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ABSTRACT

Several biologically active secondary metabolites from aquatic plants have been extracted and identified using modern instrumental BioTechniques 
and used in various ways as flavors, food, additives, coloring agents, nutraceuticals, cosmetics, and also as unique source of pharma industries for 
the discovery or development of new drugs. From algae to aquatic macrophytes belonging to various categories, aquatic plants produce a variety of 
compounds such as polyketides, peptides, alkaloids, flavonoids, phenolic compounds, terpenes, steroids, quinones, tannins, coumarins, and essential 
oils commercially involving in antibiotic, antiviral, antioxidant, antifouling, anti-inflammatory, anticancer, cytotoxic, and antimitotic activities; thus 
making them a rich source of medicinal compounds. Moreover, they are comprehensively used in human therapy, veterinary, agriculture, scientific 
research, and in countless areas. Importantly these chemicals are exercised for developing new antimicrobial and cancer drugs. Furthermore, 
antioxidant molecules in aquatic plants and seaweeds have recently been acknowledged. This review contains a consolidated contemporary document 
consisting of entire knowledge available on pharmaceutical products of aquatic plants and highlights major differences among secondary metabolites 
found in aquatic (algae) and terrestrial plants.
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INTRODUCTION

The secondary metabolites are specialized biochemical compounds, 
also called a natural product which plays no apparent role in plant 
growth, enlargement, and reproduction but helps them in fighting 
under stress conditions of environment and adaptation [1,2]. They are 
biologically active taxonomically extremely miscellaneous compounds 
produced by plants and released by plants to protect them from 
insects and herbivores [3]. Secondary metabolites demonstrate some 
kind of biological activity against few or many living organisms [4]. 
Secondary metabolites do not engage in any precise role in the internal 
organization of producers but help the plants to compete with the 
environment [5,6]. They are low molecular weight compounds 
and have limited phylogenetic distribution [7]. Nevertheless, these 
natural products are used in traditional and folk medicines [8]. It is 
an established truth that secondary metabolites play a major role 
in defense mechanisms and their investigation could result in the 
identification of new signaling molecules [9,10].

Plant secondary metabolites interact biologically between plants and 
other organisms. Their noteworthy contribution lies in plants to plant 
and plant to animal interaction through which they communicate, 
provide signals, attract pollinators, and protect themselves from 
enemies. Even endophytes are known to produce beneficial secondary 
metabolites [11].

They are also remarkable by playing a vital role as antioxidants 
necessary for human beings to supplement in diet to remove toxic 
substances from the body [12]. Antioxidant molecules in aquatic plants 
and seaweeds have attracted the attention of scientists globally recently 
for searching for new and novel antioxidants from them [13,14].

Aquatic plants produce a variety of compounds such as flavones, 
flavonoids, flavonols, phenolic polyphenols, quinones, tannins, 
coumarins, terpenoids, essential oils, alkaloids, lectins, and 
polypeptides like terrestrial plants [15,16]. Some of them can be 
utilized as food and feed [17]. These substances are used for developing 
new antimicrobial [18-20], antiviral anti-angiogenesis [21], and 

anticancerous drugs [22-24]. Furthermore, secondary metabolites 
extracted from aquatic plants have become of vital importance after 
realizing its role as antioxidants [25-27]. The successful in vitro 
production of secondary metabolites has raised the plant cell factory 
concept [28,29].

Today, thousands of biologically active metabolites from terrestrial plants 
are available in the form of databases which are being used following 
modern tool for bioinformatics in silico drug discovery [30]. However, 
aquatic plants were ignored for the detection of natural products so far [31]. 
Although a large number of published information is available, reviews 
have not been published on secondary metabolites in aquatic plants 
to date. However, they have been studied earlier for its general biology, 
physiology, and adaptations. There have been numerous investigations 
on ecological productivity and dynamics in aquatic ecosystems [32]. 
The competition and allelopathy among aquatic plants have also been 
reviewed [33]. They are also being utilized in the bioremediation of soil 
and water [34]. This paper presents a review of the secondary metabolites 
of aquatic plants, their biological activity, and their application.

EXTRACTION, ISOLATION, AND IDENTIFICATION TECHNIQUES

The crude extracts of plants in various organic solvents run through 
column chromatography for fractional distillation. The isolated 
fractions were further separated using thin-layer chromatography 
and purified. The purified compound was tested and identified by 
various traditional analytical techniques such as nuclear magnetic 
resonance (NMR) and infrared spectroscopy methods [35]. New 
methods involved spectrophotometer determination and high-pressure 
liquid chromatography (HPLC), etc. Modern BioTechniques for the 
identification of secondary metabolites include HPLC-ultraviolet (UV), 
HPLC-mass spectrometry (MS), and HPLC-NMR [36].

AQUATIC PLANTS

Aquatic plants live in either aquatic freshwater or marine environment. 
They may be unicellular algae called phytoplankton or large 
macroalgae/macrophytes. Aquatic macrophytes in facts encompass 
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a different category of plants, including macroalgae, bryophytes, 
pteridophytes, and angiosperms that are well acclimatized to the aquatic 
environment [37]. Sculthorpe [38] classified aquatic angiosperms 
into the following four life forms, namely, submerged, floating-leaved, 
emergent, and free-floating.

All aquatic species belonging to angiosperm are called hydrophytes which 
may be monocot or dicot. These plants have specialized modified structures 
as an adaptation which helps them to survive in an aquatic environment.

AQUATIC PLANTS CLASSIFICATION

There are many doubts about aquatic plants. The above-mentioned 
references might be in context with angiosperms, that is, hydrophytes. 
Further, the term aquatic macrophytes are used in the perspective 
of angiosperm only. However, members of Phaeophyceae and 
Rhodophyceae are also large size and hence macrophytes. To avoid any 
confusion among aquatic plants, the following convenient classification 
is derived and presented (Fig. 1).

All kinds of aquatic plants have been classified into two, that is, I. 
Microphytes and II Macrophytes. Microphytes are cyanobacteria 
and microalgae. The unicellular microalgae, namely, Spirulina sp. 

(cyanobacteria) and unicellular algae (Chlorella sp., Chlamydomonas sp., 
etc.), are also called phytoplankton, which are microscopic unicellular 
photosynthetic organisms that float with water but cannot swim 
against the water current. Phytoplanktons make important producer 
components of nearly all freshwater bodies, marine lakes, and oceans.

Macrophytes are further divided into 4, that is, (1) macroalgae, 
(2) aquatic bryophytes, (3) aquatic pteridophytes, and (4) aquatic 
angiosperms. Except for unicellular algae, all other filamentous 
large algae are placed in macroalgae under macrophytes. Aquatic 
angiosperms are classified into the following four categories, that is, 
(1) free-floating macrophytes, (2) floating leaves but rooted plants, 
(3) submerged macrophytes, and (4) emergent macrophytes.

MICROPHYTES (MICROSCOPIC)

Cyanobacteria are blue-green prokaryotes that may be unicellular 
(Spirulina sp.) or multicellular (Genus Nostoc, Anabaena, and Oscillatoria). 
The microalgae and the phytoplankton include all unicellular organisms.

Cyanobacteria
The Gram-negative Cyanobacteria, the pioneer inhabitants, are highly 
significant in maintaining a major role in carbon and nitrogen sources in 

Fig. 1: Important phytochemical present in aquatic macrophytes
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the biosphere and the marine ecosystem in particular [39]. Being the oldest, 
it has huge diversity within the group, which synthesizes a great variety of 
metabolites of economic importance [40]. These metabolites are employed 
in innovative pharmacological, biotechnological, industrial, and agricultural 
applications. Many drugs are designed using cyanobacteria [41].

Cyanobacterial metabolites are in great demand due to their 
properties as antioxidants [42], the biodegradable potential of 
Naphthalene, phenol, [43], bioremediation of dairy waste products 
[44], production of biofuel [45], production of harmful toxic 
compounds [46], drug discovery [47] and neuro drug [48,49]. 
Peptides are used in cancer drug [50]. Many species of Cyanobacteria 
are used to produce antibacterial drugs [51], namely, malyngolid from 
Lyngbya majuscula, Norharmane from Nostoc insulare. Anabaena spp., 
Scytonema hofmanni, Hapalosiphon fontinalis, Fischerella sp., Nostoc 
communes, Nostoc spongiaeforme, and Phormidium sp. synthesized 
antimicrobial compounds. An antimicrobial compound noscomin has 
been isolated from Nostoc commune [52] and carbamidocyclophanes, 
and paracyclophanes from other species of Nostoc sp. [53].

Cyanobacteria can synthesize novel biomolecules of therapeutically 
important (Table 1). In addition, they produce mycotoxins from 
cyanobacteria (Macrocystis, Anabaena), Planktothrix (Oscillatoria 
sp.), Hapalosiphon, Nostoc sp., etc. It is a potent biotoxin released 
from cyanobacteria. Although it is persistent toxins in freshwater 
habitats that have attracted scientists all over the world on global 
health issues, ultimately enter the marine environment. Freshwater 
microcystins (biotoxin) entered the food chain through the intake of 
marine clams, mussels, and oysters of species by marine animals and 
finally humans. Thus, the passing of toxin from the lowest trophic level 
to higher in the food chain and through biomagnifications has caused 
serious environmental hazards. Many hepatotoxic shellfish poisoning 
has been reported due to Microcystin-cyanotoxins. It also provided 
evidence of harmful algal bloom in the Pacific coastal environment [54]. 
On receiving a huge quantity of nitrates and phosphates, water gets 
eutrophied and accelerates the heavy production of algal mass that 
floats on the water surface. This condition leads to the depletion of 
oxygen. The toxins produced by cyanobacteria greatly affect aquatic 
communities through biological interactions.

Microalgae (Unicellular algae)
It includes the following unicellular algae Botryococcus, Chlamydomonas, 
Chaetoceros, Chlorella, Crypthecodinium, Dunaliella, Haematococcus, 

Isochrysis, Schizochytrium, Spirulina, Nannochloris, Nitzschia, 
Phaeodactylum, Porphyridium, and Skeletonema belonging to various 
classes of algae. They are mostly used for inclusion in diets for keeping 
good health and medicines. The main secondary product of microalgae 
is polyunsaturated fatty acids [55]. They are also being used for 
nanotechnology applications [56]. Further, red microalgae are also found 
in acidic hot springs as benthic organisms producing mostly enzymes 
and hydrocolloids [57].

Chlorophyceae
Among unicellular chlorophyll-containing green algae, different 
species of Chlorella are prominent in producing industrial products on 
large scales, particularly antioxidants, whereas Dunaliella (which can 
tolerate higher salinity) produces vitamins, enzymes, antioxidants, and 
antibiotics [58]. Chlamydomonas synthesizes vitamins [59].

Bacillariophyceae (Diatoms)
Members of Bacillariophyceae, also called diatoms, occupy at the producer 
level in the food chain and provide food for the next trophic level. Thus, 
they are playing a vital role in the marine ecosystem. They produce toxic 
metabolites affecting reproduction potential in copepod [60].

Many diatoms belonging to the genus Pseudo-nitzschia produce a strong 
neurotoxin called domoic acid [61]. This toxin is responsible for causing 
toxicity in herbivores (Tables 1 and 2). Its toxicity increased in iron-rich 
waters. It can enter in food chain through contaminated shellfish [62,63]. 
Domoic acid was also responsible for shellfish poisoning that causes 
amnesic shellfish poisoning and diarrhetic shellfish poisoning. Saxitoxins 
are responsible for paralytic shellfish poisoning [64]. It causes 
nausea, vomiting, headache, dizziness, diarrhea, and coma, sometimes 
leading to death in humans, whereas mucus released from mouth and 
disorientation and death in animals [65].

Dinoflagellates
They produce yessotoxins responsible for seafood contamination 
(Tables 1 and 3). It is lipophilic sulfur-containing polyether toxins 
secreted by several dinoflagellates, including Lingulodinium polyedrum 
and Gonyaulax spinifera. This toxin enters in food chain through 
mollusks. They are highly toxic and produce gastrointestinal disorders 
and accelerate cancer in the human body [66]. Polyol compound 
symbiodinolide isolated from dinoflagellate Symbiodinium sp.

Euglenophyceae (Euglenophytes)
Metabolites from marine bioresources have created a center of attention 
for scientists all over the world from the last few years. The cells of 
Euglena, a unique unicellular microorganism, are nutritious and have 
anti-cancerous activity. It is also used in the production of trehalose 
from glucose, arachidonic acid, wax ester, and Vitamin E [67]. A toxin 
called euglenophycin is an alkaloid herbicidal in nature (Tables 1 and 4) 
and anticancerous [68].

MACROPHYTES (MACROSCOPIC AND LARGER AQUATIC PLANTS)

The larger aquatic plants, namely, large size algae (filamentous algae, 
marine giant size kelp, etc.), lower seedless plants (Bryophytes and 
Pteridophytes), and higher aquatic Angiosperms are referred to as 
macrophytes.

Macroalgae (Multicellular algae)
Large size filamentous and multicellular algae are also macrophytes but 
are called macroalgae.

Chlorophyceae
The green filamentous macroalga Chlorodesmis fastigiata produces 
diterpene chlorodesmin, a toxin that played an important role in 
deterring fishes, whereas the same metabolite is utilized by specialist 
crab to live and feed on this alga. This toxin also kills corals on contacting 
alga [69]. The genus Halimeda, a calcareous macroalga contains less 

Table 1: Secondary metabolites extracted from cyanophycean 
bacteria (1) and algae (2–7)

S. No. Bacteria/algae Secondary 
metabolites/toxins

Reference

1. Cyanophycean 
bacteria

Microcystins, 
Antioxidants

[54]

2. Bacillariophyceae Domoic acid, Saxitoxins [61,64]
3. Euglenophyceae Euglenophycin, an 

alkaloid
[68]

4. Dinoflagellate Yessotoxins, polyether 
with lipophilic Sulphur

[66]

5. Chlorophyceae Diterpene chlorodesmin, 
Halimeda-tetraacetate, 
Dithiolane, and trithiane, 
mycosporine-like amino 
acids

[69]

6. Rhodophyceae Sesquiterpenoids, 
diterpenoids, 
Phlorotannin, eckol, and 
tocopherols

[70]

7. Phaeophyceae Polyphenols 
(Phlorotannins) 
terpenoids

[71,72]
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toxic diterpene compound Halimeda-tetraacetate acetate which 
immediately converted to more active compound halimedatrial upon 
injury [70-74]. Diterpenes are antimicrobial and anti-inflammatory 
compounds (Tables 1 and 5). They also possess anti-Chikungunya virus 
and anti-HIV potential [75]. 

Three fatty acids 9,12- Octadecadienoic, Tetradecanoic, and 
hexadecanoic acids have been identified from Chara vulgaris which 
decreased the growth of major bloom-forming cyanobacteria in 
eutrophic freshwater. Dithiolane and trithiane were reported from the 
other species, Chara globularis. Nitella sp. was found to have dithiolane 
toxic to alga Nitzschia palea. An antitumor alkaloid, caulerpin isolated 
from Caulerpa racemosa [76]. They also indicated its nutraceuticals 
properties.

Phaeophyceae
Marine algae provide valuable complex industrial products, namely, 
alginate, carrageenan, and agar as phycocolloids [77]. Secondary 
metabolites obtained from marine brown algae have been extensively 
used as a traditional herbal medicine for a long time [78]. Furthermore, 
they show strong antibacterial activity. Fucales sp. and Dictyotales sp. 
produce the maximum content of phenolic compounds (Tables 1 and 7) 
like Phlorotannins. Later is also a significant source of terpenoids [79]. 
Besides, they also protect plants from UV radiation and defense against 
grazing (Table 1). Volatile compounds have also been reported from 
marine brown algae. Among them, b-ionone exhibited antibacterial and 
antifungal activity and are detrimental to some arthropods [80].

Phaeophyceae are rich sources of polyphenols. Polyphenols, 
particularly polyphloroglucinol phenolics, possessed peculiar 
antioxidant properties. Phlorotannins have been isolated from 
Ascophyllum nodosum, Eisenia bicyclis, Sargassum kjellmanianum, 
Sargassum ringgoldianum, Ficus vesiculosus, and Fucus serratus in the 
purified form [81]. These phlorotannins are present in brown algae 
as chief polyphenol [82]. They are used in medicine as antidiabetics, 
anti-Alzheimer disease, antimicrobial, antioxidants anti-HIV, 
antiproliferative activity, anti-inflammatory, radioprotective, and anti-
hypertensive activity [83,84].

Phlorotannins possessed therapeutic properties [85-87]. Phlorotannins 
are specifically present as the only group of phenolic compounds 
in brown algae. They are just like terrestrial tannins but unlike as 
phlorotannins consist of oligomers of phloroglucinol [88]; hence, in fact, 
scavengers in comparison to polyphenols found in terrestrial higher 
plants. Green tea has only 3–4 rings [89]. They are used in therapeutic 
medicine as a strong antioxidant.

This compound has been isolated from some brown algae, namely, 
Ecklonia stolonifera, Ecklonia cava, E. bicyclis, and S. kjellmanianum. 
Polyphenol production by Phaeophyceae has made this group very 
important because these are very potent antioxidants. Many brown 
algae are described to show, namely, A. nodosum, E. bicyclis, and 
S. kjellmanianum, S. ringgoldianum, F. vesiculosus, and F. serratus. Other 
polyphenolic compounds are catechins and flavonol glycosides. In 
Japan, people eat E. stolonifera and Ecklonia kurome algae in their food. 
These traditional edible brown algal species improve the property of 
blood. It has been reported that Laminaria religiosa is safe to eat as it 
produces fucoidan an antitumor compound [90,91].

Rhodophyceae
The red marine algal genus Laurencia contains 350 diverge natural 
halogenated secondary metabolites. It produces sesquiterpenoids [92] 
as a major compound (Tables 1 and 6). Diterpenoids have been recorded 
in lesser numbers but not terpenoids. C15 acetogenins are also in larger 
number mostly halogenated [93]. Sesquiterpenoids are significant for 
human health. It is being used for its potent role. Sesquiterpenes are 
also extracted from higher aquatic plants similar to family Asteraceae.

Two new Sesquiterpene, a halogenated C15 acetogenin compounds 
out of six, have been reported in Laurencia obtuse spectroscopically. 
Out of 34, only four genera (Plocamium costatum, Ballia callitricha, 
Phacelocarpus labillardieri, and Osmundaria colensoi) possessed 
20 important secondary metabolites along with five known 
bromophenols [94]. Eleven novel oxylipins, labillarides are reported 
from alga P. labillardieri and named them A to K. Most of them are 
macrocyclic compounds significant in therapeutic uses, particularly as 
antibiotics, antitumor, and antifungal compounds [95].

Different groups of compounds have been isolated and identified, such as 
hydrocarbons, terpenes, acids, phenols, sulfur-containing compounds, 
aldehydes, naphthalene skeleton, and alcohol from a diverging group 
of algae. Marine algae are a great choice for having huge preventive and 
therapeutic importance due to anticancerous compounds.

Bryophytes
They are pioneer land plants. They comprise the second largest 
group after angiosperms. The main plant body is haploid and called 
gametophyte which produces male and female gametes for sexual 
reproduction. They lack true roots. They also do not have true 
mechanical tissues such as xylem and phloem but have simple water 
and food conducting tissues such as leptoids and hadroid. Furthermore, 
their walls are not lignified.

Freshwater Bryophytes 
Out of 15,000 plants [96], only a few are aquatic mosses (Ricciocarpus 
natans, Riccia fluitans, and Riella sp.) found in freshwaters. Several 
secondary metabolites have been extracted from liverworts 
(Tables 1 and 2). The synthesis of biologically active terpenoids was 
against cancer cells [97]. The paste made from Riccia sp. was used to 
cure ringworm skin disease [98]. Flavonoids Apigenin 7-o-glucuronide, 
lucenin, luteolin 7-o-glucuronide, and lucenin 2,7-O-rhamnoside have 
been identified from R. fluitans [99]. The latter is also present in tea, 
coffee, fats, and oils.

Marine Bryophytes 
Sphagnum a peat moss marine bryophyte Sphagnum magellanicuml 
produced hydroxyl hydroxybenzoic acid [100]. Polysaccharides 
extracted from this species possessed antibacterial and antifungal 
properties [101]. It produces sterols, terpenoids, and polyphenols [102].

Pteridophyte
The common aquatic pteridophytes are referred to as aquatic ferns. The 
common genus is represented by genus Equisetum, Marsilea, Salvinia, 
and Azolla. Few compounds have been isolated from pteridophytes 
(Table 2).

Two compounds isoquercetin and flavonoid have been ascribed from 
Equisetum arvense. The total phenolic content of N-butanol was 96.4 
mg/g of dry extract of E. arvense. It showed antibacterial activity against 
the growth of test bacteria [105]. Flavan4-ol glucosides identified in 
Equisetum arvense [106].

Table 2: Secondary metabolites extracted from bryophytes and 
pteridophytes

S. No. Bryo/
Pteridophytes

Secondary metabolites References

1. Bryophytes Polyphenols, sterols, 
terpenoids

[103,104]

2. Pteridophytes Alkaloids, steroids, 
tannins, flavonoids, 
terpenoids, cardiac 
glycosides, phenolic 
compounds, and 
terpenoids

[105-110]
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Alkaloids, phenolic compounds, flavonoids, saponins, and tannins have 
been extracted from ferns Azolla pinnata, Marsilea minuta, and Salvinia 
molesta [107,108]. The former exhibited antibacterial [109] and anti-
diabetes properties [110]. Alkaloids, steroids, tannins, flavonoids, 
terpenoids, cardiac glycosides, phenolic compounds, and terpenoids 
have been reported from the crude extract of Cyclosorous 
interruptus [111]. Alkaloids, arbutin, and tannin are identified from this 
fern [112]. A paste of aquatic fern Ceratopteris thalictroides is used as a 
poultice for a skin disorder and to stop bleeding.

Gymnosperm
A conifer species Retrophyllum minus is the only obligate inhabitant of 
aquatic habitats [113], but this is an endemic species to New Caledonia 
and not much is known about their chemical profiling. This category of 
plants is not included in the classification of aquatic plants in this paper.

Angiosperms
These are higher plants and the highest evolved. Macrophytes 
(Angiosperms) are aquatic vascular plants also known as hydrophytes. 
These specialized plants are adapted to live in the presence of an excess 
of water in aquatic communities.

Free-floating aquatic plants
These plants float on the water surface. They are also called amphibians 
because they can also survive on moist soil. Their leaves are exposed to 
air. Pistia stratiotes and Eichhornia crassipes are medicinal plants known 
from the ancient system of Indian medicine and used in Ayurveda [114]. 
Alkaloids, phytosterols, Phenols, flavonoids, and tannin are detected in 
P. stratiotes [115-117]. Phenolic compounds exhibited antiapoptotic. 
Antibacterial and anticancer activity was found in this plant [118-120].

Linolenic acid, β-sitosterol, 24-Ethyl-cholest-4-ene-3,6-dione, sterols 
(24-Methylenlophenol), and flavanol glycosides (Isorhamnetin-3-o-
glucoside, Quercetin-3-o-neohesperidoside, and Isorhamnetin-3-o-
neohesperidoside) have been identified from P. stratiotes [121,122]. 
All these allelochemicals possessed antialgal properties. A compound 
isolated from Pistia altered the physiology and ultrastructure of 
Selenastrum capricornutum [123-129]. Stratiotes aloides were found to 
have lipophilic compounds active against some algae (Table 3).

Tannin, phlobatannin, saponin, steroids, terpenoids, alkaloids, 
flavonoids, quinines, anthraquinones, cardiac glycosides, sterols, 
anthocyanins, phenols, carotenoids, polyphenols, carbohydrates, 
resins, etc., have been recently reported from E. crassipes. Moreover, 
studies on exudation from the roots in freshwater plants are few. 
Bioactive sterols have been reported from this plant [130]. He identified 
five allelochemicals as 24-Methy cholesta, 24-Ethyl cholesta, 22, 24 –
diene, and Methyl–22, -diene- β, 6 α -diol. These allelochemicals 
were bioactive against Chlorella emersonii of Chlorophyta. The 
first two compounds also exhibited toxicity against Synechococcus 
leopoliensis, Muriella aurantiaca, and Chlorella vulgaris, whereas 3rd 
and 4th compounds against Navicula pelliculo and C. vulgaris and last 
one against N. pelliculo. The following four bioactive sterols have been 

identified from E. crassipes as alpha-asarone, y-linolenic 12 hydroxy 
9, 13, 15-octadecatrienoic, and 9 hydroxy 10, 12, 15 octadecatrienoic. 
They were toxic to microalgae belonging to the group Cyanochloronta, 
Rhodophycophyta, Chrysophycophyta, and Chlorophycophyta. Further, 
most of them inhibited the growth of another green alga Selenastrum 
capricornutum. Flavonoids are involved in pharmaceutical activities, 
namely, anti-allergic, anti-inflammatory, antimicrobial, and anticancer 
activity. Terpenoids are especially used as therapeutic agents in 
Alzheimer’s disease and liver cancer [131,132].

Rooted aquatic plants with free-floating leaves
These plants are rooted, but their leaves float on the water surface. 
Genus Nuphar, Nymphaea, and Nelumbo are common plants of the 
water lily family Nymphaeaceae. All these three species are potent 
medicinal herbs. They are used to cure, particularly diabetics, liver 
disorders, etc. Antimicrobial activity of the Members of Nymphaeaceae 
has been documented. High antibacterial activity of root exudation of 
Nuphar luteum has been reported [133]. Nymphaea tuberosa exhibited 
high antibacterial activity against Mycobacterium smegmatis and 
Staphylococcus aureus. It also possessed anti-fungal properties and 
inhibited fungi Alternaria sp. and Fusarium roseum [134]. They have 
reported tannic acid, gallic acid, and ethyl gallate from other species 
N. tuberosa. Alkaloids such as nupharidine, 7-epideoxynupharidine, 
and nupharolutine and sesquiterpenes like nupharidines have been 
identified from N. luteum. All these compounds exhibited anticancer, 
antidiabetics anti-inflammatory potential [135]. The former plant 
possessed antitumor and anti-diabetic properties [136]. Lotus 
pedunculatus (Fabaceae) contained nitro toxin compounds [137]. 
These nitro compounds identified as a mixture of 3 nitro propanoyl-D-
glucopyranoses, karatatin, coronation, and cibarian present in the roots. 
N. stellata declined the growth of water hyacinth; both aboveground 
and underground parts of the former plant harmed the later [138].

Nymphaea caerulea is used in traditional medicine to treat diabetics, 
cardiotonic for palpitation of heart, and liver disorders [139,140]. 
Many compounds were isolated from four Nymphaea species. Further, 
triterpenes have been reported in all [141-145]. They recommended 
5-glycosyl isoflavones as a taxonomic character to identify plants of this 
group (Table 4).

Total phenolic contents were observed 7.61% (w/w) in Nelumbo 
nucifera. The seeds contain alkaloids, saponins, phenolics, and 
carbohydrates. Significant antioxidant activity is reported in this 
plant [146]. Secondary metabolites alkaloids, flavonoids, phenols, and 
sesquiterpenes, 2, 3, 4, 5- tetrafalloyal-D-glucose have been identified 
from Nuphar sp. [147]. Phenols [148] and flavonoids have been 
reported from Limnophila geoffrayi [149].

Submerged macrophytes
These aquatic plants remain inside water under submerged 
conditions [150]. Ceratophyllum sp., Hydrilla sp., Vallisneria sp., and 
Potamogeton sp. are commonly found in freshwater lakes. Most of them 
produce phenols and flavonoids. Ceratophyllum demersum synthesized 

Table 3: Secondary metabolites present in free-floating macrophytes

S No. Aquatic 
macrophytes

Secondary metabolites References

1. Pistia stratiotes Fatty acids – α-linolenic acid, linolenic acid, β-sitosterol, 24-Ethyl-cholest-4-ene-3,6-dione, sterols 
(24-Methylenlophenol), flavanoglycosides Isorhamnetin-3-o-glucoside, Quercetin-3-o-neohesperidoside, 
Isorhamnetin-3-o-neohesperidoside, Alkaloids, phytosterols, Phenols, flavonoids, and tannin

[124]

2. Stratiotes aloides Lipophilic compounds [125]
3. Eichhornia 

crassipes
24 –Methylcholest 4 ene-3,6-dione, 24-Ethylcholesta –4, 22-diene-3,6, dione, 24-Methyl cholesta-5, 
22-dien-3β -ol, 24 –Ethyl-Cholesta –5, 22 –diene –3 β - ol, and 24- Methyl Cholesta –22,-diene-3 β, 6 α -diol.
Sterols- alpha-asarone, y-linolenic, 12 hydroxy 9, 13,15-octadecatrienoic, 9 hydroxy 10,12,15 
octadecatrienoic.

[126-129]

4. Azolla pinnata Flavonoids [107]
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a huge amount of total phenols (76.55 μg/mg) under in vitro conditions 
[151]. It also inhibited cyanobacteria. Two flavonoids have been isolated 
from this plant in Table 5 [152-163]. Besides, antioxidant contents were 
identified as β-carotene, flavonoid, and lycopene.

Polyphenolic-like compounds have been obtained from many 
species of Myriophyllum, Myriophyllum spicatum [164], Myriophyllum 
alterniflorum, Myriophyllum heterophyllum, and Myriophyllum 
brasiliense. Environmental factors may influence the production of 
secondary metabolites. The amount of this phenolic content increased 
in M. spicatum in limited nitrogen. Myriophyllum can suppress the 
growth of cyanobacteria. Besides, phenylpropanoid glucosides 
(α-asarone, β-asarone, 1-o-coumaroyl-6-o-galloyl- β -D-glucopyranose) 
were identified from Myriophyllum verticillatum (N-hexadecanoic Acid). 
These biomolecules have the potential to clean water in shallow lakes.

Micranthemum umbrosum an attractive fast-growing aquarium plant 
contained four compounds: 3,4,5-trimethoxyallylbenzene [1] and 
three lignoids [158]. These compounds played an important role in 
herbivores against Asian grass carp (Ctenopharyngodon idella).

Oxygenated fatty acids have been reported in submerged plants, 
namely, Potamogeton [165], Najas, and Ruppia species. Ruppia maritima 

consisted of ent-labdane diterpenes active against algae Chlorella 
vulgaris and Selenastrum carpricornutum. The latter indicated antialgal 
diterpenes. Potamogeton natans contained antifungal potential [166]. 
Two new furanoid diterpenes, effective antiviral potamogetonyde and 
potamogetonol have been isolated from P. malaianus [167]. Elodia sp. 
shows allelopathy against phytoplankton and epiphytes [168]. Later, 
flavonoids have been isolated from this plant [169].

Antialgal alkaloids with the highest degree of toxicity 2-ethyl-3-
methylmaldeimide have been isolated and identified from Vallisneria 
spiralis belonging to the family Hydrocharitaceae, which inhibited the 
growth of Microcystis aeruginosa [170]. Hydrilla verticillata, the other 
member of the same family, produced many secondary metabolites just 
like higher terrestrial plants for defense purposes [171] and causing 
the allelopathic effect. It also exhibited toxicity against the growth of M. 
aeruginosa due to the presence of n-butyl phthalate. They also identified 
antifungal phenolic compounds from this plant. This plant inhibited the 
distribution of Ceratophyllum sp. and reduced the growth of S. molesta. 
Although allelopathy in H. verticillata is known since 1983, biochemical 
compounds, namely, Sesquiterpene, diterpenes, terpenoids saponins, 
steroids, linoleic acid, phytol, steric acid, phenolic acids, alkaloids, and 
flavonoids, have been documented recently. It is also rich in Vit. A, C, E, 
B6, B5, B12, and calcium [172].

Table 5: Secondary metabolites present in submerged aquatic macrophytes

S. No. Aquatic macrophytes Secondary metabolites References
1. Vallisneria spiralis 4-oxo-β-ionone, dihydroactinidiolide,2 ethyl 1-3-methylmaldeimide [152]
2. Bacopa monnieri Antioxidants [153]
3. Ceratophyllum demersum flavonoid glycosides, apigenin-7-O-glucoside, sterols-sitosterol, Volatile- paraffins, benzyl 

acetate and a sesquiterpene
[154]

4. Hydrilla verticillata Sesquiterpene- Coryan-17-ol, 18,19-di dehydro-10-methoxy-acetate,
Steroids- Ergost -5-en-ol, 22, 23-dimethyl acetate, 1,2-benzene
dicarboxylic acid butyl octyester,
Linoleic acid-10- Octadecenoic acid, methyl ester, stearic acid- Pentadecanoic acid, 
1,4-methyl, methyl ester, Diterpene compound,
Phthalic acid-1,2-benzenedicarboxylic acid diisooctyl ester, Dibutyl phthalate, 
12-hydroxylauric acid-1,2- 12- hydroxydodecanoic acid, 11,14- eicosadienoic 
acid, β-sitosterol acetate, β-sitosterol, ethyl palmitate, 1,14-tetradecanedioic acid, 
12-hydroxydodecanoie acid,6,10,14-trimethyl-2-pentadecanone, 1-[5’-Hydroxy-4’-
hydroxymethyl-1’-methyl-1H-pyrrol-2’-yl]-henicosa-2,12,15-trien-1-one, dicarboxylic acid- 
Octadecanedioic acid, phenolic acid- Ferulic acid, Chlorogenic acid, Caffeic acid

[155-157]

5. Micranthemum umbrosum 3,4,5-trimethoxyallylbenzene [1] and three lignoids: β-apopicropodophyllin [2]; [−] 
-[3S,4R,6S]-3-[3′,4′-methylenedioxy-α-hydroxybenzyl]-4-[3″,4″-dimethoxybenzyl] 
butyrolactone [3]; and [−]-hibalactone [4]

[158]

6. Myriophyllum verticillatum Phenylpropanoid glucosides [α-asarone, β-asarone, 1-o-coumaroyl-6-o-galloyl- β 
-D-glucopyranose]

[159]

7. Potamogeton natans Diterpenes [160]
8. Elodia sp. Phenolics and flavonoids [161]
9. Ruppia maritima Ent-labdane diterpene [162,163]

Table 4: Secondary metabolites extracted from free-floating rooted macrophytes

S. No. Aquatic macrophytes Secondary metabolites References
1. N. ampla and N. pulchella 2 5-glycosyl isoflavones, 7,3’, 4’ –trihydroxy-5-O-β-D-[2”-

acetyl]-xylopyranosylisoflavone, 7,3’, 4’-trihydroxy-5-O-α-L- 
rhamnopyranosylisoflavone, 3-glycosyl flavones

[141]

2. N. ampla, N. pulchella, N. gracilis, and N. elegans Triterpenes, saponins [141]
3. Myriophyllum spicatum Tannins, ellagic acid, polyphenols eugenin, phenolic acid, nonanoic acid, 

tetradecanoic acid, palmitic acid, octadecanoic acid, octadecenoic acid, 
cis-6-octadecenoic acid, cis-9-octadecenoic acid, gallic acid, pyrogallic 
acid, [+]-catechin, polyphenolic compound

[142,143]

4. Myriophyllum alterniflorum α-asarone, phenylpropane glycoside [144]
5. Nuphar sp. 3 nitro propanoyl-D-glucopyranoses, karatatin, coronarian, and cibarian [145]
6. Nelumbo nucifera Alkaloids, saponins, phenolics, and carbohydrates [146]
7. Nuphar lutea Gallic acid, myricitrin, myricetin, 1,2,3,4,6- pentagalloyl-D-glucose 

2,3,4,5- tetrafalloyal-D-glucose, 6,6’- dihydroxythiobinupharidine
[147]
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Most of the herbivore does not eat aquatic plants due to the presence 
of flavonoids. Submerged plants are rich in antioxidants, which 
provide them antibacterial, antifungal, antialgal, and antitumor 
properties [173].

Emergent aquatic plants
The Emergent macrophytes are mostly C4 plants and known to 
produce huge biomass in wetlands. Phenols are the most known 
secondary metabolites in emergent aquatic plants than any other 
substance. These phenolic compounds released from aquatic plants 
help in carbon sequestration by delaying their decay [16]. Further, 
they have recorded wetland emergent grasses such as Scirpus sp., 
Typha sp., and Phragmites sp. produced very high phenolic contents 
of more than 10 g/kg DW (10 g/kg, 15 mg/kg, and 27 g/kg DW, 
respectively). However, in Phragmites karka and Arundo donax, the 
phenolic contents in the dry leaves were measured as 4.45 mg/g and 
3.95 mg/g, respectively [110].

An emergent grass A. donax was found toxic to the growth of duckweed 
and S. molesta. Both plants died within 7 days due to the presence of 
phenolic compounds [174]. They proved that phenolic extract was toxic 
to the growth of duckweeds. Thus, emergent plants also possess a high 
potential for biocontrol due to the presence of phenolic compounds. 
Many phytotoxic compounds produced by higher plants are phenolic 
compounds in Table 6 [175-191]. Flavonoids, the phenolic compounds, 
are the chief ingredients of this plant.

The medicinal values of reed, Phragmites sp., have been explored 
from the ancient days for herbal medicine. Long-chain fatty acids, 
flavonoids such as luteolin and apigenin-7-0-glucoside, cyanidin-3,5-
diglucoside, delphinidin-3, 5-glucoside, and quercetin from flowers of 
Polygonum orientale have been reported. Anthocyanins, delphinidin-
3-O-glucoside, and cyanidin-3-O-glucoside possessed anti-cancer 
property and induced cancer cell death in human (maze). In addition 
to these polyphenols and flavonoids, alkaloids have also been isolated 
from Phragmites vallatoria [192]. They have detected the highest 
radical scavenging activity (IC 50=735 μg/ML) in this plant. Further, 
Phragmites plants are an abundant natural source of flavonoids. Their 
Gas chromatography–mass spectrometry (GC-MS) analysis emphasized 
the presence of fatty acids and antioxidants. Out of seven, the main 

compound was Hexadecanoic acid (30.88%). Others were 9, 12, 15- 
Octadecatrienoic acid (alpha-Linolenic acid) and 9, 12-Octadecadienoic 
acid, two unsaturated methyl esters, and two fatty acids, diisooctyl 
ester, 3, 7,11, 15-Tetramethyl-2-hexadecen-1-ol, and phytol. It tends 
to reduce wound, fever, vomiting, and sickness after chemotherapy. 
Furthermore, treat arthritis, rheumatoid arthritis, diabetes, diuretic 
and diaphoretic problems, etc. Its antiviral properties have also been 
well described [188].

The plant is rich in proteins and edible. The Phragmites sp. contained 
phenol and gallic acid as a prominent compound. Gallic acid and the 
organic acid ethyl 2-methyl acetoacetate (EMA) methyl acetoacetate 
were isolated from root exudates, whereas taraxerol and taraxeron 
from the leaves [193]. High cellulose and lignin were also reported 
in the aqueous solution of Phragmites australis [194]. Naturally 
occurring glucosides have been isolated from P. australis flower [195]. 
A compound EMA was discovered from P. communis, which was found 
allelopathic to green algae [196].

It has been used for the treatment of diabetes and other diseases 
such as arthritis and rheumatism in various preparations of 
different plant parts. Its paste is also used to heal any external 
injury. Ethanolic extract of P. vallatoria has been reported efficient 
antidiabetic potential in rats [197]. Phragmites plants are an 
abundant natural source of flavonoids. A flavone Apigenin-7-O-
glucoside and luteolin present in this plant have much therapeutic 
importance as antioxidants, anti-inflammatory, antioxidant, 
Alzheimer’s disease, and various types of cancers [198]. These 
compounds have been reported both from Phragmites sp. and P. 
orientale. Lutein is a very good source of eye tonic. Flavone, luteolin 
can inhibit cell proliferation by inducing apoptosis [199]. This could 
be a good natural anti-cancer agent. Similarly, it may inhibit breast 
cancer invasion and ameliorate the conditions [200]. Crude water 
extract of P. australis decreased multiplication of bovine herpesvirus 
type 1 in Madin-Darby bovine kidney cells demonstrated an anti-
inflammatory effect [201].

Elsharkawy [202] strongly emphasized the importance of alkaloids as 
seed germination inhibitors. Many aquatic plants are reported to inhibit 
seed germinations. P. karka and A. donax inhibited seed germination due 

Table 6: Secondary metabolites extracted from emergent macrophytes

S. No. Aquatic macrophytes Secondary metabolites References
1. Arundo donax Alkaloids, N- [4’- Bromophenyl]-2,2- Diphenylacetanilide, Curarimimetic indoles [175,176]
2. Bacopa monnieri Alkaloids, saponins, sterols, betulinic acid, stigmasterol, beta-sitosterol, and bacopa 

saponins.
[177]

3. Cyperus rotundus α-cyperone, β- selinene, cyperene, cyperotundone, patchoulenone, sugeonol, kobusone 
and isokobusone, sesquiterpene-rotundone,
flavonol glycoside, saponin, vitamin-C, sesquiterpenoids and essential oils, polyphenol, 
cyperine

[178,179]

4. Eclipta alba Resin, alkaloid eclitine, wedelolactone, triterpenoid [180,181]
5. Eleocharis microcarpa Fatty acid- trihydroxy cyclopentenyl, phenolic acids, linoleic acid, α linolenic acid [182]
6. Juncus sp. p- coumaric and vanillic acids, cycloartane triterpenes cycloartane glucosides, and 

9,10-dihydrophenanthrene glucosides
[183-185]

7. Phragmites australis 3’-O-glucosides and 3’-O-gentiobioside, ethyl 2-methylacetoacetate, ferulic 
acid, p-coumaric acid, syringic acid, vanillic acid, p-hydroxy benzoic acid, 
p-hydroxybenzaldehyde, aurantiamide acetate, 2,3-dihydroxy-1-[4-hydroxy-3,5-
dimethoxyphenyl]-1-propanone, palmitic acid, heptadecanoic acid, β-sitosterol, 
stigmasterol methyl gallate, [+]-lyoniresinol, and [+]-lyoniresinol-3α-O-β-D-
glucopyranoside

[186,187]

8. Polygonum sp. Alkaloids, flavonoid quercetin [188]
9. Polygonum orientale Flavonoid- luteolin and apigenin-7-0-glucoside, cyanidin-3,5-diglucoside, delphinidin-3, 

5-diglucoside, quercetin
[189]

10. Schoenoplectus sp. 11 free and glycosylated low-molecular polyphenols, 17 cinnamic acid and Hydrocinnamic 
acid derivatives, flavonoids, and 10 C13 
nor-isoprenoids,1-benzoyl-glycerol-2-α-l-arabinopyranoside, [−]-catechin

[190]

11. Typha domingensis Alkaloids, sterols, and flavonoids (nonacosanol, lupeol acetate) [191]
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to the presence of alkaloids. About 12 different alkaloids were identified 
from A. donax. Besides, N- (4’- Bromophenyl)-2, 2-Diphenylacetanilide 
and curarimimetic indoles were reported from flowers of giant reed A. 
donax.

The biochemicals have been isolated and identified from Juncus effuses 
plant which had the allelopathic potential for interactions [203]. 
Various glucosides have been reported from the pith of culms [204]. 
Allelochemicals present in Juncus sp. allelopathy was demonstrated [205]. 
These allelochemicals were, namely, antioxidant phenanthrenes from 
Juncus acutus [206], carotenoids, coumarins, sterols [207], A triterpene, 
cyloartanes [208], and phenol Juncunol [209] have been isolated and 
identified from Juncus sp. The biological activities of these compounds 
revealed their cytotoxic and antioxidant properties, and help to protect 
neurotransmitters, that is, anti-acetylcholinesterase [210].

Higher quantities of phenolic compounds and flavonoids have been 
documented in this macrophyte [211]. Antieczematic potential of J. acutus 
was reported due to the presence of phenolic glycosides, canthoside 
B, and caffeic acid. The rhizome of J. acutus exhibited antioxidant 
potential due to the presence of 8,8′-bidehydrojuncusol, juncunol, 
5,7-dihydroxychromone, and flavone products (apigenin, luteolin, 
chrysoeriol, luteolin-7-O-β-glucoside, and hydrocarbon) [206]. These 
antioxidant compounds acted as anti-inflammatory, anti-algal, cytotoxic, 
and anti-leukemic elements. Moreover, Rodrigues [212] detected a 
significant in vitro cytotoxic effect of phenol, juncunol on human cancer 
cells (HepG2, MDA-MB468, and HeLa), possibly due to the radical 
scavenging activity of J. acutus species.

A perennial emergent tall grass of genus Typha possessed several 
natural products such as saponins, coumarins, and flavonoids. 
The phenolic compounds-typhaphthalide, typharin, flavonoids-
afzelechin, epiafzelechin, [+]-catechin, and [-]-epicatechin and 
phytosterol-sitosterol were isolated from rhizomes of Typha capensis 
Rohrb. [213,214], fatty alcohol nonacosanol, and triterpene-lupeol 
acetate were detected in dry flowers and leaves of Typha angustifolia. 
Further, the cerebrosides, 1-O-(beta-d-glucopyranosyloxy)-
(2S,3S,4R,8Z)-2-((2′R)-2′-hydroxy-tricosanoyl-amino]-8-nonadecene-
3,4-diol) and 1-O-(beta-D-glucopyranosyloxy)-(2S,3R,4E,8Z)-2-((2′R)-
2′-hydroxynonadecanoylamino)- 4,13-nonadecene-3-diol have been 
reported from pollen grains of the same species [215].

Typha species being medicinal grass have health benefits. Roots and 
rhizome are rich in starch and used as flour. They have observed 
significant antioxidant, cytotoxic [216], and immunosuppressive 
activity from pollen grains [217] in T. angustifoli while leaves and 
flower extracts of Typha sp. exhibited strong antibacterial potential 
against Salmonella typhimurium, Pseudomonas aeruginosa, Escherichia 
coli, and S. aureus [218]. Moreover, silver nano-sized particles made 
using T. angustifolia leaf extract harmed bacteria E. coli and Klebsiella 
pneumonia with greater antibiotic efficiency [219].

The phytochemical studies of Cyperus rotundus rhizomes have 
revealed the presence of polyphenol, a flavonol glycoside, saponin, 
sesquiterpenoids, essential oils, and Vitamin C. The most important 
biologically active compound reported from C. rotundus is cyperine. This 
volatile compound is used in Ayurveda as a tonic, diuretic, diaphoretic, 
and stimulant, hypotensive and anti-inflammatory. Alkaloids and 
terpenes have also been reported from rhizomes [220]. They have 
isolated 10 alkaloids and 25 phenolic compounds from this plant by GC-
MS analyses. These compounds demonstrated inflammatory, anticancer 
antidiabetic, and antioxidant anti-antimicrobial properties [221,222]. 
Further, it contained a huge amount of tannins [223]. Its roots and 
rhizome have multidimensional therapeutic potential, including a 
diuretic and digestive juice and appetizer [224]. Acetone and methanol 
extract (70%) of the rhizome of C. rotundus possesses a good source of 
antioxidants [225]. Secondary metabolites such as phenols, flavonoids, 
and alkaloids produced by C. rotundus are valuable sources of modern 
drug design for chronic diseases such as cancer [226,227].

Eleocharis sp. was used in Chinese folk medicine for the treatment 
of pharyngitis, laryngitis, enteritis, cough, hepatitis, and 
hypertension [228]. It also inhibits natural acrylamide formation during 
food processing. It has diverse pharmacotherapeutic applications such 
as antioxidant, anti-depressant, and neuro disorders [229], a phenolic 
glucoside, leonuriside A, 2-hydroxymethyl-6-(5-hydroxy-2-methyl-
phenoxy-methyl)-tetra-hydro-pyran-3,4,5-triol, and 1,4 dihydroxy 
3-methoxy-phenyl-4-O-β-D-glucopyranoside showed good acrylamide 
formation activity.

Aquatic medicinal herbaceous plant Bacopa monnieri, a creeping small 
tropical plant with oblong leaves and light purple flowers, is known for 
its pharmacological effects due to the presence of chemical constituents 
isolated in India (B. monnieri Monograph 2004). It contains beta-
sitosterol and linoleic acid. The former reduces inflammation in 
prostrate, whereas the latter is an anticancerous compound. Another 
medicinal plant Eclipta alba is a moisture-loving herb with small white 
flowers. Leaves of this plant contain resins, an alkaloid called eclitine 
chemical wedelolactone, etc. Wedelolactone, luteolin, and apigenin 
are antioxidant compounds isolated from this medicinal aquatic plant 
active against hepatitis C Virus [230].

The strong fungicidal effect of B. monnieri was illustrated due to the 
presence of high antioxidant activity [231]. They have identified 
flavonoids, glycosides, phenols, tannin, phlobatannin, saponin, 
steroid, and alkaloids from this medicinal plant. Major compounds 
were 9,12-octadecadienonic acid (36.96%), 9,17-octadecadienal 
(26.65%), 9-octadecenoic acid (7.79%) and in vitro roots yielded 
9,12-octadecadienonic acid (25.62%), 9-octadecenoic acid (23%), 
and 9,17-octadecadienal (16.08%). In vitro roots subjected to salicylic 
elicitation comprised of 1,3-dihydroxyacetone dimmer (15.69%), 
1-hexadecena (7.74%), 1-tetradecene (6.78%), eicosane (6.57%), 
1-octadecene (5.29%), 1-decene (4.60%), E-15-heptadecenal (4.45%), 
and heptacosane (3.45%). In vitro elicited roots showed 36 compounds 
and an increasingly higher percentage of sesquiterpenoids and higher 
alkenes.

Schoenoplectus belonging to the family Cyperaceae, Bulrush (New World 
species) is closely related to Genus Scirpus. Secondary metabolites of 
this species have been isolated and identified. The biological activity 
test revealed that they exhibited toxicity to unicellular. More than 
50 biochemicals have been reported from emergent Schoenoplectus 
lacustris. Mostly they are phenolic compounds.

Nasturtium officinale, one of the oldest known leaf vegetables for human 
beings harvested from a fast-growing aquatic plant belonging to family 
Brassicaceae, released 2-phenyl isothiocyanate which discouraged 
feeding by freshwater amphipods, cattle fish, and snails [232]. 
Habenaria repens, an aquatic orchid, contained a compound Habenaria 
(bis-p- hydroxybenzyl 2- alkyl-2 hydroxysuccinate) that protects the 
plant from crayfish [233]. Antioxidant activity is found highest in the 
aquatic tree Neptunia oleracea [234,235].

JOURNEY OF SECONDARY METABOLITES FROM AQUATIC TO 
TERRESTRIAL

Tracing the journey of secondary metabolites from early ancient 
plants to contemporary angiosperms is rather a difficult task. It 
is a universal truth that early land plant communities consisted 
of prokaryotic organisms, namely, bacteria and blue-green algae 
(Cyanophyceae). Later, being prokaryotic organisms, green algae were 
placed in photosynthetic bacteria in Monera by Whittaker [236] under 
five-kingdom classifications. Their secondary metabolites include 
polyketides, peptides, amino acids derivatives, fatty acids, and some 
terpenoids. Nevertheless, pathways like flavonoid biosynthesis were 
completely absent in prokaryotic organisms. The presence of oxidized 
sterols and xanthophylls in prokaryotes suggests that they were 
evolved under less availability of oxygen. Alkaloids were also absent in 
lower organisms.
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Secondary metabolites covered a vast journey from primitive 
antibiotics in ancient groups to complexed flavonoids in higher 
terrestrial plants. In biological interactions, the most important 
secondary metabolite is terpenoid. Terpenoids are produced both by 
lower organisms as well as higher plants in aquatic and terrestrial 
habitats. They are highly significant in the identification of a taxonomic 
group in angiosperms. However, no particular secondary metabolite 
was a marker of a particular phylogenetic group of algae; nevertheless 
freshwater toxins were reported only from cyanobacteria from 
selected genera [236].

Volatile monoterpenoids and sesquiterpenoids are major components 
of essential oils characteristics of many terrestrial families, particularly 
Asteraceae and Verbenaceae. Like higher plants, terpenoids are also 
common in marine algae [237].

Besides terpenoids, algae can synthesize fatty acids, simple nitrogen 
compounds from amino acid pathways, polyketides, some simple 
phenolic compounds, tri-tetra terpenoids, and majority as steroids, 
sesqui, and diterpenes are also common. Mono terpenes are 
rare [238,239]. Carotenoids from marine algae are more complex 
and variable than present in terrestrial algae [240]. Tri-terpenes are 
not very common in marine alga [241]. Only green algae produce 
some halogenated compounds. Phaeophyceae algae predominate in 
temperate water bodies. These brown algae only produce polyphenolic 
compounds. Alkaloids, condensed tannins, and lignins which are 
peculiar in terrestrial plants are absent in all algal groups.

Land plants originated in the Silurian period from amphibian 
algae [242]. The former faced environmental stresses in terrestrial 
dry habitat particularly UV radiation harmful for DNA and protein 
cofactors [243]. In aquatic organisms, these wavelengths are largely 
attenuated by water hence did not influence significant mortality in 
aquatic organisms.

In aquatic environment, plants are suspended in the water column; 
hence, they require less protection from UV radiation. The evolutionary 
trend of biochemical products in lower aquatic plants is not 
evident [244]. They demonstrated that lower organisms (bacteria and 
algae) produced mycosporine-like amino acids (MAAs) as UV-absorbing 
compounds while higher plants synthesized flavonoids to protect 
themselves from ultraviolet rays. Ancestors of present-day land plants 
were cyanobacteria. They were exposed to a higher UV-B level [245].

Aquatic cyanobacteria and algae produce MAAs as UV absorbing 
compounds when exposed to UV-B fluxes, whereas upon migration to 
land, land plants such as pteridophytes, gymnosperms, and angiosperms 
instead of MAAs synthesized a complex flavonoid in terrestrial 
plants [245]. They reported that moss, however, does not produce 
flavonoids on an elevated quantity of UV-B radiation. Nevertheless, 
both compounds are equally efficient in absorbing UV-B radiations, 
indicating clearly a demarcation in the type of UV absorbing compounds 
synthesized by lower (algae) and higher aquatic plants (Hydrophytes). 
This difference in UV absorbing compounds corroborates the migration 
of higher aquatic plants from the terrestrial environment to aquatic.

Fig. 2: Classification of aquatic plants
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Land plants originated from charophycean lineage of green 
algae [246,247]. All algae and cyanobacteria produced MAAs as UV-
absorbing compound except Chara aspera. All land plants possessed 
flavonoids from bryophytes to higher plants. As Chara (Charophycean) 
algae are being considered a link between algae and land plants, it does 
synthesize neither MAAs nor flavonoids [247]. Furthermore, an alga, C. 
aspera, belonging to Charophyceae serves an important link in between 
primitive aquatic algae and land plants as evidenced by the fact that 
neither MAAs is present in this species nor flavonoids, both were absent 
in C. aspera.

Importantly, aquatic submerged angiosperms (C. demersum, Batrachium 
trichophyllum, and Potamogeton alpines) synthesized flavonoids just 
like higher terrestrial plants. It has been established fact that higher 
aquatic plants, that is, angiosperms are more advanced than terrestrial 
plants [248]. It is documented here that higher aquatic plants are not 

producing MAAs as found in lower aquatic plants (algae). Similarly, 
monocot plants are more advanced and developed later than dicot 
plants. This is also evidenced by the fact that in monocot tissues, five 
but in dicot, only two flavonoids responded at higher UV-B.

The aquatic environment does not provide a vast variety of pathogens 
and predators as present in the terrestrial environment. That may be 
the reason aquatic plants have been screened less in search of defense 
molecules. The terrestrial habitats on the other hand expose more 
competitive conditions that support a greater number of bioactive 
biomolecules [249].

Temperature and moisture patterns affect the production of 
biomolecules. They may be secondary metabolites or allelochemicals. 
Under hot and dry environment, plant species produce aromatic 
compounds, whereas in the presence of water species produce phenolic 

Fig. 3: Biological activity of various natural products isolated from aquatic plants
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compounds [250]. He further explained the mechanism of removal of 
toxic compounds from the plant. Under the aquatic conditions, phenolic 
compounds are water-soluble hence leached out in the water. Volatile 
compounds are most efficiently escaped in dry conditions of terrestrial 
habitats hence more common in these plants.

CONCLUSION AND FUTURE PROSPECTS

Cyanobacteria produce characteristic toxins. Planktons and microalgae 
synthesize toxins like Microcystins, Domoic acid, Saxitoxins, and 
Yessotoxins. Chlorophyceae are rich in terpenes, whereas Rhodophyceae 
and Phaeophyceae produce phlorotannins and polyphenols, 
respectively (Fig. 2). The first land plants, bryophytes, are known to 
synthesis polyphenols, tannins, flavonoids, phenolic compounds, and 
terpenoids. In addition to this, pteridophytes also produce alkaloids. 
Flavonoids and carotenoids are identifiable markers of vascular aquatic 
plants and may serve as sunscreen for early land plants. The flavonoids of 
bryophytes are relatively complex and resemble those of many vascular 
plants. Terpenoids and phenolics are common secondary metabolites.

Eukaryotes originated from prokaryotes [251]. Therefore, genes for 
secondary metabolites have been introduced into the eukaryotic 
genome through prokaryotes called horizontal transfer. Aquatic 
macrophytes (angiosperms) are evolved from terrestrial plants [252]. 
It is believed that they somehow migrate to aquatic conditions and used 
to survive thereafter, developing some adaptation mechanisms in their 
structure. This is also evidenced by the secondary metabolites present 
in aquatic macrophytes (alkaloids, phenols, and flavonoids). However, in 
submerged plants such as Ceratophyllum and Hydrilla species, alkaloids 
are absent as plants are not exposed to the aerial environment. All algae 
and cyanobacteria produced MAAs as a UV-absorbing compound except 
Chara. All land plants possessed flavonoids from bryophytes to higher 
plants as a UV absorbing compound.

Further, aquatic plants are a potent source of natural bioactive 
molecules that can be used for the ailment of chronic diseases (Fig. 3). 
They are a natural source of antioxidants and are used to cure cancer, 
viral fever, diabetics, etc., without any side effects. Most of them are 
highly productive. They synthesize huge biomass in water bodies; 
therefore, efforts should be made to isolate medicinally important 
compounds from them. It will be cheaper and safe for human health.
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