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ABSTRACT

Objective: The objective of the present study was to synthesize the thiazole-pyrazole integrated chalcones and their in vitro antioxidant and 
anti- inflammatory evaluation.

Methods: The designed hybrid thiazole-pyrazole integrated chalcones (3a-j) were synthesized by Claisen–Schmidt reaction of substituted 1-(4-methyl-
2-phenylthiazol-5-yl) ethanone and substituted pyrazole aldehyde in the presence of 10% NaOH in ethanol solvent under reflux condition. The chemical 
structures of synthesized compounds were confirmed by IR, 1H nuclear magnetic resonance (NMR), 13C NMR, and high- resolution mass spectra.

Results: All the title compounds were screened for their in vitro antioxidant and anti-inflammatory activity. The screening data indicated that tested 
compounds showed potent antioxidant activity with moderate anti-inflammatory potential.

Conclusion: Antioxidant screening data reveal that most of the synthesized compounds possess excellent 1,1-diphenyl-2-picrylhydrazyl and NO 
radical scavenging activity. Most of the compounds found to possess marked anti-inflammatory potential by effectively inhibiting the heat-induced 
albumin denaturation.
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INTRODUCTION

Chalcones are richly present in nature, source of chalcone starting 
from ferns to higher plants and some of them are polyhydroxylated 
in the aryl nucleus [1,2]. Many synthetic methods are reported for 
the synthesis of chalcones such as Claisen–Schmidt reaction [3], 
Allan–Robinson condensation (synthesis of flavones through chalcones) 
[4], Suzuki coupling reaction [5], Ganguly’s method (synthesis of flavones 
through chalcones) [6], Knoevenagel condensation [7], Mukaiyama-type 
aldol condensation [8], direct cross-coupling reaction [9], chalcone 
synthesis using boron trifluoride-etherate [10], sonochemical and 
microwave irradiation technique [11], and grinding technique [12]. The 
most widely used method is Claisen–Schmidt condensation of ketones 
and aldehydes.

The presence of thiazole and pyrazole nucleus in different 
organic structures leads to potent biological activities such as 
anticancer [13-14], antimicrobial [15-17], anti-inflammatory, 
and antioxidant [18], antidiabetic [19], and protein kinase 
inhibitor [20], literature survey reveals that so many of the natural 
and synthetic thiazole and pyrazole chalcones possess large 
number of pharmaceutical activities. Due to the importance and 
in continuation of our work on synthesis of biologically important 
molecules [21], here, we designed and synthesized various thiazole-
pyrazole integrated chalcones (Scheme 1).

EXPERIMENTAL SECTION 

Materials and methods
All commercially available chemicals and reagents were purchased 
from Aldrich and used without further purification. All the solvents 
were dried and distilled before use. The melting points were 

determined in open capillary tube and are uncorrected. The IR 
spectra of synthesized compounds were recorded on Shimadzu 
8400-S Fourier-transform infrared spectrophotometer using 
potassium bromide. The 1H nuclear magnetic resonance (NMR) 
was recorded in CDCl3 using Bruker 400 MHz NMR spectrometer 
and chemical shifts are reported as parts per million (ppm) using 
tetramethylsilane as an internal standard. Reactions were monitored 
using thin-layer chromatography (TLC) carried out on precoated 
aluminum plates. The visualization was achieved under ultraviolet 
light or staining with I2. Chromatographic separations were achieved 
on silica gel columns (Merck, 60–120 mesh) using gradient of 
hexane/ethyl acetate as eluent.

General procedure for the preparation of thiazole-pyrazole 
integrated chalcones
Mixture of substituted 1-(4-methyl-2-phenylthiazol-5-yl)ethanone 
(1 mmol) (1a-b) and substituted pyrazole aldehyde (1 mmol) 
(2a-e) was dissolved in 15  ml ethanol. To this reaction, mixture 
added freshly prepared 1 ml of 10% sodium hydroxide. The reaction 
mixture was refluxed at 80–90°C. The progress of reaction checked 
by TLC. After completion of the reaction (1  h), reaction mixture 
was poured in ice-cold water and stirred for 15  min. The obtained 
yellow-colored solid was filtered, washed with cold water, and dried. 
The crude product was recrystallized using ethanol to afford pure 
titled compound (3a-j).

Spectral data of representative compound
(E)-1-(4-methyl-2-phenylthiazol-5-yl)-3-(1,3-diphenyl-1H-pyrazol-4-yl)
prop-2-en-1-one (3a)
Yellow solid; 73%; M.P. 172–174°C; IR (KBr): 2922, 2852, 1742, 1650, 
755 cm−1; 1H NMR (400 MHz, CDCl3,): δ=2.823 (s, 3H, Thy-CH3), 7.152 
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(d, 1H, COCH=CH, J=15.2Hz), 7.376–7.965 (m, 1H, Ar-H), 7.465–7.546 
(m, 8H, Ar-H), 7.709–7.733 (m, 2H, Ar-H), 7.813–7.893 (m, 2H, Ar-H), 
7.913 (d, 1H, COCH=CH, J=15.2 Hz), 7.995–8.019 (m, 2H, Ar-H), 8.36 
(s, 1H, Pyr-H); high-resolution mass spectra (HRMS): m/z=448.1469 
(M+1). 13C NMR (400 MHz, CDCl3, δ in ppm): 18.64 (m, Thy-CH3), 117.92 
(m, C), 119.44 (s, C), 123.95 (m,-CH), 126.90 (s,-CH), 127.04 (m,-CH), 
127.37 (m,-CH), 128.81 (s,-CH), 128.86 (s,-CH), 129.12 (s,-CH), 129.60 
(m, =CH), 131.15 (w, -CH), 131.26 (m, -CH), 132.21 (m, -CH), 132.89 
(w, C), 135.00 (m, C), 139.35 (w, =CH), 154.05 (w, C), 160.28 (w, C), 
169.03 (w, C), 182.29 (w, C=O).

(E)-3-(3-(4-fluorophenyl)-1-phenyl-1H-pyrazol-4-yl)-1-(4-methyl-2-
phenylthiazol-5-yl)prop-2-en-1-one (3b)
Yellow solid; 82%; M.P. 352–354°C; IR (KBr): 2922, 2852, 1747, 
1650, 1215, 755 cm−1; 1H NMR (400 MHz, CDCl3): δ=2.839 (s, 3H, Thy-
CH3), 7.090 (d, 1H, COCH=CH, J=15.6Hz), 7.196–7.240 (m, 2H, Ar-H), 
7.383–7.402 (m, 1H, Ar-H), 7.481–7.543 (m, 5H, Ar-H), 7.682–7.718 
(m, 2H, Ar-H), 7.800–7.883 (m, 2H, Ar-H and d, 1H, CO-CH=CH, 
J=15.2 Hz), 7.999–8.023 (m, 2H, Ar-H), 8.352 (s, 1H, Pyr-H); HRMS: 
m/z=466.1373 (M+1)

(E)-1-(4-methyl-2-phenylthiazol-5-yl)-3-(1-phenyl-3-p-tolyl-1H-pyrazol-
4-yl)prop-2-en-1-one (Compound 3c)
Yellow solid; 70%; M.P.204°C; IR (KBr): 3015, 2918, 1747, 1646, 755; 
1H NMR (400 MHz, CDCl3): 2.447 (s, 3H, Ar-CH3), 2.821 (s, 3H, Thy-
CH3), 7.092 (d, 1H, CO-CH=CH, J=15.6Hz), 7.318–7.386 (m, 3H, Ar-H), 
7.477–7.533 (m, 5H, Ar-H), 7.596–7.616 (d, 2H, Ar-H), 7.806–7.830 
(m, 2H, Ar-H), 7.906 (d, 1H, CO-CH=CH, J=15.6 Hz), 7.997–8.021 (m, 
2H, Ar-H), 8.344 (s, 1H, Pyr-H); HRMS: m/z=462.1628 (M+1). 13C NMR 
(400 MHz, CDCl3, δ in ppm): 18.61 (m, Thy-CH3), 21.39 (m, Ar-CH3), 
117.89 (m, C), 119.10 (w, C), 119.43 (s,-CH), 123.81 (m,-CH), 126.89 
(s,-CH), 126.96 (s,-CH), 127.29 (s,-CH), 128.73 (s,-CH), 128.97 (s,-CH), 
129.11 (s, -CH), 129.30 (s, -CH), 129.40 (s, -CH), 129.55 (m, -CH), 
129.58 (s, =CH), 131.13 (s,-CH), 131.33 (m, C), 132.91 (m, C), 135.19 
(m, C), 138.73 (m, C), 139.39 (m, =CH), 154.14 (w, C), 160.18 (m, C), 
169.00 (m, C), 182.33 (m, C=O).

(E)-3-(3-(4-methoxyphenyl)-1-phenyl-1H-pyrazol-4-yl)-1-(4-methyl-2-
phenylthiazol-5-yl)prop-2-en-1-one (Compound 3e)
Yellow solid; 80.50%; M.P. 176°C; IR (KBr): 2922, 2852, 1744, 
1651, 1240, 757 1H NMR (400 MHz, CDCl3): 2.830 (s, 3H, Ar-CH3), 

Scheme 1: Synthesis of thiazole-pyrazole integrated chalcones

Where,

3a R1=H, R2=H 3b R1=H, R2=F 3c R1=H, R2=CH3
3d R1=H, R2=NO2 3e R1=H, R2=OCH3 3f R1=Cl R2=H
3g R1=Cl, R2=F 3h R1=Cl, R2=CH3 3i R1=Cl R2=NO2
3j R1=Cl, R2=OCH3
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3.884 (s, 3H, Ar-OCH3), 7.029–7.058 (m, 3H, Ar-H), 7.086 (d, 1H, CO-
CH=CH, J=15.6 Hz), 7.344–7.528 (m, 5H, Ar-H), 7.637–7.659 (m, 2H, 
Ar-H), 7.799–7.823 (m, 2H, Ar-H), 7.896 (d, 1H, CO-CH=CH, J=15.6Hz), 
7.955–8.020 (m, 2H, Ar-H), 8.334 (s, 1H, Pyr-H); HRMS: m/z= 478.1576 
(M+1). 13C NMR (400 MHz, CDCl3, δ in ppm): 18.64 (m, Thy-CH3), 55.39 
(m, Ar-OCH3), 114.32 (s, C), 117.76 (m, C), 119.39 (s, -CH), 123.75 
(m,-CH), 124.67 (s,-CH), 126.90 (m, C), 126.94 (m,-CH), 127.27 (s,-CH), 
129.12 (s,-CH), 129.58 (s, =CH), 130.11 (s,-CH), 131.14 (s,-CH), 131.27 
(s,-CH), 132.89 (m, C), 135.22 (m, C), 139.38 (m, =CH), 153.89 (m, C), 
160.15 (m, C), 160.24 (m, C), 168.99 (w, C), 182.31 (m, C=O).

(E)-1-(2-(4-chlorophenyl)-4-methylthiazol-5-yl)-3-(1,3-diphenyl-1H-
pyrazol-4-yl)prop-2-en-1-one (Compound 3f)
Yellow solid; 67.00%; M.P.186°C–188°C; IR (KBr): 3007, 2925, 1748, 
1659, 755, 700; 1H NMR (400 MHz, CDCl3): 2.804 (s, 3H, Thy-H), 7.081 
(d, 1H, CO-CH=CH, J=15.2Hz), 7.377–7.446 (m, 1H, Ar-H), 7.457–7.538 
(m, 8H, Ar-H), 7.703–7.727 (m, 2H, Ar-H), 7.808–7.832 (m, 2H, Ar-H), 
7.891–7.948 (m, 1H, Ar-H and d, 1H, CO-CH=CH, J=15.2 Hz), 8.351 
(s, 1H, Pyr-H); HRMS: m/z=482.1087 (M+1)

(E)-1-(2-(4-chlorophenyl)-4-methylthiazol-5-yl)-3-(3-(4-fluorophenyl)-
1-phenyl-1H-pyrazol-4-yl)prop-2-en-1-one (Compound 3g)
Yellow Solid; Yield: 87.01%; M.P. 192°C; IR (KBr): 3048, 2927, 1749, 
1653, 1209, 745, 700; 1H NMR (400 MHz, CDCl3): 2.823 (s, 3H, Thy-
CH3), 7.068 (d, 1H, CO-CH=CH, J=15.2Hz), 7.194–7.238 (m, 3H, Ar-H), 
7.385–7.403 (m, 1H, Ar-H), 7.445–7.467 (m, 2H, Ar-H), 7.503–7.542 
(m, 2H, Ar-H), 7.676–7.711 (m, 2H, Ar-H), 7.795–7.882 (m, 1H, 
Ar-H and d, 1H, CO-CH=CH, J=15.6 Hz), 7.932–7.953 (m, 2H, Ar-H), 
8.345 (s, 1H, Pyr-H); HRMS: m/z=500.0997 (M+1)

(E)-1-(2-(4-chlorophenyl)-4-methylthiazol-5-yl)-3-(1-phenyl-3-p-tolyl-
1H-pyrazol-4-yl)prop-2-en-1-one (Compound 3h)
Yellow Solid; Yield: 78.11%; M.P. 184°C; IR (KBr): 3121, 2919, 1751, 
1656, 754, 700; 1H NMR (400 MHz, CDCl3): 2.443 (s, 3H, Ar-CH3), 2.788 
(s, 3H, Thy-CH3), 7.066 (d, 1H, CO-CH=CH, J=15.6 Hz), 7.312–7.384 
(m, 3H, Ar-H), 7.427–7.464 (m, 3H, Ar-H), 7.489–7.529 (m, 2H, Ar-H), 
7.588–7.608 (m, 2H, Ar-H), 7.800–7.880 (m, 2H, Ar-H), 7.913–7.952 
(m, 1H, Ar-H and d, 1H, CO-CH=CH, J=15.2 Hz), 8.332 (s, 1H, Pyr-H); 
HRMS: m/z=496.1250 (M+).13C NMR (400 MHz, CDCl3, δ in ppm): 
18.56 (m, Thy-CH3), 21.39 (m, Ar-CH3), 117.83 (m, C), 119.41 (s, C), 
123.59 (s,-CH), 126.98 (s,-CH), 127.32 (s, CH), 128.05 (s,-CH), 128.08 
(s,-CH), 128.73 (s,-CH), 129.28 (s,-CH), 129.37 (s,-CH), 129.55 (s,-CH), 
129.59 (s, =CH), 131.39 (s, -CH), 131.67 (m, C), 135.39 (m, C), 137.19 
(m, C), 138.75 (m, C), 139.36 (m, =CH), 154.15 (m, C), 160.13 (m, C), 
167.51 (m, C), 182.20 (m, C=O).

( E ) - 1 - ( 2 - ( 4 - c h l o r o p h e ny l ) - 4 - m e t hy l t h i a z o l - 5 - y l ) - 3 - ( 3 - ( 4 -
methoxyphenyl)-1-phenyl-1H-pyrazol-4- yl)prop-2-en-1-one 
(Compound 3j)
Yellow Solid; Yield: 76.32%; M.P. 176°C; IR (KBr): 3113, 2926, 1743, 
1656, 1233, 754, 700; 1H NMR (400 MHz, CDCl3): 2.813 (s, 3H, Thy-H), 
3.885 (s, 3H, AR-OCH3), 7.034–7.084 (m, 2H, Ar-H and d, 1H, CO-CH=CH, 
J=15.6 Hz), 7.365–7.383 (m, 1H, Ar-H), 7.437–7.459 (m, 2H, Ar-H), 
7.489–7.529 (m, 2H, Ar-H), 7.631–7.655 (m, 2H, Ar-H), 7.795–7.819 
(m, 2H, Ar-H), 7.895 (d, 1H, CO-CH=CH, J=15.2Hz), 7.927–7.949 (m, 2H, 
Ar-H), 8.327 (s,1H, Pyr-H); HRMS: m/z=512.1196 (M+).

Biological activity
In vitro anti-inflammatory activity by protein denaturation method
The reaction mixture (2.5mL) consisted of 0.1mL of egg albumin (from 
fresh hen’s egg), 1.4mL of phosphate-buffered saline (PBS, pH6.4) and 
1mL of synthetic derivatives (1 mM). Similar volume of PBS served as 
control. Then, the mixtures were incubated at 37°C±2in an incubator 
for 15 min and then heated at 70oC for 5 min. After cooling, their 
absorbance was measured at 660nm using vehicle as blank. Diclofenac 
sodium at 1 mM was used as reference drug and treated similarly for 
the determination of absorbance. The percentage inhibition of protein 

denaturation was calculated using the following formula and results 
recorded in Table1.

% inhibition = 100 × (Vt/Vc – 1)

Where, Vt = absorbance of test sample and Vc = absorbance of control.

1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity
The molecule DPPH is characterized as a stable free radical by virtue 
of the delocalization of the spare electron over the molecule as a whole 
so that the molecule does not dimerize, as would be the case with most 
other free radicals. The delocalization of electron also gives progress to 
the deep violet color, characterized by an absorption band in ethanolic 
solution at about 517nm. When a solution of DPPH is mixed with that 
of a substrate (AH) that can donate a hydrogen atom, then this gives 
rise to the reduced form with the loss of this violet color. To evaluate 
the antioxidant potential through free radical scavenging by the test 
samples, the change in optical density of DPPH radicals is monitored 
and results recorded in Table1.

Hydrogen peroxide scavenging (H2O2) activity
Human beings are exposed to H2O2 indirectly through the environment 
nearly about 0.28 mg/kg/day with intake mostly from leaf crops. 
Hydrogen peroxide may enter the human body through inhalation 
of vapor or mist and through eye or skin contact. H2O2 is rapidly 
decomposed into oxygen and water and this may produce hydroxyl 
radicals that can initiate lipid per oxidation and cause DNA damage in 
the body and results recorded in Table1.

Nitric oxide (NO) scavenging activity
NO is formed in biological tissues by specific NO synthases, which 
metabolizes arginine to citrulline with the formation of NO through a 
five electron oxidative reaction. The sodium nitroprusside is known 
to decompose in aqueous solution at physiological pH (7.2) producing 
NO. Under aerobic conditions, NO reacts with oxygen to produce stable 
products (nitrate and nitrite), the quantities of which can be determined 
using Griess reagent and results recorded in Table1.

Superoxide radical (SOR) scavenging assay
SOR radical scavenging activity was carried out as per the reported 
method. The mixture consisting of 1mL of nitro blue tetrazolium (NBT) 
solution (156 mM NBT in phosphate buffer, pH 7.4), 1 mL NADH solution 
(468 mM NADH in phosphate buffer, pH 7.4), and 1 mL of synthetic 
compound (1 mM) solution was mixed. The reaction was started by 
adding 1 mL of phenazinemethosulfate (PMS) solution (60 mM PMS in 

Table1: Anti‑inflammatory and antioxidant activity of 
synthesized compound(3a‑j)

Compound 
No./Code

Anti‑inflammatory 
activity % 
inhibition at 1 mM

Antioxidant activity % 
inhibition at 1 mM/mL

DPPH H2O2 NO SOR
3a 52 25.07 20.33 18.27 15.18
3b 58 25.58 21.78 51.90 22.47
3c 71 40.98 37.50 19.82 16.88
3d 45 32.72 23.96 23.80 20.25
3e 80 45.21 39.45 48.75 23.10
3f 62 39.87 25.66 26.40 15.54
3g 59 29.44 22.37 58.25 26.78
3h 74 41.69 35.81 22.57 18.05
3i 50 47.36 40.39 20.15 21.55
3j 86 48.05 43.60 55.12 25.90
Diclofenac 
sodium

90.21 ‑ ‑ ‑ ‑

Ascorbic 
acid

‑ 42.98 42.63 89.13

BHT ‑ ‑ 88.42 ‑ ‑
BHT: Butylated hydroxytoluene
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phosphate buffer, pH 7.4) to the above mixture. The reaction mixture 
was incubated for 5 minutes at 25oC and the absorbance was measured 
at 560 nm against blank sample and compared with standards and 
percentage inhibition was calculated using the same formula as above. 
Decreased absorbance indicates increased SOR scavenging activity.

RESULTS AND DISCUSSION

Chemistry
Synthesis of thiazole-pyrazole integrated chalcones (3a-j) was 
achieved by Claisen–Schmidt reaction of substituted 1-(4-methyl-2-
phenylthiazol-5-yl) ethanone and substituted pyrazole aldehyde in 
the presence of 10% NaOH in ethyl alcohol as a solvent under reflux 
condition. The synthesis of substituted pyrazole aldehydes was 
achieved as per the procedure reported in literature [22]. The chemical 
structures of synthesized compounds were confirmed by IR, 1H NMR, 
and HRMS data.

Biological evaluation
Anti-inflammatory activity
Denaturation of proteins is a well-established cause of inflammation. 
In the present work, the in vitro anti-inflammatory potential of 
synthesized thiazole-pyrazole integrated chalcones was evaluated 
against denaturation of egg albumin and the results are illustrated in 
Table 1. Most of the compounds were found to have significant anti-
inflammatory properties. Compound 3j, 3e, 3h, and 3c exhibited 
significant inhibition of protein denaturation compared to the reference 
standard diclofenac sodium, a standard anti-inflammatory drug at 1 
mM concentration; however, compound 3f, 3g, and 3b showed good 
inhibition. On the other hand, all other compounds were also found to 
possess moderate inhibition of heat-induced egg albumin denaturation.

Antioxidant activity
Reactive oxygen species (ROS) and nitrogen species are responsible 
to the pathophysiology of anti-inflammatory conditions. Taking into 
the consideration of multifactorial character of oxidative stress which 
is involved in several pathological states, we have further evaluated 
antioxidant properties of synthesized compounds 3a-j for their 
antioxidant potential against ROS such as DPPH, H2O2, NO, and SOR 
radicals compared to reference standard ascorbic acid and the results 
are listed in Table 1. All the synthesized compounds demonstrated 
good to moderate scavenging activity against DPPH and NO radicals, 
whereas moderate to weak activity against H2O2 and SOR radicals. 
The antioxidant activity results revealed that the compounds 3j, 3i, 
3e, 3h, and 3c were found to possess significant inhibition of DPPH 
radical scavenging activity. On the other hand, all other compounds 
were found to be moderate scavengers of DPPH radical. Compound 
3g, 3j, and 3b exhibited significant inhibition of NO radicals compared 
to the standard drug ascorbic acid. However, remaining compounds 
were moderate NO radical scavengers compared to ascorbic acid. On 
the other hand, all the compounds were unveiled moderate to weak 
inhibition of peroxide (H2O2) and superoxide (SOR) radicals compared 
to reference drug butylated hydroxytoluene and ascorbic acid, 
respectively.

CONCLUSION

All the newly synthesized compounds were confirmed by IR, 1H NMR, 
and HRMS. In vitro antioxidant screening data of newly synthesized 
compounds revealed that most of the synthesized compounds possess 
excellent DPPH and NO radical scavenging activity. All the compounds 
found to possess marked anti-inflammatory potential by effectively 
inhibiting the heat-induced albumin denaturation. Further, bioassay, 
optimization, and structure-activity relationship of the title compounds 
are underway.
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