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ABSTRACT 

Objective: Angiogenesis inhibitors are a novel class of promising therapeutic agents for treating cancer and other human diseases. Biological 
transformations and pathways that play a role in angiogenesis are, therefore, particularly attractive targets as potential methods for inhibiting solid 
tumors. MetAP2 is of particular interest because the enzyme plays a key role in angiogenesis, the growth of new blood vessels, which is necessary 
for the progression of diseases including solid tumor cancers and rheumatoid arthritis. In this paper we report the quantitative structure activity 
relationship and docking studies of 1, 2, 4 triazole derivatives for designing novel MetAP2 inhibitors. 

Methods: Tripos Sybyl X 2.1 program was used to conduct docking based CoMFA, CoMSIA and Topomer CoMFA QSAR modeling for a dataset of 77 
triazoles. 

Results: The CoMFA, CoMSIA and Topomer CoMFA models demonstrated good statistical results with cross-validated coefficient (q2) of 0.703, 
0.704, 0.746 and correlation coefficient (r2

Conclusion: Based on the statistical results obtained from the above model, the CoMFA, CoMSIA and Topomer CoMFA model can be utilized to 
design new molecules having 1, 2, 4 triazoles as common core with significant MetAP2 inhibitory activity.  

) of 0.894, 0.889, 0.886 respectively and these models have been externally validated.  

Keywords: QSAR, CoMFA, CoMSIA, 1,2,4-triazole, MetAP2. 

 

INTRODUCTION 

Cancer is one of the most formidable afflictions in the world [1] 

Cancer known medically as malignant neoplasm is a broad group of 
diseases characterized by abnormal cell growth. In 
cancer, cells divide and grow hysterically, forming malignant 
tumors, and invading surrounding parts of the body. The cancer may 
also metastasize to more distant parts of the body through 
the 

Angiogenesis is a key process in the progression of a number of 
diseases such as diabetic retinopathy, rheumatoid arthritis, and 
cancer [5-6]. Cancerous tumors do not metastasize without the 
formation of new blood vessels. Biological transformations and 
pathways that play a role in angiogenesis are, therefore, particularly 
attractive targets as potential methods for inhibiting solid tumor 
growth/ metastasis. Methionine amino peptidase type II, in humans 
is encoded by the MetAP2 gene [7-8]. MetAP2, a member of the 
dimetallohydrolase family, is a cytosolic metallo-enzyme that 
catalyzes the hydrolytic removal of N-terminal methionine residues 
from nascent proteins [9-11]. MetAP2 is found in all organisms and 
is especially important because of its critical role in tissue repair and 
protein degradation

lymphatic system or blood stream. All tumors are not cancerous; 
benign tumors do not invade neighboring tissues and do not spread 
throughout the body. There are more than two hundred different 
known cancers that affect humans [2-3]. Recent statistics indicates 
that, cancer accounts for about 23% of total deaths in the USA and 
the second most common cause of death after cardio vascular 
diseases. Therefore, there is an increasing need for new therapies, 
especially those based on current knowledge of cancer molecular 
biology and pathology [4]. 

 

Quantitative structure-activity relationship (QSAR) enables the 
investigators to establish a reliable quantitative structure-activity 
relationship and structure-property relationships to derive an in 
silco QSAR model to predict the activity of novel molecules prior to 
their synthesis. The process of QSAR model development can be 
divided into three stages namely; data preparation, model 
development, and validation, representing a standard practice of any 
QSAR modeling. 3D-QSAR methodologies have been successfully used 
to generate models of various chemotherapeutic agents [17-19]. 

[9]. It is expressed at higher concentrations in 
tumor as compared to normal cells. Available reports also suggested 
that MetAP2 plays an important role in growth of different type of 
tumors. MetAP2 is also the target of two groups of anti-angiogenic 
natural products (ovalicin and fumagillin) and their analogs which 
irreversibly inhibit MetAP2 through covalent modification of an 
epoxide [12-15]. MetAP2 is of particular interest because the 
enzyme plays a key role in angiogenesis, the development of new 
blood vessels, which is essential for the progression of diseases 
including solid tumor cancers and rheumatoid arthritis [16]. Due to 
the critical role of these enzymes for angiogenesis, MetAP2 has been 

one of the major targets in the anticancer drug development area. 
With an improved understanding of the genes and pathways 
accountable for cancer instigation and progression, cancer drug 
development has undergone a paradigm change in the recent years, 
from mainly cytotoxic agent based therapy to therapy aimed at 
molecular and genetic targets. 

We have carried out 3D-QSAR studies employing comparative 
molecular field analysis (CoMFA) [20], comparative molecular 
similarity indices analysis (CoMSIA) [21] and Topomer CoMFA [22] 

Computational analysis 

techniques in order to study and deduce a correlation between 
structure and biological activity of 1,2,4 triazoles as MetAP2 
inhibitors. Partial least square (PLS) based statistical analysis was 
carried out on aligned molecules to identify the correlation. The 
contour maps generated help in explaining the observed variation in 
activity. Validity of contour map analysis has been carried out using 
molecular docking studies. Important features observed in the 
developed model have been used to design new molecules, which 
showed higher predictivity and binding affinity in terms of different 
binding scores and selectivity in terms of interaction within the 
MetAP2 active site [23]. 

Data set 

The in vitro biological activity reported as Ki,app for the inhibition of 
MetAP2 by 1,2,4 triazoles were used for the current study. The in 
vitro assay involved inhibition of MetAP2 by an XTT assay. These 
compounds are shown in Table 1. All the molecules were obtained 
from previously reported literature [24] The biological activity 
obtained as Ki,appvalues were converted into pKi,app (-logKi,app) and 
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used as dependent variable in the CoMFA, CoMSIA and Topomer 
CoMFA calculations. The in vitro Ki,app

The generation of consistent statistical model depends on the proper 
selection of both training and test sets in terms of structural 
diversity and property values distribution.  

 values employed in this work 
were measured under the same experimental conditions [25], a 
fundamental requirement for QSAR studies. As a rule of thumb, a 
spread in affinity of at least three logarithmic units is considered 
necessary for developing a statistically significant 3D-QSAR model 
[26]. Here the biological data is spread over a range of nearly five 
logarithmic units from 5.76 to 10.39. The molecular structure of 
1,2,4 triazole derivatives were sketched using ChemSketch.  

From the data 75% of the compounds were selected as members of 
the training set for model construction and the other 25% 
compounds as test set for external validation in the ratio of 3:1. The 
compounds of test and training sets were selected based on unity 
fingerprints and dissimilarity, which is available in SYBYL X2.1.  

 

Table 1: Structures and experimental biological activity of compounds against MetAP2 

NN

N
H

S
R2N

H

R1

 

Cmpd 
Code 

R1 R2 Ki,app Cmpd 
Code 

(nm) R1 R2 Ki,app (nm) 

6 Ph Ph 0.5 52 4-OMe-Ph Cyclohexyl 3.1 
12 Ph thiophen-2-yl 0.75 53 4-OMe-Ph -CH=C(CH3) 0.16 2 

13 2-Me-Ph Ph 0.04 54 4-OMe-Ph 5-methyl-3-isoxazol-3-yl 1.6 
14 2-Me-Ph 2-Me-Ph 2.5 55 3,4-OMe-Ph Ph 1.7 
15 2-Me-Ph 2-MeO-Ph 61 56 3,4-OMe-Ph 2-Me-Ph 18 
16 2-Me-Ph 2-F-Ph 0.23 58 3,4-OMe-Ph 2-F-Ph 1.3 
17 2-Me-Ph 3,4-difluoro-Ph 2.4 59 3,4-OMe-Ph 3,4-difluoro-Ph 4.0 
18 2-Me-Ph 4-pyridyl 3.7 60 3,4-OMe-Ph 2-pyridyl 24 
19 2-Me-Ph Cyclohexyl 3.3 61 3,4-OMe-Ph 4-pyridyl 9.6 
20 2-Me-Ph -CH=C(CH3) 0.15 2 62 3,4-OMe-Ph Cyclohexyl 8.3 
21 2-Me-Ph 2-methyl-thiazo-4-yl 3.8 63 3,4-OMe-Ph -CH=C(CH3) 0.9 2 

22 2-Me-Ph 5-methyl-3-isoxazol-3-yl 3.6 64 3,4-OMe-Ph 2-methyl-thiazo-4-yl 21 
23 4-Me-Ph Ph 0.07 65 3,4-OMe-Ph 5-methyl-3-isoxazol-3-yl 7.0 
24 4-Me-Ph 2-Me-Ph 6.5 66 4-CO2Me-Ph Ph 0.7 
 

Table 1: (Continued) 

Cmpd 
Code 

R1 R2 Ki,app Cmpd 
Code 

(nm) R1 R2 Ki,app (nm) 

26 4-Me-Ph 2-F-Ph 0.65 67 4-CO2Me-Ph 2-Me-Ph 135 
27 4-Me-Ph 3,4-difluoro-Ph 3.3 68 4-CO2Me-Ph 2-MeO-Ph 10 
28 4-Me-Ph 2-pyridyl 7.8 69 4-CO2Me-Ph 2-F-Ph 0.41 
29 4-Me-Ph 4-pyridyl 5.7 70 4-CO2Me-Ph 3,4-difluoro-Ph 1.3 
30 4-Me-Ph Cyclohexyl 100 71 4-CO2Me-Ph 2-pyridyl 0.9 
31 4-Me-Ph -CH=C(CH3) 1.2 2 72 4-CO2Me-Ph 4-pyridyl 0.9 
31 4-Me-Ph 2-methyl-thiazo-4-yl 7.8 73 4-CO2Me-Ph Cyclohexyl 2.7 
33 4-Me-Ph 5-methyl-3-isoxazol-3-yl 3.5 74 4-CO2Me-Ph -CH=C(CH3) 0.5 2 

34 4-Me-Ph thiophen-2-yl 5.2 75 4-CO2Me-Ph 2-methyl-thiazo-4-yl 3.8 
35 4-Cl-Ph Ph 0.43 76 4-CO2Me-Ph 5-methyl-3-isoxazol-3-yl 0.8 
36 4-Cl-Ph 2-Me-Ph 23 77 2-(Ph)-Ph Ph 740 
38 4-Cl-Ph 2-F-Ph 0.61 80 2-(Ph)-Ph 2-F-Ph 350 
39 4-Cl-Ph 3,4-difluoro-Ph 1.5 83 2-(Ph)-Ph Cyclohexyl 650 
40 4-Cl-Ph 2-pyridyl 4.0 84 2-(Ph)-Ph -CH=C(CH3) 480 2 

41 4-Cl-Ph 4-pyridyl 2.5 85 2-(Ph)-Ph 5-methyl-3-isoxazol-3-yl 1700 
42 4-Cl-Ph Cyclohexyl 5.2 86 3-pyridyl Ph 0.04 
43 4-Cl-Ph CH=C(CH3) 0.52 2 87 3-pyridyl 2-Me-Ph 1.7 
44 4-Cl-Ph 2-methyl-thiazo-4-yl 4.8 88 3-pyridyl 2-F-Ph 0.3 

 
Table 1: (Continued) 
Cmpd 
Code 

R1 R2 Ki,app Cmpd 
Code 

(nm) R1 R2 Ki,app

45 

 (nm) 

4-Cl-Ph 5-methyl-3-isoxazol-3-yl 1.8 89 3-pyridyl 3,4-difluoro-Ph 0.5 
46 4-OMe-Ph Ph 0.05 90 3-pyridyl 2-pyridyl 5.7 
47 4-OMe-Ph 2-MeO-Ph 34 91 3-pyridyl 4-pyridyl 3.0 
48 4-OMe-Ph 2-F-Ph 0.13 92 3-pyridyl Cyclohexyl 6.5 
49 4-OMe-Ph 3,4-difluoro-Ph 2.1 93 3-pyridyl 2-methyl-thiazo-4-yl 9.1 
50 4-OMe-Ph 2-pyridyl 18 94 3-pyridyl 5-methyl-3-isoxazol-3-yl 1.5 
51 4-OMe-Ph 4-pyridyl 6.1     
 

Molecular Docking 

To determine the most probable binding confirmations of the whole 
data set, SYBYL-X 2.1 Surflex-Dock has been used.  

 

The protein structure of human MetAP2 was obtained from protein 
data bank (PDB Code: 2OAZ). This structure is determined at 1.90 Å 
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resolution. We performed the minimization of MetAP2 using 2OAZ 
as template using the prepare protein module in SYBYL-X 2.1. 
Surflex-Dock. The ligand substructure was extracted and all 
unnecessary water molecules were removed. Explicit hydrogen’s 
were added to the protein and protein model was charged with 
Gasteiger-Marsili and ligand using Gasteiger-Huckel charges. Energy 
minimization and relaxation of the loop region was performed using 
1000 iterations with AMBER7 FF99 as force field. All the molecules 
were docked into the active site of MetAP2. The docking 
confirmation of most potent compound (86) was used for aligning 
all the molecules in the 3D-QSAR study. 

Validation of docking results 

Generally, the performance of the docking software is judged from 
the resemblance of docked pose to the corresponding co-crystallized 
ligand27. The available X-ray crystal structure of 2OAZ in complex 
with co-crystalized ligand was under taken to validate the docking 
reliability. Eventually all the docked solutions reside almost at the 
same coordinating position as the co-crystallized ligand. The 
selected docked pose of co-crystallized ligand remains the same at 
the binding site. This enables us to ensure that the docked possess of 
compounds resemble that of the compound 86 in the active site of 
MetAP2 (Fig 1). 
 

 

Fig. 1: Docking interaction of compound 86 with HIS 231 and 
ASP 262 in the MetAP2 active site (PDB Code: 2OAZ). 

 

Alignment  

Since there is a critical requirement of structure alignment in CoMFA 
analysis to generate a 3D QSAR model, the alignment rules remains 
to be a crucial process in 3D QSAR analysis. Because of the structural 
similarity of compounds in our dataset, all of the compounds in both 
training set and test set were assumed to interact with MetAP2 
through the same binding motifs.  
 

 

Fig. 2: 3D-QSAR structure alignment and superposition of 77 
compounds using compound 86 as the template. 

 

The docked conformation of most active compound 86 was 
regarded as a structural template for molecular superimposition. 

The molecules in their respective lowest energy conformation were 
superimposed on the template using the rigid body fit option in 
SYBYL-X 2.1. The alignment of the compounds is shown in Fig 2. 

CoMFA field calculation 

The alignment training set of molecules were positioned inside grid 
boxes and grid spacing value of 2 Å in all Cartesian directions. The 
grid box dimensions were determined automatically in such a way 
that the region boundaries were extended beyond 4 Å in each 
direction for the co-ordinates of each molecule.  

The steric (vdW interaction) and electrostatic (Columbic terms) 
fields were calculated at each intersection using standard Tripos 
force field. A distance dependent dielectric constant of 1.00 was 
used. A sp3 hybridized carbon atom with +1 charge served as probe 
atom to calculate steric and electrostatic fields. The cut off value for 
both steric and electrostatic interaction was set to 30 kcal/mol. 

CoMSIA field calculation 

All five physicochemical descriptors (electrostatic, steric, 
hydrophobic and hydrogen bond donor and acceptor) were 
evaluated at each lattice intersection of a regularly spaced grid of 2.0 
Å. A probe atom with radius of 1 Å, +1 charge, hydrophobicity +1.0, 
H-bond donor and acceptor properties of +1.0 was used to evaluate 
the CoMSIA physicochemical descriptors. For attenuation factor (α) 
controlling the steepness of Gaussian function, the standard value of 
0.3 was accepted.  

The steric indices are related to the third power of the atomic radii, 
electrostatic descriptors are derived from atomic partial charge, 
hydrophobic fields are derived from atom based parameters, and H-
bond donor and acceptor indices are obtained by a rule based 
method based on experimental results. 

Topomer CoMFA 

Topomer CoMFA is an alignment independent 3D-QSAR method that 
combines the topomer search method (a fragment alignment 
approach) with the conventional CoMFA method. A 3D-QSAR model 
was generated by splitting the molecules into fragments, 
topomerically aligning each fragment, and calculating steric and 
electrostatic field descriptor values for the topomerically aligned 
fragments to create a CoMFA table with the field descriptor values. 
Besides the common core of the ligand, we split side functional 
groups into two R-groups that refer to the R1 and R2 groups. 

To evaluate the predictive ability of the Topomer CoMFA model, 
structure optimization of the test set was carried out as described 
previously for the training set. The pKi,appvalues of the test set were 
predicted on the basis of the constructed model.  

Internal validation 

Partial Least Square (PLS) regression [28-30] was used to analyse 
the training set by correlating the variation in the pKi,appvalues with 
variations in their CoMFA,CoMSIA and Topomer CoMFA interaction 
fields. The cross-validation analysis was performed using leave-one-
out (LOO) method wherein one compound is removed from the data 
set and its activity is predicted using the model derived from the rest 
of the data set. The cross validated r2 that resulted in optimum 
number of components and lowest standard error of prediction was 
taken. To speed up the analysis and reduce noise, a minimum 
column filtering value (r) of 2.00 kcal⁄mol was used for  the cross-
validation. Final analysis (non-cross-validation) was performed to 
calculate conventional r2 ncv 

The predictive abilities of the CoMFA, CoMSIA and Topomer CoMFA 
models were determined from a test set of compounds not included 
in the model generation. The experimental and predicted pK

using the optimum number of 
components obtained from the LOO cross-validation analysis.  

External Validation of the 3D-QSAR models 

i,app

 

 
values based on the selected CoMFA and CoMSIA and topomer 
CoMFA models for the test set and training set of compounds are 
listed in Table 2. 
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Table 2: The experimental p Ki, app, predicted p Ki, app 

Cmpd Code 

and their residuals for the training and test set molecules using CoMFA, CoMSIA and 
topomer CoMFA. 

Actual pIC CoMFA 50 CoMSIA Topomer CoMFA 
Predicted pIC Residual 50 Predicted pIC Residual 50 Predicted pIC Residual 50 

Training Set 
6. 9.301 9.6495 0.3485 9.7179 0.4169 9.7046 0.4036 
13 10.397 9.9483 -0.4496 9.8407 -0.5572 9.9064 -0.4915 
14 8.6021 8.1868 -0.4153 8.1996 -0.4025 8.1767 -0.4254 
15 7.2147 7.3478 0.1331 7.222 0.0073 7.2837 0.069 
16 9.6383 9.6078 -0.0305 9.5797 -0.0586 9.6175 -0.0208 
17 8.6198 8.9371 0.3173 8.9578 0.338 8.9713 0.3515 
18 8.4318 8.7441 0.3123 8.7749 0.3431 8.8022 0.3704 
19 8.4815 8.2516 -0.2299 8.1978 -0.2837 8.209 -0.2725 
20 9.8239 9.7373 -0.0866 9.6767 -0.1472 9.7226 -0.1013 
21 8.4202 8.4139 -0.0063 8.3903 -0.0299 8.3455 -0.0747 
22 8.4437 8.8313 0.3876 8.8176 0.3739 8.8142 0.3705 
23 10.154 9.476 -0.6789 9.4275 -0.7274 9.4771 -0.6778 
26 9.2007 9.1372 -0.0635 9.1672 -0.0335 9.1882 -0.0125 
27 8.4815 8.5299 0.0484 8.5542 0.0727 8.542 0.0605 
28 8.1079 7.7828 -0.3251 7.7692 -0.3387 7.7658 -0.3421 
29 8.2441 8.3057 0.0616 8.3717 0.1276 8.373 0.1289 
30 7 7.7929 0.7929 7.7915 0.7915 7.7798 0.7798 
31 8.9208 9.2476 0.3268 9.2707 0.3499 9.2933 0.3725 
32 8.1079 7.8917 -0.2162 7.9791 -0.1288 7.9162 -0.1917 
33 8.4559 8.3642 -0.0917 8.4163 -0.0396 8.385 -0.0709 
34 8.284 8.2602 -0.0238 8.3674 0.0834 8.2729 -0.0111 
35 9.3665 9.7021 0.3356 9.5925 0.226 9.6775 0.311 
36 7.6383 7.9296 0.2913 7.9487 0.3104 7.9478 0.3095 
38 9.2147 9.398 0.1833 9.3386 0.1239 9.3886 0.1739 
39 8.8239 8.6802 -0.1437 8.7006 -0.1233 8.7424 -0.0815 
41 8.6021 8.5473 -0.0548 8.5403 -0.0618 8.5734 -0.0287 
42 8.284 8.0226 -0.2614 7.9658 -0.3182 7.9801 -0.3039 
44 8.3188 8.1468 -0.172 8.1456 -0.1732 8.1166 -0.2022 
45 8.7447 8.5652 -0.1795 8.575 -0.1697 8.5853 -0.1594 
46 10.301 9.9717 -0.3293 9.9277 -0.3733 9.9522 -0.3488 
47 7.4685 7.3463 -0.1222 7.3001 -0.1684 7.3296 -0.1389 
48 9.8861 9.6321 -0.254 9.6659 -0.2202 9.6633 -0.2228 
49 8.6778 8.9474 0.2696 9.0398 0.362 9.0171 0.3393 
50 7.7447 8.2824 0.5377 8.2875 0.5428 8.2409 0.4962 
52 8.5086 8.2869 -0.2217 8.3004 -0.2082 8.2549 -0.2537 
53 9.7959 9.7489 -0.047 9.7666 -0.0293 9.7684 -0.0275 
54 8.7959 8.8323 0.0364 8.907 0.1111 8.8601 0.0642 
55 8.7696 9.2728 0.5032 9.172 0.4024 9.2392 0.4696 
56 7.7447 7.4658 -0.2789 7.5148 -0.2299 7.5095 -0.2352 
59 8.3979 8.2545 -0.1434 8.2823 -0.1156 8.3041 -0.0938 
60 7.6198 7.5341 -0.0857 7.5082 -0.1116 7.5278 -0.092 
61 8.0177 8.0539 0.0362 8.1028 0.0851 8.1351 0.1174 
63 9.0458 9.0087 -0.0371 8.9934 -0.0524 9.0554 0.0096 
65 8.1549 8.0968 -0.0581 8.137 -0.0179 8.1471 -0.0078 
66 9.1549 9.5046 0.3497 9.3947 0.2398 9.3758 0.2209 
67 6.8697 7.7475 0.8778 7.7475 0.8778 7.6461 0.7764 
70 8.8861 8.5509 -0.3352 8.5276 -0.3585 8.4407 -0.4454 
72 9.0458 8.3528 -0.693 8.3414 -0.7044 8.2717 -0.7741 
74 9.301 9.3127 0.0117 9.2419 -0.0591 9.192 -0.109 
77 6.1308 6.5054 0.3746 6.5017 0.3709 6.5203 0.3895 
84 6.3188 6.1707 -0.1481 6.3327 0.0139 6.3365 0.0177 
85 5.7696 5.5644 -0.2052 5.4621 -0.3075 5.4281 -0.3415 
86 10.397 10.313 -0.0849 10.4296 0.0317 9.9751 -0.4228 
87 8.769 8.21 -0.5596 8.1654 -0.6042 8.2454 -0.5242 
88 9.522 9.5072 -0.0157 9.5615 0.0386 9.6861 0.1632 
90 8.244 8.2674 0.0233 8.1964 -0.0477 8.2637 0.0196 
91 8.522 8.6671 0.1442 8.7474 0.2245 8.8709 0.348 
93 8.041 8.3858 0.3448 8.3775 0.3365 8.4141 0.3731 
Test Set  
12 9.1249 8.4451 -0.6798 8.6582 -0.4667 8.5003 -0.6246 
24 8.1871 7.7128 -0.4743 7.7901 -0.397 7.7475 -0.4396 
40 8.3979 7.9951 -0.4028 7.9425 -0.4554 7.9661 -0.4318 
43 9.284 9.4726 0.1886 9.4331 0.1491 9.4937 0.2097 
51 8.2147 8.7674 0.5527 8.8612 0.6465 8.8481 0.6334 
58 8.8861 8.9292 0.0431 8.9042 0.0181 8.9503 0.0642 
62 8.0809 7.5503 -0.5306 7.5212 -0.5597 7.5418 -0.5391 
64 7.6778 7.6808 0.003 7.7121 0.0343 7.6783 0.0005 
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68 8 6.9486 -1.0514 6.7918 -1.2082 6.7532 -1.2468 
69 9.3872 9.167 -0.2202 9.1339 -0.2533 9.0869 -0.3003 
71 9.0458 7.8401 -1.2057 7.7601 -1.2857 7.6644 -1.3814 
73 8.5686 7.8341 -0.7345 7.7546 -0.814 7.6784 -0.8902 
75 8.4202 7.9524 -0.4678 7.9432 -0.477 7.8149 -0.6053 
76 9.0969 8.4017 -0.6952 8.376 -0.7209 8.2837 -0.8132 
80 6.4559 6.1459 -0.31 6.2384 -0.2175 6.2314 -0.2245 
83 6.1871 4.7418 -1.4453 4.8427 -1.3444 4.8229 -1.3642 
89 9.301 8.9122 -0.3888 8.9453 -0.3557 9.0399 -0.2611 
92 8.1871 8.2432 0.0561 8.1769 -0.0102 8.2777 0.0906 
94 8.8239 8.762 -0.0619 8.8049 -0.019 8.8829 0.059 

 

For a QSAR model, internal validation of leave-one-out cross-
validated q2 is commonly used. But Golbraikh and Tropsha [31-32] 
reported that the high value of q2 was necessary and important but 
not the sufficient condition for a model to have a high predictive 
power. To estimate the predictive ability of the QSAR model, 
squared correlation coefficient values between the observed and 
predicted values of the test set compounds with intercept (r2) and 
without intercept (r2 0) were calculated. According to Golbraikh and 
Tropsha, models are considered acceptable if they satisfy all of the 
following conditions: 

q2>0.5 
r2>0.6 
[(r2-r0 2)/r2]<0.1 

 

Where k is the slope of regression lines through the origin, k is 
obtained according to the following formula: 

 

Where 

y= Experimental activity of Test set of Compounds 
yi=Predicted Activity of Test set of compounds 
R2 0 is calculated as follows 

 

Where 

 

According to Roy and Roy [30, 33-34] for a model with good external 
predictability, a difference between r2 and r2 0 values needs to be 
studied. An additional statistic for external validation r2 m was 
introduced by the following equation. 

 

A value of r2 m 

RESULTS AND DISCUSSION 

greater than 0.5 may be taken as an indicator of good 
external predictability. 

CoMFA Statistical Results 

For the CoMFA model, the highest cross-validated q2 was obtained 
by using the combination of steric and electrostatic fields. The best 
CoMFA model gave q2and r2 values of 0.703 and 0.816 respectively. 
The standard error for prediction was 0.358 with twelve 
components. The corresponding field contributions are 66.1&33.9 
for steric and electrostatic respectively. Therefore, the steric field 
had greater influence than the electrostatic field on MetAP2 
inhibitory activity. CoMFA analysis results are also summarized in 
Table 2 and 3. Fig 3A shows the relationship between the predicted 
and the experimental pKi, app values for the CoMFA model. The cross-
validation results suggest that a reliable CoMFA model was 
successfully constructed. 

 

 

Fig. 3: Calculated pKi, app versus experimental p Ki, app

 

CoMFA contour Maps 

 values for the 57 training set molecules and 19 test set molecules obtained by PLS 
analysis using CoMFA (a), CoMSIA (b) & Topomer CoMFA (c) models. 

CoMFA steric and electrostatic fields are shown in Fig 4A & 4B, 
respectively. The green contour characterizes the regions where 
bulky substituents would increase the MetAP2 inhibitory activity; 
whereas yellow contour indicates the regions where steric bulk 
would decrease inhibitory action. The contribution of the green and 
yellow contours was maintained as the default value of 80 and 20, 
respectively. The blue contour depicts the favorable sites for 

electropositive groups while the red contour favors the 
electronegative groups.  

CoMFA contour map analysis provided significant information about 
the steric and electrostatic favorable and unfavorable regions. 
CoMFA steric contours (Fig 4A) showed a green contour around the 
carbon adjacent to sulphur and C2 of the phenyl ring (compound 
86). The most potent compounds of the series 13 & 86 possess no 
bulky group on second position of the phenyl group. Small steric 
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bulky groups are favorable at second and fourth position of R2 
group. The phenyl group at R2 position is the most potent having no 
steric bulky groups. In case of compounds containing methyl group 
at second position of R2 (14, 24, 36, 56, 67, 87), the alignment of 
the steric group is towards the sterically favorable region, but 

reducing its activity as compared to compounds with no substitution 
(86). In compounds with methoxy group at ortho position of R2 (15, 
47, 68) the activity has further decreased as compared to methyl 
group because the methoxy group is completely oriented in the 
sterically unfavorable region. 

 

Table 3: The optimal results of the CoMFA, CoMSIA and Topomer CoMFA analyses for the MetAP2 Inhibitors 

Parameters MetAP2 Inhibitors 
CoMFA CoMSIA Topomer CoMFA 

q 0.703 2 0.704 0.746 
r 0.894 2 0.889 0.886 
SEE 0.358 0.367 .36 
F 30.1 22.1 47.6 
N. C 12 12 8 
Donor - 1.7  
Acceptor - 20.1  
Hydrophobic - 37.7  
Steric 66.1 13.1  R1 R2 

Steric+ve (green) 0.141 1.547 
Steric-ve (yellow) -0.282 -0.886 

Electrostatic 33.9 27.4 Electro+ve (blue) 0.316 0.757 
Electro-ve (red) -0.007 -0.426 

 

 

Fig. 4: CoMFA contour maps of compound 86. (a) CoMFA steric 
contours: Green contours indicate regions where steric 

interaction is favored. Yellow contours are areas where the 
steric interaction is disfavored. (b) CoMFA electrostatic 
contours: the blue region represents the area where an 

electropositive group is favorable and the red region refers to 
the area where an electronegative group is favorable. 

 

In case of electrostatic contours (Fig 4B), the red contour occupies 
second position of R2 substitution of phenyl ring and blue at third 
position. In compound 16, the fluoro group at second position is 
favorable because fluorine is an electronegative atom and aligns in 
the red contour. In case of 3,4 difluoro derivative (17) activity has 
decreased because the third fluoro group aligns in the 
electropositive region. Compound 21 containing thiazole ring, 
nitrogen of thiazole ring aligns in the electropositive region, while 
sulphur aligns in the electronegative region. This leads to decrease 
in activity compared to compound 22 which has an oxazole ring at 
R2 position. Oxygen and nitrogen aligns in the red contour 
enhancing activity over compound 21. These results in case of 
electrostatic contours are observed in all sets of compounds. From 
these results we can conclude that in case of aromatic R2 groups, an 
electronegative group at ortho position is favorable for enhanced 
activity. In case of five member ring, electropositive group at third 
and fourth position, and electronegative group at second position is 
favorable. 

CoMSIA statistical results 

For the CoMSIA model, the highest cross-validated q2 was obtained 
by using the combination of steric, electrostatic, hydrophobic and H-
bond acceptor and H-bond donor fields. The CoMSIA statistical 

results are q2-0.704, r2-0.889, SEE-0.367, with twelve components. 
The corresponding CoMSIA field contributions are 1.7%, 20.1%, 
37.7%, 13.1%, and 27.4%, respectively. CoMSIA analysis results are 
also summarized in Table 2 and 3. Fig 3B shows the relationship 
between the predicted and the experimental pki, app values for the 
CoMSIA model. From the cross-validation results suggesting that a 
reliable CoMSIA model was successfully constructed. 

CoMSIA Contour Maps 

The CoMSIA contour maps derived using steric, electrostatic, 
hydrophobic, hydrogen bond donor and acceptor fields are 
represented in Fig 5. The CoMSIA steric and electrostatic contours in 
Fig 5D and 5E are similar to those of CoMFA. 

 

 

Fig. 5: CoMSIA contour maps based on compound 86: (a) 
CoMSIA hydrogen bond donor contours - cyan and purple 

contours represent favorable and unfavorable hydrogen bond 
donor regions, respectively (b) CoMSIA hydrogen bond 

acceptor contours - magenta and red contours represent 
favorable and unfavorable hydrogen bond acceptor regions, 
respectively (c) CoMSIA hydrophobic contour maps- yellow 

contours represent regions where hydrophobic groups increase 
activity, while grey contours highlight regions that would favor 

hydrophilic groups. (d) CoMSIA steric contour maps - green 
contour favors steric or bulky group and yellow contour 

denotes disfavored region. (e) CoMSIA electrostatic contour 
maps - blue contour indicates electropositive charge and red 

contour electronegative charge. 

The hydrogen bond donor map of CoMSIA model is displayed in Fig 
5A. In CoMSIA hydrogen bond donor field favored regions are 
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represented by cyan contours and unfavorable regions are 
represented by purple contours respectively. A big cyan contour was 
observed adjacent to the aniline nitrogen and a small contour above 
the NH of the triazole ring. The triazole NH group is essential for the 
formation of hydrogen bonding with HIS231of the MetAP2 active 
site. The anilino-NH group is essential for hydrogen bonding 
interaction with ASP262 for MetPA2 inhibitory activity (Fig 1). 

In hydrogen bond acceptor contours (Fig 5B), magenta contour 
favors the regions of hydrogen bond acceptor substituents on 
ligands and red contour represent areas where such substituents 
and compounds may be unfavored. In compound 86, a magenta 
contour is observed near the nitrogen on the pyridine ring. 
Hydrogen bond acceptors at this region greatly enhance the MetAP2 
inhibitory action. The pyridine ring at R1 substitution of compounds 
86 - 94 is showing greater activity than all other compounds in the 
series for the corresponding R2 substitution. Hydrogen bond 
acceptors are also favored at third position of R2 phenyl group 
substitutions. In compound 27, having fluoro group at third and 
fourth position of the phenyl ring, the 4-fluoro group aligns in the 
red contour which results in decrease in activity as compared to 
compound 26. These observations conclude that hydrogen bond 
acceptors at third position of R1 and R2 phenyl substitution greatly 
enhance the activity.  

Hydrophobic contour maps are shown in Fig 5C. The yellow and 
grey regions indicate the areas where hydrophobic and hydrophilic 
properties are preferred respectively. A big yellow contour 
overlapped the R2 substituted phenyl ring. Compound 86 with 
highest inhibitory action was found to have a hydrophobic 
substitution at this region. In compounds 77-85, the R1 substitution 
is a biphenyl ring which is highly hydrophobic in nature. However 
this region is covered by grey contours which are unfavorable for 
hydrophobic substituents. The hydrophobic nature of these 
compounds led to a large decrease in activity.  

Topomer CoMFA 

Statistical parameters obtained were LOO cross-validated q2- 0.746 
and r2- 0.886 with eight optimum components. Standard error was 
found to be 0.0.36 for r2 and 0.53 for q2 having y-intercept of 8.75. 
Other statistical parameters for the topomer generated model are 
given in Table 3, and contours for each field are shown in Fig 6. The 
relationship between the predicted and the experimental pKi, app 

values are shown in scattered plot Fig 3C. 
 

 

Fig. 6: Topomer CoMFA contour maps of compound 86. (R1 a & 
R2 c) CoMFA steric contours: Green contours indicate regions 
where steric interaction is favored. Yellow contours are areas 

where the steric interaction is disfavored. (R1 b & R2 d) CoMFA 
electrostatic contours: the blue region represents the area 

where an electropositive group is favorable and the red region 
refers to the area where an electronegative group is favorable. 

 

The topomer CoMFA 3D contour maps around R1 and R2 were 
generated by plotting the coefficients from the model. The maps are 
shown using compound 86 as a reference structure. In the steric 
contour map (Fig 6A), the green contour at C1, C2 and C3 of R2 

substitution indicate that a bulky substituent would be favorable, 
and the yellow contours denote where bulky substituents would not 
be tolerated. In the electrostatic contours (Fig 6B) of R2 
substitution, the blue contours located at the C-4 site indicate that 
electropositive groups would be favorable, and the red contours 
indicate that electronegative groups would be favorable which 
suggested that bulky groups with electronegative potential would be 
favorable for activity. Regarding the contours of the R1 (Fig 6C) 
group, green contours were located near the C-1 site, and yellow 
contours were located at C2, C3 and C4 position. The red contours 
were located at C1 and C3. Blue contours were located at C1, C2 and 
C4 position. This demonstrated that a moderately bulky group with 
electronegative potential at R1 substitution would improve the 
MetAP2 inhibitory activity. The model can be used to search for R 
groups in large databases to identify potential MetAP2 inhibitors. 

External validation results 

Further, external validation was carried out for 3D-QSAR models as 
per Golbraikh and Roy method. CoMFA and CoMSIA models are 
satisfied the external validation parameters. External validation 
results for the CoMFA, CoMSIA and Topomer CoMFA models., the 
valid r2 m (≥0.5) values of 0.912, 0.95 and0.941 as well as high slope 
of regression lines through the origin [k (0.85 ≤ k ≥1.15)] values of 
1.0454, 1.044 and 1.04658 respectively. The calculated [[(r2-r0 2)/r2

Validation Parameter 

] 
<0.1] values of -0.0086, 0.001985 and 0.00380 were also obtained 
respectively. These results suggest the generated best CoMFA, 
CoMSIA and Topomer CoMFA models have good predictive abilities. 
These models provide the tool to guide the design and synthesis of 
novel and more potent 1,2,4 triazoles as MetAP2 inhibitors. The 
external validation results are summarized in Table 4.  
 

Table 4: Results of validation 

CoMFA CoMSIA Topomer CoMFA 
q 0.703 2 0.704 0.746 
r 0.894 2 0.889 0.882 
[(r2-r0 2)/r2 0.0086 ]<0.1 0.001985 .00380 
0.85 ≤ k ≥1.15 1.0454 1.044 1.04658 
r2 m 0.912 > 0.5 0.95 0.941 

 

Design of new molecules 

Ligand-based method such as 3D QSAR is widely used not only 
because it is not very computationally intensive but also because it 
can lead to the rapid generation of QSARs from which the biological 
activity of newly designed compounds can be predicted. In contrast, 
an accurate prediction of activity of untested compounds based on 
the computation of binding free energies is both complicated and 
lengthy. The CoMFA contour maps are a clear indicator for 
intuitionistic medicinal chemist for predicting novel molecules with 
enhanced MetAP2 inhibitory activity. The key findings are depicted 
in Fig 7. The fourth triazole NH group and the adjacent NH group 
form hydrogen bonds in the MetAP2 active site. Electronegative 
groups are favored at C3 position of R1 and small bulky groups and 
electronegative groups beneficial at C2and C3 position of R2 
respectively. 

 

 

Fig. 7: Key findings of the 3D-QSAR study.
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CONCLUSION 

Present studies indicate the importance of ligand orientation and 
selection of training set molecules in the development of statistically 
significant QSAR models. All models demonstrated good statistical 
results which emphasizes the importance of steric, electrostatic, 
hydrophobic, H-bond donor and acceptor fields. Furthermore, the 
contour maps along with the docking results offered enough 
information to understand the structure–activity relationship and 
identified structural features influencing the inhibitory activity. 
Overall, the correlation of the results obtained from QSAR and the 
3D topology of the protein structure suggested the robustness of the 
QSAR models. The most active compound from the series (86) was 
subjected to docking studies. The results showed specific interaction 
of the fourth triazole NH with HIS 231 and the anilino NH with Asp 
262. Topomer CoMFA 3D-QSAR model with good internal and 
external prediction capability was established for a training set of 58 
MetAP2 inhibitors, and a test set of 19 molecules were employed to 
validate the external predictive ability of the models. The Topomer 
search model developed can be used to screen R-groups various 
molecule databases, to identify new molecules with higher 
bioactivity. The present work provides references to drug design for 
MetAP2 inhibitors. The structural requirements identified in the 
present study can be utilized strategically in the design of novel, 
potent and selective MetAP2 inhibitors. 
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