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Category-based Tail Comovement

Arthur Charpentier Emilios Galariotis Christophe Villa
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Abstract

Traditional �nancial theory predicts that comovement in asset returns is due to
fundamentals. An alternative view is that of Barberis and Shleifer (2003) and Bar-
beris, Shleifer and Wurgler (2005) who propose a sentiment based theory of comove-
ment, delinking it from fundamentals. In their paper they view comovement under
the prism of the standard Pearson�s correlation measure, implicitly excluding extreme
market events, such as the latest �nancial crisis. Poon, Rockinger and Tawn (2004)
have shown that under such events di¤erent types of comovement or dependence may
co-exist, and make a clear distinction between the four types of dependence: perfect
dependent, independent, asymptotically dependent and asymptotically independent.
In this paper we extend the sentiment based theory of comovement so as to cover the
whole spectrum of dependence, including extreme comovement such as the one that
can be observed in �nancial crises. One of the key contributions of this paper is that
it formally proves that assets belonging to the same category comove too much in
the tail and reclassifying an asset into a new category raises its tail dependence with
that category.

JEL classi�cation: G12



1 Introduction

During the unfolding �nancial crisis triggered by the US subprime loan failure, stocks

have experienced both extreme movement and comovement in returns. While comovement

between asset returns has been generally measured using Pearson�s correlation, extreme

comovement has been addressed using various statistical measures. For example, using

multivariate extreme value theory (EVT), Longin and Solnik (2001) derive extreme cor-

relations for various equity return distributions internationally. Hartmann, Straetmans

and de Vries (2004) rely on tail dependence for bivariate linkages between equity and gov-

ernment bond markets in the G-5 industrial countries during market turmoil. While the

abovementioned papers and the extant literature implicitly assume asymptotic dependence

because of the use of EVT, Poon, Rockinger and Tawn (2004) point out that this is a

very simplifying assumption that can lead to estimation errors. They derive a general

multivariate framework with two types of extreme value dependence structures that allow

for both asymptotic dependence and independence. More speci�cally they make a clear

distinction between the four types of dependence: perfect dependent, independent, asymp-

totically dependent and asymptotically independent, claiming that "for positively related

and asymptotically dependent (independent) variables, large values of each variable will

occur simultaneously more often (less often) than if the variables are independent (per-

fectly dependent)."1 Most papers in this strand of the literature focus on the statistical

measurement of extreme comovement and not on explaining the observed patterns based

on a proposition that involves a �nancial model/theory.

Assuming a frictionless economy and rational investors, traditional �nancial theory

maintains that comovement (extreme comovement) in prices is due to comovement (extreme

comovement) in fundamental values. Hence, the reason why the stock prices of a given

industry comove is that their earnings and hence their intrinsic values, are related, and

when one industry constituent reports good �nancial results, it is rather likely that other

�rms in the same industry will too. There is little doubt that under the aforementioned

assumptions the traditional fundamentals-based view is able to explain standard patterns

of comovement. Nonetheless, in the presence of irrational investors, market imperfections

and limits to arbitrage, asset prices and fundamental values become disentangled, rendering

traditional theory ine¤ective and calling for propositions based on behavioral theories of

comovement such as investor sentiment. According to Barberis and Shleifer (2003) investors

1Bae, Karolyi and Stulz (2003) focus on analyzing the joint occurrences of extreme events using a
multinomial logistic model in order to study the propagation of large-return shocks within and across
regions.
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group information into categories, based on some common characteristic observable across

all assets that belong to the same category. Such an approach simpli�es the investment

process, narrowing down the possibilities and making it much easier to allocate funds across

a few categories than among numerous assets. The manifestation of this in �nancial markets

can be found in style investment, where investors group stocks into styles based on some

common characteristic that can be related or unrelated to fundamentals and allocate funds

at the category level rather than the individual one. Styles are complemented by counter-

styles, for example: large cap versus small cap, growth versus value etc. and investors move

funds from style to counter style in anticipation of better investment opportunities, that

is, styles become in and out-of-favor. If some investors are noise traders with correlated

sentiment operating in a market with limited arbitrage, then as they shift funds between

categories, they will induce comovement in prices that is not related to fundamentals. For

example, if noise traders become irrationally enthusiastic about internet stocks and channel

funds into that category driven by sentiment, the common buying pressure will lead to price

comovement for such stocks even if their fundamental values are unrelated. Cornell, 2004

used Yahoo and Amazon to illustrate sentiment based comovement related to category fund

allocation for two �rms with di¤erent fundamentals and businesses. A plethora of studies

provide evidence that sentiment is correlated across investors and in�uences comovement in

stock prices (see Baker and Wurgler, 2006). Barberis, Shleifer, and Wurgler (2005) provide

evidence of style-based comovement associated with the inclusion of stocks in aggregate

indices. Finally, Kumar and Lee (2006) have shown that systematic trading by retail

investors could lead to stock return comovements beyond the usual risk factors.

This paper complements the previously mentioned literature. More speci�cally, while

the extant literature so far aimed at explaining comovement in normal market states as

captured by standard correlation measures, we examine extreme comovement such as the

one that can be observed in �nancial crises. To capture such extreme comovement we em-

ploy the two types of tail dependence proposed by Poon, Rockinger and Tawn (2004). More

importantly, we take literature further by extending the propositions made by Barberis and

Shleifer (2003). Simply speaking, Barberis and Shleifer propose a sentiment based theory

of comovement, while we, on the other hand, propose a sentiment based theory of extreme

comovement. This is motivated by the fact that during �nancial crises, sentiment based

investment gains prominence, and the tails of the return distribution are gaining impor-

tance too. Our contribution can be viewed as complementary to the one of Barberis and

Shleifer, as it extends their proposition so as to cover the full spectrum of dependence.

More precisely three main contributions have been derived: 1) we formally prove that the
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category-based comovement model proposed by Barberis and Shleifer (2003) implies that

returns are asymptotically independent; 2) we formally prove that the category-based co-

movement model proposed by Barberis and Shleifer (2003) is also a category-based weak

tail-comovement model: in this economy, assets in the same category comove too much

in the tail and reclassifying an asset into a new category raises its (weak) tail dependence

with that category; 3) we emphasize on the crucial role of the distribution of noise trader

sentiment in order to explain both positive correlation and (strong) tail comovement in

asset returns. More precisely we show that if the distribution of the change in noise trader

sentiment has heavy tails, then assets in the same category comove too much in the tail

since tail comonotonicity is found for such assets; and reclassifying an asset into a new

category raises its (strong) tail dependence with that category.

The outline of the rest of the paper is as follows. Section 2 introduces . Section 3 details

our . In Section ?, we . Section ? concludes and provides directions for future research.

2 Tail Comovement Measures

Quantile dependence is a measure of the dependence in the tails of the distribution. If Z1
and Z2 are random variables with distribution functions F1 and F2, then there is quantile

dependence in the lower tail at threshold �, whenever

P
�
Z2 � F�12 (�) j Z1 � F�11 (�)

�
is di¤erent from zero while there is quantile dependence in the upper tail at threshold �,

whenever

P
�
Z2 � F�12 (�) j Z1 � F�11 (�)

�
is di¤erent from zero. Tail dependence obtains as the limit of this probability, as we go arbi-

trarily far out into the tails. De�nitions of tail dependence for multivariate random vectors

are mostly related to their bivariate marginal distribution functions. Loosely speaking, tail

dependence describes the limiting proportion that one margin exceeds a certain threshold

given that the other margin has already exceeded that threshold. The following approach,

as provided in the monograph of Joe (1997), represents one of many possible de�nitions of

tail dependence.
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The upper tail dependence index between Z1 and Z2 is de�ned as

�U = lim
�!1

P(Z1 � F�11 (�) j Z2 � F�12 (�)) = lim
�!1

P(Z2 � F�12 (�) j Z1 � F�11 (�));

and the lower tail dependence index is

�L = lim
�!0

P(Z1 � F�11 (�) j Z2 � F�12 (�)) = lim
�!0

P(Z2 � F�12 (�) j Z1 � F�11 (�)):

where 0 � � � 1, we have that variables are termed asymptotically dependent if � > 0
and asymptotically independent if � = 0. However, as pointed out by Poon, Rockinger

and Tawn (2004), generally, when � = 0 the two random variables are not necessarily

exactly independent. Coles, He¤ernan and Tawn (1999) have provided a range of extremal

dependence models, derived from a di¤erent form of multivariate limit theory, that describe

dependence but have � = 0. Although the random variables are asymptotically independent

in this case, di¤erent degrees of dependence are attainable at �nite levels of �. To this end,

they introduce another tail dependence index2.

The upper tail dependence index between Z1 and Z2 is de�ned as �U 2 (0; 1] where

�U = lim
�!1

log(1� �)

logP(Z1 > F�11 (�); Z2 > F�12 (�))
;

while the lower tail dependence index between Z1 and Z2 is de�ned as �L 2 (0; 1] where

�L = lim
�!0

log(�)

logP(Z1 � F�11 (�); Z2 � F�12 (�))
:

Values of � > 0, � = 1
2
and � < 1 loosely correspond respectively to when Z1 and Z2 are

positively associated in the extremes, exactly independent, and negatively associated. � = 0

and � 2 (0; 1) signi�es asymptotic independence, in which case the value of � determines
the strength of dependence within this class (also known as dependence in independence).

The intuition of this coe¢ cient is the following. If Z1 and Z2 are independent (in tails),

for � large enough

P(Z1 > F�11 (�); Z2 > F�12 (�)) = P(Z1 > F�11 (�)) � P(Z2 > F�12 (�)) = (1� �)2;

2In Poon, Rockinger & Tawn (2002), � is denoted �, while � is (1 + �)=2. This weak dependence
function is closely related to bivariate regular variation (as de�ned in Resnick (?)).
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or equivalently,

logP(Z1 > F�11 (�); Z2 > F�12 (�)) = 2 log(1� �);

while if Z1 are comonotonic (in tails), for � large enough

P(Z1 > F�11 (�); Z2 > F�12 (�)) = P(Z1 > F�11 (�)) = 1� �;

or equivalently,

logP(Z1 > F�11 (�); Z2 > F�12 (�)) = log(1� �):

Thus, the limit of the ratio logP (Z1 > F�11 (�); Z2 > F�12 (�))= log(1 � �) can be seen as

a tail dependence measure, with tail independence when the limit is 2 and tail indepen-

dence when the limit is 1. In order to have an index increasing with the strength of the

dependence, it becomes more natural to consider the inverse of that ratio.

3 Tail Comovement in a Category-based Comovement

Model

There are a number of interesting stock market patterns that don�t �t neatly into the tra-

ditional fundamental view of comovement. One example concerns so-called "twin stocks,"

which are stocks that are claims to the same cash-�ow stream, but are primarily traded

in di¤erent locations. The best-known example is Royal Dutch and Shell. They used to

be completely independent companies, but in 1907 they agreed to merge their interests

while remaining separate entities. Today, shares of Royal Dutch are traded primarily in

the United States and in the Netherlands, and are a claim to 60 percent of the combined

�rm�s cash �ow, while Shell shares, traded primarily in the United Kingdom, are a claim

to the remaining 40 percent. Since the two shares are claims to exactly the same cash-

�ow stream, the fundamentals-based view of comovement argues that the prices of the two

shares should move in lock-step with one another. In reality, the two stocks seem to have

minds of their own-Royal Dutch moves closely with the S&P index, while Shell�s movements

are closely tied to those of the FTSE index of U.K. stocks. A related example concerns

closed-end country funds, whose assets are traded in a di¤erent location from the funds

themselves. For example, there are closed-end funds invested entirely in German equities,

but whose shares trade primarily in New York. Since a closed-end fund and the assets it

holds are claims to very similar cash-�ow streams, the price of the closed-end fund and the

value of its holdings should move together very closely. However, this is not often the case.
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Closed-end country funds tend to move more closely with the national market where they

are traded than with the national market where their holdings are traded. In this example,

a Germany fund would tend to move more closely with the U.S. market even though all its

holdings are German equities. Finally, there is strong evidence that small-cap stocks tend

to move together, as do value stocks.

The framework developed by Barberis and Shleifer (2003) for analyzing trading based

comovement is straightforward. Consider an economy that contains a riskless asset in

perfectly elastic supply and with zero rate of return, and also 2n risky assets in �xed

supply. Risky asset i is a claim to a single liquidating dividend Di;T to be paid at some

later time T . This eventual dividend equals

Di;T = Di;0 + ei;1 + :::+ ei;T

where Di;0 and ei;t are announced at time 0 and time t, respectively, and where

et = (e1;t; :::; e2n;t)
0 ~ N (0;�D) ; i:i:d: over time

Barberis and Shleifer (2003) assume that the cash-�ow covariance matrix �D takes a

speci�c form, although the predictions also hold for more general structures. In particular,

we suppose that the cash-�ow shock to an asset has three components: a marketwide cash-

�ow shock, a group-speci�c cash-�ow shock that a¤ects assets in one group but not the

other, and a completely idiosyncratic cash-�ow shock speci�c to the asset. Formally, for

i 2 X,
ei;t =  MfM;t +  SfX;t +

q
1�  2S �  2M"i;t

and for j 2 Y ,
ej;t =  MfM;t +  SfY;t +

q
1�  2S �  2M"j;t

where fM;t is the market-wide shock, fX;t and fY;t are the group-speci�c shocks, and "i;t and

"j;t are idiosyncratic shocks;  M and  S are constants that control the relative importance

of the three components. Each shock has unit variance and is orthogonal to the other

shocks. The price of a share of risky asset i at time t is Pi;t and the return on the asset

between time t� 1 and time t is

�Pi;t = Pi;t � Pi;t�1

The innovation introduced by Barberis and Shleifer (2003) is to assume that noise
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traders are attracted to certain groups of assets and that they allocate their funds across

those groups rather than at the level of individual assets. For instance, value stocks, small

cap stocks and technology stocks could be examples of such groups. If arbitrage is limited,

change in noise trader sentiment regarding any one group will lead to price movements

that push prices for that group of assets away from their fundamental value. However,

this movement, and the subsequent return to fundamental value, are common across all

assets in the group. Suppose that, to simplify their decision-making, some investors group

the 2n risky assets into two categories, X and Y , and then allocate funds at the level of

these categories rather than at the individual asset level. In particular, they place assets 1

through n in categoryX and assets n+1 through 2n in category Y . A simple representation

for asset returns is then

�Pi;t = Pi;t � Pi;t�1 = ei;t +�uX;t; for i = 1; :::; n

�Pi;t = Pi;t � Pi;t�1 = ei;t +�uY;t; for i = n+ 1; :::; 2n

Here, uX;t can be thought of as time t noise trader sentiment about the securities in category

X. Since the noise traders allocate funds by category, this sentiment level is the same

for all securities in category X. The return on a security in category X is a¤ected not

only by news about cash �ows, ei;t, but also by the change in sentiment about X, �uX;t:

when noise traders become more bullish about old economy stocks, these stocks go up in

price. This model can also be thought of as a reduced-form model for the habitat view

of comovement. In this case, X and Y simply have to be reinterpreted as habitats, not

categories: instead of representing groups of assets that some investors do not distinguish

between when allocating funds, they represent groups of assets that are the sole holdings

of some investors. Speci�cally, we can think of assets 1 through n as U.S. stocks and assets

n + 1 through 2n as U.K. stocks; there are many investors in both countries who trade

only domestic securities. Under the habitat interpretation, uX;t tracks the risk aversion,

sentiment, or liquidity needs of investors who invest only in the securities in X. The return

of an asset in habitat X is a¤ected not only by news about cash �ows but also by the

change in risk aversion, say, of these speci�c investors.

In the propositions 1, 2 and 3, we will assume that 
uX;t

uY;t

!
� N

  
0

0

!
; �2u

 
1 �u

�u 1

!!
i:i:d: over time
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Proposistion 1. Under the category-based comovement model, for two assets i and j
we have � (�Pi;�Pj) = � (ei; ej) = 0

Proposistion 2. Under the category-based comovement model, if two assets i and j,
i 6= j, belong to the same category, i; j 2 X or Y , then

� (�Pi;t;�Pj;t) > � (ei;t; ej;t)

Proposistion 3. Under the category-based comovement model, suppose that asset j,
previously a member of category Y , is reclassi�ed as belonging to X. Then � (�Pj;t;�PX;t)

increases after j is added to category X where �PX;t = 1
n

P
l2X
�Pl;t.

The intuition is straightforward, whether X and Y are categories, habitats, or groups

of stocks that incorporate information at similar rates. When asset j enters category X, it

is bu¤eted by noise traders��ows of funds in and out of that category.

In the propositions 4 and 5, we will assume that uX has heavy tails.

Proposition 4. Under the category-based comovement model, if two assets i and j,
i 6= j, belong to the same category, i; j 2 X or Y , then

1. if uX has right-heavy tails

1 = �U (�Pi;t;�Pj;t) > �U (ei;t; ej;t) = 0

2. if uX has left-heavy tails

1 = �L (�Pi;t;�Pj;t) > �L (ei;t; ej;t) = 0

We thus observe that even if cash-�ow shocks are tail independent, �Pi and �Pj are

comonotonic in tails. Indeed if � = 1, there is tail comonotonicity.3

3Z1 and Z2 are said to be comonotonic if there exists ' strictly increasing such that Z2 = '(Z1). Then
one variable increases i¤ the other increases with probability one. If Z1 and Z2 are �nite variances, then
the correlation between between Z1 and Z2 exists, and it is maximal when Z1 and Z2 are comonotonic (so
called Hoe¤ding upper bound for correlation).
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Proposition 5. Under the category-based comovement model, suppose that asset j,
previously a member of category Y , is reclassi�ed as belonging to X. Then

1. if uX has right-heavy tails, �U (�Pj;t;�PX;t) increases after j is added to category X

where �PX;t = 1
n

P
l2X
�Pl;t.

2. if uX has left-heavy tails, �L (�Pj;t;�PX;t) increases after j is added to category X

where �PX;t = 1
n

P
l2X
�Pl;t.

4 Conclusion

Traditional �nancial theory predicts that comovement in asset returns is due to fundamen-

tals. An alternative view is that of Barberis and Shelifer (2003) and Barberis, Shelifer

and Wurgler (2005) who propose a sentiment based theory of comovement, delinking it

from fundamentals. In their paper they view comovement under the prism of the standard

Pearson�s correlation measure, implicitly excluding extreme market events, such as the lat-

est �nancial crisis. Poon, Rockinger and Tawn (2004) have shown that under such events

di¤erent types of comovement or dependence may co-exist, and make a clear distinction

between the four types of dependence: perfect dependent, independent, asymptotically

dependent and asymptotically independent. In this paper we extend the sentiment based

theory of comovement so as to cover the whole spectrum of dependence, including extreme

comovement such as the one that can be observed in �nancial crises. One of the key contri-

butions of this paper is that it formally proves that assets belonging to the same category

comove too much in the tail and reclassifying an asset into a new category raises its tail

dependence with that category.
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5 Annex A

Proof of Proposition 1: Since e = (ei;t; ej;t) is a Gaussian random vector, independent

of �uX;t which is also Gaussian, �P = e +�uX is also a Gaussian random vector: since

"i� and uX are independent. Strong tail dependence is null for non comonotonic Gaussian

random vectors, i.e.

�(�P ) =

(
0 if corr(�P ) 2 [�1;+1);
1 if corr(�P ) = +1:

thus, �(�Pi;t;�Pj;t) = 0 = �(ei;t; ej;t). This �nishes the proof of Proposition 1.

We now prove the following lemma, which will be useful in the proofs 2 and 3.

Lemma. If X = (X1; X2) has a Gaussian distribution with correlation �, then �U =

�L = (1 + �)=2 .

Proof of Lemma. �U is the upper tail dependence index of (X1; X2) if

P(Z1 > z1; Z2 > Z2) � [z1z2]�1=2�L(z1; z2)

if Z1 and Z2 have unit Fréchet distributions, and where L is bivariate slowly varying

function, i.e.

lim
t!1

L(tz1; tz2)
L(t; t) = h

�
z1

z1 + z2

�
;

for some function h de�ned on [0; 1] such that h(1=2) = 1.

The expression of the weak tail dependence index for Gaussian random vectors can

be obtain heuristically as follows. For the bivariate normal distribution, an asymptotic

development of Mills ratio gives

P(X > x; Y > y)

�(x; y; �)
� (1� �2)2

(x� �y)(y � �x)
:

Set U = �1= log �(X), V = �1= log �(Y ), and u = �1= log �(x), v = �1= log �(y) (so
that U and V have unit Fréchet distributions),

P(U > u; V > v) � �(��1(e�u
�1
);��1(e�v

�1
); �)

(1� �2)2

(x� �y)(y � �x)

13



since x = ��1(e�u
�1
) and y = ��1(e�v

�1
). A quick limit development yields

x � ��1(1� u�1) � (2 log u)1=2;

thus

�(��1(e�u
�1
);��1(e�v

�1
); �) � �((2 log u)1=2; (2 log v)1=2; �)

/ exp

 
�(2 log u) + 2�

p
(2 log u)(2 log v) + (2 log v)

2(1 + �2)

!

= [uv]1=(1+�
2) exp

 
2�
p
(2 log u)(2 log v)

2(1 + �2)

!

where function on the right is slowly varying.

Thus

P(U > u; V > v) = [uv]�1=(1+�
2)L(u; v);

where it can be proved that L(u; v) is a slowly varying function. >From the de�nition of

� the power value is necessarily 1=2�, and thus, for a Gaussian random vector

� =
1 + �

2
:

Proof of Propositions 2.Since e = (ei;t; ej;t) is a Gaussian random vector, independent
of �uX;t which is also Gaussian, �P = e+�uX is also a Gaussian random vector. From

the above lemma,

�U(�Pi;t;�Pj;t) = �L(�Pi;t;�Pj;t) =
1 + corr(�Pi;t;�Pj;t)

2
for i; j 2 X

Here,

cov(�Pi;�Pj) = cov(ei; ej) + �2u

and

var(�Pi) = var(ei) + �2u:

The proposition therefore follows if.

cov(ei; ej) < var(ei)

14



Using

ei;t =  MfM;t +  SfX;t +

q
1�  2S �  2M"i;t

it is easily checked that

cov(ei; ej) =  2S +  2M < 1

var (ei) = 1

which means that inequality corr(�P ) > corr(") does indeed hold and thus following the

above lemme that the proposition also hold.

Function h is said to be regularly varying at 1 with index � 2 R, denoted h 2 RV 1
� if

lim
t!1

h(tx)

h(t)
= x��; for all x > 0:

If � = 0, then h is said to be slowly varying. If � = +1, then h is said to be rapidly varying
at 1, i.e. limt!1

h(tx)
h(t)

= 0 for all x 2 (0; 1) and limt!1
h(tx)
h(t)

=1 for all x > 1. A random

variable Z is said to be right regularly varying with index � 2 R if FZ 2 RV +1
� , and left

regularly varying with index � 2 R if FZ 2 RV �1
� . From classical results on extreme values

(see e.g. Embrechts et al. (1997)) we will say that Z has right heavy tails if its distribution

is in the max-domain of attraction of the Fréchet distribution, i.e. FZ 2 RV +1
� with

� 2 (0;1). But unfortunately, rapid variation is not su¢ cient to characterize light tails.
We will say that Z has right light tails if its distribution is in the max-domain of attraction

of the Gumbel distribution. A necessary condition is that FZ 2 RV +1
1 . A su¢ cient

condition is that (1=h(x))0 ! 0 as x ! +1 where h denotes the hazard rate of Z, i.e.

h(x) = fZ(x)=FZ(x). For instance, the Student t distribution has heavy tails (with degrees

of freedom equal to the tail index �), while the Gaussian distribution has light tails.

FINIR DE REFERENCER LES LOIS CLASSIQUES

� Power laws For regularly varying distributions, far out in the tail t ! 1 the distri-

bution behaves like a Pareto distribution. For power laws, distributions have exact

Pareto tails.

� �-stable laws �-stable (or Lévy) distributions with in�nite variance � 2 (0; 2) have
heavy tails. They appear naturally when studying sum of random variables.

� Elliptical distributions Tails of standard elliptical distributions can be simply char-
acterized. For instance, the Gaussian distribution has light tails, while the Student t

15



distribution has heavy tails, its tail regular variation index � is the number of degrees

of freedom (????).

� Markov switching processes Consider a random coe¢ cient autoregressive model, e.g.

Xt = �nXt�1 + "t, where (�n) is a series of random variables. Then Xt has heavy

tails (see e.g. section 8.4.3 in Embrechts, Kluppelberg & Mikosh (1997)).

� GARCH processes ARCH and GARCH processes (with a Gaussian noise) are heavy
tailed (see e.g. section 8.4.3 in Embrechts, Kluppelberg &Mikosh (1997) for ARCH(1)

processes).

Some distributions have heavier tails than the Gaussian distribution, but will not nec-

essarily be called heavy tailed.

nonexistence of exponential moments A �rst class of distribution with heavier tails

than the Gaussian distribution is the class of distributions such that E(eX) = 1. Then
tail probability P(X > x) declines faster than exponentially.

Subexponential distribution A famous class of heavy tailed distribution is obtained when

the sum of n random variables is likely to be large if and only if their maximum is likely

to be large, i.e.

lim
x!1

P(X1 + � � �+Xn > x)

P(maxfX1; � � � ; Xng > x)
= 1:

Here the tails decrease more slowly than any exponential distribution.

Proof of Propositions 3.Let �PX;t = 1
n

P
l2X �Pl;t, and assume that (�uX;t;�uY;t)

is a Gaussian vector, then (�Pj;t;�PX;t) is a Gaussian vector, for any j (j 2 X or j 2 Y ).
Suppose that asset n + 1 is reclassi�ed from style Y into style X, and that at the same

time, asset 1 is reclassi�ed from style X into style Y . Berfore reclassi�cation, we have

cov(�PX ;�Pn+1) =  2M + �2u�
2
u

and after

cov(�PX ;�Pn+1) =  2M +  2S + �2u

Therefore, cov(�PX ;�Pn+1) does indeed increase after addition.Thus corr(�PX ;�Pn+1)

does also increase after addition and thus following the above lemme that the proposition

also hold..
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Proof of Proposition 4: A proof will be given here only for right tail, and upper

tail dependence, since the proof remains mainly unchanged for left tail and lower tail

dependence.

P(�Pi > F�1�Pi(t);�Pj > F�1�Pj(t)) =

Z 1

F�1uX
(t)

fuX (u) � F ei;ej
�
F�1�Pi(t)� u; F�1�Pj(t)� u

�
du:

(1)

With a change of variable u = F�1uX (t)x, we get

P(�Pi > F�1�Pi(t)j�Pj > F�1�Pj(t))

=

Z 1

1

F�1uX (t)

1� t
fuX (F

�1
uX
(t)x) � F ei;ej

�
F�1�Pi(t)� F�1uX (t)x; F

�1
�Pj
(t)� F�1uX (t)x

�
dx:

Let gt denote the integrated function, so that

P(�Pi > F�1�Pi(t)j�Pj > F�1�Pj(t)) =

Z 1

1

gt(x)dx;

then

�U(�Pi; Pj) = lim
t!1

Z 1

1

gt(x)dx =

Z 1

1

lim
t!1

gt(x)dx:

Recall that

gt(x) =
F�1uX (t)

1� t
fuX (F

�1
uX
(t)x)| {z }

�rst term

�F ei;ej
�
F�1�Pi(t)� F�1uX (t)x; F

�1
�Pj
(t)� F�1uX (t)x

�
| {z }

second term

:

For the �rst term, note that

F�1uX (t)

1� t
fuX (F

�1
uX
(t)x) =

s

1� FuX (s)
fuX (sx) where s = F�1uX (t);

and therefore

lim
t!1

�
F�1uX (t)

1� t
fuX (F

�1
uX
(t)x)

�
= lim

s!1

�
s

1� FuX (s)
fuX (sx)

�

>From Karamata�s theory (see e.g. Proposition 1.5.8 in Bingham et al. (1987), also

called Von Mises�conditions), since uX is right regularly varying with index � 2 (0;1),
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this term is simply

lim
s!1

�
s

F uX (s)
F
0
uX
(sx)

�
= lim

s!1

"
sF

0
uX
(s)

F uX (s)

#
| {z }

=�

� lim
s!1

"
F
0
uX
(sx)

F
0
suX (s)

#
| {z }

=x�(�+1)

For the second term,

F�1�Pi(t)� F�1uX (t)x = F�1uX (t)

 
F�1�Pi(t)

F�1uX (t)
� x

!

Let qi = limt!1
F�1�Pi

(t)

F�1uX
(t)
. Since " and uX are independent, the quantile function of "+ uX is

lower than the quantile function of "+uX in the case of comonotonicity, for u large enough.

Hence, there is t0 < 1 such that for all t 2 (t0; 1),

F�1�Pi(t) = F�1
"?i +u

?
X
(t) � F�1

"+i +u
+
X

(t) = F�1"i (t) + F�1uX (t);

where the + exponent is for comonotonic pairs, while ? denotes independent pairs. The last

equality is obtained from the property of additivity of the quantile function for comonotonic

variables. Thus,
F�1�Pi(t)

F�1uX (t)
�
F�1"i (t) + F�1uX (u)

F�1uX (t)
:

Since uX has heavier tails than "i, then (see Proposition 1.5.7 in Bingham et al. and

Proposition VIII.8.1 in Feller (1971)),

lim
t!1

F�1"i (t) + F�1uX (t)

F�1uX (t)
= 1:

Hence,

qi = lim
t!1

F�1�Pi(t)

F�1uX (t)
� 1:

Thus, (
for all x > 1; limt!1

�
F�1�Pi(t)� F�1uX (t)x

�
= �1;

for all x < 1; limt!1
�
F�1�Pi(t)� F�1uX (t)x

�
= +1;

;

and therefore

F "i;"j

�
F�1uX (t)� F�1�Pi(t)� F�1uX (t)x; F

�1
uX
(t)� F�1�Pj(t)� F�1uX (t)x

�
= 1(x > 1):
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So �nally

�U(�Pi;�Pj) =

Z 1

1

h
lim
t!1

gt(x)
i
dx =

Z 1

1

h �

x1+�

i
dx = 1:

Moreover since ei are gaussian �U(ei; ej) = 0; we have �U(�Pi;�Pj) > �U(ei; ej):

Proof of Proposition 5. It is possible to rewrite �PX;t as follows

�PX;t =
1

n

X
i2X

�Pl;t =
1

n

X
i2X

�el;t| {z }
eX;t

+�uX;t

where eX;t is normal (as a weighted sum of components of a Gaussian vector) and indepen-

dent of �uX;t (since e�;t is independent of �uX;t).

So the proof of the previous Proposition can be used to prove that �(�PX;t;�Pn+1;t) is

equal to one after reclassi�cation while �(�PX;t;�Pn+1;t) was zero before reclassi�cation.

Thus the proposition hold.
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