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ABSTRACT 

Objective: DNA topoisomerase is one of the important targets for anticancer agents. Many triazole derivatives have been shown to possess 
cytotoxic activity. In this paper, we present the design and in silico docking of a virtual library of molecules with DNA topoisomerase II along with 
their synthesis and In vitro cytotoxicity profile.  

Methods: Sybyl X 2.1 programmesss were used to perform the docking experiments on DNA topoisomerase II using etoposide as ligand. In vitro 
anticancer activity was carried out by trypan blue exclusion assay against EAC cells. DNA fragmentation studies were performed by Gel 
electrophoresis to identify the cause of cell death induced by these compounds.  

Results: Among the compounds studied for docking, 12c generated the highest docking score (13.66) and showed hydrogen bonding interactions 
with glycine 778 at a distance of 1.879 A˚. the compounds 12c & 12g showed the highest level of cytotoxicity with IC50 value of 0.55 μM and 0.62 μM 
respectively. Compounds 12c and12g were subjected to DNA fragmentation studies to identify the cause of cell death induced by these compounds. 
Gel electrophoresis of these compounds showed a typical feature of apoptosis ladders in agarose gel. Compound 12c was able to induce apoptosis at 
a concentration of about 3 μM. 

Conclusion: A series of bis-triazoles were synthesized targeted to DNA topoisomerase II and evaluated their In vitro cytotoxicity. The compound 
12c was found to be most active and also exhibited apoptosis inducing potential.  

Keywords: DNA Topoisomerase, Bis-triazole, Cytotoxicity, DNA fragmentation, Apoptosis. 

 

INTRODUCTION 

Nitrogen-containing five-membered heterocycles play a vital role in 
drug discovery to identify novel chemical entities of immense 
therapeutic potential. Triazoles are the most privileged structures 
that are widely explored for their range of pharmacological properties 
[1-4]. The application of anastrozole and letrozole as aromatase 
inhibitors for the treatment of estrogen-dependent cancer as well as 
the anticancer properties of ribavirin led to the investigation of many 
1,2,4 triazole derivatives in laboratorial conditions for their antitumor 
activity [5-8]. Among the 1,2,4 triazole derivatives, the mercapto and 
thione substituted 1,2,4 triazole ring systems were reported to possess 
a variety of anti-tumor properties [9-14].  In literature, 1,2,4-triazoles 
are well documented for their broad spectrum of biological 
properties, including antifungal [15], antiviral [16], 
antimicrobial[17], A2A receptor antagonists [18], and COX-2 
inhibitors [19]. Additionally 1,2,4 triazole derivatives have been 
reported to inhibit several enzymes which play an important role in 
the expression of tumors such as Protein Kinase CK2 [20], 
methionine aminopeptidase type II [21-22], Janus kinase 2 [23], 
Tankyrases [24-25]. Recently 1,2,4 triazoles have been identified as 
a new class of tubulin polymerization inhibitors [26]. In view of the 
previous rationale and in continuation of an on-going program 

aiming at finding new structural leads with potential 
chemotherapeutic activities, a new series of triazole derivatives have 
been synthesized and screened for their anticancer activity. 

MATERIALS AND METHODS 

Design and Virtual Screening of Molecules 

The designing and docking studies were carried out by using SYBYL 
X 2.1 (CERTARA, St Louis, Montana, USA). The protein structure of 
human Topoisomerase- II (TP II) was obtained from the protein data 
bank (PDB Code: 3QX3). This structure is determined at 2.16A° 
resolution. This structure of TP II is complexed with the TP II 
inhibitor etoposide. We performed the minimization of human TP II 
with 3QX3 as template using the ‘prepare protein’ module in SYBYL. 
The ligand substructure was extracted and all unnecessary water 
molecules were removed. Explicit hydrogen’s were added to the 
protein and protein model was charged with Gasteiger-Marsili and 
ligand using Gasteiger-Huckel charges. Energy minimization and 
relaxation of the loop region were performed using 1000 iterations 
with AMBER7 FF99 as force field. All the molecules were docked 
into the active site of Human TP-II. The results of docking study are 
given in Table 1. The hydrogen bonding interactions of compounds 
in the active site of Topoisomerase II is depicted in Fig. 1. 

 

Table 1: Docking Score expressed as total score for the docked compounds. 
S. No. Name Total_ Score Crash Polar 
Std Etoposide 13.72 -1.3661 3.7162 
1 12c 11.72 -1.6505 0.8132 
2 12g 11.67 -2.5205 0.5037 
3 12a 11.65 -1.8578 3.2051 
4 12b 11.44 -2.5574 0.5988 
5 12d 11.43 -3.0563 1.1692 
6 12h 11.41 -1.7074 3.5283 
7 12i 11.38 -3.7593 0.5528 
8 12e 11.36 -2.4724 1.0666 
9 12f 11.32 -2.7468 0.9162 
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Fig. 1: (a)Etoposide showing hydrogen bonding interactions in 
the active site of DNA topoisomerase II, (b) Compound 12c in 

the active site of Topoisomerase II. 
 

Chemistry 

The reagents used for synthesis were of laboratory grade and 
solvents were of analytical grade. The melting point of the 
compound was determined by open capillary method, expressed 
in°C. The reaction was monitored periodically through TLC with the 
solvent system hexane: ethyl acetate in the ratio of 2:3 and hexane: 
methanol in the ratio of 3:2.  

IR spectra were recorded on Shimadzu FT-IR 8400-S 
spectrophotometer by KBr pellet technique and are expressed in cm-

1. 1H-NMR spectra was recorded on Bruker 400 MHz FT-NMR 
spectrophotometer using DMSO and CDCl3 as solvent and TMS as 
internal standard (δ ppm). The chemical shifts are expressed in 
δppm. The splitting patterns were designated as follows; s: singlet; 
d: doublet; q: quartet; m: multiplet.[13]C-NMR spectra were 
recorded on Bruker 400 MHz FT-NMR spectrophotometer using 
DMSO as solvent. Mass spectra were recorded using Shimadzu 
Electron Impact Mass Spectrophotometer. All chemicals used for 
synthesis were purchased from (Sigma–Aldrich). 

Synthesis 

The strategy adopted to synthesize the molecules is depicted in 
Scheme 1. The aryl carbohydrazide (5-7) were converted to 3,4- 
diaryl, 5 mercapto 1,2,4-triazoles (10 a-i) by base catalysed 
cyclization of respective thiosemicarbazides. The triazoles are then 
treated with 1- bromo-3-chloro propane followed by 
isopropylamine to yield the3-(4,5-substituted)-4H-1,2,4-triazol-3-
ylthio)-N-isopropylpropan-1-amine derivatives (12a-i). 
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Chemistry 

General procedure for the synthesis of 3-(4,5-substituted)-4H-
1,2,4-triazol-3-ylthio)-N-isopropylpropan-1-amine 12 (a-i). 

To a solution of appropriate 4,5-(substituted)-4H-1,2,4-triazole-3-
thiol(10 a-i) (0.001 mol) in 10 ml acetone, 1-bromo-3-
chloropropane (0.001 mol, 0.15 ml) was added and the mixture was 
stirred under reflux for 4–8 h in the presence of potassium 
carbonate (0.01 mol, 1.37g). The reaction was monitored by TLC 
using a mixture of ethyl acetate & hexane in 3:2 ratio as the mobile 
phase. The excess of acetone was removed under reduced pressure. 

The precipitate formed was washed with petroleum ether to obtain 
3-(3-chloropropylthio)-4,5-disubstituted-4H-1,2,4-triazole (11 a-i) 
derivatives. 

To a solution of appropriate 3-(3-chloropropylthio)-4,5-
disubstituted-4H-1,2,4-triazole derivatives (11 a-i) (0.001 mol) in 
10 ml methanol, isopropylamine (0.004 mol, 0.23 ml) was added and 
refluxed for 8-10 h at 70-80°C. The reaction was monitored by TLC 
using a mixture of hexane: methanol in 3:2 ratio as mobile phase. 
The mixture was then acidified with 2N hydrochloric acid and 
washed with ether. To the resulting aqueous phase 2N sodium 
hydroxide was added at 0°C. The solid residue was washed with 
water, dried and recrystallized from cyclohexane to obtain 3-(4,5-
substituted)-4H-1,2,4-triazol-3-ylthio)-N-isopropylpropan-1-amine 
(12 a-i) derivatives. 

3-(4-phenyl-5-(pyridin-4-yl)-4H-1,2,4-triazol-3-ylthio)-N-
isopropyl propan-1-amine (12a) 

Yield 44%, mp: 209-211℃;IR (KBr) υ(cm-1):1511 (Ar C=C), 3011 (Ar 
C-H), 2941 (Ali C-H), 3320 (N-H), 1161 (C-N).; 1H NMR (CDCl3): 
(ppm) 1.27 (6H, d, -CH(CH3)2), 1.89 (2H, p, -CH2-CH2-CH2-), 2.26 (1H, 
q, -CH2-NH-), 2.71 (2H, q, -CH2-NH), 3.45 (2H, t, -S-CH2-), 3.92 (1H, m, 
-NH-CH-(CH3)2), 7.21-8.56 (9H, m, Ar-H); [13]C NMR (CDCl3): (ppm) 
21.4, 32.3, 35.4, 43.1, 47.7, 119.8, 128.1, 128.7, 129.6, 134.2, 145.5, 
149.1, 155.2; EI-MS m/z (%) 353.13 (M+, 42); Anal. Calcd (%) for 
C19H23N5S: C, 64.56; H, 6.56; N, 19.81; Found: C, 64.45; H, 6.56; N, 
19.76. 

3-(4-(4-chlorophenyl)-5-(pyridin-4-yl)-4H-1,2,4-triazol-3-
ylthio)-N-isopropylpropan-1-amine (12b) 

Yield 38%, mp: 219-222℃;IR (KBr) υ(cm-1): 1538 (Ar C=C), 3018 (Ar 
C-H), 2960 (Ali C-H), 3476 (N-H), 1049 (C-N), 679 (C-Cl); 1H NMR 
(CDCl3): (ppm) 1.17 (6H, d, -CH(CH3)2), 1.83 (2H, p, -CH2-CH2-CH2-), 
2.12 (1H, q, -CH2-NH-), 2.54 (2H, q, -CH2-NH), 3.57 (2H, t, -S-CH2-), 
3.82 (1H, m, -NH-CH-(CH3)2), 7.12-8.69 (8H, m, Ar-H); [13]C NMR 
(CDCl3): (ppm) 25.5, 29.9, 32.7, 45.8, 48.3, 121.6, 126.2, 128.2, 130.1, 
133.7, 148.4, 150.7, 154.3; EI-MS m/z (%) 387.19 (M+, 48); Anal. 
Calcd (%) for C19H22ClN5S: C, 58.83; H, 5.72; N, 18.05; Found: C, 
58.87; H, 5.79; N, 17.91. 

3-(4-(4-fluorophenyl)-5-(pyridin-4-yl)-4H-1,2,4-triazol-3-
ylthio)-N-isopropylpropan-1-amine (12c) 

Yield 45%, mp: 230-233℃;IR (KBr) υ(cm-1): 1595 (Ar C=C), 3011 (Ar 
C-H), 2970 (Ali C-H), 3390 (N-H), 1025 (C-N), 1242 (C-F); 1H NMR 
(CDCl3): (ppm) 1.23 (6H, d, -CH(CH3)2), 1.96 (2H, p, -CH2-CH2-CH2-), 
2.19 (1H, q, -CH2-NH-), 2.61 (2H, q, -CH2-NH), 3.51 (2H, t, -S-CH2-), 
3.73 (1H, m, -NH-CH-(CH3)2), 7.34-8.54 (8H, m, Ar-H); [13]C NMR 
(CDCl3): (ppm) 23.5, 30.1, 34.7, 45.4, 47.7, 115.8, 122.1, 125.7, 131.3, 
134.2, 147.4, 149.7, 153.6, 162.7; EI-MS m/z (%) 371.19 (M+, 32); 
Anal. Calcd (%) for C19H22FN5S: C, 61.43; H, 5.97; N, 18.85. Found: C, 
61.27; H, 5.89; N, 18.92. 

3-(5-(phenoxymethyl)-4-phenyl-4H-1,2,4-triazol-3-ylthio)-N-
isopropylpropan-1-amine (12d) 

Yield 33%, mp: 222-225℃;IR (KBr) υ(cm-1): 1518 (Ar C=C), 3017 (Ar 
C-H), 2983 (Ali C-H), 3412(N-H), 1186 (C-N); 1H NMR (CDCl3): (ppm) 
1.10 (6H, d, -CH(CH3)2), 1.81 (2H, p, -CH2-CH2-CH2-), 2.11 (1H, q, -
CH2-NH-), 2.55 (2H, q, -CH2-NH), 3.17 (2H, t, -S-CH2-), 3.45 (1H, m, -
NH-CH-(CH3)2), 5.11 (2H, s, -O-CH2-), 6.75-7.35 (10H, m, Ar-H); [13]C 
NMR (CDCl3): (ppm) 24.5, 30.9, 34.6, 44.9, 49.7, 66.4, 114.1, 121.7, 
126.7, 128.1, 129.7, 148.1, 151.7, 161.6; EI-MS m/z (%) 382.25 (M+, 
65); Anal. Calcd (%) for C21H26N4OS: C, 65.94; H, 6.85; N, 14.65; 
Found: C, 65.82; H, 6.93; N, 14.49. 

3-(4-(4-chlorophenyl)-5-(phenoxymethyl)-4H-1,2,4-triazol-3-
ylthio)-N-isopropylpropan-1-amine (12e) 

Yield 44%, mp: 247-251℃;IR (KBr) υ(cm-1): 1645 (Ar C=C), 3066(Ar 
C-H), 2963 (Ali C-H), 3413 (N-H), 1062 (C-N), 660 (C-Cl); 1H NMR 
(CDCl3): (ppm) 1.17 (6H, d, -CH(CH3)2), 1.76 (2H, p, -CH2-CH2-CH2-), 
2.32 (1H, q, -CH2-NH-), 2.57 (2H, q, -CH2-NH), 3.42 (2H, t, -S-CH2-), 
3.96 (1H, m, -NH-CH-(CH3)2), 5.75 (2H, s, -O-CH2-),6.95-7.65 (9H, m, 
Ar-H); [13]C NMR (CDCl3): (ppm) 25.7, 32.2, 36.5, 43.6, 48.4, 67.4, 
114.9, 122.1, 125.7, 127.3, 128.2, 129.7, 135.7, 149.1, 153.6, 162.7; 



Purohit et al. 
Int J Pharm Pharm Sci, Vol 6, Issue 10, 185-189 

187 

EI-MS m/z (%) 416.20 (M+, 40); Anal. Calcd (%) for C21H25ClN4OS: C, 
60.49; H, 6.04; N, 13.44; Found: C, 60.43; H, 6.09; N, 13.49.  

3-(4-(4-fluorophenyl)-5-(phenoxymethyl)-4H-1,2,4-triazol-3-
ylthio)-N-isopropylpropan-1-amine (12f) 

Yield 49%, mp: 239-242℃;IR (KBr) υ(cm-1):1654 (Ar C=C), 3007 (Ar 
C-H), 2973 (Ali C-H), 3392 (N-H), 1186 (C-N), 1064 (C-F); 1H NMR 
(CDCl3): (ppm) 1.29 (6H, d, -CH(CH3)2), 1.86 (2H, p, -CH2-CH2-CH2-), 
2.35 (1H, q, -CH2-NH-), 2.69 (2H, q, -CH2-NH), 3.45 (2H, t, -S-CH2-), 
3.93 (1H, m, -NH-CH-(CH3)2), 5.57 (2H, s, -O-CH2-), 6.77-7.72 (9H, m, 
Ar-H); [13]C NMR (CDCl3): (ppm) 25.5, 30.1, 36.7, 45.4, 47.9, 68.7, 
114.9, 115.8, 122.1, 124.7, 129.4, 131.3,147.4, 149.7, 160.6, 163.3; 
EI-MS m/z (%) 400.26 (M+, 44); Anal. Calcd (%) for C21H25FN4OS: C, 
62.98; H, 6.29; N, 13.99; Found: C, 62.87; H, 6.35; N, 14.12. 

3-(5-((4-chlorophenoxy)methyl)-4-phenyl-4H-1,2,4-triazol-3-
ylthio)-N-isopropylpropan-1-amine (12g) 

Yield 52%, mp: 211-214℃;IR (KBr) υ(cm-1): 1518 (Ar C=C), 3017 (Ar 
C-H), 2965 (Ali C-H), 3430 (N-H), 1102 (C-N), 757 (C-Cl); 1H NMR 
(CDCl3): (ppm) 1.17 (6H, d, -CH(CH3)2), 1.93 (2H, p, -CH2-CH2-CH2-), 
2.16 (1H, q, -CH2-NH-), 2.78 (2H, q, -CH2-NH), 3.36 (2H, t, -S-CH2-), 
3.51 (1H, m, -NH-CH-(CH3)2), 5.21 (2H, s, -O-CH2-),6.85-7.56 (9H, m, 
Ar-H); [13]C NMR (CDCl3): (ppm) 23.1, 30.7, 33.4, 46.2, 48.6, 115.8, 
126.1, 127.7, 128.6, 129.9, 147.4, 150.7, 159.5; EI-MS m/z (%) 
416.19 (M+, 55); Anal. Calcd (%) for C21H25ClN4OS: C, 60.49; H, 6.04; 
N, 13.44;. Found: C, 60.43; H, 6.09; N, 13.39. 

3-(5-((4-chlorophenoxy)methyl)-4-(4-chlorophenyl)-4H-1,2,4-
triazol-3-ylthio)-N-isopropylpropan-1-amine (12h) 

Yield 36%, mp: 219-222 ℃;IR (KBr) υ(cm-1): 1584 (Ar C=C), 3006 (Ar 
C-H), 2954 (Ali C-H), 3412 (N-H), 1082 (C-N), 712 (C-Cl); 1H NMR 
(CDCl3): (ppm) 1.33 (6H, d, -CH(CH3)2), 1.89 (2H, p, -CH2-CH2-CH2-), 
2.30 (1H, q, -CH2-NH-), 2.85 (2H, q, -CH2-NH), 3.43 (2H, t, -S-CH2-), 
3.93 (1H, m, -NH-CH-(CH3)2), 5.75 (2H, s, -O-CH2-),6.71-7.53 (8H, m, 
Ar-H); [13]C NMR (CDCl3): (ppm) 26.4, 31.1, 37.7, 42.4, 49.7, 64.2, 
115.1, 124.1, 125.7, 129.2, 131.3, 135.7, 147.4, 149.7, 162.7; EI-MS 
m/z (%) 450.19 (M+, 62); Anal. Calcd (%) for C21H24Cl2N4OS: C, 
55.87; H, 5.36; N, 12.41; Found: C, 55.83; H, 5.32; N, 12.49. 

3-(5-((4-chlorophenoxy)methyl)-4-(4-fluorophenyl)-4H-1,2,4-
triazol-3-ylthio)-N-isopropylpropan-1-amine (12i) 

Yield 42%, mp: 229-231℃;IR (KBr) υ(cm-1): 1511 (Ar C=C), 3012 (Ar 
C-H), 2941 (Ali C-H), 3470 (N-H), 1161 (C-N), 605 (C-Cl), 1260 (C-F); 
1H NMR (CDCl3): (ppm) 1.23 (6H, d, -CH(CH3)2), 1.96 (2H, p, -CH2-
CH2-CH2-), 2.19 (1H, q, -CH2-NH-), 2.61 (2H, q, -CH2-NH), 3.51 (2H, t, -
S-CH2-), 3.73 (1H, m, -NH-CH-(CH3)2), 5.65 (2H, s, -O-CH2-),6.78-7.34 
(8H, m, Ar-H); [13]C NMR (CDCl3): (ppm) 23.5, 30.1, 34.7, 45.4, 47.7, 
65.5, 115.8, 122.1, 126.7, 131.3, 134.2, 148.6, 150.7, 157.4, 162.5; EI-
MS m/z (%) 434.27 (M+, 59); Anal. Calcd (%) for C21H24ClFN4OS: C, 
57.99; H, 5.56; N, 12.88; Found: C, 57.91; H, 5.59; N, 12.89. 

In vitro cytotoxicity activity by Trypan Blue exclusion assay 

The ascetic fluid withdrawn from the peritoneum of EAC bearing 
animal, was washed with PBS and cell viability was checked by 
trypan blue dye using haemocytometer.  

From the stock cell suspension, 1*106EAC cells in a volume of 0.1 ml 
were taken in sterile test tubes. The cells were treated with different 
concentration of compounds 0 μM, 0.1 μM, 0.2 μM, 0.4 μM, 0.6 μM, 0.8 
μM, 1.0 μM in (0.2% DMSO) in a volume of 0.1 ml. The volume was made 
up to 1 ml with PBS and incubated at 37°C for 3 hours [27-28]. 

After 3 hours of exposure, 0.1 ml of trypan blue was added, mixed 
well and the total number of dead and living cells in all the four 
corner squares of the chambers was counted using haemocytometer 
and the percentage cytotoxicity was calculated as follows:  

% Cytotoxicity = (Ttotal- Cdead)/Ttotal X 100 

The drug concentration that causes 50% cell growth inhibition after 
3h of continuous exposure to the test compounds (IC50) was 
determined by plotting the graph of concentration of the drug against 
the percent cytotoxicity and performing the regression analysis. The 
IC50 values of the test compounds are shown in Table 2.  

Table 2: In vitro cytotoxicity of 1,2,4-triazole derivatives against 
EAC cells 

S. No. Compound IC50 (μM) 
1 12a 0.80+0.015 
2 12b 0.73+0.32 
3 12c 0.55+ 0.09 
4 12d  1.24+0.45 
5 12e 2.21+0.52 
6 12f 5.91+0.41 
7 12g 0.62+ 0.23 
8 12h 1.89+0.55 
9 12i 2.38+0.17 

 

DNA fragmentation studies 

DNA fragmentation study was performed by agarose gel 
electrophoresis[29]. Gel electrophoresis was carried out on i-Mupid 
mini- gel electrophoresis unit from Eurogentech. The DNA ladder 
(180bp) used for the study was obtained from Sigma Aldrich. 

Agarose gel was prepared by boiling agarose in TAE buffer. The 
proper comb was inserted into the gel rig. 5μl of ethidium bromide 
was added to the gel and allowed to cool to 55°C. The comb was then 
placed in the gel tray. The gel was then poured into the gel tray and 
allowed to set for 30 minutes. Once the gel had cooled the comb was 
then removed carefully to form eight wells. The gel tray was placed 
in the gel electrophoresis unit with the wells closest to the cathode. 
The gel rig was then filled with TAE buffer until it formed a layer of 
buffer above the gel. The DNA was then treated with different 
concentration of compounds 1 μM, 2 μM, 4 μM, 6 μM, 8 μM, 10 μM 
and incubated in a shaker water bath at 37°C for 3 hours. 20μl of 
sample was transferred to an eppendorf containing 2μl of gel 
loading dye. The first well was loaded with 10μl of 1 Kb ladder. The 
remaining wells were loaded with 10 μl of DNA containing varying 
concentration of drug. The cover was placed on the gel rig. The 
power pack was set at 60V for 120 minutes. The run was stopped 
when the loading dye had migrated to about ¾thof the gel tray. The 
gel tray was carefully removed and placed in a UV transilluminator 
to see the migration of DNA. The photographs were then taken using 
Gel Dock instrumentation (Biorad). 

The cytotoxic profile indicated that compounds 12c and 12g 
possessed highest cytotoxicity against EAC cells. Compounds 12c 
and 12g were selected for DNA fragmentation study against the EAC 
cells using gel electrophoresis and the fragmentation was compared 
with the standard 180bp DNA ladder. The gel dock image of the 
activity is represented in Figure 2. 

 

 

Fig. 2: DNA fragmentation profile of compound 12g (a) and 
12c (b). 

 

RESULTS AND DISCUSSION 

Docking 

Energy minimized 3D structure of Etoposide showed that the A & C 
rings oriented perpendicular to ring B. Etoposide exhibited a 
docking score of 13.72. The oxygen atom in the methoxy group of 
the phenyl ring in etoposide formed H-bonding with –NH group of 
glycine 778 at a distance of about 1.813 A˚. Oxygen atom in the 
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dioxane ring of etoposide formed H-bonding with aspartic acid 479 
at a distance of about 1.940 A˚ (Figure 1a). 

Docking study of our synthesized compounds against DNA TP II 
showed that compound 12c penetrated and positioned at the same 
binding site of the receptor as of Etoposide (Figure 1b). Compound 
12c exhibited the highest docking score of 11.72. Additionally, the 
superimposition of compound 12c with native ligand did not show 
any conformational change. In compound 12c, nitrogen atom of 
isopropyl amine group exhibited hydrogen bonding with the –NH 
group of glycine 778 at a distance of 1.879 A˚. This is similar to the 
hydrogen bonding exhibited by etoposide varying only by a distance 
of about 0.064 A˚. The higher cytotoxic action of compound 12c 
could be due to its resemblance with docking interactions of 
etoposide. 

In vitro cytotoxicity by Trypan Blue exclusion assay 

In vitro cytotoxicity by Trypan blue exclusion assay showed that all 
compounds possessed good cytotoxic activity against EAC cells. The 
IC50 values ranged from 0.55- 5.91 μM. The cytotoxic screening 
showed that compounds 12c, 12g, 12b and 12a were found to have 
good cytotoxic activity with IC50of 0.55, 0.62, 0.73 & 0.80 μM 
respectively.  

DNA fragmentation study 

The compounds 12c and 12g which exhibited the lowest IC50 values 
were selected for DNA fragmentation analysis to study the 
mechanism of cell death.  

In compound 12g, DNA was incubated with three different 
concentration of the drug (1 μM, 6 μM & 10μM). The control DNA 
showed no migration in the gel as there was no fragmentation of 
DNA. It formed a smear around the well. DNA treated with 1 μM 
concentration of drug also failed to induce fragmentation as shown 
in Figure 2a. This is understood from the fact that the DNA has 
migrated as a smear around the well. It was similar to the control 
sample. However, DNA samples treated with 6 μM and 10 μM of 12g 
showed fragmentation of DNA similar to the apoptotic ladder. DNA 
has initially moved as a smear and then shown fragmentation 
patterns similar to the ladder. As the concentration of 11b is 
increased from 6 μM to 10 μM, the extent of fragmentation has 
increased. 

In case of Compound 12c, DNA sample was incubated with two 
different concentrations of the drug (3 μM & 4 μM). Compound 12c 
showed fragmentation of DNA similar to the standard ladder. At the 
concentration of 3 μM (Figure 2b), the fragmentation pattern 
showed the typical features of apoptotic DNA ladders in agarose gel. 
Compound 12c showed a better fragmentation profile as compared 
to 12g. This is because in 12g, DNA initially moved as a smear and 
then showed fragmentation. However, in 12c, the fragmentation of 
DNA was similar to the apoptotic ladder. Compound 12c shows 
uniform fragmentation at both 3 and 4 μM. 

From these studies, we can conclude that compounds 12c and 12g 
induces DNA damage by apoptosis which probably is the 
biochemical basis for the cytotoxicity of these compounds.  

CONCLUSION 

We have synthesized and tested some novel 3-(4,5-substituted)-4H-
1,2,4-triazol-3-ylthio)-N-isopropylpropan-1-amine derivatives for 
their cytotoxic activity. All compounds induced significant cytotoxic 
activity. Four compounds showed promising anti-inflammatory 
activity while the other five compounds showed moderate cytotoxic 
activity. The ability of compounds to induce cytotoxicity was 
confirmed my DNA fragmentation studies which indicated that cell 
death occurred by apoptosis. Further studies have to be carried out 
to explore the mechanistic basis of the cytotoxicity of these 
compounds. 
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