 

authors found significant differences between blinking rates, with observable decreases 

during the high-concentration task. However, a small concern with this study is that the trial 
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times were relatively low (150 sec), which may not be adequate in capturing significant 

changes in blinking behavior. 

Overall, the peripheral nervous system seems to be highly responsive to variations in task 

difficulty, manifested through fluctuations in arousal levels. Hence, task difficulty alterations 

may facilitate our understanding of flow’s onset. Although each individual measure could, to 

some extent, differentiate flow from other mental states, a multimodal measurement is 

perhaps more desirable (e.g., Bian et al., 2016). 

5.1.5 Study objectives 

In this study, both electrocardiography (ECG) and electrooculography (EOG) were used to 

investigate the flow experience by modifying the difficulty of TD-VR. These measures were 

chosen as indices of arousal and mental load that earlier studies have demonstrated (e.g., 

Bednarik et al., 2018; Martins & Carvalho, 2015; McIntire et al., 2014; Recarte et al., 2008). In 

addition, EOG appears to be a particularly interesting measure for the flow experience (e.g., 

Rau et al., 2017) with only a pair of electrodes needed to extract the physiological responses 

of interest. Research has so far applied EOG in virtual reality mainly for enabling interaction 

with a game as an alternative physical input (e.g., Kurma & Sharma, 2016). However, there is 

little evidence on the use of EOG as a surrogate measure for flow in virtual reality (e.g., 

Ishiguro et al., 2019). 

The purpose of this study is to investigate the physiological patterns from both ECG and EOG 

modalities during virtual reality game play. This will also enable us to discern whether these 

temporal patterns contain sufficient information to decode flow, anxiety and boredom. We 

expect that when the difficulty adapts to the player’s performance, the flow experience is more 

likely to trigger (e.g., Denisova & Cairns, 2015a). It is further hypothesized that anxiety will 

trigger the highest arousal levels, followed by flow and finally by boredom (e.g., Keller et al., 

2011a; Mikulas & Vodanovich, 1993; Peifer et al., 2014). 

Notably, what is meant by arousal is the physiological arousal under the effects of mental 

effort (e.g., Critchley et al., 2000). In video game studies, sympathetic arousal has been shown 

to increase (see Subahni et al., 2012). It is considered that elevated arousal levels can be 
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indexed through heart rate variability metrics, such as higher heart rate (Kennedy & Scholey, 

2000), and thus shorter inter-beat intervals (Gentil et al., 2009), as well as decreased pNN50 

and RMSSD (e.g., Hammoud et al., 2019; see also Electrocardiography Preprocessing and 

Features). For EOG, increased arousal is expected to be manifested through decreases in 

spontaneous blink rates and blink duration in presence of visual load (Brouwer et al., 2014a). 

The opposite, an increase in eye blink frequency, may allude to higher distractibility (Strenge 

et al., 1999). 

Those arousal differences provide a useful input for the classification of gameplay 

experiences, and thus offer the prospect of monitoring periods of experiential discontinuities 

in real-time settings. In addition, they may uncover latent patterns for validation of the 

original game design choices, which are documented in the next sections. 

5.2 Methods 

5.2.1 Participants 

Twenty-nine volunteers took part in the study (mean age = 31.5, SD = 7.0) who were 

employees in Sony Interactive Entertainment in London, United Kingdom. The sample 

comprised 19 males and 10 females with an average video games experience of 19.5 years (SD 

= 8.7). As such, no gender or age group screening took place for this study. Those restrictions 

were lifted such that the samples from the present and the next study (Study III - Chapter 6), 

both employing biometric measurement, would generalize better to the diversity of the 

gamers’ population. The study was approved by the Bournemouth University Research Ethics 

Committee (ref: 17333). 

5.2.2 Data Acquisition 

Electrocardiography (ECG) and electrooculography (EOG) recordings were obtained with 

BIOPAC BSL MP45 (BIOPAC Systems Inc., California, USA), using the proprietary software 

Student Lab 4.0, at a sampling rate of 1 kHz, which has been deemed an appropriate sampling 

rate for HRV time-domain measures (Hejjel & Roth, 2004).  
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A set of events for the start and end of the recordings from Student Lab 4.0 were added to the 

message list on the receiving desktop computer (for details, see Chapter 3, Data acquisition). 

The recordings were always started (BIOPAC_RECORDING_STARTED) and ended 

(BIOPAC_RECORDING_ENDED) using the key combination Ctrl + Space. The custom 

application on the desktop computer that listened to incoming messages from PlayStation 

used the native input detection to capture the aforementioned key combination when a 

window starting with the name “Biopac” was active. This was done to track the Coordinated 

Universal Time (UTC) timestamp the recording was started on Student Lab 4.0, thereby 

achieving synchronization with the game events during the data analysis. 

For ECG, the placement of the electrodes followed Einthoven’s triangle principle in a LEAD I 

configuration (e.g., Gargiulo et al., 2018). The ground electrode was attached on top of the 

right ankle, the positive electrode on the left wrist and the negative on the right wrist. For 

EOG, the positive electrode was attached on top of the left eye and the negative electrode 

below the left eye, both approximately at 1 cm + half the size of the disposable electrodes. 

Vertical EOG was preferred, as eye blinks, a feature of interest in the study, produce 

observable spikes (e.g., Heo et al., 2017; Ma et al., 2015) more prominently on the vertical axis 

(Oliveira et al., 2018; Pander et al., 2008). 

Two Ag/AgCl disposable cloth electrodes were used (EL504, BIOPAC Systems Inc., California, 

USA) for EOG and three Ag/AgCl disposable pre-gelled electrodes (EL503, BIOPAC Systems 

Inc., California, USA) were used for ECG. The data were imported into MATLAB R2019b (The 

MathWorks Inc., Natick, USA) for trial segmentation and analysis. In addition to the 

physiological data, two self-reports were used, the Big Five Inventory (BFI; John & Srivastava, 

1999) for measuring personality traits and the Long Flow State Scale - General (FSS-2; Jackson 

& Eklund, 2002) for measuring the flow experience. 

5.2.3 Materials: Test Game 

5.2.3.1 Scoring System 

TD-VR received major updates from its earlier version. Unlike archetypal games from the 

Tower Defense genre and the first version of TD-VR, the lives system was eliminated in the 



   

 

 

Flow Experience in Virtual Reality Games | 132 

 

following experiments. This was done to prevent variable data durations across participants 

that could have resulted from individual performance advantages and ensured that there 

were data from all the volunteers in similar sections of the game. Instead, at the end of each 

round, a pop-up panel was used to display the score for each round (Figure 13). This score 

was calculated based on the ratio of enemies eliminated over the enemies originally 

instantiated. The panel also served to alert the player about the type of enemies that would 

follow in the next round. At the end of the game, an overall score averaged from all the rounds 

was shown to the player with a maximum score of five. Hence, even though a player could 

neither win nor lose in the game, their sense of progression was not entirely deprived. 

 

Figure 13: Scoring system at the end of each round in TD-VR. This was used as an alternative 

to a life pool system that commonly appears in Tower Defense games, to ensure that all 

players played the full game, despite individual performance advantages. The pop-up 

displays the performance of the player for that round as well as prepares them for the type of 

enemy units in the next round.  

5.2.3.2 Environment and Gameplay Modifications 

The environment and milieu (the visual genre of the game; Apperley, 2006) maintained its 

fantasy theme, but the environment was significantly enhanced in terms of visual detail. 

Visual details included animated fire sources, fog scattered across the game table, an animated 

windmill, a small lake and several structures aiming to depict a small village (Figure 14). The 
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locations at which the player could build towers were also given a different visual appearance. 

The previously used white squares were replaced with hovering stone platforms, which 

allowed them to visually blend with the environment. 

The original towers were also visually replaced by gems, whose color matched their tower 

type, as a means of associating color with tower functionality (Figure 14). Red gems were used 

for the Fire towers (incurred a burning effect, which caused the attacked enemy to receive a 

percentage of their maximum health as damage every second for three seconds – known as 

“Damage over Time (DOT)” effect). For clarity, given the naming consistency amongst the 

studies, Fire towers did not have a special ability in the previous study. Blue gems were used 

for the Arcane towers (briefly paused the attacked enemy, by locking them in place – 

commonly referred to in video games as “stun” effect) and purple gems for Nova towers 

(caused enemies surrounding the main target to also receive a percentage of the inflicted 

damage – known as “area of effect (AOE)” effect). 

Due to an observed misuse of the Disease towers in the first study, those towers were replaced 

with the Arcane towers. The issue was that many participants constructed them in the 

beginning of the path, which did not allow them to function to their full potential. That was 

because Disease towers maximized their damage when the enemy’s life was low. Hence, 

constructing them at the start of the enemies’ route hindered their capability, because the 

enemies were freshly spawned. All towers in the present study were designed to work in a 

complementary way to one another – in game design terms this is typically referred to as 

synergy (e.g., Rocha et al., 2008). Players could also sell existing towers if they felt that their 

current layout did not perform well, and they would be compensated for 50% of the tower’s 

overall cost in return (Figure 15). 
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Figure 14: Visual enhancement of the modified game table from Tower Defense VR (top) and 

close-up of the game table action in progress (bottom). The three different tower types are 

displayed. 



   

 

 

Flow Experience in Virtual Reality Games | 135 

 

 

Figure 15: Tower selection in TD-VR. This is an example of a level-1 Fire Tower whose special 

ability is to trigger a burning effect on the enemy that persists for three seconds. The red ring 

on the ground is used as an indicator of the tower's attack range. The black depicted gems 

activate based on the towers’ level. The value next to the gold pot on the bottom indicates the 

cost to upgrade the tower. 

5.2.3.3 Rounds and Dynamic Difficulty Adjustment 

There were three round-types introduced, coded as flow, anxiety and boredom. The player 

was shown aliases instead: Extermination, which corresponded to flow, and Assault, which 

corresponded to either anxiety or boredom. The game comprised 30 rounds (trials) grouped 

into three consecutive blocks with an overall average duration of 28.77 min (SD = 0.35 min). 

Each block included rounds designed to induce flow, anxiety and boredom (ordered as 

mentioned). The experimental variables were the health of the enemy units as well as the 

currency reward magnitude bestowed whenever the player eliminated an enemy (see e.g., 
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Sutoyo et al., 2015). Reward manipulation served to hinder or to facilitate game progression 

and by extension player performance, thus adding to the perceived difficulty of the game. 

Flow-designed rounds featured an adaptive difficulty scaling mechanism that was inspired 

from earlier work in TD games (Sutoyo et al., 2015). The ratio of enemies escaping over 

enemies originally spawned was indexed through a predefined table of ratio ranges (e.g., {0.4–

0.6}). The lower the ratio, the higher the difficulty of the next round and the lower the reward 

bonus. Conversely, the higher the ratio, the lower the difficulty of the succeeding round and 

the higher the reward bonus. On the other hand, anxiety and boredom round-types featured 

bosses, which were more powerful (Figure 16). Unbeknownst to the player, those enemies 

were programmatically modified to be invincible near the end of their life. When the bosses 

appeared, a random value was generated between 1 to 5%; when the health of the boss 

reached that percentage, further damage would no longer be inflicted. 

 

Figure 16: Unit-types introduced in the second version of the TD-VR game. From left to right, 

(a) the first unit is a fast boss with high health and high reward bonus in the anxiety rounds. 

In the second rhombus (b), there are ten units in the flow-designed rounds, whose health and 

reward bonus increase proportionately to the player’s performance in the previous rounds. In 

the last rhombus (c), a slow-moving boss with very high health and low reward bonus was 

introduced for the boredom rounds. 

 

The bosses first appeared very early in the game (rounds 4 and 5), but they were made 

vulnerable and easily eliminated. This was done to prevent players from apprehending the 
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experimental manipulation at later stages of the game. Anxiety rounds featured a fast-moving 

boss with high health, and a high reward promised, whereas boredom rounds featured a 

slow-moving boss with very high health, but low reward in return. This was done to increase 

motivation and goal-directed behavior for the anxiety rounds, but reduce it during the 

boredom rounds (e.g., Johnson et al., 2018; Mitchell, 1982). We therefore anticipated that 

anxiety would kick in when players were unable to obtain the promised reward as a result of 

high challenge, and boredom to result from the absence of an interesting incentive as well as 

the sense that their goals were blocked (Bench & Lench, 2013). Anxiety and boredom rounds 

were repeated three times in a row. The boredom rounds followed anxiety, because repetitive 

play of the same difficulty level is more likely to induce boredom (Chanel et al., 2011). Fleeing 

bosses did not precipitate difficulty adjustment for subsequent rounds – only flow rounds did. 

This is because the bosses would have erroneously signaled low player performance, which 

was an intended outcome. 

In addition, bosses were made immune to the towers’ effects (for example, they could not be 

slowed down by the Arcane tower) and were only susceptible to the towers’ raw damage. 

This was done to minimize the risk of revealing the experimental manipulation. Near the end 

of the designated path, the enemies’ speed was doubled to accelerate the end of each round. 

The point at which the acceleration occurred was outside the range of the highest attack-range 

tower. The acceleration was introduced to preserve some level of player autonomy from the 

previous study, in which the players used a key to manually accelerate the game. The new 

mechanic did not impact the gameplay, as it occurred automatically during a period of 

inactivity or when the player could not have prevented the enemies' escape. 

5.2.4 Procedure 

Participants were first asked to sign a consent form, informing them about the purpose of the 

study and their right to withdraw from the experiment at any point. The games experience 

questionnaire and BFI were first filled out, followed by a training stage to help familiarization 

with the controls of and the game. Once they reported confidence with handling the game, 

the electrodes were attached, and a resting baseline was recorded for one minute. Participants 

then played the full game and finally filled out the FSS-2 questionnaire. Including the setup 
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and training, the experiment lasted approximately 60 minutes per participant. As a note, 

participants were not made aware that the game featured indomitable rounds and content 

that adapted to their performance before the experiment. This was done during the debriefing 

(i.e., the conclusion of the individual experimental session after all self-reports were filled out). 

5.2.5 Experimental design 

Contrary to the previous study (see Chapter 4, Experimental design), the design amendments 

of TD-VR in this present study called for a different experimental design. All participants were 

exposed to all the experimental conditions of flow, anxiety, and boredom. In this case, a 

within-subjects design was more appropriate. There were two reasons behind this decision. 

First, the recruitment of participants proved challenging in the previous study. This becomes 

an issue because between-subjects designs require a high number of participants that is 

proportional to the number of experimental conditions (Brysbaert, 2019). 

Second, a within-subjects design was preferred for observing the evolution of the volunteers’ 

physiological responses across the experimental conditions. In general, players may waver 

through multiple affective states whilst playing (e.g., Shin et al., 2012). Hence, we considered 

that the scenario of testing participants through different conditions in one gameplay session 

promoted higher external validity. Additionally, we needed to obtain a more granular 

measure of how personality interacts with the gameplay experience across different stages in 

the game to better understand how games can be improved. 

The technical constraint of TD games, whereby difficulty increases at every round, precluded 

the randomization of the experimental conditions. Thus, any effects caused by the order of the 

conditions were not controlled. The game design of the boredom rounds relied on repetition. 

Consequently, shuffling the three game conditions would have risked obfuscating the 

reliability and literature support behind the states they were intended to induce (see Rounds 

and Dynamic Difficulty Adjustment). Similarly, the dynamic difficulty adjustment mechanic 

would have been impractical if the anxiety and boredom conditions had occurred at random. 

A known concern with within-subjects designs are the carry-over effects, which can be 

alleviated by introducing inter-condition breaks (Greenwald, 1976). In the current study, 



   

 

 

Flow Experience in Virtual Reality Games | 139 

 

volunteers were given the autonomy to confirm when to progress to the next game round by 

pressing a button. After they confirmed, a fixed 5-second window followed before the next 

round commenced. These considerations were made to suppress carryover effects not only 

between-, but also within-conditions. 

5.2.6 Statistical Analysis 

The statistical analyses were carried out using SPSS v23.0 (IBM Corporation, Armonk, NY). 

Each game round was split into three windows. The analyses comprised the mean values 

extracted from the second window, which guaranteed that the player engaged in the different 

content offered by each condition. First, the input data were extracted from the second 

window of each game round, in order to capture the most salient differences of game play 

content offered by the different round-types (flow/anxiety/boredom). The first and third 

windows contained periods of player inactivity, where the player waited until the enemy 

units arrived at the outer tower’s range of effect or until the enemy units exited, respectively. 

Though these peripheral windows may have contained information relevant to the state of 

interest for each round, they were also likely confounded with player inactivity, essentially 

discounting a major part of the gameplay. The factors used in a 3x3 within-subjects design 

were the round-types, i.e., Condition, which refer to Flow, Anxiety and Boredom rounds. The 

bosses who first appeared in the 4th and 5th rounds (see Rounds and Dynamic Difficulty 

Adjustment) did not interrupt the game’s pace, as they did later in the game, and were thus 

treated as flow trials. The second within-subjects factor, Block, was also added as a factor with 

three levels, i.e., Block 1, Block 2 and Block 3, each reflecting the repeated sequence of Flow-

Anxiety-Boredom rounds for each block in the game. In other words, block can be viewed as 

three separate time points in the game. 

Data normality was investigated using the Lilliefors normality test. Significance level was set 

to α = .05 (two-tailed). For violations of sphericity (Mauchly’s test), reported results are after 

the Greenhouse-Geisser adjustment for degrees of freedom. All post-hoc pairwise 

comparisons were carried out with Bonferroni adjustment. The data were first transformed 

into percentage changes from the baseline measurement, taken prior to the game session. This 
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was calculated using the difference between the observation and the baseline value of the 

corresponding participant and then divided by the baseline value. 

The assumption of the normality of residuals for repeated-measures ANOVA was 

consistently violated and the data were severely skewed, which is a common scenario in HRV 

analysis (e.g., Katz-Leurer & Shochina, 2005). A routinely used solution for HRV analysis is to 

transform the data to natural logarithms (e.g., Caldwell & Steffen, 2018; Katz-Leurer & 

Shochina, 2005; Saboul et al., 2016). However, the non-normal distributions persevered in our 

data (see also, Kekecs et al., 2016). Hence, the data were instead rank-transformed (rank 1 

corresponding to the smallest value) to purge or remediate the skewness (e.g., Conover & 

Iman, 1981; Thurber et al., 2010). After rank transformation, the residuals were again tested 

for and passed normality of distribution using the Lilliefors test. 

5.2.7 Data Segmentation 

Each round was segmented into n = {1, 2, …, 9} epochs to examine whether epoching can 

minimize the probability of error (e.g., Tax et al., 2000). Generally, longer windows tend to 

boost classification performance, provided that the mean and variance vary slowly, at the 

expense of high computational times, as they contain a higher volume of information for 

determining the classes' separation decision (Da Cruz et al., 2015; Smith et al., 2010). On the 

other hand, shorter windows provide richer training sets, which can also improve 

classification performance (Darvishi et al., 2013). 

Three approaches were considered for trial-data segmentation and subsequently the selection 

of an optimal windowing method: (a) fixed-length windows (the length is variable), (b) 

partition each trial into three segments (the number of windows is constant), and further 

segment the second window, thereby trimming the beginning and the tail of each trial, and (c) 

partitions dictated by n windows (the number of windows is variable). 

(a) The first possible approach entails partitioning each game round (trial) into non-

overlapping windows of a fixed length (fixed-length windows). The problem in this case 

is that the game's rounds have had variable durations, which depended on the player's 

success at eliminating the enemies. This causes the final data matrix to be evidently 
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skewed in favor of flow and boredom rounds. On the other hand, anxiety rounds featured 

a fast-moving boss, and hence have had a lower average duration than the remaining 

types of rounds, making class definition highly imbalanced, in addition to the already 

imbalanced classes of the game’s design (16 rounds dedicated to flow, 7 to anxiety and 7 

to boredom). Fixed-length windowing was thus deemed impractical, as the resulting 

number of observations per class was dependent on the duration of each game round. 

(b) The second approach is similar to the one employed for our statistical analysis (see 

previous section). The beginning of each trial, as well as the end of each trial contained 

periods of player inactivity. Hence, they may not be as informative as the periods of pure 

player activity which occurred in the second segment of each game round. This 

windowing approach will thus split each game trial into three segments and maintain only 

the second segment. Thus, we may use the second segment to further partition it and to 

enhance the training, training and validation sets. 

 

However, considering that the duration of certain trials was as low as 19 seconds, this 

would entail a window length of 19/3 = 6.67 seconds. The implemented Pan & Tompkins 

(1985) algorithm for HRV computation (see Electrocardiography Preprocessing and 

Features) requires at least 2 × Sampling rate (1000) to calculate thresholds that are 

necessary to discriminate between noisy or correct peaks (Sedghamiz, 2014). What this 

means for the present dataset is that each window must not be less than 2000 ms, otherwise 

the IBI data, necessary for HRV calculation, will not be possible to retrieve. Therefore, we 

would be unable to partition the second window lasting for 6.67 to more than 3 windows, 

as 4+ windows would produce a window length of less than 2000 ms, making HRV 

computations unlikely. 

(c) The third approach is to partition each game round (trial) into n non-overlapping 

windows. Thus, instead of extracting e.g., n × [2000-ms] windows from each round (fixed-

length windowing), we extract [1…n] windows that are on average of equal length. 

Differences in window lengths within each trial will be due to rounding, with an offset of 

1-2 samples added to the final segment. In this sense, the approach is similar to the fixed-

length window approach described above, except that each round is guaranteed to 
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produce the same number of windows per game round, regardless of its duration. Hence, 

the number of observations each game round will generate for training and validation sets 

will be the same. The class imbalance from the game’s design will still be present, but this 

can be alleviated with resampling that we will describe below. 

Based on the aforementioned considerations, we opted for the third approach, by segmenting 

each trial into 𝑛 equally-spaced and non-overlapping windows. However, the issue of short-

duration trials still lingers for HRV calculations. Hence, we limited the search range of optimal 

window counts to 1…9. This search range was also applied to the data segmentation of EOG 

to maintain consistency and comparability between HRV and EBV. 

5.2.8 Feature Extraction 

For eye blink variability, the first parameter extracted from each epoch was the mean inter-

blink interval (bIBI; seconds), i.e., the number of seconds between two consecutive blinks. The 

remaining features were the minimum inter-blink interval (minbIBI; seconds), maximum 

inter-blink interval (maxbIBI; seconds), standard deviation of inter-blink interval (stdbIBI; 

seconds), eye blink rate (EBR; count per minute), mean blink duration (DUR) and mean 

amplitude of the blinks (AMP) (see Table 1). HRV metrics comprised seven time-domain 

measurements, calculated for each epoch: mean IBI (ms), minimum IBI (ms), maximum IBI 

(ms), SDNN (ms), mean HR (count/min), pNN50 (%) and RMSSD (ms) (see Table 2). 

Features comprised {29 participants × 30 trials × n windows} samples. Each observation (row 

of features) was first subtracted from the resting baseline of the corresponding participant 

(Chanel et al., 2011; Vicente et al., 2016) as well as the pre-trial baseline in order to suppress 

physiological leftovers from the immediately preceding trial. The pre-trial baseline was a 

period during which the game expected the user's input to launch the next game round. The 

input data were standardized using z-score transformation, in order to control for personality 

scaling and inter-feature numerical dominance and provided the input to three competitive 

classifiers separately – Support Vector Machine (SVM), Ensemble of CART Decision Trees 

with Bagging (BDT) and k-Nearest Neighbors (kNN) (see Chapter 3, Overview of 

classification algorithms). 
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Ground truth was tested by a) splitting the sample into two parts based on the 50th percentile 

(median), using the self-reported overall flow score from FSS-2 (the sum of all flow 

dimensions), and b) the labels governed by the game’s design. Thus, both binary (low-

flow/high-flow) and multiclass classification (flow/anxiety/boredom) methods were 

employed. The multiclass training data were oversampled during each fold cross-validation 

using SMOTE (see Chapter 3, Balancing class ). Tests were carried out for each physiological 

measure separately and in conjunction, i.e., HRV (7 features), EBV (7 features), HRV and EBV 

(14 features). Generally, feature fusion is expected to provide better classification decision 

performance under categorical labels (Mangai et al., 2010). In this study, we employed serial 

feature level fusion, by concatenating the feature sets (Fu et al., 2008) of the selected 

biomarkers. 

5.3 Results 

5.3.1 Statistical results 

5.3.1.1 Comparison with Study I 

To estimate the success of the new design compared to its predecessor (Chapter 4), including 

the adaptive difficulty mechanism, the flow ratings were compared between Studies I and II 

(two-way t-test). The test revealed significant differences in the self-reported flow dimensions 

of Skills-Challenge balance, t(58) = 2.828, p < .01, Automaticity, t(58) = 2.168, p < .05, 

Autotelicity, t(58) = 3.228, p < .01, and the overall flow score, t(58) = 2.210, p < .05. However, 

these dimensions were rated significantly higher in the first study compared to the present 

study. 

The same analysis was also applied to demographic variables. The average age of the 

participants in this study (31.5 ± 7) was significantly higher than in the first study (27.4 ± 4.9; 

t(58) = -2.64, p < .05). The reported years of experience in playing video games was similarly 

significantly higher in the present sample, t(57) = -2.01, p < .05, with an average difference of 

four years. Finally, for the Big Five Inventory questionnaire, only Conscientiousness was 

found to be significantly higher in the present study, t(57) = -3.36, p < .01, with an average 

rating of 3.91 ± .55 versus 3.4 ± .61 in the previous study. 
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5.3.1.2 Cardiac measures – Heart rate variability (HRV) 

A 3x3 repeated-measures analysis of variance with Condition (Flow, Anxiety, Boredom) and 

Block (Block 1, Block 2, Block 3) as within-subjects factors was conducted on each dependent 

variable (mean HR, mean IBI, pNN50 and RMSSD). The model was specified to output the 

main effects of Block and Condition, as well as the interaction terms of Block × Condition. The 

variables pNN50 and RMSSD did not yield a significant F-statistic (p > .05). 

Inter-beat intervals (IBI) and Heart Rate (HR). For IBI, the main effect of Condition was 

significant, F(1.59, 44.48) = 5.732, ηp2 = .17, p = .01. Pairwise comparisons with Bonferroni 

adjustment showed that the condition of Boredom was characterized by a significantly 

reduced inter-beat interval compared to Flow (p = .014) and Anxiety (p = .037). As expected, 

HR was also found to be significant for the main effect of Condition, F(1.61, 45.1) = 5.617, ηp2 = 

.198, p < .01 (Figure 17). Heart rate was found to be statistically significantly higher, relative 

to the baseline, during Boredom than during Flow (p = .029) and Anxiety (p = .031). 

 

Figure 17: Mean heart rate across the three conditions of the TD-VR game. The omnibus 

repeated-measures ANOVA indicated a significant main effect of Condition. The post-hoc 
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comparisons showed that the difference in the average heart rate occurred between the pairs 

of Flow and Boredom and Anxiety and Boredom at p < .05. 

 

5.3.1.3 Ocular measures – Eye blink variability (EBV) 

The same test was carried out for the EBV variables (eye blink rate, blink duration and blink 

amplitude). The model was specified to output the main effects of Block and Condition, as 

well as the interaction terms of Block × Condition. 

Eye blink rate (EBR). A main effect of Condition was found for eye blink rate, F(2, 56) = 11.771, 

ηp2 = .296, p < .001. The post-hoc comparisons revealed that EBR significantly increased during 

Boredom as opposed to Flow (p < .05) and Anxiety (p < .001). However, flow and anxiety did 

not yield a significant difference, p = .126 (Figure 18). 

 

Figure 18: Mean blink rate across the three conditions of the TD-VR game. The omnibus 

repeated-measures ANOVA indicated a significant main effect of Condition. The post-hoc 

comparisons showed that the average blink rate was significantly higher during Boredom 

than during Flow and Anxiety at p < .05 and p < .001 respectively. 
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Blinks duration (DUR). The main effect of Condition was significant for the blinks’ duration, 

F(2, 56) = 6.413, ηp2 = .186, p < .01, whereby Boredom was characterized by significantly higher 

blink durations than Flow (p < .05) and Anxiety (p < .05). Relative to the baseline, the shortest 

blink durations were found during anxiety, followed by flow and finally boredom (Figure 19). 

 

Figure 19: Mean blink duration across the three conditions of the TD-VR game. The omnibus 

repeated-measures ANOVA indicated a significant main effect of Condition. The post-hoc 

comparisons showed that the average blink duration was significantly higher during 

Boredom than during Flow and Anxiety at p < .05. 

 

Blinks amplitude (AMP). The main effect of Condition for the blink amplitude was 

significant F(2, 56) = 4.453, ηp2 = .137, p = .016. The post-hoc tests indicated that Anxiety has 

had a significantly higher blink AMP than Boredom, p = .021 (Figure 20). The remaining pairs 

as well as the main effect of Block were not significant. 
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Figure 20: Mean blink amplitude across the three conditions of the TD-VR game. The omnibus 

repeated-measures ANOVA indicated a significant main effect of Condition. The post-hoc 

comparisons showed that the average blink amplitude was significantly higher during 

Anxiety than during Boredom at p < .05. 

 

5.3.1.4 Discussion of statistical findings 

The statistical findings of this study suggested that the physiological responses were 

consistent over time. This was evident from the absence of a significant main effect of Block 

and a Block × Condition interaction. Thus, the physiological responses were resistant to the 

effect of time and hence, the design conditions may be treated similarly across time. 

Self-reports. Participants’ ratings on skills-challenge balance were more inflated in the 

previous version of the game. Additionally, the previous version of TD-VR effected a more 

enjoyable experience overall, as evidenced by the dimension of autotelicity. Indeed, a 

perceived balance of challenge can produce higher satisfaction (Andrade et al., 2006). This is 

somewhat expected of a finding because the flow rounds were interspersed with the anxiety 

and boredom rounds that appeared to have been very challenging. As mentioned in the 
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methodological section earlier, these rounds were impossible to win, albeit this was not 

communicated to the players until they were debriefed after the experiment. 

In a similar vein, the self-reported flow dimension of automaticity was significantly higher in 

the first version of TD-VR. Dietrich (2003) posited that automaticity may relate to the level of 

expertise the individual has in a particular activity – individuals with higher expertise attend 

activities in a more automatic way than novices. A common measure of expertise in the video 

games literature is the number of years an individual has been playing video games (e.g., 

Latham et al., 2013). However, the trend in the comparison of our two studies is opposite – 

the participants of the present study have had a significantly higher number of years invested 

in video games, but their ratings on automaticity were lower. 

First, this discrepancy of expertise may be due to the average age differences between the two 

samples; the participants of the second study have had a higher average age. Therefore, it is 

rather natural that this is similarly reflected in their proportionately higher number of years 

playing video games. A second possible explanation for the reduced ratings of automaticity 

in the present study is that the participants were bewildered by the anxiety and boredom 

rounds. According to Carson and Collins (2016), stressful situations may shift into conscious 

awareness which regresses into a state akin to newly learned skills, which dilutes the concept 

of automaticity. Due to the high challenge posed by those types of rounds in TD-VR, 

participants may have reviewed multiple strategies for defeating the bosses. Hence, the FSS-

2 items pertaining to doing things automatically, without thinking, were consequently rated 

lower 5. 

This section epitomizes the inadequacy of retrospective video game experience assessment 

(see Chapter 2, The challenges in measuring flow in video games). The holistic experience, 

reflected through the retrospective self-ratings, does not seem to provide enough information 

to evaluate moment-to-moment experiential fluctuations during the game. Our addition of a 

 

 

5 As a note, the exact questionnaire items from the Flow State Scale – 2 (FSS-2) cannot be referenced 

here for clarity, due to licensing restrictions. 
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dynamic difficulty adjustment mechanic in the second version of TD-VR cannot be reliably 

assessed from these findings alone. For this reason, they ought to be complemented with 

secondary measures. In the next section, we review our findings on the recorded physiological 

responses, which may constitute a richer source of information. 

Physiology – HRV. Our results evinced consistent physiological differences between 

boredom and the remaining conditions. We noticed that heart rate was significantly higher 

during boredom, relative to the baseline, than during flow and anxiety. As heart rate is a well-

known index of autonomic arousal (Jorna, 1992; Wang et al., 2018a), it is implied that boredom 

was characterized by higher arousal than the other two conditions. This finding is somewhat 

surprising, as boredom has been widely viewed as a low-arousal state (e.g., Mikulas & 

Vodanovich, 1993) even in animal studies (e.g., Burn, 2017). It is thus tempting to reevaluate 

boredom as a high-arousal state, which has also been proposed by Bench and Lench (2013). 

However, this may not be properly verified through the present study, as the block design 

was not randomized. The boredom rounds always followed the anxiety rounds at a repetitive 

sequence of six rounds in total (i.e., three rounds dedicated to the anxiety condition and 

another three to the boredom condition). Hence, an alternative explanation is that the 

boredom rounds may have contained carryover effects from the anxiety rounds. Yet, these 

conditions manifested significant physiological differences. 

Design-wise, the differences between anxiety and boredom trials were the reward magnitude, 

the health and speed of the enemy boss. However, they were also conceptually similar – a 

single enemy unit that was seemingly impossible to eliminate; both types of trials were named 

“Extermination” and regarded as low-flow conditions (see Rounds and Dynamic Difficulty 

Adjustment). Given that the players were unable to defeat the bosses during those six rounds, 

this monotonous scenario may have provided scaffolding for increasing levels of frustration. 

In light of this assumption, Van Hooft and Van Hooff (2018) found that boredom may morph 

into frustration when the perceived autonomy is low. 

This is highly relevant to the present study, as the players have indeed had low autonomy 

during the boredom rounds. Low autonomy was enabled by a difficulty to eliminate the 

bosses as well as the absence of fiscal rewards during the said rounds, which limited the 
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opportunity for interaction with the game elements. Consistent with our findings, Van Hooft 

and Van Hooff (2018) associated high arousal of negative valence with boredom, stressing the 

moderating role of low autonomy. Thus, this observation does not invalidate the presence of 

boredom in our study, but rather suggests an amalgam of boredom and frustration. 

Of note is also a study by Ralph and colleagues (2017) who found that task monotony may 

reduce vigilance. However, if the monotonous task is interrupted by a cognitively challenging 

task, vigilance may be restored. These observations can be similarly transposed to our context; 

given the nonrandomized trials, flow rounds may have acted as the cognitively challenging 

tasks that interrupted the monotonous sequence of the anxiety-boredom complex. However, 

anxiety rounds were also significantly different from the boredom rounds, attesting that 

anxiety rounds may also be viewed as cognitively challenging. This was likewise corroborated 

by the absence of differences among the flow and anxiety rounds. The reader should note that 

Keller et al. (2011a) were similarly unable to identify differences in the physiological responses 

of flow and anxiety. 

Taken together, it becomes increasingly clear that flow, anxiety and boredom are intertwined 

in a triadic circumplex, wherein each state has a polymorphic activation: the activation 

conditions of each state may depend on subtle changes of perceived control. This circumplex 

can perhaps take the visual form of a Venn diagram. Yet, it makes it challenging to evaluate 

the appropriateness of the design for the boredom trials. However, a different perspective 

may be derived from the eye blink variability (EBV) measures in the next section. 

Physiology – EBV. As mentioned earlier, the literature evidence on EBV remain ambiguous 

with respect to mental load. In this study, flow and anxiety were characterized by a decreased 

blink rate (EBR), relative to baseline, compared to boredom. This finding is corroboratory of 

earlier research demonstrating decreased blink rates during mentally taxing tasks (e.g., 

Bednarik et al., 2018; Mallick et al., 2016; Ohira, 1996; Wanyan et al., 2018; Wu et al., 2011, 2014; 

Zheng et al., 2012) and during the flow experience relative to the baseline (Rau et al., 2017). 

Reductions in blinking frequency have also been associated with visually or auditorily 

demanding tasks (Charles & Nixon, 2017; Chen et al., 2011; Recarte et al., 2008; Stern & Skelly, 

1984; Van Orden et al., 2001). 
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This is putatively relative to information intake, whereby blink inhibition facilitates attention 

to stimuli (Fukuda et al., 2005). Our findings for the flow condition can thus be partially 

justified, since the number of visible enemies was ten times higher than the boredom condition 

and thus more visually demanding. However, the same explanation is not equally convincing 

for the anxiety rounds. Both anxiety and boredom rounds featured a single enemy unit but 

were characterized by significantly different blink rates. In a similar vein, anxiety and flow 

rounds did not present significant differences, even though they featured a disproportionate 

number of enemy units. Hence, the potential effect of visual demand on the observed blink 

rate gap may be untenable for this pair. 

The condition of boredom was intended to be difficult, corroborating the link between 

increased blink rate and task difficulty (Nakayama et al., 2002; Ramachandran et al., 2017; 

Tanaka & Yamaoka, 1993). Earlier studies have asseverated a link between high blink rates 

and high arousal (e.g., Weiner & Concepcion, 1975). This perspective is befitting in that higher 

arousal was also inferred from the increased heart rate observed in the boredom rounds. 

Furthermore, we previously adumbrated the possibility that boredom rounds may have 

engendered a mixed state, i.e., boredom and frustration. The increased blinking rate observed 

during the boredom rounds complement this speculation, as high blink rate has also been 

associated with frustration (e.g., Peters, 2010; Ramachandran et al., 2017). 

Another notable finding is related to the blink durations, which were shown to be shorter 

during the flow and anxiety rounds, compared to boredom. Their differences can be 

considered an indicator of increased visual workload (Benedetto et al., 2011; Goldstein et al., 

1985; Veltman & Gaillard, 1996). Yet, as argued earlier about the blink rates, these differences 

cannot be attributed solely to visual overload. Long blink durations have also been associated 

with fatigue, vigilance decrement and drowsiness (e.g., Caffier et al., 2003; Ingre et al., 2006; 

McIntire et al., 2014), all of which have been viewed as symptoms of boredom (e.g., Aidman 

et al., 2015; Eastwood et al., 2012; Parikh & Micheli-Tzanakou, 2004). This gives further 

support to our theory that the boredom rounds may have induced a mixed state of frustration 

and boredom. Moreover, blink duration decreases have been associated with higher mental 
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load (Marquart et al., 2015), which asserts higher command of cognitive processing during the 

flow and anxiety conditions. 

Contrary to the previous pattern observed in the data, wherein boredom was significantly 

different from flow and anxiety in all measures, the only variable to have diverged from this 

pattern was the blink amplitude. This EBV measure was only significantly different between 

the boredom and anxiety pair and presented higher blink amplitudes during anxiety than 

during boredom. Blink amplitude seems to become larger as a result of increased cognitive 

load (Fukuda & Matsunaga, 1983; Ohira, 1995). This observation fits our design, whereby 

anxiety was meant to be mentally overloading. The apparent challenge in eliminating the 

bosses in the anxiety rounds may have encouraged players to consider different strategies in 

order to acquire the coveted reward. 

Overall, the physiological responses allow for richer conclusions compared to the self-

reported evaluations of the flow experience. The results of this study provided interesting 

insights on how the target mental states were not always consistent with the game design's 

intended states. For example, the differences in physiological arousal amongst the three 

conditions were not in line with our hypotheses, but the distribution of cognitive load across 

the conditions seems to have been verified. This incompatibility with our original hypothesis 

might pose classification uncertainty in supervised learners because the classes used as 

ground truth are given a priori and may thus be unreliable. However, an encouraging (null) 

finding was the absence of a significant effect of time, which implies that the ground truth 

preserves some internal consistency over the course of the game. These issues are explored 

and addressed in the next section. 

5.3.2 Classification results 

This section is divided into four subsections, (a) the window selection, (b) the original game 

design labels used as the ground truth, (c) the self-reports of flow used as ground truth and 

(d) the results obtained from an unsupervised learner as a diagnostic tool, used to inform our 

design. As a note, the classification performance results in the following sections are 

exploratory. The exploratory phase involves cross-validated classifiers but with fixed 
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regularization parameters6 for comparability. This was done to minimize the long 

optimization times required for the hyperparameter regularization operations. However, the 

final section (Diagnosing the findings using an unsupervised learner and regression 

models) consists of the optimized classifiers, based on insights garnered from the exploratory 

phase. 

5.3.2.1 Data partitions and window length 

This subsection is intertwined with the multiclass approach of the original game design labels 

as ground truth (exploratory phase). As previously mentioned, we partitioned each game 

round into 1…9 windows, extracted the features, and constructed the training and validation 

sets. A classifier was trained at each step. We opted for a Support Vector Machine with a radial 

basis kernel function as a testbed to perform the search for an optimal window count, because 

it has been used in classification problems of comparable complexity (e.g., Chanel et al., 2008). 

The regularization parameters of the model were kept constant at each iteration. The process 

was repeated for HRV, EBV and the combined HRV and EBV. The results are displayed in 

Figure 21. 

The accuracy rates obtained from each fold and all physiological measure (HRV, EBV and 

HRV and EBV) were aggregated and added to a paired-samples t-test to evaluate differences 

among consecutive pairs of windown-1 and windown. The results indicated that significant 

differences were found for the following pairs of windows, 2 – 1 (p < .001), 5 – 4, 8 – 7, and 9 – 

8 (p < .05). Due to the inconclusive results, the accuracy rates were collapsed into three regions, 

by averaging the accuracy rates across three consecutive windows, namely region (a) 1 – 3, (b) 

4 – 6, and (c) 7 – 9. A second paired-samples t-test indicated that windowing in region (b) 

yielded a statistically significantly higher average classification accuracy than in region (a), p 

 

 

6 SVM: Parameter C = 1, Kernel = RBF (optimal kernel scale determined via a heuristic procedure, see 

{'kernelScale', 'auto'} name-value pair parameter in Matlab's fitcsvm and templateSVM for fitcecoc 

functions); k-NN: K = 3, Distance = Euclidean; BDT: Number of learner trees = 30, Minimum leaf size = 5. 
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< .001, whereas region (c) was statistically significantly higher than regions (a), p < .001, and 

(b), p < .001. 

 

Figure 21: Average classification accuracy rates obtained when testing with a variable number 

of windows for HRV, EBV and [HRV EBV] data using 10-fold cross-validation. The dashed 

lines, color-coded to correspond to each physiological measure, show a linearly increasing 

trend (in the least-squares sense), as the number of windows increases. Most notably, the 

conjunction of HRV and EBV data provides lower classification ambiguity (error) compared 

to the individual physiological measures. The error bars represent the standard error. 

 

Although the window length appears to influence the classification of the physiological data, 

the average performance at each window is somewhat poor. The issue is especially evident 

when the window count is set to one (i.e., averaging across entire trials). Thus, for practical 

purposes, we considered seven windows (the lower boundary of region (c)) a reasonable 

number to partition each trial. 
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5.3.2.2 Ground truth derived by design in a 3-class classification setting 

At a next step, we proceeded with partitioning the data from the two biomarkers (ECG and 

EOG) with a fixed seven partitions per trial. The data were then used as input to three 

competitive classifiers, in order to gain a better estimate of the classes' separability. We tested 

the fusion of as well as singular biomarkers, i.e., HRV and EBV, HRV, EBV. The results of this 

analysis are displayed in Table 5. 

Table 5: Classification performance (%) metrics for heart rate variability (HRV), eye blink 

variability (EBV) and the combination of HRV and EBV, using three different multi-class 

classifiers and the original game design classes. The results are from a 10-fold cross-validation. 

The anxiety and boredom classes were oversampled to create balanced datasets for each class, 

but the validation was performed on the non-oversampled data. 

Performance Support Vector Machine K-Nearest Neighbors 
Bagged Ensemble of CART 

Decision Trees 

 HRV EBV HRV&

EBV 

HRV EBV HRV&

EBV 

HRV EBV HRV&

EBV 

Accuracy 49.97 49.11 55.14 45.34 43.86 49.44 51.18 50.89 56.47 

Specificity 72.26 72.16 75.03 72.17 71.76 74.36 73.81 74.26 76.65 

Precision 45.49 44.84 51.53 43.90 43.12 48.55 47.61 48.33 53.30 

Recall 45.43 45.08 51.52 45.48 44.79 50.98 48.44 49.95 54.45 

F1-score 45.46 44.94 51.51 43.72 42.63 48.40 47.91 48.72 53.74 

 

Following the first impressions from the previous section, the classification results once again 

demonstrated a significant but poor separability of the flow, anxiety, and boredom trials, 

regardless of the classifier used. Ergo, they challenge the design approach employed in the 

game. As expected, the Bagged Ensemble of CARTs generated the lowest out-of-bag errors 

and presented an advantage in discriminating amongst our classes compared to the other two 

classifiers. Nevertheless, neither classifier was able to map the physiological responses onto 

the predicting classes with sufficient accuracy for practical purposes. Hence, we opted for 

using a different class definition, using the participants' self-reported flow, detailed in the next 

section. 

5.3.2.3 Self-reports of flow as ground truth in a binary classification setting 

As a follow-up analysis, the flow scores were split into two halves, corresponding to low- and 

high-reported flow experience, based on the sum of all flow dimensions per participant. This 
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approach generated binary flow-experience indices for each participant. Given the seven 

partitions per trial, each observation belonging to a participant was now given the class label 

of low-flow or high-flow, depending on the participant's rating of their flow experience. The 

same series of classifiers (SVM, k-NN and BDT) were trained, but this time using a binary 

class definition. 

Table 6: Classification performance (%) metrics for heart rate variability (HRV), eye blink 

variability (EBV) and the combination of HRV and EBV, using three different binary 

classifiers. The results are from a 10-fold cross-validation averaged from seven time-windows 

in which the original data were partitioned. 

Performance 
Support Vector 

Machine 
K-Nearest Neighbors 

Bagged Ensemble of CART 

Decision Trees 

 HRV EBV HRV&

EBV 

HRV EBV HRV&

EBV 

HRV EBV HRV&

EBV 

Accuracy 78.33 79.90 90.38 74.83 76.45 77.24 81.67 83.73 89.16 

AUC 84.80 86.90 96.27 81.13 82.54 82.77 90.27 91.30 95.98 

Precision 75.71 81.09 91.07 74.49 76.24 77.28 81.98 84.35 89.89 

Recall 81.12 76.12 88.78 72.79 74.42 74.86 79.52 81.39 87.38 

 

As can be seen in Table 6, the classification performance using the binary-coded scores from 

flow's self-reports demonstrates a substantially improved class separability. This indicates the 

presence of patterns in the physiological data that may not align well with our original 

hypothesis on the game's design. Naturally, these results are not directly comparable with the 

multiclass learners shown earlier, since the number of classes differ (uniform distribution 

chance levels at 50% and 33% respectively). A more balanced comparison will be addressed 

in the next section. 

5.3.2.4 Ground truth derived by self-reports in a 3-class classification setting 

The previous section demonstrated the robustness of the nonlinear mapping among 

physiological variables and the overall flow experience as reported by the subjects. The 

success of the binary classification based on self-reports suggested the possibility of further 

enhancing the resolution of the approach by considering a third class. Thus, the same 

procedure was carried out using a 3-class split of the FSS-2 scores, as was done previously 
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with the binary classifiers. The flow scores were split into three regions thresholded by the 

percentiles at {x <=  33.3%}, {33.3% <  y <=  66.6%}, {z >  66.6%}. 

Naturally, the 3-class split of the self-reports does not necessarily correspond to the game-

design labels. This is because the flow scores are one-dimensional and cannot be transposed 

to the anxiety and boredom states in a straightforward manner. That is, a very low flow score 

does not warrant or exclude the existence of either boredom or anxiety. Nevertheless, we 

proceeded as such to demonstrate how the same data with a different class definition at the 

input – not based on ad-hoc design hypothesis, but on subjects' perception – can enhance the 

classification performance rates. 

Table 7: Classification performance (%) metrics for heart rate variability (HRV), eye blink 

variability (EBV) and the combination of HRV and EBV, from three different multi-class 

classifiers using a 3-class split of the scores derived from the flow questionnaire FSS-2. The 

results are from a 10-fold cross-validation. 

Performance Support Vector Machine K-Nearest Neighbors 
Bagged Ensemble of 

CART Decision Trees 

 HRV EBV HRV&EBV HRV EBV HRV&EBV HRV EBV HRV&EBV 

Accuracy 67.72 73.45 84.33 67.60 69.95 80.87 72.05 76.40 84.14 

Specificity 83.67 86.76 92.21 83.72 85.01 90.52 85.83 88.36 92.10 

Precision 67.62 73.12 84.02 67.47 69.67 80.55 72.17 76.20 83.84 

Recall 67.52 73.55 84.39 67.64 70.13 80.83 71.85 76.62 84.16 

F1-score 67.57 73.19 84.14 67.46 69.77 80.60 71.96 76.15 83.96 

 

From the results presented in Table 7, it can be observed that, when using three classes, the 

performance of the classifier naturally degrades than when using two classes (cf. Table 6). 

Yet, the number of classes does not seem to severely affect misclassification rates that would 

justify the poor performance of our original design classes (cf. Table 5). 

Although the self-reports provided a promising basis for distinguishing physiological 

responsiveness to the TD-VR game, they are not highly insightful. The problem is that they 

only describe a one-time snapshot, i.e., a retrospective perception of subjective experience. 

The challenge in this case is interpreting the factors that contributed to these ratings as well 

as the adequacy of the experimental manipulation at any point in the game. As such, a 
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classification learner that is agnostic to our original hypothesis may help elucidate these 

findings. This is detailed in the next section. 

5.3.2.5 Diagnosing the findings using an unsupervised learner and 

regression models 

The reason behind the inadequate mapping of the physiological responses to the game’s 

design remained unclear (Table 5). This result contrasts with the reasonably accurate 

mapping when classes are derived from subject’s reported experience (Table 6, Table 7). To 

gain a deeper understanding of the misclassification rates in Table 5, an approach was devised 

to identify and understand the heterogeneity within the game-design classes. The approach 

is based on a robust unsupervised learner, Fuzzy C-means (FCM; see details in Chapter 3, 

Unsupervised learner: Fuzzy C-means), to segment observations into clusters with 

potentially different characteristics, and in regression models to interpret those clusters, 

which will finally inform the classification model (the approach is described in the section 

Combining Fuzzy C-means and self-report ratings). Clustering was performed on flow-, 

anxiety- and boredom-only data separately on both HRV and EBV uncorrected for baseline, 

and z-transformed to reflect the normalization process employed in the supervised learners 

in the earlier sections. 

Cluster interpretation. According to the Davies-Bouldin's optimal C selection (Davies & 

Bouldin, 1979), data were deemed to be optimally separable into three clusters for all design 

considerations. Thus, the algorithm detected 9 clusters, that are termed 1-3 (for flow round-

type), 4-6 (anxiety round-type) and 7-9 (boredom round-type). The proportion of data per 

participant belonging to each cluster were used as a dependent variable in a stepwise linear 

regression. The independent variables were the flow scale (FFS-2) and personality scale (BFI) 

scores of each participant. Results showed that, for each design consideration in the game 

(flow, anxiety, and boredom), a consistent significant trend arose with the personality trait 

ratings of BFI (Table 8). 
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Table 8: Results from separate stepwise linear regressions for data of each design condition 

(columns), and the proportion of participant observations in each Fuzzy C-means cluster 

(rows). The results demonstrated significant associations with personality as well as flow-

related dimensions. Note that double cells in designated rows indicate that more than one 

linear model were able to explain the data with a significant R2 change (α = .05). Greek lower-

case betas are the slopes of each regression model.

 Flow Anxiety Boredom 

Cluster 1, 

4, 7 

Agreeableness, 

β = 25.49, R2 = .142, p < 

.05 

Flow's Sense of Control, 

β = 8.48, R2 = .144, p < .05 

Conscientiousness, 

β = -13.66, R2 = .166, p < .05 

Extraversion and Flow's 

Sense of Control, 

β1 = -11.51, β2 = 8.2, R2 = .414, p 

< .01, 

R2 change = .27, p < .01  

Conscientiousness and 

Agreeableness, 

β1 = -14.79, β2 = 10.49, R2 = .29, 

p < .05, 

R2 change = .123, p < .05 

Cluster 2, 

5, 8 

Extraversion, 

β = -31.43, R2 = .364, p 

< .01 

Agreeableness, 

β = 12.11, R2 = .156, p < .05 

Extraversion, 

β = -13.04, R2 = .397, p < .001 Agreeableness and 

Conscientiousness, 

β1 = 13.24, β2 = -13.16, R2 = .30, 

p < .05, 

R2 change = .144, p < .05 

Cluster 3, 

6, 9 

Conscientiousness, 

β = 34.16, R2 = .278, p < 

.01 

Flow's Automaticity, 

β = -8.11, R2 = .138, p < .05 

Flow's Automaticity, 

β = -9.27, R2 = .173, p < .05 

Flow's Automaticity and 

Conscientiousness, 

β1 = -5.29, β2 = 13.16, R2 = .326, 

p < .01, 

R2 change = .187, p < .05 

Flow's Automaticity and 

Conscientiousness, 

β1 = -6.61, β2 = 12.37, R2 = .331, 

p < .01, 

R2 change = .158, p < .05 
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As seen in the table, the personality dimensions of agreeableness, extraversion and 

conscientiousness, and two flow's dimensions (sense of control and automation), significantly 

mediated the physiological responses to the original game design (R2, p < 0.05). 

Cluster-informed classification. The next step in the approach was to use subsets of data 

(clusters) that best represented the design conditions (flow, anxiety and boredom). For 

instance, one combination could include cluster 2 (flow), clusters 5 and 6 (anxiety) and cluster 

9 (boredom). Through all combinations of clusters, the optimal 10-fold cross-validation 

performance was obtained when retaining Cluster 1 for the flow rounds, Cluster 4 for anxiety 

and Cluster 8 for the boredom rounds. It should be stressed that the original design classes 

were maintained as the class definition for the training and testing procedures, and the data 

of each cluster were oversampled, as in the case of the multiclass approach (Ground truth 

derived by design in a 3-class classification setting). The summarized results from this 

selected subset of data are displayed in Table 9. A Friedman's test on the accuracy rates of 

each fold did not indicate significant differences among the three classifiers' (SVM, KNN, 

BDT) performance (p = .368). 

Table 9: Classification performance (%) of 10-fold, cross-validated, and optimized Support 

Vector Machine (SVM), K-nearest Neighbors (k-NN) and Bagged Ensemble of CART (BDT) 

using a subset of the original data. The data were informed by a clustering technique (Fuzzy 

C-means), consisting of cluster 1 for flow, cluster 4 for anxiety and cluster 8 for boredom. 

Overall, BDT and SVM were slightly more performant than k-NN. 

Performance 
Support Vector 

Machine 

K-nearest 

Neighbors 

Bagged Ensemble 

of CART 

Accuracy 84.32 82.34 83.21 

Specificity 92.65 91.56 92.08 

Precision 81.75 80.33 81.05 

Recall 81.67 80.22 80.90 

F1-score 81.68 80.20 80.87 
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The table above shows that the classification performance improved considerably from the 

classification pooling all data (Table 5). Thus, through these subsets of representative data 

samples, it is possible to effectively predict the game round-type from the physiological 

responses. 

Personality-informed classification. The interpretation of clusters via the regression analyses 

(Table 8) and the success of the classifiers in coherent subsets of the original dataset (Table 

9), suggested that the classification performance in Table 5 could be refined. This analysis 

comprised the entire, original data matrix with all observations. However, each observation 

was multiplied by each self-report dimension involved in the cluster it belonged (Table 8), 

respecting the sign of the beta slopes (Combining Fuzzy C-means and self-report ratings). 

For instance, assume the jth observation of the ith participant was assigned to boredom's cluster 

7. Since both conscientiousness and flow's automaticity explain the variance of the 

participants' representation in cluster 7 (Table 8), this observation was multiplied by the 

normalized conscientiousness and automaticity scores of the participant it belonged to (in this 

example, the multiplier was negative for conscientiousness and positive for automaticity). In 

short, the approach scales observations by the slope direction and self-report scores as a 

unitary coefficient; it is thus expected to produce more precise inter- and intra-class 

separability. Results with the full and transformed dataset are shown in Table 10. 

Consistent with the hypothesis of the approach, the classifiers using the personality-based 

weighted approach resulted in a considerably higher predictive capability than the unscaled 

observations originally used (please refer to Table 5 for comparison). It should be noted that 

the personality scores were naturally not used during the game design, and thus the out-of-

sample classification shown here is genuine. 

To summarize, a specifically designed, personality-informed classifier explained the mapping 

between physiological responses and game rounds with reasonable success. In the next 

section, the implications of these findings are discussed. 
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Table 10: Classification performance of 10-fold, cross-validated, and optimized Support 

Vector Machine (SVM), K-nearest Neighbors (k-NN) and Bagged Ensemble of CART (BDT) 

using the normalized personality scores of each participant for three classes, i.e., flow, anxiety, 

and boredom. 

Performance 
Support Vector 

Machine 

K-nearest 

Neighbors 

Bagged Ensemble 

of CART 

Accuracy 82.32 83.02 83.81 

Specificity 90.74 91.54 91.87 

Precision 78.43 78.67 79.79 

Recall 77.31 79.86 80.30 

F1-score 77.82 78.89 79.97 

 

5.4 Discussion 

This study explored the use of heart rate variability and eye blink variability in relation to the 

flow experience. The results indicated that both heart rate and eye blink variability differ 

among low and high flow experiences and that these physiological measures may be used as 

a proxy for mental effort that is common during flow (e.g., Mansfield et al., 2012). 

Furthermore, it is suggested that there may be differential autonomic activity patterns that are 

subject to interpersonal traits (e.g., Brouwer et al., 2014b; Stemmler & Wacker, 2010). There 

are three main considerations worth mentioning about the findings. 

5.4.1 Identifying representative cases via self-reports and clustering 

The classification of the data using our original game design labels demonstrated a significant 

but poor performance. However, we were able to identify observations that were more 

representative of the original design considerations, by using an unsupervised learner along 

with the scores obtained from two different self-reports (FSS-2 and BFI). The results of this 
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approach testified that different game conditions do not evoke consistent physiological 

responses to individuals who are exposed to the same tasks. 

After selecting a subset of the original data guided by personality scores, a considerable 

increase was observed in the classifiers' predictive performance. An alternative approach 

could entail a custom kernel function that would morph the hyperplane based on heuristic 

rules governed by the regression slopes and their slope magnitude, which would prevent 

tampering with the actual sample points. However, this was beyond the scope of the present 

study. It appears that the TD-VR game was not as ill-designed as the original classification 

performance purported it to be, and that individual differences are necessary for 

consideration. This leads to the second consideration described next. 

5.4.2 Explicating the role of personality 

This study substantiated the moderating role of personality and how the latter can 

sporadically question our assumptions regarding the design of a game. Most notably, our 

design considerations seem to have been hindered or facilitated by individual personality 

traits, including extraversion, agreeableness, and conscientiousness. Interestingly, both 

agreeableness and conscientiousness were illustrated as being conducive to flow in our 

previous study (see Chapter 4, Personality scores (BFI)). However, we had failed to find a 

similar relationship with conscientiousness, which was instead revealed in the present study. 

It should be noted that the game in the present study underwent significant design 

improvements from the previous, which may have helped expose the role of 

conscientiousness in the gameplay experience. Previous research has mainly focused on the 

relationship between personality and the flow experience (e.g., Ullén et al., 2016). However, 

our understanding is limited when it comes to the game mechanics that best accommodate 

specific personality types. Extraverts, for instance, tend to appreciate the social aspects of 

gaming (Park et al., 2011), but other personality types have not been similarly scrutinized in 

existing research (see Nagle et al., 2016; Nagle et al., 2018; Van Lankveld et al., 2010). This is 

an important topic for future consideration, as it may help us understand how to successfully 

reach broader audiences. 
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5.4.2.1 Flow design 

By reviewing our findings, one can notice that the game rounds designed to elicit flow have 

had a positive relationship with agreeableness and conscientiousness. To recapitulate the 

mechanics that were unique to these rounds, we adopted a dynamic difficulty adjustment 

system that increased the health of the enemies and decreased the reward when eliminating 

them, if the player performed well. In contrast, the health of the enemies was decreased, and 

the reward magnitude was increased, when the player did not perform well. 

Conscientiousness and agreeableness have both been positively related to flow (Johnson et al., 

2014; Tatalović Vorkapić & Gović, 2016; Ullén et al., 2012, 2016). These traits have been 

discussed in the previous study (see Chapter 4,  

Discussion). Yet, conscientiousness was not found to relate to flow in our previous study, but 

this link surfaced in the present one. Conscientious individuals tend to exert more effort in 

tasks (Yeo & Neal, 2004), especially when the rewarding schedule is based on their 

performance (Nagle et al., 2018). 

In our study, the performance of each individual led to a decrement or increment of reward 

magnitude, based on the dynamic difficulty scaling, which is corroboratory of the conclusion 

by Nagle and colleagues (2018). By extension, the additional effort that characterizes 

conscientious individuals, as per Yeo and Neal (2004)'s notes, may have facilitated the onset 

of the flow experience (Waterman, 2005). Notably, users in flow are by definition more 

involved in a task than those who are not (Webster et al., 1993). In conjunction with the 

aforementioned observations, there appears to be a cycle of flow maintenance in conscientious 

individuals, mediated by the game's reward mechanics. 

On the other hand, even though extraversion has been shown to have a similar, positive 

correlation with flow (Tatalović Vorkapić & Gović, 2016; Ullén et al., 2016), our flow rounds 

presented a negative relationship instead. A possible explanation for this finding is that the 

game was single-player and did not have a social layer to satisfy the motives of extraverts in 

video game play (e.g., Fang & Zhu, 2011; Park et al., 2011). Hence, extraversion may be 

thought of as an inhibitory factor to experiencing flow in our design. This explanation is in 
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line with Jurnet and colleagues (2005), who argued that introverts are more likely to become 

immersed and less distracted in a virtual environment – the virtual reality platform used in 

this study facilitates that. 

Further support can be drawn from a recent study, where it was shown that extraverts are 

more likely to experience flow in social activities than solitary (Liu & Csikszentmihalyi, 2020). 

This has also been confirmed in the context of video game play, where individuals with high 

levels of extraversion preferred social activities, whereas those with low levels preferred solo 

play (Graham & Gosling, 2013). It would be interesting to examine whether a collaborative 

TD-VR would amplify the expression of extraversion during the flow rounds. Arguably, this 

conclusion may discount other properties that could have engendered the observed negative 

link between extraverted individuals and the flow/anxiety conditions of the TD-VR game. For 

example, extraverted individuals may exhibit strong preference towards avatars, 

leaderboards and point-based systems (Denden et al., 2018). However, the current study lacks 

data to specify the properties that can explain the observed association. 

It should be noted that the negative finding on extraversion may be interpreted as 

contradictory with the positive link found in the previous study (Personality scores (BFI)). 

However, the relationships identified there were based purely on self-reports, i.e., FSS-2 being 

the dependent and BFI the independent variables. Contrarily, this study addresses the 

relatedness of personality dimensions to each experimental condition based on the 

physiological data of each player and their membership to clusters decided by an 

unsupervised learner. Thus, there were no direct comparisons made between the FSS-2 and 

BFI scores. 

5.4.2.2 Anxiety design 

Similar to flow, anxiety rounds revealed three distinct patterns. A fast-moving unit which 

would grant a generous reward to the player if eliminated was the main mechanic introduced 

as part of the design. However, this reward was impossible to attain, because of the 

experimental manipulation. Amongst the physiological patterns, we identified a negative 

association between the physiological responses during the anxiety rounds and extraversion 
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and flow's automaticity. In addition, we found a positive relationship with flow's sense of 

control and agreeableness, whereas conscientiousness appeared to have had both a positive 

and a negative relationship. It should be noted that the finding on conscientiousness is not 

contradictory. The stepwise regressions demonstrated that a negative relationship with 

conscientiousness was found in Cluster 5, and a positive relationship in Cluster 6. Hence, they 

are pertaining to different partitions of the data. 

The positive link with conscientiousness may suggest that a portion of participants vied for 

the high reward promised and perhaps engaged in different strategies to acquire it. Indeed, 

planning, diligence and goal-directed behavior have long been shown to characterize high 

scorers on conscientiousness (e.g., Roberts et al., 2009; Witt et al., 2002). Because of the 

planning involved, automaticity is reasonable to have presented a negative link in the same 

model, as it relates to spontaneity (Csikszentmihalyi, 1990). In contrast, a different model 

(Cluster 5) evinced low conscientiousness during anxiety rounds in presence of high 

agreeableness, suggesting an interaction of the two traits. According to Johnson and 

Ostendorf (1993), the inverse-directional combination of these two traits alludes to easy-going 

individuals, who are typically less impatient and less susceptible to time pressure (Froggatt 

& Cotton, 1987). Perhaps, the combination of these traits was the least compatible with our 

intention to induce anxiety. 

Another significant pattern that emerged from the resulting clusters was the combination of 

high sense of control and low extraversion, accounting for a large portion of the first cluster's 

data (41.4%). This finding denotes that there is a distinct physiological activation when these 

traits interact, but this physiological signature becomes more apparent within the anxiety 

design. Indeed, the combination of these traits increased the likelihood that the corresponding 

participants were grouped under the same cluster. Introverts tend to feel more autonomous 

in non-social contexts (Feist, 1999). In addition, they are more susceptible to anxiety, but 

exhibit higher levels of cognitive control (Hurd, 2005; Matthews & Dorn, 1995). According to 

this definition and the finding that introverts are characterized by high autonomic arousal 

(Eysenck, 1981), it may not be surprising that the aforementioned traits were identified by 
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FCM as a distinct pattern in the anxiety design. As mentioned earlier, this cluster provided 

the best decision boundaries for the anxiety rounds in comparison to the other two clusters. 

5.4.2.3 Boredom design 

As per the rounds designed to elicit boredom, a negative relationship with extraversion and 

flow's automaticity was found, but a positive one with agreeableness. As with the anxiety 

design, boredom presented the same relationship with the flow's dimension of automaticity 

and conscientiousness. In addition, both designs evinced bi-directional conscientiousness in 

two different clusters. As a reminder, in the discussion of the statistical findings (Discussion), 

it was pointed out that boredom may take the form of anxiety when the perceived sense of 

autonomy is subverted (see also, Van den Hooft & Van den Hooff, 2018). The results here 

extend this theory and promote conscientiousness to a possible mediating factor. Perhaps the 

combination of automaticity and conscientiousness was not exclusively related to the reward 

mechanics, as argued earlier in the anxiety design. Instead, it could relate to the overall 

strategic planning that may have ensued from the perceived high challenge of those rounds. 

In a study by Sulea and colleagues (2015), conscientiousness was also shown to be negatively 

related to boredom. The authors explained this finding by suggesting that high competence, 

that characterizes individuals with high conscientiousness, may suppress the onset of 

boredom. Indeed, conscientiousness has been associated with decreased proneness to 

boredom (Seib & Vodanovich, 1998; Von Gemmingen et al., 2003). In addition, as noted earlier 

in the flow design section, conscientious individuals will feel more motivated to perform well 

in a task where their performance is rewarded (Nagle et al., 2018). In the design of boredom 

in TD-VR, participants were informed that the reward incentive for the bosses in these rounds 

was very low. Perhaps, this design further amplified the negative link between 

conscientiousness and the rounds aimed to elicit boredom. 

5.4.3 Finding the right audience 

The results of this study allude to the TD-VR game being more suitable to specific personality 

types, which is an insightful remark for game studios who can tailor their marketing strategies 

to specific target audiences. Several studies have shown that when the promotional content 
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of an advertisement has certain characteristics, the advertisement will be received more 

positively by individuals with matching personality (e.g., Hirsch et al., 2012).  

For example, conscientious individuals may prefer content that implies efficiency and the 

pursuit of goals, individuals with high levels of extraversion may prefer messages pertaining 

to social rewards, whereas openness to experience may better tap into messages portraying 

creativity and intellectual stimulation (Hirsch et al., 2012). Identifying the optimal 

demographic for a video game may leverage similar marketing tactics. 

Alternatively, further work is recommended to determine how different game mechanics best 

attract various personality archetypes (as in e.g., Nagle et al., 2016; Nagle et al., 2018). Such 

work would illuminate the path to improving problematic areas in the game, i.e., game levels 

or mechanics that could reach broader audiences. Nevertheless, it should be acknowledged 

that a game may never be able to fully accommodate every player's preferences (Tognetti et 

al., 2010). 

To conclude, the approach detailed in this chapter provides a first step to accomplishing this, 

primarily by casting light onto individual differences that may be incompatible with the 

design of a game. While the exploration was limited to the Big Five personality traits and flow, 

other psychological constructs from self-report assessment measures may likewise provide 

rich insights about a game's ability to engender the desired mental states. 
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6 Study III: EEG theta/beta ratio from six scalp sensors 

can reliably predict the flow experience 

 

6.1 Introduction 

6.1.1 Neural correlates of the flow experience 

The multifaceted structure of flow suggests that there is a large functional system in the brain 

able to support flow's experiential components. The nervous system comprises two main 

branches, the peripheral nervous system (PNS) and the central nervous system (CNS) (Brodal, 

2004). The CNS is involved in the modulation of mental processes, which occur through the 

complex communication among neurons as well as ensembles of neurons (e.g., Brodal, 2004). 

These processes include, but are not limited to, perception, attention, memory, emotion 

recognition and experience, motor execution and decision-making. 

6.1.1.1 Functional connectivity 

Flow has been associated with the dopaminergic system (De Manzano et al., 2013; Gyurkovics 

et al., 2016; Marr, 2001; Weber et al., 2009), the sensorimotor network (Klasen et al., 2012; 

Sanchez-Vives & Slater, 2005), the combination of anterior cingulate cortex and temporal pole 

(Yun et al., 2017), and reduced activity in the prefrontal cortex (Bavelier et al., 2012; Dietrich, 

2004; Goldberg et al., 2006; Gusnard et al., 2001; Ulrich et al., 2014). The prefrontal cortex (PFC) 

remains a debated brain structure for its role in flow. Dietrich (2004) hypothesized that flow 

reflects reduced frontal brain activity, and basal ganglia are deployed to allow a state of 

automatic behavior and executive functioning – a state known as transient hypofrontality 

(Dietrich, 2004). 

The state of hypofrontality has not been consistently confirmed (Harmat et al., 2015; Harris et 

al., 2017b; Leroy & Cheron, 2020; Yoshida et al., 2014). In a recent study by Causse et al. (2017), 

the authors found that activity in the PFC is proportional to the task’s demands. According to 

Dietrich (2004), information processing is achieved through the implicit and the explicit 

systems, which are mainly distinguished by their projections to consciousness. Dietrich 
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argued that each system is not exclusive to task performance and the system to be employed 

may depend on the nature of the task (Dietrich, 2004). Notably, explicit control on the task 

may not be as essential during flow as the implicit (e.g., Bavelier et al., 2012; Dietrich, 2004; 

Taylor, 2002). 

Indeed, task automation is a distinctive feature of flow (e.g., Csikszentmihalyi, 1975; Quinn, 

2005), and it progressively loses its dependency on the PFC as expertise increases (Léger et al., 

2014). Klasen et al. (2012) recruited expert players and a conjunction analysis of flow factors 

revealed a neocerebellar-somatosensory network. Contrarily, Yoshida and colleagues (2014) 

found increased activity in the left and right ventrolateral PFC during flow. However, Yoshida 

et al. did not specify whether the participants in their study were skilled players. This is an 

important factor, in that flow may orchestrate neural networks differently for novice and 

expert players (e.g., Hafeez et al., 2021; Hilla et al., 2020; Kirschner & Williams, 2014), with 

novice players requiring more explicit control (e.g., Dietrich, 2004). 

Similarly, evidence on the loss of self-reflective thoughts during flow has revealed reduction 

in the activity of the medial PFC (Ulrich et al., 2014), whereas top-down attention implicated 

in flow (Harris et al., 2017a) has been associated with the lateral PFC and frontal eye fields 

(Buschman & Miller, 2007). These contradictory findings should be interpreted with care; flow 

is perhaps related to a localized hypofrontality, and not as universal as Dietrich (2004) 

originally speculated (Harris et al., 2017b). It can be suggested that frontal brain reduction 

may be a function of time. For example, Yun et al. (2017) found that flow peaked after 25 

minutes of game playing. Hence, the player may require time to transition from explicit to 

implicit control and to allocate attentional resources that will make him/her resistant to 

distractions (e.g., Bavelier et al., 2012; Jackson & Csikszentmihalyi, 1999; Nuñez Castellar et 

al., 2016; Jennett, 2010). As Dietrich (2004) argued, the explicit system may still be necessary 

to some extent, regardless of the individual’s expertise, and the task’s requirements will solicit 

the contribution of either the explicit or the implicit system. 

Klasen and colleagues (2012) have additionally identified the role of parietal regions (i.e., 

superior parietal cortex, precuneus and intraparietal sulcus) in flow. However, an occipital 

and frontoparietal network has also been found to underlie spatial awareness in the first-
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person perspective (Vogeley & Fink, 2003; Vogeley et al., 2004), which is the same perspective 

Klasen et al. used in their study. Yoshida and colleagues (2014) cautioned this case, in that 

concurrent neural networks, specific to the task, may have been misidentified for flow 

dimensions. Different game genres can have specific cognitive demands (e.g., Latham et al., 

2013), and, as such, certain video games (e.g., strategy games) may require more explicit 

control than others (e.g., Spence & Feng, 2010). 

These games might stimulate higher prefrontal activation, without necessarily implying that 

it is a substrate of flow. Importantly, the frontoparietal network’s contribution to the 

experience of flow remains questionable (Bavelier et al., 2012; Léger et al., 2014; Nah et al., 

2017). The responsibility of the frontoparietal network to allocate attentional resources and 

the reduced activation thereof in video game playing (Bavelier et al., 2012) suggests a 

functional unrelatedness to flow. This is evident from flow’s dimension “merging of action 

and awareness”, which signifies that attention is already focused (Csikszentmihalyi, 1975). 

An interesting proposal put forward by Weber and colleagues (2009) is the synchronization 

theory of flow. According to the authors, the synchronization process refers to groups of 

neurons firing in a synchronous rate to produce discrete state transitions, given a skills-

challenge balance during the task, thereby conceptualizing flow's make-up as a complex 

neural infrastructure. The theory further posits that the synchronization is energetically 

economical, which makes flow perceived by the individual as a pleasant, rather than a 

mentally taxing, experience. Their core idea is that flow is orchestrated by the synchronization 

of attention and reward networks. The attentional networks consist of an alerting network of 

fronto-parietal origin, whereas a secondary attentional network, the orienting network, 

comprises the superior and inferior parietal lobe, the frontal eye fields and the superior 

colliculus. On the other hand, the reward networks include the dopaminergic system, the 

orbitofrontal cortex, the ventromedial and dorsolateral prefrontal cortex, the thalamus and 

the striatum. The theory concludes with the proposal that focused attention is inherently 

rewarding, thereby justifying flow as the result of the synchronization between attentional 

and reward mechanisms (Weber et al., 2009). 
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Reward networks have been traditionally linked to dopamine release (Iversen & Iversen, 

2007), which occurs during reward anticipation as well as the delivery of rewards (Drecher et 

al., 2009). Studies investigating the effects of rewards on the activation of dopaminergic 

pathways typically employ extrinsic rewards (Baldassarre, 2011; Murayama et al., 2010). 

Though this approach is still relevant to video game play, as a facet of extrinsic motivation 

(see Chapter 2, Reward systems), it is not clear whether a similar neural relationship between 

the dopaminergic system and intrinsic motivation exists (Di Domenico & Ryan, 2017). The 

self-conflicting semantics of autotelicity that renders it both an antecedent and an outcome of 

the flow experience (Michailidis, Balaguer-Ballester, & He, 2018) can be associated with the 

two dominant views on dopamine and reward processing. 

Berridge (2007) pointed out that dopamine release is mostly related to “wanting” (incentive 

salience view) rather than “liking” (hedonic impact view). Under this distinction, autotelicity 

as an outcome matches the hedonic perspective, which accompanies the self-rewarding 

experience of flow (e.g., Berridge, 2007; Keller & Bless, 2008). In contrast, autotelicity as an 

antecedent would presumably be an instance of incentive salience, in that the individual is 

motivated to perform the activity before the actual experience of flow (e.g., Delle Fave et al., 

2011b). This is also supported by a previous study, wherein the number of volitional 

engagements with the task was used as an assessment criterion for intrinsic motivation (see 

Murayama et al., 2010), i.e., the number of times the participants wanted to perform the same 

task. In the specific case of flow, individual proneness to flow has been shown to relate to 

nigrostriatal dopamine (e.g., De Manzano et al., 2013) but also the mesolimbic pathway (e.g., 

Klasen et al., 2012), which relates to behavioral persistence (Salamone & Correa, 2016). Even 

though a few theories have been put forward with the aim to identify the neural 

underpinnings of intrinsic motivation (e.g., Baldassarre, 2011; Di Domenico & Ryan, 2017), 

there is still little evidence to draw firm conclusions. 

Based on these accounts, it can be inferred that flow's complexity of a construct is likewise 

reflected in the ambiguity stemming from neural studies of flow. Hence, the inconsistency of 

existing findings makes it challenging to interpret the contribution of each flow dimension to 

the ultimate flow experience. This section highlighted the potential presence of confounding 
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factors that may have made the deduction of flow's neural underpinnings more challenging. 

These factors included the particularities of the task under which flow is expected to be 

elicited and the dichotomy of extrinsic and intrinsic incentives. Of note is also that the 

aforementioned findings have been derived from magnetic resonance imaging, which is an 

unnatural setting for video game playing. In the next section, findings from studies using 

electroencephalography are reviewed, a method with the benefit of enhanced temporal 

resolution. 

6.1.1.2 Electroencephalography 

Flow has also been estimated with electroencephalography (EEG), which is the process of 

recording electrical signals from the scalp (Jatupaiboon et al., 2013; Teplan, 2002). Under the 

international 10-20 EEG guidelines (Jasper, 1958), the placement of electrodes on the scalp is 

standardized using the nasion and inion as the reference points along the sagittal axis, and 

the pre-auricular points along the coronal axis. 10-20 thus refers to the percentual distances 

between consecutive electrodes over the total length of the corresponding axes, thereby 

accounting for individual differences in head sizes. The output of EEG is the voltage difference 

between two electrodes at a given time point, and thus voltage values are relative (Cohen, 

2014). This approach allows for high temporal resolution, but its spatial resolution is relatively 

weak (Srinivasan, 1999). The advantage of time precision is an important consideration to 

brain-computer interface (BCI) applications, which should be responsive in a timely manner. 

Although a slower detection of physiological changes in a real-world video-game application 

may be tolerated, making the high temporal precision of EEG somewhat superfluous, 

empirical research has demonstrated the potential of EEG as a tool to improve player 

experience. 

The idea behind the use of EEG in games research is akin to the general purpose of BCI 

applications, i.e., to translate neural signals into information that is interpreted and handled 

by a system layer that mediates the software and the user (Minguillon et al., 2017). The player's 

interaction with a video game is commonly achieved via input to a control device, e.g., a 

mouse, a keyboard, a gamepad, or a touchscreen (e.g., Cummings, 2007). Likewise, brain 

activity can be deconstructed as a second-level input. Brain-computer interfaces research has 
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demonstrated the successful utilization of brain signals as an alternative input method to 

control and/or adapt a game based on the user's collective neural information at a given time 

(e.g., Liao et al., 2012). 

The EEG waveform has been conventionally divided into five main bands, i.e., alpha, theta, 

beta, delta and gamma. These are determined by the frequency range in which the electrical 

oscillations occur. In practice, the range of each band is somewhat standardized, though 

differences in their definitions are not uncommon (Berta et al., 2013). Such differences may be 

found not only in the upper-band, but also in the lower-band limit, or both. 

Nevertheless, common ranges for each band are as follows: alpha (8 – 13 Hz), theta (4 – 8 Hz), 

beta (13 – 30 Hz), delta (0.5 – 4 Hz), gamma (30 – 100 Hz; Li & Lu, 2009; Schutte et al., 2017; 

Teplan, 2002). Through spectral analyses, activity from these bands can have different 

implications on the underlying cognitive functions, especially when considering an apparent 

topographical bias. For instance, alpha appears more prominently in posterior/occipital sites 

(Knyazev, 2007; Teplan, 2002), whereas beta is found mainly in the frontal lobe (Taywade & 

Raut, 2014). Likewise, the alpha rhythm typically implies reduced cortical activation (Allen et 

al., 2001, 2004; Davidson, 1988), whereas the beta rhythm has the opposite implication 

(Rangaswamy et al., 2002). 

Flow and neighboring constructs, such as that of engagement, have been approached with 

EEG. Nuñez Castellar and colleagues (2016) used a modified 10-20 EEG placement system 

and recorded activity from the locations Fz (midline frontal), FCz (midline frontocentral) and 

Cz (midline central) while the participants played a video game. Among their three conditions 

for flow, boredom and frustration, they used auditory distractors during the game session. 

The authors measured reaction times and accuracy of the reactions when an auditory 

distractor was presented to the participants. 

Flow condition was characterized by longer reaction times (also, Ko & Ji, 2018) and lower 

accuracy, and increased alpha band activity in the electrode FCz, compared to the boredom 

and frustration conditions. The authors postulated that increased alpha in FCz indicated the 

interplay between executive control and attention, which alludes to flow’s criterion of 



   

 

 

Flow Experience in Virtual Reality Games | 175 

 

"merging of action and awareness" (automaticity). Finally, they suggested that this process 

ensues from the contribution of the anterior cingulate cortex, an area that has been shown to 

be of relevance to flow (e.g., Klasen et al., 2012; Ulrich et al., 2016; Yun et al., 2017). 

Beta activity from the occipital sites was also found to correlate with the flow experience in 

Tay (2016). The author used a visual tracking task and introduced four levels of difficulty, 

each level adding one additional object (dot) to track (four objects at the fourth level).  

Participants were asked at the end of each trial to specify which dots they were originally 

asked to track. The ratio of incorrect trials over the total number of trials was used as a 

behavioral measure of error rate. The results showed that beta amplitudes increased 

proportionally to the task difficulty for the high-flow group but decreased for the low-flow 

group. Given that the nature of the task was visual, it is not surprising that the apparent 

resource allocation in the visual cortex scaled with the task's difficulty. Interestingly, the error 

rate of the high-flow group similarly increased according to the beta amplitude, suggesting 

that the participants felt challenged. In a similar vein, Yelamanchili (2018) found a reduction 

of occipital alpha during Tetris game playing in a difficulty level aimed to induce flow. 

Other studies have approached a broader construct of flow, namely engagement, and 

identified this state by a set of indices. McMahan et al. (2015a) proposed that engagement can 

be estimated by the [Beta / (Alpha + Theta)] (also, Pope et al., 1995) bands averaged from all 

channels. In their follow-up work (2015b), they proposed that an arousal index, computed 

from the beta and alpha frequency bands at the F3 and F4 sites of the bilateral prefrontal 

cortex, [BetaF3 + BetaF4 / AlphaF3 + AlphaF4], should accompany the engagement index, in 

which case the user is thought to be disengaged when arousal is low, and to be engaged when 

the arousal index is high. Of note is also the engagement index proposed by Biercewicz et al. 

(2020) who found that (Theta / Alpha) best correlated with the self-reported levels of 

engagement. 

What is particularly interesting is that the engagement index by McMahan and colleagues 

(2015b) suggests that higher engagement can be inferred from theta activity relative to beta. 

Activity in the theta band has been shown to emerge during video game play (e.g., He et al., 

2008; Nacke et al., 2011; Sheikholeslami et al., 2007), and evidence has shown a link to the flow 
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experience as a result of cognitive control (Katahira et al., 2018; Metin et al., 2017). Murphy 

and Higgins (2019) measured EEG wave amplitudes in five frequency bands during three 

different conditions, relaxation, concentration and stress. While they could not infer a stable 

pattern for concentration, they found increased theta and low alpha to underlie the stressful 

condition. Consistent with these findings, Bodala et al. (2016) identified increased theta 

activity during challenge integration, particularly in the frontal midline, which can be 

considered a marker of vigilance (also, Yamada, 1998). In Metin et al. (2017), theta increases 

were found across a frontocentral network exhibiting positive correlations with enjoyment 

and intrinsic motivation self-ratings. Similarly, Derbali and Frasson (2010) reported a positive 

correlation between frontal theta and motivation. Meditative states have likewise been found 

to be accompanied by increases in theta power (Baijal & Srinivasan, 2010; Lagopoulos et al., 

2009) while several studies have drawn parallels between meditation and the flow experience 

(e.g., Delle Fave et al., 2011a; Krygier et al., 2103). 

The theta wave has given rise to another useful index in the literature, the theta/beta ratio, 

also referred to as the "attention ratio" (Derbali et al., 2011; Putman et al., 2010). The slow wave 

of the theta band over the fast wave of the beta band is thought to reflect subcortical processes 

regulated by endogenous cortical activity (Schutte et al., 2017). This interpretation has further 

been associated with the regulation of affective processes and attentional control (Putman et 

al., 2010) and a disputed proxy for arousal levels (Clarke et al., 2019). Angelidis and colleagues 

(2018) argued that the theta/beta ratio reflects cognitive control over affective information. In 

other research works, low values of this ratio have been found to reflect distractibility 

(Kobayashi et al., 2020; Ming et al., 2009). The theta/beta ratio has also been investigated in 

video games as a marker of stress (Saputra & Iqbal, 2017). These implications make the 

theta/beta ratio an interesting measure for the study of flow, anxiety and boredom. 

Though this section did not exhaust the literature in the electrophysiological findings of flow, 

it still is a nascent area that remains largely unexplored. Notably, the alpha, theta and beta 

bands are well investigated in the literature of the flow experience. Contrarily, research 

examining the delta and gamma waves in relation to flow is exceptionally scarce, with only a 

few studies linking these bands to immersive experiences during video game play (e.g., 
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McMahan et al., 2015c; Metin et al., 2017; Nacke et al., 2011). Thus, although there is an evident 

gap in the literature of flow with respect to these bands, the main deterrent as per their 

omission is that their relatedness to flow is not well understood. However, technical 

challenges may also present. For example, the gamma band typically coincides with the 

spectral range within which muscle artifacts fall (approximately 20-300 Hz; 

Muthukumaraswamy, 2013), making it challenging to isolate in experiments involving head 

motion as part of the user interaction. The frontal-theta power increases linked to flow and 

motivation are reminiscent of a neighboring metric that is common to the conventional EEG 

research but less popular in the flow research. Alpha asymmetry is reviewed in the next 

section.  

6.1.1.3 Alpha asymmetry 

Frontal alpha asymmetry (FAA) is another EEG metric that may be relevant to the 

quantification of flow episodes. This metric was used by Davidson and Fox (1982), who 

observed greater left-hemispheric activation, relative to right, as a neural response to happy 

video clips, specifically in the frontal regions of the cortex. Since then, FAA has garnered 

considerable interest in the field of affective neuroscience, and it has been associated with 

emotional experience (Davidson et al., 1990; Fox, 1991), affective regulation (Reznik & Allen, 

2018), approach and withdrawal motivation (Briesemeister et al., 2013), but also motivational 

tendencies as facets of personality from resting state EEG recordings (e.g., Sutton & Davidson, 

1997). 

The FAA index is expressed as the difference between the alpha activity of the right 

hemispheric sites and the left contralateral sites in a logarithmic format, i.e., log(alpha_right)-

log(alpha_left). The relative activation of each hemisphere implied by the FAA index is based 

on the notion that increases in alpha power are associated with decreased cortical activation 

(Allen et al., 2004; Davidson, 1988; Salminen et al., 2009). In addition, a consistent association 

between lateralized frontal brain activity and affective valence has been shown, but also been 

disputed in several works. In earlier works, inter-hemispheric activity differences in the alpha 

band were associated with the motivational branches of approach and withdrawal (Davidson, 

1984). Approach motivation has been characterized by dominant left activity, relative to the 
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right, through positive FAA index values, whereas avoidance behavior by dominant right 

activity relative to the left (for a review, see Briesemeister et al., 2013). In later works, greater 

left activation was thought to represent positive affective experience, whereas greater right 

activation was thought to represent negative affective experience (e.g., Heller, 1990). 

Notably, due to the illustrated relationships, literature conflated the terms of emotion and 

motivation (Harmon‐Jones, 2003), perhaps explaining why the relationship between the FAA 

index and the valence spectrum of emotion remains inconclusive (e.g., Spielberg et al., 2008). 

For example, a recent study by Tandle and colleagues (2016) found empirical evidence that 

sadness elicited higher right-frontal activity, whereas happiness elicited higher left-frontal 

activity, after exposing participants to different types of musical tracks. The authors 

specifically argued that right-frontal sites may relate to anxiety. These findings are germane 

to the view that frontal asymmetry relates to valence. 

The roots of this confusion can be traced to earlier theories of motivation. For example, in the 

work of Dickinson and Dearing (1979), motivation was theorized to comprise two systems, 

the attractive/appetitive and aversive/defense systems. According to the authors, affective 

valence was determined by the system that would be activated in a particular moment, 

leading to positive emotions (appetitive) or negative emotions (defense). On the other hand, 

affective arousal was suggested to reflect the intensity of the motivational mobilization of the 

corresponding system. Likewise, Gray (1994)'s theory postulated that two systems 

underpinned motivation, the behavioral approach system (BAS) and the behavioral inhibition 

system (BIS), which remain the prevalent theoretical considerations behind the FAA index 

(also, Elliot, 2006). According to Gray, the approach system is engaged under conditioned 

rewards or instances of non-expected punishment, whereas the avoidance system is employed 

under conditioned punishment, absence of rewards or innately aversive stimuli (such as 

fearful stimuli). 

These theories indicate a close link between emotion and motivation, rendering affective 

valence and the approach/withdrawal systems naturally aligned constructs. Indeed, Pessoa 

(2009) acknowledged this familiar link and suggested that it stems from the constructs' 

dependence on the relationship between the person and the environment. Another example, 
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that demonstrates how intertwined these concepts are, is McClelland (1985)'s view that 

motivation is an affective force that orients individuals toward positive or negative stimuli. 

More recently, Harmon‐Jones (2003) provided insights that differentiate these two constructs. 

The author argued that anger, an emotion that is widely regarded as negative in valence, can 

often result in an approach behavior such as attacking. The author further posited that this 

example severs the putative connection between FAA and affective valence, and instead 

suggested that FAA reflects motivational direction, which the author clearly distinguished 

from valence. 

However, in the specific case of flow, no particular stance was adopted throughout the present 

work with respect to its affective valence characteristics. Albeit a large body of literature 

suggests that flow is a state of positive affect (Jennett et al., 2008; Poels et al., 2012), empirical 

research in video games holds that both positive and negative emotions can coexist without 

necessarily compromising the sustenance of the flow state (Csikszentmihalyi, 1990; 1996; Kaye 

et al., 2018; Walker, 2010). Csikszentmihalyi (1990, 1996) pointed out that flow may not be a 

positive experience while it occurs, but it may be appreciated only after the end of the activity, 

as an after-effect. This leads to the interpretation that, during flow, affective valence may not 

be an important indicator of the quality of the flow experience. Indeed, Mercier and colleagues 

(2019) found that arousal, not valence, was the affective dimension that made players 

appreciate their game experience. 

On the other hand, motivation has a clearer relationship with flow. Earlier, both intrinsic and 

extrinsic motivation were argued to be necessary constituents of the flow experience in video 

games (see Chapter 2, Reward systems). To recapitulate the main points of that discussion, 

flow as an intrinsic experience encourages replay intention over several time instances (Van 

den Hout et al., 2018). However, video games are also rife with extrinsic rewards which 

empower one's motivation to prolong engagement with the activity within a single time 

instance. Hence, extrinsic motivation should be easier to examine, given that the extrinsic 

rewards can be manipulated during an ongoing game session. 

As a reminder, approach/withdrawal motivation theories have traditionally employed 

extrinsic rewards as a means of demonstrating how approach and withdrawal are activated, 
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based on their benefit and desirability for the organism (Davidson, 1984; Dickinson & Dearing, 

1979; Gray, 1994). The behavioral biproducts of approach and withdrawal may be expressed, 

for example, with postural changes, whereby leaning forward indicated approach motivation, 

whereas leaning backwards may imply withdrawal motivation (Price & Harmon‐Jones, 2011). 

D’Mello and colleagues (2007) found that, during video game playing, participants leaned 

forward and closer to the computer screen, which the authors interpreted as a flow episode. 

In the same study, postural changes away from the computer were interpreted as boredom. 

This may also be extrapolated to the state of anxiety. For instance, Davidson and colleagues 

(2000) found increased right-frontal activity, relative to the left, when people with social 

phobia anticipated a public speech; along with heart rate variability, those changes accounted 

for more than 48% of their self-reported levels of anxiety. Though Elliot (2006) suggested that 

negative affective states or negative stimuli may be mostly associated with withdrawal or 

avoidance motivation, Harmon‐Jones and Allen (1998) found that anger can violate that 

assumption. An empirical example of this in the context of video games can be seen in the 

study by Salminen and colleagues (2009). 

The authors argued that challenging events may steer toward withdrawal behavior, 

manifested through frontal alpha asymmetry and right-frontal activation specifically. Yet, the 

authors also found that the participants reported positive valence even after the game session, 

a finding corroborating that withdrawal behavior during the game may not necessarily reflect 

affective valence, as Harmon‐Jones (2003) argued. According to Davidson (1984), affective 

valence, albeit not lateralized, is manifested as such because it is associated with 

approach/withdrawal behavioral biproducts. 

Based on these accounts, affective valence appears to have an implicit relationship with FAA, 

but research converges to the fact that approach and withdrawal motivation can be expressed 

through this index. Since it was argued earlier that flow may be affect-independent while it 

occurs, i.e., not part of flow's core dimensions (Michailidis, Balaguer-Ballester, & He, 2018), 

integrating FAA merely on the basis of approach and withdrawal, without making direct 

implications on its affective valence underpinnings, fits well with this conception of flow. 

Unfortunately, very few studies have utilized the FAA index metric in flow research, making 
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it a tempting quantification tool to explore. Benlamine and colleagues (2017) are among the 

few works to have used alpha asymmetry as a proxy measure. The authors did not provide 

any statistical findings, but instead integrated the FAA index directly within a classification 

approach for predicting flow episodes. 

To summarize, EEG research offers several proxy tools to estimate underlying cognitive 

mechanisms with a high temporal accuracy. Although the spectral subdivision of EEG activity 

has been criticized for being somewhat outdated, it is also acknowledged to constitute a 

golden standard for more than 80 years (Newson & Thiagarajan, 2019). Spectral dynamics in 

the alpha, theta and beta bands have been shown to support the investigation of immersive 

experiences during video game playing and cognitively challenging tasks. While some works 

have identified a relationship between activity in these bands and cognitive-affective 

functions commonly engaged during flow, others have made explicit connections to the flow 

experience. Affiliated indices, such as alpha asymmetry, engagement index, and the theta/beta 

ratio are important markers to consider, that provide a promising basis for their application 

in virtual reality settings. 

6.1.2 Study objectives 

The present study aims to extend our findings on flow, using EEG, to examine its feasibility 

in the commercial frontline. Given that medical-grade EEG typically outnumbers the sensors 

used in consumer-grade equivalent options, this study incentivizes the selection of an optimal 

subset thereof for flow-aware technologies. The approach employed in the previous chapter 

(and detailed in Combining Fuzzy C-means and self-report ratings), that combines 

clustering of physiological responses to a VR game and regression models onto self-reports of 

inter-personal traits, showed significant class discriminability amongst the game's 

experimental conditions. 

The primary goal is to identify a set of channel/frequency band pairs to optimally 

disambiguate the three design conditions of flow, anxiety, and boredom. Thus, we examine 

the electrophysiological responses to the TD-VR game using a relatively high-resolution EEG 
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and later reduce it to a subset of channels and frequency bands that are most relevant to the 

flow experience. 

Regarding the frequency bands of interest, literature does not seem to provide clear evidence 

on their topographical relevance for flow that could effectively guide our hypotheses. 

Nevertheless, theta, alpha and beta have all been shown to be of relevance in studies 

examining flow or neighboring mental states. Based on existing findings, our hypotheses for 

each frequency band are as follows: 

• Theta may be more pronounced in the flow rounds, as a result of cognitive control and 

emotional arousal. The trials aimed to induce anxiety may also modulate theta power. 

• Beta rhythm, due to its relation to excitability, arousal and active cognitive processing, 

is expected to be particularly relevant in the flow and anxiety conditions. 

• Alpha activity is expected to be observed primarily during the boredom condition as 

a result of reduced player activity and task repetition. Following Dietrich's (2003) 

hypofrontality theory, alpha activity may also be observed in frontal sites during flow 

episodes. 

Finally, a relationship between alpha asymmetry and the different game design 

considerations (flow, anxiety and boredom) will be examined. Approach and withdrawal fit 

well with the manipulation of the rewards in the Tower Defense VR game (see also, Gray, 

1994). Based on previous literature, it is expected that the flow rounds will elicit higher alpha 

activity in the right-frontal sites relative to the left, as a means of an approach behavior. In 

contrast, boredom rounds are expected to elicit higher left-hemispheric alpha activity relative 

to the right, as a result of low reward and repetition, thereby indicating withdrawal. However, 

this may not be necessarily true for the anxiety rounds, as the high fiscal incentive, during 

those rounds, may engender approach motivation. Noteworthily, our previous study 

demonstrated a physiological overlap between anxiety and flow rounds, which may be 

similarly shown in the present study, given that no modification was made to the game in 

between the two studies. 



   

 

 

Flow Experience in Virtual Reality Games | 183 

 

6.2 Methods 

6.2.1 Participants 

Thirty-two volunteers took part in the study (mean age = 22.13, SD = 5.4) the majority of whom 

were students at Bournemouth University, Bournemouth, United Kingdom, and employees 

in Sony Interactive Entertainment in London, UK. The sample comprised 26 males and 6 

females with an average video games experience of 12 years (SD = 4.77) and an average 

starting age of playing games at 8.6 (SD = 3.42) years old. The study was approved by the 

Bournemouth University Research Ethics Committee (ref: 17333). 

6.2.2 Materials: Test Game 

The same version of the game from Chapter 5 was maintained for this study (see Materials: 

Test Game). In debriefing, no participants reported to have realized the experimental 

manipulation, including the dynamic difficulty adjustment and the impossibility of 

eliminating the bosses allotted to the anxiety and boredom conditions. Because the same 

version of the game was used, the study maintained its repeated-measures design (see also 

Chapter 5, Experimental design). 

6.2.3 Data Acquisition 

Electroencephalograms were recorded using the BrainAmp DC 32-channel amplifier 

(BrainProducts GmbH, Gilching, Germany) and the proprietary software BrainVision 

Recorder (v. 1.21.0102) at a sampling rate of 1 kHz. The BrainVision Recorder did not support 

control over the recordings through the keyboard, as was possible with the Student Lab 4.0 

(see Chapter 5, Data Acquisition). Hence, the custom application on the receiving desktop 

that listened to incoming messages (see Chapter 3, Data acquisition) utilized the native input 

detection to capture mouse clicks when a window starting with the name “Record” was active 

– corresponding to the start of the BrainVision Recorder window name. To amend 

superfluous registration of click messages, Alt + Tab key combination was used to switch 

application windows. The purpose of detecting these events was to register the Coordinated 
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Universal Time (UTC) timestamp the recording was started for synchronization with the 

game events. 

The EEG electrodes (Ag/AgCl) were attached on the actiCAP Electrode Cap (EASYCAP 

GbmH, Herrsching, Germany) and re-referenced offline to the right mastoid M2 and 

grounded to AFz. The thirty-two channels that were used for the recordings were fixed to the 

scalp with a conductive gel to minimize impedance. The channels were fairly distributed 

across the scalp, including Fp1, Fp2, AF3, AF4, F7, F3, Fz, F4, F8, FT7, FC3, FCz, FC4, FT8, C5, 

C3, Cz, C4, C6, TP7, CP3, CP4, TP8, Pz, PO7, PO3, PO4, PO8, O1 and O2 (Figure 22). 

 

Figure 22: Illustration of the EEG electrode arrangement used in the study (channels 

highlighted in red). The channel AFz was used for grounding. 

6.2.4 Procedure 

The experiment took place in Bournemouth University’s EEG lab. Participants were first 

screened for any allergy to alcohol or salt, both of which were subsequently used during the 

experiment. They were first asked to fill out a consent form, a games experience questionnaire 

and the Big Five Inventory (BFI). Each participant was trained in the game, regardless of their 
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previous experience with video games, virtual reality or familiarity with tower defense games. 

Once participants reported feeling comfortable with handling the game, the EEG electrodes 

were carefully attached. 

Then, a resting baseline of 60 seconds was recorded whilst the head-mounted display of 

PlayStation VR was donned, displaying the main menu of the console. Finally, the recordings 

were started, and the participants initialized the game. At the end of the game, participants 

were asked to fill out the Flow State Scale - 2 (FSS-2) questionnaire. The overall experiment, 

including setup, concluded after 90-120 minutes. A game voucher from a selection of 

PlayStation 4 games was given as compensation for participation. In line with the previous 

experiment, participants were not made aware that the game featured indomitable rounds 

and content that adapted to their performance before the experiment. This was done during 

the debriefing (i.e., the conclusion of the individual experimental session after all self-reports 

were filled out). 

6.2.5 Statistical Analysis 

A similar analysis to the equivalent statistical procedure of the previous study was adopted 

here (see section Chapter 5, Statistical Analysis). Each trial was segmented into three 

windows, whereby only the second window was used for the final analysis. A 3x7 within-

subjects design with Condition (flow, anxiety, boredom) x Region of Interest (ROI; frontal-

left, frontal-right, midline, central-left, central-right, posterior-left, posterior-right) was 

employed. Channels within each ROI were defined as follows (Figure 23): frontal-left (Fp1, 

AF3, F7, F3, FT7, FC3); frontal-right (Fp2, AF4, F8, F4, FT8, FC4); midline (Fz, FCz, Cz, Pz); 

central-left (C5, C3, TP7, CP3); central-right (C6, C4, TP8, CP4); posterior-left (PO7, PO3, O1); 

posterior-right (PO8, PO4, O2). 

The ROIs follow a segmentation similar to that of Aftanas and Golocheikine (2001), except for 

the midline, which, due to the limited number of electrodes (four in this study versus eight in 

their study), formed a single cluster. However, several works have included frontal-to-parietal 

midline electrodes in their midline cluster analyses (e.g., Babiloni et al., 2004; Barry & De 

Blasio, 2017). Frontal-midline (Fz) has been associated with motor planning and parietal-
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midline (Pz) with perception; the pair Fz/Pz can present coherence, or functional connectivity 

(Walker et al., 2007). Flow's dimension of "merging of action and awareness" 

(Csikszentmihalyi, 1990) is embedded in this grouping. 

The dependent variables were the relative power of three bands, namely theta, alpha and beta. 

The analysis was performed separately for each band. One participant (ID = 4) was dropped 

from the analyses as their trial data were corrupted. Hence, the final tested sample size was N 

= 31. For the self-report measure analyses, all the participants were considered (N = 32), except 

in the case of self-report class generation (i.e., low- and high-flow groups), which adhered to 

N = 31. 

 

Figure 23: Electrode clusters used in the study. The nomenclature of each region of interest 

is given accordingly, and separated into left-frontal, right-frontal, midline, left-central, right-

central, posterior-left (parietal and occipital sites) and posterior-right. 

Alpha asymmetry was measured using the electrode sites Fp2-Fp1, AF4-AF3, F4-F3, and F8-

F7, which are some of the most common pairs used in similar studies (Briesemeister et al., 

2013; Fairclough et al., 2013). The absolute alpha power was extracted for each channel, using 

the approach detailed in Electroencephalography Preprocessing and Features section, and 
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then the natural logarithm of the right channel was subtracted from the natural logarithm of 

the topographically equivalent left channel (Allen et al., 2004). Values approaching zero 

indicate symmetrical activity (Coan & Allen, 2004). 

All post-hoc tests were adjusted with the Bonferroni method. Data normality was investigated 

using the Lilliefors normality test. Significance level was set to α = .05. Additionally, 

Greenhouse-Geisser correction was applied, and subsequently reported, where necessary. 

The statistical analyses were carried out using SPSS v23.0 (IBM Corporation, Armonk, NY). 

For data visualization, violin plots were constructed with a tool developed for MATLAB 7 and 

topographic maps for band activity were visualized with the Topographic EEG/MEG Tool on 

Mathworks File Exchange (Martínez-Cagigal, 2020). 

6.2.6 Feature Extraction and Selection 

Based on the statistical findings, we opted for reducing the number of channels needed for 

classifying the states of interest. The motivation behind this is to reduce the manufacturing 

costs that a real-time system would require and to omit redundant or less relevant channels 

(see e.g., Arvaneh et al., 2010; Lal et al., 2004). The trials were partitioned into seven windows 

to maintain comparable outcomes with the previous study (see sections Data Segmentation 

and Data partitions and window length). 

Electrode minimization. Unlike the ECG and EOG features in chapter 5, which were one-

dimensional, EEG features are two-dimensional, involving a frequency band of interest as 

well as a corresponding channel. This is usually approached by constructing a feature space 

consisting of band × channel number of features, followed by a dimensionality reduction 

algorithm (e.g., Berta et al., 2013). However, common algorithms, such as principal component 

analysis, obtain the final components from the linearly combined contribution of the original 

variables (Francis & Wills, 1999). The resulting components are essentially composite 

variables (Song et al., 2013) that can be difficult to interpret (Rousson & Gasser, 2004). Given 

 

 

7 https://github.com/bastibe/Violinplot-Matlab 
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that the goal is to reduce the number of channels – thus, the number of the original variables 

required for measuring flow, anxiety and boredom, this approach was not considered 

suitable. 

Feature selection methods. Other feature selection options can be classified into wrapper (or 

encapsulation) and filter methods (for a review, see Sánchez-Maroño et al., 2007). Feature 

selection that acts as a pre-processing step to classification can be thought of as a filter method 

(Belanche & González, 2011). The advantage is that the selection of the features is independent 

from the classifier, thereby potentially fostering the generalizability of the classification 

results. In contrast, wrapper methods select features through an iterative classification 

process; thus, the performance of the classification is used as an evaluation metric for the 

selection of the features (Wu & Wang, 2015). Albeit wrapper methods may be more robust to 

finding the optimal subset of features, their computational cost and lack of generalizable 

solutions are oftentimes a deterrent (Wang & Liu, 2016). 

One such filter method is the minimum redundancy maximum relevance (MRMR) algorithm 

(Peng et al., 2005). This algorithm ranks the input variables based on their correlation with the 

target class (relevance), whilst aiming to minimize the correlation amongst each other 

(redundancy). Relevance is calculated using the F-statistic for continuous variables or mutual 

information for categorical variables, based on their joint probability distribution (Peng et al., 

2005). On the other hand, redundancy is computed using the Pearson correlation coefficient 

for continuous variables or mutual information for categorical ones (Ding & Peng, 2005). 

MRMR has been used in EEG channel selection (e.g., Secerbegovic et al., 2017) and in the 

specific study of flow in video games (e.g., Mallapragada, 2018). The algorithm is considered 

one of the most widely applied and optimal feature selection methods (Ramírez-Gallego et 

al., 2017), with successful applications in EEG data (e.g., Liu et al., 2016; Wang et al., 2011), 

and hence chosen for this study. 

Noteworthily, MRMR simply ranks variables; it does not eliminate unnecessary, noisy or 

redundant ones. Hence, further computations are needed to estimate the final N variables to 

be kept, via approaches referred to as hybrid, as they combine filter and wrapper methods 

(Jović et al., 2015). Examples of such methods include the well-known sequential feature 
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selection algorithm, an iterative cross-validation with N variables at each iteration until 

classification performance no longer improves (e.g., Wu & Wang, 2015), or three-step 

approaches with k-means clustering as an intermediary step (e.g., Bins & Draper, 2001). 

Using MRMR in this study.  In this study, there are two flow definitions that we have 

explored, i.e., (a) the original game-design labels and (b) the flow experience as reported by 

the participants on the FSS-2 questionnaire. If the pursuit of an optimal subset of channels 

relies on the original game-design labels, we may compromise the ecological validity of the 

findings, thereby sacrificing their generalizability to other video games and applications. This 

is suggested by the poor performance of the classifiers without correcting for the latent inter-

personal variables identified in the previous study (Diagnosing the findings using an 

unsupervised learner). Ergo, the optimal set of channels should also be derived from a more 

standardized definition of flow, which is the Flow State Scale. In doing so, we can explore the 

applicability of the selected channels whilst attempting to separate the classes of flow, anxiety, 

and boredom from our original design labels. In this study, we consider the intersection of the 

two channel selection methods using either class definition to best represent the flow 

experience. 

The procedure using MRMR analysis was thus carried out using the groups (classes) of 

participants with low- and high-flow reported scores (a) and the game-design classes of flow, 

anxiety and boredom (b). The analysis was performed independently for each band, i.e., beta, 

theta, and alpha, each yielding its associated weights provided by the MRMR method. Thus, 

the 30 channels are ranked separately per frequency band. Next, the output weights 

corresponding to each band (3 bands × 30 weights per channel) were averaged separately for 

each channel, yielding 30 values, and later sorted in descending order that was indicative of 

each channel's importance. 

For the classification approach, channels were progressively incorporated, based on their 

ranked order, as inputs to RBF-SVM classifiers with fixed parameters6. Three new features 

were added at each step of this process, whilst computing the accuracy of the 10-fold cross-

validated classifier at each step. To clarify the process, the first iteration included theta, alpha 

and beta relative powers of the top contributing channel; at the second iteration, the theta, 
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alpha and beta relative powers of the second-top contributing channel were added, and so on. 

Training data at each fold iteration were oversampled using SMOTE to balance the class sizes 

(refer to Chapter 3, Balancing class sizes). The acquired accuracy rates from all folds of 

consecutive classifiers were finally submitted to a paired-samples t-test to compare them 

statistically (α = .05). 

6.3 Results 

6.3.1 Statistical results 

6.3.1.1 Self-report measures 

Overall, the participants’ perceived difficulty of the game concentrated around “Hard”. 59.4% 

of the participants reported that they thought TD-VR was hard, 37.5% that it was of moderate 

difficulty and only 3.1% (equivalent to one participant) reported that it was easy, in response 

to the question “How difficult did you find the game you have just played?”. A stepwise 

multiple linear regression between replay intention and the flow dimensions (independent 

variable) indicated that flow’s self-reported autotelicity significantly predicted replay 

intention (i.e., “How likely would you play this game again in your free time?”), β = 1.21 (CI 

95% [.821, 1.6]), R2 = 57.4%, p < .001. 

Participants were also asked after the game to estimate the time they thought had passed 

whilst they were playing, i.e., “How much time do you think passed since the beginning of 

the game?”. Unsurprisingly, flow’s dimension of time distortion presented a significant 

negative relationship, β = -4.46 (CI 95% [-8.32, -.688]), R2 = 16.3%, p < .05. This suggests that the 

underestimation of time was higher as the self-reported time distortion increased. Loss of time 

perception during video game play (“When you play video games, do you lose track of 

time?”) significantly correlated with enjoyment derived from video games (“Do you feel 

enjoyment when you play video games?”), χ2(6) = 17.9, p < .01. Flow’s time distortion was also 

negatively associated with age, β = -0.63 (CI 95% [-.114, -.011]), R2 = 16.8%, p < .05; self-reported 

time distortion decreased as age increased. 



   

 

 

Flow Experience in Virtual Reality Games | 191 

 

6.3.1.2 Comparison with Studies I and II 

A one-way ANOVA was carried out to explore differences in the self-reported flow 

dimensions (FSS-2), personality scores (BFI) and other variables. All data from all studies were 

added as dependent variables. The following variables indicated significant differences: 

flow’s autotelicity, F(2, 82) = 6.094, p < .01, flow’s skills-challenge balance, F(2, 82) = 3.438, p < 

.05, personality trait of conscientiousness, F(2, 82) = 7.284, p < .01, Tower Defense VR final 

score, F(2, 82) = 89.752, p < .001, age, F(2, 82) = 15.9, p < .001, and years of games experience, 

F(2, 82) = 6.917, p < .01. Differences between the first and second study will not be detailed 

here, as they were mentioned in the previous chapter (see Comparison with Study I). 

Pairwise comparisons with Bonferroni correction showed that autotelicity was significantly 

lower in this study than the first (p = .036). Significantly lower ratings were also observed for 

the dimension of skills-challenge balance (p = .047). The personality trait conscientiousness 

was found to be significantly lower from the second study (p < .01) as well as the years of 

experience (p < .01). The average age was significantly lower from the previous studies (first 

study: p < .01; second study: p < .001), indicating that the present study comprised the youngest 

sample across the three studies. Finally, the players in the present study performed better as 

evidenced by their Tower Defense VR score, which was significantly higher than the previous 

study (p < .05). 

6.3.1.3 EEG band activity 

The relative power from three frequency bands (details of processing in section Chapter 3, 

Electroencephalography Preprocessing and Features) was submitted to a repeated-measures 

ANOVA as a dependent variable. The model design included the factors Condition (flow, 

anxiety, boredom) and ROI (frontal-left, frontal-right, midline, central-left, central-right, 

posterior-left, posterior-right). Three separate analyses were carried out for each band (theta, 

alpha and beta). All topographic maps shown below are normalized by the local maximum 

power found at each band rather than the maximum value from the aggregated conditions. 

Theta band. The main effects of ROI, F(2.7, 82.10) = 41.32, ηp2 = .579, p < .001, Condition, F(2, 

60) = 9.35, ηp2 = .238, p < .001, and the interaction ROI × Condition, F(4.58, 137.25) = 8.32, ηp2 = 
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.217, p < .001, were significant. For the ROIs, theta power increases were overall observed in 

the left-frontal (28.77 ± .876, p < .001), right-frontal (28.11 ± .971, p < .001) and midline (31.56 ± 

.973, p < .001), yielding significant differences with the remaining ROIs (Figure 24). 

 

Figure 24: Relative theta power across seven regions of interest (ROIs). Theta power was most 

pronounced in the frontal-left, frontal-right and midline. FL = Frontal-Left, FR = Frontal-Right, 

M = midline, CL = Central-Left, CR = Central-Right, PL = Posterior-Left, PR = Posterior-Right. 

Follow-up pairwise comparisons of the Condition factor indicated that relative theta power 

was significantly higher during the flow (26.57 ± .967, p < .01) and anxiety (26.59 ± .98, p < .01) 

than during boredom (25.37 ± 1.01). To obtain a better understanding of the Condition × ROI 

interaction, post-hoc tests were carried out and showed that flow and anxiety at left-frontal, 

right-frontal, midline and left-central ROIs modulated significantly higher theta power than 

boredom, 0.001 < p < .05 (Figure 25). Right-central theta amplitude was also significantly 

higher in the anxiety versus boredom pair (p < .05), but not flow (p = .134). 
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Figure 25: Average theta power distribution across the locations on the scalp visualized 

through the normalized relative band power from all participants. Theta power was 

significantly more pronounced in the flow and anxiety conditions in the bilateral-frontal and 

left-central sites. Theta power was also stronger during the anxiety condition in the right-

central sites compared to boredom. 

Alpha band. In the alpha range, the omnibus tests were significant for ROI, F(2.42, 72.48) = 

6.42, ηp2 = .176, p < .01, Condition, F(1.51, 45.31) = 13.05, ηp2 = .303, p < .001 and the interaction 

ROI × Condition with a weak effect size, F(4.99, 149.81) = 3.05, ηp2 = .092, p < .05. Alpha rhythm 

was significantly more pronounced in the midline and left-central sites compared to the 

bilateral frontal sites, 0.01 < p < .01 (Figure 26). The left-posterior sites were also modulated by 

higher alpha activity compared to the right-frontal sites (p < .01). The post-hoc tests for the 

effect of Condition showed that boredom was characterized by higher alpha power than flow 

and anxiety (p < .01 for both comparisons). 
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Figure 26: Relative alpha power across seven regions of interest (ROIs). Alpha power was best 

observed in the midline, central-left and posterior-left sites. FL = Frontal-Left, FR = Frontal-

Right, M = midline, CL = Central-Left, CR = Central-Right, PL = Posterior-Left, PR = Posterior-

Right. 

The follow-up tests for the Condition × ROI interaction indicated that boredom was 

characterized by significantly higher alpha activity in the midline, left-central, right-central, 

and left-posterior sites compared to flow and anxiety (.05 < p < .001). In the right-posterior 

sites, boredom modulated significantly higher alpha activity than flow (p < .01), but not 

anxiety (p = .214). Furthermore, anxiety modulated higher alpha activity in the midline, in 

comparison to flow, p < .05 (Figure 27). 
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Figure 27: Average alpha power distribution across the locations on the scalp visualized 

through the normalized relative band power from all participants. Activity in the alpha band 

dominated during boredom over the midline, left-central, right-central and left-posterior sites. 

Furthermore, anxiety induced stronger alpha activity compared to flow in the midline. 

Beta band. For the beta band, the effect of ROI was significant, F(3.12, 93.7) = 33.24, p < .001, 

ηp2 = .526. Interestingly, the power in this range increased proportionally to the posteriority of 

the ROI it was extracted from, albeit not consistently (Figure 28). The lowest beta was 

observed in the midline (Fz, FCz, Cz and Pz) and was statistically significantly lower than any 

other ROI (p < .01). In contrast, beta activity at the right-central and bilateral posterior sites, 

was statistically significantly higher than left-frontal, right-frontal and midline (p < .001). 
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Figure 28: Relative beta power across seven regions of interest (ROIs). A significant 

modulation of band activity was shown to progressively increase based on the posteriority of 

each ROI. FL = Frontal-Left, FR = Frontal-Right, M = midline, CL = Central-Left, CR = Central-

Right, PL = Posterior-Left, PR = Posterior-Right. 

The main effect of Condition was also significant, F(2, 60) = 3.80, ηp2 = .112, p = .028, as well as 

the interaction of Condition × ROI, F(5.87, 176.16) = 4.89, ηp2 = .140, p < .001. Post-hoc tests 

indicated significantly higher right-central beta during flow (40.87 ± 1.95, p < .05) and anxiety 

(41.07 ± 2.20, p < .01) than during boredom (39.12 ± 2.07). The same trend was observed at the 

posterior sites where both flow and anxiety modulated significantly higher bilateral beta 

activity than boredom, .01 < p < .05, in all four comparisons (Figure 29). 
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Figure 29: Average beta power distribution across the locations on the scalp visualized 

through the normalized relative band power from all participants. Right-central (C4, C6, CP4, 

TP8) and bilateral-posterior sites (PO7, PO3, PO4, PO8, O1, O2) produced stronger beta 

activity during flow and anxiety compared to boredom. 

6.3.1.4 Alpha asymmetry 

To address the specific case of alpha asymmetry, a preliminary 3 × 2 repeated-measures 

ANOVA was carried out with Condition (flow, anxiety, boredom) and ROI (left vs right 

channels) in its terms. The dependent variables were the averaged absolute power estimates 

of the alpha band for each participant at each condition across four pairs of channels, i.e., Fp2-

Fp1, AF4-AF3, F4-F3, and F8-F7, collapsed into left (Fp1, AF3, F3, F7) and right (Fp2, AF4, F4, 

F8) as dependent variables. The data were extracted from each second window of each round 

in the game. The main effect of Condition was not significant, F(1.55, 46.36) = 1.58, p = .215. 

However, the main effect of ROI was significant, F(1, 30) = 8.53, ηp2 = .221, p < .01, where the 

left hemisphere was characterized by significantly higher absolute alpha (6.41 ± .65) than the 

right hemisphere (5.42 ± .512 , p < .01). These results allude to an overall withdrawal tendency, 

when the experimental condition is not factored in. 

Further, a second analysis (3 × 4 repeated-measures ANOVA) was carried out, testing for the 

main effects of Condition for each electrode pair (Fp2-Fp1, AF4-AF3, F4-F3, and F8-F7) using 

the difference in the log absolute power of the right channel subtracted from the contralateral 

channel (Allen et al., 2004). The analysis showed a significant main effect of Electrode Pair, 
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F(1.49, 44.61) = 32.11, ηp2 = .517, p < .001, but the effect of Condition failed to attain significance 

(p = .788). Follow-up analysis on the Electrode Pair showed that the FAA index at the F8-F7 

pair was significantly lower than all other pairs (p < .01 for all comparisons; Figure 30). FAA 

at the Fp2-Fp1, AF4-AF3 and F4-F3 paired comparisons was not significantly different, p > .05. 

 

Figure 30: Alpha asymmetry at four channel pairs (Fp2-Fp1, AF4-AF3, F4-F3 and F8-F7) 

generated by the logarithm of the right channel (even-numbered channels) and subtracted 

from the logarithm of the left channel (odd-numbered channels, as per the standard 

nomenclature in the 10-20 international system). FAA index values (y-axis) close to zero 

indicates little to no asymmetry. Only FAA at the pair F8-F7 was significantly lower than the 

remaining pairs, indicating higher right-hemispheric activation. 

Given the absence of a significant effect for condition, the three conditions were further 

collapsed at each of the four pairs, by averaging (condition-independent), and tested for their 

relationship with the ratings on each flow dimension and personality scores as reported 

through the FSS-2 and BFI questionnaires. The results indicated significant positive 

correlations between the FAA index and neuroticism at the F4-F3 pair, goal clarity at the F8-

F7 pair, and autotelicity at the Fp2-Fp1 pair. However, a negative relationship arose for the 
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personality dimension of extraversion, that was the result of a second explanatory model 

comprising both autotelicity and extraversion (Table 11). 

Table 11: Results from stepwise linear regressions of the flow dimensions from Flow State 

Scale – 2 (FSS-2) and Big Five Inventory (BFI) onto alpha asymmetry index from four frontal 

pairs, averaged from all conditions (flow, anxiety and boredom). The reported findings were 

all significant at p < .05. 

FSS-2 

Dimension/BFI 

Trait 

Fp2-Fp1 AF4-AF3 F4-F3 F8-F7 

Extraversion 
β = -.136, R2 = 

.306, p < .05 

β = -.125, R2 = 

.215, p < .01 
  

Neuroticism 
 

 
β = .162, R2 = .18, 

p < .05 
 

Goal Clarity 
 

  
β = .28, R2 = .285, 

p < .01 

Autotelicity 
β = .138, R2 = 

.150, p < .05 
   

 

6.3.1.5 Discussion of statistical findings 

Self-report measures. An interesting finding emerged from the questionnaires used in the 

study, where the majority of players reported their self-perceived difficulty of the game as 

hard. In line with the second study, flow's dimension balance of challenge and skills was rated 

significantly lower than the first study. Adopting our conclusion from the second study, this 

is likely because the game's conditions were interwoven into a single game experience, which 

might have shifted the self-perceived difficulty rating. Noteworthily, the group of participants 

who rated the game as hard reported significantly higher time distortion in the FSS-2 

questionnaire than the group that rated it as medium in difficulty. Furthermore, the 

performance of the players was statistically significantly higher in this study than any of the 

previous. 

Unsurprisingly, autotelicity presented a significant positive correlation with the players' 

reported intention to replay the game. This confirms earlier studies that an intrinsically 

rewarding experience promotes one's willingness to repeat an activity (e.g., Keller et al., 
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2011b). Similarly, the reported time distortion in FSS-2 was highly correlated with the 

participants' estimation of the game's duration, indicating that they experienced loss of time 

perception. This has been shown to have a strong relationship with enjoyment (e.g., Agarwal 

& Karahanna, 2000). 

Electrophysiology. The statistical findings of this study pointed to a few discernible spectral 

dynamics among the three experimental conditions. More specifically, flow and anxiety were 

associated with high theta band power in the fronto-central sites, whereas boredom was 

associated with dominant alpha power spread across multiple regions. Beta power 

demonstrated a significant increase in the right-central and bilateral posterior sites during 

flow and anxiety when compared to boredom. 

Theta band. Our finding on power increases in the theta range corroborates a successful 

experimental manipulation, with flow and anxiety having the highest cognitive demand. This 

is confirmed by several studies, which showed increased frontal theta activity whilst being 

engaged in cognitive tasks, working memory, attention (Sauseng et al., 2007; Scheeringa et al., 

2008), video game play (He et al., 2008) and virtual reality (Baka et al., 2018; Murphy & 

Higgins, 2019; Rogers et al., 2020). Notably, this finding poses a contradiction with an earlier 

study by Nacke and Lindley (2011). The experimental conditions used in their study were 

flow, immersion and boredom in a modified first-person shooter game. The authors found 

theta activity to be significantly increased in the immersion condition but not in the flow 

condition, which they specifically distinguished in their experimental design. They further 

postulated that theta may have underlay the architectural complexity featured in the 

immersion condition and suggested a possible link with spatial navigation. 

However, our study did not feature spatial navigation to justify a similar conclusion. Instead, 

our results are akin to Ewing and colleagues (2016), who identified a quadratic trend in the 

theta power under the effect of game difficulty. The authors surmised that game difficulty 

modulated activity in this band as a result of cognitive load. Further, Katahira and colleagues 

(2018) identified high theta activity during flow and overload conditions, but not during 

boredom, which the authors deduced to be a neural signature of cognitive control and 

working memory load. A similar, yet slightly divergent, finding is that of Yelamanchili (2018), 
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who also found increased frontal theta activity during a Tetris condition aimed to elicit flow. 

However, the author found significant theta power differences between the flow and anxiety 

conditions, with flow modulating higher power. This was not confirmed in the present study. 

Notably, the theta band power in our study was stronger in the flow and anxiety conditions 

in a wider network, including frontal and central sites; similar findings for flow are reported 

in the literature (Derbali & Frasson, 2010; Metin et al., 2017). 

The distinction between anxiety and boredom conditions in the theta band can be attributed 

to the presence of an incentive about which the participants were informed during the training 

session. The right-frontal theta activity in particular may also relate to reward processing 

(Christie & Tata, 2009) and emotional activation (Grissmann et al., 2017; Stenberg, 1992). In 

the case of reward processing and in agreement with our experimental manipulation, the 

magnitude of the rewards in TD-VR was maximized during the flow and anxiety conditions. 

Related findings have shown fronto-central theta power to increase during high cognitive 

load in presence of a high incentive (Fairclough et al., 2013), which appears to be sustained 

even though the reward delivery is omitted (Hamel et al., 2018). In the case of emotional 

activation, Stenberg (1992) found that a task of emotional imagery with pleasant and 

unpleasant memories accentuated right-frontal theta activity than a neutral control task. The 

author suggested theta activity to be an indicator of emotional arousal. The same author 

further claimed that theta may be a more reliable biomarker for emotional arousal than alpha-

band oscillations. 

This is corroborated by the more recent study of Reuderink et al. (2013), who found increased 

right-frontal theta activity during periods of experimentally induced frustration in a Pacman 

game. The authors found a weak, but significant negative correlation between fronto-central 

theta activity and self-reported valence (also, Grissmann et al., 2017; Stenberg, 1992). Since the 

terms anxiety and frustration have been used interchangeably (e.g., Craveirinha & Roque, 

2010; Jin, 2012; Knox et al., 2011), it is not a stretch to suggest that our findings are 

complementary to Reuderink and colleagues'. However, given this evidence, we are led to 

question whether the flow design of TD-VR was associated with negative emotional valence. 

Even if theta power increases could potentially allude to the existence of negative valence, 
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Roest and Bakkes (2015) argued that this does not automatically compromise the engaging 

nature of a game. Perhaps, as argued by different authors, flow may not be uniquely linked 

to positive emotions during the experience (Csikszentmihalyi, 1990, 1996; Ghani & 

Deshpande, 1994; Walker, 2010). Nevertheless, the self-report measures used in our study 

cannot determine a possible link with affective valence adequately. 

Alpha band. The alpha band was found to be predominantly related to the boredom 

condition, evincing a widespread power accentuation across the scalp. This was particularly 

noticeable in the posterior bilateral sites when contrasted with anxiety and flow rounds. 

Again, the results echo the findings of Ewing and colleagues (2016), who identified a decrease 

in posterior right alpha power when the game’s demand increased in presence of an incentive. 

In TD-VR boredom design, the demand was high since the players were unable to eliminate 

the boss, but there was little monetary incentive compared to the anxiety and flow conditions. 

Thus, whereas the authors found reduction of right alpha power when an incentive was 

present, an increase of right alpha when the incentive was minimal was found in this study. 

Parieto-occipital alpha activity has also been addressed in virtual reality settings. A recent 

study demonstrated that parieto-occipital alpha activity decreased during VR immersion, but 

increased during periods of inactivity (Magosso et al., 2019). A confirmatory finding from 

Wang and colleagues (2018b) suggested that decreases of alpha oscillations are observed in 

parieto-occipital areas in presence of cognitive and attentional demands. As increases of alpha 

power were identified in the present study, it can be concluded that cognitive demand during 

the boredom condition was significantly lower than the remaining conditions. Taken together, 

these results indicate that posterior alpha increases, as observed in the case of boredom in this 

study, may relate to phases of distractibility. Yelamanchili (2018) has also provided 

corroboratory evidence for this claim, where the flow condition was characterized by 

significantly lower alpha power compared to a resting condition during Tetris playing. 

In support of this notion, a recent study identified enhanced alpha power in posterior sites 

when participants reported mind-wandering during a repetitive Stroop task (Compton et al., 

2019). Although measures of mind-wandering were not employed in this work, it is a likely 

case if we consider that individuals are more prone to engaging in mind wandering when 
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they feel bored (Critcher & Gilovich, 2010; Eastwood et al., 2012). Finally, Lagopoulos and 

colleagues (2009) also identified large alpha activity in posterior sites that the authors 

attributed to reduced cognitive processing of sensory integration. To conclude, possible 

sources of enhanced alpha power across the boredom condition include distractibility, idling 

and/or mind-wandering. 

Beta band. The beta band presented statistically significant changes across the game levels 

and the experimental manipulation. These changes were observed in two ROIs, the right-side 

central sites and the bilateral posterior sites. In both ROIs, flow and anxiety trials were 

characterized by higher beta, relative to the total band power, compared to the boredom trials. 

Earlier research has shown that beta power increases in the occipital areas relate to visual 

attention and attentive visual performance, whereas diminution of beta may signify difficulty 

in sustaining attention (e.g., Gola et al., 2013). Moreover, occipital beta power increases have 

been observed in Zen and concentration meditation (Dunn et al., 1999; Huang & Lo, 2009); a 

similar pattern was mentioned earlier for the theta band. Parieto-occipital beta increases are 

also related to alertness (Kamiński et al., 2012). Taken together, the observed beta spectral 

dynamics in the parieto-occipital sites of this study may have related to sustained visual 

attention. 

It is interesting that the oscillatory changes in this band were similar in the flow and anxiety 

conditions (no statistically significant differences observed) versus the boredom condition. 

These two conditions were mutually characterized by higher reward incentives. However, 

only flow rounds delivered rewards upon enemy elimination, since anxiety rounds could not 

be won. Thus, the common distinction made in the literature, that shows differential neural 

patterns between reward delivery and reward anticipation (e.g., Doñamayor et al., 2012) may 

explicate the findings here. Specifically, Alicart and colleagues (2015) found that events of 

reward delivery present a similar oscillatory activity to events of near-misses (almost 

winning). This means that the flow rounds which consistently delivered rewards when 

defeating the enemies through a fixed-schedule modulation and the anxiety rounds that 

paused the bosses' health before elimination (near-miss) evoked similar neural activity. 



   

 

 

Flow Experience in Virtual Reality Games | 204 

 

Perhaps, due to the rewarding mechanics underpinning the flow and anxiety rounds, 

attention was more sustained during playing. 

Alpha asymmetry. The frontal alpha asymmetry index (FAA) failed to provide statistically 

significant differentiation across the three design conditions. Based on previous work, it was 

expected that FAA would be, on average, higher during the flow condition, as a marker of 

approach motivation, and lower during anxiety and boredom, as a marker of withdrawal 

tendency. Given that anxiety rounds featured high fiscal extrinsic rewards, the direction of 

this relationship with approach/withdrawal motivational direction was not clear a priori. 

Nevertheless, the hypotheses were not met. 

However, FAA was found to be correlated with two flow dimensions (FSS-2) and two 

personality traits (BFI). Firstly, a positive correlation was observed between neuroticism and 

FAA for the pair F4-F3. Withdrawal or avoidance behavior may reflect emotional instability 

that characterizes higher levels of neuroticism (Huang et al., 2015; Uusberg et al., 2015), and 

is thus a relevant trait to FAA. Higher levels of neuroticism in this study were associated with 

higher relative left activation, or an implied approach motivation. 

A corroboratory study is that of Farahi and colleagues (2019), wherein neuroticism showed a 

significant positive correlation with relative left activation at the F4-F3 sites, as well as the F8-

F7 pair. However, the authors did not fully explain how these two are positively linked and 

recommended that subscales of neuroticism may perhaps clarify such a relationship. 

Similarly, Minnix and Kline (2004) reported a significant positive correlation of FAA with 

neuroticism at the F4-F3 sites. These findings are consistent with the results in the present 

work for the pairs F4-F3 and the direction of the relationship (cortical activity lateralized to 

the left). Minnix and Kline suggested that the positive relationship expresses regulatory 

mechanisms that individuals with high neuroticism may be employing to suppress negative 

affect, thereby switching continually between approach and avoidance strategies. 

Secondly, a significant negative relationship between FAA and BFI's extraversion emerged at 

AF4-AF3, but also in a second stepwise linear model that included flow's autotelicity. 

According to the literature, reduction in FAA implies withdrawal tendency. The relationship 
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of extraversion and FAA is controversial, with studies having reported no relationship (e.g., 

Hagemann et al., 1999; Schmidtke & Heller, 2004; Wacker et al., 2010) or a relationship 

opposite to what was observed in the present study (e.g., Wacker, 2018). Though Wacker 

(2018) found left-sided activation to be related to FAA, it was specifically found during an 

activity, but not during resting-state asymmetry. 

This was a very important point in the author's work, given that previous research on 

personality focused on resting-state FAA. According to Coan and colleagues (2006)'s capability 

model of frontal EEG asymmetry, personality traits may be indexed via FAA, but it depends 

on certain conditions to best manifest said traits in a given situation. Thus, the capability 

model postulates that FAA is dependent on the context for the way a particular personality 

trait will be manifested. At first glance, this notion extricates us from the responsibility of 

making directed hypotheses on the FAA's relationship with different personality traits. 

However, what is meant by the authors is that different activities may have compatible or 

incompatible properties with a given personality trait, which can result in a shift of FAA index 

values (positive, negative or asymmetric). In the present case, the dominant right-sided 

activity for extraversion from the entire game recording is reminiscent of our previous study 

(see related Table 8), where extraversion consistently emerged as being negatively related to 

several data clusters irrespective of the game's experimental condition. As a result, it was 

postulated that the game may not have had appropriate game mechanics to satisfy an 

extravert's incentives for play. 

Regarding the specific flow dimensions identified for the pairs Fp2-Fp1 and F8-F7, there is 

lacking evidence on the relationship between individual flow dimensions with alpha 

asymmetry. A natural assumption is that the flow dimensions would relate to an approach 

motivation, given that the task (or, the TD-VR game) is what triggers and helps sustain the 

flow experience. Increases observed in the reported autotelicity and goal clarity were 

positively linked to the FAA index, suggesting, according to the literature, an approach 

motivation. The case of autotelicity is interesting, in that it reflects intrinsic properties of an 

activity, and by extension intrinsic motivation (Abuhamdeh, 2020; Van den Hout et al., 2018), 
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whereas the approach/withdrawal dichotomous theory has been associated mainly with 

extrinsic motivation. 

Thus, this study is one of the few existing works to have found a link between the autotelic 

nature of an activity and frontal alpha asymmetry. Further studies are needed to provide a 

more detailed analysis on the specific intrinsic properties of play (see e.g., Schmid, 2011) 

associated with alpha asymmetry at the Fp2-Fp1 sites. The second FSS-2 dimension that 

emerged as being positively related to FAA was goal clarity at the F8-F7 sites. Although 

existing evidence for such a link is considerably limited, it may be inferred that familiarity 

with the game's goals entrains a sustained approach motivation toward the engagement with 

the activity. 

Interestingly, this relationship was not shown during gameplay, but by the data averaged 

from the entire EEG recording per participant. This could be interpreted as autotelicity being 

more effective as a post-play metric rather than a during-play metric, thereby corroborating 

proponents of autotelicity viewing it as an outcome of the flow experience (e.g., Quinn, 2005; 

Rodríguez-Sánchez et al., 2011). Yet, autotelicity conceived as intrinsic motivation, which 

supposes that it exists prior to the engagement with the activity is an equally plausible case, 

but this relationship was not tested in the present study. 

In summary, the electrophysiological responses were consistent with the previous study's 

findings using HRV and EBV as physiological measures. The connection of flow and anxiety 

to cognitive demand was similarly shown in this study through power increases in the theta 

band at the frontal sites, which also seem to carry assumptions on reward expectancy. This 

finding enriched our interpretations, considering that HRV and EBV were mostly interpreted 

as reflecting increased autonomic arousal. In addition, the regions of interest in which specific 

spectral dynamics of the alpha and beta band suggested the role of attention and 

distractibility, which was largely consistent with the aim of the TD-VR design as per the 

designated experimental conditions. In the following section, the results of the channel 

selection and the subsequent classification outcomes are detailed. 
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6.3.2 Classification results 

6.3.2.1 EEG channel selection 

Following the approach documented in Feature Extraction and Selection, a classification 

procedure was employed. Channels were first ranked according to their MRMR scores (Table 

12), and then the three features of each channel (theta, alpha and beta; see Table 3) were 

progressively added at each iteration in decreasing order of the channels' relevance. Next, the 

out-of-sample accuracy was calculated at each iteration of the process, incorporating input 

information from each consecutive channel. In a similar manner to the previous study’s 

exploratory phase (Chapter 5, Classification results), the reported performance measures 

were based off unoptimized classifiers but with fixed parameters (see corresponding 

footnotes later in the text). The classifiers were optimized only after the electrodes were 

reduced to a smaller set. The average classification accuracy of the game-design classes is 

displayed in Figure 31. The classification performance did not improve significantly with the 

addition of new channels (paired-samples t-test, α = .05, Bonferroni-corrected, normality 

accepted per Lilliefors test) beyond 14 features for both the game-design (flow, anxiety, 

boredom) and self-report (low-flow and high-flow) classes. 
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Figure 31: Average classification accuracy of the game-design classes (flow, anxiety and 

boredom) from cross-validated 10-fold multiclass SVMs with a gaussian kernel 8. The input 

features comprised the theta, alpha and beta band power (thus 3 × n channels) and added 

iteratively based on the importance of each channel as reported by the MRMR algorithm. 

Error bars are the standard errors of means. Baseline is at 33%, based on the probability of 

each class's occurrence. 

Paired-samples t-tests performed on the fold accuracy rates resulting from the channel subset 

Ci against the channel subset Ci-1, it was observed that no significant differences occurred past 

14 channels (p < .05). The differences were specifically tested such that the t-statistic indicated 

an improvement of mean accuracy when testing Ci with its immediately preceding channel 

subset Ci-1. The accuracy rate from C = 14 channels was 52.17% (SEM = 0.3785), which is 

comparable to the accuracy rates obtained in the previous study when using the game design 

 

 

8 SVM: Parameter C = 1, Kernel = RBF (optimal kernel scale determined via a heuristic procedure, see 

{'kernelScale', 'auto'} name-value pair parameter in Matlab's fitcecoc and templateSVM). 
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classes (see Table 5), as expected. It can be noticed that the more the channels the higher 

classification performance. 

 

Figure 32: Average classification accuracy of the self-report groups (low- versus high-flow) 

from cross-validated 10-fold binary SVMs with a gaussian kernel 9. The input features 

comprised the theta, alpha and beta band power and added iteratively based on the 

importance of each channel as reported by the MRMR algorithm. Error bars are the standard 

errors of the means. Baseline is at 50%. 

For the self-report labels, a similar trend was observed (Figure 32), where 14 channels were 

found to be the optimal point, after which no significant improvement in the average fold 

accuracy was observed. The optimal point of 14 channels was equivalent to an accuracy rate 

of 96.9% (SEM = 0.1583), similarly expected as per the outcomes of the previous study (cf. 

Table 6). 

 

 

9 SVM: Parameter C = 1, Kernel = RBF (optimal kernel scale determined via a heuristic procedure, see 

{'kernelScale', 'auto'} name-value pair parameter in Matlab's fitcsvm). 
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Table 12: Electrodes sites that best contributed to the resolution of flow, anxiety and boredom 

(original design classes) and low- and high-flow groups (self-report classes). The channels 

displayed are ranked in descending order based on their importance weight assigned by the 

MRMR algorithm. The six highlighted cells and in gray are the channels that were common 

to both class definitions. Importance weight scores reflect the Mutual Information Quotient 

(MIQ), which is derived from the division of relevance over redundancy of the Minimum 

Redundancy Maximum Relevance (MRMR) algorithm. 

Final electrode sites 

Original design 

classes (CD) 

Importance weight 

score 

Self-report classes 

(CS) 

Importance weight 

score 

Fz 0.0034 TP8 0.0476 

F7 0.0030 O1 0.0419 

Pz 0.0030 O2 0.0299 

C3 0.0027 Pz 0.0286 

F8 0.0023 PO7 0.0211 

CP3 0.0021 FT7 0.0207 

Cz 0.0019 PO3 0.0195 

C4 0.0018 C6 0.0185 

Fp1 0.0017 FT8 0.0176 

C6 0.0017 CP3 0.0152 

FT7 0.0015 TP7 0.0151 

FCz 0.0015 PO8 0.0138 

F4 0.0015 CP4 0.0125 

TP7 0.0015 F7 0.0081 

 

The total number of unique channels for both class definitions are thus 14, a reduction of 53% 

from the original number of channels used in the study. A final consideration regards the 

overlap between the selected channels of each class definition (game-design and self-report 

classes). 
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The game mechanics can be thought of as embodying the antecedent qualities to trigger the 

flow experience that was subsequently reported by the participants. Thus, it is interesting to 

investigate whether the intersection of the final channels CD∩CS (Figure 33) reflects the optimal 

responses related to active playing and the self-reported flow experience. The channels that 

were commonly observed in both class definitions were F7, FT7, C6, CP3, TP7 and Pz. We 

hypothesized that these channels make up a minimal, yet suboptimal, representation of both 

cognitive states expressed throughout the game and via the psychometric measures. Using 

these channels, we proceeded with the final step of the study detailed in the next section. 

(a)  (b)  

(c)  

Figure 33: Channel selection as identified via MRMR and consecutive SVMs. The top-left 

panel displays the final channels when solving for the game-design classes (a), the top-right 

panel displays the final channels when solving for the self-report classes (b), and the bottom 

panel displays the intersection of the two solutions (c).  
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6.3.2.2 Understanding the neural representation of game design phases 

To further understand the latent cognitive factors that may have underpinned experiential 

variability in the game, the same approach followed in Chapter 5 for the ECG and EOG 

recordings was applied to the EEG data. Along the same line, the aim here is to identify the 

missing cognitive characteristics that help map responses from a minimal set of electrodes to 

the game design conditions. 

First, the relative band powers of interest (i.e., theta, alpha and beta) were extracted 

specifically from the channels F7, FT7, C6, CP3, TP7 and Pz. The theta/beta ratio was 

computed for each individual channel across the intersectional channels and the final feature 

set was complemented with the alpha relative power. The features were submitted to the 

approach detailed in the Diagnosing the findings using an unsupervised learner section. 

The results indicated that the FSS-2 dimensions of sense of control and feedback clarity were 

predicted by the number of player observations comprising each cluster (Table 13). These 

findings reveal that the intersectional channel selection bridged the game-design and self-

report classes effectively. Unsurprisingly, due to the Davies-Bouldin index considering two 

clusters as an optimal k for the data segregation of each class, the regressions of the second 

cluster formed a slope direction opposite to the first cluster. 

Based on the findings from each cluster, each observation was multiplied by the 

corresponding participant rating on the statistically significant FSS-2 dimensions of the 

regression analyses, depending on the cluster they originated from. The ratings were signed, 

based on the beta slope direction. The final feature set comprised the weighted observations 

and the alpha relative power. The addition of the alpha power provided improved 

classification rates mainly in the anxiety and boredom conditions, with nearly twice the true 

positives in the prediction rate of the boredom class. 
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Table 13: Results from separate stepwise linear regressions across the identified fuzzy 

clusters. For data of each design condition (columns), the proportion of participant 

observations in each Fuzzy C-means cluster (rows) demonstrated significant associations with 

flow-related dimensions. Double cells in designated rows indicate that more than one linear 

model was able to explain the data with a significant R2 change (p < .05). 

 Flow Anxiety Boredom 

Cluster 1 

Sense of Control, 

β = 23.76, R2 = .173, p 

< .05 
Flow's Sense of 

Control, 

β = -9.45, R2 = .144, p 

< .05 

Flow's Sense of 

Control, 

β = -11.66, R2 = .183, p 

< .05 

Sense of Control and 

Feedback Clarity, 

β1 = 33.31, β2 = -22.25, 

R2 = .351, p < .01, 

R2 change = .178, p < 

.05 

Cluster 2 

Sense of Control, 

β = -23.78, R2 = .173, p 

< .05 
Flow's Sense of 

Control, 

β = 9.45, R2 = .144, p < 

.05 

Flow's Sense of 

Control, 

β = 11.66, R2 = .183, p 

< .05 

Sense of Control and 

Feedback Clarity, 

β1 = -33.31, β2 = 22.25, 

R2 = .351, p < .01, 

R2 change = .178, p < 

.05 

 

As seen in Table 14, the differences in the obtained confusion matrices, when training with 

only theta/beta ratios versus theta/beta ratios and alpha power, yielded a respective accuracy 

rate of 38.45% versus 67.15% for boredom. 
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Table 14: Confusion matrices from an optimized SVM classifier using the game-design 

classes. Each cell contains the number of observations predicted as belonging to the flow, 

anxiety and boredom classes through a 10-fold cross-validation procedure. The sum of each 

row is the original number of observations per class. The top table contained only the 

theta/beta ratio for the channels F7, FT7, C6, CP3, TP7 and Pz, whereas a clear improvement 

is observed on the bottom table, when adding the alpha power from the same channels to the 

input feature set. 

Theta/beta ratios at feature level 
Predicted Class 

Flow Anxiety Boredom 

Actual Class 

Flow 3329 90 53 

Anxiety 300 806 413 

Boredom 285 650 584 

Theta/beta ratios and alpha power 

at feature level 

Predicted Class 

Flow Anxiety Boredom 

Actual Class 

Flow 3394 47 31 

Anxiety 220 1056 243 

Boredom 161 338 1020 

 

The results showed a clear mitigation of the misclassification rates when alpha power from 

the same channels was considered in the input features. Hence, the final classification was 

performed using theta/beta ratio and alpha power, making up a data set of 6510 samples × 12 

features. 

Noteworthily, no notes were taken regarding the participants’ handedness. This is relevant in 

that handedness may evince functional lateralization, typically in a contralateral manner (e.g., 

Gut et al., 2007). The missing channels from the contralateral hemisphere are F8 

(corresponding to F7), FT8 (FT7), C5 (C6), CP4 (CP3) and TP8 (TP7). To test for a possible 

improvement in classification performance, the same computations, based on the identified 

predictors, were performed on the feature set, but this time the electrodes from the opposite 

hemisphere were added to the feature space. 
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Table 15: Classification performance (%) metrics from three 10-fold cross-validated classifiers 

using the game-design classes. The feature set comprised three bands (theta, alpha and beta) 

× six channels (F7, FT7, C6, CP3, TP7 and Pz). Each data sample was scaled by the FSS-2 

normalized rating of the corresponding participant on feedback clarity and sense of control. 

This was based on the conjunctional results of Fuzzy C-means clustering and the linear 

regressions on the membership count of each participant in each cluster. 

Performance 
Support Vector 

Machine 
K-Nearest Neighbors 

Bagged Ensemble of CART 

Decision Trees 

Accuracy 85.73 (0.6091) 82.21 (0.3740) 83.30 (0.5022) 

Specificity 92.90 91.23 91.47 

Precision 82.00 77.55 79.07 

Recall 81.55 77.43 77.91 

F1-score 81.75 77.47 78.43 

 

The resulting classification performance, when using the homologous channels from the 

opposite hemisphere, presented an improvement, but only in the cases of SVM and k-NN. For 

the BDT classifier, only precision was slightly improved. In short, combining the participant 

self-perceived feedback clarity and sense of control with the neural responses from a minimal 

set of electrodes, we were able to map them more precisely to the game design labels. These 

findings are discussed in the next section. 

Table 16: Classification performance (%) metrics from three 10-fold cross-validated classifiers 

using the game-design classes. The feature set comprised three bands (theta/beta ratio and 

alpha relative power) × eleven channels (F7, F8, FT7, FT8, C5, C6, CP3, CP4, TP7, TP8 and Pz). 

Each data sample was scaled by the FSS-2 normalized rating of the corresponding participant 

on feedback clarity and sense of control. This was based on the conjunctional results of Fuzzy 

C-means clustering and the linear regressions on the membership count of each participant in 

each cluster, but also included the channels corresponding to the opposite hemispheric 

location. 

Performance 
Support Vector 

Machine 
K-Nearest Neighbors 

Bagged Ensemble of CART 

Decision Trees 

Accuracy 86.96 (0.4849) 83.07 (0.4742) 82.90 (0.5232) 

Specificity 93.33 91.47 90.61 

Precision 83.86 79.46 79.65 

Recall 83.04 79.63 76.74 

F1-score 83.43 79.51 77.92 
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6.4 Discussion 

The aim of this study was to identify a set of candidate electrodes for the detection of 

gameplay experiences, based on electrophysiological responses to the experimental 

manipulation of three design choices, flow, anxiety and boredom. The statistical results 

indicated an increase in fronto-central theta activity for flow and anxiety. Beta activity in the 

right-central and bilateral posterior sites increased during flow and anxiety versus boredom. 

There was also an increase of relative power in the alpha band observed in the boredom 

condition in the midline, central and posterior sites. 

As per the classification results, we were able to discriminate the three design classes of TD-

VR using six channels with the theta/beta ratio and alpha band powers at feature level. The 

effectiveness of combining fuzzy clustering with self-report ratings to improve inter-class 

separability was first demonstrated in the previous study (Diagnosing the findings using an 

unsupervised learner) and this is the second study to support the viability of the approach. 

Interestingly, through this approach, the maximum achieved accuracy rate reached 85.73% in 

the three-way classification of flow, anxiety and boredom. This suggests that the game design 

labels can be represented in a compact space, via a subset of the original electrodes, when the 

self-perceived sense of control and the immediate and unambiguous feedback are considered. 

Specific to this study was the conceptualization of flow from two standpoints – the 

standardized definition, given by the FSS-2 scale according Csikszentmihalyi (1990)'s criteria 

of flow, and the game design's approach to eliciting flow, monitored via physiological 

changes. This is a novel approach in the literature that unifies two different class definitions 

to identify the EEG channels commonly representing the game design and the self-report 

ratings. The findings, using the averaged weights of the MRMR solutions, converged to six 

unique channels that contributed the most to the separation of the low- and high-flow groups 

and the three experimental conditions of the VR game – namely F7, FT7, C6, CP3, TP7 and Pz.  

These results indicated that the two definitions of flow are not independent from one another 

and demonstrated a 27.3% overlap of channel contribution ranked by relevance. Although 

video game playing is associated with widespread stimulation of brain activity (Chanel et al., 
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2011), the motivation behind choosing the common channels from the two definitions of flow 

was that the cognitive implications of the original flow definition must similarly be identified 

in the design of TD-VR. The idea is that different game mechanics employ a variety of 

cognitive functions which may not be facets of flow per se. Hence, the purpose was to lessen 

the risk of inheriting cognitive and affective “noise” in the final selection of the electrodes. 

For the reasons explained above, it should be noted that those electrodes do not reflect an 

optimal subset in the present study. The first reason is that the intersection was taken between 

two seemingly incomparable solutions that were derived from a binary and a multiclass 

approach. The binary classification approach, which was based on the binary discretization of 

the self-report ratings, did not automatically assume either anxiety or boredom states in the 

low-flow group. On the other hand, the mapping of the responses to the designated game 

conditions in the three-way classification approach was non-stationary, and there existed an 

observable discrepancy in the classification performance of the two definitions. 

The second reason, complementary to the first, is that the intersection of the channels does not 

best represent either flow definition, as 14 channels were originally identified per flow 

definition, later reduced to six. The game conditions have had an explicit aim in the experience 

they were designed to induce. Among those, anxiety and boredom may not be directly 

inferred from the self-reports. Ideally, this should be addressed in future works via self-

reports that specifically target to quantify the three different states of flow, anxiety and 

boredom. Nevertheless, despite the less reliable performance of the multiclass approach, the 

overlap was of considerable extent. The final subset may have considered the anxiety and 

boredom conditions of the game design, given that the sense of control emerged as a latent 

factor in the regression approach. This factor was commonly found in the present and the 

previous study (see Chapter 5, Classification results) and was indeed a targeted dimension 

by the game design in TD-VR. The sensors that made up the final set have also had distinct 

roles in the regions of interest they belonged to, according to the statistical findings (section 

EEG band activity). 

A surprising finding was the absence of the Big Five personality dimensions in the final 

classification procedure. Personality traits have been subject to controversy in the EEG 
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literature. For example, Korjus and co-authors (2015) in their work entitled "Personality cannot 

be predicted from the power of resting state EEG" were unable to verify separable EEG spectra in 

the classification of the Big Five traits. This finding was challenged recently by Baumgartl and 

colleagues (2020) who were able to identify extraversion with an accuracy of 60.6%. The 

authors stated that their success may have related to a finer subdivision of a 99-power band 

spectrum. 

Another recent study was able to discriminate across the five personality traits with 

individual accuracies ranging from 73% for openness to 86.5% for agreeableness (Klados et 

al., 2020). The authors mentioned that the resting-state EEG has so far yielded inconclusive 

results and thus they collected data during an emotion processing task. While the setting of 

our study was more similar to Klados and colleagues, only the alpha asymmetry showed 

connections to personality, at the sites Fp2-Fp1 for extraversion and AF4-AF3 for neuroticism. 

Neither of those electrodes were included in the subset of the channels, which may explain 

why personality did not emerge as a latent factor in the regression analyses following the 

clustering approach. 

Notably, the sites that best represented the self-report classes (CS in Table 12) present a 

considerable overlap with those of Mallapragada (2018) who identified a very similar set of 

channels to relate to the flow experience, namely parieto-occipital, occipital and central sites, 

with a particularly dense distribution in the parieto-occipital area. We further identified 

fronto-temporal and temporo-parietal regions to be of importance, indicating a wider 

distribution of areas to be involved in the self-reported experience of flow. However, although 

Mallapragada found that only alpha and beta were the most relevant frequency bands, we 

also identified theta to significantly contribute to the self-reported experience of flow. 

The addition of the channels from the opposite hemisphere (CN = 11) made a subtle 

improvement to the classification of the electrophysiological responses. However, this 

improvement, compared to the six electrodes, was not sufficient to justify the inclusion of five 

additional channels in the final set, highlighting a disadvantageous trade-off. Nevertheless, 

this omission may compromise the classification of other population samples, and, as such, 

more studies are needed to clarify the applicability and generalizability of these findings. 
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Future studies should investigate these channels across different game genres and non-VR 

applications. 

Unfortunately, our study did not contribute to the expansion of knowledge over the brain 

structures involved in flow. The density of the EEG configuration, based on the number and 

spatial distribution of the electrodes used, was not high enough to perform source localization 

reliably (Lantz et al., 2003). Notably, Nuñez Castellar and colleagues (2016) performed EEG 

source localization in the context of flow using 31 electrodes. However, Michel & Brunet (2019) 

warned that, subject to electrode positioning, such low-density configurations might result in 

mislocalization and blurring. Nevertheless, future studies should consider this in settings 

involving a high-resolution setup, such as Yun et al. (2017) on EEG-based source localization 

of flow’s substrates with 128 electrodes. 

To summarize, this study demonstrated that EEG can be successfully combined with VR 

technologies to decode the flow experience. The obtained results were very similar to those 

reported for HRV and EBV. However, that study employed both physiological measures to 

reach similar classification rates and required more information from self-reports (BFI and 

FSS-2), whereas EEG utilized information from one self-report (FSS-2). Another difference is 

that the sensors employed for their measurement are spatially disconnected across the body 

(face, wrists and ankle), whereas EEG was able to provide slightly better classification 

outcomes from one local source (i.e., the scalp). However, this is not a limitation per se, 

considering that electrode placement around the mastoids can effectively extract HRV metrics 

(e.g., Ahn et al., 2019; Von Rosenberg et al., 2016). Similar proposals were made by Zhou et al. 

(2017) who used a wristband to record electrodermal activity, motion, ambient temperature, 

and heart rate. In our case, the head is elevated to a source of multiple biometrics that 

commercial VR can capitalize on, whilst keeping flow-aware technology production-friendly 

and of low design complexity. 
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7 General Discussion and Concluding Remarks 

 

This thesis investigated the flow experience in the context of virtual reality game playing. 

Evidence from previous research has consistently emphasized the importance of flow-like 

episodes in the enjoyment of activities, including video game playing. At the time of writing, 

there is a shortage of commercial solutions that readily identify such episodes (see Kerous et 

al., 2018; Rashid et al., 2020). The motivation of this work, therefore, is that flow-aware 

technologies are still lacking, not only from an academic standpoint, but also as consumer-

grade tools. 

While there already are advancements in this area, literature leans toward concerns, study 

limitations and risks, which nevertheless aim to stimulate follow-up research. These include 

technical considerations, such as signal quality, or theoretical, such as the reliability of 

measurements with respect to the mental states the devices are purported to track (e.g., Lotte 

et al., 2018). Another deterrent, similar in nature, is that research is conducted with academic 

standards and equipment, which are rarely applicable or accessible to the industry. Much of 

the research in the field remains exploratory, which can translate to a significant burden on 

the industry. Yet, the industry may be reluctant in investing in such technologies, due to the 

inconsistency in methodological and theoretical considerations that abound existing research 

(e.g., Lin & Do, 2020; Nijholt et al., 2009; Parsons et al., 2020). As such, the complexity of flow 

as a theoretical and physiological construct highlights that identifying flow episodes is not 

merely limited by hardware considerations, but perhaps, primarily, by the interpretation of 

the contextual data. 

To alleviate these drawbacks, this thesis devised a new approach to assess the effectiveness of 

a game design setting in eliciting flow. To this end, the information derived from the 

subjective experience of flow, as reported by video game players, was combined with their 

physiological responses to various experimental manipulations of a virtual reality game. The 

idea behind this combined approach was to bridge the subjective (self-reports) and objective 

(physiology) data to converge into a more robust representation of flow, that is nonetheless 
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still challenging to articulate. It is hoped that this work will pave the way for new technologies 

that will advance the state-of-the-art methods for detecting the flow experience and other 

mental states typically accompanying immersive game play, while also enhance the practice 

of game design assessment. 

7.1 Summary of findings 

In a spate of three experiments, organized in the chapters 4, 5 and 6, flow and the neighboring 

states of anxiety and boredom were investigated through manipulations of the game's design. 

The first experiment (Chapter 4) was a pilot study that sought to confirm whether a custom-

designed game for virtual reality could effectively elicit flow. The research goal (objective 1; 

see Research Goals) addressed in this study was to understand the relationship between 

personality measures and the subjective flow experience as a result of VR gaming. Two 

important findings helped define the course of this work. First, the three experimental 

conditions that were purely based on perceived task difficulty (easy, moderate, and hard) did 

not demonstrate significant differences in the flow ratings of the participants, even though 

easy and hard modes were expected to produce low flow ratings, as a result of anxiety and 

boredom respectively. However, the average global flow rating (sum of all flow's dimensions 

on the Flow State Scale – 2 questionnaire) indicated that participants rated their flow 

experience highly, regardless of the game's difficulty. Interestingly, this led to the 

consideration that the way difficulty was conceived at the development stage was arbitrary, 

but also that the overall design of the game was compatible with the flow experience.  

Next, we identified correlations between the flow dimensions and the personality ratings, as 

captured through the Big Five Inventory scale. The most significant predictor was the trait of 

agreeableness, that explained more than 20% of the individual ratings on flow. Previous 

research showed that agreeable individuals tend to be resistant to annoyance (Johnson et al., 

2012), that underlies the emotional states of anxiety and boredom (Eastwood et al., 2007; 

Monahan, 1981), elevating personality as a significant moderator of the flow ratings across the 

three experimental conditions. Under this consideration, it was speculated that personality 

might be a usable parameter in the detection of flow through physiology. 
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In the second study (Chapter 5), the second goal of this research was addressed (objective 2; 

see Research Goals). Initially, the TD-VR game underwent design modifications in order to 

maximize the differences between the easy and hard modes (what we originally thought to 

reflect boredom and anxiety respectively). Most importantly, a dynamic difficulty adjustment 

mechanic was implemented so that the difficulty would not have been as arbitrarily defined 

as in the previous study (see Chapter 5, Rounds and Dynamic Difficulty Adjustment). In 

addition, the conditions of flow, anxiety and boredom were merged into one holistic game 

session, thus experienced by all players instead of allocating each player randomly to a single 

difficulty mode. The gameplay experience was investigated with heart rate and eye blink 

variability as objective measures of flow, anxiety and boredom. 

In line with the second research goal, physiological patterns were shown to have underlain 

the different experimental conditions. The results demonstrated increased heart rate, eye blink 

rates and eye blink durations during boredom compared to flow and anxiety, whereas eye 

blink amplitudes were on average maximal during anxiety than during boredom (see Chapter 

5, Statistical results). The analysis workflow starts by submitting specialized features 

extracted from these physiological recordings to three competitive classifiers. 

Interestingly, the performance of the classifier strongly depended on the class definition. 

When using the original design classes of flow, anxiety and boredom, based on the game 

round each observation was extracted from, the classifier was able to discriminate among the 

classes with a maximum accuracy of 56.47%, achieved with BDT. These results were 

comparable to those reported by Chanel and colleagues (2008) in a similar setting involving 

physiological analysis of game-induced flow, anxiety, and boredom. Contrarily, when 

bisecting the participants' self-reported experience of flow into two groups (low- and high-

flow ratings), the BDT classifier, which scored the maximum accuracy among the three 

classifiers, achieved an accuracy of 89.16%. Similar observations were made in Chanel and co-

authors (2006). In the context of emotion, they suggested that self-evaluation be preferred over 

predefined labels, as they also reported higher classification rates with the former. However, 

in the case of this work, both flow definitions were needed to approach the research goals. 
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The classification outcomes of the two flow definitions (subjective ratings versus game design) 

led us to devise a new approach for assessing the effectiveness of the game design. A 

clustering approach with probabilistic assignment of observations to each cluster was used to 

elucidate the origins of this inconsistency. From the clustering solution and subsequent linear 

regression analyses, it was revealed that the personality traits of agreeableness, extraversion 

and conscientiousness explained a large portion of each designated cluster. These traits were 

further embedded in the sample data through a simple element-wise computation and the 

classifier was retrained and cross-validated with the modified data, maintaining however the 

original game design classes as the prime flow definition. A 10-fold cross-validation yielded 

classification rates that were comparable to the labels generated from the self-reports. Taken 

together, the approach of the study proposed a novel avenue for evaluating the compatibility 

of a game with specific personality traits. This is different from Benlamine and colleagues 

(2017) who incorporated the Big Five traits directly as inputs to classifiers. 

In the third and final study of the thesis (Chapter 6), the last two research goals were 

addressed (objectives 3 & 4; Research Goals). As per the third goal, electrophysiological 

patterns emerged throughout the three experimental conditions of flow, anxiety and 

boredom. The statistical analyses revealed that activity from three frequency bands – theta (4-

8 Hz), alpha (8-12 Hz) and beta (12-30 Hz) – emerged relative to the type of round the 

participants played (see Chapter 6, EEG band activity). However, the electrophysiological 

responses during flow and anxiety were largely homogenous, as also observed in Chapter 5. 

Both flow and anxiety were modulated by high fronto-central theta activity, as well as high 

right-central and bilateral posterior beta. These results were significant when contrasted with 

the boredom condition. On the other hand, boredom exhibited increased power in the alpha 

rhythm across several regions of interest. Asymmetry in the alpha band for inferring 

approach/withdrawal motivation did not seem to be sufficiently variable across the different 

experimental conditions to be considered a useful metric in the specific design of TD-VR. This 

again contrasts Benlamine and colleagues (2017), who were able to classify a facet of the 

GameFlow questionnaire, namely Mastery versus Performance, with an F1-score of 75% 

(SVM) and 81% (Random Forests). 
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The fourth goal was to select a subset of the original 32 electrodes that are maximally involved 

in the discrimination of the three experimental conditions in TD-VR. The results indicated that 

F7, FT7, C6, CP3, TP7 and Pz were commonly involved in the classification of the 

experimentally induced states and the self-reported experience of flow. Following the 

clustering and linear regression approach that was employed in Chapter 5, the cross-validated 

decoding accuracy was similar to the previous study, which employed two physiological 

modalities (HRV and EBV) instead of one (EEG). 

Specific aspects of these findings were discussed in the corresponding chapters, whilst more 

general implications are discussed in the next section. 

7.2 Theoretical and practical implications 

The present work was founded on existing theoretical and experimental advancements in 

games research and the flow state. The flow literature is far from a saturation point; this is not 

only evident from the diversity of experimental methods, but also from the different aspects 

of flow that are being evaluated. While the richness thereof is indicative of a vibrant and active 

research area, it also veers away from efforts to systematize the measurement of flow10. 

7.2.1 Theoretical considerations 

Standardizing the measurement of flow. In this work, two definitions of flow were utilized. 

The first definition is by Jackson and Eklund (2002) and it is directly derived from the original 

theory of flow (Csikszentmihalyi, 1975, 1990). This definition was measured via the Flow State 

Scale – 2 (FSS-2), which aims to capture salient properties of flow across nine dimensions, 

based on the self-reported perception of the flow state. The second definition is an 

implementation of the first definition, but adapted in the context of video games, using 

literature-driven design techniques to elicit the flow state, as well as anxiety and boredom. 

From the physiological responses collected from participants, the overlap of electrodes 

 

 

10 The interested reader may refer to Swann et al. (2018) who raise interesting points on the state of flow 

research. 
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toward resolving the two different flow definitions as target classes was interpreted as a more 

robust representation of flow. In our view, the approach presented here contributes toward 

the standardization of experimental approaches in the measurement of flow that is worth 

refining further. We also consider important that future studies provide a quantification 

measure of the extent the player-reported experience overlaps physiologically with the 

researchers' intended experience. 

Post-assessment of flow. Earlier, the potential caveats of a retrospective assessment of the 

subjective flow experience were illustrated (see Chapter 2, The challenges in measuring flow 

in video games). In this work, for a game session to have endured approximately 30 minutes 

on average, it is puzzling how well the physiological data were mapped onto the self-reported 

experience of flow (chapters 5 and 6) through classification processes. This is interesting 

because the flow questionnaire used in this work (FSS-2) is an explicit measure of one's 

subjective experience, which automatically assumes that the person can retrospectively access 

their flow experience. Similar observations, but in the context of self-reports for human 

motives, were made in Müller et al. (2018). 

The articulation and/or evaluation of one's flow experience, when asked to report it in 

structured interviews or questionnaires, does allude to the presence of meta-awareness, i.e., 

the ability to make conscious judgments about and monitor the experience (e.g., Baird et al., 

2019; Dunne et al., 2019). The flow experience in FSS-2 is reported through statements that are 

majorly written in first person. However, this notion contrasts Chin and Schooler (2010), who 

suggested that meta-awareness is disruptive to flow. The successful mapping of the 

physiological responses during the TD-VR game and the reported experience of flow, as well 

as the overlap between the two definitions of flow, suggest that this may not be entirely true. 

Yet, it is not known whether the appraisal of one's flow experience undergoes evaluation 

during the experience of flow or during the recollection of the experience. Schooler and Mauss 

(2010) argued that the absence of self-reflection during flow can impair people's ability to 

remember their experience. However, in an earlier work of the first author, it was suggested 

that some aspects of the experience can be made aware to oneself (Schooler, 2002). 

Furthermore, according to Chun and Turk-Browne (2007), attention and memory encoding 
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are intertwined. If one is able to recall their flow experience, then a portion of their attention 

might be involved in the mnemonic encoding of the experience. 

An interesting future direction would be to evaluate how far in time the memory of one's flow 

experience is sustained to assess its impact on the self-reported ratings. Perhaps, the 

involvement of self-reflection and meta-awareness during flow is more complex than 

originally assumed. These accounts likely point to the existence of a brain structure that makes 

memory formation possible during flow. For example, studies have shown that the 

temporoparietal junction and the medial prefrontal cortex are incumbent upon one's ability 

to and frequency of recalling dreams (Eichenlaub et al., 2014; Vallat et al., 2018). Both of those 

structures have similarly been reported to be involved in the experience of flow and self-

reflection (Gusnard et al., 2001; Klasen et al., 2012; Ulrich et al., 2014).  

7.2.2 Applications 

The idea of electroencephalography embedded in virtual reality head-mounted displays has 

gained traction in the recent years since the inception of the present work. A number of recent 

studies aimed to evaluate the quality of EEG signal in VR and found that the signal quality 

remained largely unaffected (e.g., Cattan et al., 2018; Hertweck et al., 2019; Sá et al., 2020; 

Tauscher et al., 2019). Our EEG study (Chapter 6) corroborates these findings. However, the 

participants were instructed to minimize their movements, hence one cannot confidently 

extrapolate to other settings, such as exergames (Yoo & Kay, 2016). The potential 

productisation of wearable EEG and VR would also entail several design considerations. 

First, the integration of dry sensors is a standard and intuitive practice in the industry, even 

though their ability to produce comparable quality to wet sensors is somewhat controversial 

(Lopez-Gordo et al., 2014). Factors that can significantly affect the sensors' quality and 

impedance are the size and material of the electrode (Griss et al., 2002). A second consideration 

is whether the EEG/VR-HMD is going to be wired or wireless, given the market's increasing 

adoption of wireless technologies (Huang et al., 2018). This can affect the speed in which the 

data is transmitted to the processing unit, placing an accumulated latency strain on the 

application that depends on the EEG input. Nevertheless, studies have shown promising 
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results whereby wireless EEG with dry sensors can perform comparably well to a wired wet 

system – as used in the present work (Hinrichs et al., 2020; Kam et al., 2019; Radüntz, 2018). 

Among the most well-known consumer-grade mobile EEG products are MindWave Mobile 2 

(NeuroSky), Enobio 8 (Neuroelectrics), Epoc-X (EMOTIV), and Muse 2/S (InteraXon Inc.). 

Notable examples of EEG meant for VR integration are Looxid Link (Looxid Labs), DSI VR300 

(Wearable Sensing), and the upcoming Galea (OpenBCI). Gaming is the most targeted 

application of consumer-grade EEG (Sawangjai et al., 2019; Todd et al., 2012), suggesting a 

considerable interest in the area. The potential of these technologies in video games is not 

exclusive to passive monitoring of mental states, referred to as stealth assessment (Shute et 

al., 2009), but also to brain-controlled game playing (Sawangjai et al., 2019). Many efforts are 

in the area of adaptive gaming, whereby the user's mental state informs the game and forces 

it to adapt in order to maintain the level of a desired state to a target threshold (e.g., Carofiglio 

et al., 2019; Fernández et al., 2017). While games should already adapt to the player to produce 

flow-like episodes (as argued in Chapter 2, Achieving flow by achieving balance), using 

brain activity as additional input could help tailor dynamic difficulty adjustment systems that 

eliminate the need for fixed increments/decrements depending on the player's performance. 

For example, the game's difficulty could adapt to the alpha rhythm of the user (e.g., Dey et al., 

2019). 

The current work focused on the integration of physiological tracking in VR applications. The 

supporting aim was to assess the game design by helping developers evaluate the appeal of 

their game during mass-testing. Furthermore, stakeholders can utilize this data to forecast the 

revenue of their title. However, the applications are not limited to gaming. Similar 

technologies can be used for marketing purposes, such as understanding the consumers' 

behavior and preferences (e.g., Alvino et al., 2019), education to maximize learning outcomes 

(Chiang et al., 2018), exposure therapy (Stolz et al., 2019), neurodevelopmental disorders 

research (Lau-Zhu et al., 2019) and healthcare in general, improvement of assistive 

technologies (Kumar et al., 2017), training (Roos et al., 2017), and driving (Gao et al., 2019). 

Another interesting application would be to expose individuals interested in career 
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orientation to different routine work scenarios and guide their choices based on the virtual 

scenarios that maximized their flow experience. 

In summary, the potential of creating better products by tracking flow, anxiety, boredom, and 

related mental states during activity engagement, using physiological signals, is consistently 

showcased in the literature. The experiments comprising this work provide support and 

highlight that the detection of these states is not a trivial venture, while a general metric may 

be hard to obtain (Ye et al., 2020). Indeed, this is not only due to the difficulty in capturing a 

stable definition of flow, but also because of various limitations in research works. The 

limitations of this work are discussed in the next section. 

7.3 Limitations and future work 

The approach employed in the present work utilized a self-report measure of personality, the 

Big Five Inventory, as a means of evaluating the personality types most compatible with the 

game design of TD-VR. The overarching goal was to devise an approach for effectively 

assessing the game design from the flow experience angle, as a preliminary step for informing 

the design in future works. Self-report measures were instrumental to decoding the game-

design levels, suggesting the need for design modifications that reconcile personality-based 

preferences and sense of control. However, important topics can still be queried. For instance, 

it remains unclear how the game design should be modified to be made compatible with a 

broader range of personality types. Indeed, this is challenging to answer based on the present 

work alone, as the game design was evaluated indirectly through the lens of personality traits 

and flow assessments collected after the game. This is the most intriguing direction that we 

will be investigating in future work. 

The game design phases were treated as a fixed stimulus and we observed how the 

physiological responses changed as a function of personality traits in each experimental 

condition. To have been able to answer the question above, a modified methodological 

approach would be needed, where one should record the difficulty adjustment over the course 

of the game, employ different reward schedules (e.g., randomization of reward acquisition 

times) and magnitudes of the rewards, as well as types of rewards. In doing so, the game 
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would be treated as a dynamic stimulus, able to provide a map of (interacting) game 

mechanics and personality types. 

One could then estimate optimal modifications to improve the game experience for specific 

personality types or to derive an average model that encapsulates multiple personality types 

at the same time. Future studies should elaborate on this crucial topic, as well as expand on 

the battery of self-reports to uncover additional factors that enhance the learning quality. Not 

only will game developers be able to assess the appeal of their game, but they will also be able 

to know what modifications they should perform to widen their player audience. Notably, a 

growing body of research has advocated the integration of questionnaires on player 

experience within the virtual environment, commonly known as inVRQ (Alexandrovsky et 

al., 2020; Putze et al., 2020; Regal et al., 2019), which is an interesting direction for future 

studies using VR or non-VR technologies. 

Another limitation relates to the assumptions behind the way the data were grouped. For 

example, it can be argued that the first round in the game, which was grouped under the flow 

label, might be too premature to have successfully induced a flow episode. Similarly, the 

dynamic difficulty adjustment mechanic was not activated upon the inception of the first 

round, and thus the skills-difficulty balance was assumed rather than observed. Unfortunately, 

the way data should be grouped is often not straightforward, and hence the motivation of this 

study. Grouping the data based on the design specifications of each round was considered a 

reasonable approach, albeit future work is needed to validate this approach in other settings. 

More trials should have been introduced for the anxiety and boredom conditions, even if this 

was intended. For example, De Manzano and colleagues (2010) suggested that five trials for 

boredom may be insufficient. However, we did not want to overpower the adaptive 

gameplay. After all, games are generally meant to be immersive and fun. Hence, it should be 

acknowledged that the experimental setting of the TD-VR game does not translate well to 

commercial games. 

Critically, it was assumed that the players would alternate between three discrete states, 

namely flow, anxiety and boredom. This assumption disregarded the possibility that other 

mental states could have taken place. For example, a state of neutrality akin to the baseline or 
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resting state was unaccounted for, even though it could have been a possible candidate during 

the game. Additionally, our analytical approach took for granted that all the hypothesized 

states (flow, anxiety and boredom) would be experienced, to an extent, and/or physiologically 

manifested by all of the players. 

The ambiguity regarding the grouping of data suggested the need for a fuzzy clustering 

method (Chapter 3, Unsupervised learner: Fuzzy C-means), which is agnostic to our original 

assumptions, yet considers the uncertainty in the clustering assignment. Our future studies 

will seek to standardize the assumptions on different mental states in the experimental game 

(i.e., the annotation process). For example, most studies regard the flow condition as a 

function of task difficulty and user skills (e.g., Chen, 2007), but the time the task difficulty is 

manipulated, relative to the task's inception, is rarely considered. 

With the inclusion of time as an additive dimension, one might be able to better illustrate the 

temporal evolution of flow that explains whether it should be treated equally across the 

duration of the experiment or across consecutive experiments in longitudinal studies. In these 

complex settings, state-of-the-art analytical tools could contribute to a better understanding 

of flow's elicitation by design. For instance, deep learners specialized in representing high-

dimensional features in compact latent spaces, inverting such mapping (e.g., Goodfellow et 

al., 2014, Donahue et al., 2016), could foster promising approaches toward the detection and 

manipulation of flow in real-time settings. 
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9 Appendix 

 

9.1 Informed consent – Participation sheet 

ID  

 

 

 

 

I would like to invite you to take part in a research study. Before you make your decision, 

please, read carefully why this study is being done and what you will be asked to do. Bear in 

mind that agreeing to participate does not refrain you from withdrawing at any point. 

This study is a collaboration of Center for Digital Entertainment (Bournemouth and Bath 

Universities) and Sony Interactive Entertainment and funded by The Engineering and 

Physical Sciences Research Council (EPSRC). 

We wish to acquire a better understanding of how the body reacts during virtual reality video 

game play. You will be asked to play a video game in virtual reality (VR) and to give your 

opinion on an array of questionnaires. Your heart rate, eye movement and brain signals will 

be recorded during the experiment. 

Please, consider the following:  

• Although the focus of the study is to evaluate your experience with the game, you may 

choose not to respond to questions if you consider them intrusive. 

• You may withdraw from the experiment at any time without providing any reason 

whatsoever, and there will be no consequences. 

• Your personal details and experimental data will be destroyed after the completion of 

the study, and no third party will be given access to them. 

• We respect the privacy of our participants, and we process everything with 

confidentiality. 
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• You understand that this study is not diagnostic and does not, in any way, aim to 

profile individuals based on their answers or performance in the game. 

• In the case of discomfort, you can remove the headset and decide on the continuation 

of your participation. 

• The results of this study may be published in a journal or used for teaching purposes. 

The results may also be presented at scientific meetings or in talks at academic 

institutions. Results will always be presented in such a way that data from individual 

volunteers cannot be identified. 

 

If you agree with the above terms, please, fill in the boxes in the next page. 

Age 
 

Gender 
 

Signature 
 

___________ / ___________ / 20 

 

Do you smoke?  

Yes No 

 

If yes, how many years? 

 

 

Do you drink coffee? 

Yes No 

 



   

 

 

Flow Experience in Virtual Reality Games | 289 

 

If yes, how many did you have today (in cups/glasses)? 

 

 

Do you exercise? 

Yes No 

 

If yes, how many days a week? 
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9.2 Player expertise questionnaire 

This questionnaire will help us determine your expertise with video games. Please, read each 

question carefully and answer as accurately as possible. 

1. Have you ever played video games (any console or platform)? 

Yes No 

  

 

2. If yes, how long have you been playing? 

Number Days / Months / Years 

 

(Please, circle the 

corresponding option) 

 

3. Have you abstained from playing video games for extensive periods? If yes, please 

mention an approximate, cumulative number of days, months or years. If not, write “0” 

in the “Number” field. 

Number Days / Months / Years 

 

(Please, circle or underline the 

corresponding option) 

 

4. At what age did you start playing video games? 

Age 

 

 

5. How many hours per day do you dedicate in video game play (please, indicate an average 

number)? 

Hours per day 
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6. Do you usually play games longer than you planned? 

Never Rarely Sometimes Frequently Always 

     

 

7. How often during the day, do you think about playing a video game? 

Never Rarely Sometimes Frequently Always 

     

 

8. Do you resort to video game play when you do not feel well? 

Never Rarely Sometimes Frequently Always 

     

 

9. How likely is it that you skip responsibilities or commitments in order to play video 

games? 

Never Unlikely Sometimes Likely Always 

     

 

10. When you play video games, do you lose track of time? 

Never Rarely Sometimes Frequently Always 

     

 

11. Does the time feel like it goes by more slowly than usual or more rapidly? (Please answer 

this question only if you did not choose “Never” in question number 10) 

More slowly More rapidly 
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12. Do you feel enjoyment when you play video games? 

Never Rarely Sometimes Frequently Always 

     

 

13. Have you ever intentionally avoided playing video games? 

Yes No 
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9.3 Time passing estimation (post-game) 

1. How much time do you think passed since the beginning of the game? 

Approximate number of minutes 

 

 

2. How likely would you play this game again in your free time? Indicate your choice with 

a checkmark (✓) to the corresponding cell. 

I would not 

replay this 

game 

Not very likely 

I would not 

care if I played 

it again or not 

Likely 

I would 

definitely 

replay the game 

     

 

 


