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Abstract. Depression affects an estimated 300 million people around
the globe. Early detection of depression and associated mental health
problems constitutes one of the best prevention methods when trying to
reduce the disease’s incidence. Information collected by tracking smart-
phone use behaviour and using ecological momentary assessments (EMA)
can be used together with machine learning techniques to identify pat-
terns indicative of depression and predict its appearance, contributing
in this way to its early detection. However many of these techniques fail
to identify the importance and relationships between the factors used
to reach their prediction outcome. In this paper we propose the use of
Bayesian networks (BN) as a tool to analyse and model data collected
using EMA and smartphone measured behaviours. We compare the per-
formance of BN against results obtained using support vector regression
and random forest. The comparison is done in terms of efficacy, efficiency,
and insight. Results show that no significant difference in efficacy was
found between the models. However, BN presented clear advantages in
terms of efficiency and insight given its probability factorization, graph-
ical representation and ability to infer under uncertainty.

Keywords: Bayesian networks - Modelling *+ Ecological momentary
assessments - Interpretability

1 Introduction

Depression and other associated mental health disorders can have disturbing
effects on every life aspect of people suffering from it. According to the world
health organization an estimated 300 million people were suffering from depres-
sion in 2015. It is also the largest contributor to global disability. Prevention
and early recognition can reduce the incidence of depression and mitigate the
negative impacts associated with this disorder.

Several studies have linked the influence of smartphones in the development
and intensity of depression and anxiety symptoms [8]. However, they can also
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work as a tool for early recognition of depressive indicators. One possible app-
roach is through the use of ecological momentary assessments (EMA) to help
evaluate the current mental state of the user. EMA methods allow the collection
of psychological phenomena in real-time and within a subject’s natural environ-
ment to avoid retrospective biases. One common data collection method is self-
assessment questions through the user’s mobile phone. Another less obstructive
approach is making use of software monitoring or embedded smartphone sen-
sors to follow the user’s activities and behaviors. The identification of certain
patterns could lead to the early detection of depressive symptoms.

Bayesian networks (BN) is a probabilistic graphical model that represents the
conditional dependencies between a set of variables. They are especially useful
when dealing with restricted amounts of data and in aiding human decision mak-
ing. According to a recent review of BN use in healthcare [14], its implementation
in psychological and psychiatric disorders make up the fourth-largest group of
applications. However, this number still lags when considering other machine
learning approaches and more work still needs to be done to bring more atten-
tion to this modelling method. Some works focusing on the implementation of
BN in the field of depression include [15], where possible causal relationships
between obsessive-compulsive disorder and depression were disclosed. In [6] an
ontology model together with BN is used to infer the probability of becoming
depressed. Other works have also used smartphone sensing to monitor and study
depression and similar mental health disorders [1,9,21]. Different machine learn-
ing methods have been implemented for mood prediction. In [10] an autoencoder
is used to fill missing data and provide a robust mood prediction. Deep learning
is also implemented in [20] to classify mood readings deviating from common
relaxed characteristics. In [7] random forest is used for mood prediction using
digital log data. L2-regression and support vector machines are used to predict
medical regression using PHQ-9 data in [9)].

In a background study [4] different machine learning techniques were tested
on EMA to predict the mood of users. Their focus was on predicting the current
mood of individual participants based on their smartphone measurements. They
concluded that machine learning techniques support vector regression (SVR) and
random forest (RF), which incorporate all data about a participant, performed
better. However, they stated that more work should focus on finding the most
relevant attributes influencing the short-term mood of the participants.

The aim of this work is to expand on the findings in [4] and implement BN
as a quick to perform and easy to interpret model to predict the current mood
of the user. Given the intrinsic properties of BN new information about the
attributes that most influence the mood and their conditional dependencies can
be gained. This information can be presented to users for them to have a better
understanding of their patterns, be used by medical professionals to provide
better insight into personalized and general patterns and behaviors that can
influence mood, or, be used as a base to design more comprehensive experiments
that allow discovering possible causal relationships between variables. In short,
the present study seeks to answer the following questions:
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RQ-1 How would BN compare to SVR and RF in terms of efficiency, efficacy,
and insight when modelling each participant individually?

RQ-2 How would BN compare to SVR and RF in terms of efficiency, efficacy,
and insight when generating a general model for all participants?

The paper is structured in the subsequent manner. Section2 explains the
data available for the model building. In Sect. 3 the different methods used to
model the data are presented. Experiments are conducted on Sect.4 and their
results are discussed on Sect.5. Final thoughts and future work are given in
Sect. 6.

2 Data

The data set presented here was first described in [2] and used in [4]. The data
originates from a pilot study where 27 university students self-monitored their
mood for a time frame of 6 weeks. During this time each participant would be
prompted by a cellphone application to input their current mood on a scale
from 1 to 10, 10 being the best, five times a day. Additional to logging the mood
self-assessment information, the mobile application also recorded other different
EMA in the background. Information about the duration and frequency of calls,
SMS, screen on/off events, applications used, number of images taken with the
camera, and activity were recorded. A total of 55 parameters make up the initial
data set. An overview of all variables is presented in Table 1.

Table 1. Mood prediction data set. The attributes names correspond to one or more
attributes collecting similar information. The number of variables in each group is given
in n_Variables.

Attribute name Explanation n_Variables | Range
1d Participant’s identification code 1 [1-27]
mood (Target) Mood scored by the user 1 [1-10]
callclce - callche Number of calls to top 5 contacts 5 [0-1]
callcld - callebd | Duration of calls to top 5 contacts 5 [0-1]
smsclc - smsbc Number of SMS to top 5 contacts 5 [0-1]
accelerometer.high | Percentage of high activity time 1 [0-1]
screen.duration Standardized total screen-on events 1 [-3,3]
screen.n Standardized frequency screen-on event 1 [-3,3]
app.alc - app.abc | Top 5 Apps usage frequency 5 [0-1]
app-ald - app.abd | Top 5 Apps usage duration 5 [0-1]
appCat.n Apps use frequency 11 [0-1]
appCat.sum Apps usage duration 11 [0-1]
image.n Number of images taken 1 [0-1]
mood.l1 Standardized mood of yesterday 1 [-3-3]
mood.12 Standardized mood of day before yesterday 1 [-3-3]
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The target variable mood is a daily average. Only days with at least one
rating of mood are included in the data set. As a result, participants have a dif-
ferent number of effective samples going from 26 up to 40. Variables related to
calls, SMS, images taken, and Apps duration and frequency of use were summa-
rized daily and normalized within participants. The variable accelerometer.high
represents the percentage of time during the day in which the participant’s
activity surpassed a threshold of 10 m/sz. Lastly, variables mood.l1, mood.12,
screen.duration and screen.n are transformed to the standard normal distribu-
tion. That is, 99.97% of their values fall between —3 and 3. For more in-depth
information about the different variables please refer to [2].

As an additional preprocessing step, variables with near zero variance were
removed from the data set. Variables for which the ratio between the frequency
of its most common value to its second most common value was less than 15
were removed.

In the end, the data set used to build the models presented in the following
sections contains a total of 24 predictors, excluding target and id variables, and
595 observations across all participants are available.

3 Methods

3.1 Bayesian Networks

BN [12,16] are probabilistic models based on directed acyclic graphs (DAG). A
DAG structure is given by G = (V, A) where V is the node and A is the arc set.
Nodes represent the random variables of interest V = { X7, X», ..., X;, }, and arcs
represent informational or causal dependencies among the variables. They are
quantified as conditional probabilities for each node given its parent nodes. The
DAG defines a factorization of the global probability distribution of V into local
probability distributions, one for each node. The local distribution for a random
variable P(X;) is given as the conditional distribution of X; and its parents ITx,
as P(X;|ITx,). In other words, the local distribution of a node is independent of
other nodes given its parents. Following the same method, the global probability
distribution of the network defined by G is

n

P(X1,... X,) = [[ P(XilIIx,) (1)

where n is the number of nodes. Any probability of interest can be computed
from this joint probability.

In order to learn the BN model from the data two steps are required: structure
learning and parameter learning. Structure learning entails finding the DAG
encoding the dependence structure of the nodes given the data, P(G|D), where
D is the data. This can be guided by expert knowledge if available. In parameter
learning, the parameters ©, that define the local distributions for each node are
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estimated. As already mentioned, these distributions are independent and as
such the © can be computed as

P(©|6,D) = | P(eililx,, D) (2)

=1

Three main approaches for structure learning are possible: constraint-based,
score-based, and hybrid [19].

Constraint-based approaches implement conditional independence tests, such
as Fischer’s Z test, to discover the dependence structure of the data. In score-
based approaches, general-purpose optimization techniques like hill-climbing or
Tabu search are used to generate candidate DAGs. Each candidate receives a
score reflecting its goodness-of-fit which the optimization algorithm tries to max-
imize. Finally, hybrid algorithms combine both approaches sequentially by first
selecting a network skeleton using constraint-based algorithms and then maxi-
mizing its score.

Finally, assumptions need to be done about the distribution followed by X.
In general, if the data set contains continuous parameters it is assumed that
X; follows a multivariate normal distribution and that the relationship with its
parents is linear. These networks are known as Gaussian BNs and are the type
used in this work.

For the implementation of BN we used the bnlearn R package [18]. The net-
work structure is learned via the score-based hill-climbing search by maximizing
the Bayesian information criterion (BIC).

3.2 Support Vector Regression

Support vector regression (SVR) [3] is a generalization of the well known sup-
port vector machines (SVM) for classification. In the classification case SVM
finds the optimal hyperplane separating different categories. In the general case
SVR introduces an e-insensitive region, called e-tube. The regression is then
formulated as an optimization problem where a convex e-insensitive loss func-
tion needs to be minimized to find the flattest tube that contains most of the
training data samples. The optimization problem is solved using numerical opti-
mization algorithms. For non-linear functions, the data can be mapped into a
higher dimensional space using a kernel function.

To follow the implementation in [4], we implemented SVR on the kernlab R
package [11]. The SVR was defined as an epsilon regression with epsilon and the
cost of constraint violation set to 0.5. The radial kernel was used with hyperpa-
rameters values calculated internally by the included heuristic sigest.

3.3 Random Forest

Random Forest (RF) [5] is a well-known type of non-linear multiple regression.
It is an ensemble method that groups several weak learners (decision trees) and
combines them to generate a strong learner (a forest). For each decision tree, an
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input is split into smaller subsets until it no longer brings an improvement to the
model response. Another quality of RF is their computation of relative variable
importance by measuring the mean decrease in mean square error (MSE) that
each parameter generates.

Following the implementation in [4], the number of trees for our models is
set to 500 and the number of variables sampled at the splits is set internally
by the model. The random forest model is implemented using the R package
randomForest [13].

4 Experiments

Two types of experiments are carried out: in the first experimental case each
user’s data is modeled separately and results will apply only to the specific user.
For the second experiment type, the data of all users is combined to build a
general model. This will allow examining whether for this data set it is possible
to use knowledge of other individuals to improve the prediction of mood. The
results of the different models on both experiments are compared in terms of
efficiency, efficacy, and insight.

The efficacy of the models is evaluated in terms of MSE and stability.
The average MSE after 10 cross-validations runs is taken as the final MSE of
the model. To determine whether a significant difference between the different
model’s MSE is present the Kruskal-Wallis rank-sum test is used. If the test is
positive, a post-hoc test according to Conover [17], for pairwise multiple compar-
isons, checks for differences in each algorithm pair. The comparisons are further
used to rank the algorithms from 1 (best) to 3. The second efficacy measure
corresponds to the stability of the model. To control no large changes occur in
the prediction given slight changes in the input data, we define stability as the
difference between the minimum and maximum result in the model across the
10 cross-validation runs.

The efficiency of the models is given as the wall clock time in seconds required
to build the models on one machine.

Lastly, the insight is understood as the model interpretability. We define
interpretability as the informativeness and intelligibility of the model. A model is
informative when it allows to explore the data and provide assistance to a human
decision maker. Intelligibility is defined as how intuitive the understanding of the
model is.

4.1 Individual Models

The first round of experiments is focused on predicting the current mood using
only the data available for each of the participants. On the one hand, this ensures
a completely personalized analysis and acknowledges the differences between
each user, but on the other hand, this suffers from a lack of sufficient data
samples that some participants presented.
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The model validation was done through 10 fold cross-validation. Each par-
ticipant’s data was partitioned into training and testing sets with ratio 85/15.
The wall clock time in seconds required by each algorithm to finish all 10 cross-
validation runs across all 27 participants is taken. Table2 presents the results
obtained for MSE, time, stability, and rank for the case of individual models. It
is clear that all models present the same level of performance, indicated by them
all obtaining the same best rank by the post-hoc test. Their only significant
difference is the time required to build the model.

Table 2. Individual model results. MSE corresponds to the average across the 10 cross-
validation runs and 27 participants. The time in seconds is measured as the total time
taken for the 10 repetitions of the 27 models. The rank is assigned after following a
post-hoc test according to Conover [17] and rated from 1 (best) to 3.

SVM BN |RF
MSE 0.41 |0.47{0.39
Stability | 1.00 |0.87|0.81
Time 30 9 13
Rank 1 1 1

To give a qualitative measure of interpretability the models should be exam-
ined individually. As an illustration example, we will use the model for the
participant with id “AS14.0”.

Neither SVR or RF offer an understandable visual depiction of their model
structure. The higher dimensionality kernel representation is prohibiting for the
case of SVR and the high number of trees in RF is restrictive for the complete
representation of the model. In the case of BN the visual representation of the
model is more straightforward thanks to its DAG structure.

Figure 1 shows the network learned from user “AS14.01”. The arrows’ direc-
tion indicate the conditional dependencies of the data. For this specific model,
mood is conditionally dependent of it parents app.a5c and screen.n such that
P(mood) = P(mood|app.abe, screen.n). The gray shaded nodes depict the
Markov blanket of mood, or in other words, the subset of variables that have
all the information required to compute the probability of the variable of inter-
est according to the joint probability factorization explained in the section above.
Also of interest is the arc strength which gives a measure of confidence for each
arc. Strength is measured as the decrease in the network score that would be
caused by the arcs removals. If it is of interest the network could be reduced using
this information. The arc’s thickness in Fig.1 represents the arc’s strength, in
this case, thicker arcs have a higher confidence level.

A similar functionality to the arcs’ strength is given by RF measure of impor-
tance. Here the decrease of accuracy, as measured by the MSE, when a variable is
removed from the model is taken as the importance of the variable. The param-
eters importance according to the random forest model of user “AS14.01” is
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Qe Grep—>d
‘appCat.unknown.n

ZppCat builtinn

appCat.weather.n @ /
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Fig. 1. Learned Bayesian network for user id “AS14.01”. Arrows represent the con-
ditional probability dependencies of each node. The arcs thickness corresponds to the
arc’s importance in the network according to their BIC score. The target node mood
and the nodes conforming its Markov blanket are gray shaded. In this model it can be
seen that screen.n influences the value of mood while sms.c2c has no relationship with
it.

shown in Fig. 2. It is interesting to note that parameters with higher importance
are not all included in the Markov blanket of the BN model.

As a final characteristic of BN that largely impact their interpretability is
their ability of inference under uncertainty. It is possible to investigate the effects
of new evidence using the information encoded in the BN and compute the
maximum posterior density, or simply put, the probability of a given combination
of events on a node. If we are interested in finding the probability that for user
“AS14.01” a mood higher than 6 happens if the screen.duration value is higher
than 2 (higher than the mean) and the app.a5c is lower than 0.03 (lower than
the mean) then the probability of mood will be P(mood > 6|screen.duration >
2Uapp.abe < 0.03) = 0.96. This probability decreases if we consider a lower value
of screen.duration P(mood > 6|screen.duration < 2 U app.abc < 0.03) = 0.9.
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Fig. 2. Random forest importance measure for user id “AS14.01”. The importance is
measured as the decrease of accuracy (MSE) in out of bag samples when the variable
is excluded from the model.

This ability of 'what if” queries greatly increase the amount of information that
can be obtained from the model

To illustrate the variability between the networks obtained from different
participants, we present the learned Bayesian network for user “AS14.31” in
Fig. 3. Markov blanket and arc strength are visualized as previously explained.
We can see that variables part of the Markov blanket for user “AS14.017, as is
the case with call.c5c, are considered here conditional independent. Predicted
values for these variables are taken from their assumed prior distributions.

4.2 General Model

In the case that behaviors between participants do not differ considerably, it
should be possible to combine all the information the data can give and use it
to predict mood.
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Fig. 3. Learned Bayesian network for user id “AS14.31”. Arrows represent the condi-
tional probability dependencies of each node. The arcs thickness corresponds to the arc’s
importance in the network according to their BIC score. The target node mood and the
nodes conforming its Markov blanket are gray shaded. In this model it can be seen that
app.ald influences the value of mood while call.c5c has no relationship with it.

The same procedure as for the individual models was followed to build the
general model. The data is partitioned into test and training sets, and the model
was validated using 10 cross-validation runs.

As an initial approach, the models were built omitting any personal informa-
tion given here by the id parameter. Results indicate that despite counting with
more data samples no reasonably conditional dependence was established for the
mood parameter. A look into the performance of all three models indicates that
no improvement was seen in the MSE.

The model was build again including the id parameter. In this case, the
model is able to identify conditional dependencies for mood. Results for this
general model can be seen in Table 3. Also in this case the models do not present
any improvement in performance and no significant difference between them.
However, the time saving achieved by BN is notable.
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Table 3. Results for the general model. MSE corresponds to the average across the
10 cross-validation runs. The time in seconds is measured as the total time taken for
the 10 repetitions. The rank is assigned after following a post-hoc test according to
Conover [17] and rated from 1 (best) to 3.

SVM BN |RF
MSE 0.45 0.440.41
Stability | 0.41 | 0.34 | 0.38
Time 22 2 25
Rank 1 1 1

accelerometer.high

Fig. 4. Bayesian network of the general model. Arrows represent the conditional prob-
ability dependencies of each node. The arc’s thickness corresponds to the arc’s impor-
tance in the network according to their BIC score. The target node mood and the nodes
conforming its Markov blanket are gray shaded. It can be seen that many of the most
important dependencies relate to id, and mood is also conditionally dependent of it.
On the other side, there is total independence from sms.c5c.
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Similar to the individual models’ case, the structure of the general model
can be observed in Fig. 4. As previously explained, the thicker arcs represent the
ten connections with the highest confidence level. As it can be seen in the figure
most of them are related to the id.

A look into RF measure of importance also shows that id is by far the most
important parameter influencing the MSE. Taking into account that the model
efficacy did not improve with the addition of more data samples and that the
identification parameter seems to be of great importance to the understand-
ing of the model, it can be assumed that the prediction of mood using all the
participants is not a good idea for this data set.

5 Discussion

In order to test the efficacy, efficiency, and insight of BN against RF and SVR
when predicting the current mood two types of experiments were carried out.

In the case of individual models, it could be proven that the performance
achieved by BN is at the same level of RF and SVR. We also argued that the
interpretability of the network, in terms of informativeness and intelligibility, is
higher than for the other models. The results also showed that the difference in
time required by the algorithms is noticeable.

It is important to consider that students presenting symptoms of clinical
depression were excluded from the data collection process generating a bias in
the mood data. More tests are needed with new data where the presence of
depression is given to explore the changes in relationships between parameters.

BN are probabilistic models that can portray relationships of causality
between its parameters. However, causality cannot be confirmed and only a
conjectural case for causality can be started when referring to the models pre-
sented in this work. More data needs to be obtained preferably from controlled
experiments that account for confounding or latent variables.

For the general model case, it was observed that even though the number of
data samples increased, no improvement in the model accuracy was observed.
The lack of increase in performance given the increase in the number of data
points led us to conclude that the model was not able to obtain more information
about the participants and thus for the given data set it is not appropriate to
generate a general model that can combine information about all patients. The
addition of new parameters or a wider range of mood values could be necessary
to achieve a good model.

The similarity in the performance of the tested models make criteria such
as interpretability an important concept to define according to the end purpose
of the model. In a scenario of medical studies where analysis should be person-
alized for each patient, it is beneficial to have a model that allows the medical
professional to understand the flow of data and its conditional dependencies to
plan experiments and better analyze results.
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6 Conclusion

The use of unobtrusively collected EMA via smartphone as a way to predict
the current mood of the user through BN is studied in this work. To answer our
research questions we compared the efficacy, efficiency, and insight of BN against
the already tested models SVR and RF. The efficacy is measured in terms of
MSE and stability. The wall-clock time measures the efficiency and the level of
insight is measured in terms of interpretability. Two types of experiments were
carried out on the data in order to answer our research questions.

RQ-1 How would BN compare to SVR and RF in terms of efficiency, efficacy,
and insight when modelling each participant individually? In our first experi-
ment, one model per participant was build and the performance of the models
was evaluated using cross-validation. The results showed that no significant dif-
ference in performance was found between the models. In terms of speed and
interpretability BN presented clear advantages. Interpretability is defined as the
informativeness and intelligibility of a model. In Fig. 1, it was easy to identify
which of the parameters had an influence on the outcome of mood based on
the arc connections present between the nodes and the visual representation of
its Markov blanket. At the same time, it was easy to represent the conditional
probabilities with the most importance in the model.

RQ-2 How would BN compare to SVR and RF in terms of efficiency, efficacy,
and insight when generating a general model for all participants? For the second
type of experiment one general model was implemented. Results were consis-
tent in terms of performance between the three models. Also here the gains in
interpretability and speed were noticeable for BN. However, it was clear given
the lack of performance improvement that the amount and quality of data may
be insufficient to build such a general model and neither of the tested methods
presented a considerable improvement.

BN as a tool to graphically model the conditional dependencies between
variables do not present any loss in performance against SVR or RF. On the
other hand, it was shown that BN bring benefits in terms of efficiency and
insight given its probability factorization, graphical representation, and ability
to infer under uncertainty. These advantages would make its implementation as
informative models in mobile devices realizable. A conceivable application would
be a weekly presentation of the built model to inform the user of their behavioral
trends.

In future work, we would like to make use of another important feature of BN
that allows the inclusion of expert knowledge into the model. In this way, rela-
tionships between already studied parameters can be included and inference and
reasoning capabilities of the model can be improved. More work is also needed
using a more comprehensive data set in order to achieve a more robust under-
standing of the influence certain behaviors have on the mood. It is necessary to
evaluate the inclusion of new measurable variables in the data collection, such as
sleep duration and patterns. Feature selection and feature engineering to define
the parameters to be modeled remain as an open possibility that needs to be
explored.
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