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ABSTRACT

Objective: To find out novel inhibitors for histamine 4 receptor (H4R), the target for various allergic and inflammatory pathophysiological conditions.

Methods: Homology modeling of H4R was performed using easy modeler and validated using structure analysis and verification server, and with the 
modeled structure, virtual screening, pharmacophore modeling, and quantitative structure activity relationship (QSAR) studies were performed using 
the Schrodinger 9.3 software.

Results: Among all the synthetic and natural ligands, hesperidin, vitexin, and diosmin were found to have the highest dock score, and with that, a 
five-point pharmacophore model was developed consisting of two hydrogen bond acceptor and three ring atoms, and the pharmacophore hypothesis 
yielded a statistically significant three-dimensional QSAR (3D-QSAR) model with a correlation coefficient of r2=0.8962 as well as good predictive 
power.

Conclusion: The pharmacophore-based 3D-QSAR model generated from natural antihistamines can provide intricate structural knowledge about a 
new class of anti-allergic and anti-inflammatory drug research.

Keywords: Histamine 4 receptor, Homology modeling, Docking, Pharmacophore modeling, Three-dimensional quantitative structure activity 
relationship.

INTRODUCTION

Histamine is a small molecule derived from the decarboxylation of the 
amino acid called histidine. These histamine molecules are synthesized 
in all tissues but are mainly abundant in the skin, gastrointestinal 
tract, and lungs. The prominent source of this histamine is mast cells 
and other immune cells. When the allergen or antigen cross-links 
with IgE on the surface of immune cells, it responds by the liberating 
histamine molecules. Histamine [1-7], a chemical messenger, exerts 
many numerous physiological processes in hypersensitivity responses, 
gastric acid secretion, neurotransmission, immunomodulation, cell 
differentiation, and embryonic development through four distinct 
receptors: H1R, H2R, H3R, and H4R, which belong to class of G 
protein–coupled receptors (GPCR) [8-14]. Histamine is best known 
as a mediator of allergic reactions and now recognized to participate 
in numerous other pathologic processes. The sensitivity of histamine 
depends on the type of receptor. It is mainly expressed in mast cells, 
monocytes, eosinophils, dendritic, and T-cells. Histamine 4 receptor, 
a type of G-protein coupled histamine receptor family identified in 
recent times, commonly known as H4R. The histamine receptors 
are differentially expressed in various cell types which when 
binds to a small biogenic amine molecule called histamine leads to 
various pathophysiological regulatory role in cellular events. H4R is 
expressed in numerous cells and tissues of immune system, especially 
in the hematopoietic sources; in other words, it is present in bone 
marrow, spleen, thymus, lung, and colon. As it is highly expressed in 
peripheral blood cells and intestinal tissues, the activation of the H4 
receptor by the binding of histamine molecule enhances the activity 
of several chemoattractants and leads to chemotaxis, eosinophil, and 
neutrophil trafficking which causes inflammation. This in turn makes 
H4 receptor a potential target of allergic and inflammatory disorders. 
It is a recently identified histamine receptor due to complications in 
crystallization process; the crystal structure of H4R is not available yet. 

Hence, the unexplored biochemical activities and necessity to inhibit 
the histamine binding attracted biologist, thus serving as a novel target 
for pharmacological modulation of histamine-transferred immune 
signals. The unexplored biochemical activities attract biologist, and it 
serves as a novel target for pharmacological modulation of histamine-
transferred immune signals. H4R shows 35% homology to H3R. 
H4R [7,15-20] mainly distributes in hematopoietic cells and plays 
a key role in nociceptive responses, autoimmune disorder, allergic 
conditions, colon cancer, and breast cancer. H4R belongs to the super 
family of GPCR. In connection with efforts rendered in finding out 
novel inhibitors for H4R, we perform virtual screening and docking 
studies, and with the best ligands, we have created a pharmacophore 
model, and quantitative structure activity relationship (QSAR) studies 
were performed.

METHODS

Homology modeling
The crystal structure of histamine 4 is not available in protein data 
bank (PDB). Hence, we developed the optimized model of H4R with 
the help of Easy Modeler. Hence, the crystal structure of histamine 1 
which has been identified very recently is downloaded from the PDB 
(PDB ID 3RZE). This is used as template to construct the H4R model. 
The H4R sequence is retrieved from Gen Bank (Accession no Q9H3N8). 
The model that is generated is then energy minimized. The optimized 
model is then validated using structure analysis and verification server.

Molecular docking
Protein preparation
Preparation of the target protein using ‘protein preparation wizard’. 
Pre-processing and heterostate for co-crystallized ligand were 
generated using Epik; protonation state and optimization of H-bonding 
of the protein side chains were assigned using protassign, energy 
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minimized (impref minimization) using optimized potential for liquid 
simulations (OPLS) 2001 force field. Receptor grid has been prepared 
with default parameters and without any constraints.

Ligand preparation
The ligands required for docking exported as a single file and are 
prepared by using the tool LigPrep utility of Schrodinger suite with 
default parameters, the ligand energy minimized by using OPLS 2005 
(macromodel multiple minimization) and water as solvent. Ligand 
docking was performed using OPLS force field. To predict the binding 
affinity and preeminent docked structures, the combined ligand 
docking and energy grid scores were ranked by using Emodel and glide 
scores.

Ligand docking
Flexible docking was performed using the extra precision feature of 
glide 5.0 module implemented in the Schrodinger LLC. Visualization 
and analysis of protein-ligand complexes were performed using PyMOL 
ver. 0.99 software (DeLano Scientific LLC, CA, USA), and the best-docked 
ligand will be classified based on the glide score.

Phase methodology dataset and biological activity.

We take 11 natural antihistamines from literature studies, and their 
inhibitory concentration (IC50) values are converted into p IC50 using 
following formula: p IC50 = -log IC50 (Table 1).

Creating pharmacophore sites and common pharmacophore 
hypothesis (CPH) generation
The molecules are divided into actives and inactives according to the p 
IC50 values. The phase consists of the pharmacophore features such as 
hydrogen bond acceptor (A), hydrogen bond donor (D),hydrophobic/
non-polar group (H), negatively ionizable (N), positively ionizable (P), 
and aromatic ring (R) which is used to create the pharmacophore sites 
for the ligands. The CPH is examined using scoring hypothesis.

Scoring function
The measurement of quality of alignment is done by means of survival 
score given as:

S=WsiteSsite+WvecSvec+WvolSvol+WselSsel+Wm rew

Where W denotes weights, S denotes scores, Ssite represents alignment 
score, Svec represents vector score which is the averages of the cosine 
of the angles formed by corresponding pairs of vector features in 
aligned structures, Svol represents volume score which is based on 
overlap of Vander Waals models of non-hydrogen atoms in each pair of 
structures, and Ssel represents selectivity score, and this accounts for 
what fraction of molecules is likely to match the hypothesis regardless 
of their activity toward the receptor. The default values for Wsite, 
Wvec, Wvol, and Wrew are 1.0, whereas the default value for Wsel is 
0.0.We have used the default values in all the cases for our hypothesis 
generation.

Atomic three-dimensional QSAR (3D-QSAR) generation
The QSAR models were developed from a series of molecules, of varying 
activity, that have all been aligned to a CPH that is associated with a 
single reference ligand. All hypotheses that successfully generated and 
scored were then used to build pharmacophore-based 3D-QSAR models 
with grid spacing 1.0 A. PHASE supports only external validation, using a 
factual test set for which structures and activities are not considered for 
developing QSAR models. The developed 3D-QSAR models are validated 
by predicting activities of test set molecules which are measured in 
terms of Q-square values. The predictive ability of the developed models 
is measured by means of the Pearson correlation coefficient r value.

RESULTS AND DISCUSSION

Homology modeling
The Ramachandran plot obtained from procheck showed that 90.9% of 
the residues were found to be in the most favored regions, indicating 
that our model was good (a good quality model would be expected 
to have over 90% in the most favored regions), and only 0.3% of the 
residues were found to be present in disallowed region. Thus, out of 
390 residues, 328 residues were found in most favored regions, and 
only one residue was in the disallowed region (Fig. 1) [21-23].

Molecular docking studies
The active sites are predicted based on literature studies and the amino 
acids include Asp94, Tyr95, Glu182, Thr316, Thr319, and Phe344 [24]. 
The interactions of H4R with both natural and synthetic ligands are 
analyzed. In case of synthetic ligands, the common amino acids that 
interacted with histamine were Tyr95 and Thr323 (Table 2). In case of 
natural ligands, the common amino interactions were Tyr95, Glu182, 
Thr323, and Ser362 (Table 3).

In light of good docking score (glide score) and a number of hydrogen 
bonds shown by docking analysis in the comparison, following 
compounds show better efficiency: Hesperidin, vitexin, and diosmin 
such as 13.71 kcal−1, −11.34 kcal−1, and −10.87 kcal−1, respectively 
(Fig. 2). These natural compounds showing their best efficiency could 
be thus used as potential leads in drug designing. Furthermore, the 
natural compounds are found to be better inhibitors of H4R when 
compared to synthetic ligands based on the glide score. Thus, natural 
compounds can be more effective when used in the treatment of disease 
when compared to synthetic compounds [25].

Table 1: Compounds with IC50 values

Compounds IC50

Hesperidin 9.5
Vitexin 46.5
Rutin 12.3
Chlorogenic acid 45.5
Quercetin 15.4
Myricetin 2.12
Fisetin 3.7
3-methyl quercetin 2.75
Luteolin 18.6
Catechin 49
Kaempferol 0.84
IC50: Inhibitory concentration Fig. 1: Ramachandran plot result of homology-modeled protein
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Pharmacophore hypothesis
Pharmacophore modeling studies were done using IC50 values of the 
top scoring natural antihistamines, and subsequently a pharmacophore 
compound consisting of 7 essential pharmacophoric features of 
three Hydrogen bond Donor, two hydrogen bond Acceptor and two 
hydrophobic ring structure was developed (Fig. 3), (Table 4).

The crystal energy is minimized using the OPLS 2005 force field energy. 
The ligands are built using Maestro build panel and prepared by a 
LigPrep 2.2 module, which uses OPLS 2005 force field to produce the 
lowest energy conformer of ligands. The training and test set were 
selected randomly, and the seed value for activity threshold given was 
8.432 to ensure that the assignment is randomly done (Fig. 4).

Due to various difficulties in the crystallization of GPCR protein, the 
crystal structure of H4R is not yet solved. The crystal structure of 
human histamine H1R is reported very recently. Hence, we developed 

a homology model of H4R based on the crystal structure of H1R [15]. 
Then, several synthetic and natural ligands including agonists and 
antagonists are docked in the H4R model [15]. The synthetic and natural 

Table 2: Docking result of chemical inhibitors

Name Cid number Glide score H-bond length Amino acid interaction
Diphenhydramine 3100 −6.75 2.353, 2.314 TYR 95, TYR 319
A-943931 25068753 −6.72 2.315, 2.341, 2.410 TYR 95, GLU 182
Thioperamide 3035905 −6.32 1.813 THR 323, TYR 340
JNJ−10191584 10446295 −5.73 2.584, 1.669 SER 179, THR 323
JNJ−7777120 4908365 −5.67 1.756 TYR 95
Cetirizine 2678 −5.42 2.623, 1.717 THR 323, SER 320
Clemastine 26987 −1.65 No interaction
Loratadine 3957 −0.44 No interaction
Histamine 774 −6.54 ASP 94, GLU 163, SER 162, TYR 95

Table 3: Docking result of natural ligands

Name Compound ID (PubChem) Glide 
score

Interaction H-bond length

Hesperidin 10621 −13.71 Thr323, Glu182, Phe169, Ser331, 
Pro335

1.845, 1.491, 1.780, 1.843, Pro335 (2.331, 
2.490)

Vitexin 5280441 −11.34 Glu182, Thr323 1.763, 2.573
Diosmin 5281613 −10.87 Thr323, Phe169 2.037, 1.802
Rutin 5280805 −10.43 Glu182, Tyr95, Thr323 Glu182 (1.713,2.013), Tyr95 (1.812,2.384), 

Thr323 (2.094,1.429, 2.358)
Alloin 12305761 −9.82 Ser162, Thr323, Tyr319, Phe169 Ser162 (1.994,2.495), 1.711, Tyr319 (1.983, 

2.329,2.614), 2.183
Chlorogenic acid 1794427 −9.22 Ser162, Glu163, Ser179, Thr323, 

Ser320
2.315, 1.733, 1.629, 2.172, 2.039

Quercetin 5280343 −9.06 Phe169, Tyr95, Tyr319, Glu182 1.991, 2.090, 2.558, Glu182 (1.808, 1.676)
Myricetin 5281672 −8.95 Thr323, Glu182, Ser162 1.869, Glu182 (1.650, 1.718), 2.362
Fisetin 5281614 −8.61 Phe169, Glu182, Tyr95, Tyr319 1.987, Glu182 (1.8, 1.672), 2.1, 2.566
Hydroxypeucedanin 
hydrate

17536 −8.48 Thr323, Tyr95 1.866, Tyr95 (2.614, 1.971, 1.893)

3’-methylquercetin 5281654 −8.29 Glu163, Thr323, Glu182, Tyr95, 
Tyr319

1.829, 1.928, 1.643, 2.372, 2.375

Luteolin 5280445 −8.23 Ser162, Glu182, Tyr319 2.012, 1.725, 2.510
Catechin 9064 −8.13 Thr323, Glu163, Tyr95, Tyr319, 

Glu182
2.151, 1.817, 2.451, 2.328, Glu182 (1.636, 
1.673)

Kaempferol 5280863 −8.04 Ser162, Glu182, Tyr95, Tyr319 2.574,1.918,2.112,
Tyr319 (2.402,2.101)

Byakangelicin 10211 −7.95 Glu182, Tyr95 1.991, Tyr95 (1.965, 2.089, 2.067)
Baicalein 5281605 −7.67 Phe169 2.214
Piceatannol 667639 −7.65 Glu182, Ser162 Glu182 (1.737,1.638), 2.108
Apigenin 5280443 −7.63 Glu182, Phe169 1.709, 2.169
Acacetin 5280442 −7.63 Thr323, Phe169 2.622, 2.004
Ginkgetin 5271805 −7.53 Thr178, Phe169, Ser337 2.246, 2.226, 1.804
3-MethylQuercetin 5280681 −7.44 Glu182, Tyr95, Tyr319 Glu182 (1.937,2.010), 2.030, 2.611
Cetirizine 2678 −7.35 Ser179, Thr323 2.203, 2.205
8-Gingerol 168114 −7.22 Glu163, Tyr95 1.618, 1.894
Xanthotoxol 65090 −7.15 Tyr95 1.926, 2.047
Xanthotoxin 4114 −6.44 Tyr95, Tyr319 2.078, 2.202
Diphenhydramine 3100 −6.27 Tyr95 Tyr95 (2.159, 2.246)
Flavone 10680 −6.02 Tyr95, Tyr319 2.342, 2.308

Table 4: Pharmacophore features of the compound selected

Rank Feature 
label

Score Type Number Source

1 R27 −1.26 R 26 Aromatic ring
2 D18 −0.96 D 17 H phobe
3 D20 −0.96 D 19 H Bond

H Bond
4 R26 −0.94 R 25 Ring chem score

H phobe
5 A9 −0.78 A 8 H Bond
6 D23 −0.48 D 22 H Bond
7 A11 −0.26 A 10 PhobEn+H Bond



153

Asian J Pharm Clin Res, Vol 10, Issue 12, 2017, 150-154
 Shobana 

various allergic and inflammatory diseases. The pharmacophore-based 
3D-QSAR model generated from natural antihistamines can provide 
intricate structural knowledge about a new class of anti-allergic and 
anti-inflammatory drug research. The developed pharmacophore 
model can help us in virtual screening of finding new potent ligands 
against allergy which can help us in the better therapy of allergic 
conditions.
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a five-point pharmacophore model is developed. The pharmacophore 
hypothesis is then used to yield a statistically significant 3D-QSAR 
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(Table 5).
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