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1LEUKEMIA

Hematopoiesis, the production of all the cellular components of blood and blood plasma, 

occurs within the hematopoietic system, which includes the liver, spleen and the bone 

marrow (BM). At the origin of hematopoiesis are the so-called hematopoietic stem cells 

(HSCs). Normal hematopoiesis, in healthy persons, results in a wide variety of distinct 

differentiated cells with different functionalities. In leukemia cells, the processes of 

differentiation and maturation are blocked, and together with their acquired proliferative 

capacity eventually lead to overcrowding of the BM and consequently the suppression 

of normal functional blood cells. Leukemias are classified as either myeloid or lymphoid, 

depending on which types of white blood cells are affected.

ACUTE MYELOID LEUKEMIA

Patients with acute myeloid leukemia (AML) will initially present with symptoms due 

to reduction of normal hematopoiesis, such as anemia, easy bleedings and infections. 

The diagnosis is made by the presence of an abnormal high percentage (³20%) of immature 

myeloid blood cells (blasts) in the peripheral blood or BM, or through presence of unique 

genetic abnormalities, regardless of blast count (i.e. t(8;21), inv(16) or t(15;17)).1 Although 

AML is rare in children, the incidence in infancy shows a relative peak at approximately 2 

cases per 100,000, but rates rapidly decline subsequently with a nadir around 9 years, after 

which the incidence of AML increases gradually with age.2 The average estimated incidence 

of AML is 3.7 cases per 100,000 persons per year,3 increasing to ~5.0-40.0 per 100,000 

persons per year for people over 60 years.2 AML can be divided into various subgroups by 

integration of morphology (which is also at the basis for the outdated French-American-

British (FAB) classification), immunophenotypic, cytogenetic and molecular analysis.1 

Based on both cytogenetics and recognized molecular subsets that are distinct from 

the contribution of cytogenetic risk,4,5 patients are further classified in three prognostic 

risk groups according to the European Leukemia-Net (ELN) 2017 recommendations (i.e. 

favorable, intermediate and adverse). The prognostic groups predict the response to 

treatment and overall outcome. 

TREATMENT

The treatment of AML usually needs to start as soon as possible after diagnosis (or once 

patient specific targets are determined for targeted therapies), since AML can progress 

rapidly. Typically, the treatment of AML involves initial induction chemotherapy and post-

remission therapy. The primary goal of induction chemotherapy is to achieve complete 

remission (CR). By definition, CR is reached when morphological examination of BM reveals 

no more than 5% blast cells, with evidence of normal maturation of all cellular components 
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(normal erythropoiesis, granulopoiesis and megakaryopoiesis).6 The choice of induction 

treatment depends on the age, the performance status of the patient and comorbidities 

(assessed by the World Health Organization (WHO)/Eastern Cooperative Oncology 

Group (ECOG) performance status and comorbidities)7. In general, the initial treatment 

entails cytotoxic chemotherapy, with or without targeted therapies.8 The commonly used 

cytotoxic induction therapy (as used by the Hemato Oncology Foundation for Adults in 

the Netherlands, HOVON) consists of two cycles of chemotherapy containing cytarabine 

and an anthracyclin (idarubicine, daunorubicine or mitoxantrone). Achievement of CR sets 

stage for post-remission therapy to maintain the hematological remission of the disease, 

and to eliminate the more drug-resistant leukemia (stem) cells and to ultimately lead 

to cure.9 The post-remission (consolidation) therapy can consist of either one or more 

additional courses of chemotherapy, an autologous stem cell transplantation (autoHSCT) 

or an allogeneic stem cell transplantation (alloHSCT). For autoHSCT, during remission, 

the patient’s own (stem) cells are collected from his or her BM or blood and cryopreserved. 

After high-dose chemotherapy the blood-forming cells are reinfused to restore the BM. 

AlloHSCT is the most common type of SCT in the treatment of AML. In alloHSCT, the BM 

stem cells of the patient are replaced by the stem cells of a donor, preferably a sibling, 

to ensure the closest HLA-match. The closer the match between the donor and recipient, 

the better chance the transplanted cells will engraft and start repopulating the blood and 

BM, and the lower the risk of graft-versus-host disease GVHD). AlloHSCT has the highest 

anti-leukemia effect, however, this GVHD is associated with morbidity and mortality. Since 

this balance between anti-leukemic effect and therapy- (or transplant) related morbidity 

is delicate, strict selection of consolidation therapy is necessary. In general, only patients 

with the highest risk of relapse are considered candidates for alloHSCT. 

TREATMENT OUTCOME

For AML patients below 60 years of age, median overall survival (OS) after 3 years is 

64% (59-68%) in favorable risk vs. 31% (25-38%) in intermediate risk vs. 19% (14-24%) in 

adverse risk groups.10 OS decreases when older patients are included, but the stratification 

of survival per age group remains constant.11 

Today, CR is achieved in the majority of AML patients: estimated between 70-90%.12 

However, approximately 50% of these patients will experience a relapse, resulting in 

dismal outcomes (especially in patients with intermediate or adverse risk). Although there 

is a major contribution to disease outcome of pre-treatment patient-related and disease-

related factors, multiple post-diagnosis factors are linked to treatment failure, such as 

pharmacokinetic and -dynamic variables.13 Together, these factors eventually determine 

whether the AML will be eradicated. 

Previous work has shown that at CR, residual leukemic cells may be present at various 

levels, with higher levels consistently related to a higher relapse risk.14 This measurable/
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minimal residual disease (MRD) is thought to be responsible for the development of relapse 

(see Figure 1). The European Leukemia Net recommendations have therefore incorporated 

the evaluation of treatment response by assessing measurable/minimal residual disease 

(MRD) after induction chemotherapy.15

MEASURABLE RESIDUAL DISEASE DETECTION IN 
ACUTE MYELOID LEUKEMIA

Assessment of MRD after induction chemotherapy using more sensitive techniques, allows 

for the detection and quantification of lower levels of residual leukemia that cannot be 

assessed by morphology. In this chapter, commonly used modalities for MRD detection 

(immunophenotypic) multiparameter flow cytometry (MFC), reverse-transcription 

quantitative polymerase chain reaction (RT-qPCR) and next generation sequencing (NGS)) 

are discussed. 

IMMUNOPHENOTYPIC MULTIPARAMETER FLOW 
CYTOMETRY MRD DETECTION

In routine morphology, assessment of BM or peripheral blood (PB) relies on the examination 

of a limited number of cells (200-500). Its reliability, in part, depends on sample quality 

and hematologists’/pathologists’ expertise.17 The introduction of flow cytometry in routine 

diagnostics allowed more detailed and more sensitive examination of BM and PB for 

diagnosis of AML. Since most laboratories have gained experience in MFC analysis of 

AML, it is one of the most frequently used techniques to assess MRD in AML. MFC MRD 

detection relies on the presence of immunophenotypic aberrant antigen expression. 

Most laboratories rely on the identification of aberrant cell surface antigen expression. 

DIAGNOSIS MEASURABLE RESIDUAL DISEASE RELAPSE

HEMATOPOIETIC 
STEM CELL

LEUKEMIC
STEM CELL

LEUKEMIC 
PROGENITOR

HEALTHY
STEM CELL

Figure 1. Role of MRD in relapse development. At diagnosis, AML consist of a heterogenous 
population of leukemic cells and (leukemic) stem cells (LSC). Chemotherapeutic treatment often results 
in microscopic complete remission (CR). However, small numbers of residual leukemic cells survive 
therapy and are present within CR bone marrow, termed measurable residual disease (MRD). MRD 
contains LSC that have the capacity to initiate relapse development. Adapted from Canales et al.16
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At diagnosis, leukemic cells can be discriminated from normal blood cells using so-called 

leukemia associated immunophenotypes (LAIP). LAIPs are identified on blast cells 

(characterized by dim CD45 expression) and are a combination of a myeloid marker 

(CD13/CD33), a normal progenitor antigen (CD34, CD117 and/or CD133) and (multiple) 

aberrantly expressed cell surface marker(s). A multitude of LAIPs is recognized,18 but 

generally, LAIPs can be divided in four groups: (1) cross-lineage antigen expression (e.g. 

myeloid blasts with simultaneous expression of lymphoid markers; CD34+CD13+CD7+, 

CD34+CD13+CD56+), (2) asynchronous antigen expression (i.e. combination of immature 

and mature differentiation antigens), (3) lack of antigen expression and (4) overexpression 

of antigens19. The heterogeneity of AML necessitates a broad panel of antibodies, that 

allows identification of LAIP per individual patient. Such aberrancies can subsequently be 

used to detect MRD (examples in Figure 2). 

In MFC MRD, two approaches are known: (1) the LAIP approach; which defines LAIPs 

at diagnosis which presence is subsequently monitored in follow-up and (2) the different-

from-normal (DfN) approach; which screens follow-up material on presence of LAIPs 

(hence, presence of leukemic cells) in follow-up, irrespective of diagnosis material.14 

MFC MRD is applicable in a high percentage of AML patients. For the LAIP approach, 

reported percentages range between 80-95%.20–23 Expression of LAIPs in normal BM or 

PB is absent, or at least very low. However, for accurate MRD detection, knowledge of 

antigen patterns on normal BM or PB cells is needed. Sensitivity of MFC MRD is reported 

in a range of 10-3 to 10-5 (i.e. 1 leukemic cell in 1000 to 100,000 cells).20–22,24,25 The limiting 

factor for the sensitivity of the approach is the presence of normal cells expressing LAIPs 

(even when this is at very low percentages). For this, most laboratories make use of a cut-off 

that aids correct discrimination between true MRD positive patients, and background LAIP 

expression.14 Cut-off levels differ between laboratories but 0.1% was proposed by the ELN 

MRD Working Party14; when the cut-off is too high, sensitivity is compromised leading to false 

negatives, whereas a too low cut-off could classify normal background expression (which 

could be augmented in regenerating BM after intense chemotherapy, or new therapeutics) 

as MRD. With the notion that AML is highly heterogeneous and clonal, and that LAIPs at 

diagnosis are not always present at relapse, the LAIP approach has a possible pitfall.26–29 

Tracking LAIPs identified at diagnosis in follow-up material, immunophenotypic changes 

(evolution or selection of specific clones under selective pressure of the therapy) can be 

missed, leading to false MRD-negativity. The DfN approach is capable of identifying these 

immunophenotypic changes, but due to lower specificity might result in false positivity.30

MOLECULAR MRD DETECTION

According to the 2017 ELN recommendations, screening of mutations in NPM1, CEBPA, 

RUNX1, FLT3, TP53 and ASXL1, together with assessment of fusion genes, is the minimum 

for accurate risk classification.15 Similar assays, for at least part of the mutations can be 
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used for molecular MRD detection. Common targets for molecular MRD detection are 

gene mutations (NPM131–33 and FLT3-ITD34), over-expression (WT135) and fusion genes 

(AML1-ETO36, CBFb-MYH1137) and can be best detected using RT-qPCR.

Until recently, RT-qPCR was the cornerstone of molecular MRD detection, which can be 

used when a suitable target is present. RT-qPCR sensitivities were reported between 10-4 

to 10-6 (i.e. 1 leukemic cell in 10,000 to 1 cell in 1,000,000 cells).37–39 The best example of 

RT-qPCR MRD detection is for NPM1. Mutations in NPM1 are specific and stable during 

the disease course39,40, allowing sensitive detection of presence of MRD. However, RT-qPCR 

based MRD detection is limited to patients harboring a specific mutation. Furthermore, 

in contrast to NPM1, some aberrancies are unstable during disease (e.g. FLT3-ITDs39,40) 

and less qualified for MRD detection. MRD detection using overexpression (e.g. WT1) 

is restricted to cut-offs with backgrounds variable during therapy, and thereby also less 

suitable for MRD.41,42 Next-generation sequencing (NGS), which allows detection of all 

relevant recurrent mutations in AML is becoming an important tool in the diagnostic AML 

workup, as well as for the molecular detection of MRD, but sensitivity issues still need to 

be solved.43–45 

CROSS-LINEAGE CROSS-LINEAGE OVER/UNDER EXPRESSION OVER/UNDER EXPRESSION
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Figure 2. Four examples of leukemia associated immunophenotypes at diagnosis. Leukemic cells 
can be identified using aberrant cell surface antigen expression. At diagnosis, leukemic cells can be 
discriminated from normal blood cells using so-called leukemia associated immunophenotypes (LAIP). 
LAIPs are identified on CD45dim blast cells, and are a combination of a myeloid marker (CD13/CD33), 
a normal progenitor antigen (CD34, CD133 and/or CD133) and (multiple) aberrantly expressed cell 
surface marker(s). Shown above are CD45dimCD34+ cells from four different AML patients (above) and 
from normal bone marrow (below). The leukemic subpopulations, identified by LAIPs, are shown in red. 
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1 CLINICAL APPLICATION OF MRD 

As stated above, assessment of MRD in CR is of prognostic importance. In addition to 

known risk factors (e.g. age, number of cycles to achieve CR, (cyto)genetics), assessment 

of MRD could aid in the decision what consolidation treatment to give. The prognostic 

impact of MRD is shown by studies that correlated MRD to outcome parameters as 

cumulative incidence of relapse (CIR), leukemia-free survival (LFS) or OS.14,18,46 In most 

studies, MRD is regarded as binary outcome (i.e. MRDnegative vs. MRDpositive/MRDlow vs. 

MRDhigh). For MFC-MRD, where the outcome of percentage LAIP/WBC is continuous, 

thresholds are needed. Different laboratories use different optimal cut-offs values after 

initial chemotherapy, ranging between 0.035-0.2%.14,47 Since these cut-offs all gave 

statistically significant differences in outcomes, it is evident that there is not a single best 

cut-off, but a range of cut-offs that significantly predict clinical outcome. For molecular 

methods, sensitivity is limited to reduction of MRD target below the lower limit of 

detection. Following this, the recommended method of MRD assessment in patients with 

suitable targets is RT-qPCR, which reaches up to 100- to 1000-fold greater sensitivity than 

MFC or NGS.14,32 In patients without suitable mutations, MFC-MRD detection can identify 

patients with high risk of relapse.14 

In 2016-2017, 69% of the surveyed leukemia treating physicians in the United 

States reported routine use of MRD in management of AML, in 90% to guide therapy.48 

The HOVON/SAKK cooperative group supports the implementation of rapidly available 

MRD detection for clinical decision making for patients within current and future HOVON 

protocols. In the HOVON132 study, risk categorization at diagnosis is provisional, and 

detection of MRD in intermediate and poor risk reclassifies patients in either poor risk or 

very poor risk respectively. Especially for the intermediate risk patients, measurement of 

MRD has effect on post-remission treatment choice; intermediate risk patients without 

MRD would be assigned to autoHSCT, whereas patients with MRD would be assigned to 

alloHSCT (Figure 3). 

Still, although MRD status has strong prognostic value, about 30% of MRD negative 

patients develop a relapse. Several initiatives are therefore currently ongoing to improve 

the predictive value of MRD for the individual patient. One such effort is the detection of 

the relapse initiating cells that may be present in low levels at MRD, below the positivity 

threshold, but that are still capable of repopulating a relapse. The cells that have features 

like self-renewal, high level detoxification, proficient DNA repair and very immature (non-

functional) phenotype (e.g. stem cells) are hypothesized to be the most relevant relapse 

initiating cells. 

LEUKEMIC STEM CELLS 

In normal hematopoiesis, stemness features allow normal hematopoietic stem cells (HSCs) 

to self-renew to support the long-term process of cell differentiation. The organization of 
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1t(8;21) or AML1-ETO, WBC≤20
inv16/t(16;16) or CBFB-MYH11

CEPBA-biallelic mutant+
FLT3ITD-/NPM1+

CN-X-Y, WBC≤100, CRe
t(8;21) or AML1-ETO, plus 

WBC>20 or mutant KIT

CN-X-Y, WBC≤100, not CRe

CN-X-Y, WBC>100,
CA, but non-CBF, MK-, no 

abn3q26, EVI1-neg

MK+
abn3q26

Non CBF with EVI1+
Non CBF with mutant P53, or mutant
RUNX1, or mutant ASXL1 or bi-allelic

FLT3-ITD with FLT3ITD/(FLT3ITD+
FLT3wt) ra�o of >0.60

Provisional 
Intermediate risk

Provisional 
Poor risk

Poor risk

Very poor risk

Intermediate risk

Good risk

autoHSCT
consolida�on

alloHSCT
consolida�on

MRD-

MRD-

MRD+

MRD+

Figure 3. Risk classification of patients with AML (as used in HOVON132). Risk classification scheme 
based on features at diagnosis and the presence of MRD. Presence or absence of certain features or 
mutations at diagnosis stratify patients in either good, intermediate, poor or very poor risk category. 
Good risk patients are scheduled for an autologous stem cell transplantation. Patients within the poor 
and very poor groups are scheduled for an allogeneic stem cell transplantation. Presence of MRD in 
patients with provisional intermediate risk are moved to poor, and thus scheduled for a more intense 
alloHSCT. MRD+; MRD positive after cycle II either by flow cytometry or molecular(NPM1) CBF, core 
binding factor; MK, monosomal karyotype CRe – early CR (i.e. CR after cycle I) High EVI1 expression 
is defined as EVI1 expression above 0.1x EVI1 expression in the cell line SKOV3 (reference gene 
normalized (Groschel et al., JCO 2010, 12 (28) p. 2101-07)) MRD is considered positive whenever 
residual disease is demonstrated by any assay, whether it is by flow cytometry or molecular analysis 
(i.e. NPM1mutant).

AML is similarly believed to be clonal and hierarchical, originating from mutations that 

occur in a multipotent progenitor or a HSC.49–51 The concept that leukemia originates from 

cells, distinct from the bulk of tumor cells, originates from decades ago.52,53 Initial proof 

was found in experiments demonstrating the presence of leukemic cells showing stemness 

features as drug resistance, self-renewal and an undifferentiated state.52,54 Cells that met 

these criteria, and, moreover, were capable to generate leukemia in immunodeficient 

mice55,56 were identified within the CD34+CD38- compartment, that also contains the HSCs. 

Within the CD34+CD38- compartment (with the population frequency of 1:5000 cells) 

the discrimination between LSCs and HSCs is based on the principle that HSCs only 

express antigens from the myeloid lineage at a certain level. Aberrant antigen expression 

on LSCs is heterogenous, but include, amongst others: CD2, CD7, CD11b, CD22, CD33, 

CD44, CD45RA, CD56, CD123, CD366 (TIM3) and CD371 (CLEC12A).57–59 

Today, the existence of LSCs is more commonly accepted, and further research has 

revealed that LSCs can also be present (at lower frequencies) in CD34+CD38+ or CD34- 

immunophenotypes.60–63 Extensive research into the specifics and differences between 
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these types of LSCs is lacking, as well as the existence of possible competition between 

these compartments in leukemogenesis. However, it was shown that the CD34+CD38- 

compartment is the least immunogenic compared to other compartments64, and therefore 

could possibly best engraft in NOD/SCID mice which have little residual immunity.52 

The frequency of these CD34+CD38- LSCs at diagnosis and after chemotherapy treatment is 

an important prognostic factor for OS and relapse.65,66 Whereas LSCs are also undoubtedly 

present in CD34- cells in patients with CD34-negative AML , no markers are known for 

the identification of these cells.67 Flow cytometric assessment of LSC frequency at diagnosis, 

and after chemotherapy is therefore focused on the CD34+CD38- compartment.19 

MRD AND LSC AS SURROGATE ENDPOINT FOR 
NEW THERAPEUTICS IN AML

Currently, OS is most frequently used as endpoint to evaluate clinical benefit of new 

treatments in AML. As a consequence, this requires a long follow-up time and introduces 

confounding factors as post-remission therapies, which differ among patients. Using MRD as 

an endpoint has the potential to more quickly demonstrate the potential benefit of a given 

therapy. In 2018, the U.S. Food and Drug Administration (FDA) published a draft guidance 

for the use of MRD as assessment of treatment responses, in regulatory submissions or to 

support marketing approval of new therapeutics for hematologic malignancies68. Although 

MRD in CR has major prognostic implications at the level of groups of AML patients, its 

predictive value for individual patient treatment response and outcome remains to be 

established. This thesis tries to shed more light on this issue.

INTRODUCTION TO THE CHAPTERS

The overall aim of the studies described in this thesis is to investigate the role of MRD 

and LSC, and several initiatives to improve the MRD assessment to be used for relapse 

prediction for the individual patient. 

Chapter 2 covers a review on several aspects of LSCs in AML and its considered role in 

relapse progression. Moreover, it discusses how these relatively rare cells can be detected 

by flow cytometry, and furthermore discusses how this detection is currently used in clinical 

application. 

In chapter 3-4 we investigated if the LSC frequency harbors prognostic information for 

improved relapse prediction for AML. In chapter 3 we present the clinical significance of 

the presence and frequency of CD34+CD38- LSCs at time of diagnosis and in remission 

bone marrow in adult AML. In addition, the prognostic relevance of the combination of 

LSC-MRD and MFC-MRD is investigated. In chapter 4 we investigated whether detection 

of CD34+CD38- LSCs in BM of newly diagnosed pediatric AML bears similar prognostic 

relevance as shown in adult AML. 
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In chapter 5-6 we elaborate on the importance of standardization of the flow cytometric 

MRD and LSC detection approaches. In chapter 5 we evaluated the technical and 

analytical feasibility of the previously designed eight‐color LSC single tube assay, as well 

as standardization of the process. In chapter 6 we present a new flow cytometric model 

for standardized and objective MRD calculation, retrospectively applied in a large clinical 

study. For this, we evaluate if the balance between neoplastic and normal progenitors in 

CR bone marrow has prognostic relevance. 

In chapter 7 we evaluate whether next-generation sequencing has clinical value 

for the prediction of relapse. Since measurements were simultaneously evaluated for 

MFC-MRD, we investigated whether NGS and MFC-MRD have independent and additive 

prognostic value. 

In addition, we studied whether MRD and LSC-MRD is a valid? surrogate endpoint in 

AML. As shown in a recent clinical trial, the new therapeutic clofarabine has clinical beneficial 

effect in a subgroup of patients. In chapter 8 we investigated whether the prospectively 

defined MRD and LSC-MRD frequencies were different between patients with clofarabine 

and patients without clofarabine, and whether MRD levels mirrored the clinical outcome 

within this subgroup.

Finally, in chapter 9 we summarize the results of this thesis and which implications these 

results may have for future AML relapse prediction. Furthermore, we evaluate the different 

techniques used in this thesis, discuss how each technique can be further optimized and 

elaborate on the optimal use for future clinical trials. 
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INTRODUCTION

Acute myeloid leukemia (AML) is a heterogeneous disease characterized by a multitude 

of molecular abnormalities. Despite increasing understanding of the pathogenesis no 

significant changes in treatment have been achieved as yet. With current treatment 

strategies, the percentage of adult patients achieving complete remission has increased, 

mainly due to better risk classifications and improvements in supportive care. However, with 

still roughly half of these patients relapsing, survival rates remain low. A rare population 

of therapy resistant cells is believed to be at the origin of the relapse. Since these cells 

have the self-renewal capacity to repopulate a leukemia despite their low frequency, they 

are considered leukemic stem cells (LSC), also referred to as the leukemia initiating cells 

(LIC). Whether these cells originate from normal hematopoietic stem cells (HSC) or from 

more mature progenitors that gained stemness features remains elusive and may differ 

among patients. Currently, many studies reveal the importance of estimating LSC burden 

for prognostic purposes and strategies to eradicate these cells in order to completely 

eliminate the leukemia. In this review we will focus mainly on the identification of these 

LSC using flow cytometry and summarize the current knowledge on LSC genetics and 

novel opportunities for elimination of these LSC. 

IDENTIFICATION OF LEUKEMIC STEM CELLS

In order to identify LSC, knowledge of their specific characteristics is essential. 

The recognition of stemness features (e.g. drug resistance, self-renewal and undifferentiated 

state)1 alone is not sufficient since those features are also characteristics for HSC coexisting 

in the bone marrow (BM)2. The existence of leukemic cells that meet these criteria was first 

demonstrated over twenty years ago. In the nineties, Dick and colleagues demonstrated 

that a rare fraction of AML cells (i.e. cells with the CD34+/CD38- immunophenotype, 

similar to HSC) were capable of generating leukemia in immunodeficient mice3,4. Since this 

discovery, these putative LSC have been the focus of extensive research. Golden standard 

property of LSC populations is the ability to engraft and initiate leukemia in a recipient 

mouse (initiation), to grow out after re-transplantation into secondary recipients (self-

renewal) and preferable in tertiary recipients. Since normal CD34+/CD38- cells possess 

similar features as LSC and the design of new therapies require the specific eradication 

and monitoring of CD34+CD38- LSC it is crucial to specifically discriminate LSC containing 

fractions from HSC using cell surface markers. Table 1 presents a summary of markers that 

are commonly used to distinguish LSC from HSC, thereby allowing to define the contribution 

of both the LSC and the HSC to the total CD34+/CD38- compartment. However, each 

marker allowed identification of LSC only in part of the AML patient population and often 

identified only part of the total LSC population in a particular patient5,6. Combining all 

markers and other properties that distinguish LSC from HSC5 allows to robustly identify 
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the LSC and to estimate its frequency. Since the use of all markers to identify CD34+/

CD38- LSC fraction of the total CD34+/CD38- compartment in each patient would require 

a dramatic amount of work and money, we developed a simplified comprehensive panel 

of markers that included only non-redundant LSC markers6. 

The existence of LSC outside the CD34+CD38- fraction has been proposed as early 

as 1996, when CD34- cells were shown initiating leukemia in immune deficient mice6,7. 

Indeed, in less immunodeficient mice strains, both CD34+ and CD34- populations 

engraft8-10. Besides the influence of distinct properties of the mouse models used on 

engraftment, important studies of Bonnet et al. showed that there is another phenomenon 

that determines engraftment: they showed that the anti-CD38 antibody (used to purify 

CD34+CD38-, CD34+CD38+, CD34-CD38- and CD34-CD38+ cells prior to transplantation) 

inhibited subsequent engraftment11,12. This is suggesting that earlier results could be 

based on technical interference rather than true biological differences of the CD38- and 

CD38+ populations. 

Taken together, these studies advocate that LSC might co-exist in all CD34/CD38 

defined subpopulations. In a recent study of Ng et al., the four CD34/CD38 defined cell 

populations of AML patients were sorted and were subsequently injected into mice and 

screened for their leukemia-initiating ability13. This exquisite approach confirmed that 

LSC activity was detected in all fractions, however with a majority of CD34+ fractions, 

especially CD34+/CD38-, and minority of CD34- fractions containing LSC. The fact that 

there were hardly cases in which leukemia initiating cells originated from CD34- and/or 

CD34+CD38+ without concomitant activity in CD34+CD38- suggests that the CD34+/

CD38- fraction contains the most important leukemia initiating cells when the other 

fractions are concomitantly present. This hypothesis is confirmed by other observations: in 

transplantation experiments using NOD/SCID mice of unfractionated AML, engraftment 

correlated only with the CD34+/CD38- frequency in the original sample, but not with 

the CD34+/CD38+ or CD34 frequency14. In addition, in line with the finding of in vitro and 

in vivo therapy resistance15,16, it was found that it is only the CD34+/CD38- LSC frequency 

that correlates with therapy outcome and minimal residual disease (MRD) levels, i.e. 

number of leukemic blasts detected after therapy5. This suggests that it is this fraction, 

and not the CD34+/CD38+ and CD34- fractions, that preferentially survives therapy and 

recapitulate leukemia.

The frequency of LSC within all mononuclear cells is shown to vary widely between 

patients (1 in 1.6x103 – 1 in 1.1x106)10. Since the CD34+CD38- population frequency 

is 1 in 5x103,17 we need, at least in part of the patients, assays to identify the smaller 

subpopulation of LSC within this population. Exploiting other (non-immunophenotypical) 

features of the LSC allows this. 

About 20%18 of AML cases are characterized by absence of neoplastic CD34+ cells18,19. 

In these cases the commonly small CD34+ (<1%) blast population does not contain 

leukemic cells18,20,21. By definition, these CD34negative patients lack CD34+/CD38- or 

CD34+/CD38+ leukemic populations, however, a potential LSC population should be 
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found within the remaining CD34- fraction. Apparently, there are small and yet unidentified  

subpopulations to consider as most leukemogenic and therapy resistant in these AML cells. 

Since LSC are supposed to be relatively chemotherapy resistant, the finding of a very 

small cellular compartment that is defined by high ABC drug transporter activity is of 

particular interest. Indeed a specific cell population (i.e. side population (SP)) could be 

identified using flow cytometry analysis in which the specific Hoechst dye 3334222,23 is 

extruded efficiently by these drug pumps. These SP cells are resistant to AML therapies 

that include drugs that are used for treatment of AML patients like anthracyclines24. Purified 

SP cells were shown to have leukemic initiating capacity in NOD/SCID mouse models24,25 

and contained both CD34+ cells and CD34- cells26,27 which are indeed in part neoplastic28. 

Although this suggest that a small part of the CD34- cells are therapy resistant, it remains 

to be established whether the SP cells are candidates for the leukemia initiating cells in so 

called CD34negative leukemia. 

Since the SP population can contain both HSC and LSC, inclusion of LSC specific 

surface markers should aid in distinction between the LSC and HSC within the SP.  

Next, stem cells are known to protect themselves by high expression of aldehyde 

dehydrogenase (ALDH), which is a cytosolic enzyme involved in retinoic acid metabolism 

maintaining cellular homeostasis. ALDH is shown to protect against DNA damage induced 

by reactive oxygen species and reactive aldehydes. In normal BM CD34+CD38- HSC 

display high levels ALDH activity (ALDHhigh)29. In both normal BM and in the majority 

of AML BM cells, the CD34+CD38-ALDHhigh population is considered to contain only 

HSC21,29,30. In contrast to normal BM, in AML a second population can be discriminated 

with cells having intermediate ALDH expression29. When purified, this population was most 

potent in AML engraftment in immunodeficient mice and was generally found positive for 

leukemic cytogenetic markers29. Furthermore, presence of this population after therapy 

was highly predictive for relapse29. In conclusion, ALDH activity can be used as a functional 

stem cell marker, identifying HSC population and LSC population in AML. Validity to 

therapeutically target ALDH in AML treatment is controversial; a recent paper showed that 

in vitro and in vivo inhibition of ALDH selectively eradicates CD34+CD38-ALDH+ cells31. In 

this study, the authors used the CD34+CD38-ALDH+ phenotype to describe LSC, which is 

distinct from most other studies that define CD34+CD38-ALDH+ to reflect HSC. To reveal 

whether these CD34+CD38-ALDH+ cells that are targeted, are indeed neoplastic cells, 

additional genetic characterization might be insightful. 

LSC HETEROGENEITY OF LSC WITHIN A PATIENT 

Recently it was shown that the constitution of AML at relapse may differ from diagnosis due 

to clonal changes including clonal evolution, clonal regression and clonal selection, with 

possible changes on immunophenotypic32,33, cytogenetic34, genetic34,35 and epigenetic35 

level. Detailed whole genome sequencing studies, analyzing paired diagnosis-relapse 
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samples, showed that at time of diagnosis, patients could present with a wide array of 

small subclones of which some remained in relapse36: indicative for clonal selection under 

therapy pressure. In 2012, we showed that immunophenotypically defined subpopulations 

of cells prominent at relapse could be traced back as very minor immature (CD34+/

CD38-/dim) subpopulations of cells at diagnosis32, again suggesting the importance of 

the CD34+/CD38- leukemic stem cell fraction. Since LSC are currently followed during 

therapy as biomarker of treatment efficacy and as prognostic factor for relapse, it is of 

great relevance to identify all (possibly minor) LSC populations that are potentially capable 

of causing relapse37.

CLINICAL RELEVANCE OF LSC LOAD FOR 
PROGNOSIS

The CD34+CD38- burden of AML patients is of strong prognostic value. In adult AML, 

patients with CD34+CD38- frequencies higher than 3.5% at diagnosis had a median relapse-

free survival of 5.6 months, compared to 16 months in those with lower CD34+CD38- 

frequencies14. These results were later confirmed in other studies in adult AML14 and in 

pediatric AML38. As knowledge on the makeup of the CD34+/CD38- fraction increased, 

other markers and properties were included anticipating better selectivity in defining LSC 

as previously summarized5,29. In studies on the prognostic impact of CD34+CD38- LSC on 

disease outcome, the prognostic influence of complete absence of this fraction was also 

discovered: CD34negative status, characterized by the complete absence of neoplastic 

CD34+ cells18, turned out to be an independent prognostic factor identifying patients 

with better prognosis in adult17 and pediatric AML39 compared to patient with high or low 

CD34+CD38- LSC frequencies. 

Despite the accumulating evidence of the prognostic relevance of LSC load at diagnosis, 

this feature is currently not included in risk group stratification. It is our assumption that 

implementation of flow cytometric quantification of LSC could be implemented without 

great effort using our one-tube assay6. Since prediction of outcome also greatly depends 

on many different factors during therapy, including LSC measurements during therapy (for 

instance at MRD time points) is warranted40. 

IMPACT OF LSC FREQUENCY DURING THERAPY 

Assessment of the frequency of remaining leukemic cells present during and after therapy 

(measurable/minimal residual disease, MRD) is increasingly used as an early read-out of 

therapy efficacy6,41. MRD frequency measurement has been shown to have independent 

prognostic impact across different cytogenetic and molecular subgroups42-45, and is 

currently used to refine risk group classifications after induction therapy. In particular, MRD 

is implemented in the HOVON/SAKK H132 study to guide decisions for transplantation 
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type in intermediate risk patients. In this study, immunophenotypic MRD measurements 

are complemented with mutation analysis in NPM1 mutated patients, in which NPM1 

status at MRD is leading for the clinical decision. In fact, many MRD studies are currently 

being performed, which use (or include) molecular assays57. 

It is remarkable that in all immunophenotype and/or molecular MRD studies still 

a proportion of MRD-negative patients develop a relapse. There are multiple possible 

reasons for this, e.g. low assay sensitivity, occurrence of mutational/immunophenotypic 

shifts or different kinetics of MRD disappearance. There may, however, also be a biological 

explanation: it may not only be the number of leukemic blast cells, reflecting MRD, that 

defines the risk of relapse, but also the number of LSC present within this blast cell 

population. As we argued earlier, stem cells have been demonstrated to be more therapy 

resistant than leukemic blast cells. The MRD population is thus likely enriched with LSC, 

but these are too low in frequency to contribute significantly to the total frequency of 

MRD cells. Indeed, when the number of CD34+/CD38- LSC after therapy was determined, 

LSC load was an independent predictive factor for patient survival5. Such was found by 

others too, be it with different assays and different immunophenotypical and functional 

definitions of stem cells29,46. Remarkably, assessment of both LSC and MRD led to better 

separation of patients risk group classification than either MRD or LSC alone5,17.  

For newly tested therapies, survival end point is the most important determinant of 

the therapeutic effectiveness. However, large clinical trials are needed with high numbers 

of included patients. At best, it than takes approximately 2-3 years to predict survival47. 

With increasing numbers of tested therapies, specifically targeting LSC, usage of LSC 

frequencies as surrogate intermediate endpoint for survival would be highly beneficial48. 

THERAPEUTIC OPPORTUNITIES ELIMINATING LSC

GENERAL PRINCIPLES AND CHALLENGES FACED BY TARGETING 
LSC
With the poor prognosis of AML and only little improvements in therapeutic options, 

there is a pressing need for novel therapies. Therapies targeting LSC offer hope for such 

improvement. Fundamental to LSC therapy is the selection of the target and the timing of 

the therapy. Ideally, the target is highly expressed by LSC, highly selective, i.e. absence of 

expression on other cells in particular HSC and no circulating antigens, and preferentially 

expressed by high numbers of patients. Acknowledging the many similarities that LSC 

and HSC share, it is not surprising that current treatment approaches are limited. As 

the specific identification and, with that, the characterization of LSC has become more 

detailed, therapies directed to LSC, while sparing normal HSC, are becoming reality and 

are currently investigated as delineated below. 

Distinct cell-surface markers have been proposed as potential LSC specific targets 

(table 1) and several approaches targeting some of these LSC surface markers are currently 
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in clinical trials (see table 2). Of these markers, therapies targeting CD33 are possibly 

the most studied in AML patients. Although targeting CD33 was originally not meant as 

an anti-LSC therapy, it turned out that CD33 was overexpressed in LSC compared to HSC6. 

Treatment with Gemtuzumab ozogamicin (GO) treatment was associated with reduced 

relapse risk and improved overall survival in patient subgroups49,50. Whether GO targets 

CD33+ LSC, causing the reduction in relapse risk, remains unclear50 as higher numbers of 

CD34+/CD38-/CD33+ cells and high CD33 expression levels decreased GO sensitivity 

in vitro51. One lesson that can be learned from GO treatment is clear: high specificity 

of the therapy is important. CD33 is, next to leukemic cells, also present on most HSC, 

on mature and immature myeloid cell and on various progenitors52, possibly underlying 

toxicities as found in earlier studies53. Anti CD123 therapy may have similar disadvantages6, 

while results of clinical trials targeting newer discovered surface markers more specific for 

LSC (including CCL-154,55, TIM355-57, CD9658), will provide important insights in validity of 

therapies targeting immunophenotypic markers. 

Next to specificity, the design of the antibody in terms of conjugates is of importance 

for effectiveness. Novel engineering of antibodies has potential to improve efficacy and 

reducing immunogenicity (mechanisms and constructs are reviewed by Scott et al.59 and 

Tiller and Tessier60)

One alternative way of direct LSC targeting is with the use of small molecule inhibitors 

interfering in key signaling pathways altered in LSC (see table 2). Using this strategy 

the leukemic progenitor cells are also targeted since mutations found in signaling pathways 

in AML are not limited to the LSC, but are inherited by their progeny. Recent studies have 

also indicated the relevance of splicing on signaling pathways61, therefore, small molecules 

that affect the spliceosome are also investigated as novel therapeutics to eradicate LSC62. 

FUTURE PERSPECTIVES

LSC maintenance and functioning is related, at least in part, to signals from the BM 

microenvironment63-65. Therapeutic targeting is therefore not only directed to LSC. Initial 

studies inhibiting factors necessary for LSC homing (e.g. CXCR4, CXCL12) have shown to 

abrogate chemoresistance66, suggesting combination therapies with LSC specific targets. 

Clinical trials targeting the LSC niche are in progress67 (see table 2). 

In this review we have conveyed the important role of LSC in AML with emphasis 

on the identification of LSC using flow cytometry. As the identification of CD34+/CD38- 

LSC allows for the identification of patients with a poor prognosis, we consider LSC 

measurements as valuable asset for clinical decision making. This concerns both risk group 

classification at diagnosis or definition of risk groups after therapy (in a MRD situation). 

Seen the large heterogeneity of LSC within and among patients, the identification of all 

specific LSC would be too costly in terms of AML cells, time and money. For that reason, 

a broadly applicable simple one-tube approach has been developed, which can easily be 
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implemented in routine diagnostics6. Additionally, screening for CD34+/CD38- LSC also 

enables identification of CD34-negative patients, who generally have a better prognosis18. 

Furthermore, as LSC specific therapies –targeting LSC specific surface markers– become 

available, individualized therapy may come in view. To select the most effective marker-

directed therapy, the LSC phenotype of the individual patients needs to be determined. 

With increasing numbers of markers becoming available, innovations in flow cytometers 

will continue to support a growing number of channels/colors available in simultaneous 

measurements. The currently available multicolor flow cytometry approach used in 

AML does not exceed ten colors68. While this allows a universal screening, for precise 

characterization of the most pure (very minor) LSC population, multiple markers are needed. 

Current technological advances will come from high-number-multicolor flow cytometry or 

Cytoff approaches69 in which an extensive panel of LSC markers will be available. 
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ABSTRACT 

Current risk algorithms are primarily based on pre-treatment factors and imperfectly 

predict outcome in acute myeloid leukemia (AML). We introduce and validate a post-

treatment approach of leukemic stem cell (LSC) assessment for prediction of outcome.LSC 

containing CD34+CD38- fractions were measured using flow cytometry in an add-on study 

of the HOVON102/SAKK trial. Predefined cut-off levels were prospectively evaluated 

to assess CD34+CD38- LSC levels at diagnosis (n=594), and, to identify LSClow/LSChigh 

(n=302) and MRDlow/MRDhigh patients (n=305) in bone marrow in morphological complete 

remission (CR). In 242 CR patients combined MRD and LSC results were available. At 

diagnosis the CD34+CD38-LSC frequency independently predicts overall survival (OS). 

After achieving CR, combining LSC and MRD showed reduced survival in MRDhigh/LSChigh 

patients (hazard ratio [HR] 3.62 for OS and 5.89 for cumulative incidence of relapse 

[CIR]) compared to MRDlow/LSChigh, MRDhigh/LSClow, and especially MRDlow/LSClow patients. 

Moreover, in the NPM1mutant positive sub-group, prognostic value of golden standard 

NPM1-MRD by qPCR can be improved by addition of flow cytometric approaches. 

This is the first prospective study demonstrating that LSC strongly improves prognostic 

impact of MRD detection, identifying a patient subgroup with an almost 100% treatment 

failure probability, warranting consideration of LSC measurement incorporation in future  

AML risk schemes. 
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INTRODUCTION 

Proper risk assessment to adapt consolidation treatment strategies for acute myeloid 

leukemia (AML), either chemotherapy, autologous- or allogeneic stem cell transplantation, is 

of utmost importance. However, with the current risk-adapted strategies, still a considerable 

number of patients in the good and intermediate risk groups relapse. Therefore, further 

improvement of risk group definition is indispensable. Therapy resistance results in survival 

of leukemic cells, which can be detected during therapy within the white blood cell (WBC) 

compartment of the bone marrow (BM). This so-called measurable/minimal residual 

disease (MRD) can be defined by either flow cytometry or molecular assays and has been 

shown in many studies to have clear prognostic impact1, also in a  prospective setting.2–6 

Currently, in several on-going prospective clinical studies, therapy is adapted based on 

MRD assessments. Despite the strong prognostic value, still part of MRD-negative patients 

relapse.2–6 There is growing evidence that small subpopulations of malignant cells are 

more therapy resistant than the bulk of leukemia cells and are at the basis of leukemic 

outgrowth to relapse.7,8 These leukemia stem cell like populations (further referred to 

as LSC) may have different immunophenotypes (CD34+CD38+, CD34+CD38-, CD34-).9–13 

However, CD34+CD38- stem cells seem to be, in vitro and in vivo, most therapy resistant 

and least immunogenic.7,14,15 Furthermore, in a study wherein engraftment potential of 

CD34/CD38 defined sub-populations was assessed and correlated with gene expression 

profiles to provide a stem cell signature, a closer look revealed that in almost all AML 

cases with engraftment, CD34+CD38- sub-populations, but not always CD34+CD38+ 

and CD34- sub-populations engrafted.13 Moreover, the CD34+CD38-/dim LSC population 

is of particular interest because of its independent prognostic impact10,16,17, in contrast 

to CD34+CD38+ and CD34-  populations.10 Since the CD34+CD38- LSC cells seem to 

have the highest leukemogenic ability and therapy resistance, in this paper we focus on 

the CD34+CD38-LSC containing fraction.

In a large international multicentre AML clinical trial (HOVON/SAKK 102), we 

prospectively validate the prognostic relevance of the CD34+CD38- LSC frequency, both 

at time of diagnosis and after induction therapy. As we have previously done for flow 

cytrometric MRD2,18, we prospectively validated predefined LSC threshold levels10 for 

predictability. This novel approach is evaluated here for the first time in a prospective 

clinical trial setting in a large group of 242 newly diagnosed AML patients in morphological 

complete remission (CR) and shows strong prognostic value. Moreover,  combined 

multiparameter flow cytometry (MFC), using LSC-MRD or MFC-MRD and molecular 

approach (using the NPM1 qPCR) is most promising to predict relapse in AML.
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MATERIALS AND METHODS

Patients
In total 890 patients with AML, age between 18-66, were included in the HOVON/SAKK 

102 trial between February 2010 and September 2013. 

All of these patients received standard treatment consisting of two cycles of induction 

chemotherapy followed by either a third cycle, autologous- or allogeneic stem cell 

transplantation, dependent on pre-treatment risk assessment. In the HOVON102 study 

half of the patients received standard treatment and half standard treatment with 

the addition of clofarabine. For detailed information regarding treatment protocols we 

refer to the supplementary file and the recently published paper of the HOVON102 

clinical trial.19 A consort flow diagram of all 890 patients is shown in Figure 1. According 

to the study protocol, well known risk parameters, like t(8;21), inv16/t(16;16), monosomal 

karyotype, CEBPA, FLT3/NPM1 status, EVI1 over-expression, WBC count, and response 

to chemotherapy treatment, were used to distinguish patients with a good, intermediate, 

poor or very poor prognosis (Table S1). Patient characteristics, segregated for patients 

with and without an MRD/LSC sample available, are outlined in Table 1.

MRD assessment 
At diagnosis peripheral blood (PB) was used for MFC when BM was not available to 

define leukemia associated immunophenotypes (LAIPs). At follow-up, only BM was 

used. Sampling procedures are outlined in the supplementary file. MRD assessment was 

performed as described in detail before.2 More information regarding the used antibodies 

and instruments is outlined in the Supporting data. As shown in Figure 1, 305 samples 

were available for MRD analyses after the 2nd chemotherapy cycle. The established and 

already prospectively validated cut-off of 0.1% was used to define MRD-negative and 

MRD-positive patients.2,18 For the retrospective combined molecular and MFC analyses, 

patients from the HOVON42a (n=37, 2001-2008) and HOVON92 (n=9, 2008-2010) were 

also included. 

For detailed information regarding the retrospective molecular MRD analyses we 

would like to refer to our earlier published paper in JCO.2

CD34/LSC status
CD34 status was defined at diagnosis as described by Zeijlemaker et al.20 CD34-negative 

samples are characterized by the absence of neoplastic CD34+ cells, implying that all 

leukemic cells are in the CD34- compartment. Consequently, no CD34+CD38- LSCs 

are present in CD34-negative samples. For simplicity reasons these CD34-negative 

CD34+CD38-LSC=0 AML patients will be further referred to as CD34-negative. In CD34-

positive cases CD34+CD38- LSCs are present, and a retrospectively defined cut-off of 

0.03% to discriminate LSClow and LSChigh cases was used.10 CD34+CD38-LSCs were defined 
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890 
patients 
included

858
potentially available 

for analysis

. .
742

received 
2nd induction cycle

592
received 

consolidation 
therapy

858
started 

treatment protocol

857
received 

1st induction cycle 

.

.

32 non eligible 
(inclusion criteria for study not met)

605 in CR after 
cycle 1

686 in CR after 
cycle II

56 no remission

.

602 available for  CD34 
analysis at diagnosis
75 no material
43 unfit material
138 no right markers

.

594 available for  LSC 
analysis at diagnosis
75 no material
43 unfit material
146 no right markers

.

302 available for LSC 
analysis after 2nd course
321 no material
55 no marker
8 unfit material 

305 available for MRD 
analysis after 2nd course
321 no material 
56 no LAIP
4 Unfit material 242 available for 

combined MRD and 
LSC analysis after 2nd

course

.

Figure 1. Consort flow chart for sample availability of patients included in the hovon/sakk 102 study. 
In total 890 patients were included, of which in total 594 patients were available for combined CD34/
LSC analyses at time of diagnosis. After the second cycle there were 305 and 302 samples available 
for MRD and LSC analyses, respectively. In total there were 242 bone marrow samples in which both 
MRD and LSC data were available. The different reasons for drop-off are shown in the boxes in 
the diagram. ‘Unfit material’ refers to a poor quality BM aspirate (e.g. too few blood cells available) 
hindering reliable measurements. ‘No right markers’ refers to samples in which not all (backbone) 
markers were measured enabling proper CD34+CD38- LSC detection (e.g. lack of CD34 or CD38). 
CR, complete remission; LSC, leukemic stem cell; LAIP, leukemia associated immunophenotype; 
MRD, minimal/measurable residual disease.

at diagnosis and follow-up as described in our earlier paper by Terwijn et al (Figure 1 in 

that paper).10 Sampling procedures are outlined in the supplementary file.

The antibody panels used at diagnosis are shown in Table S2. Gating strategy was 

performed as outlined.21 Depending on the aberrant immunophenotype(s) as found at 

AML diagnosis and on the availability of BM material, one or more of the diagnosis tubes 

was used for follow-up LSC determination. For follow-up LSC determination a cut-off of 

0.0000% (% of WBC; 0% is no events measured) was used. Detailed information regarding 

this used cut-off is outlined in the Supporting file, Figures S1, S2 and Table S3. Table S3 

shows the robustness of the data since a range of different cut-off values post-remission 

showed significant differences between the LSClow and LSChigh group.
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Table 1. Patient characteristics of CR patients

Patients with MRD &LSC results % Other Patients %

Total 242 444
Sex
 Male 119 49 250 56
 Female 123 51 194 44
Age, median 52 54
 Range 19-66 18-65
WBC at diagnosis x109/L
 Median 8.4 6.5
 Range 0.6-229 0.2-341
AML type
 De Novo 202 83 358 81
 Secondary 24 10 33 7
 MDS 16 7 53 12
CD34 status  
 CD34 negative 35 14 38 9
 CD34 positive LSC ≤0.03% 134 55 138 31
 CD34 positive LSC >0.03% 64 26 62 14
 Missing 9 4 206 46
MRD / LSC status after 2nd course NA
MRD neg LSC neg 136
MRD neg LSC pos 58
MRD pos LSC neg 28
MRD pos LSC pos 20
Karyotype classification
 Core binding factor 36 15 34 8
 Normal karyotype 119 49 238 54
 Monosomal karyotype 20 8 44 10
 Cytogenetic rest abnormalities 59 24 111 25
 Missing 8 3 17 4
Mutated CEBPα
 Neg 171 71 300 68
 Pos 7 3 18 4
 Missing 64 26 126 28
FLT3/NPM1 status
 FLT3wt  / NPM1wt 122 50 221 50
 FLT3wt  / NPM1mut 45 19 82 18
 FLT3ITD / NPM1wt 26 11 35 8
 FLT3ITD / NPM1mut 26 11 49 11
  Missing 23 10 57 13
EVI1 
 Neg 171 71 320 72
 Pos 19 8 38 9
 Missing 52 21 86 19
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Table 1. (continued)

Patients with MRD &LSC results % Other Patients %

IDH
 IDH1neg / IDH2neg 154 64 250 56
 IDH1pos / IDH2neg 18 7 35 8
 IDH1neg / IDH2pos 27 11 39 9
 IDH1pos / IDH2pos 1 0 0 0
 Missing 42 17 120 27
DNMT3a
 Neg 139 57 230 52
 Pos 61 25 94 21
 Missing 42 17 120 27
First consolidation therapy
 None 31 13 87 20
 3rd cycle 90 37 134 30
 Autologous SCT 32 13 37 8
 Allogeneic SCT 89 37 186 42
CR reached
 After cycle 1 207 86 352 79
 After cycle 2 35 14 92 21
HOVON risk group
 Good 80 33 123 28
 Intermediate 60 25 122 27
 Poor 67 28 126 28
 Very poor 35 14 73 16
Treatment group
Standard treatment 129 53 222 50
Clofarabine 10mg 106 44 203 46
Clofarabine 15mg 7 3 19 4

Patient characteristics of the 242 patients where both MRD and LSC results were present after 2 cycles of 
chemotherapy. Comparison with the 444 eligible patients  who also  received a second cycle of chemotherapy 
treatment and achieved CR (right column). Results show that the patients with and without MRD/LSC results are 
largely the same  Significant changes  between patients with and without MRD/LSC sample are probably due to 
small patients numbers. Core-binding factor AML defined as translocation[8;21]/inv[16] or t[16;16]; CR, complete 
remission; NA, not applicable.; SCT, stem cell transplantation. WBC, white blood cell. Significant changes with 
Chi-square test: p=0.029 (karyotype), p=0.010 (first consolidation therapy ), and p=0.044 (CR reached). Borderline 
significance with Chi-square test:  p=0.073 (sex), p=0.092 (AML type), and with Kruskal-Wallis test: p=0.091 (WBC). 
All other differences were not significant.

Statistical analysis
Survival analyses were performed for data obtained at time of diagnosis and data acquired 

after the second course of induction chemotherapy. For diagnosis analyses, overall survival 

(OS) was used, defined as time from date of diagnosis until date of death. For follow-up 

MRD/LSC analyses, primary end points were OS and cumulative incidence of relapse (CIR). 

Event free survival (EFS; measured from sample date after achieving CR) was a secondary 
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end point. For EFS both relapse and death were defined as an event. CIR was calculated 

using both the Fine and Gray model22 and the Kaplan Meier method from sample date 

until date of relapse. Death was hereby included as a competing event. Patients without 

an event were censored at date of last follow-up. For OS and EFS analyses, Kaplan-Meier 

curves were generated and outcome between groups was compared using log-rank 

tests. Cox-regression multivariate analyses were performed to calculate hazard ratios (HR) 

and associated 95% confidence interval (CI) for OS and EFS. For multivariate analyses 

a combined MRD/LSC parameter was used instead of assuming an additive effect model 

using MRD and LSC as single parameters. This was based on statistical grounds, since 

there is an important interaction between MRD and LSC and using an additive effect 

model could give unreliable results. Multivariate analyses for CIR were calculated using 

the Fine and Gray model. All variables that were significant in univariate analyses and all 

variables with known clinical importance in AML were used in these analyses, included age, 

AML type (de novo/secondary/high risk MDS), risk group, FLT3/NPM1 status, CD34 status 

at diagnosis, WBC count at diagnosis, type of consolidation therapy and H102 treatment 

arm. More information regarding multivariate analyses is available in the supporting 

information. Median follow-up time of all eligible surviving patients was 41 months.

RESULTS

CD34/LSC status at diagnosis
Baseline characteristics 
Baseline characteristics of the in total 594 patients with a sample available at time of 

diagnosis are shown in Table S4. Of these 594 samples, BM was used in 495 cases and 

PB in 97 cases (data concerning origin of the material was missing in 2 cases). Of the 594 

samples at diagnosis there were 77 (13%) CD34-negative cases, 338 (57%) CD34-positive 

cases with low CD34+CD38- LSC levels (<0.03%), further referred to as LSClow, and 179 

(30%) CD34-positive cases with high CD34+CD38- LSC levels (≥0.03%), further referred 

to as LSChigh. Median LSC percentage of all 517 CD34-positive cases (CD34-negative 

samples with CD34+CD38-LSC=0 excluded) was 0.0079% (range 0.0000%-19.8761%), 

i.e. 79 in a million cells. In 434 of these 517 CD34-positive cases BM was used (median 

CD34+CD38-LSC percentage 0.0064%, range 0.0000%-19.8761%) and in 81 cases PB 

was used (median LSC percentage 0.0324%, range 0.0000%-16.8174%). No difference in 

outcome (OS/EFS) was found regarding patients with a BM or PB sample available (results 

not shown).

Validation of prognostic relevance
To establish the value of LSCs in prognostics, first the role of LSC at diagnosis was 

established. In univariate analysis, a significant decrease in OS with increasing LSC 

frequencies was apparent (Figure 2B). Multivariate analysis revealed LSC frequency as an 
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independent prognostic factor for OS: HR in LSClow was 1.94 (95%CI 1.11-3.39) and in 

LSChigh 2.38 (95%CI 1.34-4.25) relative to the CD34-negative group (Table S5). The relation 

between CD34+CD38- status and achievement of hematological CR was also investigated: 

in the CD34-negative cohort (LSC=0), only 4% (3/77) never achieved CR as compared to 

12% (41/338) of the LSClow group and 18% (33/179) of LSChigh group (p<0.001, Figure 2A). 

In multivariate analyses, odds ratios for achieving CR were 0.65 for LSClow and 0.45 for 

LSChigh; differences were not significant (Table S5). 

At diagnosis associations exist with molecular aberrancies as shown in Table S6. As 

expected23,24, associations were found between CD34-negative AML (CD34+CD38- 

LSC=0) and the good prognostic FLT3wt/NPM1mut profile (Table S6A, left part). Moreover, 

the percentage of FLT3wt/NPM1mut patients was higher in LSClow than in LSChigh patients 

(Table S6A, right part). In addition, the percentage of the poor prognostic FLT3mut/

NPM1wt  increased with increasing LSC frequency (LSChigh> LSClow>CD34 negative).  Table 

S6B shows the association of LSC frequency with the poor prognostic presence of EVI1 

over-expression:  LSChigh> LSClow>CD34 negative.  Moreover double mutations of CEBPA 

are known to be associated with strong CD34 expression.25 We indeed found this good 

prognostic marker exclusively in CD34-positive patients, however especially in the LSClow 

patients groups with relatively good prognosis (Table S6C). 

LSC assessment in CR predicts relapse and survival
The LSC frequency was measured in 302 patients in CR after the second cycle of  

induction therapy.

Diagnosis CD34/LSC results were available for 277/302 patients (92%). Table S7 shows 

results concerning the occurrence of changes of LSC status between diagnosis and follow-

up. These preliminary results show that of in total 40 CD34-negative AML patients at 

diagnosis 20% (8/40) convert to the CD34-positive status during follow-up. Moreover, it 

appears that CD34-negative and CD34-positive patients with low LSC levels that convert 

to LSC positivity after treatment have a worse outcome as compared to the patients that 

remain LSC negative after treatment (Table S7).

For follow-up analyses, in total 204 (68%) LSC-negative and 98 (32%) LSC-positive 

patient samples were included. LSC-negative patients (n=204) had better 3-year CIR and 

3-yr OS compared to LSC-positive patients (n=98, Figure S3). Moreover, in multivariate 

analyses LSC status in CR patients was an independent predictor for both CIR (HR 1.87, 

95%CI 1.16-3.01) and OS (HR 1.62, 95%CI 1.05-2.51). 

MRD assessment in CR predicts relapse and survival
In 305 CR patients MRD was measured after the 2nd chemotherapy cycle. As expected, 

difference in outcome was apparent between MRD-negative (n=239) and MRD-positive 

(n=66) patients (Figure S4). In multivariate analysis, MRD was an independent predictor for 

CIR (HR 2.49, 95%CI 1.55-4.02), with a trend for OS (HR 1.70, 95%CI 0.94-2.35).
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Evaluating combined MRD/LSC assessments in CR for relapse and 
survival 
In 242 patients both the LSC frequency and MRD frequency after chemotherapy treatment 

were known. When combining LSC and MRD (Figure 3), four groups were distinguished: 1. 

MRDneg/LSCneg (n=136; 56%); 2. MRDpos/LSCneg (n=28; 12%);  3. MRDneg/LSCpos  (n=58; 24%); 

4. MRDpos/LSCpos (n=20; 8%).  CIR and OS analyses demonstrated that patients negative for 

both MRD and LSC have the best prognosis: 3-year CIR was 35% for MRDneg/LSCneg , 43% 

for MRDpos/LSCneg, 53% for  MRDneg/LSCpos  and 100% for MRDpos/LSCpos patients.  Similar 

results were found for OS with 3-year OS of 66% for MRDneg/LSCneg , 68% for MRDpos/

LSCneg, 53% for MRDneg/LSCpos  and 0% for MRDpos/LSCpos patients. These results show that 

double positivity is associated with an excessively poor outcome. Multivariate analyses 

showed that the combined MRDpos/LSCpos status has profound predictive significance for 

both OS (HR 3.62), CIR (HR 5.89) and EFS (HR 4.24, Table S8). 

MRD/LSC results in distinct risk categories
In Table S9 median MRD and LSC levels are shown for the 4 different MRD/LSC subgroups 

while also taken into account the CD34/LSC status as defined at diagnosis. Although 

some subgroups are very small, these results show that patients within the MRDposLSCpos 

subgroup appear to have higher MRD and LSC levels. Table S10 shows that MRDneg/

LSCneg patients are present in all four different risk groups, although the frequency of 

MRDneg/LSCneg patients becomes lower with increasing risk. Moreover, the frequency of 

MRDpos/LSCpos patients was highest in the very poor risk group (15%), although MRDpos/

LSCpos patients were also present in the other risk groups (e.g 4% in the good risk group). 

These data illustrate that MRD/LSC status at follow-up is an important property across  

all risk groups. 

Clinical outcome was subsequently assessed for the different MRD/LSC subgroups 

within the different H102-defined risk groups. Figure S5 shows MRD/LSC results for 

CIR (Figure S5.I.A-D) and for OS (Figure S5.II.A-D). Although patient numbers for some 

subgroups are small, these results show that MRDpos/LSCpos patients have a (very) poor 

prognosis, even when present in the good or intermediate risk group. Overall, these 

results illustrate that the LSC frequency has important clinical relevance additional to MRD 

and currently used risk factors in predicting outcome in AML. 

LSC-MRD and MFC-MRD as compared to molecular MRD detection
Since molecular MRD is the golden standard (Figure 4A, NPM1 MRD alone) for AML 

patients with mutated NPM1, we subsequently combined NPM1 qPCR with LSC MRD 

(n=64) and Flow MRD (n=95) measurements in a subset of patients. When comparing 

NPM1 MRD with LSC MRD, we find congruent results (either double positive or negative) 

in 65% of patients. The combined use of both techniques express improved prognostic 

value for the risk of relapse compared to the individual techniques separately (Figure 4B, 
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NPM1 MRD combined with LSC; p<0.001). Similar findings were observed when NPM1 

MRD was combined with Flow MRD. In these analyses concordant results were found in 

58% of AML patients and the combination of both approaches results in enhanced relapse 

prediction (Fig 4C and D, NPM1 alone and NPM1 combined with Flow MRD, p=0.001). 

These results require validation in larger cohorts since flow cytometric approaches might 

improve current relapse prediction of molecular NPM1 MRD.

NPM1neg

NPM1pos NPM1neg/LSCneg

NPM1neg/LSCpos

NPM1pos/LSCneg

NPM1pos/LSCpos

At risk
NPM1neg   34 33               23                14                7                  3 
NPM1pos   30                 17               13                 9                 3                  1

At risk
NPM1neg/LSCneg    28                27               20                13                 7                  3  
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Figure 4. Prognostic value of LSC, MFC-MRD and molecular MRD for NPM1 positive patients. 
Cumulative incidence of relapse is shown for 64 NPM1 positive AML patients of which NPM1-MRD and 
LSC results after treatment were available. Figure A shows relapse incidence based on NPM1-MRD 
measurement as a single parameter for these 64 patients. In Figure B combined results for LSC 
and NPM1-MRD are shown. Figure C shows cumulative incidence of relapse for 95 NPM1 positive 
AML patients of which MFC-MRD and NPM1-MRD results were available after treatment. In Figure D 
combined results for MFC-MRD and NPM1-MRD are shown. 
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DISCUSSION

MRD as defined by flow cytometry or molecular assays has been proven to be a reproducible 

marker for relapse prediction.2,6,26,27 However, still a considerable proportion of MRD-negative 

patients will relapse and it has been hypothesized that differences in LSC frequencies may 

be partly responsible.10,16,28 Support for this notion comes from the prognostic value of 

LSC frequencies in preliminary retrospective studies.10,16,28 In the present study for the first 

time we show, in a prospective large cohort of AML patients, that LSC frequency has 

prognostic value additive to well-known AML risk factors, including MRD. Already at 

time of diagnosis CD34+CD38- LSC frequencies were correlated with OS in multivariate 

analyses. The correlation with good (FLT3wt/NPM1mut) and poor (FLT3mut/NPM1wt, EVI1 

over-expression) molecular aberrancies suggests that these and probably other genetic 

aberrations may translate into differences in frequencies of CD34+CD38- LSC. Therefore, 

CD34+CD38-LSC may represent the total of effects of all mutations that influence therapy 

resistance, not only at diagnosis, but also at follow up. Our own research group first 

described the prognostic importance of CD34+CD38- in 2005.29 Similar results were found 

by others17,30: In these papers focus was on the total CD34+CD38- cell compartment and 

thus no distinction was made between normal and leukemic CD34+CD38-cells. Hwang 

et al also demonstrated the prognostic importance of the CD34+CD38-LSC frequency 

as determined at diagnosis, however the panel of aberrant markers to define LSCs was 

limited to CD44, CD123 and CD184 and therefore CD34+CD38-LSCs that express other 

aberrant markers might be missed.31 

Until recently, risk schemes in AML were primarily based on pre-treatment risk factors, 

where our approach is also based on post-treatment assessments that account for 

the occurrence of therapy resistance.  It is known that CD34+CD38- LSCs are therapy 

resistant and immune-evasive14,15, and, during leukemic growth, may outcompete other 

stem cell immune-phenotypes.10 Therefore, CD34+CD38-LSCs, as defined after remission, 

takes in to account all pre- and post-therapy effects on therapy resistance. In this study 

we were able to prospectively confirm that the frequency of CD34+CD38-LSCs in patients 

in remission is an independent prognostic factor for patient outcome. We show that in all 

different AML risk categories, MRD and LSC double positivity, as defined after achievement 

of morphologic complete remission, predicts a very poor outcome in AML patients. Even 

in the good risk category, we were able to show that MRDpos/LSCpos patients have a high 

risk of relapse and poor OS (Figure S5.I.A and S5.II.A). Especially for intermediate risk 

patients the combined MRD/LSC results could be of importance for decisions regarding 

consolidation treatment.

Although patient numbers are sometimes small, our data strongly suggest that MRDpos/

LSCpos patients, independent on risk category, should be considered as poor/very poor risk 

patients, preferably to be treated as such. 

However, there are still MRDneg/LSCneg patients who will relapse and therefore further 

improvement of this flow cytometric assay is warranted. Especially, to better discriminate 
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risk of relapse between MRDneg/LSCneg, MRDpos/LSCneg and MRDneg/LSCpos patients. 

Improvements concerning sensitivity/specificity of the MRD and LSC assay, can be 

expected when using a smart combination of flow cytometric MRD and molecular MRD. 

Although NPM1 offers a very specific, sensitive, and stable target for MRD in AML6 , 

our results show that for proper prognostics the addition of MFC-MRD and/or LSC-MRD 

may be opportune. In the combined LSC and NPM1 analyses, results show (Figure 4) 

the potential additive value of LSC in NPM1 positive patients. As to the combination of 

MFC-MRD and NPM1-MRD, it appears that for the best prognostic impact both NPM1-MRD 

and MFC-MRD are necessary. Of course MFC-MRD and/or LSC-MRD offer the method of 

choice for the majority of non-NPM1 patients (70.7%). Overall, the additive prognostic 

value of both LSC-MRD and MFC-MRD in NPM1 positive patients should be validated 

in future larger studies. Moreover, the exact role of Next-Generation Sequencing (NGS) 

based MRD as compared to LSC-MRD should be clarified in future studies. For MFC-MRD 

it recently has been shown that it is supplementary as compared to NGS-MRD.32

Different studies have shown prognostic significant of MRD levels below the 0.1% 

cut-off value.3,33,34 Therefore, lowering the cut-off value for MRD and combine these results 

with LSC levels may define patients with a particularly good outcome (we have found this 

for a cut-off of 0.01%; results not shown).

Further improvement is possible when using the combination of MRD/LSC assessment 

after different courses of therapy (for instance after course 1 and 2 or sequential monitoring 

after remission), and finally, the detection of upcoming MRD and LSC populations is of 

high importance for further improvement: it is known that at AML diagnosis different 

AML clones/mutations/cell populations are present and that this may lead to a change in 

constitution of the disease in follow up and at relapse.35–39 Table S7 shows results concerning 

change of LSC status between diagnosis and follow-up. In the present study, however, 

mainly aberrancies defined at diagnosis were used for MRD and, to a lesser extent, for 

LSC assessment. Thus, for future studies, including upcoming populations could reduce 

frequencies of false negative MRD/LSC results. Lastly, LSC tracking for individual patients 

is challenging due to the very low numbers of LSC in remission BM. Therefore, for future 

LSC tracking, sensitivity of the LSC assay can be improved by increasing the numbers of 

WBC analysed. With 5-10 million WBC acquired, for example in “a one-tube-for-both-

MRD-and-LSC” approach currently under development, more patients with high LSC 

frequencies prone to relapse can be distinguished. An 8- color “one-tube” LSC approach 

has already been developed40 whereas an 18-color “one-tube” approach is currently being 

tested in our institute. 

Overall, we show that the LSC frequency at baseline and after chemotherapy is an 

independent prognostic factor, both in NPM1mutant and NPM1wt patients and, combined 

with MRD, enables to identify (very) poor risk patients in all different currently used risk 

categories. Our data warrants including both MRD and LSC in future AML risk classifications.



CD34+CD38- LEUKEMIC STEM CELL FREQUENCY

64

3

ACKNOWLEDGEMENTS

We thank all participating HOVON/SAKK study centers, and the patients herein.

Conflict of interest: The authors declare no competing financial interests. 

FURTHER SUPPLEMENTARY TEXT/TABLES/FIGURES

Further supplemental data can be found online at https://www.nature.com/articles/

s41375-018-0326-3.  



CD34+CD38- LEUKEMIC STEM CELL FREQUENCY

65

3

REFERENCES 

1. Hokland P, Ommen HB, Mulè MP, 
Hourigan CS. Advancing the Mrd 
Concept in Acute Myeloid. Semin 
Hematol 2015; 52: 184–92.

2. Terwijn M, van Putten WLJ, Kelder A, 
van der Velden VHJ, Brooimans RA, 
Pabst T, et al. High prognostic impact of 
flow cytometric minimal residual disease 
detection in acute myeloid leukemia: 
data from the HOVON/SAKK AML 42A 
study. J Clin Oncol 2013; 31: 3889–97.

3. Freeman SD, Virgo P, Couzens S, 
Grimwade D, Russell N, Hills RK, et 
al. Prognostic relevance of treatment 
response measured by flow cytometric 
residual disease detection in older 
patients with acute myeloid leukemia. 
J Clin Oncol 2013; 31: 4123–31.

4. Loken MR, Alonzo T a, Pardo L, 
Gerbing RB, Raimondi SC, Hirsch B 
a, et al. Residual disease detected 
by multidimensional flow cytometry 
signifies high relapse risk in patients 
with de novo acute myeloid leukemia: 
a report from Children’s Oncology 
Group. Blood 2012; 120: 1581–8.

5. Zhu H, Zhang X, Qin Y, Liu D, Jiang 
H, Chen H, et al. MRD-directed 
risk stratification treatment may 
improve outcomes of t(8 ;21) AML in 
the first complete remission: results 
from the AML05 multicenter trial. 
Blood 2013; 121: 4056–62.

6. Ivey A, Hills RK, Simpson M a, 
Jovanovic J V, Gilkes A, Grech A, et 
al. Assessment of Minimal Residual 
Disease in Standard-Risk AML. N Engl 
J Med 2016; 374: 422–33.

7. Bonnet D, Dick JE. Human acute 
myeloid leukemia is organized as 
a hierarchy that originates from 
a primitive hematopoietic cell. Nat 
Med 1997; 3: 730–7.

8. Becker MW, Jordan CT. Leukemia stem cells 
in 2010: current understanding and future 
directions. Blood Rev 2011; 25: 75–81.

9. Taussig DC, Vargaftig J, Miraki-Moud F, 
Griessinger E, Sharrock K, Luke T, et al. 
Leukemia-initiating cells from some acute 
myeloid leukemia patients with mutated 
nucleophosmin reside in the CD34(-) 
fraction. Blood 2010; 115: 1976–84.

10. Terwijn M, Zeijlemaker W, Kelder A, 
Rutten AP, Snel AN, Scholten WJ, et 
al. Leukemic Stem Cell Frequency: 
A Strong Biomarker for Clinical 
Outcome in Acute Myeloid Leukemia. 
PLoS One 2014; 9: e107587.

11. Goardon N, Marchi E, Atzberger A, Quek 
L, Schuh A, Soneji S, et al. Coexistence 
of LMPP-like and GMP-like leukemia 
stem cells in acute myeloid leukemia. 
Cancer Cell 2011; 19: 138–52.

12. Sarry J-E, Murphy K, Perry R, Sanchez 
P V, Secreto A, Keefer C, et al. Human 
acute myelogenous leukemia stem 
cells are rare and heterogeneous when 
assayed in NOD/SCID/IL2Rγc-deficient 
mice. J Clin Invest 2011; 121: 384–95.

13. Ng SWK, Mitchell A, Kennedy J a., 
Chen WC, McLeod J, Ibrahimova N, 
et al. A 17-gene stemness score for 
rapid determination of risk in acute 
leukaemia. Nature 2016; 540: 433–7.

14. Ishikawa F, Yoshida S, Saito Y, Hijikata 
A, Kitamura H, Tanaka S, et al. 
Chemotherapy-resistant human AML 
stem cells home to and engraft within 
the bone-marrow endosteal region. 
Nat Biotechnol 2007; 25: 1315–21.

15. Costello RT, Mallet F, Gaugler B, 
Sainty D, Arnoulet C, Gastaut J a, et 
al. Human acute myeloid leukemia 
CD34+/CD38- progenitor cells have 
decreased sensitivity to chemotherapy 



CD34+CD38- LEUKEMIC STEM CELL FREQUENCY

66

3

and Fas-induced apoptosis, reduced 
immunogenicity, and impaired 
dendritic cell transformation capacities. 
Cancer Res 2000; 60: 4403–11.

16. Bradbury C, Houlton a E, Akiki S, Gregg 
R, Rindl M, Khan J, et al. Prognostic 
value of monitoring a candidate 
immunophenotypic leukaemic stem/
progenitor cell population in patients 
allografted for acute myeloid leukaemia. 
Leukemia 2014; 9: 1–4.

17. Jentzsch M, Bill M, Nicolet D, Leiblein S, 
Schubert K, Pless M, et al. Prognostic impact 
of the CD34+/CD38- cell burden in patients 
with acute myeloid leukemia receiving 
allogeneic stem cell transplantation. Am J 
Hematol 2017; 92: 388–96.

18. Feller N, van der Pol M a, van Stijn A, 
Weijers GWD, Westra a H, Evertse BW, et al. 
MRD parameters using immunophenotypic 
detection methods are highly reliable 
in predicting survival in acute myeloid 
leukaemia. Leukemia 2004; 18: 1380–90.

19. Löwenberg B, Pabst T, Maertens J, van 
Norden Y, Biemond BJ, Schouten HC, 
et al. Therapeutic value of clofarabine 
in younger and middle aged (18 – 65 
yrs) adults with newly diagnosed AML. 
Blood 2017; 129: 1636–45.

20. Zeijlemaker W, Kelder A, Wouters R, Valk 
PJM, Witte BI, Cloos J, et al. Absence of 
leukaemic CD34+ cells in acute myeloid 
leukaemia is of high prognostic value: 
a longstanding controversy deciphered. 
Br J Haematol 2015; 171: 227–38.

21. Cloos J, Harris J., Janssen JJ, Kelder A, 
Huang F, Sijm G, et al. Comprehensive 
Protocol to Sample and Process Bone 
Marrow for Measuring Measurable 
Residual Disease and Leukemic Stem 
Cells in Acute Myeloid Leukemia. J Vis 
Exp 2018; 133. doi:10.3791/56386.

22. Fine JP, Gray RJ. A Proportional 
Hazards Model for the Subdistribution 

of a Competing Risk. J Am Stat  
Assoc 1999; 94: 496–509.

23. Falini B, Mecucci C, Tiacci E, Alcalay M, 
Rosati R, Pasqualucci L, et al. Cytoplasmic 
nucleophosmin in acute myelogenous 
leukemia with a normal karyotype. N 
Engl J Med 2005; 352: 254–66.

24. Tsykunova G, Reikvam H, Hovland 
R, Bruserud Ø. The surface molecule 
signature of primary human acute 
myeloid leukemia (AML) cells is highly 
associated with NPM1 mutation status. 
Leukemia 2012; 26: 557–9.

25. Zeijlemaker W, Gratama JW, Schuurhuis 
GJ. Tumor heterogeneity makes AML 
a ‘moving target’ for detection of 
residual disease. Cytometry B Clin 
Cytom 2014; 86: 3–14.

26. Chen X, Xie H, Wood BL, Walter RB, 
Pagel JM, Becker PS, et al. Relation of 
clinical response and minimal residual 
disease and their prognostic impact on 
outcome in acute myeloid leukemia. J 
Clin Oncol 2015; 33: 1258–64.

27. Schuurhuis GJ, Ossenkoppele G. 
Minimal residual disease in acute myeloid 
leukemia: already predicting a safe 
haven? Expert Rev Hematol 2010; 3: 1–5.

28. Khan N, Freeman SD, Virgo P, Couzens 
S, Richardson P, Thomas I, et al. An 
immunophenotypic pre-treatment 
predictor for poor response to 
induction chemotherapy in older acute 
myeloid leukaemia patients: blood 
frequency of CD34+ CD38 low blasts. 
Br J Haematol 2015; 170: 80–4.

29. Van Rhenen A, Feller N, Kelder A, Westra 
AH, Rombouts E, Zweegman S, et al. 
High stem cell frequency in acute myeloid 
leukemia at diagnosis predicts high 
minimal residual disease and poor survival. 
Clin Cancer Res 2005; 11: 6520–7.

30. Witte K-E, Ahlers J, Schäfer I, André M, 
Kerst G, Scheel-Walter H-G, et al. High 



CD34+CD38- LEUKEMIC STEM CELL FREQUENCY

67

3

proportion of leukemic stem cells at 
diagnosis is correlated with unfavorable 
prognosis in childhood acute 
myeloid leukemia. Pediatr Hematol  
Oncol 2011; 28: 91–9.

31. Hwang K, Park C-J, Jang S, Chi H-S, 
Kim D-Y, Lee J-H, et al. Flow cytometric 
quantification and immunophenotyping 
of leukemic stem cells in acute myeloid 
leukemia. Ann Hematol 2012; 91: 1541–6.

32. Jongen-Lavrencic M, Grob T, Hanekamp 
D, Kavelaars FG, al Hinai A, Zeilemaker 
A, et al. Molecular Minimal Residual 
Disease in Acute Myeloid Leukemia. N 
Engl J Med 2018; 378: 1189–99.

33. Quek L, Otto GW, Garnett C, Lhermitte L, 
Karamitros D, Stoilova B, et al. Genetically 
distinct leukemic stem cells in human 
CD34 − acute myeloid leukemia are 
arrested at a hemopoietic precursor-like 
stage. J Exp Med 2016; 213: 1513–35.

34. Walter RB, Buckley SA, Pagel JM, Wood 
BL, Storer BE, Sandmaier BM, et al. 
Significance of minimal residual disease 
before myeloablative allogeneic 
hematopoietic cell transplantation for 
AML in fi rst and second complete 
remission. Blood 2013; 122: 1813–22.

35. Ding L, Ley TJ, Larson DE, Miller CA, 
Koboldt DC, Welch JS, et al. Clonal 
evolution in relapsed acute myeloid 
leukemia revealed by whole genome 
sequencing. Nature 2012; 481: 506–10.

36. Bachas C, Schuurhuis GJ, Assaraf YG, 
Kwidama ZJ, Kelder A, Wouters F, et 

al. The role of minor subpopulations 
within the leukemic blast compartment 
of AML patients at initial diagnosis 
in the development of relapse.  
Leukemia 2012; 26: 1313–20.

37. Bachas C, Schuurhuis GJ, Hollink IHIM, 
Kwidama ZJ, Goemans BF, Zwaan CM, 
et al. High-frequency type I/II mutational 
shifts between diagnosis and relapse 
are associated with outcome in pediatric 
AML: implications for personalized 
medicine. Blood 2010; 116: 2752–8.

38. Wang ES, Sait SNJ, Gold D, Mashtare 
T, Starostik P, Ford LA, et al. Genomic, 
immunophenotypic, and NPM1/FLT3 
mutational studies on 17 patients 
with normal karyotype acute myeloid 
leukemia (AML) followed by aberrant 
karyotype AML at relapse. Cancer 
Genet Cytogenet 2010; 202: 101–7.

39. Ottone T, Zaza S, Divona M, Hasan 
SK, Lavorgna S, Laterza S, et al. 
Identification of emerging FLT3 ITD-
positive clones during clinical remission 
and kinetics of disease relapse in acute 
myeloid leukaemia with mutated 
nucleophosmin. Br J Haematol 2013. 
doi:10.1111/bjh.12288.

40. Zeijlemaker W, Kelder A, Oussoren-
Brockhoff YJM, Scholten WJ, Snel a N, 
Veldhuizen D, et al. A simple one-tube 
assay for immunophenotypical 
quantification of leukemic stem 
cells in acute myeloid leukemia.  
Leukemia 2016; 30: 439–46. 



CD34+CD38- LEUKEMIC STEM CELL FREQUENCY

68

3

SUPPLEMENTARY DATA

Patients and treatment
In total 890 acute myeloid leukemia (AML) patients were included in the HOVON 102 

multicenter clinical trials ([HOVON/SAKK AML] Dutch-Belgian Hemato-Oncology 

Cooperative Group/Swiss Group for Clinical Cancer Research Acute Myeloid Leukemia). 

AML was diagnosed according to the World Health Organization criteria, whereby also 

high-risk myelodysplastic syndromes (MDS) patients (IPSS ≥1.5) were included. Secondary 

leukemias were also included and were defined as AMLs with prior treatment with 

chemotherapy and/or radiotherapy, or cases with a pre-existing hematological disease 

(e.g. MDS or myelofibrosis) who developed AML. All patients gave written informed 

consent in accordance with the Declaration of Helsinki (central study approval number 

2009-293; VUmc local approval number 2010- 56 [LUV]). The HOVON 42a and HOVON 

92 studies were also reviewed and approved (HOVON 42a number 2000-220; HOVON 92 

number 2008/216). On the HOVON website (www.hovon.nl) detailed information regarding 

inclusion/exclusion criteria is available. In general all patients received two cycles of 

standard induction chemotherapy, whereby the first induction cycle consisted of idarubicin 

(12 mg/m2, days 1-3) and cytarabine (200mg/m2, days 1-7), and the second induction cycle 

contained amsacrine (120 mg/m2, days 4-6) and cytarabine (1000mg/m2, days 1-6). Half 

of the patients included in the HOVON102 study were randomized to the experimental 

treatment arm, in which clofarabine treatment (assigned dose, days 1-5) was added to 

above described standard chemotherapy treatment regiments.1 The experimental arm in 

the HOVON 42a consisted of standard induction therapy combined with granulocyte-

colony-stimulating factor (G-CSF). In the HOVON 92 study patients received laromustine 

besides standard induction therapy. After induction chemotherapy treatment most 

patients received consolidation therapy, consisting of either a third chemotherapy cycle, 

autologous or allogeneic stem cell transplantation. In case a third chemotherapy was 

the consolidation therapy of choice, this consisted of mitoxantrone (10mg/m2, days 1-5) 

and etoposide (100mg/m2, days 1-5). In general good risk patients received a third cycle of 

chemotherapy, intermediate risk patients mainly received an autologous or an allogeneic 

transplantation dependent on the expected treatment related mortality, poor risk and very 

poor patients in general proceeded to an allogeneic transplantation.

MRD assessment
Measurements were performed using a FACS CANTO flow cytometer (BD Biosciences; 

San Jose, CA).  Infinicyt™ software (Cytognos, Spain) was used for the immunophenotypic 

analyses. For diagnosis determination of leukemia associated immunophenotype (LAIP), 

20 million cells were used, while for MRD determination in follow-up 2x106 WBCs were 

labelled with a minimum of 500 000 WBCs acquired for immunophenotypic analyses. At 

diagnosis, LAIPs were determined as described in detail before.2 
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MRD assessment was performed locally by four other centers, qualified to perform 

this3: University Medical Center Rotterdam (n=20), University Hospital Leuven (n=6), 

Medisch Spectrum Twente (n=6) and Radboud University Nijmegen Medical Center (n=1). 

All other MRD measurements were performed in VU University Medical Center (n=272). 

Final data analysis of all MRD samples was performed in VU University Medical Center. 

Clinicians were not informed concerning the MRD status, while people responsible for 

data analysis were not aware of the clinical situation of the patients. 

CD34/LSC status
At time of diagnosis bone marrow (BM; n=495) or peripheral blood (PB; n=97) samples 

were used to perform multiparameter immunophenotyping by flow cytometry (in 2 cases 

origin of the material was missing). At follow up only BM samples were used. After lysing 

of the erythrocytes, cells were labelled with the antibodies (Table S2). In November 2011 

the 6-color antibody panel was exchanged for the 8-color panel (patients were included 

between February 2010 and September 2013). Cells were incubated for 15 minutes with 

the appropriate antibodies in the dark. Subsequently, unlabelled antibodies were removed 

via washing with phosphate buffered saline/0.1% human serum albumin. Flow cytometric 

measurements were performed with a FACSCanto-II from BD (New Jersey, USA). All 

CD34 and LSC measurements at diagnosis and LSC measurements during follow-up were 

performed in VU University Medical Center. 

Methods to define CD34 status at time of diagnosis are described by Zeijlemaker et al.4 

and LSC status at diagnosis and follow-up by Terwijn et al.5 CD34 data of 173 patients (of 

the 594 patients in total), as defined at time of diagnosis, have been previously published.4  

Flow cytometric data concerning LSC values at diagnosis and LSC/MRD values as defined 

at follow-up were not previously published.  In our previous study5, a cut-off for LSC 

positivity and negativity of 0.0001% (% of WBC) was defined. In that study this cut-off 

was chosen since, out of a wide range of cut-off values (Table S7 in Terwijn et al.5), it gave 

the best discrimination (highest p-value) in outcome between LSC-negative and positive 

patients. However, in that paper, only CD34-positive patients were studied. In the present 

study we included all patients, both CD34-positive- and CD34-negative, the latter CD34-

negative group making up 13% of the total patient population. Due to the inclusion 

of these CD34-negative patients, with its inherent CD34+CD38- LSC frequency of 0%, 

the previously used cut-off value was likely to decrease.  We thus also studied cut-off levels 

lower than the 0.0001% cut-off, as used in the previous study. The cut-off of 0% turned 

out to offer the most optimal one (together with 0.4 in a million, i.e. 0.00004%) where still 

a considerable number of patients were classified as LSC positive (i.e. values above 0%) 

(Table S3). As a control, we applied this 0% cut-off for the data of our previous study and 

found similar differences in survival between the two patient groups defined by either 

the 0% and the previously used 0.0001% cut-off (Figure S1). 
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Table S2. Antibody panels

6-Color antibody panel

Tube FITC PE PerCP PC7 APC APC-H7

1 PBS PBS CD45 (2D1, BD) CD34 (581, BC) PBS PBS
2 CD2 (MT910, DC) CD7 (M-T701, BD) CD45 CD34 CD13 (WM15, 

Pharmigen)
HLA-DR (L243, BD)

3 CD36 (CLB-IVC7, Sanquin) CD133 (AC133/1, MB) CD45 CD34 CD22 (S-HCL-1, BD) CD19 (SJ25C1, BD)
4 CD15 (MMA-BD) CD33 (P67.6, BD) CD45 CD34 CD11b (D12, BD) CD14 (MoP9, BD)
5 CD13 (WM-47, DC) CD56 (My31, BD) CD45 CD34 CD117 (104D2, DC) HLA-DR
6 CD7 (M-T701, BD) TIM-3 (344823, R&D) CD45 CD34 CD38 (HB7, BD) HLA-DR
7 CD11b (Bear1) CLL-1 (687317, R&D) CD45 CD34 CD38 CD19

8-Color antibody panel

Tube FITC PE PerCP-CY5.5 PC7 APC APC-H7 HV450 KO

1 HLA-DR (L243, BD) CD33 (P67.6, BD) CD13(WM15, BD) PBS CD14 (Mop9, BD) PBS CD34 (8G12,BD) CD45 (J.33, BC)
2 CD44 (J173, BC) CLL-1 /CLEC12a (50C1, BD) CD13 CD56 (N901, BC) CD38 (HB7, BD) HLA-DR (L243, BD) CD34 CD45
3 CD7 (M-T701, BD) TIM-3(344823, R&D) CD13 CD117 (104D2D1, BC) CD38 CD19 (SJ25C1, BD) CD34 CD45
4 CD2 (MT910, DC) CD133 (AC133/1, MB) CD13 CD117 CD38 CD19 CD34 CD45
5 CD36 (CLB-IVC7, Sanquin) CD123 (9F5, BD) CD13 CD33 (D3Hl60,251, BC) CD38 CD14 (MoP9, BD) CD34 CD45
6 CD11b (Bear1, BC) CD96 (6F9, BD) CD13 CD117 CD38 CD14 CD34 CD45
7 CD15 (MMA, BD) CD22 (S-HCL-1, BD) CD13 CD117 CD38 HLA-DR CD34 CD45

In the 6 color antibody panel often a second labeling, including a label switch of one or more antibodies, was performed to 
increase sensitivity specificity of a LAIP. Leukemic stem cell frequencies were determined in the 6-color panel using tubes 6 
and 7, including CD34, CD45 and CD38 as a backbone. In the 8-color panel stem cell frequencies were determined using

tubes 2-7. Associated clones are given in brackets. BC, Beckman Coulter; BD, Becton Dickinson; DC, DakoCytomation; MB, 
Miltenyi Biotec; PBS, phosphate buffered saline; R&D, R&D systems.

Table S3. Range of LSC cut-off values after second course of induction therapy used for overall survival 
and accompanying p-values calculated via log-rank analyses

Cut-off % 0 0,000 0,000 0,000 0,000 0,000
Patients (n) above cutoff 78 78 64 53 48 34
Patients (n) below cutoff 164 164 178 189 194 208
p-value 0.000 0.000 0.000 0.000 0.000 0.000
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Table S2. Antibody panels

6-Color antibody panel

Tube FITC PE PerCP PC7 APC APC-H7

1 PBS PBS CD45 (2D1, BD) CD34 (581, BC) PBS PBS
2 CD2 (MT910, DC) CD7 (M-T701, BD) CD45 CD34 CD13 (WM15, 

Pharmigen)
HLA-DR (L243, BD)

3 CD36 (CLB-IVC7, Sanquin) CD133 (AC133/1, MB) CD45 CD34 CD22 (S-HCL-1, BD) CD19 (SJ25C1, BD)
4 CD15 (MMA-BD) CD33 (P67.6, BD) CD45 CD34 CD11b (D12, BD) CD14 (MoP9, BD)
5 CD13 (WM-47, DC) CD56 (My31, BD) CD45 CD34 CD117 (104D2, DC) HLA-DR
6 CD7 (M-T701, BD) TIM-3 (344823, R&D) CD45 CD34 CD38 (HB7, BD) HLA-DR
7 CD11b (Bear1) CLL-1 (687317, R&D) CD45 CD34 CD38 CD19

8-Color antibody panel

Tube FITC PE PerCP-CY5.5 PC7 APC APC-H7 HV450 KO

1 HLA-DR (L243, BD) CD33 (P67.6, BD) CD13(WM15, BD) PBS CD14 (Mop9, BD) PBS CD34 (8G12,BD) CD45 (J.33, BC)
2 CD44 (J173, BC) CLL-1 /CLEC12a (50C1, BD) CD13 CD56 (N901, BC) CD38 (HB7, BD) HLA-DR (L243, BD) CD34 CD45
3 CD7 (M-T701, BD) TIM-3(344823, R&D) CD13 CD117 (104D2D1, BC) CD38 CD19 (SJ25C1, BD) CD34 CD45
4 CD2 (MT910, DC) CD133 (AC133/1, MB) CD13 CD117 CD38 CD19 CD34 CD45
5 CD36 (CLB-IVC7, Sanquin) CD123 (9F5, BD) CD13 CD33 (D3Hl60,251, BC) CD38 CD14 (MoP9, BD) CD34 CD45
6 CD11b (Bear1, BC) CD96 (6F9, BD) CD13 CD117 CD38 CD14 CD34 CD45
7 CD15 (MMA, BD) CD22 (S-HCL-1, BD) CD13 CD117 CD38 HLA-DR CD34 CD45

In the 6 color antibody panel often a second labeling, including a label switch of one or more antibodies, was performed to 
increase sensitivity specificity of a LAIP. Leukemic stem cell frequencies were determined in the 6-color panel using tubes 6 
and 7, including CD34, CD45 and CD38 as a backbone. In the 8-color panel stem cell frequencies were determined using

tubes 2-7. Associated clones are given in brackets. BC, Beckman Coulter; BD, Becton Dickinson; DC, DakoCytomation; MB, 
Miltenyi Biotec; PBS, phosphate buffered saline; R&D, R&D systems.

In part of the follow-up BM samples used for LSC identification, we were unable to 

acquire > 1 million cells. Figure S2A shows results for event free survival (EFS) with all 

patients included, irrespective numbers of WBC acquired (range 174.524-2.758.892 WBC; 

median 1.402.905). When including only cases with ≥ 1 million WBC, similar results were 

obtained (Figure S2B). For cases with ≥ 2 million WBCs acquired, results were even better 

despite the fact that the group was considerably smaller (Figure S2C). Future developments 

in flow cytometry will allow such since the application of one tube for both MRD and LSC 

is being developed, which will largely decrease the total number of cells needed for all 

assays (now 7 tubes with 2 million cells each and in future then 1 tube with e.g. 10 million 

cells available for all MRD and LSC sub-analyses). 

Baseline characteristics
Table S4 shows the baseline characteristics for the 594 patients included in the diagnosis 

study of LSC frequencies (left part of the table). The right part of the table shows the 264 

patients included in the HOVON 102 for which no sample was available. The table shows 

no major differences in baseline characteristics between AML patients with and without 
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Table S7. Changes of LSC status between diagnosis and follow-up for 277 AML patients

LSC status  
at diagnosis

LSC status  
after 2nd cycle N (number) % of total 3yr OS % (SE) 3yr EFS % (SE)

CD34-negative LSCneg 32 12 65 (9) 56 (9)
CD34pos LSClow LSCneg 119 43 69 (5)* 60 (5)*
CD34pos LSChigh LSCneg 40 14 49 (8)# 40 (8)#

CD34-negative LSCpos 8 3 0 (0) 0 (0)
CD34pos LSClow LSCpos 45 16 44 (8)* 39 (8)*
CD34pos LSChigh LSCpos 33 12 19 (10)# 21 (7)#

Total 277 100%

This table shows the different CD34/LSC categories at diagnosis and LSC status after the 2nd cycle. Diagnosis 
LSC results were available in 277/302 (92%) patients. This table shows that 8 CD34-negative patients (with no 
CD34+CD38-LSC at diagnosis) convert to LSCpos after the 2nd cycle. Moreover, 45 patients with low LSC levels at 
diagnosis convert to LSCpos after treatment. These patients seem to have a worse outcome as compared to CD34-
negative and CD34-positive patients with low LSC levels who are LSCneg after treatment. For both the CD34-pos 
LSClow and CD34-pos LSChigh group a significant difference based on LSC status after treatment was found 
(*p=0.001 and p=0.002, #p=0.009 and p=0.044 for both OS and EFS respectively. EFS, event free survival; OS, 
overall survival; SE, standard error.

a sample available, except for WBC (7.4. 109/L vs 5.8.109/L). AML patients with a sample 

available more often did not receive a consolidation treatment (34% vs 25%) and less 

often received an allogeneic transplantation as compared to the patients with no sample 

available (31% vs 44%). 

Statistical analysis
Statistical analyses were performed using both STATA version 14.0 and SPSS version 

22.0 software. All variables with clinical significant importance or variables with known 

clinical importance based on earlier studies were included in the Cox-regression 

multivariate analyses. The baseline multivariate model (Table S5) risk groups according 

to European LeukemiaNet (ELN) were included, instead of risk groups according to 

the HOVON protocols, since the ELN classification is based on diagnosis parameters only, 

while remission status (ie remission attained or not attained after one induction cycle) 

is a parameter that is included in the HOVON risk categories. In follow-up multivariate 

models, risk groups were defined according to the HOVON risk categories since here only 

patients in CR are included. Consolidation therapy was included as a time-dependent 

factor in both the diagnosis (Table S5) and the follow-up model (Table S8). No important 

differences were found between the multivariate models for cumulative incident of 

relapse using Fine & Gray and using cause specific hazard ratios. A p-value of < 0.05 was 

considered significant.
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ABSTRACT 

The most effective strategy to improve the dismal outcome of pediatric acute myeloid 

leukemia (AML) is to prevent relapse. In this study we explored whether leukemic stem 

cells (LSC) in pediatric  AML samples taken at time of diagnosis can identify patients at 

high risk of relapse. LSC, defined as CD34+CD38-/low cells with aberrant expression of 

CD123, CD7, CD56 and/or CD2 were characterized for 86 patients. Sixteen per cent of 

the patients were found CD34-negative and therefore by definition LSC negative. CD34-

negative patients showed the highest 5-year relapse free survival (75%). In contrast, LSC 

were detected in 93% of CD34-positive patients. High LSC burden, determined by receiver 

operating characteristic analysis as ≥17.2% of the CD34+ population, was significantly 

associated with the occurrence of relapse (43% 5-year relapse probability in LSClow vs. 

78% 5 year relapse probability in LSChigh, p=0.05). After multivariate adjustment LSC 

frequency, white blood cell count and core binding factor AML were significant predictors 

of relapse (HR 4.1, 95% CI 1.1-15.2, p=0.04, HR 2.5, 95% CI 1.1-5.8, p=0.03 and HR 

0.3, 95% CI 0.0-0.8, p=0.03 respectively). These results warrant the incorporation of this 

relatively simple method to determine CD34+/CD38-/low LSC frequency in future risk 

group stratification. 
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BACKGROUND

Pediatric acute myeloid leukemia (AML) is an aggressive haematological malignancy 

comprising 15-20% of all acute leukemia’s in children, adding up to an average of 40 

children per year in the Netherlands and Belgium combined (population of 28 million 

people)ze1. Despite the fact that prognosis has improved significantly over the past 

decades, the overall survival (OS) of paediatric  AML remains relatively low (~70%)2. 

Nowadays 90-95% of patients achieve complete remission (CR)3,4. Nonetheless, up to 

40% of the patients eventually relapse due to the outgrowth of persisting leukemic cells 

which are not eradicated by therapy. Since currently therapy options to eliminate these 

resistant cells are limited, the most effective strategy to improve the dismal outcome of 

AML patients is to refine risk group stratification in order to prevent relapse. 

As AML is a heterogeneous disease in terms of chromosomal aberrancies and gene 

mutations, clinical prognosis is extremely variable. In most leukemia study groups, risk group 

stratified therapy is based on a combination of cytogenetic and molecular aberrations5,6, 

as well as on response to treatment including the detection of minimal residual disease 

(MRD)7,8. However, it is well recognized that these (cyto)genetic signatures cannot always 

predict the outcome in individual patients9. For this reason, new stratification parameters 

are needed to allow more accurate therapeutic decision-making.

Over the last decades, accumulating evidence suggests that AML develops in 

a hierarchical structure: it originates from hematopoietic stem cells (HSCs) which are 

transformed to leukemia-initiating cells (LICs), often referred to as leukemic stem cells 

(LSCs)10–12. In many aspects, LSC and HSC are much alike, sharing features such as 

quiescence, self-renewal capacity and the expression of drug efflux proteins13,14. LSCs are 

of fundamental interest for AML patients at risk for relapse as these cells are thought to 

be resistant to current standard treatments and therefore supposed to be responsible for 

initiation of the relapse. In adult AML, the frequency of LSCs at diagnosis has shown to be 

of importance for clinical outcome14. 

Although LSCs reside in different compartments, the CD34+/CD38- or CD34+/CD38dim 

fractions are considered to be most enriched for LSCs15. The association between these 

fractions and risk of relapse and OS in paediatric  AML was shown in one previous study 

with a limited number of patients (n=17)16. Since CD34+/CD38- comprise both HSC and 

LSC, little is known about the prognostic impact of the LSC pool within this immature 

compartment. The LSC can be distinguished from normal CD34+/CD38- cells on the basis 

of aberrant expression of cell surface molecules using multicolour flow cytometry14,17–19. 

In this study we determined LSC burden at diagnosis by defining aberrantly expressed 

cell surface markers in CD34+/CD38-/low cells using a single 8-color LSC tube. LSC 

measurements were implemented in routine diagnostics using a minimal combination of 

markers. This specific identification of LSC is used to give further insight in the prognostic 

role of LSC burden in paediatric  AML patients at time of diagnosis.
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PATIENTS AND METHODS 

PATIENTS 
From the >100 pediatric AML patients diagnosed between 2010-2014 and treated 

according to the Dutch-Belgian paediatric AML-01 (DB AML-01) protocol20 (EudraCT 2009-

014462-26), 86 patients were analysed with an additional stem cell identification tube 

at diagnosis. Next to stem cell identification, standard morphological, immunological, 

cytogenetic and molecular criteria according to the WHO 2008 classification was included 

in immunophenotypic characterization at diagnosis. Exclusion criteria were AML with 

PML-RARA, secondary AML, untreated refractory anaemia with excess blasts (RAEB) and 

RAEB in transformation. 

PATIENT MATERIALS 
Bone marrow (BM) samples were taken at diagnosis after informed consent was obtained 

from patients, their parents or guardians. Samples from AML patients diagnosed at 

different Belgian were directly transported to the reference laboratory at the Ghent 

University Hospital (Ghent, Belgium). Samples from Dutch paediatric  AML patients (n=69) 

were either analysed at the department of Immunology, Erasmus MC, Rotterdam or sent 

to the Dutch reference centre; the Dutch Childhood Oncology Group (DCOG, The Hague, 

The Netherlands). 

FLOW CYTOMETRY
Flow cytometric LSC characterization was performed on BM from AML patients collected 

at diagnosis. Fifty microliter of BM cell suspension was incubated with monoclonal 

antibody combinations for 15 minutes in the dark, followed by red blood cell lysis using 

FACSLysing solution (Becton Dickinson, BD, San Jose, CA, U.S.A.). Data were acquired on 

a FACSCanto-II flow cytometer with EuroFlow instrument settings21, aiming to measure 

a minimum of 1 million WBC (median: 803963, range: 16414-1396231). All protocols and 

antibody panels were standardized between the three participating laboratories, with 

the exception of CD45 and HLADR, which were conjugated with HV450 and HV500 in 

the Belgium laboratory. Samples were both analysed by the different laboratories and 

centrally by the laboratory of the VUMC for blast percentage, CD34 percentage and 

LSC percentage (Suppl. Fig.1). To identify CD34-negative patients, the more stringent 

definition published last year22 was adopted. Patients with <1% CD34 expression on blasts 

and no marker-positive CD34+/CD38- cells, were defined CD34-negative; all other patients 

were classified as CD34-positive. LSC were defined as CD34+/CD38-/CD45low cells with 

aberrant expression of the most commonly found leukemia specific markers19 CD123 

and/or CD7 and/or CD56/CD2 (example shown in Figure 1) with at least three specific 

events. Antibodies for CD56 and CD2 were used in the same fluorescence channel and 

therefore differences in expression of these two markers could not be determined. Details 



LEUKEMIC STEM CELL LOAD AT DIAGNOSIS

85

4

on antibodies are shown in Suppl. Table I. Analysis was performed using Infinicyt software 

(Cytognos SL, Salamanca, Spain). 

STATISTICAL ANALYSIS
Statistical analyses were performed using IBM SPSS Statistics software, version 20 

(IBM Netherlands BV, Amsterdam, The Netherlands) and GraphPad prism version 6.02 

(GraphPad Software, La Jolla California USA). Chi-square test was used when comparing 

categorical variables. Non-parametric Mann-Whitney U test was used for continuous 

variables. Receiver operating characteristic (ROC) analysis was performed to find the best 

cut-off value defining LSChigh. Cut-off value defining CD34-negative22 patients and cut-offs 

Figure 1. Examples of marker defined CD34+/CD38- leukemic stem cells (LSC) in three patient 
samples at time of diagnosis. After labelling diagnostic samples with the appropriate antibody 
combination, (A) the white blood cells are gated. Subsequently the (B) CD45dim blasts and (C) CD45low/
CD34+ compartment are gated. (D) Patient had a clear CD38- ‘tail’ (D II) with a distinct aberrant 
population of CD7 expressing LSCs. (E I) Patient with a notably less prominent CD38- compartment, (E 
II) but clear separation between marker positive-LSCs and marker negative cells based upon aberrant 
CD2/CD56 expression. (F) Patient in which no LSC based upon any of the aberrant markers (here 
CD123 is shown) could be defined.
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defining patients with either high or low CD34+/CD38- fraction16 were based on literature. 

For Kaplan-Meier analysis, OS was calculated from date of diagnosis to death or date 

to last follow-up, relapse free survival (RFS) from first remission to date of first relapse or 

date to last follow-up. Cumulative incidence of developing a relapse (CIR) and cumulative 

incidence of death (CID) due to high frequency LSC, were estimated and compared 

between groups using Gray’s test23. Log-Rank test was performed comparing survival 

distributions between groups. In univariate analysis for RFS, the following variables were 

tested: gender, age, WBC count, proportion of blasts cells in BM and PB, time to achieve 

first CR, FAB classification, cytogenetics and molecular aberrations. Subsequently, in 

multivariate analysis, using Cox regression, the impact of LSC burden was weighed with 

respect to other known prognostic risk factors with significant influence on RFS found by 

univariate analysis.

RESULTS

COHORT STATISTICS
Available patients’ characteristics are summarized in Table I. In this cohort CR was 

achieved in 80 patients (93%) and 5-year relapse-free survival (RFS) was 54%. A second 

CR was achieved in 54% of relapsed patients finally resulting in 5-year OS of 84%. Six 

patients (7%) never reached CR, with one early death after only 18 days post diagnosis. 

The blast percentage in the with flow cytometry evaluated samples ranged from 1% to  

95% (median: 61%).

ABSENCE OF LSC IN CD34 NEGATIVE PATIENTS 
In our cohort, median CD34+ fraction within the blast compartment was 17.9% (range, 

0%-99%) (Suppl. Fig. 1b). Based on expression of CD34 of the blast cells, AML can be 

divided into two broad subtypes: CD34-negative and CD34-positive AML patients. CD34-

negative patients are characterized by <1% of CD34+ blast cells with absence of leukemic 

cells within this population22, and are usually associated with a better prognosis24,25. In 

our cohort, 13 patients (15%) were found CD34-negative (CD34+ blasts median 0.08%,  

0%-0.96%). Median CD34 percentage of blasts determined in the CD34-positive group 

was 38% (range 0.02%–99.12%). 

IDENTIFICATION AND PREVALENCE OF LSC
LSC were observed in 68 of the 73 CD34+ patients (93%), with percentages between 

1x10-4% and 27% of all leukocytes (median: 0.1%). The median ratio LSC, calculated as 

the percentage aberrant CD34+/CD38- of the complete CD34+/CD38- compartment, 

was 68% (range, 0.3-100%). Moreover, when calculating this LSC-load as a percentage 

of total CD34+ cells, the median was 0.9% (range, 4x10-4 - 86%). In our cohort we found 

both patients with complete marker-negative CD34+/CD38- compartments (n=5) as well 
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Table 1. Patient’s characteristics

N Median (Range)

Age (years) 86 6.72 (0-16)
White blood cell count (x 109 /l) 81 24.30 (2-449)
Blast in bone marrow at diagnosis (percentage) 81 74.50 (0-98)
CD34 expressing cells (percentage)

White blood cells 86 5.90 (0-93)
Blast cells 86 17.85 (0-99)

Time (days) to
First complete remission 80 31.50 (12-400)
First relapse 80 53.00 (2-127)

N %

Gender (N=85) Male 42 48.8
Female 43 50.0

Mutation status (N=86) FLT3 16 18.6
NPM1 7 8.1
t(8;21) 9 10.5
Inv(16) 7 8.2

Karyotype (N=85) MML 3 3.6
Complex 2 2.3

Cytogenetic risk group (N=86) Good 2 2.3
Intermediate 65 75.6
Poor 12 13.9

French American British-type (N=83) M0 3 3.5
M1 13 15.1
M2 14 16.3
M4 18 20.9
M5 19 22.1
M6 1 1.2
M7 5 5.8
unknown 10 11.6

as patients with complete LSC CD34+/CD38- compartments (n=4). Patients with a low 

proportion of CD34+CD38-  cells (cut off: <0.68%)16 had significantly less LSC than patients 

with a high proportion CD34+CD38- cells (median 25% (0%-100%) vs. 95% (0%-100%), 

respectively; P= 0.001). In 14% of the patients CD7 gave the best separation between 

HSC and LSC. In 19% of the patients the combination CD56-CD2 was most discriminative. 

In the majority (67%) LSC were best defined by CD123 overexpression (data not shown).  

LSC-LOAD AT DIAGNOSIS AS PROGNOSTIC FACTOR 
We first evaluated the prognostic significance of LSC frequencies. Results of the ROC 

analysis showed an optimal cut-off value for ‘high’ LSC frequency at 17.2%. Patients were 
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thereafter defined as either LSChigh (≥17.2% LSC at diagnosis) or LSClow (<17.2% LSC 

at diagnosis). Kaplan-Meier survival analysis, as depicted in Figure 2, showed a significant 

association between a high LSC-load and impaired RFS (39.4% relapses in LSClow vs. 

77.8% relapses in LSChigh, Plogrank= 0.026). Competing risk analysis for CIR showed 

a trend towards a significant difference between LSClow and LSChigh (Gray’s test, P= 0.058) 

but not for CID (Gray’s test, P= 0.79) (Suppl. Figure 3). Univariate Cox regression analysis 

showed that high LSC frequency is associated with increased risk of relapse (Hazard ratio 

[HR] 2.5, 95% confidence interval [CI] 1.08-5.73) (Suppl. Table III).

CD34- NEGATIVITY IS ASSOCIATED WITH HIGHER RFS 
We examined the prognostic relevance of the CD34 status. Kaplan-Meier analysis showed 

enhanced, but not significant, RFS for the CD34-negative group as compared to the CD34-

postive group (plogrank= 0.20) (Figure 3a). When stratifying patients in CD34-negative  

(no LSC), CD34-positive/LSClow and CD34-positve/LSChigh groups, the CD34-negative 

patient group showed a better RFS compared to both CD34-positive/LSClow and CD34-

positve/LSChigh patients (Figure 3b; Plogrank= 0.05). Therefore, combining CD34-status and 

LSC-frequencies allows identification of patients with different risks of relapse.
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Figure 2. Correlation between leukemic stem cell (LSC) burden and relapse-free survival (RFS). 
Kaplan-Meier analysis showing patients grouped in low or high LSC burden, LSClow/LSChigh 
respectively. Cutoff used is 17.2%. Patients with high number of leukemic stem cells at time of 
diagnosis had significant more risk of developing relapse compared to patients with less LSC (77.8% 
vs. 39.4%) (Plogrank= 0.026).
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OTHER FACTORS ASSOCIATED WITH HIGHER RFS 
Additional univariate analyses of prognostic factors for relapse (summarized in Suppl. 

Table III) showed that, in addition to LSC load, high WBC count at diagnosis (P= 0.03), 

core binding factor (CBF) AML (P=0.05) and percentage blasts in PB (P= 0.06) had impact 

on RFS. Multivariate analysis showed both LSC load (P= 0.04), CBF-AML (P= 0.03) and 

high WBC count (P= 0.03) to have independent prognostic influence on RFS (Suppl.  

Table IV). Probably due to relatively low patient numbers, previously defined risk classifiers, 

such as FAB classification, different karyotype classes and other molecular aberrations, 

were not significant in our analysis. Differences in patient characteristics between LSClow 

and LSChigh groups are summarized in table II. 

DISCUSSION

In the current study we show that the frequency of LSC at diagnosis in paediatric  AML 

patients can distinguish patients more likely to fail current treatment regimens as these 

patients develop significantly more relapses. In paediatric  AML, a single study has 

been published about the role of LSC16. Witte et al. have shown that in a small cohort of 

paediatric  AML patients (n=17) with a higher proportion of CD34+/CD38-/CD45low cells 

corresponded with lower EFS and a trend towards a lower OS16. When applying the same 
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Figure 3. Kaplan-Meier analyses showing prognostic impact of CD34 expression on RFS. (A) Kaplan-
Meier plot showing enhanced RFS in patients with low number of CD34+ blasts (<1%) and, more 
importantly without presence of LSC within this compartment (Plogrank= 0.200)22. (B) Subsequently, as 
CD34-negative patients previously were regarded as LSClow, combining CD34-status with LSC burden 
will divide patients into three groups. Using this method, it is possible to identify patients with higher 
risk of relapse and moreover patients at distinct less risk (Plogrank= 0.053). LSC, leukemic stem cell; RFS, 
relapse-free survival. 
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Table 2. Patient’s characteristics per group 

LSClow LSChigh

P-valueN
Median 
(Range) N

Median 
(Range)

Age (years) 77 7.05 (0-20) 9 9.58 (1-16) 0.838
White blood cell count (x 109 /l) 73 37.00 (2-449) 8 14.50 (2-136) 0.217
Blast in bone marrow at 
diagnosis (percentage)

72 74.50 (0-98) 9 71.00 (12-95) 0.652

CD34 expressing cells 
(percentage)

White blood cells 77 5.46 (0-93) 9 8.40 (2-50) 0.521
Blast cells 77 17.46 (0-99) 9 26.04 (3-83) 0.667

Time (days) to
First complete remission 71 32.00 (13-400) 9 42.00 (12-68) 0.322
First relapse 28 22.08 (6-66) 7 20.92 (2-112) 0.793

N % N %

Gender Male 36 46.75 6 66.67 0.274
Female 40 51.95 3 33.33

Mutation status FLT3 14 18.18 2 22.22 0.768
NPM1 7 9.09 0 0.00 0.345
t(8;21) 8 10.39 1 11.11 0.947
Inv(16) 5 6.49 2 22.22 0.106

Karyotype MML 2 2.60 0 0.00 0.677
Complex 2 2.60 0 0.00

Cytogenetic risk group Good 2 2.60 0 0.00 0.590
Intermediate 57 74.03 8 88.89
Poor 12 15.58 0 0.00

French American British-type M0 3 3.90 0 0.00 0.273
M1 12 15.58 1 11.11
M2 10 12.99 4 44.44
M4 15 19.48 3 33.33
M5 19 24.68 0 0.00
M6 1 1.30 0 0.00
M7 5 6.49 0 0.00
unknown 9 11.69 1 11.11

method to our cohort, we observed that patients with higher proportion of CD34+/CD38- 

cells have a worse OS compared to patients with less CD34+/CD38- cells (Suppl. Figure 

2b), while this was not statistically significant for RFS (Suppl. Figure 2a). 

For this study there were no selection criteria other than the availability of stem cell flow 

cytometry data. The cohort statistics of the study population versus the total DB-AML01 

study population are CR rate: 93% versus 90%; 4-year survival probability: 84% versus 

78%. As the additional flow cytometry measurement acquires extra cells, we could reason 
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that only samples with enriched cell number are included. However, a high WBC count at 

diagnosis is considered an prognostic factor for poor outcome26 whereas our cohort had 

a better outcome.  

The CD34+/CD38-/CD45-/low compartment reflects the most immature cell fraction 

and it contains both normal HSCs and LSCs. In this study we have shown that with 

the addition of four surface markers (which could be added to the necessary backbone 

markers CD45, CD38, CD34 in an 8-color flow panel), LSCs could be identified based on  

aberrant expression. 

As LSC have heterogeneous marker expressions, it is suggested that multiple LSC 

markers are necessary to discriminate LSC from normal HSC14,17,19,27. Fifteen LSC markers 

were tested by Zeijlemaker et al. ranking them on their performance in distinguishing 

LSC from HSC with high specificity and high sensitivity, concluding that 13 markers are 

needed for adequate identification19. In the present study, 8-color flow cytometry was 

used. As a result, present research is limited in sensitivity: 14 patients (16%) were identified 

with HSC with absence of LSC. Inclusion of other LSC markers is warranted to confirm 

the absence of LSC. In adult AML patients, CD123 was found to be the best LSC marker, 

followed by CD7 (7th place), CD56 (10th) and CD2 (13th). Our previous research supports 

that CD123 is most sensitive in identifying LSC17,19,28. Furthermore, as the order of markers 

is the same in our study, we suggest similar LSC surface properties in paediatric  and  

adult AML.

In this study, 11% of all patients were classified as high risk for developing relapse based 

on LSC load with high specificity determined by ROC analysis (96%, not shown), while in 

adult AML, over 50% of patients could be classified as LSChigh14. Of all nine paediatric  

patients with high LSC load, seven patients eventually relapsed (78%), having increased 

LSC load at time of relapse with the same aberrant marker expression (data not shown). 

Similar results have been reported in a study with adult AML29.

Of all LSClow patients, 39% developed a relapse. Hence, we suggest that the current 

multiparameter flow cytometry approach must be further improved applying more LSC 

antibodies simultaneously19,30. At the time of writing, two LSChigh patients did not relapse. In 

addition to technical improvements of LSC measurements (i.e. addition of markers, higher 

cell numbers), LSC measurements during therapy (for instance at MRD time points22) could 

aid in accurately assessing patient prognosis as outcome also greatly depends on many 

different factors during therapy.

Next to increasing sensitivity of LSC identification and thereby identifying patients 

at higher risk to relapse, defining a group of patients with very low risk to relapse can 

possibly spare these patients from undergoing more intensive treatment. Low numbers of 

CD34+ cells is a prognostically favourable variable as it is in adult AML. These results need 

to be confirmed in a different cohort taking into account suggested improvements. 

Despite the fact that the number of patients included in this study is relatively small 

compared to studies in adult AML, our results do confirm that the frequency of LSC at 

diagnosis in paediatric  AML patients can distinguish patients more likely to fail current 
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treatment regimens. Next to this, as in adults, CD34-negative patients were found to have 

better RFS. Unfortunately, drawback of the limited patient number is the unfeasibility 

in the present to further establish the association between LSC burden and well-known 

clinical and biological features. 

As survival after relapse is significantly poorer, one of the most hopeful approaches 

to increase the OS rate is the prevention of relapse. The incorporation of CD34+/CD38- 

LSC frequency and conventional MRD measurement are warranted for future risk group 

stratification. In addition, identifying patients at risk for relapse using LSC load, may direct 

the use of more personalized targeted medicine or experimental therapies targeting 

the LSCs31.
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SUPPLEMENTARY DATA 

Patients 
From the >100 paediatric  AML patients diagnosed between 2010-2014 and treated 

according to the Dutch-Belgian paediatric  AML-01 (DB AML-01) protocol (EudraCT 2009-

014462-26), 86 patients were analysed with an additional stem cell identification tube 

at diagnosis. Next to stem cell identification, standard morphological, immunological, 

cytogenetic and molecular criteria according to the WHO 2008 classification was included 

in immunophenotypic characterization at diagnosis. Exclusion criteria were AML with 

PML-RARA, secondary AML, untreated refractory anaemia with excess blasts (RAEB) 

and RAEB in transformation. For this study there were no selection criteria other than 

the availability of stem cell flow cytometry data.

The cohort statistics of the study population versus the total DB-AML01 study population 

are CR rate: 93% versus 90%; 4-year survival probability: 84% versus 78%. As the additional 

flow cytometry measurement acquires extra cells, we could reason that only samples with 

enriched cell number are included. However, a high WBC count at diagnosis is considered 

an prognostic factor for poor outcome whereas our cohort had a better outcome.  
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Table S1.

    N
Median 
(Range)

Age (years) 86 7 (0-16)
White blood cell count (x 109/l) 81 24 (2-449)
Blast in bone marrow at diagnosis (percentage) 81 75 (0-98)
CD34 expressing cells (percentage)      

White blood cells   86 6 (0-93)
Blast cells   86 18 (0-99)

Time to      
First complete remission (days)   80 32 (12-122)
First relapse (months)   80 20 (1-50)

    N %

Gender (N=86) Male 43 50
  Female 43 50
Mutation (N=86) FLT3 16 19
  NPM1 7 8
Karyotype (N=84) Normal 19 22
  Balanced translocations 30 35
  Unbalanced abnormalities 15 17
  Complex 20 23
Cytogenetic risk group (N=56) Favorable 16 19
  Intermediate 38 44
  Adverse 2 2
French American British-type M0 3 4
(N=86) M1 13 15
  M2 14 16
  M4 18 21
  M5 19 22
  M6 1 1
  M7 5 6
  unknown 13 12

FLT3; fms like tyrosine kinase (internal tandem duplication or tyrosine kinase domain mutations), NPM1; 
Nucleophosmin 1
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Table S3.

Variables Hazard ratio Standard error 95% CI P value

LSC load 2.49 0.43 1.08 - 5.73 0.03
Time to CR 0.00 0.00 0.99 - 1.01 0.31
Risk group   (ref) intermediate --  --  --  --
  favorable 0.24 0.62 0.07 - 0.82 0.02
  adverse 0.60 1.03 0.08 - 4.53 0.62
Karyotype (ref) normal  --  --  -- --
  balanced transl. 0.29 0.48 0.11 - 0.74 0.01
  unbalanced abn. 0.95 0.46 0.39 - 2.32 0.90

complex 0.55 0.48 0.22 - 1.41 0.21
FAB classification  (ref) M0 -- --  --  --
  M1 1.04 1.08 0.12 - 8.63 0.97
  M2 1.25 1.07 0.15 - 

10.22
0.84

  M4 0.77 1.08 0.09 - 6.42 0.81
  M5 0.90 1.08 0.11 - 7.53 0.93
  M6 3.49 1.42 0.22 - 

56.37
0.38

  M7 0.42 1.42 0.03 - 6.77 0.54
Gender female 0.77 0.34 0.39 - 1.49 0.43
FLT3 ITD/|TKD 2.00 0.38 0.96 - 4.19 0.07
NPM1 mutated 0.86 0.61 0.26 - 2.82 0.80
Core binding factor mutated 0.23 0.74 0.06 - 1.00 0.05
WBC count (x 109/l) > 50 2.14 0.35 1.08 - 4.24 0.03
blast BM (%) 1.01 0.01 0.99 - 1.02 0.36
blasts PB (%) 1.01 0.01 1.00 - 1.02 0.06

SE: standard error, FAB: French-American-British, FLT3: FMS-like tyrosine kinase 3, ITD: internal tandem duplication, 
TKD: tyrosine kinase domain, NPM1: Nucleophosmin, WBC: white blood cell, BM: bone marrow, PB: peripheral blood

Table S4.

  Variables Hazard ratio Standard error 95% CI P value

Univariate LSC load 2.49 0.43 1.08 - 5.73 0.03
White Blood Cell Count 1.08 0.35 1.01 - 4.24 0.03

  Core Binding Factor   0.23 0.74 0.06 - 1.00 0.05

Multivariate LSC load 4.09 0.67 1.10 - 15.20 0.04
White Blood Cell Count 2.52 0.42 1.10 - 5.77 0.03
Core Binding Factor  0.27 0.78 0.04 - 0.82 0.03
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ABSTRACT

Leukemic stem cells (LSC) have been experimentally defined as the leukemia propagating 

population and are thought to be the cellular reservoir of relapse in acute myeloid 

leukemia (AML). Therefore, LSC measurements are warranted to facilitate accurate risk 

stratification. Previously, we published the composition of a one-tube flow cytometric assay 

characterized by the presence of 13 important membrane markers for LSC detection. Here 

we present the validation experiments of the assay in several large AML research centers 

both in Europe and the United States. Variability within instruments and sample processing 

showed high correlations between different instruments (Rpearson>0.91, p<0.001). Multi-

center testing introduced variation in reported LSC percentages but was found below 

clinical relevant threshold. Clear gating protocols resulted in all laboratories being 

able to perform LSC assessment of the validation set. Participating centers were nearly 

unanimously able to distinguish LSChigh (>0.03% LSC) from LSClow (<0.03% LSC) despite 

inter-laboratory variation in reported LSC percentages. This study proves that the LSC 

assay is highly reproducible. These results together with the high prognostic impact of LSC 

load at diagnosis in AML patients render the one-tube LSC assessment a good marker for 

future risk classification.
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INTRODUCTION

Acute myeloid leukemia (AML) is a heterogeneous group of diseases, with the shared 

feature of proliferation of immature myeloid blasts in the bone marrow and blood. 

The classification of AML has changed dramatically over the last decades, and is mainly 

based on chromosomal abnormalities and gene mutations underlying each individuals’ 

disease (Döhner et al, 2017). Despite this advancement, risk classification remains 

suboptimal as a proportion of patients will relapse regardless of absence of poor-risk 

factors at diagnosis. Improved detection of measurable residual disease (MRD) during 

therapy by immunophenotypic and molecular methods has shown low levels of persisting 

disease in patients in morphologic remission (Jongen-Lavrencic et al, 2018), essential for 

further therapy choices. Presumably, this MRD compartment encompasses leukemic stem 

cells (LSCs). LSCs are pivotal for underlying leukemia propagation, therapy resistance, 

and as cellular reservoir of relapse (Gupta et al, 2009; Gerber et al, 2012; van Rhenen et 

al, 2005). Recent studies have correlated high LSC frequencies at the time of diagnosis 

with presence of MRD and subsequent poor prognosis (Terwijn et al, 2014; Hanekamp et 

al, 2017). The implementation of LSC measurements in the clinic is therefore instrumental 

for risk stratification and facilitating the selection of appropriate treatment protocols 

(Hourigan et al, 2019).

Several studies identified LSCs by (cyto)genetic and functional characteristics (Ng et 

al, 2016; Gerber et al, 2012; Won et al, 2015). Apart from these assays, LSCs can be 

immunophenotypically identified based on the principle that LSC can aberrantly express 

antigens. These flow cytometric assays can easily be implemented in most AML diagnostic 

workups. Although different cellular compartments are shown to possibly contain leukemia 

initiating cells (Sarry et al, 2011; Ng et al, 2016), the CD34+CD38- compartment is the most 

established (Terwijn et al, 2014; van Rhenen et al, 2007; Costello et al, 2000). The use of 

an antibody panel with CD34 and CD38 has therefore been the basis of many studies, 

discriminating the CD34+CD38- cell fraction, which contains both LSCs and normal 

hematopoietic stem cells (HSCs), from other cells. 

For optimal discrimination between LSCs and HSCs, multiple markers were identified, 

highlighting the heterogeneity of AML LSC (Hanekamp et al, 2017; Terwijn et al, 2014). 

We previously tested many of the proposed LSC markers in a large cohort of AML 

patients and selected those which showed the best distinction between HSC and LSC 

and, moreover, identified the highest LSC burden (Zeijlemaker et al, 2016). After omitting 

redundant markers, 13 markers (i.e. CLEC12A, TIM-3, CD7, CD11b, CD22, CD56, CD33, 

CD45RA, CD123, CD44 and backbone markers CD34, CD38, CD45) remained necessary 

for correct identification. This panel of markers was arranged in a single 8-color flow 

cytometry antibody panel, combining the first six markers together in one fluorescence 

channel, hereinafter referred to as the “Combi” channel, with the potential to be easily 

implemented in other laboratories (Zeijlemaker et al, 2016). 
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Medical laboratory assays are essential to support clinicians to provide optimal 

treatment choices for patients; hence their results and reports should be of the best 

achievable quality. Research in improving these assays is ongoing, but is also directed 

towards standardization (Cloos et al, 2018; Zeijlemaker et al, 2018) to facilitate multi-

institutional collaborations.

Here we evaluated the technical and analytical feasibility of the 8-color LSC single tube 

assay, as well as standardization of the process. The study is conducted in several large 

research centers both in Europe and the United States, with extensive flow cytometry 

experience, but not with the assessed LSC-assay. We show that limited training result in 

highly concordant results, allowing other centers to independently validate the clinical 

utility of LSC testing in AML. These results, together with the high prognostic impact of 

LSC load at AML diagnosis, render the one-tube LSC assessment a good marker for future 

risk classification.

MATERIALS AND METHODS

Instruments, setups and samples
Used instruments are listed in Table S1. We previously described the setup of flow 

cytometers, as based on EuroFlow instructions (Cloos et al, 2018; Kalina et al, 2012). 

Sample information and details regarding harmonization of all machines are described in 

supplemental materials and methods.

Study setup
A schematic overview of the study setup is shown in Figure 1 and in detail described in 

supplementary text. In short, three cryopreserved diagnosis samples were used to evaluate 

inter-instrument variance and four cryopreserved diagnosis samples were used for inter-

laboratory processing. Gating was trained on these latter four samples, and validated in 

10 FCS files of representative diagnosis AML samples. 

Statistics
All results showed complete gating strategy listing the number of events for all relevant 

populations (lymphocytes, (CD34+) blasts, CD34+CD38-, LSC and HSC). LSC percentages 

≥0.03% was classified as LSChigh or LSClow <0.03% (Terwijn et al, 2014; Zeijlemaker et 

al, 2018). Since percentages found in LSClow patients are low, variances calculated as 

coefficient of variation are high. ±0.5log was considered as acceptable error with limited 

effect on prognostic value (Figure S1). Variation was calculated using the Excel function 

VAR.P. Pearson correlation coefficients were calculated when reported percentages were 

compared between laboratories or machines. 
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RESULTS

A. Central site inter-instrument processing 
To evaluate the influence of different flow cytometers, the assay was first assessed on 

different platforms at the central site. Expression plots of the total blast population and 

CD34+ blast subpopulation of two representative samples measured on BD LSRFortessa 

and BC Gallios EX were compared to BD FACSCanto II (Figure 2). Lymphocyte and LSC 

percentages were analyzed in all samples and showed high correlation with results on BD 

FACSCanto II (Figure 2C). 

Figure 1. Schematic overview of study setup. The study can be divided in three parts: a) pre-analysis by 
the central site, b) analysis of four initial samples by six researchers of the central site and participating 
centers and c) the validation of both the coordinating center and the participating centers. 
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B. Training 
B1. FCS files generated at central site with analysis by six researchers 
from central site
Gating reproducibility within the trained team at the central site was evaluated by having 

six researchers perform LSC assessments on FCS files generated at central site (n=4) 

(Figure 3 and Figure S2). Since LSCs are heterogeneous in marker expression, the gating 

of all individual markers was analyzed (Table S4). The largest variance was found for LSCs 

gated positive for Combi (mean 2.7*10-6, range 0.0-9.7*10-6). Without prior knowledge 

of inclusion of a CD34-negative patient (Zeijlemaker et al, 2015), all researchers from 

the central site were able to identify this CD34-negative sample (T3). 

B2. FCS files generated at local sites with analysis by one researcher from 
central site
The same set of cryopreserved samples were sent to all participating laboratories 

accompanied by a protocol describing flow cytometer setup (supplemental text). Generated 

FCS files were uploaded by the local sites to a designated repository and checked by one 

researcher from the central site. Percentages of LSC were analyzed in all samples (Figure 

3, Figure S3 and Table S5). While there was variation in the number of WBCs measured (T1 

mean 1551352 events, range 460484-4538067; T2 mean 2137499 events, range 475915-

3153669; T3 mean 1807224 events, range 548304-4218299; T4 mean 1318815 events, 

range 478873-3808045) measurements were overall highly comparable. Representative 

expression plots of the total blast population and expression plots of the CD34+ blast 

subpopulation of sample T2 show high resemblance between different local sites (Figure 

S2). Analysis performed by one researcher from the central site resulted in LSC percentages 

resembling LSC percentages found in analysis of files generated within the central site 

(Figure 3). Sample T1 from laboratory 4 contained 295370 WBC and could therefore not 

be analyzed. 

B3. FCS files generated at local sites with analysis from local site
The participating centers were asked for analysis of the files using advised gating strategy 

(supplemental data 1). Analyses were uploaded to the repository and reviewed by 

the central site. When gating could evidently be optimized (i.e. WBC gate included debris) 

feedback was sent to the local site and analysis could be revised. An average of 1.9 (range 

1-3) analysis rounds were needed to come to final gating results (two laboratories did not 

need feedback, four laboratories needed feedback once, while one laboratory needed 

feedback twice). Results reported by the local sites showed more variability (especially in 

sample T3 and T4) compared to analyses within the central site (Figure 3 and Figure S3 

and corresponding Table S6). In all samples the largest variation was found in percentages 

CD44positive LSC (mean 0.0003621%, range 0.0000016%-0.0008108%). In conclusion, 

variance mostly results from data analysis not data collection.    
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Figure 3. Results of central site and local sites on initial samples. Results of analysis of FCS files 
generated at central site by six researchers from central site (black), results of FCS files generated at 
local sites with analysis by one researcher from central site (grey) and results of FCS files generated 
at local sites with analysis from local site (blue) on samples T1-T4. All individual results are shown 
as percentage leukemic stem cells of the complete white blood cell compartment. Laboratories are 
specified using different symbols, showing that differences in LSC percentages is not consistently 
explained by one laboratory. Axes run from 0.000-0.030% (clinical relevant cut-off) for sample T1 
and T2, and 0.000-0.003% for samples T3 and T4. CD44 is not depicted due to high variance (shown  
in Figure S3).

C. Critical steps in gating strategy 
As a consequence of training the participating centers, a number of critical steps in 

the gating strategy were elucidated. 

Exact gating of WBC compartment. Since the burden of LSC is presented as percentage 

of complete WBC load, correct gating of this population is critical. However, gating for 

WBCs was not described. Furthermore, as no live-dead marker is included in the stem 

cell tube, gating for viable WBC versus debris is solely based on scatter properties. 

Therefore, it is recommended to start with gating the lymphocytes in a CD45/SSC plot. 

Since lymphocytes are low in side and forward scatter properties, they can act as starting 

point for the WBC gate (Figure S4A). 

Discriminating CD34+ blasts from CD34- blasts. Leukemic blasts can differ in CD34 

expression, and gating of CD34positive blasts can therefore be challenged by CD34dim 
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blasts, the CD34/CD38 plot can be illustrative (Figure S4B). After gating LSC and HSC, 

the gating strategy supports so called back-gating. Both LSC and HSC often present as 

cluster in SSC/FSC, CD45/SSC and CD34/SSC plots. Scattered LSC (or HSC) events low in 

the CD34+ gate therefore direct to narrowing of the CD34gate (Figure S4C).

All tips for optimal gating were reported to all laboratories before the validation step 

was initiated.  

D. Validation
D1. Additional FCS files generated at central site with analysis by 
researchers from central site
To evaluate the reproducibility of LSC analysis in clinical practice, ten additional 

representative diagnostic FSC files were selected for analysis. Of these samples, four were 

LSChigh (V5, V7, V8 and V10), five were LSClow (V1, V2, V3, V4, V6, V9), of which one was 

CD34-negative (V1). Two samples were around the cutoff (V5 LSChigh, V6 LSClow). Results 

were reported similar to routine practice: which includes gating of all LSC markers (i.e. 

CD33, CD44, CD123, CD45RA and Combi) separately and selecting the best marker to 

ultimately report as LSC load (Figure S5A, detailed in Table 1). As LSC are frequently 

covered by more than one LSC marker, the selection of a different marker did not always 

result in identification of a distinct different population (see supplemental gating strategy 

for examples). Discrimination between high (≥0.03%) and low (<0.03%) LSC load was 

unanimously among all researchers in 13/14 samples (93%). Sample V3 showed discordance 

between the researchers, as one researcher included CD45high cells as leukemic blasts 

and CD34+CD38- cells with higher scatter properties as LSC, in absence of LSC markers. 

The selected ‘best’ marker (Table S7) showed high resemblance (i.e. 5/6 or 6/6 researchers 

chose the same marker) in part of the samples (6/14; 43%), and lower resemblance (i.e. 3-4 

of the 6 researchers chose the same marker) in the other part of the samples (8/14; 57%). 

CD45RA was selected as best LSC marker in 63%, followed by Combi (18.3%), CD123 

(13.3%) and CD33 (5.0%). Marker CD44 was never selected. 

Repeat analyses by individual operators is evaluated in a select set of samples and 

is shown in Figure S6 and corresponding table S8. The variance introduced by repeated 

analyses is minor, and had no effect on outcome (i.e. LSClow remained LSClow, LSChigh 

remained LSChigh).

D2. Additional FCS files generated at central site with analysis by local sites
LSC analyses of the local sites were evaluated in the same set of ten FSC files  

(Figure S5B). Participating centers were unanimously able to distinguish LSChigh samples V7, 

V8 and V10, but LSC percentages (Table 1) and selected markers differed (Table S7). Sample 

V5 was identified in 6/7 laboratories as LSChigh, but identified as LSClow in one participating 

laboratory with 0.029% (nevertheless very close to the cut off of 0.03%). All results in 

LSChigh patients were within ±0.5log error (Figure 4), which was identified as acceptable 
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error (see Materials and methods). There was a high correlation in detected LSC burden 

(mean r=0.999, range 0.998-1.000, p<0.001) between participating centers and the central 

site. In analyses of the local sites, CD45RA was selected as best marker in most samples 

(38.6%), followed by Combi (27.1%). CD44 was selected as best marker in 17.1%, while 

never selected by researchers from the central site. While none of the researchers from 

the central site selected the same marker for all samples, three participating institutes did. 

E. Clinical implications
Implementation of the assay has important clinical implications as it allows the identification 

of patients that have distinct different prognosis, and could therefore be added to future risk 

classification. Correct characterization of patients with a significant poor outcome (LSChigh) 

and patients with a significant better outcome (i.e. CD34negative (Zeijlemaker et al, 2015)) 

was evaluated. The 14 samples analyzed within this study included four patients with high 

LSC load, and two CD34negative patients. Three patients were correctly identified as 

LSChigh in all analyses. The remaining sample was correctly categorized in 12/13 analyses. 

The two CD34negative patients were recognized as LSClow in all analyses, but only 

researchers from the coordinating institute noted that these patients were CD34negative. 

Figure 4. Results of central site and local sites on validation FCS files. Ten representative diagnostic 
AML samples were selected and corresponding flow cytometry files were sent to six researchers from 
the central site and seven participating centers for analysis. Results were reported back as leukemic 
stem cell percentage analyzed by the most reliable stem cell marker (or markers). Results reported by 
one researcher from the central site compared to LSC percentages reported by all other participants 
(researchers from the central site in black, participating laboratories in blue). Previously determined 
(and validated) cut-off of 0.03% is shown as dotted line. Result above clinical validated cutoff fall 
within ±0.5 log error, shown as grey diagonal lines. Lower percentages fall outside ±0.5 log error but 
are clinically irrelevant.
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It is important to note that the participating centers were not specifically asked for this 

conclusion. Figure 4C shows higher variation in samples below the clinical 0.03% cut-off, 

as is to be expected. However, the clinical value of the exact frequency of LSC at time of 

diagnosis is not thoroughly established and possibly obscured due to higher intra- and 

inter-laboratory variability. In summary, the data reveal that the current dichotomization 

between LSChigh and LSClow is more robust, and should therefore be adopted.  

DISCUSSION

Identification of patients with high LSC load at time of diagnosis, allows identification of 

patients with poor disease outcome very early in the disease course (Zeijlemaker et al, 

2018; Terwijn et al, 2014). Similarly, identification of patients that lack aberrant leukemic 

CD34+ (stem) cells allows identification of patients with a distinct better prognosis before 

the response of therapy can be perceived (Zeijlemaker et al, 2015). While the contribution 

of CD34+CD38- LSC to poor disease outcome is demonstrated in several studies (Plesa 

et al, 2017; Jentzsch et al, 2017; Hwang et al, 2012), LSC measurements are not clinically 

implemented because of the seemingly complex process that requires specific experience 

and standardization in laboratories involved. This study among 8 institutes shows that 

the one-tube LSC assay is highly reproducible between several large flow cytometry AML 

centers in both Europe and the United States after a relatively simple training. 

Sophisticated 8-10 color flow cytometry is at the basis of the diagnosis, characterization 

and monitoring of hematological malignancies. Correct implementation of the technique 

and standardization in its applications is of high importance and several guidelines to 

achieve this have recently been published (Lacombe et al, 2016; Solly et al, 2019). In 

this study we demonstrate that harmonization between flow cytometers is required for 

comparable results. Here, the use of BD’s FC beads or setup according to Euroflow protocol 

was adequate to result in comparable measurements as percentages of lymphocytes, 

blasts, CD34+ blasts, CD34+CD38dim and CD34+CD38- fractions were decidedly 

comparable among all institutes (data not shown). 

A defined gating strategy is essential for laboratories aspiring to incorporate any flow 

cytometric assessment. To highlight the effectiveness of our gating strategy our training 

emphasized on samples low in LSC frequency (three LSClow, one CD34negative), since 

analyses of low-frequent cell populations is sensitive to errors. Nonetheless, limited 

feedback from experienced researchers was sufficient to train new researchers to gate 

according to protocol and achieve a high degree of comparison with results found by 

experienced researchers. During the training phase, a number of critical steps in the gating 

strategy were elucidated which are accentuated in this article.

The development of a standardized antibody panel for LSC detection (Zeijlemaker et 

al, 2016) helps to strive towards standardization. This tube simplifies LSC assessment in 

routine AML flow cytometry work-up, as well as limiting costs and number of cells needed. 

While the LSC tube consists of the best (most discriminative, high negative predictive 
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value and most sensitive) markers for identification of LSC, some were preferred over 

others. Markers CD45RA and Combi often show distinct separation between HSC and 

LSC as two separate ‘tails’ within the CD34+CD38- fraction. CD44 is used as marker for 

LSC (Zeijlemaker et al, 2016) based on overexpression of CD44 compared to expression 

on normal hematopoietic (stem) cells (Cao et al, 2016), but correct identification of 

normal-high expression versus overexpression is difficult when only one ‘tail’ is present. 

For specific purposes, exclusion of CD44 could be suggested to allow incorporation of 

additional antibodies. 

The training in analysis was confirmed by ten representative diagnostic AML samples, 

ranging from high levels of LSC to absence of LSC, mimicking the clinical setting. As 

expected, a high degree of correlation is found in samples with higher frequencies of LSCs 

in contrast to samples with low frequencies. Previously, a cut-off of 0.03% was identified as 

clinically prognostic relevant (Terwijn et al, 2014; Zeijlemaker et al, 2018). In our validation, 

five samples with percentages proximal to this cut-off were correctly classified in 4/5 cases, 

with the remaining sample being misclassified as LSClow by one institute (with 0.029% just 

below cut-off). Analysis of the exact percentage of LSC below the 0.03% cut-off is prone 

to higher variation, but critical analysis of LSClow patients is crucial for the identification 

of CD34negative patients, associated with an overall good prognosis (Zeijlemaker et al, 

2015, 2018). Further research should be undertaken to evaluate whether CD34negative 

patients are correctly identified and discriminated from LSClow patients.   

Whereas addition of LSC measurements at diagnosis might lead to further improvement 

of risk group stratification, post-induction MRD measurements are valuable for guiding 

post-remission strategies (Buccisano et al, 2019). MRD in AML is a rapidly evolving area with 

fast developments in designs and approaches. While the introduction of next-generation 

sequencing MRD detection certainly holds promise for the future, the combination with 

flow cytometry showed that both techniques contributed independently to the prognostic 

value of the patient cohort (Jongen-Lavrencic et al, 2018). Combining flow cytometry MRD 

measurements with post-induction LSC measurements, even improved the prognostic 

classification further (Zeijlemaker et al, 2018). Since LSC in MRD situation are rare events, 

correct gating of LSCs, but also measurement of sufficient WBCs is critical. The possibility 

and practicability of LSC MRD measurements are not yet described in this manuscript and 

should be explored as proceeding of this multicenter international group. 

Current limitations of this study include the selection of a restricted set of patient 

samples which conceivably does not cover the complete cellular heterogeneity seen 

within the AML population. It could therefore be argued that the implementations of 

the assay in centers need to be evaluated in prospective multicenter studies. Furthermore, 

all samples measured were cryopreserved mononuclear cells. Ideally, fresh samples would 

be first measured at the coordinating institute, deemed suited for the training and then 

immediately sent to and measured at the participating centers. This was considered 

impractical due to introducing more variability from poorer viability. As the effect of 
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different sample processing could therefore not extensively be analyzed, the use of 

a standardized protocol is therefore warranted (Cloos et al, 2018; Schuurhuis et al, 2018).  

In summary, we show that the one-tube LSC assay is highly reproducible for many 

different FC experienced laboratories after a relatively simple training. Since the tube is 

useful for finding almost all CD34+CD38- stem cells and requires limited sample, it can 

be implemented in clinical studies. The high concordance between different laboratories 

is particularly valuable for use in multicenter studies. These results together with the high 

prognostic impact of LSC load at diagnosis in AML patients render the one-tube LSC 

assessment a good marker for future risk classification. 
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ABSTRACT

Measurable residual disease (MRD) in AML, assessed by multicolor flow cytometry, is an 

important prognostic factor. MRD is commonly calculated relative to white blood cells 

(WBC-MRD). MRD positivity is defined as MRD≥0.1% by European LeukemiaNet. The AML 

part of the primitive/progenitor compartment (CD34+,CD117+,CD133+) is part of MRD, 

and referred to as primitive marker MRD (PM-MRD), and together with the size of total 

progenitor compartment (PM as % of WBC) constitutes MRD: PM-MRDxPM%=WBC-MRD. 

We explored the relative contribution of both parameters to MRD. 

In HOVON/SAKK study H102 (300 patients), analyses showed that the PM% parameter 

itself had no prognostic impact, implying that prognostic impact of MRD resulted from 

the PM-MRD parameter only. Based on two objectively assessed cut-off points (1.62% 

and 10%), PM-MRD offered an independent prognostic parameter and identified three 

patient groups with different prognosis. The use of PM% even resulted in MRD false-

negativity/positivity in part of patients. In particular, in the European LeukemiaNet based 

MRD negative (MRD<0.1%) group a subgroup with poor prognosis (n=31) was identified 

based on PM-MRD≥10%. This MRD false negativity urges to consider PM-MRD for MRD 

analysis. Prognostic impact of MRD may thus mainly originate from AML progenitor load 

(PM-MRD) instead of total leukemic load (WBC-MRD).
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INTRODUCTION 

In the treatment of acute myeloid leukemia (AML), assessment of measurable residual 

disease (MRD) is of high importance. Nowadays, MRD is assessed with molecular methods 

(PCR and next generation sequencing), and for the majority of cases, multicolor flow 

cytometry (MFC). MRD thus assessed was found highly prognostic for disease outcome 

in many studies1–6. MFC-MRD is classically defined as number of cells with a leukemic 

associated immunophenotype (LAIP), usually expressed as percentage of the complete 

white blood cell (WBC) population. European Leukemia Net (ELN) recommendations define 

MRD positivity as ≥0.1% LAIP+ cells/WBC7. While MFC offers the major method to assess 

MRD, variation among laboratories is high8. Therefore, there is urge for harmonization 

and, wherever possible standardization, of assays. Whereas standardization for sample 

acquisition, shipment and storage can be achieved by strict rules9–12, the standardization 

in analysis and report of MRD remains a challenge7.

Major criticism on MFC-MRD is that it is relatively subjective, since it requires extensive 

knowledge of normal bone marrow (NBM) differentiation patterns7. Furthermore, one 

should realize that a LAIP may not cover the whole leukemic population, and therefore may 

lead to under-estimation of the leukemic load at follow up. Moreover, LAIPs may change 

during/after therapy13–15. In addition, background of LAIP antigens on normal cells may 

lead to low LAIP specificity and thereby low sensitivity in the detection of specific, i.e. AML 

defining, LAIPs16–18.This is especially important at lower MRD levels, when background 

levels may approach patient MRD levels.

Recently, we postulated an alternative MRD approach that, with relatively simple 

mathematics, potentially enabled simplification and better standardization of MFC-MRD16, 

because it allows to quantitatively and more objectively assess MRD. Also, since it is known 

that CD34-positive, CD117-positive and CD133-positive leukemia compartments contain 

normal progenitors and leukemia initiating and -propagating cells19–21, we hypothesized 

that such biologically important cells may be equally informative for relapse initiation as 

compared to total leukemic load that includes non-dividing more mature cells. This would 

circumvent the use of total progenitor frequencies and thereby the use of WBC count. Since 

this WBC parameter is subject to large variations, amongst others depending on sample 

transport/storage, such would be very important for standardization/harmonization of MRD.

In the present study, we tested MRD calculated on primitive marker (PM-MRD) and 

compared it to the standardly used classical MRD that is calculated on the total WBC 

compartment. We further investigated the quantitative effects of variables that contribute 

to total MRD, and showed that prognostic impact of MRD mainly originates from prognostic 

impact of PM-MRD. We did this by re-analyzing the recent Dutch-Belgian Hemato-

Oncology Cooperative Group (HOVON) and Swiss Group for Clinical Cancer Research 

(SAKK) clinical trial 10222,23, which encompassed 300 patients.
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PATIENTS, MATERIALS AND METHODS

Patients and normal controls. For inclusion criteria and treatment protocols of patients 

we refer to two recently published papers22,23. Background levels for MRD and PM-MRD 

were analyzed in ten normal bone marrows (NBM), obtained after informed consent from 

(age-matched) healthy donors (median age 71 years, range 58-77) undergoing cardiac 

surgery. To evaluate the effect of therapy on background expression levels, additionally 

regenerative bone marrow (RBM) was analyzed in eight patients. Details are in Suppl. text 5.

IMMUNOPHENOTYPING
Immunophenotyping was performed as previously described24. Flow cytometry was 

performed on FACS CANTO (BD Biosciences, San Jose, CA, USA) with either 6- or 8-color 

antibody panels (see supplemental table 2 in Zeijlemaker, et al.23). Analyses of flow 

cytometric measurements were performed with InfinicytTM software (Cytognos, Salamanca, 

Spain). LAIPs used in this study and frequencies of use are shown in Suppl. Table 1.

MRD assessment in the present study was based on LAIP approach. Gating was 

performed following strict criteria concerning forward/side scatter properties of the LAIP, 

expression pattern of CD45, primitive marker (PM) expression (i.e. CD34, CD117 and/or 

CD133), and expression of a myeloid marker (i.e. CD13, CD33 and/or HLADR), to exclude 

a-specificity and non-relevant cell types. In accordance with the biological role of cells 

of the PM cells, CD34 was used in most LAIPs in CD34 positive AML, CD117 and CD133 

in LAIPs in CD34low/neg AML cases. NBM and RBM were gated according to the strict 

standard MRD gating procedure10. Details regarding LAIP background in NBM and RBM 

and application in MRD calculations are in Supplementary text 5. 

A QUANTITATIVE APPROACH FOR MRD CALCULATION
The quantitative model for MRD is shown in Suppl. Figure 1A and, in more detail, in 

Supplementary Figure 1 of Schuurhuis et al.16, and hypothetically contains all factors 

contributing to final MRD: specificity of the LAIP (termed f), size of the total PM compartment 

in MRD sample (termed g), percentage of the PM compartment that is covered with LAIP 

at time of diagnosis (termed h), and LAIP coverage of the PM compartment at time of MRD 

sampling (d+b).

Classical MRD (MRDclass) is defined as used in previous studies24,25, which uses 

aberrancies on primitive marker (PM, CD34/CD117/CD133) cells with inclusion of the total 

(AML+normal) PM compartment (as % of WBC, referred to as PM%), and in which we 

corrected MRD for h in part of the cases. Calculated MRD (MRDcalc) uses only aberrancies 

on PM cells and PM%. When subsequently including f, h or f+h, MRD is termed MRDcalc(with 

f), MRDcal(with h), and MRDcalc(with f and h), respectively.

The established model for the AML part of the PM compartment (referred to as 

PM-MRD) is shown in Suppl. Figure 1B and, in more detail, in Supplementary Figure 1B of 
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Schuurhuis et al.16, and hypothetically contains all factors contributing to final PM-MRD: 

i.e. specificity of the LAIP (termed f), percentage of the PM compartment that is covered 

with LAIP at time of diagnosis (termed h) and LAIP PM coverage at time of MRD sampling 

(d+b, now termed p). Since PM-MRD is a new parameter, there is no “PM-MRDclass”, and 

we therefore simply use the term PM-MRD instead. Inclusion of f, h and f+h are referred to 

as PM-MRD(with f), PM-MRD(with h), and PM-MRD(with f+h). To assess LAIP specificity (f), 

we analyzed the same ten NBM and eight RBM samples as for MRD. 

It is important to note that the relationship between MRD and PM-MRD in the present 

study is: MRD=PM-MRD x PM percentage (all at the MRD/PM-MRD assessment time 

point). No more mature populations beyond the progenitor stage are considered.

STATISTICAL ANALYSIS 
In survival Kaplan-Meier analyses, event free survival (EFS) was used, defined as time 

between sampling after complete remission (CR) and date of relapse/progressive disease 

or death. Patients with no event were censored at date of last follow-up. Kaplan-Meier 

analyses were performed using the survival R package. Statistical analyses were performed 

using SPSS version 22.0 software. Outcome between groups was compared using 

log-rank test. The MaxStat package of R identified optimal cut-off point(s) for PM-MRD. 

The prognostic value of both MRD (MRDclass. and MRDcalc) and PM-MRD (cut-off 1.62% 

and 10.0%) for EFS was investigated in multivariable models including variables that were 

significant in univariate analyses.

RESULTS 

SPECIFICITY: EXPRESSION OF LAIPS ON NON-LEUKEMIC WBC
Knowledge of background LAIP expression patterns on normal cells is required to avoid 

false positive results. Background may differ between LAIPs17, and was therefore established 

for each different LAIP. The LAIPs used are shown in Figure 1A and Suppl. Table 1. Range 

of background levels in NBM controls is 0.000-0.036%; median: 0.003% (Figure 1A). All 

are far below 0.1%, which confirms the relative solidity of this ELN consensus threshold 

to distinguish MRDlow/neg from MRDhigh/pos,7 and thereby suggests that, for a large part of 

the LAIPs, reliable MRD assessment is possible below the 0.1% threshold level.

MRD DEFINITIONS AND CALCULATIONS
In order to gain insight in the contribution of LAIP specificity (f) and LAIP coverage (h) 

to MRD calculation (for details: Supplementary text (paragraphs 1-3), we first evaluated 

the accuracy of the quantitative model. The H102 data were re-analyzed in the most 

basic version (MRDcalc, with no correction for f and h) and compared this to the MRD as 

we used in previous studies24 (termed MRDclass), using the ELN consensus of 0.1 (% of 

WBC) cut-off(7). As expected, MRDcalc (Figure 2B) performs largely similar to the already 
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Figure 1. Background expression of LAIPs in normal bone marrow and patient samples. Background 
levels for (A) MRD and (B) PM-MRD were analyzed in ten normal bone marrow samples (in black); In 
blue are patients included in the HOVON SAKK 102 clinical trial. Immunophenotyping was performed 
as previously described23,24. Background and LAIPS were gated following strict criteria concerning 
forward/side scatter properties, expression pattern of CD45, primitive marker expression, and 
expression of a myeloid marker to exclude a-specificity10,24. (A) Background expression was median 
0.003 (range 0%-0.036%). (B) Background levels of LAIPs within the primitive compartment range 
0.01-2.30 (median 0.29%) in NBM. For reasons of clarity, the presentation of LAIPs has been simplified 
by not including the myeloid marker used (CD13 or CD33).

prospectively validated MRDclass24 (Figure 2A). Also, both MRDclass and MRDcalc allowed 

to define multiple threshold levels that resulted in multiple patient groups with different 

EFS (Figure 2D and 2E, respectively). 

Next, we evaluated the MRDcalc model with incorporation of specificity f (further defined 

as median expression value for each individual LAIP in NBM, see also Supplementary text 

1). This revealed largely similar prognostic value compared to MRDcalc (Figure 2C; compare 

with Figure 2B). Also for MRDcalc(with f) multiple cut-offs delivered further prognostic 

information (Figure 2F). Lastly, implementation of the coverage factor at diagnosis 

(variable h) in the MRDcalc model, resulted in clearly inferior models (Supplementary text 

2 and Suppl. Fig. 2 A-D), as did the combination of f and h (Suppl. Fig. 2 D-F). Importantly, 

MRDcalc and MRDcalc(with f) performed quite similar predominantly at relatively high 

MRD levels. 

SPECIFICITY: EXPRESSION OF LAIPS ON NON-LEUKEMIC 
PROGENITORS
It has been previously suggested that MRD expressed as percentage of the progenitor 

compartment (CD34+and/orCD117+and/orCD133+; termed PM-MRD) may be more 

easy to standardize16,25. Therefore, we employed this dataset and mathematical model to 

investigate this further. First, we looked at the specificity by determining the background 

levels of LAIPs within these primitive compartments in NBM (Figure 1B: median 0.29%; 
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range 0.01-2.30). In contrast to MRDcalc PM-MRD can reach high levels to maximally 

100% of LAIP positive cells in the PM compartment). Differences in background for 

different LAIPs are observed (for example CD34-/CD133+ LAIP had a higher than 

ten-fold lower background compared to the CD34+CD15+ LAIP), supporting the idea 

that these differences should be taken into account16, especially in the lower ranges 

of PM-MRD (Figure 1B; more detailed explanation in Supplementary text 1). Since 

the primitive compartment is part of MRDcalc (MRD=PM-MRD x PM percentage), also 

for MRDcalc the backgrounds on the primitive cells do affect MRDcalc in its lower ranges  

(say 0.00%-0.03%, Figure 1A).

PM-MRD CALCULATION AND PROGNOSTIC IMPACT 
We next explored the clinical relevance of considering the prognostic value of PM-MRD. 

The main parameters here are similar to MRDcalc, but, in contrast to the latter, the PM% 

is completely excluded (Patients, materials and methods and Suppl. Fig. 1B). Since in 

the previous paragraph we showed that f was important for the PM-compartment in 

MRD (Figure 1B), we included f in the analysis: PM-MRD(with f). Using MaxStat statistics 

two optimal cut-off levels could be identified (1.62% and 10%; Figure 3A) that each 

allowed identification of two distinct patient populations with different EFS (Figures 3B 

and C). Together the two cut-offs thus allowed discrimination of three patient groups 

with EFS 64.4% (n=101), 47.8% (n=134) and 33.8% (n=65) (Figure 3D). For MRD, no 

objective cut-off points could be identified using MaxStat statistics. To better compare 

with PM-MRD, we used, apart from the ELN consensus cut-off of 0.1% (results in Figure 

2), an extra lower cut-off of 0.01%, subjectively assessed to be able to identify a good 

prognostic patient group with about similar number of patients as the best-performing 

PM-MRD group (<1.62%). Together the two MRD cut-offs identified patients with EFS 

of 59.1% (n=115), 49.0% (n=143) and 31.0% (n=42), for the three MRD groups (Figure 

3E). Similar to MRDcalc (Figure 2F), PM-MRD allows to discriminate other patient groups 

with additional cut-offs (Figure 3F). However, below 1% PM-MRD, which corresponds to 

about 0.01% MRD, no further consequent differences in prognostic impact were observed 

(not shown). This makes sense since the LAIP backgrounds are in general in between 1% 

and 0.1% (Figure 1B). Suppl. Table 2 shows that PM-MRD is an independent prognostic 

factor. Similar to MRDcalc, the inclusion of variable h (± f) did not contribute to a better 

performing model (see Supplementary text 3 and Suppl. Fig. 3). Detailed comparison of 

PM-MRD and MRD is given in the next paragraph. As argued in the previous paragraph, 

correction of background by definition will have the most effect at low PM-MRD values, 

where PM-MRD approaches f (for details see Supplementary Text 1).

Previously we have shown that the 0.1% MRD cut-off defines patient groups with 

different outcome in different cytogenetic risk groups24. When applying this to PM-MRD, it 

turns out that the two cut-offs define three patient groups with different survival especially 

in the intermediate and poor cytogenetic risk groups (Figure 3 G-I; see also Supplementary 

text 4). For comparison, MRD (0.1% cut-off) is shown in Suppl. Fig. 4.
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Figure 3. Prognostic impact of different PM-MRD cut-offs and corrected for background f. (A) Using 
standard Log-Rank analysis the optimal cut-offs of 1.62% and 10.0% were determined. (B) Using 
the cut-off of 1.62% allows discrimination of two patients groups with different EFS: 178 patients 
(59.3%) were PM-MRD(with-f)positive with an EFS of 43.2%, versus 122 patients (40.7%) PM-MRD(with-f)
negative with an EFS of 64.4% (pLogrank= 0.0003). (C) For the 10.0% cut-off, these groups were 65 patients 
(21.7%) PM-MRD(with-f)positive with an EFS of 33.8%, versus 235 patients (78.3%) PM-MRD(with-f)negative 
with an EFS of 54.9% (pLogrank= 0.0016). (D) When both are combined, three patient groups with 
different EFS are shown: EFS 64.4% (n=101), 47.8% (n=134) and 33.8% (n=65). (E) For comparison, 
for MRD no such clear objective cut-offs could be defined. (F) Multiple cut-offs shows that PM-MRD 
refines prognostic impact beyond the application of the two objectively defined cut-offs. (G) Cut-off 
in Figure 3D applied for the cytogenetically favorable prognosis group (H) in the intermediate and (I) 
poor cytogenetic risk group. 

It may be argued that more mature AML may not be suitable for the progenitor 

approach. However, our cohort included 46 mature AML cell patients (15.3%), classified as 

French–American–British (FAB) classifications M5 (n=38), M6 (n=6) or M7 (n=2), which all 

had primitive compartments that could be evaluated for LAIP expression. MRDcalc(with f) 

and PM-MRD(with f) (cut-offs at 0.1% and 10.0%, respectively) allowed to identify patients 

groups with distinct different EFS (pLogrank=0.009 and 0.001, respectively) (Suppl. Fig. 7).
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COMPARISON OF PROGNOSTIC IMPACT OF PM-MRD VERSUS MRD
We have shown that both PM-MRD and MRD show prognostic value, however, with clear 

differences (Figures 2 and 3), which are reflected in the moderate correlation between 

PM-MRD and MRD (r=0.737, p<0.001). This implies that the PM%, which is the only difference 

between PM-MRD and MRD (MRD=PM-MRD x PM%), contributes to the discrepancies seen 

in prognostic value. However, in contrast to PM-MRD and MRD, there was no correlation 

between PM% and prognostic value (EFS, r=0.039; p=0.512). To illustrate this, in Figure 4A 

and B the whole relevant patient group (with PM% 0%-3.2%) was sub-divided in six PM% 

sub-groups. This did not result in consistent differences between the groups in EFS, in both 

Kaplan-Meier analysis (Figure 4A) and EFS at 36 months (Figure 4B). 

This implies that the PM% does not contribute to the prognostic impact of MRD, which 

in turn would suggest that the prognostic impact of MRD would originate entirely from 

the PM-MRD component in it. To better understand this unexpected phenomenon, we 

explored the relationship between both PM-MRD and MRD on the one hand, and PM% 

on the other hand. Whereas PM-MRD as such inversely correlates with EFS in the whole 

unbiased patient group (resulting in the prognostic impact as seen in Figure 3), Figure 

4C shows that PM-MRD was largely independent of PM%, which, in terms of prognostic 

impact, is in line with the lack of correlation between PM% and EFS (as seen in Figure 

4A,B). In sharp contrast, MRD significantly increases with increasing PM-percentage 

(Figure 4D). These observations thereby reveal a strong discrepancy between MRD and 

EFS, but not between PM-MRD and EFS. This in turn suggest that the inclusion of the PM% 

in the calculations (leading to MRD) seems superfluous, and, in addition, may also cause 

MRD false negativity in part of the cases with very low PM%, or too high MRD values in 

part of the cases with high PM% (see Suppl. Text 6 for more details). 

Supplementary Figures 9C-E confirm this finding: these show the distribution of 

individual patient values for EFS, PM-MRD, and MRD over the different PM% groups. 

The quantitative contribution of this PM% parameter to the MRD parameter, as it 

is presently used in the clinic, should not be under-estimated: the difference between 

the patient with the lowest PM% (<0.01%) and highest PM% (≥3.2%) is a factor >320, 

compared to a factor 100 for PM-MRD. The main conclusion is therefore that it may 

not predominantly be the total leukemic load (MRD) that defines patient’s outcome in 

remission AML, but the contribution of the AML part of the total progenitor compartment 

(PM-MRD), or in other words, the balance between AML and normal progenitors.

The clinically most important consequences for the present application of MRD 

concerns the prognostic meaning of the ELN consensus MRD cut-off of 0.1%: Figure 4E 

shows that, in the current study, the PM-MRD≥10%/MRD≥0.1% compartment contains 

25 patients, who indeed are characterized by poor prognosis (see Kaplan-Meier plots at 

the right in the Figure, with further explanations in the legends). However, there is a PM-

MRD≥10%/MRD<0.1% compartment with poor prognostic based on PM-MRD, but good 

prognostic based on MRD. This compartment contains 31 patients, now showing that 
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Figure 4. Role of the percentages of the whole (AML+normal) PM compartment (“PM%”) in 
the prognostic value of PM-MRD and MRD. The PM% was subdivided in the following groups, <0.1%, 
0.1%-0.2%, 0.2%-0.4%, 0.4%-0.8%, 0.8%-1.6%, 1.6%-3.2% and ≥3.2%. (A) Kaplan-Meier analysis 
shows that there was no consistent difference in EFS between the patients in the different PM% 
groups. Except for the group with PM% ≥3.2%, wherein 4/17 samples were from patients who had 
officially relapsed at the time point of sampling. (B) EFS at 36 months in the different PM% groups 
(data extracted from all individual patient data used in Figure 4A). (C) Correlation between PM-MRD 
and PM% (in the range 0%-3.2%) and (D) between MRD and PM%. (E).

over 50% of the patients with poor prognosis based on high PM-MRD percentage, are 

not accounted for by MRD≥0.1 %. The reason for this is that (very) low PM percentages 

(especially in the groups <0.1%-0.4%, see brownish symbols in Figure 4E) may result in low 

MRD values (PM-MRD x PM% <0.1), despite high, prognostically unfavorable, PM-MRD 

values (≥10), and thereby represent MRD false-negativity. A tentative way how PM-MRD 

may be reported to clinicians is outlined in Suppl. Text 7 and related Suppl. Tables. 
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DISCUSSION 

This paper consists of three parts in which we have used the data from the clinical HOVON/

SAKK 102 study22 for which we already assessed prognostic impact for MRD23 and which 

encompassed 300 evaluable patients. First we demonstrate the application of a simple 

mathematical model to objectively calculate MRD, i.e. to enumerate all parameters 

contributing to MRD, thereby enabling to report MFC-MRD more objectively. The most 

important parameters turned out to be i) the fraction of the (CD34+and/orCD117+and/

orCD133+) progenitor compartment that, under MRD conditions, is covered with LAIP, 

ii) the background of a LAIP defined in normal bone marrow (termed f), and iii) the total 

(AML+normal) progenitor compartment as a percentage of WBC (PM%).

The second part introduces PM-MRD which is defined as the AML part of the total 

progenitor compartment and which is related to MRD by the formula MRD = PM-MRD x 

PM%. When using the mathematical model, it is revealed that PM-MRD offers a strong 

independent prognostic factor, defining three patient groups with different survival, and 

which in the lower regions, but especially at the higher ranges, may perform better than 

MRD. Of note, for MRD no such clear objective cut-offs could be identified: the cut-off of 

0.1% is the result of a consensus within European LeukemiaNet and not objectively assessed. 

In the third part we show that the prognostic impact of MRD is mainly, if not completely, 

due to the prognostic impact of PM-MRD component in it; the PM% part of MRD does 

not add to the prognostic impact of MRD, but instead in part of cases produces artificial 

and highly variable increases of PM-MRD, which may lead to either false-positivity or MRD 

false-negativity. This can be most accurately assessed for MRD false-negativity: when 

using the MRD consensus cut-off of 0.1%, the poorest prognostic PM-MRD group (≥10%) 

not only harbours almost all high MRD cases (≥0.1%), but in additions contains even more 

MRD low (<0.1%), but nevertheless poor prognosis, patients.

At this stage it must be emphasized that both the progenitor make up and the PM% 

made large contributions to the total tumour load (MRD): PM-MRD ranged from about 1% 

to 100% (factor 100), while the difference between the highest and lowest PM% values 

were factor >320 (range <0.01% - 3.2%). As a result in the formula MRD=PM-MRD x PM% 

the differences in MRD between lowest and highest value may be a factor of at least 104. 

On the other hand, for PM-MRD the difference between the highest (100%) and lowest 

(1%) is only a factor 100 at maximum, apparently without loss of prognostic information.

We conclude that PM-MRD seems to be the main, if not only, prognostically important 

part of MRD, which observation, especially seen the questionable role of PM%, should be 

taken into account when using classical MRD. Total tumour load in solid tumours, both 

before and especially after therapy, has a direct relationship with patient prognosis26, and, 

seen the clinical impact of MRD in defining risk and/or adapt therapy, also for hematological 

tumours including AML. Despite the fact that primitive AML cells (progenitors and/or stem 

cells), when expressed as total load (per WBC), have been shown to have prognostic 
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impact23,25,27–29, as far as we know the present paper for the first time in AML shows that it 

is not mainly the total tumour burden (MRD), but the balance between tumour and normal 

progenitor cells that is important for clinical outcome. It is tempting to speculate that at 

a certain threshold the fast growth of acute leukemic progenitors19–21, may overrule initial 

differences in total tumor load (i.e. dividing plus non-dividing AML cells as percentage of 

WBC). The data retrospectively confirm one of our earlier HOVON/SAKK studies in which 

we examined in a small patient group (n=77) the added prognostic impact of PM-MRD 

(then called aPC fraction: aberrant primitive compartment) on the MRD negative patient 

group (MRD<0.1%)25. When re-considering the data, poor prognosis for the whole patient 

group (MRD+ plus MRD-) can almost fully accounted for by aPC ≥10% (roughly containing 

65% MRD positive and 35% MRD negative cases). 

Apart from this new insight in how to define residual disease, a major advantage of 

the PM-MRD approach is that it circumvents the use of the total progenitor load (PM%, 

i.e. CD34and/orCD117and/orCD133 as percentage of WBC), and thereby thus also of 

the WBC load. The uncertainty of WBC count, either resulting from the gating procedure of 

all viable WBC as such, or as a result of selective degradation of WBC sub-populations (e.g. 

granulocytes) upon sample storage or transport9,16, will affect correct MRD quantitation, and 

thus makes PM-MRD potentially a more reliable measure for residual disease quantitation. 

As such, the wish for standardization of MFC MRD16 may become in reach.

PM-MRD may also contribute to a more objective identification of MRD, independent of 

the large personal experience required for the classical MRD studies in which identification 

of aberrancies in differentiation patterns in AML BM, compared to normal BM, fulfilled 

a central role. Identification of progenitor compartments in follow-up BM is of wide-spread 

use in diagnostics and treatment, e.g. CD34 expression in stem cell transplantation30,31. If 

a consensus list of potential LAIPs would become available, this would be useful for new 

participants in the field. The putative contents of such a list is described in Suppl. Text 

1, last paragraph. Progenitor identification even better allows the different-from-normal 

approach for all types of aberrant cells, which has been urged by European LeukemiaNet7. 

PM-MRD likely could be of major importance especially in multi-centre clinical studies 

aiming at refinement of risk assessment, to guide follow up therapy, or for use as a short 

term endpoint for survival.

In our results, we showed the redundancy of the previously used correction factor 

(termed h) to account for the percentage of LAIP covering blast or PM cells at time of 

diagnosis and translated to the MRD situation3. With the increasing knowledge on post-

diagnostic immunophenotypic changes13, uncertainly about the maintenance at follow up 

of diagnosis make up has become too large. 

In our analyses we were not able to assess prognostic impact of PM-MRD below 

1% because of LAIP background values (factor “f”) becoming of similar magnitude as 

the PM-MRD values. In parallel the MRD level that roughly coincides with that 1% PM-MRD 

value, was 0.01%, below which also no clear prognostic impact was seen (Figure 2F). 

A more sophisticated background correction would be not to subtract the whole LAIP+ 
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background, but the local background instead, i.e. only in the area in which (PM)-MRD is 

located and which may depend on the type of LAIP, on the patient and on the time point 

of MRD assessment. Such approaches are underway.

It remains to be seen how PM-MRD relates to Leukemia Stem Cell (LSC) 

MRD as reported before by us23. In that paper we show that classical MRD and  

LSC-MRD are supplementary.

In conclusion, we have introduced a mathematical model to calculate residual disease 

in an objective, quantitative, and reproducible way. The model also reveals a new way 

to calculate residual disease, i.e. PM-MRD, describing the make-up of the progenitor 

compartment in terms of normal and AML progenitors. PM-MRD not only reveals 

the presence of multiple patient groups with different prognosis, but also showed to 

represent the major prognostic part of MRD. The approach also reduces false-negativity 

as seen in classical MRD. We suggest current MRD institutes to verify these findings in 

their own databases (a handy Excel file to quickly calculate MRD and PM-MRD has been 

supplied as a supplementary file), which usually are already available herein (at least for 

CD34 and CD117) as part of the regular MRD measurements. 
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SUPPLEMENTARY DATA

SUPPLEMENTAL TEXT 5. NORMAL BONE MARROW VERSUS 
POST-CHEMOTHERAPY BONE MARROW 
In most studies, BM collected from healthy donors serves as reference for normal 

expression patterns. To assess remaining effects of such regeneration on LAIP expression 

in normal progenitors, we evaluated the expression of all LAIPs, used at the relevant MRD 

sampling points, but now from AML patients who had no LAIP at diagnosis and with no 

evidence for newly-formed of LAIPs on AML cells during/after therapy (regenerating bone 

marrow, RBM). These RBM patients were treated according to HOVON-SAKK clinical 

trial 132, which was METC approved (central study approval number 2013-539; VUmc 

local approval number 2014-228). RBM samples were collected after cycle II, identical to 

patients in the HOVON-SAKK clinical trials 102 and 132.

Suppl. Figure 5 and corresponding Suppl. Table 1 show the expression of LAIPs 

in RBM, with NBM shown too, and demonstrate that multiple LAIPs that compared to 

NBM are differently expressed (i.e. higher, with the exception of CD34+HLADR-) during 

regeneration. Since background levels in RBM are thus in general higher compared 

to NBM, and since this background is subtracted within the model, more patients are 

classified MRDnegative compared to the model where NBM background levels are used. 

In WBC-MRD (Suppl. Figure 6), when using RBM, 38 patients are identified as MRDpositive 

compared to 42 patients in MRDcalc. (Figure 2C).

In our study BM had regenerated before sampling and normal BM is likely the best 

control here. In other studies, when assessing MRD after the first induction cycle of 

chemotherapy, RBM is used17,32,33. Since therapies and thereby their effect on the BM are 

different for non-AML patients, we do not favor the use of background levels obtained 

in non-AML patients(6). However, there is no full guarantee that the selection of patients 

without LAIPs present at diagnosis and who received similar therapy as LAIP+ patients, 

do not have acquired LAIP expression on leukemic cells. This might have resulted from 

selection during therapy of very low frequent leukemic LAIP+ cells present at diagnosis. 

Therefore the choice for median frequencies in RBM to subtract from MRD data points 

seems better than subtraction of the mean, which may contain some relatively high values 

from cases with acquired LAIP expression on leukemic cells. Altogether, the choice for 

either NBM or RBM depends on status of BM regeneration, and is also important in light 

of future computational automated programs34. 
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SUPPLEMENTAL FIGURES

Figure S2. Constructing the MRD model.  (A) Distribution of coverage factors (h) within the study. 
Coverage factor is calculated as percentage PM covered with LAIP at time of diagnosis. In blue 
the coverage factor of patients for whom the implementation of the coverage factor did not alter 
the MRD status (positive or negative). In grey coverage factors of patients (n=24) who were MRD- in 
the MRD model without variables, but MRD+ when both variables are used (Suppl. Fig. 2C). (B) Scatter 
plot showing that patients with very low LAIP coverage (< 25%) at diagnosis (shown in white), show 
least correlation between MRD results in the model without variables (MRDcalc) versus the model when 
only the coverage factor is implemented (MRDcalc with h). (C) EFS of patients classified MRDpositive 
or MRDnegative according to 0.1% cut-off, but MRD now calculated according to the formula with 
incorporation of h. Note that the curves are closer to each other compared to a model with f (Figure 
2C). (D) Table showing that 31 patients of the 255 patients who were MRD negative in MRDcalc (no 
f and h corrections applied) now are MRD positive (second row). The discrepant results originate 
from different rounding up around 0.1% cut-off for the two approaches. MRDcalc (without f and h 
incorporated is almost similar to MRDcalc with f included (first row: only 3/258 patients become 
MRDpositive). (E) Similar to B but now both f and h included.  (F) EFS curves of patients classified 
MRDpositive or MRDnegative according to 0.1% cut-off, but MRD now calculated according to 
the formula with both f and h incorporated. Table in Suppl. Fig. 2D shows that 24 patients who were 
MRD negative in MRDcalc (no f and h corrections applied) now are MRD positive (third row).
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Figure S3. PM-MRD with implementation of one or both variables using multiple cut-offs.  The figure 
summarizes the effect on PM-MRD of specificity f in (A-B)(cut-offs slightly modified compared to 
earlier shown in Figure 3F), of the coverage factor h in (C-D), and f+h in (E-F). Scatter plots on the left 
(A,C,E) show the correlation between the model without variables (PM-MRD) and all tested variations. 
Kaplan-Meier analyses (B,D,F) show EFS for all tested models when using multiple cut-offs. Note 
that applying h, with or without f (C and E, resp) in general results in higher PM-MRD compared 
to PM-MRD (without f and h) and also in PM-MRD with f only (A). However, at the lowest PM-MRD 
levels, incorporation of f results in lower PM-MRD levels (A, see also inset in A), even when f and h are 
combined (E). This shows that at low MRD levels may have strong impact on PM-MRD.
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FURTHER SUPPLEMENTAL TEXT/FIGURES/TABLES
Further supplemental data can be retrieved via email. 

Supplemental table 1. Primitive markers and LAIPs in patient population

 PM LAIP 
MRD in patients 
Median (range)

PM-MRD in patients
Median (range)

Cases
(number)

CD34 CD7+ 0.03 (0.00-0.99) 7.14 (0.60-91.71) 47
CD56+ 0.03 (0.00-23.0) 4.50 (0.16-77.6) 30
CD33-C13+ 0.01 (0.00-0.20) 2.60 (0.37-32.75) 26
CD13-CD33+ 0.02 (0.01-0.02) 2.53 (0.93-10.02) 5
CD13-CD117+ 0.19 (0.14-0.24) 17.03 (6.91-27.14) 2
CD19+ 1.00 (0.01-1.98) 50.12 (9.45-90.79) 2
CD15+ 0.09 (0.00-0.28) 15.49 (0.22-61.05) 14
CD22+ 0.01 (0.00-0.92) 10.42 (1.06-31.10) 8
CD14+ 0.02 (0.02-0.02) 3.67 (3.67-3.67) 1
CD11b+ 0.02 (0.00-1.54) 2.96 (0.51-94.42) 25
CD2+ 0.03 (0.01-0.04) 5.36 (0.00-10.71) 2
HLADR- 0.01 (0.00-0.09) 1.23 (0.14-13.94) 14

CD117 CD7+ 0.03 (0.00-5.28) 4.49 (1.02-97.62) 33
CD56+ 0.03 (0.01-1.56) 5.49 (0.38-26.29) 12
CD33-CD13+ 0.01 (0.01-0.01) 0.78 (0.78-0.78) 1
CD13-CD33+ 0.01 (0.00-0.04) 1.80 (0.31-8.62) 6
CD19+ 0
CD22+ 0.02 (0.02-0.02) 5.33 (2.77-7.89) 2
CD14+ 0
CD11b+ 0.01 (0.00-0.12) 2.70 (0.70-6.84) 9
CD2+ 0.00 (0.00-0.00) 0.85 (0.85-0.85) 1
CD15-HLADR- 0.01 (0.00-27.9) 1.91 (0.28-99.06) 31

CD133 CD34- 0.01 (0.00-0.24) 1.93 (0.00-39.02) 28

SUPPLEMENTAL TABLES
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ABSTRACT

Patients with acute myeloid leukemia (AML) often reach complete remission, but relapse 

rates remain high. Next-generation sequencing enables the detection of molecular 

minimal residual disease in virtually every patient, but its clinical value for the prediction of 

relapse has yet to be established. 

METHODS
We conducted a study involving patients 18 to 65 years of age who had newly diagnosed 

AML. Targeted next-generation sequencing was carried out at diagnosis and after induction 

therapy (during complete remission). End points were 4-year rates of relapse, relapse-free 

survival, and overall survival. 

RESULTS 
At least one mutation was detected in 430 out of 482 patients (89.2%). Mutations 

persisted in 51.4% of those patients during complete remission and were present at 

various allele frequencies (range, 0.02 to 47%). The detection of persistent DTA mutations 

(i.e., mutations in DNMT3A, TET2, and ASXL1), which are often present in persons with 

age-related clonal hematopoiesis, was not correlated with an increased relapse rate. After 

the exclusion of persistent DTA mutations, the detection of molecular minimal residual 

disease was associated with a significantly higher relapse rate than no detection (55.4% 

vs. 31.9%; hazard ratio, 2.14; P<0.001), as well as with lower rates of relapse-free survival 

(36.6% vs. 58.1%; hazard ratio for relapse or death, 1.92; P<0.001) and overall survival 

(41.9% vs. 66.1%; hazard ratio for death, 2.06; P<0.001). Multivariate analysis confirmed 

that the persistence of non-DTA mutations during complete remission conferred significant 

independent prognostic value with respect to the rates of relapse (hazard ratio, 1.89; 

P<0.001), relapse-free survival (hazard ratio for relapse or death, 1.64; P = 0.001), and 

overall survival (hazard ratio for death, 1.64; P = 0.003). A comparison of sequencing 

with f low cytometry for the detection of residual disease showed that sequencing had 

significant additive prognostic value. 

CONCLUSIONS 
Among patients with AML, the detection of molecular minimal residual disease during 

complete remission had significant independent prognostic value with respect to re-lapse 

and survival rates, but the detection of persistent mutations that are associated with clonal 

hematopoiesis did not have such prognostic value within a 4-year time frame. (Funded by 

the Queen Wilhelmina Fund Foundation of the Dutch Cancer Society and others.) 
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INTRODUCTION

Acute myeloid leukemia (AML) is a heterogeneous group of clonal hematopoietic stem 

cell disorders with variable response to therapy1-3. Although the majority of patients with 

newly diagnosed AML have morphologic complete remission after they are treated with 

intensive induction chemotherapy, relapse rates remain high2. Decisions about the choice 

of post remission therapy in patients with AML currently depend on the identification 

of a selected set of genetic markers at diagnosis and the detection of residual disease 

with multiparameter flow cytometry2,4. Quantitative molecular evaluation during complete 

remission could further improve prognostication of outcomes in patients with AML.

The potential of the detection of molecular minimal residual disease after treatment 

to predict disease relapse in patients with AML has been explored, but assessment of 

molecular minimal residual disease is not widely established in clinical practice. Previous 

studies have dealt with only a few leukemia-specific genetic aberrations5-11. Next-generation 

sequencing enables comprehensive, simultaneous detection of somatic mutations that are 

often patient-specific, both at diagnosis and during treatment5,12. Initial studies showed 

the complex dynamics of residual mutations after induction therapy and the possible 

association between the persistence of certain somatic mutations and risk of relapse12,13.

In determining whether molecular monitoring may be applicable in patients with 

AML, the phenomenon of age-related clonal hematopoiesis (also known as clonal 

hematopoiesis of indeterminate potential),14-17 a condition characterized by the recurrence 

of gene mutations (allele frequency, >2%) in healthy persons with no evidence of 

hematologic disease, has added an extra layer of complexity. Persons with age-related 

clonal hematopoiesis have a slightly increased risk of developing hematologic cancers 

over time14,15,18. Mutations in the epigenetic regulators DNMT3A, TET2, and ASXL1 (i.e., 

DTA mutations) are most common in persons with age-related clonal hematopoiesis14-19. 

Residual leukemia-specific mutations that are present in the bone marrow during 

complete remission may represent either residual leukemic cells or age-related clonal 

hematopoiesis14,15,17. Whether posttreatment persistence of genetic mutations associated 

with age-related clonal hematopoiesis in the bone marrow from patients with AML has an 

effect on the disease course remains unclear.

We evaluated a large cohort of patients with AML to investigate whether targeted 

molecular monitoring with next-generation sequencing could add clinical value for 

predicting the recurrence of leukemia.

METHODS

STUDY DESIGN
The study was designed by the first two and the last two authors, who wrote the manuscript 

with input from the other authors. The authors vouch for the completeness and accuracy of 
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the data and analysis. No one who is not an author contributed to the manuscript. There 

was no commercial support for the study.

PATIENTS AND CELL SAMPLES
Between 2001 and 2013, we obtained samples of bone marrow or peripheral blood from 

482 patients, between the ages of 18 and 65, who had a confirmed diagnosis of previously 

untreated AML (428 patients) or had refractory anemia with excess of blasts, with a score 

on the Revised International Prognostic Scoring System of more than 4.5, indicating a high 

or very high risk of relapse (54 patients). To be included in the study, patients had to be in 

either complete remission or complete remission with incomplete hematologic recovery 

(defined according to the European Leukemia Net recommendation; hereafter collectively 

referred to as complete remission), with less than 5% blast cells in the bone marrow2,4, after 

receiving two cycles of induction chemotherapy (Fig. S1 in the Supplementary Appendix, 

available with the full text of this article at NEJM.org). Among patients in whom at least 

one mutation was detected at diagnosis, samples were obtained during a defined period 

of remission, between 21 days and 4 months after the start of the second treatment cycle.

Patients were treated according to the clinical protocol of either the Dutch–Belgian 

Cooperative Trial Group for Hematology–Oncology (HOVON)20 or the Swiss Group for 

Clinical Cancer Research (SAKK). The treatment protocols and patient eligibility criteria 

have been described previously21,22. All the patients provided written informed consent. 

Details about the patients and cell samples are provided in the Supplementary Appendix.

TARGETED NEXT-GENERATION SEQUENCING AND 
MULTIPARAMETER FLOW CYTOMETRY
To detect the mutations in 54 genes that are often present in patients with hematologic 

cancers, we used targeted next-generation sequencing with the Illumina TruSight 

Myeloid Sequencing Panel (Illumina), following the manufacturer’s protocol. Detection 

of residual disease with multiparameter flow cytometry was performed as described 

previously23. Details about these detection methods and data interpretation are provided 

in the Supplementary Appendix.

STATISTICAL ANALYSIS
The 430 patients in whom at least one mutation was detected at diagnosis were randomly 

assigned to either a training cohort (283 patients) or a validation cohort (147 patients); 

the two cohorts had similar clinical, cytogenetic, and molecular characteristics (Table 1, 

and Fig. S1 and Table S1 in the Supplementary Appendix). The primary end point was 

the 4-year cumulative incidence of relapse (defined according to the European Leukemia 

Net recommendation4), and the secondary end points were the 4-year rates of overall 

survival and relapse-free survival. Within each cohort, the difference in the incidence of 

relapse between patients in whom residual disease was detected and those in whom 
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residual disease was not detected was evaluated with the use of the method of Gray and 

the Fine and Gray model for competing risks. The log-rank test and the Cox proportional-

hazards model were used for survival analyses. A two-sided P value of 0.05 or less was 

considered to indicate statistical significance. Details about the statistical analyses are 

provided in the Supplementary Appendix.

RESULTS

DETECTION OF MUTATIONS AT DIAGNOSIS
We performed targeted next-generation sequencing to detect gene mutations at 

diagnosis in samples obtained from 482 patients with AML (Fig. S1 in the Supplementary 

Appendix). We detected an average of 2.9 mutations per patient; at least 1 single 

mutation, which could potentially serve as a marker of residual disease, was present in 

430 (89.2%) of the patients. Mutations in NPM1, DNMT3A, FLT3, and NRAS were among 

the most common detectable mutations at diagnosis (Table 1 and Figure 1A, and Table S1 

in the Supplementary Appendix).

DETECTION OF MUTATIONS DURING COMPLETE REMISSION
We then performed targeted next-generation sequencing to detect persistent mutations 

after induction therapy in samples of bone marrow obtained from 430 patients who were 

in complete remission. Persistent mutations were detected in 51.4% of the patients (Figure 

1A, and Fig. S2A in the Supplementary Appendix). The rate at which mutations persisted 

was highly variable across genes. DTA mutations were most common, persisting at rates 

of 78.7% for DNMT3A, 54.2% for TET2, and 51.6% for ASXL1 (Figure 1A). In contrast, 

the majority of mutations in genes related to the RAS pathway were cleared after induction 

therapy, with mutations in NRAS, PTPN11, KIT, and KRAS persisting at rates of 4.2%, 7.0%, 

13.5%, and 12.5%, respectively.

Of note, the allele frequencies of the mutations that persisted during complete 

remission ranged from 0.02 to 47% (Figure 1B). This finding suggests that residual mutation-

bearing cells could constitute a minor population of the cells or perhaps even a majority 

of the cells. An allele frequency of 50% is consistent with the presence of a heterozygous 

mutation in all cells. Thus, although the patients were in morphologic complete remission, 

which would typically imply that heterozygous mutations are present at allele frequencies 

lower than 2.5% (the equivalent of <5% blast cells in the bone marrow), the samples 

that were obtained during remission often contained mutations with much higher allele 

frequencies (Figure 1B).

Mutations that persisted after induction therapy at allele frequencies higher than 2.5% 

were often DTA mutations (Figure 1, and Fig. S2 and S3 in the Supplementary Appendix). 

In contrast, mutations in IDH1, IDH2, STAG2, TP53, and other genes only occasionally 

persisted after induction therapy at allele frequencies higher than 2.5%, and thus the allele 
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Table 1. Clinical, Cytogenetic, and Molecular Characteristics of the 430 Patients°

Characteristic value

Age at diagnosis - yr
Median 51
Range 18-66

Sex - no. (%)
M 216 (50)
F 214 (50)

White-cell count per microliter at diagnosis - no. (%)
≤ 100,000 387 (90)
>100,000 43 (10)

2017 European Leukemia Network risk classification at diagnosis - no. (%)
Favorable 204 (48)
Intermediate 113 (26)
Adverse 113 (26)

No. of chemotherapy cycles to attain complete remission - no. (%)
1 360 (84)
2 70 (16)

Consolidation therapy - no. (%)
None 46 (11)
Chemotherapy 117 (27)
Autologous hematopoietic stem-cell transplantation 78 (18)
Allogeneic hematopoietic stem-cell transplantation 189 (44)

Cytogenetic analysis at diagnosis - no. (%)†
t(8;21) 27 (6)
inv(16) 24 (6)
Complex karyotype 38 (9)
Monosomal karyotype 30 (7)

Mutation at diagnosis - no. (%)
ASXL1 31 (7)
CEBPAdouble mutation 19 (4)
DNMT3A 141 (33)
FLT3
Tyrosine kinase domain 53 (12)
Internal tandem duplication, low ratio 40 (9)
Internal tandem duplication, high ratio 51 (12)
NPM1 168 (39)
RUNX1 50 (12)
TET2 48 (11)

° The percentages may not sum up to 100 because of rounding.
† Karyotyping failed in 13 patients. 

frequencies of these mutations were typically consistent with the state of morphologic 

complete remission (<5% blast cells in the bone marrow).
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Figure 1. Detection of Mutations at Diagnosis and during Complete Remission and Allele Frequency 
of Mutations Detected during Complete Remission. Panel A shows the number of mutations in 
each leukemia-associated gene, both at diagnosis of acute myeloid leukemia and during complete 
remission, in 430 patients. Panel B shows the allele frequency of each mutation in each gene during 
complete remission in 430 patients. In male patients, the variant allele frequencies for PHF6, KDM6A, 
ZRSR2, BCOR, BCORL1, and STAG2 (on the X chromo-some) were divided by 2. 

Because DTA mutations have been established as the most common gene mutations 

in persons with age-related clonal hematopoiesis14-19, the persistent DTA mutations might 

have represented nonleukemic clones that repopulated the bone marrow after induction 
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therapy. Among patients who had both DTA mutations and non-DTA mutations at diagnosis, 

non-DTA mutations were generally cleared after induction chemotherapy, whereas DTA 

mutations often remained detectable during complete remission and were the only 

persistent mutations in 90 of 133 (67.7%) of those patients (Fig. S2 in the Supplementary 

Appendix). These observations are consistent with the notion that residual cells bearing 

DTA mutations after induction therapy represent nonleukemic clones rather than persistent 

malignant disease.

RELAPSE AND SURVIVAL END POINTS
In the training cohort (283 patients), we found that the detection of any persistent 

mutation during complete remission was associated with an increased risk of relapse 

(4-year relapse rate, 48.2% with detection vs. 32.4% with no detection; P=0.03) (Fig. S4A 

in the Supplementary Appendix). We then imposed various thresholds for allele frequency 

to determine whether the prognostic value of the persistent mutations would improve 

after the exclusion of mutations with a high allele frequency, which could indicate a state 

of clonal hematopoiesis. The correlation of persistent mutations with an increased relapse 

risk appeared to be independent of allele frequency. A correlation with relapse risk 

generally remained present when we excluded persistent mutations with allele frequencies 

at or above the following thresholds: 30% (P=0.09), 20% (P=0.11), 10% (P=0.01), 5% 

(P=0.04), 2.5% (P=0.007), and 1% (P=0.07) (Fig. S4 in the Supplementary Appendix). 

The exclusion of persistent mutations with certain allele frequencies had no clear effect 

on the relationship between persistent mutations and an increased relapse risk, thus 

precluding the identification of a threshold for allele frequency that could be used to 

distinguish populations at higher or lower risk for relapse. As we mentioned previously, 

the patients with persistent mutations at high allele frequencies were enriched for DTA 

mutations (Figure 1B).

We next determined whether persistent DTA mutations, which are associated with 

age-related clonal hematopoiesis, might be correlated with an increased relapse risk. We 

observed that the detection of persistent DTA mutations was not significantly associated 

with a higher 4-year relapse rate than no detection (P=0.29). The absence of a correlation 

was independent of allele frequency. No significant correlation of persistent DTA mutations 

with an increased relapse risk was apparent when we excluded persistent DTA mutations 

with allele frequencies at or above the following thresholds: 30% (P=0.91), 20% (P=0.66), 

10% (P=0.89), 5% (P=0.82), 2.5% (P=0.53), and 1% (P=0.92) (Fig. S5 in the Supplementary 

Appendix). In contrast, among patients who had persistent DTA mutations during complete 

remission, coexisting persistent non-DTA mutations had high prognostic value with respect 

to relapse (4-year relapse rate, 66.7% with detection vs. 39.4% with no detection; P=0.002) 

(Figure 2A). Thus, in patients with persistent DTA mutations, the presence of residual 

disease that specifically included coexisting non-DTA mutations represented a predictor 

of impending relapse. 
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Figure 2. Rates of Relapse and Overall Survival. Shown is the cumulative incidence of relapse 
among patients in the training cohort with persistent DTA mutations, according to the detection of 
coexisting persistent non-DTA mutations during complete remission (Panel A), and among all patients 
in the training and validation cohorts, according to the detection of any persistent non-DTA mutations 
during complete remission (Panel B). Panel C shows the rate of overall survival among all patients in 
the training and validation cohorts, according to the detection of any persistent non-DTA mutations 
during complete remission. DTA mutations are mutations in DNMT3A, TET2, and ASXL1

We next assessed whether persistent non-DTA mutations might be correlated with 

an increased relapse risk. The detection of persistent non-DTA mutations at any allele 

frequency was strongly associated with an increased relapse risk (4-year relapse rate, 

55.7% with detection vs. 34.6% with no detection; P=0.001) (Figure 2B), as well as with 

reduced relapse-free survival (4-year rate of relapse-free survival, 56.7% with detection 

vs. 36.6% with no detection; P=0.006) and reduced overall survival (4-year rate of overall 

survival, 65.3% with detection vs. 43.7% with no detection; P=0.01) (Figure 2C, and  

Fig. S6 in the Supplementary Appendix).

To assess the reproducibility of these results, we evaluated the effect of sequencing-

based detection of persistent non-DTA mutations during complete remission on the rates 
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of relapse, relapse-free survival, and overall survival in the validation cohort (147 patients). 

The rates with detection versus no detection were as follows: 4-year relapse rate, 55.1% 

versus 26.5% (P<0.001); 4-year rate of relapse-free survival, 60.6% versus 35.6% (P<0.001); 

and 4-year rate of overall survival, 67.6% versus 37.1% (P<0.001) (Figure 2B and 2C, and 

Fig. S6 in the Supplementary Appendix). The results in the validation cohort confirmed 

the significant findings in the training cohort.

In the combined training and validation cohorts (a total of 430 patients), persistent 

non-DTA mutations were detected during complete remission in 28.4% of the patients. 

Detection of these mutations was associated with a significantly higher 4-year relapse 

rate than no detection (55.4% vs. 31.9%; hazard ratio, 2.14; 95% confidence interval [CI], 

1.57 to 2.91; P<0.001), as well as with lower 4-year rates of relapse-free survival (36.6% vs. 

58.1%; hazard ratio for relapse or death, 1.92; 95% CI, 1.46 to 2.54; P<0.001) and overall 

survival (41.9% vs. 66.1%; hazard ratio for death, 2.06; 95% CI, 1.52 to 2.79; P<0.001) (Fig. 

S6 in the Supplementary Appendix).

MULTIVARIATE AND SENSITIVITY ANALYSES
We performed multivariate analyses that accounted for the major established relevant 

prognostic factors, including age, white-cell count, 2017 European Leukemia Network 

risk classification, and the number of cycles of induction chemotherapy needed to attain 

complete remission. Sequencing-based detection of non-DTA mutations maintained 

significant independent prognostic value with respect to the rates of relapse (hazard ratio, 

1.89; 95% CI, 1.34 to 2.65; P<0.001), relapse-free survival (hazard ratio for relapse or death, 

1.64; 95% CI, 1.22 to 2.20; P=0.001), and overall survival (hazard ratio for death, 1.64; 95% 

CI, 1.18 to 2.27; P=0.003) (Table 2). No significant interactions were apparent between 

the detection of residual disease and the other prognostic factors in the multivariate 

model, type of consolidation therapy, or disease entity (AML vs. refractory anemia with 

excess of blasts) (data not shown).

In sensitivity analyses involving correction for variation in the time at which bone marrow 

specimens were obtained for sequencing analysis (within the remission period of 21 days 

to 4 months after the second treatment cycle), the prognostic value of sequencing-based 

detection of non-DTA mutations with respect to the rates of relapse, relapse-free survival, 

and overall survival remained unaffected (Table S2 in the Supplementary Appendix). In 

addition, an analysis that included post remission treatment with allogeneic stem-cell 

transplantation as a time-dependent variable conferred no effect on the prognostic value 

of the detection of residual disease (Table S3 in the Supplementary Appendix).

DETECTION OF RESIDUAL DISEASE WITH MULTIPARAMETER 
FLOW CYTOMETRY
Multiparameter flow cytometry is an increasingly used method for predicting relapse 

in patients with AML who are in complete remission7,24. We compared next-generation 
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sequencing for the detection of persistent non-DTA mutations with flow cytometry for 

the detection of residual disease in a representative subgroup of 340 patients, from whom 

sufficient samples were obtained for both analyses. Concordant results (either detection 

or no detection on both assays) were found in 69.1% of the patients (30 patients with 

detection and 205 with no detection), whereas persistent non-DTA mutations were 

detected only on sequencing in 64 patients and only on flow cytometry in 41 patients. 

The 4-year relapse rate was 73.3% among patients in whom both assays were positive, 

52.3% among those who had residual disease on sequencing but not on flow cytometry, 

49.8% among those who had residual disease on flow cytometry but not on sequencing, 

and 26.7% among those in whom both assays were negative (Figure 3). In a multivariate 

analysis that combined the results of sequencing and flow cytometry, the combined use 

of the two assays for the detection of residual disease conferred independent prognostic 

value with respect to the rates of relapse (P<0.001), relapse-free (P<0.001), and overall 

survival (P=0.003) (Table S4 in the Supplementary Appendix).

DISCUSSION

In addition to the presence of genetic abnormalities at diagnosis, the continued presence 

of particular gene mutations during or after treatment carries prognostic information 

for certain genetically defined AML subtypes5-11. This applies, for example, to AML 

associated with a mutation in NPM1, for which the detection of a residual mutation in 

NPM1 transcripts during complete remission is indicative of an increased probability of 

relapse8,9. However, this example is only representative of a single-gene approach. We 

report the results of a systematic study that involved a large number of patients with 

AML, in which we used a genomewide approach to evaluate the persistence of multiple 

gene mutations for the effect on treatment outcomes. Patients were treated with intensive 

chemotherapy regimens and attained morphologic complete remission, with a median 

follow-up exceeding 3 years.

Of note, age-related clonal hematopoiesis14-17, which is characterized by recurrent 

somatic mutations in leukemia-associated genes in persons with no apparent hematologic 

disease, adds a challenge in the detection of residual disease. Our study showed that 

the persistence of mutations that are most commonly associated with age-related clonal 

hematopoiesis (i.e., DTA mutations [mutations in DNMT3A, TET2, and ASXL1]) during 

complete remission did not contribute to a measurably increased risk of relapse within 

a follow-up period of 4 years in adults with AML who were younger than 65 years of age. 

This appeared to be true for mutations that were present at various allele frequencies, 

which suggests that the clone size in age-related clonal hematopoiesis yields no prognostic 

value with respect to the end points defined in this study.

The cells bearing DTA mutations appeared to persist and possess a selective clonal 

advantage over normal stem cells when they repopulated the bone marrow after induction 

therapy. This finding is consistent with the competitive clonal advantage of hematopoietic 
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Figure 3. Rate of Relapse According to Results of Next-Generation Sequencing and Multiparameter 
Flow Cytometry. Shown is the cumulative incidence of relapse, according to the presence of positive 
(+) or negative (−) results for the detection of persistent non-DTA mutations during complete remission 
on next-generation sequencing (NGS) and on multiparameter flow cytometry (MFC)

stem cells with deficiencies and mutations in DNMT3A and TET2, an advantage that has 

been reported previously25-27. The proliferative advantage of hematopoietic stem cells 

with DTA mutations and their capacity to withstand chemotherapy because of inherent 

resistance may explain why persistent premalignant DTA mutations were not correlated 

with an increased probability of relapse and thereby did not constitute a reliable molecular 

biomarker for the assessment of relapse risk.

It is possible that gene mutations other than DTA mutations also partially reflect clonal 

hematopoiesis. However, at this time, we cannot rigorously verify the possibility that gene 

mutations associated with age-related clonal hematopoiesis also reside as subfractions 

among the other gene abnormalities in leukemia cells. In addition, mutations in TP53, 

IDH1, and IDH2, along with genes related to the RAS pathway and spliceosome genes, 

have been shown to have distinct biologic features in the context of AML pathogenesis28-31. 

Therefore, in this study, we collectively considered non-DTA mutations to be abnormalities 

that are unrelated to clonal hematopoiesis.

Our study had a median follow-up of almost 40 months. Among patients with AML who 

have complete remission, most relapses generally occur within the first 4 years. We found 

that the continued persistence of DTA mutations was not associated with an increased 
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relapse risk, and thus these residual cells may not need to be eliminated to prevent 

relapse. However, the limited follow-up of 40 months does not rule out the possibility that 

persistent DTA mutations represent an increased risk of relapse at a later time point.

Although sequencing-based detection enables assessment for residual disease 

in virtually all patients with AML, it is imperfect in two ways. First, not all patients with 

residual mutation-bearing cells have a relapse. Second, some patients with no measurable 

residual disease have a relapse. It is conceivable that relapse estimation can be improved 

with the development of technological variations of sequencing-based approaches 

that have greater sensitivity or a broader scope (e.g., those with molecular barcoding, 

exome sequencing, or whole-genome sequencing) or with the identification of additional 

molecular and phenotypic markers so that quantitative minor clones or subclones 

associated with the leukemia are captured by the assay. In this respect, it is of particular 

interest that the use of multiparameter flow cytometry7,24 — which identifies patients with 

AML who have an increased risk of relapse according to an entirely different approach that 

is based on a residual leukemia-associated immunophenotype23,32 — can increase the yield 

of identification of residual leukemia during complete remission.

In this study, gene sequencing and multiparameter flow cytometry each had 

independent and additive prognostic value with respect to rates of relapse and survival 

in patients with AML. The detection of residual leukemia with both methods is associated 

with an excessively high probability of relapse (approximately 75%), and the absence 

of detection of residual disease with both methods is correlated with a relatively low 

probability of relapse (approximately 25%). Thus, the combined use of sequencing and 

flow cytometry during complete remission warrants further development and evaluation 

in clinical practice.

In conclusion, targeted sequencing-based detection of molecular minimal residual 

disease during complete remission was associated with an increased risk of relapse or 

death in patients with AML. However, over a 4-year follow-up period, the risk of relapse 

or death was not influenced by the persistence of genetic lesions that are associated with 

age-related clonal hematopoiesis.
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SUPPLEMENTARY DATA

PATIENTS AND CELL SAMPLES 
Bone marrow aspirations or peripheral blood samples at diagnosis were taken after 

informed consent. Follow-up bone marrow samples of 430 out of 482 AML or RAEB 

patients in CR with mutations at diagnosis (Figure S1) were taken at least 21 days after 

the start of the second induction cycle. If additional samples were available, the most 

recent sample prior to start of consolidation therapy was selected. In case no consolidation 

therapy was given, the last sample that was available within a four-month interval from 

start of the second induction cycle was selected. The probabilities of relapse in AML 

patients with or without available samples did not differ (p=0.281). The median follow-up 

of the 430 AML cases was 39.7 months and the residual disease status was not available 

to the clinical investigator and did not influence the choice of consolidation therapy. 

Blasts and mononuclear cells at diagnosis were purified by Ficoll-Hypaque (Nygaard, 

Oslo, Norway) density gradient centrifugation and cryopreserved. Of all 430 AML cases 

reaching CR, white blood cells were isolated after induction treatment in 385 cases and 

mononuclear cells were subsequently purified in 45 cases. After thawing, cells were lysed 

in RLT solution with the addition of DTT (Qiagen, Venlo, The Netherlands). 

DNA AND RNA ISOLATION 
High quality DNA was extracted using the QIAsymphony (Qiagen, Venlo, The Netherlands). 

DNA concentration was measured by Qubit Fluorometric Quantitation (Thermo Fisher 

Scientific, Wilmington, DE). RNA was isolated with RNA-Bee following the protocols of 

the manufacturer (Bio-Connect BV, Huissen, The Netherlands). CBFB-MYH11, RUNX1-

RUNX1T1, FLT3 internal tandem duplication (ITD) and CEBPA mutations were determined 

as described previously33,34. TARGETED NGS The NGS libraries were paired-end sequenced 

(2x221bp) on an Illumina HiSeq 2500 System (Illumina, San Diego, CA) in Rapid Run mode. 

Since CBF fusion transcripts, CEBPA mutations and FLT3 ITDs cannot be reliably assessed 

with NGS on DNA, these molecular aberrations were excluded from the analyses. 

NGS DATA ANALYSIS 
The vast majority of amplicon target regions were completely paired-end sequenced. 

Overlap-based error-correction was utilized to attenuate any form of strand-specific 

error biases. Error-corrected paired-end reads aligned to the human genome version 

19 (hg19) with BBMAP35 followed by quality control to determine cases with insufficient 

number of reads for adequate variant calling. Single nucleotide variants (SNVs) and 

insertions-deletions (indels) at diagnosis were determined by MuTect36, Samtools37, 

GATK38, Varscan39, Indelocator40 and Pindel38. Variant allele frequencies (VAF) of mutations 

detected at diagnosis were calculated as the ratio between the number of mutant and 

total reads. The persistence of mutations at follow-up, previously detected at diagnosis, 
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requires the detection of mutations at exceptionally low VAFs. A follow-up background 

error model was determined by calculating the VAF for each potential SNV within the set 

of target genes across all follow-up samples. 

The detection of variants at low detection level is primarily reserved for highly 

discriminative insertion or deletion mutations sequenced at sufficient depth in both 

the follow-up samples of interest and the control set of remission samples. The strength 

of a site-specific error model is that it models the unique site-and-variant specific noise 

profile based on a large set of remission samples from patients who did not carry that 

specific mutation at diagnosis and thereby enables the assessment whether the variant 

remains persistent, defined as a statistical outlier, in the follow-up sample from the patient 

of interest. Since more complex insertion or deletion mutations are particularly distinct and 

the odds of detecting such variants as a consequence of sequencing or alignment errors 

is exceptionally low, such variants can be detected at higher sensitivity. The detection 

sensitivity of other mutations is variable and highly dependent on the average coverage 

for that specific locus for all samples, the observed error variance of the site-specific 

variant in the control set (a high variance results in decreased detection sensitivity) and 

the number of control sample available. The unique combination of patient-specific 

mutations, the application of a site-specific error model and strict detection criteria 

minimizes the odds that variants are erroneously called to persist. Quantile normalization 

of the calculated VAFs was performed per flow cell to mitigate the effect of qualitative 

differences amongst samples. All SNVs detected across the diagnostic samples were 

compiled and the background VAF distribution was determined for each individual 

SNV from follow-up samples lacking this SNV in the matched diagnostic sample. For 

the remaining follow-up samples the persistence of the SNV was considered confirmed 

when the VAF was an outlier compared to the background VAF distribution according to 

the Thompson-Tau test. A one-sided p-value <0.01 was considered statistically significant. 

Indels were processed and compared similarly, except for quantile normalization as there 

are infinitely many possible indel-configurations per locus.

STATISTICAL ANALYSES 
The complete cohort of 430 AML patients was randomly split using Stata into a training 

(n=283) and validation cohort (n=147) (Table 1, Figure S1 and Table S1). Each patient 

received a pseudorandom number from a uniform distribution from 0 to 1. The random 

numbers generated were shuffled by sorting, allowing for random allocation of patients 

to the training or validation set. Differences in clinical, cytogenetic and molecular 

characteristics of the training and validation cohorts or NGS and flow cohorts were 

tested using the Fisher’s exact test for categorical variables and Mann-Whitney U test for 

continuous variables. Clinical, cytogenetic and molecular characteristics of the training 

and validation cohorts were not significantly different (Table S1). The primary endpoint 

of the study was the cumulative incidence of relapse (CIR). Competing-risks regression 
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analysis was performed for relapse with adjustment for non-relapse mortality according 

to the method of Gray and the Fine & Gray model41. The secondary endpoints were 

relapse free (RFS) and overall survival (OS) which were analyzed using the log-rank test 

and the Cox proportional hazards model. Relapse and survival time was calculated from 

the sampling date until the date of the event of interest or censoring. RFS was defined from 

date of sampling to death, relapse or censoring, whichever came first. All statistical tests 

were two-sided and p-values <0.05 were considered statically. The proportional hazards 

assumption was tested by interaction with time and the interactions were evaluated in 

a standard way. The effect of allogeneic stem cell transplantation on CIR and OS was 

investigated in both multivariable models as a time-dependent covariate42. All p-values 

are two sided and p-values <0.05 were considered statically significant. Statistical analyses 

were performed with Stata Statistical Software, Release 14.1 (Stata, College Station, TX). 

SUPPLEMENTAL FIGURES 

Figure S1. Consort diagram molecular residual disease study. Abbreviations: HO, HOVON-SAKK, 
Dutch-Belgian Hemato-Oncology Cooperative Group and the Swiss Group for Clinical Cancer 
Research; CR, Complete morphological Remission; FU2, Follow-up after induction cycle II; NGS, Next 
Generation Sequencing. 
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Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults 

and is characterized by heterogeneity in cytogenetics and molecular aberrations1. While 

insights in the pathogenesis and clonal landscape of AML has increased, the backbone 

of induction therapy has been the same for many years. In 1973, the ‘7+3’ cytarabine 

plus anthracycline chemotherapy was first described2, achieving five-years overall survival 

(OS) in around 40%-50% in young patients3, and 20-30% in elderly patients4. Several 

new (targeted) agents have been recently approved for AML5, which look promising in 

a subgroup of patients6, and some (untargeted) chemotherapeutic agents have been 

introduced. Clofarabine (2-chloro-2’-fluoro-deoxy-9-β-d-arabinofuranosyladenine; 

a second-generation purine nucleoside analog), has shown potential benefit in young7 

and older8 AML patients. However, as clofarabine was associated with a risk of severe 

complications in some studies9,10, while well-tolerated in others11,12, further evaluation in 

dosing and scheduling was warranted. In a large phase III study of the Dutch-Belgian 

Hemato-Oncology Cooperative Group (HOVON)–Swiss Group for Clinical Cancer Research 

(SAKK) Cooperative Groups, with 800+ patients enrolled, a significant favorable effect of 

clofarabine (added to idarubicin and Ara-C) was seen in the European leukemia net (ELN) 

intermediate-I prognostic risk subgroup13 (event free survival (EFS) 26%±4 vs. 40%±5; Cox 

P=0.002; OS 29%±5 vs. 50%±6; Cox P<0.001)10. 

One of the secondary objectives of the study was the assessment of efficacy according to 

measurable residual disease (MRD). Multiparameter flow cytometry (MFC)-MRD identifies 

leukemic cells, which can be distinguished from normal cells based on the presence of 

leukemia associated immunophenotypes (LAIPs)14. In addition, specific antibody panels 

allowed MFC assessment of leukemic stem cells (LSCs)15. Samples for MFC-(LSC-)

MRD detection were available for a subset of patients and the time point of MFC-MRD 

assessment after 2 cycles of treatment was used for further analysis; median 82 (43-252) 

days after start of therapy. See supplement for patient cohort information.  

Here we further analyzed the results of this MFC-(LSC-)MRD detection in this trial 

showing clinical benefit of clofarabine in the ELN Intermediate-I risk group, demonstrating 

how MFC-(LSC-)MRD results after two cycles of chemotherapy would have predicted 

the beneficial effect of clofarabine at this early stage.

To qualify an assay for surrogate endpoint of survival benefit, the surrogate should 

be associated with the outcome and with the effect of the treatment and the outcome16. 

A positive trial showing clinical benefit for an investigational drug is therefore crucial to 

assess the validity of MFC-MRD to assess effectivity of a novel drug. 

MFC-MRD analysis after cycle II was performed in 291 patients distributed over the four 

ELN2010 risk categories13. As clinical benefit was demonstrated in the Intermediate-I ELN 

risk group only, we focus this analysis on this subgroup in comparison to the remaining 

cohort. In the Intermediate-I patient group, median MFC-MRD level was 0.041% in 

the standard arm versus 0.018% in the clofarabine arm (n=49 vs. n=44 respectively; p=0.034) 

(Table 1). In the remaining cohort, median MFC-MRD level was 0.019% in the standard 

arm compared to 0.015% in the clofarabine arm (n=105 vs n=93 respectively; p=0.183)  
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(Table S2). Other time points e.g. after cycle I and consolidation show no significant 

differences (Table 1). When using the ELN recommended MFC-MRD cutoff (i.e. ≥0.1% 

LAIP cells/WBC)17, the prevalence of MFC-MRD positive results seem to be lower in de 

clofarabine arm compared to the standard arm in the Intermediate-I risk group (20.4% 

versus 28.6%, respectively; not significant; Table 1) and in the remaining cohort (17.2% 

versus 23.8%, respectively; not significant; Table S2). Distinct differences in the prognostic 

value of MFC-MRD positivity between treatment arms were found in the Intermediate-I 

cohort. In the cumulative incidence of relapse analysis (CIR) (Figure 1A), clofarabine 

treated MFC-MRDnegative patients are less likely to relapse than MFC-MRDnegative patients 

treated without clofarabine (pLogrank=0.046). Similarly, although not significant, MFC-

MRDpositive patients with clofarabine have lower CIR than MFC-MRDpositive patients without 

clofarabine (Figure 1A, p=0.09). These observations were not found in the remaining 

cohort (Supplement). 

Similarly to MFC-MRD levels, lower levels of MFC-LSC-MRD were found in clofarabine 

treated patients versus patients without clofarabine in the Intermediate-I risk group 

(ranging from 0.00% to 2.5x10-4%, n=39 vs. 0.00% to 2.09%, n=51 respectively; p=0.014), 

while no significant difference in MFC-LSC-MRD levels were found in the remaining cohort 

(clofarabine versus standard, ranging from 0.00% to 3.6x10-3%, n=84 versus 0.00% to 

8.6x10-3%, n=120 respectively) (Table 1). For MFC-LSC-MRD detection, presence of any 

LSC (<0.00001%15) is associated with worse outcome. In the Intermediate-I group, more 

patients are classified MFC-LSC-MRDpositive after cycle 2 in the standard group compared 

Table 1. MFC-MRD and MFC-LSC-MRD results Intermediate-I patients  

Control Clofarabine

No. of cases evaluated

pControl Clofarabine

Minimal residual disease        
MFC-MRD1 median% (range) 0.042 (0.00-3.51) 0.027 (0.00-3.02) 35 46
MFC-MRD2 median% (range) 0.041 (0.00-11.75) 0.018 (0.00-0.61) 49 44 *

MFC-MRD status        
% MFC-MRD1 positive (n) 31.4 (11) 28.3 (13) 35 46
% MFC-MRD2 positive (n) 28.6 (14) 20.4 (9) 49 44

Leukemic stem cells        
MFC-LSC1 median% (range) 0.00 (0.00-0.09) 0.00 (0.00-0.03) 31 44
MFC-LSC2 median% (range) 0.00 (0.00-2.09) 0.00 (0.00-0.00) 51 39 **

MFC-LSC-MRD status        
% MFC-LSC1 positive (n) 48.4 (15) 31.8 (14) 31 44
% MFC-LSC2 positive (n) 41.4 (21) 20.5 (8) 51 39

MFC; Multiparameter flow cytometry, MRD1/LSC1; after cycle I, MRD2/LSC2; after cycle II.
* P≤0.05, ** P≤0.01
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to the clofarabine treated group (41.2% versus 20.5%, respectively; p=0.043). In 

the remaining cohort, LSC presence was found in 37.5% in the standard arm versus 28.6% 

in the clofarabine treated group (p=0.185; Table S2). Although not significant, within 

the ELN Intermediate-I risk group, MFC-LSC-MRDpositive patients treated with clofarabine 

showed lower CIR than MFC-LSC-MRDpositive patients without clofarabine (Figure 1B, 

p=0.158). Furthermore, clofarabine treated MFC-LSC-MRDpositive patients perform similar 

to MFC-LSC-MRDnegative patients treated without clofarabine (Figure 1B, p=0.117), which 

was not found in the remaining cohort (Figure S1B). 

The relatively small subgroup of patients benefiting from clofarabine made it difficult 

to perform further meaningful analyses such as influence of molecular aberrations (FLT3, 

NPM1), different time points and multivariate analyses. The results of these analyses are 

shown in the supplemental file (Figures S3-S5).  

In summary, this study has revealed the important evidence that both MFC-MRD and 

MFC-LSC-MRD mirror the clinical effect of clofarabine by the differences in MFC-(LSC)-

Figure 1. Cumulative incidence of relapse of MFC-MRD and MFC-LSC-MRD by treatment arm. ELN 
Intermediate-I risk patients are broken down by treatment arm (i.e. standard versus clofarabine 10mg, 
in grey or blue respectively), and presence or absence of (A) MFC-MRD or (B) MFC-LSC-MRD, using 
previously published cutoffs (i.e. ≥0.1% after chemotherapy cycle II is called MFC-MRD positive, 
≥0.0000% after chemotherapy cycle II is called MFC-LSC-MRD positive15). (A) MFC-MRD negative 
patients treated with clofarabine have a lower incidence of relapse than MFC-MRDnegative patients 
in the standard arm. In parallel, MFC-MRDpositive patients with clofarabine have a lower incidence of 
relapse than MFC-MRDpositive patients without clofarabine. (B) Comparable to MFC-MRD, MFC-LSC-
MRD show similar results; MFC-LSC-MRD negative patients treated with clofarabine have a distinct 
lower incidence of relapse than MFC-LSC-MRDnegative patients in the standard arm. In parallel, MFC-
LSC-MRDpositive patients with clofarabine have a lower incidence of relapse than MFC-LSC-MRDpositive 
patients without clofarabine. pLogrank statistics shown when significant. 
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MRD level between treatment arms. However, as treatment with clofarabine is associated 

with enhanced toxicities, the analyses may be hindered by assessment bias, as patients 

going off protocol within the first two cycles of chemotherapy due to toxicity, are not 

sampled for MRD detection. In addition, since among the different prognostic risk groups, 

treatment protocols differ, the effect of allogeneic or autologous stem cell transplantation 

could influence results seen in EFS and OS (see supplement). 

Importantly, the proportion MFC-MRD positive patients is dependent on the chosen 

cut-off and could explain why MFC-MRD positivity between treatment groups did not 

reach significance. Although the current ELN recommended 0.1% cut-off is a robust cut-off 

in clinical trials, lower cut-offs can also render prognostic relevant MFC-MRD positivity18,19. 

In large multi-center data analysis the clinical relevance of multiple cut-offs is currently 

being investigated. 

Despite these caveats, we show that the results of MFC-MRD and MFC-LSC-MRD after 

two cycles of chemotherapy reflect the beneficial clinical outcome of clofarabine within 

the ELN Intermediate-I risk group. In October 2018, the Food and Drug Administration 

issued a draft guidance on the use of MFC-MRD for accelerated approval20. They described 

that one of the requirements for surrogacy should comprise of clinical trials where 

treatment effects on the surrogate endpoint correspond to effects on the clinical outcome. 

We postulate that the difference in median MFC-(LSC)-MRD after treatments can be an 

interesting point to test this prospectively, as in the currently ongoing NCT03549351 trial21.

In conclusion, we describe a positive clinical study in which MFC-(LSC-)MRD after two 

cycles of chemotherapy reflects the effectiveness of clofarabine and the improved clinical 

outcome in the Intermediate-I subgroup of AML patients. The results of this study point 

to a compelling need for further investigation of the use of MFC-MRD as instrument for 

surrogate short term endpoint of effectiveness of new therapies.
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SUPPLEMENTARY DATA

Figure S1. Cumulative incidence of relapse (CIR) of MFC-MRD and MFC-LSC-MRD within remaining 
ELN risk group patients without ELN Intermediate-I group. Remaining ELN risk group patients 
without ELN Intermediate-I group are stratified based on treatment arm (i.e. standard versus 
clofarabine 10mg, in grey or blue respectively), and presence or absence of (A) MFC-MRD or (B) 
MFC-LSC-MRD, using previously published cutoffs (i.e. ≥0.1% after chemotherapy cycle II is called 
MRD positive, ≥0.0000% after chemotherapy cycle II is called LSC positive15). (A) MFC-MRD negative 
patients treated with clofarabine have similar CIR compared to MFC-MRD negative patients treated 
without clofarabine (p=0.826). (B) With MFC-LSC-MRD, no differences in CIR are seen between 
treatment arms of MFC-LSC-MRDpositive  patients and between treatment arms of MFC-LSC-MRDnegative 
patients. pLogrank statistics shown when significant.
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FURTHER SUPPLEMENTARY TEXT/TABLES/FIGURES
Further supplemental data can be found online at http://ars.els-cdn.com/content/image/1-

s2.0-S0006497121006820-mmc1.pdf

Table S2. Complete cohort MFC-MRD and MFC-LSC-MRD 

Control Clofarabine

No. of cases evaluated 

Control Clofarabine p

Minimal residual disease 
MFC-MRD1 median% (range) 0.034 (0.00-15.68) 0.022 (0.00-52.46) 97 94 0.011
MRC-MRD2 median% (range) 0.023 (0.00-53.56) 0.015 (0.00-57.39) 105 93 0.183

MFC-MRD status 
% MFC-MRD1 positive (n) 35.1 (34) 22.3 (21) 97 94 0.052
% MFC-MRD2 positive (n) 23.8 (25) 17.2 (16) 105 93 0.252

Leukemic stem cells 
MFC-LSC1 median% (range) 0.00 (0.00-0.09) 0.00 (0.00-1.15) 106 94 0.360
MFC-LSC2 median% (range) 0.00 (0.00-2.09) 0.00 (0.00-0.00) 120 84 0.180

MFC-LSC-MRD status 
% MFC-LSC1 positive (n) 37.7 (40) 45.7 (43) 106 94 0.251
% MFC-LSC2 positive (n) 37.5 (45) 28.6 (24) 120 84 0.185

MFC; Multiparameter flow cytometry, MRD1/LSC1; after cycle I, MRD2/LSC2; after cycle II.
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Acute myeloid leukemia (AML) is a heterogeneous group of clonal and oligoclonal stem 

cell disorders with variable response to therapy. Despite risk-directed chemotherapy, 

better supportive care and recent developments of novel therapies targeting specific 

genetic lesions overall survival (OS) remains to be improved.1 Current treatment decisions 

in AML are strongly dependent on a selected number of clinically relevant cytogenetic 

and molecular genetic markers at diagnosis.2 Although the majority of patients achieve 

complete hematological remission (CR) under current intensive induction chemotherapy, 

relapse rates remain relatively high.3 A common characteristic of relapsed AML is increased 

chemoresistance.4 Early detection or prevention of AML relapse is an urgent clinical need. 

In this thesis, we have investigated approaches to improve measurable residual disease 

(MRD) as prognostic factor for relapse development after intensive chemotherapy at 

several levels: 1) the role of leukemia stem cells (LSC) both at the level of clinical relevance 

and standardizing the assay, 2) potential improvement of MRD by refining multi-parameter 

flow cytometry MRD assessment and combining MFC with molecular techniques and 

3) establishing an association between MRD level and treatment effectivity in order to 

investigate the use of MRD as surrogate endpoint.

ROLE OF LEUKEMIA STEM CELLS 

The ultimate MRD assay would allow discrimination between cells without relapse initiating 

potential and those that can regrowth to a new leukemia. At the basis of this conceptual 

framework of leukemia initiating cells is the notion that LSC have the same potential for 

self-renewal, multidirectional differentiation, unlimited proliferation, resistance to cell 

death and multidrug resistance as normal hematopoietic stem cells (HSC; detailed in 

chapter 2). As such, for further refinement in AML relapse prediction, incorporation of LSC 

frequency at diagnosis and (perhaps more importantly) in MRD is warranted. 

The characterization of LSC is based on the principle that healthy tissue-derived HSC 

do not express lineage-infidelity antigens, nor overexpress myeloid markers. The antigens 

aberrantly expressed by LSCs are miscellaneous and include, amongst others: CD2, 

CD7, CD11b, CD22, CD33, CD44, CD45RA, CD56, CD123, CD366 (TIM3) and CD371 

(CLEC12A).5–7 The leukemia initiating capacity of immunophenotypically-defined LSC has 

been confirmed by studies demonstrating that AML patient-derived LSC and HSC generate 

leukemic- and multilineage engraftment upon xenotransplantation, respectively.8,9 

Recent studies have correlated high immunophenotypically defined CD34+CD38- LSC 

frequencies at the time of diagnosis with subsequent poor prognosis.10,11 Additionally, 

absence of CD34+CD38- LSCs (in patients where no malignant CD34+ cells are present; 

so-called CD34-negative patients) was associated with a significantly better OS.12 We 

found this relevance of LSC frequency for risk of relapse and poor survival for both adult 

and pediatric patients. Based on these observations, immunophenotypic assessment of 

CD34+CD38- LSC frequencies at diagnosis would be a good additional marker for risk 
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classification at diagnosis. Furthermore, the relevance of LSCs at diagnosis could pave 

the path for new strategies targeting surface markers for eradication of AML LSCs.13 

As is hypothesized based on the stem cell definition, LSC are more therapy resistant 

than leukemic cells without stem cell characteristics, and thus likely contribute to the total 

frequency of MRD cells. We found (chapter 3) that the number of LSC after therapy is 

an independent predictive factor for relapse.11 Moreover, patients with both MFC-MRD 

positivity and LSC-MRD positivity have very poor outcome. It can be suggested that in 

future clinical studies, allogeneic stem cell transplantations should also be considered in 

double positive patients within the good risk group. 

As presence of any CD34+CD38- LSC was associated with worse outcome compared 

to patients without LSC, it is critical that sufficient numbers of cells are acquired. However, 

as the immunophenotypes of LSCs are diverse, and many antigens are needed to fully 

grasp the total LSC load, this is a challenge.8,14 Using an antibody panel with a higher 

number of fluorochromes reduces the number of tubes (and thus cells) needed. Advances 

in the development of new fluorescent dyes, flow cytometers capable of >20-parameter 

measurements and analysis software push research toward high-content MFC applications. 

However, for most medical laboratories, the number of fluorochromes is limited by the flow 

cytometers present. The 8-color LSC-tube (containing 13 different immunophenotypic 

markers) designed by our group7 is currently best fit for this. 

Although the prognostic impact of CD34+CD38- LSC is shown in multiple studies by 

our research group, results need to be validated by others. The development of a dried 

ready-to-use version of the LSC-tube, and accompanying protocols for use and analysis 

(chapter 5) significantly contributed in dissemination to other laboratories. Within the ELN 

research group, the feasibility of LSC testing, and the prognostic impact of LSCs detection 

will now be validated both in adult and pediatric AML. For the latter group of patients, we 

have a longstanding collaboration with the Dutch Childhood Oncology Group (DCOG). 

Further studies on the prognostic value of LSC frequencies in follow-up time points, 

and the combination with MFC-MRD are warranted for this patient group and these are 

currently ongoing.

One of the important features that needs further research is the cut-off level of LSC-MRD. 

In the most recent LSC-MRD research (chapter 3), the cutoff of positivity is determined 

as 0.0000% (0 events measured). In a previous study by our research group, the cut-off 

of 0.0001% (1 LSC per 1,000,000 WBCs) was used.15 While both cut-offs imply the high 

sensitivity of the technique, usage of these cut-offs (especially the 0.0000% cut-off) requires 

a very specific assay; as ‘noise’ (e.g. debris and background expression) could lead to false-

positivity. However, similar to MFC-MRD, true absence of LSCs can never be concluded by 

the applied technique (even when high numbers of cells are acquired, the sample is still 

a very small fraction of all BM of the patient). Conceivably, the utility of the current cut-off 

is currently being further evaluated by our group based on the large amount of data that 

have been gathered over the years. One facet that we are now investigating is the gating 

of CD38- cells. As LSC markers are evaluated on CD34+CD38- cells, correct gating of CD34 
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positivity and CD38 negativity is important. While CD34+ cells can be relatively easily be 

distinguished from CD34- cells using a negative reference population (for example by 

using lymphocytes), no reference population for CD38 expression is known. For now, our 

protocols for LSCs gating include CD38- cells (MFI 102) and CD38dim (MFI 103) cells. For 

practical purposes, the prognostic value of the combination of these CD38- and CD38dim 

fractions (possibly the ‘true’ stem cells and the progenitor cells, respectively) is currently 

investigated. The challenge for this cut-off level of CD38- cells is the proof of their true 

biological LSC characteristics (being leukemia initiating cells), which would require novel 

in vivo engraftment studies in mice.

Identification of LSC with other immunophenotypes than CD34+CD38- (i.e. CD34- 

or CD34+CD38+) is possible using MFC by features of drug efflux (side population) and 

detoxification (Aldehyde dehydrogenase activity) or with molecular techniques (17-gene 

stemness profile).16 For CD34-negative AML patients (around 20% of all AML patients), 

efforts are ongoing to identify cell populations enriched with stem cell properties that 

would enable LSC tracking implemented in the current MFC assays. Our preliminary 

data suggest that the CD34-CD133+ population could play a crucial role in determining 

prognosis within these CD34-negative patients. 

POTENTIAL IMPROVEMENT OF MRD BY REFINING 
(MFC)-MRD ASSESSMENT

Although we show the improvement of standard FCM-MRD by inclusion of LSC, the current 

use of MRD would also benefit from further developments. We investigated some 

approaches to further improve the prognostic value of MRD assessment after the second 

course of chemotherapy by 1) further standardization of the assay and 2) combining 

techniques for MRD assessment. 

1) FURTHER STANDARDIZATION OF CURRENT MFC-MRD ASSAY 
MRD is an independent, post diagnosis, prognostic indicator in AML. In the clinical 

setting, MRD is currently used to refine the apparent hematologic CR status assessed by 

morphology.2,17 Especially MFC-MRD is well established as an independent prognostic 

factor for relapse, RFS and OS, particularly when measured before transplantation.15,18–22 

Measuring MRD at other time points can help to identify a group of patients with poor 

prognosis, such after the first cycle of chemotherapy15,23,24 and after consolidation.15,25,26

The standard strategy to eradicate AML is intensive chemotherapy either in multiple 

cycles or followed by hematopoietic stem cell transplantation, with allogeneic stem cell 

transplantation (alloSCT) having greater anti-leukemic activity compared to autologous 

stem cell transplantation (autoSCT).2,27 Given the potential toxicity, alloSCT would 

preferably be averted in those who do not need it.28,29 Risk classification systems are 

therefore designed to allocate patients to the best suited therapy. Recent studies make 
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use of risk classification systems that allow MRD to guide post induction treatment.30,31 

A few published studies on intensified treatment based on presence of MRD in pediatric 

AML and t(8;21) patientssuggested that this type of MRD-guided therapy may improve 

outcome.32,33 The results of the prospective HOVON132 study, where MRD guides 

treatment in the intermediate risk group (i.e. allocating MRD positive patients to (standard) 

alloSCT and MRD negative patients to (less intense) autoSCT) are eagerly awaited. 

For patients in the poorest risk category, presence of MRD conveys an extremely poor 

outcomes. Persistent MRD positivity in these patients may be therefore be an indication 

to enroll patients in early phase clinical studies or to offer palliative treatment and spare 

patients the potential intense toxicity of alloSCT .

Although the prognostic value of MRD allows to stratify patients accordingly to risk of 

relapse, the ultimate goal is developing MRD assays that can more accurately determine 

risk of relapse in an individual patient, allowing post-remission therapies to be individually 

tailored.34 However, since 30% of MRD negative patients still relapse and 30% of the MRD 

positive patients does not –although remaining treatment could have eradicated the MRD-, 

the predictive value of the MRD status is not yet high enough for the individual patient.35 

There are several aspects of the current MRD assay that can be considered in more detail.

SAMPLE QUALITY AND HEMODILUTION
For adequate MRD measurement, the quality and quantity of the BM samples is crucial. 

However, these may vary greatly and thereby significantly impact the performance 

of the assay. When assessing the BM compartment, the first ‘pull’ provides 

a good representation of its content. As additional volume is pulled from the same spot, 

the likelihood of peripheral blood (PB) contaminating the sample (i.e. hemodilution) 

increases, potentially diluting the BM components.36 Consequently, a sample taken after 

multiple pulls can underrepresent the true amount of disease burden.37 Traditionally, 

the first pull has been reserved for morphology testing. However, it is now recommended 

that the first pull be used for MRD analysis.38,39 In addition to quality of the BM aspirate, 

sampling, transport, sample processing and the time between sampling and measurement 

(especially in a multicenter setting) all influence the quality of the sample. Maintaining 

high quality samples, results in best quality results, and therefore, protocols concerning 

transport of material have recently been formulated.38

A possible alternative for circumventing underestimation of MRD due to hemodilution, 

is defining the balance between normal and tumor (immature) progenitor cells.40 

The denominator in standard MRD calculation is WBC (i.e. MRD= LAIP positive events/

WBC) which does not take into account the composition of the primitive blasts cells. 

Initial research into this so-called primitive marker MRD (PM-MRD= LAIP positive events/

primitive marker cells) revealed important prognostic impact,41 which was retrospectively 

confirmed in chapter 6. Application of high level PM-MRD in MRD-negative patients 

results in better risk classification and in a lower number of false negatives. Additionally, 
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application of PM-MRD aids in standardization of MRD omitting the rather subjective step 

of WBC gating.42 

STANDARDIZATION
Reproducibility remains a major concern with the use of MFC MRD, particularly between 

institutions in clinical trials and/or routine diagnostics. Furthermore, comparison of MFC 

MRD data between laboratories is complex. To a large degree, these issues likely arose 

due to the lack of standardized protocols and the somewhat subjective art of gating 

flow cytometric data.43 To correctly interpret and use MFC MRD results, standardization 

and/or harmonization of MRD measurements are of vital importance. A standardized 

protocol describing the assay should fulfill specific requirements including adequate 

sample processing, instrument settings, marker/panel selection, gating strategies and 

clinically validated cut off points for specific time points for MRD positivity. The use of 

standardized protocols in other hematological malignancies (CLL, multiple myeloma and 

B-ALL), illustrated that the presence of these protocols resulted in great improvement of 

reproducibility.44–48 These data furthermore suggest that standardization of MFC MRD is 

feasible, and it is not the impediments inherent to the technique, rather the lack of devotion 

of the researchers that hinders true standardization.49 For AML MRD, standardization and 

harmonization have been emphasized in recent years.38,40,42,50,51

The future of MFC MRD detection likely entails the use of automated data analysis 

programs. Implementation of these circumvent the variability in operator skills and required 

expert knowledge, but comes with its own challenges, e.g. the need of an extensive 

database of ‘normal’ and regenerating BM at different time points and perhaps also for 

each leukemic associated immunophenotype (LAIP), each fluorochrome combination and 

all different (pre)treatments.52

Besides the better qualification of the assay, there are features of the leukemia cells 

and their BM niche that also influence the MRD results.

CORRECTION FOR BACKGROUND 
Generally, two approaches to assess MFC MRD are employed, with each its own limitations. 

(I) The LAIP-based approach where the LAIP is identified at diagnosis and followed during 

therapy42 and (II) the Different from Normal (DfN) approach50 in which any aberrant pattern of 

cell surface markers compared to normal expression in ‘normal BM’ is designated as being 

residual leukemia. Besides differences, both methods rely on the accurate discrimination 

between leukemic cells and non-leukemic cells. Knowledge of background LAIP expression 

on normal cells is required to avoid false positive results, and most studies therefore use 

a threshold to distinguish MRD positivity from background expression.39 However, different 

LAIPs have variable sensitivity and specificity. For example, the CD34-/CD133+ LAIP had 

a higher than ten-fold lower background compared to the CD34+CD15+ LAIP as shown in 

chapter 5. The use of one cut-off could therefore result in false negatives.53 In our cohort of 
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the HOVON 102, subtraction of nBM background levels did not alter the number of MRD 

positive cases. Nevertheless, whether background expression is best analyzed in normal 

BM or regenerating BM is a topic for future research.53–55 In general, it is accepted to assign 

a patient as MRD positive if residual leukemic cells are detected in the BM above a certain 

cut-off in most studies, or above zero in so-called ‘any-MRD’ studies, but MRD negativity 

is not as clear. The difference between nondetectable and truly negative MRD is often 

debated by sample/measurement quality and sensitivity inherent to the assay. 

CLONAL EVOLUTION: COMBINATION WITH DFN
Since the LAIP-based approach only evaluates the dominant LAIPs detected at diagnosis, 

and does not evaluate the possibility of new LAIPs that arise due to clonal evolution, it 

inherently holds a risk of false negativity.56 Next to that, the LAIP-based approach can only 

be utilized for patients that had a pre-treatment sampling (and thus, difficult for tertiary 

referral centers or reference laboratories). The DfN approach can be viewed as a more 

general approach for the detection of residual disease by comparing the patterns and 

shapes found with patterns and shapes in normal hematopoiesis.50 It is important to realize 

that LAIPs are DfN abnormalities, and that the differences between the approaches are 

likely to disappear when enough events are measured at diagnosis, allowing identification 

of the smaller LAIPs, with sufficient large panels of antibodies.39 Following this, antibody 

panels with higher number of fluorochromes in one flow cytometry tube (e.g. 18-color 

panels) would further enable identification of multiple LAIPs simultaneously, which perhaps 

make the sum of complete MRD. 

In the European LeukemiaNet (ELN) MRD guidelines, both philosophies are combined 

into the LAIP-based DfN approach: assessing all immunophenotypic aberrancies (i.e. 

the dominant LAIPs at diagnosis, LAIPS that arise due to clonal evolution and LAIPs that 

arise due to immunophenotypic shifts after therapy). Several recent studies have been 

using this LAIP-based DfN approach.23,53,57 However, comparisons of the prognostic impact 

of the different approaches is only explorative58, but can be analyzed in the near future in 

the HOVON132 study, where we measured MRD with the LAIP method but also measured 

all possible upcoming LAIPs during therapy. Especially in the light of novel targeted drugs, 

the LAIP-based DfN approach may be essential to gain information about the therapeutic 

efficacy against the dominant clone. 

2) COMBINATION WITH MOLECULAR MRD TECHNIQUES
Molecular MRD techniques, with reverse-transcription quantitative PCR (RT-qPCR) 

of NPM1 as prime example, appeared at the beginning of the current century and 

has rapidly proven its effectiveness in the identification of patients with residual  

leukemia.59–61 The most general accepted molecular method are real-time PCR-based 

approaches, aiming for sensitivities between 10-4 and 10-6. These are only applicable in 

the 40-50% of patients with suitable gene mutations (as NPM1 and core-binding factor 
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translocations).62 Newer molecular detection techniques are digital-droplet PCR63 and 

the promising next-generation sequencing (NGS)64 (Chapter 7). Interestingly, while all 

techniques have their own principles and therefore their own limitations, limited studies 

are published in which multiple methods are applied and compared, although currently, in 

many laboratories MFC and molecular MRD are measured in parallel.65–67

More than half of the patients with cytogenetically normal AML harbor a mutation in 

NPM1, which remains present at relapse.68,69 For these patients, the recommended method 

for MRD assessment is RT-qPCR39, which affords a sensitivity of 1:10-5 to 1:10-6 (100- to 

1000-fold greater than that achieved in FCM-MRD).59,60,70–75 With this recommendation, 

clinical management of NPM1 mutated patients could appear clearly defined. However, 

comparison between MRD detection using NPM1 RT-qPCR and FCM is not extensively 

studied and the predictive value of discordant results between NPM1-MRD and FCM-MRD 

(especially those that are NPM1mutnegative/FCMpositive) is unclear.76,77

The development of flow cytometric methods to detect (mutant, or aberrantly 

cytoplasmic delocalized) NPM1 has gained interest over the last decade.78–82 However, 

implementation of mutant NPM1 specific antibodies in flow cytometry is likely mostly 

interesting for research purposes, but unfeasible in clinical setting. The drawback of 

qPCR is that it can only be used for specific mutations that are only present in about 

40-50% of patients. Therefore, other novel molecular techniques are also currently under 

investigation. The use of NGS in MRD assessment identifying persistent molecular MRD, 

was only recently shown as an independent predictor for survival (chapter 7). As such, 

guidelines regarding the use of NGS-MRD in clinical practice are far from existing, and 

several challenges have to be overcome before it will be routinely used. The sensitivity of 

NGS for MRD is coherent to the correct discrimination between truly mutated nucleotides 

and background ‘noise’. For better sensitivity, methods to improve the error rate, and 

reduction of false positive calls have been developed.83

In our study, only mutations persistent from diagnosis, but not mutations associated 

with clonal hematopoiesis (CHIP) (i.e. DNMT3A, ASXL1 and TET2, collectively termed 

DTA), present with allele frequencies above background signals (i.e. as low as 0.02%) were 

associated with increased relapse risk. A method to accurately discriminate true leukemic 

mutations from (non-leukemic or pre-leukemic) CHIP mutations is currently lacking, but 

will likely contribute to better relapse prediction. Similar to MFC-MRD, debates regarding 

sensitivity and specificity of NGS are ongoing and discussed elsewhere.83 

The complementary and highly predictive value for relapse of tandem targeted 

NGS-MRD and MFC-MRD detection after allogeneic transplantation was shown by Getta 

and colleagues.84 Tandem NGS-MRD and MFC-MRD evaluation (now with a larger set of 

genes and in a substantially larger patient cohort) in CR showed similar complementary 

and predictive values for relapse. The concordance of NGS-MRD and MFC-MRD results 

reached almost 70%. Interestingly, this is similar to multiple myeloma,85,86 where NGS-MRD 

and MFC-MRD are both regarded as appropriate techniques, with the preference based 

on local availability.87 Chapter7 shows that the combination of NGS-MRD and MFC-MRD 
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aids in identification of false-negative MRD results when only one technique was used (41 

patients were NGS-MRDnegative but MFC-MRDpositive and 64 patients were MFC-MRDnegative but 

NGS-MRDpositive with a 4-year relapse rate around 50% in both). However, whether the use 

of both techniques simultaneously should be advised is perhaps a more political/practical 

and economical question, than a biological one. Further understanding of the biology of 

clonal hematopoiesis (after high-dose chemotherapy) and increased sensitivity of the NGS 

assay are needed to resolve the discordant cases and to determine whether or not both 

technologies are required. 

COMBINATION OF TECHNIQUES
The studies presented in chapter 3 and 7 are largely performed on the same patient 

cohort. The combination of NGS-MRD, MFC-MRD and LSC-MRD could thus be explored. 

Preliminary analysis shows that the overlap between the three techniques is 51.9% while 

3.7% were positive for all three techniques simultaneously and of the 216 evaluated 

patients, 96 were negative for all three techniques (44.4%). Combining MRD approaches 

allows detection of MRD positivity in patients otherwise potentially falsely classified 

MRD-negative. While this suggests lower levels of false-negative cases, i.e.MRD-negative 

patients who develop relapse, our data showed that 30.5% of patients NGS-MRD negative, 

MFC-MRD negative and LSC-MRD negative nevertheless relapsed. As all three methods 

described here have their own pitfalls, as discussed previously, adaptation of the cut-off 

level (for MFC-MRD and LSC-MRD), addition of other immunophenotypic (stem) cell 

markers and the implementation of more sensitive sequencing methods (for example for 

NPM1) may lower this percentage. However, in a study by Ivey et al. where NPM1 mutated 

patients were screened after two cycles of chemotherapy for the presence of residual 

NPM1 mutations using a highly sensitive RT-qPCR method, comparable 30 percent 

of false-negative cases were found.70 Perhaps, it will remain an utopia to think we can 

always detect a pending relapse, with many biological and environmental determinants  

still to be investigated. 

BEST OF BOTH WORLDS
Overall, MRD detection is regarded as the most important post-therapeutic factor to 

identify high-risk patients and implementation in the clinic is therefore highly warranted. 

However, with the recent studies comparing the different methods, showing that all of 

these give additive information and are perhaps all needed, selection of the best MRD 

method for new clinical trials could be challenging, or rather be a ‘cost-benefit debate’. 

It may be suggested that in the near future not one MRD method is universally applied 

for all patients. It could be most time-saving, cost-effective and sample-efficient to tailor 

subsets of patients to specific methods based on patients-specific or leukemia-specific 

characteristics. For example, for NPM1 mutated patients real-time PCR is likely the preferred 

method. Similarly, patients without genetic mutations at diagnosis are likely better off 
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with MFC-MRD or LSC-MRD. In the recently finalized HOVON132 trial, results of NPM1 

detection after induction therapy were leading in the clinical decision for post-remission 

treatment. Simultaneously, patients without NPM1 mutation are assessed by MFC-MRD 

for post-remission treatment choice. However, while numbers are limited, presence of 

MFC-MRD in NPM1-MRDnegative NPM1 mutated patients is correlated with higher risk of 

relapse (chapter 3). Hence, selection of one technique based on patient specifics could be 

preferred in terms of costs, time and sample, but perhaps relinquishes in sensitivity.

ADDITIONAL USAGE OF MRD BEYOND RELAPSE 
RISK AFTER INDUCTION

MRD AS PREDICITVE FACTOR FOR THE INDIVIDUAL PATIENT? 
MRD is now established as an important independent prognostic factor identifying 

a subgroup of patients with increased risk for relapse. Although, as a single factor, MRD is 

not a good predictive factor for the individual patient, “prediction is fundamental to therapy 

decisions in AML but the more important question is the extent to which incorporating 

results of MRD-testing improves predictive accuracy” (as stated by Estey and Gale).88 

Several models are being investigated by our group and others89 to identify an algorithm 

that can more accurately predict the relapse risk for the individual patient. For challengers 

of MRD, other arguments include the lack of a standard assay for MRD, the question 

whether MRD truly represents remission status, whether BM sampling is necessary, when 

MRD needs to be assessed and whether one measurement suffices (and whether patients 

would accept repetitive bone marrow aspirations). Furthermore, the costs of a single MRD 

analysis is estimated to be around $350-500 and can only be justified when results are 

used for rational treatment decisions.90 

PERI-TRANSPLANT MRD DETECTION
In addition to the use of MRD for tailored therapy, MRD detection may be useful to 

monitor disease kinetics during therapy or after transplantation using serial assessments 

to detect a pending relapse. 54,91-92 In contrast to a single MRD measurement, sequential 

measurements inform whether the burden of disease is increasing or decreasing over time. 

In pediatric AML, sequential qPCR MRD measurements during standard consolidation 

therapy showed the possibility to identify patients at high risk of relapse at an early 

time point.93 Furthermore, as illustrated in the supplemental data of chapter 8, new 

therapeutics could accelerate disease clearance and thereby influence the optimal time 

point for MRD measurements. Altogether, serial MRD measurements during and after 

therapy may have important prognostic and therapeutic implications and could further aid 

in the understanding of the biology of the disease and relapse. However, repetitive BM 

aspirations are a considerable burden to the patient. Peripheral blood (PB) would then be 

an attractive alternative source for MRD assessment.94 
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Besides obvious advantageous logistic reasons, PB MFC-MRD has shown increased 

specificity, but lower sensitivity, compared to BM MFC-MRD.39 While more studies are 

needed, recent publications support the idea that the lower sensitivity of PB MRD is 

outweighed by higher specificity of PB MRD.93–95 

SURROGATE ENDPOINT FOR NOVEL THERAPIES
Another possible application of MRD is the use as a surrogate endpoint for clinical studies. 

As more promising targeted therapies are emerging, a relatively early endpoint is searched 

for to speed up the development of AML treatments. In contrast to the generally accepted 

outcome measures as EFS and OS, which take years, MRD can be measured as soon as 

the therapy is started, potentially accelerating clinical trial outcomes. To date, no studies 

are published that attest true surrogacy of MRD for AML (although chapter 8 could be 

accepted as a proof-of-principle). However, multiple studies that are currently ongoing 

have MRD as primary endpoint.96 Results of these studies could prove the eligibility of 

MRD as a surrogate endpoint. 

In conclusion, the results described in this thesis illustrate that MRD measurement is of 

crucial importance in the treatment of AML. As the clinical practice is eagerly anticipating 

the use of MRD for clinical decision making, there is an urgent need to further define and 

refine the utility of MRD. The MRD assay should be harmonized, standardized, qualified and 

validated in prospective trials, for the above mentioned clinical uses. Furthermore, while 

there are a number of intriguing possibilities as a result of MRD assessment (i.e. revision of 

risk classification and choice of SCT, selection of MRD-specific targeted therapy), a number 

of key questions must be resolved before MRD reaches its full clinical potential, such as 

the right time point, cut-off level, method for each of the utilities of MRD.
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SUMMARY

Nearly all patients with acute myeloid leukemia (AML) receive intense chemotherapy, 

followed by a consolidation therapy which can be an additional cycle of chemotherapy, 

autologous stem cell transplantation or allogeneic stem cell transplantation. In this order, 

anti-leukemic efficacy increases together with toxicity. 

While, fortunately, most patients achieve complete remission (CR) (leukemia cells 

<5% in bone marrow as determined by microscopy), unfortunately, 40-50% of patients 

experience a relapse. Patients who relapse have a dismal prognosis since the relapse is 

difficult to eradicate. A correct understanding of the risk to relapse is vital for selecting 

the correct therapy intensity. Risk stratification at diagnosis is based on factors such as 

age, white blood cell (WBC) count and genetic (mutations and cytogenetic aberrations) 

characteristics1. This risk assessment at diagnosis does not suffice for an accurate 

estimation of patients that relapse, therefore, more specific and sensitive methods (both 

by flow cytometry and molecular techniques) are widely used to assess possible residual 

disease during and after therapy. When this residual disease (termed measurable residual 

disease or minimal residual disease, MRD) is present above a critical level, patients have 

a higher change to experience a relapse. Chapter 1 provides a general introduction 

regarding AML and its clinical features. Hereafter, the MRD and the different methods to  

measure MRD are introduced. 

In this thesis we measured the frequency of residual leukemia cells based on the aberrant 

expression of cell surface markers (using multiparameter flow cytometry (MFC)) in the bone 

marrow of patients treated with chemotherapy. The MFC-MRD assay itself has been 

improved by our studies by investigating specific cell populations within the residual cells, 

which are important for leukemia progression. This includes besides the progenitor cells 

(fast proliferating cells, which populate the leukemia) also the leukemia stem cells (LSCs), 

which are infrequent undifferentiated cells that can initiate leukemia relapse). In chapter 2 

we provide an overview of several aspects of LSCs in AML and how these can be detected 

by MFC using expression of aberrant membrane surface markers.

Our studies show that a high frequency of CD34+CD38- LSCs at diagnosis is associated 

with poor prognosis of the patient, independent of other risk factors. We have shown this 

for the adult patients (18-65 years) (chapter 3) but also for the younger patient group (<20 

years) (chapter 4). Chapter 3 explored flow cytometric results acquired in the HOVON102 

clinical trial. Using this, we showed that the LSC percentage after therapy (LSC-MRD) 

had prognostic value for outcome. In addition, we evaluated the prognostic impact of 

the combination LSC-MRD, and MFC-MRD. Results suggested that patients with MFC-

MRDpositive/LSC-MRDpositive leukemia, should be considered as poor/very poor risk patients, 

independent of risk category (even for NPM1mutant and NPM1wild type patients) and should 

preferably be treated as such. Chapter 4 shows that approaches detecting stem cells (as 

defined in adult AML patients) can be applied in pediatric and younger AML patients. 
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High frequencies of LSCs similarly associate with poor outcome. Furthermore, absence of 

malignant CD34+ cells correspond with a better prognosis. 

With the demonstration of the importance of MFC-MRD and LSC-MRD detection, 

correct performance and utilization of these assays is of utmost importance. Chapters 

5 and 6 aimed to provide more insights with regards to this aspect. In chapter 5 we 

evaluated the technical and analytical feasibility of a previously designed eight-color 

LSC tube that allows specific and sensitive detection of LSC. We created an elaborate 

protocol describing the set-up of machines, exact usage of the tube and analysis, to aid 

in correct implementation and standardization of the technique. The study was conducted 

in several large research centers in Europe and the United States, which had extensive 

flow cytometry experience, but not with the assessed LSC assay. We showed that limited 

training led to highly concordant results, allowing other centers to independently validate 

the clinical utility of LSC testing in AML. 

Using a mathematical model describing all seemingly important variables, we 

illustrate how MFC-MRD is calculated in chapter 6. In most studies, MRD is calculated as 

the percentage of cells carrying an aberrant immunophenotype of all white blood cells 

measured. Retrospective analysis, using flow cytometric results acquired in the HOVON102 

(chapter 3), illustrated that the prognostic impact originates from the balance between 

AML and normal progenitors, instead of the total leukemic load. With this so-called 

PM-MRD assay, we gained insight in the components of the MRD assay and when PM-MRD 

>10%, the patients have a dismal prognosis even when MRDnegative. We will retrospectively 

explore the value of integrating this PM-MRD in the MRD analysis in the upcoming  

HOVON study cohorts. 

Next-generation sequencing (NGS) is a rapidly improving technology whose 

application to the monitoring of MRD is an active area of research. Chapter 7 shows data 

of this application in measuring MRD in AML patients. Here, we showed that in 430 out 

of the 482 patients (89%) at least one mutation was detected, which made them suitable 

for molecular MRD detection. In 51.4% of the patients, mutations were present during 

complete remission in various frequencies (ranging between 0.02-47%). Correlating 

presence of mutation to outcome parameters revealed that targeted sequencing-based 

detection of molecular MRD during complete remission was associated with an increased 

risk of relapse or death. However, the risk of relapse and/or death was not influenced by 

persistence of specific mutations that are associated with age-related clonal hematopoiesis. 

Furthermore, in a combined MRD analysis of our MFC-MRD data with the molecular MRD 

data on the same samples, we showed that these techniques were highly complementary. 

In chapter 8 we evaluated the use of MFC-MRD and LSC-MRD as measure of 

disease response for evaluating new therapies, improving the efficiency and speed of 

clinical trials and regulatory approval. Within the HOVON102 study, the drug clofarabine 

was added to induction chemotherapy in half of the patients. Within the subgroup of 

patients with the ELN intermediate I risk profile, addition of clofarabine was beneficial 

for outcome. Evaluation of the prospectively produced MFC-MRD and LSC-MRD 
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results revealed lower frequencies in patients with clofarabine compared to patients in 

the standard arm. While patient numbers are limited, and further studies in larger cohorts 

with qualified MRD methods are needed, this study supports the possibility of using  

MRD as surrogate endpoint. 

Based on findings like those presented in this thesis, MRD is currently assessed with 

flow cytometry, LSC flow cytometry or molecular techniques in order to refine accurate 

risk assessment. As a consequence of all techniques having its own principles, they all 

have their own limitations. In chapter 9 we reviewed the current state-of-the art MRD 

techniques and evaluated their prognostic value as single and combined methods in 

patients where all techniques were simultaneously performed. Although combinational 

approaches appear to be of high importance in relapse prediction in AML patients, further 

refinement of the techniques to further reduce the amount of false-negative MRD results 

is of high importance. Furthermore, as MRD assays are essential to support clinicians to 

provide optimal treatment choices for patients, their results and reports should be of 

the best achievable quality. Approaches for refinements of the techniques, the importance 

of correct implementation, and thus standardization of these assay are further discussed 

in this last chapter.
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NEDERLANDSE SAMENVATTING

MEETBARE RESTZIEKTE EN LEUKEMISCHE STAMCELLEN IN 
ACUTE MYELOIDE LEUKEMIE 
In het bloed bevinden zich verschillende soorten cellen met ieder hun eigen functie. 

De verschillende bloedcellen worden gevormd in het beenmerg door het proces dat 

we kennen als hematopoëse. Vanuit zogenoemde hematopoëtische stamcellen (HSC) 

ontstaan nieuwe cellen (prolifereren). Deze nieuwe jonge cellen rijpen vervolgens uit 

tot verschillende cellen met verschillende functies (differentiatie). In gezonde personen 

ontstaat op deze manier een mix van rode bloedcellen (voor het zuurstoftransport), 

bloedplaatjes (nodig voor de bloedstolling) en witte bloedcellen (leukocyten genoemd, 

nodig voor de afweer). De leukocyten zijn onder te verdelen in verschillende klassen: 

de myelocyten en lymfocyten. De myelocyten bestaan uit granulocyten en monocyten, 

die gespecialiseerd zijn in het insluiten en het onschadelijk maken van ziekteverwekkers. 

De lymfocyten bestaan uit B-, T- en NK-cellen. Deze cellen rijpen uit in lymfoïde organen 

(zoals de milt en de lymfeklieren) en vallen cellen die besmet zijn met bacteriën en virussen 

aan om ze uit te schakelen.

Leukemie is een vorm van kanker waarbij het beenmerg te veel witte bloedcellen 

maakt. Bij acute leukemie is er sprake van een snelle woekering en ophoping van onrijpe 

leukocyten (blasten genoemd) in het beenmerg en ontstaan klachten meestal al binnen 

Figuur 1. De bloedcellen ontstaan uit de hematopoïetische stamcel in het beenmerg. 
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enkele weken na de start van het woekeren van de blasten. Een tekort aan rode bloedcellen 

lijdt tot bloedarmoede, waarbij een patiënt last kan krijgen van vermoeidheid en bleekheid. 

Door een tekort aan bloedplaatjes bloeden wondjes sneller en langer waarbij patiënten 

blauwe plekken of bloedend tandvlees kan krijgen. Door een tekort aan normale gezonde 

witte bloedcellen ontstaat er een groter risico op infecties. 

Dit proefschrift beschrijft onderzoek uitgevoerd in patiënten met acute myeloïde 

leukemie (AML). Iedereen kan AML krijgen, maar treft vooral ouderen. In Nederland wordt 

bij ongeveer 600 volwassenen per jaar de ziekte vastgesteld, tegenover 25 kinderen. 

Patiënten met AML worden behandeld met intensieve chemotherapie om snel de grote 

hoeveelheid aan leukemische cellen te doden. Vervolgens krijgen de meesten patiënten 

een vervolgtherapie (consolidatietherapie) welke kan bestaan uit wederom chemotherapie, 

maar ook uit autologe of allogene stamceltransplantatie. In deze volgorde neemt niet 

alleen de effectiviteit van de behandeling toe, maar ook de toxiciteit. 

Na twee kuren chemotherapie wordt onderzocht hoe goed deze behandeling 

heeft gewerkt. De behandeld arts (de hematoloog) zal een beenmergpunctie nemen, 

om de cellen te laten onderzoeken onder de microscoop. Als de meeste leukemische 

cellen weg zijn (<5% blasten in het beenmerg) is de therapie succesvol geweest, en 

is de patiënt in complete remissie (CR). Het lijkt dan dat alsof de ziekte is verdwenen. 

Hoewel de meeste patiënten wel in CR komen, keert in vele gevallen de ziekte terug 

(recidief). Deze is moeilijker te behandelen. Afstemming van de consolidatietherapie op 

het risico dat een patiënt loopt op een recidief, vindt al jaren plaats op basis van bepaalde 

risicofactoren vastgesteld bij diagnose, zoals leeftijd, maar ook genetische factoren. Dit is 

echter niet afdoende om een goede inschatting te maken van het risico op een recidief. 

Daarom wordt tegenwoordig tijdens en na behandeling vastgesteld of de ziekte compleet 

weg is. De aanwezigheid van zogeheten minimale (of meetbare) restziekte (aangeduid 

als MRD, measurable residual disease) is geassocieerd met een groter risico op het  

ontwikkelen van een recidief.

De leukemiecellen in het beenmerg zijn onder andere te monitoren met behulp 

van microscopie en flow cytometrie. In dit proefschrift wordt vooral de flow cytometrie 

bestudeerd, waarbij wordt gekeken naar de aan- of afwezigheid van eiwitten op de het 

celoppervlak. Ieder type bloed- en beenmergcel heeft een unieke combinatie van eiwitten 

op zijn oppervlak, die zichtbaar gemaakt kunnen worden met antistoffen met daaraan een 

fluorescente marker (een soort lichtgevend vlaggetje). Elke antistof kan binden aan één 

specifiek eiwit. Het mengsel van cellen en de daaraan gebonden antistoffen worden door 

een machine gespoeld (de flowcytometer) waarin de fluorescente markers per enkele cel 

zichtbaar worden gemaakt door detectie van laserlicht. 

Door de profielen van de eiwitten die tot expressie komen in kaart te brengen, kan 

onderscheid gemaakt worden tussen verschillenden typen cellen welke aanwezig zijn in 

het beenmerg of bloed. Ongeveer 90% van de AML-patiënten heeft leukemische cellen 

met een afwijkend patroon van oppervlakte eiwitten. De combinatie van eiwitten op 

leukemiecellen vormen dus een unieke ‘barcode’ waardoor ze zich onderscheiden van 
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normale cellen. Deze ‘barcode’ noemen we een ‘leukemie geassocieerd immunofenotype’ 

(in het Engels: leukemia associated immunophenotype, afgekort tot LAIP). Door deze 

LAIPs op de leukemiecellen vast te stellen bij diagnose, zijn we in staat om heel specifiek 

op zoek te gaan naar aanwezigheid van leukemiecellen in beenmerg na chemotherapie. 

Middels flowcytometrie kunnen we de aanwezigheid van restziekte onderzoeken in 

patiënten die microscopisch in complete remissie zijn. Flowcytometrie kan 1 leukemische 

cel onderscheiden binnen 100.000-1.000.000 normale cellen terwijl dat voor microscopie 

maar 1 op de 100 is.

Door een specifieke combinatie van antistoffen te gebruiken kan met flowcytometrie 

ook onderscheid worden gemaakt tussen normale hematopoietische voorloper cellen 

(stamcellen; HSC) en leukemische stamcellen (LSC). Omdat deze LSC over het algemeen 

weinig celdelingen maken en verankerd zitten in hun zogenaamde stamcelniche, zijn 

ze vaak ongevoelig voor chemotherapie. Net als HSCs, kunnen LSCs vernieuwen en 

differentiëren. Ze zouden daarom een belangrijke rol kunnen spelen in het ontstaan van, 

en eveneens het terugkeren van, de ziekte. Patiënten waar na chemotherapie nog LSC 

worden gevonden, hebben een hogere kans op het ontwikkelen van een recidief. 

ONDERZOEK

Van patiënten met ogenschijnlijk succesvolle chemotherapie, bleek dat degenen, waarbij 

nog restziekte aantoonbaar was, een hoger risico hadden op het terugkrijgen van de ziekte, 

dan patiënten waar geen MRD kon worden aangetoond middels flowcytometrie. Patiënten 

waarbij van alle gemeten witte bloedcellen, nog 0.1% de LAIP bevat zoals bij diagnose, 

noemen we MRD-positief. Dit proefschrift heeft onderzoek gedaan hoe de meting van 

MRD, en de identificatie van LSC verbeterd en gestandaardiseerd kan worden. We hebben 

DIAGNOSIS MEASURABLE RESIDUAL DISEASE RELAPSE

HEMATOPOIETIC 
STEM CELL

LEUKEMIC
STEM CELL

LEUKEMIC 
PROGENITOR

HEALTHY
STEM CELL

Figuur 2. Diagnose, restziekte en recidief en de rol van leukemische stamcellen hierin. Ten tijde 
van de diagnose zit het beenmerg van de patiënt bomvol met leukemische cellen (oranje), normale 
hematopoietische stamcellen (HSC; blauw) en leukemische stamcellen (LSC; rood). Gelukkig komen 
de meeste patiënten in complete remissie na behandeling met chemotherapie. In een deel van de 
patiënten blijft restziekte achter (welke niet met de miscroscoop kan worden herkend). Omdat in deze 
minimale restziekte (MRD) ook nog stamcellen aanwezig zijn, kan de ziekte opnieuw uitgroeien tot 
een recidief. Overgenomen van Canales et al.2 
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onderzocht hoe de resultaten van deze metingen de arts kunnen helpen om de juiste 

risicoschatting te hebben voor het ontwikkelen van een recidief en een onderbouwde 

keuze te maken tussen de verschillende opties voor de consolidatietherapie. De afweging 

is dat de behandeling zwaar genoeg moet zijn zodat de resterende leukemie goed 

aangevallen wordt, maar met zo min mogelijk toxiciteit (en een zo laag mogelijke kans om 

te overlijden aan de therapie zelf). 

RESULTATEN

In hoofdstuk 1 wordt een overzicht gegeven van de klinische kenmerken en de behandeling 

van AML met daarbij de gebruikte risicogroep indeling met een gunstig, gemiddeld, 

slecht of zeer slecht risicoprofiel op basis van moleculaire en cytogenetische afwijkingen, 

het aantal witte bloedcellen bij diagnose en de therapierespons. Hoewel er een duidelijk 

verband is met de prognose, kunnen ook patiënten uit de groep met een gunstig risico 

een recidief krijgen en overlijden. Het belang van het aantonen van MRD, en LSC, en 

de daarvoor beschikbare technieken wordt besproken. Hoofdstuk 2 geeft verder uitleg 

over de LSC en beschrijft hun rol in AML. 

Hoofdstuk 3 beschrijft de resultaten van de prospectieve HOVON/SAKK 102 studie. Met 

behulp van flowcytometrie is de frequentie van LSC en MRD bij 242 volwassen patiënten 

in morfologisch CR na chemotherapie bepaald. MRD-negatieve patiënten (<0.1% LAIP 

positieve cellen) ontwikkelden minder vaak recidieven en hadden een betere overleving 

dan MRD-positieve patiënten. LSC-negatieve patiënten hadden een beter verloop van 

de ziekte dan LSC-positieve patiënten. Ook wanneer rekening wordt gehouden met andere 

risicofactoren voor het ontwikkelen van een recidief (zoals leeftijd en de snelheid van 

het succes van de chemotherapie) blijkt het meten van deze LSC na chemotherapie een 

belangrijke meerwaarde voor het correct voorspellen van de kans op het ontwikkelen van 

een recidief en de kans op overleving in AML-patiënten. Opvallend resultaat was de zeer 

slechte prognose van patiënten die zowel MRD als LSC positief waren, ongeacht de vooraf 

bepaalde risicogroep. Een belangrijke toevoeging op de kennis over LSC is beschreven 

in hoofdstuk 4. Hier laten we zien dat dezelfde LSC-meting kan worden gebruikt op het 

beenmerg van kinderen met AML. Van de in totaal 86 onderzochte patiënten (≤20 jaar) kon 

in 80 beenmergen LSC worden onderzocht.

Omdat de aanwezigheid van MRD en leukemische stamcellen een belangrijke 

factor zijn voor het voorspellen van de recidief- en overlevingskans van patiënten, 

is het waarschijnlijk dat in de nabije toekomst de uitkomsten van deze metingen 

indicatief zijn voor de keuze van de consolidatietherapie. Het is hierdoor van belang 

dat de implementatie van de flowcytometrische technieken gestandaardiseerd gebeurt. 

De meting van LSC is tijdrovend en bewerkelijk. Dat komt ten eerste doordat LSC in lage 

hoeveelheden aanwezig zijn in het beenmerg, en er dus veel beenmergcellen moeten 

worden gemeten voor een betrouwbare uitslag. Ten tweede is niet elke LSC hetzelfde. 



NEDERLANDSE SAMENVATTING

214

10

Hoewel we ons onderzoek focussen op CD34+CD38- zijn er verscheidende antistoffen 

nodig gebleken om in veel patiënten LSC aan te kunnen tonen. In eerder uitgevoerd 

onderzoek zijn 13 noodzakelijke antistoffen gerangschikt in één mix (‘antistofpanel’). In 

hoofdstuk 5 beschrijven we hoe deze mix, met bijhorende protocollen, is geïmplementeerd 

in verschillende grote leukemie-onderzoekslaboratoria in Europa en de Verenigde Staten. 

De verschillende centra, met ervaring in flowcytometrie voor AML, maar onbekend met 

stamcelmetingen, waren na beperkte training in staat vergelijkbare resultaten te genereren 

in tien opgestuurde beenmergmonsters. Deze centra kunnen nu in hun eigen klinische 

studies de prognostische waarde van LSC-metingen (zoals in hoofdstuk 3) valideren. 

In hoofdstuk 6 hebben we de flowcytometrie methode verbeterd door celpopulaties 

te bestuderen die belangrijk zijn voor de progressie van de leukemie. In de huidige 

MRD-metingen worden alle witte bloedcellen geteld. Wanneer meer dan 0.1% hiervan 

de leukemische ‘barcode’ (LAIP) bevat, worden patiënten geclassificeerd als MRD-

positief. Omdat er, door allerlei niet-biologische redenen, variatie kan zitten in het totale 

aantal witte bloedcellen is geanalyseerd of de balans tussen normale jonge cellen en 

kwaadaardige jonge cellen, een betere voorspeller is van het risico op het ontwikkelen van 

een recidief en de overlevingskans. Door het mathematisch uitschrijven van de huidige 

MRD-rekenmethode is het nut van de verschillende factoren getest. We laten zien dat 

deze manier van berekenen ook patiënten identificeert met hoge kans op een recidief en 

mogelijk een goede toevoeging is voor de huidige MRD. 

Het proces van hematopoëse wordt nauwgezet gecontroleerd. Toch kunnen er fouten 

optreden. Tijdens de uitrijping van stamcellen naar meer gedifferentieerde bloedcellen 

kunnen verschillende genetische fouten (mutaties) in het DNA ontstaan. De meeste 

mutaties bevinden zich uitsluitend in leukemische cellen. In hoofdstuk 7 wordt beschreven 

hoe één van de recentste technieken (next-generation sequencing) kan worden gebruikt 

om deze mutaties te monitoren en om restziekte aan te tonen. In 482 patiënten zijn 

54 verschillende mutaties gemeten en in 430 patiënten zijn mutaties gevonden. Na 

chemotherapie is gekeken of deze mutatie nog terug te vinden is. Wanneer dit het geval is, 

is het aannemelijk dat er nog leukemische cellen (MRD) aanwezig zijn. Met deze methode 

kon in 51.4% van de patiënten restziekte worden aangetoond. Patiënten met aanwezigheid 

van deze zogeheten moleculaire MRD bleken een significant grotere kans te hebben op 

het ontwikkelen van een recidief, en overlijden, in vergelijking met patiënten met geen 

moleculaire MRD. In een gecombineerde MRD-analyse van flowcytometrie gegevens met 

de moleculaire MRD-gegevens, laat hoofdstuk 7 zien dat beide benaderingen relevante 

gegevens opleveren waarbij de resultaten niet altijd overeenkomen. De twee technieken 

lijken juist eerder aanvullend op elkaar te zijn en met name patiënten die MRDpositief zijn 

met beide technieken, hebben een zeer slechte prognose. 

In hoofdstuk 8 laten we zien hoe de percentages van LSC en MRD na chemotherapie 

met een experimenteel middel lager zijn dan de percentages LSC en MRD in patiënten 

met de standaard chemotherapie. De patiënten die behandeld werden met de nieuwe 

chemotherapie hadden een betere overleving dan patiënten zonder deze toevoeging. 
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Hoewel de patiëntengroep klein is, is deze observatie de eerste die suggereert dat het 

meten van de MRD en LSC na therapie de effectiviteit van de therapie weerspiegelt.

Omdat er nu meerdere technieken in staat blijken, patiënten met een hogere kans 

op recidief of overlijden te identificeren, bediscussiëren we in hoofdstuk 9 de voor- en 

nadelen van deze verschillende technieken, hoe ze mogelijk elkaar kunnen ondersteunen 

voor een betere en completere identificatie van slechtere patiënten, en hoe iedere techniek 

zijn eigen verbeterpunten kent. Tot slot sluit dit hoofdstuk af met een samenvatting en 

de verwachtingen over de rol van de detectie van LSC en MRD voor de behandeling van 

toekomstige AML-patiënten
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