International Journal of Pharmacy and Pharmaceutical Sciences

ISSN- 0975-1491

Vol 6, Issue 9, 2014

Original Article

SYNTHESIS, CHARACTERIZATION AND *IN VITRO* ANTIMICROBIAL EVALUATION OF SOME NEW AMIDES OF THIOMORPHOLINE CARBOXYLATE

KUMARASWAMY B, RANJITH KUMAR T, NARSIMHA S, VASUDEVA REDDY N*

Department of Chemistry, Kakatiya University, Warangal 506009 India. Email: vasujac3@gmail.com

Received: 05 Aug 2014 Revised and Accepted: 07 Sep 2014

ABSTRACT

Objective: Synthesis and antimicrobial evaluation of some new amides of Thiomorpholine caboxylate.

Methods: A series of new amides of Thiomorpholine caboxylate were synthesized by reacting 4-tert-butyl 2-methyl thiomorpholine-2,4dicarboxylate 1,1-dioxide with primary amines in presence of Trimethyl aluminum in toluene at ambient temperature in good yields. 4-tert-butyl 2methyl thiomorpholine-2,4-dicarboxylate 1,1-dioxide was synthesized by reacting tert-butyl thiomorpholine-4-carboxylate 1,1-dioxide with methyl chloroformate in presence of LiHMDS (1M in THF) at -78°C for the first time. The newly synthesized compounds were characterized by IR, ¹HNMR, ¹³C NMR, Mass spectral studies and elemental analysis.

Results: A series of new amides of Thiomorpholine carboxylate were synthesized in good yields and all the compounds were screened for their Invitro antimicrobial activities.

Conclusion: Preliminary results revealed that the synthesized compounds were showed moderate to good antibacterial and antifungal activity.

Keywords: Antimicrobial activity, Thiomorpholine, Trimethylaluminum, LiHMDS.

INTRODUCTION

Thiomorpholine units and amides of various heterocyclic compounds have attracted much attention for their remarkable pharmacological activities and have been explored as one of the best pharmacophores. Thiomorpholine derivaties have diverse biological activities that include DPP-IV inhibitors [1], anti-inflammatory [2], antioxidant [3-4], anti-microbial[5], hypertensive [6] anaesthatic [7], antiplatelet[8], antibacterial & Cytotaxin [9], anti-cancer [10], analgesic & hypothertic [11], antimycobacterial [12] and hypnotonic [13]. Considering the above facts and our search on Thiomorpholine linked biologically potent molecules, we herein report the synthesis of some new amides of Thiomorpholine Carboxylate and their microbial activity.

MATERIALS AND METHODS

All reagents and solvents were purchased from commercial suppliers and were purified and dried when necessary by standard techniques. The structures of newly synthesized compounds were established on the basis of, ¹H NMR, FTIR, ¹³C NMR, mass spectral data and elemental analysis. The ¹HNMR spectra were recorded on Brucker 300 and 400MHz spectrometer using TMS as internal standard. The Chemical shifts values are given in δ ppm. The FTIR spectra were recorded by using Perkin Elmer FTIR spectrometer using a thin film on KBr pellets and frequencies were expressed in cm⁻¹. The Mass spectra were recorded by the EI process. The elemental analyses were performed on Perkin Elmer CHNS/O analyzer 2400. Melting points were determined on open capillaries using a cintex melting point apparatus and are uncorrected. Follow up of the reactions and checking the purity of the compounds was made by thin layer chromatography (TLC) on silica gel precoated aluminum sheets (Type 60 GF254; Merck; Germany) and the spots were detected by exposure to UV lamp at λ 254 nm for few seconds.

The synthesis of thiomorpholine moiety was reported by several groups and N-substituted thiomorpholines were reported [14]. The reactions on C's of thiomorpholines are very few. In this work, we are reporting the synthesis of thiomorpholine carboxylate amides for the first time. The synthetic route for thiomorpholine carboxylate and amides is represented in **scheme 1**. The reaction of Compound-2 with methylchloroformate in presence of LiHMDS (1M

in THF) resulted thiomorpholine carboxylate in excellent yield (98%). Compound-3 was treated with different amines in presence of Trimethyl aluminum (2M in Toluene) to afford new amide derivatives of thiomorpholine carboxylate **(4a-j)** in good yields.

Scheme 1: Synthetic route for new amides of Thiomorpholine carboxylate

Experimental

Synthesis of N-tert-butyloxycarbonyl thiomorpholine, 1

A solution of BOC₂O (21.16g, 97 mmol) in dichloromethane (100 mL) was added to a solution thiomorpholine (10 g, 97 mmol) and triethylamine (16.23 mL, 116 mmol) in dichloromethane (500 mL). The mixture was stirred for 1 hour at room temperature and monitored by TLC. Ethyl acetate (400 mL) was added and the organic solution was washed with citric acid (3X250 mL, 1M), water (3X250 ml), brine (250 ml), dried over anhydrous sodium sulphate and evaporated in vacuo to afford N-tert-butyloxycarbonyl thiomorpholine, **1** as a colourless solid (19.5g, 99%).

Synthesis of tert-butyl thiomorpholine-4-carboxylate 1,1dioxide, 2

N-tert-butyloxycarbonyl thiomorpholine (15 g, 73.89 mmol) was dissolved in dichloromethane (500 ml), m-chloroperbenzoic acid (25.49 g, 147.78 mmol) was gradually added while cooled with ice bath. The reaction mixture was stirred at room temperature for 12h. After completion of reaction, was added a saturated aqueous

solution of sodium thiosulfate, extracted with ethyl acetate, washed with brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure to afford crude. The crude was purified by column chromatography using 30-35% ethyl acetate in hexane as eluent to afford tert-butyl thiomorpholine-4-carboxylate 1,1-dioxide, **2** as off white solid.

Synthesis of 4-tert-butyl 2-methyl thiomorpholine-2,4dicarboxylate 1,1-dioxide, 3

To a stirred solution of tert-butyl thiomorpholine-4-carboxylate 1,1dioxide (42.55 mmol) in THF (300 mL) was added dropwise 1M solution of LiHMDS (42.55 mmol) at -78°C and the resulting reaction mixture was stirred under the nitrogen atmosphere for 1h. Methylchloroformate (42.55 mmol) was added drop wise to the above reaction mixture and stirred for 2h at -78°C. The reaction mixture was added to NH₄Cl solution (200 mL) and the product was extracted with EtOAc (3 x 150 mL) to obtain crude compound. The crude was recrystalized from diethylether, filtered and dried under vacuum to afford 4-tert-butyl 2-methyl thiomorpholine-2,4-dicarboxylate 1,1-dioxide, **3** as off white solid.

General Method for synthesis of 4a-j [15]

To a stirred solution of alkylamine (0.34 mmol) in Toluene was added Trimethylaluminum (2M in Toluene, 1.02 mmol) at 0°C and allowed to stir for 15 min. A solution of 4-tert-butyl 2-methyl thiomorpholine-2,4-dicarboxylate 1,1-dioxide (0.34 mmol) in toluene was added drop wise to the reaction mixture under N_2 and stirred for overnight at room temperature. The reaction mixture was poured into crushed ice, added 2N HCl, basified to pH 9- 10 with NH₄OH and organic phase was separated.

The aqueous phase was washed with more CH_2Cl_2 the combined organic phases were washed with brine, dried over Na_2SO_4 and concentrated. The crude was chromatographed on silica gel (100-200 mesh), eluting with a gradient mixture of (30-35%) ethylacetate in hexane as eluent, giving (**4a-f**) as pure compounds (**Table 1**).

Table 1: It represents molecular formulas and	l vields of final compounds (4a-i)
Tuble 11 le opresents morecular formalas and	() i ei ue e e e e e e e e e e e e e e e e	

S. No.	Compound	R	Molecular Formula (4a-j)	Molecular Weight	Yield (%)
1	4a	NH ₂	C ₁₈ H ₂₆ N ₂ O ₅ S	382.474	85
2	4b		$C_{17}H_{22}N_4O_6S$	410.445	82
3	4c	NH ₂	C ₁₇ H ₂₄ N ₂ O ₅ S.	368.448	90
4	4d		$C_{17}H_{24}N_2O_6S$	384.44	84
5	4e		$C_{18}H_{26}N_2O_5S$	382.474	88
6	4f		$C_{22}H_{26}N_2O_5S$	430.517	89
7	4g	NH ₂ -NH ₂ , H ₂ O	$C_{10}H_{19}N_{3}O_{5}S$	293.340	86
8	4h	H ₂ N	C ₁₈ H ₂₆ N ₂ O ₅ S	382.474	88
9	4i	H ₂ N	$C_{18}H_{26}N_2O_5S$	382.474	84
10	4j	HO-NH2	$C_{16}H_{22}N_2O_6S$	370.421	92

Spectral data

N-tert-butyloxycarbonyl thiomorpholine, **1**: Yield (99%); Offwhite solid: ¹HNMR (CDCl3, 300 MHz): 3.71-3.64 (m, 4H), 2.60-2.52 (m, 4H), 1.45 (s, 9H); ESI-MS 148 (M*- t-Butyl)

tert-butyl thiomorpholine-4-carboxylate 1,1-dioxide, 2:Yield (89%); Off white solid; M. P: 157 - 159 °C: ¹H NMR (CDCl₃, 300Mz): δ 4.0 - 3.9 (m, 4H), 3.10 - 2.90 (m, 4H), 1.44 (s, 9H): ESI-MS: 180 (M⁺- t-Butyl)

4-tert-butyl 2-methyl thiomorpholine-2,4-dicarboxylate 1,1-dioxide,3:Yield (98%); Off white Solid; M. P: 110-113°C; ¹H NMR (DMSO-d₆, 400MHz): δ 4.37 (br, 1H), 4.11-3.86 (m, 3H), 3.72-3.47 (br, 4H), 3.41- 3.36 (br, 1H), 3.26-3.25(m, 1H), δ 1.41 (s, 9H); ESI-MS: 180 (M*-t-Butyl)

tert-butyl 2-(phenethylcarbamoyl) thiomorpholine-4-carboxylate 1,1-dioxide, 4a: Offwhite solid; M. P: 95-98°C; FTIR (KBr, cm⁻¹);3385, 3072, 1685, 1585, 1273, 1106, 757; ¹H NMR (DMSO-d6, 400MHz): δ 8.40-8.20 (br, 1H), 7.40-7.10 (m, 5H), 4.18 - 3.90 (m, 2H), 3.80 - 3.50 (m, 5H), 3.20 - 3.10 (m, 2H), 2.80 - 2.60 (m, 2H), 1.41 (s, 9H). ¹³C-NMR (DMSO, 125Mz): δ 163.42 (CONH), 153.18 (COBoc), 139.02 (Ar-CH),128.63(2,Ar-CH),128.36(2,Ar-CH),126.18 (CH), 80.00 (-(CH3)₃CO-), 63.01(CH), 50.81(CH₂), 49.25(CH₂), 45.66 (CH₂), 40.58 (NHCH₂), 34.85 (Ar-CH₂), 27.79 (CH₃):EI-MS (m/z): 327(M⁺ t-Butyl); Anal. Cald. for C₁₈H₂₆N₂O₅S; C, 56.52; H, 6.85; N, 7.32; O, 20.92; S, 8.38; Found: C, 56.48; H, 6.81; N, 7.36; O, 20.88; S, 8.34

tert-butyl 2-((2-oxo-2,3-dihydro-1H-benzo[d]imidazol-5-yl) carbamoyl) thiomorpholine -4-carboxylate 1,1-dioxide, 4b; Offwhite solid. M. P: 258- 260°C; FTIR (KBr, cm⁻¹): 3388, 2978, 1693,1566, 1295, 868, 710; ¹H NMR (DMSO-Da, 400MHz): δ 10.62 (s, 1H), 10.55 (s, 1H), 10.22-10.18(br, 1H), 7.46 (s, 1H), 7.02-6.85 (br, 1H), 6.87-6.85 (d, *j* = 8.0Hz, 1H), 4.40-4.20 (br, 2H), 4.02 -3.90 (m, 1H), 3.80-3.70 (m, 1H), 3.70-3.55 (m, 1H), 3.42.-3.30 (m, 1H), 3.22-3.16 (m, 1H), 1.41 (s, 9H). EI-MS (m/z): 355(M⁺- t-Butyl); Anal. Cald. for C_1 : H_{22} :N406S: C, 49.75; H, 5.40; N, 13.65; O, 23.39; S, 7.81;Found; C, 49.68; H, 5.46; N, 13.60; O, 23.32; S, 7.78

tert-butyl 2-(benzylcarbamoyl)thiomorpholine-4-carboxylate 1,1-dioxide, 4c: Offwhite solid; M. P: 85-90°C; FTIR (KBr, cm⁻¹): 3345, 3088, 1687,1609,1267,1100, 833, 751: ¹H NMR (DMSO-D₆, 400MHz): δ 8.80-8.65 (br, 1H), 7.4-7.2(m, 5H), 4.5-4.1 (br, 4H), 3.95-3.85 (m, 1H), 3.80-3.50 (m, 3H), 3.20-3.10 (m, 1H), 1.35(s, 9H). EI-MS (m/z): 313 (M⁺- t-Butyl); Anal. Cald. for C₁₇H₂₄N₂O₅S; C, 55.42; H, 6.57; N, 7.60; O, 21.71; S, 8.70; Found; C, 55.39; H, 6.50; N, 7.58; O, 21.61; S, 8.65.

tert-butyl 2-[(2-hydroxy-6-methylphenyl) carbamoyl] thio morpholine-4-carboxylate 1,1-dioxide, **4d**; Light yellow solid; **M**. **P**; 90- 92; **FTIR** (**KBr**, **cm**-1): 3601, 3341,3064, 1693,1601,1521,1203, 850, 711 ¹H NMR (DMSO-d₆, 400MHz): δ 9.44(s, 1H), 9.35-9.18(b, 1H), 6.98 (t, *j* = 7.6Hz, *j* = 8Hz,1H), 6.71-6.64 (dd, *j* = 7.6Hz, *j* = 8.0Hz, 2H), 4.40-4.30(m, 1H), 4.25-4.15 (m, 2H), 4.00-3.70 (m, 2H), 3.55-3.40 (m, 2H), 3.20-3.10 (m, 1H) 2.08 (s, 3H),1.5-1.25 (br,9H); **EI-MS (m/z)**:329(M⁺- t-Butyl); Anal. Cald. for $C_{17}H_{24}N_2O_6S;$ C, 53.11; H, 6.29; N, 7.29; O, 24.97; S, 8.34; Found; C, 53.08; H, 6.26; N, 7.27; O, 24.94; S, 8.30

tert-butyl 2-(m-tolylcarbamoyl)thiomorpholine-4-carboxylate 1,1-dioxide, 4e: Brownsolid: **M. P;** 82- 84°C; **FTIR (KBr, cm⁻¹):** 3376, 3068, 1696,1606,1270,1099, 847, 751: ¹H NMR (DMSO-d₆, 400 MHz): δ 8.80-8.60 (br, 1H), 7.25 (s, 1H), 7.20-7.00 (m, 3H), 4.50-4.11 (m, 3H), 4.10-3.80 (m, 2H), 3.80-3.50 (m, 1H), 3.20-3.10 (m, 2H), 2.25 (s, 3H), 1.40 (s, 9H); **EI-MS (m/z)**:327(M⁺⁻ t-Butyl); Anal. Cald. for C₁₈H₂₆N₂O₅S; **C, 56.52**; H, 6.85; N, 7.32; O, 20.92; S, 8.38; Found: C, 56.48; H, 6.80; N, 7.28; O, 20.94; S, 8.34.

tert-butyl 2-([1,1'-biphenyl]-2-ylcarbamoyl)thiomorpholine-4carboxylate 1,1-dioxide, 4f: Offwhite solid; M. P: 148-150; FTIR (KBr, cm⁻¹): 3359, 3072, 1695,1588,1269,1098,1008, 759: 1H NMR (DMSO-d6, 300MHz): δ 9.65-9.58 (br, 1H), 7.7-7.50(br, 1H), 7.50-7.30 (m, 8H), 4.4-4.0 (br, 3H), 3.80-3.40 (br, 3H), 3.29-3.10 (m, 1H), 1.4 (s, 9H); EI-MS (m/z):375 (M⁺- t-Butyl); Anal. Cald. for $C_{22}H_{26}N_2O_5S$; C, 61.38; H, 6.09; N, 6.51; O, 18.58; S, 7.45; Found; C, 61.30; H, 6.15; N, 6.50; O, 18.52: S, 7.42.

tert-butyl 2-(hydrazinecarbonyl)thiomorpholine-4-carboxylate 1,1-dioxide, 4g: Offwhite solid; **M. P;** 120- 125; **FTIR (KBr, cm⁻¹):** 3348, 2933, 1689, 1590, 1426, 1298, 875, 611: ¹H NMR (DMSO-d₆, 400MHz): δ 9.50- 9.30 (b, 1H), 4.50-4.30 (m, 2H), 4.20-4.00 (b, 1H), 4.00-3.90 (b, 1H), 3.80-3.60 (m, 2H), 3.60-3.40 (m, 2H), 3.15-3.10 (m, 1H), 1.40 (s, 9H), **EI-MS (m/z):** 238 (M⁺⁻ t-Butyl); Anal. Cald. for C₁₇H₂₄N₂O₆S; C, 53.11; H, 6.29; N, 7.29; O, 24.97; S, 8.34;Found; C, 53.08; H, 6.26; N, 7.27; O, 24.94; S, 8.30 tert-butyl **2-((4-methylbenzyl)carbamoyl)thiomorpholine-4**carboxylate **1,1-dioxide**, **4h**: Offwhite solid; **M**. **P**; 98- 100; **FTIR** (**KBr**, **cm**⁻¹): 3333, 3068, 1696,1511, 1456, 1256, 847, 769: ¹H NMR (DMSO-d₆, 400MHz): δ 8.60-8.80 (b, 1H), 7.35 (d, J=8.2 Hz, 2H), 7.05 (d, J=8.2 Hz, 2H), 4.40-4.11 (m, 3H), 4.10-3.80 (m, 2H), 3.80-3.50 (m, 2H), 3.20-3.10 (m, 2H), 2.25 (s, 3H), 1.40 (s, 9H): **EI-MS (m/z)**: 327(M*- t-Butyl); Anal. Cald. for C₁₇H₂₄N₂O₆S; C, 53.11; H, 6.29; N, 7.29; O, 24.97; S, 8.34;Found; C, 53.08; H, 6.26; N, 7.27; O, 24.94; S, 8.30

tert-butyl 2-((3,5-dimethylphenyl)carbamoyl)thiomorpholine-4-carboxylate 1,1-dioxide, 4i: Offwhite solid; M. P; 105-108; FTIR (KBr, cm⁻¹):3364, 3092, 1696,1608,1455,1211, 867, 697: ¹H NMR (DMSO-d₆, 400MHz): δ 9.00 (s, 1H), 7.30 (s, 2H), 6.70(s, 1H), 4.40-4.30(m, 1H), 4.25-4.15 (m, 2H), 4.00-3.70 (m, 2H), 3.55-3.40 (m, 1H), 3.20-3.10 (m, 1H) 2.25 (s, 6H),1.41 (s, 9H); EI-MS (m/z): 327(M⁺⁻ t-Butyl); Anal. Cald. for C₁₇H₂₄N₂O₆S; C, 53.11; H, 6.29; N, 7.29; O, 24.97; S, 8.34;Found; C, 53.08; H, 6.26; N, 7.27; O, 24.94; S, 8.30

tert-butyl 2-((4-hydroxyphenyl)carbamoyl)thiomorpholine-4carboxylate 1,1-dioxide, 4j: Offwhite solid; M. P; 95-98; FTIR (KBr, cm⁻¹): 3625, 3385, 3084,1674,1482, 1451, 981, 741: ¹H NMR (DMSO-d₆, 400MHz): δ 9.50(s, 1H), 9.40-9.20(b, 1H), 7.33 (d, *J*=6.8 Hz, 2H), 6.67 (d, *J*=6.9 Hz, 2H), 4.40-4.00 (m, 3H), 4.00-3.60 (m, 2H), 3.55-3.40 (m, 1H), 3.20-3.10 (m, 1H), 1.42(s, 9H); EI-MS (m/z): 315(M⁺- t-Butyl); Anal. Cald. for C₁₇H₂₄N₂O₆S; C, 53.11; H, 6.29; N, 7.29; O, 24.97; S, 8.34;Found; C, 53.08; H, 6.26; N, 7.27; O, 24.94; S, 8.30.

Table 2: Zone of inhibition	(mm) data of synthesiz	ed compounds (4a-j)
-----------------------------	------------------------	---------------------

S. No.	Compound	B. subtilis	S. aureus	E. coli	S. typhi	A. niger	C. albicans
1	4a	8	7	7	6	10	8
2	4b	11	10	12	11	13	11
3	4c	9	6	8	4	9	6
4	4d	7	5	9	6	11	9
5	4e	9	4	8	6	10	8
6	4f	7	5	6	4	12	8
7	4g	9	7	10	7	8	6
8	4h	7	6	9	8	10	8
9	4i	8	7	9	6	11	8
10	4j	8	6	8	4	12	7
11	Control	-	-	-	-	-	-
12	А	16	15	19	16	-	-
13	В	-	-	-	-	19	17

Control=DMSO, A=Ciprofloxacin and B=Ketoconazole

RESULTS AND DISCUSSION

Antibacterial activity

The antibacterial activity of all the synthesized compounds **(4a-j)** was examined against different Gram-positive (Bacillus subtilise and Staphylococcus aureus) and Gram-negative (Escherichia coli and Salmonella typhii) organisms by measuring zone of inhibition. The antibacterial activity was performed by Agar diffusion method at the concentration level of $250\mu g/ml$. Ciprofloxacin was used as the standard drug at a concentration of $250\mu g/ml$. Nutrient agar was used as culture media and DMSO was used as the solvent control. The results of the antibacterial activity are shown in **Table 2**.

Antifungal activity

The antifungal activity of all the synthesized compounds **(4a-j)** was examined against *Aspergillus niger* and *Candida albicans* by measuring zone of inhibition. The antifungal activity was performed by Agar diffusion method at the concentration level of $250\mu g/ml$. Ketoconazole was used as a standard drug at a concentration of $250\mu g/ml$. Sabouraud dextrose agar was used as culture media and DMSO was used as solvent control. The results of the antifungal activity are shown in **Table 2**.

CONCLUSION

In accordance with the data obtained from antimicrobial activity, ${\bf 4b}$ showed good antimicrobial activity against the tested microbes

among all the synthesized amides and rest of the compounds showed moderate antimicrobial activity against tested microbes.

ACKNOWLEDGEMENT

The authors are thankful to Head of the Department, Kakatiya University, Warangal for providing necessary research facilities and also to the Director, IICT, for providing spectral data.

REFERENCES

- 1. Bei Han, Jing Long Liu, Yi Huan, Peng Li, Qi Wu and Zi Yun Lin et al. Design, synthesis and primary activity of thiomorpholine derivatives as DPP-IV inhibitors. Chin Chem Lett 2012;23(3):297-300.
- N. Ziakas, Eleni A. Rekka, Antonios M. Gavalas, Phaedra T. Eleftheriou, Panos N. Kourounaki New analogues of butylated hydroxytoluene as anti-inflammatory and antioxidant agents. Bioorg Med Chem 2006;14(16):5616-24.
- Michael C, Chrysselis, Eleni A, Rekka and Panos N.Kourounakis. Hypocholesterolemic and Hypolipidemic activity of some novel Morpholine derivatives with Antioxidant Activity. J Med Chem 2000;43 (4): 609–12.
- 4. Michael C, Chrysselis, Eleni A, Rekka, Ioanna C. Siskou, and Panos N. Kourakounakis. Nitric Oxide releasing Morpholine derivatives as Hypolipidemic and Antioxidant Agents. *J Med Chem* 2002; 45 (24): 5406–09.

- Shanshan Yan, Marvin J. Miller, Timothy A, Wencewicz and Ute Mollmann. Syntheses and antibacterial activity studies of new oxazolidinones from nitroso Diels-Alder chemistry. Bioorg Med Chem Letts 2010;20(3):1302-05.
- Carolina de Mattos Duarte,b, Hugo Verlia, Joao Xavier de Araujo-Junior, Isac Almeida de Medeiros, Eliezer J. Barreiro, Carlos Alberto Manssour Fraga. New optimized piperamide analogues with potent in vivo hypotensive properties. Eur J Pharm Sci 2004;23 (4-5) :363–69.
- D. Jonathan Bennett,* Alison Anderson, Kirsteen Buchanan, Alan Byford, Andrew Cooke, David K. Gemmell, Niall M.et al. Novel water soluble 2,6-dimethoxyphenyl ester derivatives with intravenous anaesthetic activity.Bioorg Med Chem Letts 2003;13(12) 1971–75.
- Joel Morris, Donn G. Wishka, William R. Humphrey, Alice H. Lin, Ann L. Wiltse, Christopher W. Benjamin et al. Synthesis and biological activity of a potent antiplatelet 7-aminofurochromone. Bioorg Med Chem Letts 1994; 4(21): 2621-26.
- Senthikumar P, Dinakaran M, Yogeeswari P, Sriram D, China A, Nagaraja V.Synthesis and antimycobacterial activities of novel 6-nitroquinolone-3-carboxylic acids. E J Med Chem 2009;44(1):345-58.
- 10. Sanjay K. Srivastava, Aji Abraham, Beena Bhat, Manu Jaggi, Anu T. Singh, Vinod K. Sanna et al. Synthesis of 13-amino

costunolide derivatives as anticancer agents. Bioorg Med Chem Letts 2006;16 (16) :4195 – 99.

- 11. Maria Leticia de Castro Barbosa , Gabriela Muniz de Albuquerque Melo, Yolanda Karla Cupertino da Silva , Raquel de Oliveira Lopes, Everton Teno rio de Souza , Aline Cavalcanti de Queiroz c et al. Synthesis and pharmacological evaluation of *N*-phenyl-acetamide sulfonamides designed as novel nonhepatotoxic analgesic candidates. Eur J Med Chem 2009; 44 (9):3612–20.
- Mariangela Biava, Giulio C. Porretta, Giovanna Poce, Alessandro De Logu, Rita Meleddu, Edda De Rossi et.al. 1,5-Diaryl-2-ethyl pyrrole derivatives as antimycobacterial agents: Design, synthesis, and microbiological evaluation. Eur J Med Chem 2009; 44 (11):4734 – 38.
- 13. Kunio Saruta, Tsuyoshi Ogiku. A traceless solid phase synthesis of Thiomorpholin-3-ones. Tetrahedron Lett 2008;49(3):424-27.
- 14. Stefano Marcaccini, Roberto Pepino, Tomas Torroba, Daniel Miguel and Maria Garcia-Valverde. Synthesis of thiomorpholines by an intramolecular Ugi reaction. Tetrahedron Lett 2002;43(47):8591-93.
- 15. Benderly A, Stavchansky S. A new synthesis of carboxylic acid hydrazides via organo aluminum reagents. Tetrahedron Lett 1988;29(7):739-40.