ASIAN JOURNAL OF PHARMACEUTICAL AND CLINICAL RESEARCH

A CASE STUDY ON SOFTWARE PROJECT DEVELOPMENT COST, SCHEDULE, AND EFFORT ESTIMATION

PRABHAKAR RAO BVANSS^{1,2*}, SEETHA RAMAIAH P³

¹School of Computing Science and Engineering, VIT University, Chennai Campus, Chennai, Tamil Nadu, India. ²Department of CSE, Research Scholar, JNTUK Kakinada, Andhra Pradesh, India. ³Department of CS and SE, Andhra University, College of Engineering (A), Visakhapatnam, Andhra Pradesh, India. Email: prabhakarrao@vit.ac.in

Received: 23 January 2017, Revised and Accepted: 20 June 2017

ABSTRACT

This paper theme is to provide a case study of Software Project Development cost, effort, and schedule estimation. From recent past, a remarkable research takes place in developing different techniques on software effort and cost estimation. Making estimation before start of any project is necessary to be able to plan and manage any project. The estimate is an intelligent guess for the project resources. Nowadays, software has become a major contributor to economic growth for any nation. Making an estimate before starting any software project is vital for the project managers and key stakeholders. Major project milestones such as project schedules, budgeting, resource allocation, and project delivery dates are set on the effort and cost estimates. Thus, the reliability of the estimation leads any project success or otherwise fail. In this article, author's idea is to work with function point analysis and include the concept of workforce scheduling in a better way while taking the decision in the contract phase. That leads to strengthening the relations between the developer and the customer. Basically, size is a main measured unit of the software project. Based on the size and other functionalities, the software managers estimate the total effort required to develop the project. From the effort and work schedule, the total cost can be estimated.

Keywords: Workforce scheduling, Software, Project development, Effort, Cost, Estimation, Measurement, FPA, COCOMOII, General system characteristics, Value adjustment factor.

© 2017 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons. org/licenses/by/4. 0/) DOI: http://dx.doi.org/10.22159/ajpcr.2017.v10s1.19538

INTRODUCTION

Nowadays, software industry is very strong and interconnected with other industries. Its role and involvement are high. Without software systems nothing is possible. For the last few decades onward, the embedding software into hardware components is relatively high [1-3]. All most all kinds of problems are being tackled by software industry. Once in a time, software development was very small and small in nature, but the cost of the software project was vast. However, things have changed like anything now the common man can reach to solve their problems [4,5]. In this context, and huge demand in industry and the healthy competition software industry has to quote an exact figure on the product.

NEED OF SOFTWARE ESTIMATION

Gauges estimate the future as well as regularly influence it. As well - low gauges can prompt to lower quality, conceivable revised in later stages, and higher dangers of venture disappointment; as well high gauges can diminish profitability as per Parkinson's Law, which expresses that work extends to fill the time accessible for its consummation.

This is the reason it is essential to think about whether as an exertion gauge is truly required. On the off chance that you do not generally require gauges or simply require them at a later stage, it may be more secure to abandon them or delay the estimation until more data are accessible [6-9]. Agile programming improvement - which includes arranging only the following sprint or discharge by utilizing criticism from past sprints or discharges - may be a decent approach to keep away from the potential mischief from assessing too soon.

REVIEW OF LITERATURE ON ESTIMATION MODELS

Different estimation models were designed by experts to meet estimation requirements. Different models also were developed in different periods because software engineering itself was evolving. Tables 1 and 2 provide a brief comparison enumerating the advantages and disadvantages of a few popular estimation methods [10-13]. Table 3 provides a select list of tools that are popular in the software estimation community. Each tool has been designed with a specific estimation method and a specific output as an objective [14-16].

CASE STUDY - ESTIMATION PROCESS

Step 1: Identify stakeholders

- Steps 2: Identify category of information and data items
- Steps 3: Identify category of data items
- Steps 4: Identify data functions (Data Files: ILF) Steps 5: Identify data functions (Data Files: EIF)
- Steps 5: Identify transaction functions (EI/EQ/EO)
- Step 7: Aggregate data and transaction function (unadjusted).
 - FP counts Aggregate the data function FP count and the transaction function FP count to obtain the total unadjusted FP count.
- Step 8: Obtain general system characteristic (GSC) values for invoice application

The next step is to obtain the degree of influence rating for each of the 14 general system characteristics (GSCs). Convert the total degree of influence value to value adjustment factor (VAF). Multiply the unadjusted FP count with VAF to obtain the adjusted FP count.

Step 9: Transform the adjusted FP count into the total effort. Transform the adjusted FP count into the total effort required to execute the software project. This can be achieved by obtaining the delivery rate (productivity) of the project team and then multiplying the adjusted FP count with productivity. The effort thus obtained will encompass all the project execution lifecycle activities that include requirements, design, build (construction) and unit test, and system, and integration tests.

The following six steps take you through the sequence of converting the unadjusted function points count into adjusted function points and then to effort using assumed productivity. Then, finally, it provides you with an option for adding the project management overhead efforts.

- 1. The VAF = 1.12.
- 2. Final (adjusted) function points = 287×1.12=322.

Table 1: Pros and cons of various estimation models

Estimation method	Applicable stages	Advantages	Disadvantages
Function point	Requirements to	Assurance level is high	Depends on the subjective weight
	testing	UP view	Needs trained person
		Language independent, methodologies, or tools	Manual operation.
		Non-technical users have a better understanding	Measuring rules and business logic are more complex
COCOMOII	High-level	Not only can use source lines of code but also	Local calibration needed for accuracy
	requirements	can use object points, unadjusted function points	In early phase of system
		as metrics for sizing a project	Size estimated with uncertainty
		Estimates of software costs	
COSMIC-FFP	High-level	Working for both MIS applications as well as	Benchmark data is not currently available
	requirements	real-time applications Simple to use	International acceptance is limited but growing
Wideband Delphi	Pre-requirements,	Useful in the absence of qualified, empirical data	Expert's opinion
Technique	proposal		Requires multiple experts
			Hard to document
SMC	End of design	Easy to understand and use	May not be consistent across users
		program perspective	Only experts on technology can do

Table 2: Desired parameters in estimation tools

Feature	Description
Project type selection	Development, maintenance, enhancement, migration, porting, etc.
Calibration/standard	IFPUG, COCOMOII, NESMA, Parametric, Monte Carlo
Sizing method	SLOC, function points, COCOMOII, UML, use case, object points, etc.,
Lifecycle selection	Waterfall, iterative, etc.,
Programming language selection	20+popular languages
Maintaining historic data	Build repository
What-if scenarios	Analyze different scenarios
Track scope creep	Ability to track and flag changes
Constraints and priorities	Provision to identify constraints and priorities
Selection of relevant projects	Efficiency, staffing, reliability, phase customization
Storage of metrics and data analysis	Effort, schedule variance, defects, and other overheads
Integrated reporting	Flexible reporting features
Interface to other tools and applications	Interface Microsoft Office and web

Table 3: Popular estimation methods/tools

Popular tools	Available source through net
Construx estimate	http://www.construx.com/estimate
Costar	http://www.softstarsystems.com
CostXpert	http://www.costxpert.com
Function point	http://www.charismatek.com.au
WORKBENCH	
Knowledge plan	http://www.spr.com
PRICE-S	http://www.pricesystems.com
SEER-SEM	http://www.galorath.com
SLIM-estimate	http://www.qsm.com
COCOMO family	http://csse.usc.edu/tools/COCOMOSuite.php
Comparative	www.isbsg.org
estimating tool	
Early estimate	www.isbsg.org
checker	
FP outline	www.totalmetrics.com
PQM plus	www.qpmg.com
SMRe	www.qmg.com

- Assume the technology is K and productivity for J2EE = 10 FP per person month.
- 4. Engineering effort required to develop the invoice application = 322/10 = 32 PM.
- 5. The additional effort for project management and configuration management = 15%.
- 6. Final effort = 32 + 5 (15%) = 37 person months.

Step 10: Transform the total effort into delivery schedule.

The total effort now needs to be adjusted to a project delivery schedule. There are methods are.

- Step 11: Map the resource loading to meet the delivery schedule. Transform the total effort obtained in Step 9 above into a resource loading chart. This step is significant in the sense that assigning the appropriate person with the right skills for the appropriate lifecycle phase of the project is critical for the project to be a success [17].
- Step 12: Project managers Assignment.
 - One project manager for every eight to ten technical staff members.
 - One full-time project manager for every 1500 function points.
 - One project manager for roughly every 1,50,000 source code statement.
 - Project management starts before requirements and runs after the project ends.
 - Project management work = 35% of the available management time.
 - Personnel work = 30% of the available management time.
 - Meetings with other managers or clients = 22% of the available management time.
 - Department work = 8% of available management time.
 - Miscellaneous work = 5% of available management time.

WORKFORCE SCHEDULING

Workforce scheduling includes putting the right individuals on the right employments at the right times to take care of client demand [18]. The objective of workforce scheduling is to coordinate the quantity of laborers accessible with the client request that exists in any given day and age.

Table 4: Project benefit analysis - make or buy decision

PInsF	Worth	Acceptance	Reusability	Solution	Teachability	Risk	Result
1	High	Positive	None	None	Frequent	Low	Good
2	Negative	*	*	*	*	*	Poor
3	Low	*	*	*	*	High	Poor
4	Moderate	Neutral	Adequate	Complete	Difficult	High	Poor
5	Low	Negative	None	Partial	Frequent	Low	Poor
6	High	Negative	Partial	None	Difficult	Moderate	Good
7	High	Positive	Partial	Complete	Frequent	High	Poor
8	High	Positive	Partial	Partial	Possible	Low	Poor
9	Low	Positive	Adequate	None	Frequent	Low	Good
10	High	Negative	Partial	None	Frequent	High	Good
11	Low	Positive	None	Complete	Difficult	Moderate	Poor
12	Low	Neutral	Adequate	Complete	Frequent	Low	Good
13	Low	Neutral	None	None	Difficult	Low	Good
14	Moderate	Positive	Adequate	None	Difficult	High	Poor
15	High	Negative	Adequate	Partial	Frequent	High	Poor
16	High	Negative	Partial	Complete	Possible	Low	Good
17	Moderate	Negative	None	Partial	Difficult	High	Good
18	Moderate	Neutral	Adequate	Partial	Difficult	Low	Poor

Four major steps are:

- i. Forecast customer demand.
- ii. Translate demand estimates of requirements.
- iii. Schedule.
- iv. Refine the schedule as per the need.

Algorithm 1: Workforce scheduling

Input: Customer demands and development industry requirements for a particular domain.

Output: Scheduling and timeline for each task of the development life cycle;

Repeat

- i. Predict Customer interest for your administration by predicting potentials of the administration exchange that change after some time, for example, client landing rates.
- ii. Calculate the quantity of representative hours required to fulfill the request anticipated in step one. This requires setting the quantity of workers with fitting expertise levels that are expected to serve clients enough amid the era being referred to.
- Develop the genuine work routine by considering representatives' aptitudes, yearnings, and solicitations, and afterward choosing who will do what work at what time.
- iv. Change the work game plan as required by genuine request. This last stride guarantees compelling client benefit.

Until fine tune schedule

There are four cases can be experienced within planning:

- A planning skyline is a period for which calendars are produced at 1 time.
- Planning periods, which are likewise called arranging interims, are subsets of the booking skyline and are the nitty gritty interims utilized for staff arranging.
- Overstaffing, or surplus staffing, is a circumstance where more staff is booked in an arranging period than is in a perfect world required.
- Understaffing, or short staffing, is a circumstance where less staff is booked in an arranging period than is in a perfect world required.

Decision tree for benefit analysis(Table 4)

Decision trees helps to evaluate the given options. As per the sample data presented in Table 4 main project leading team can choose the projecting "Expected Outcomes". In this analysis, a decision tree structures a question/answer pattern. Apart from the data given, Table 5 demonstrations a broad question where each encounter has several significant possible outcomes and the closely related states = ('Willing', 'Avail'), Observations = ('Proc', 'Outs', 'Inso'), start_probability = {'Willing':

Fig. 1: Software project delivery status

Fig. 2: Required type of specialists in large corporations

0.6, 'Avail': 0.4}, transition_probability = {'Willing': {Willing': 0.7, 'Avail': 0.3}, 'Avail': {'Willing': 0.4, 'Avail': 0.6}}, emission_probability = {'Willing': {'Proc': 0.1, 'Outs': 0.4, 'Inso': 0.5}, 'Avail': {'Proc': 0.6, 'Outs': 0.3, 'Inso': 0.1}}. This message advocates the use of decision trees in combination with cost benefit analysis for decisions supporting enterprise technology projects. The point of this message is to encourage architects, project leads and engineers to bring structured decision tools to implementation decisions, rather than relying on mind-share, word-of-mouth, marketing, ease of access, or other rote decision aid. An example of the sort of thing you will end up with is shown in Fig. 1 with respect to the delivery status and Fig. 2 with respect to required type of specialists in large corporates. As an example (from the project management perspective) a root question might be: How do we handle a change in requirements? Graph 1 shows a possible workforce with activity planning, supporting

SUMMARY OUTPUT

Normal Probability Plot

R² 0.679244751 0055418357 0.670444703 1055418357 0.670444703 0055418357 error Observations 63 Sample Percentile ANOVA standard 0.750 100 150 ANOVA df SS MS F Significance F Regression Observation 3 663 51296785.75 020724831.8 69.07678632 2.72566E-19 Upper 95.0% Upper 95.0% Upper 95.0% Upper 95.0% 0.0007578.632 328.563071 -7756.191976 1328.563071 -7756.191976 1328.563071 -7756.191976 1328.563071 -7756.191976 1328.563071 -7756.191976 1328.563071 -7756.191976 1328.563071 -7756.191976 1328.563071 -7756.191976 1328.563071 -7756.191976 1328.563071 -7756.191976 1328.563071 -7756.191976 1328.563071 -7756.191976 1328.563071 -7756.191976 1328.563071 -7756.191976 1328.563071 -7756.191976 1328.563071 -7756.191976 1328.563071 -7756.191976 1179.936129 6887.874469 1179.936129 6887.874469 1179.936129 6887.874469 1179.936129 6887.874469 1179.936129 6887.874469 <th>Regression sta Multiple R</th> <th>tistics 0.834987755</th> <th></th> <th>:</th> <th>20000</th> <th></th> <th></th> <th></th> <th></th>	Regression sta Multiple R	tistics 0.834987755		:	20000				
Standard error 1055.419357 6 50 100 150 Observations 63 Sample Percentile Sample Percentile ANOVA Mission F Significance F Regression 3 153890357.2 51296785.75 69.07678632 2.72566E-19 Residual 60 6683447455 1113907.909 Cover 95% Upper 95% Lower 95.0% Upper 95.0% Ioper 95.0% 0.000 - 0 0	R ² Adjusted R ²	0.697204551 0.670444703		-			1	1	
error Observations 63 5 5 Sample Percentile ANOVA f Significance F Significance F Regression Stall 3 153890357.2 60 51296785.75 63 69.07678632 2.72566E-19	Standard	1055.418357			0 Jate	50	100	150	
$ \begin{array}{ c c c c c c } \hline U & U & U \\ \hline ANOVA & & & & & & & & & & & & & & & & & & &$	error Observations	63		,	stin	Samp	le Percentile		
ANOVA df SS MS F Significance F Regression Residual 60 153890357.2 66834474.55 51296785.75 1113907.099 69.07678632 2.72566E-19 Total 63 220724831.8 113907.099 0 0 0 Intercept -3213.814452 2270.850627 -1.415246962 0.162165666 -7756.19198 1328.563071 -7756.191976 1328.563071 A 0 0 65555 0.162178976 -1179.93613 6887.874469 -1179.936129 6887.874469 SIZE 9.048737351 0.812250955 11.14032221 3.06663E-16 7.423993549 10.67348115 7.423993549 10.67348115 Residual 0utput 0 0 0 0 0 0 0.67348115 1 1.995315971 5.544524749 0.005383123 0.793650794 4.309697782 2.380952381 6.28058065 5.39555755 5.5555556 7.59840721 5.559846721 5.5598473 3.96825378 3.96825378 3.96825378 8.28025173					Hi .				
dt SS MS F Significance F Regression Total 3 153890357.2 66834474.55 Total 51296785.75 66834474.55 1113907.909 69.07678632 2.72566E-19 Total 63 220724831.8 113907.909 69.07678632 2.72566E-19 Intercept -3213.814452 2270.850627 -1.415246962 0.162165666 -7756.19198 1328.563071 -7756.191976 1328.563071 A 0 0 65535 0 <th>ANOVA</th> <th>16</th> <th></th> <th></th> <th></th> <th></th> <th><u> </u></th> <th></th> <th></th>	ANOVA	16					<u> </u>		
Regression 3 153890357.2 51296785.75 69.07678632 2.72566E-19 Total 63 220724831.8 111390799 2.72566E-19 Lower 95.0% Upper 95.0% Up		df		55	MS	F	Significance F		
Residual Total 00 63 220724831.8 1113307.309 Total 63 220724831.8 1113307.309 Exercise Coefficients Standard error t stat p value Lower 95% Upper 95% Lower 95.0% Upper 95.0% <td>Regression</td> <td>3</td> <td></td> <td>153890357.2</td> <td>51296785.75</td> <td>69.07678632</td> <td>2.72566E-19</td> <td></td> <td></td>	Regression	3		153890357.2	51296785.75	69.07678632	2.72566E-19		
Local Coefficients error Standard error t stat error p value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept -3213.814452 2270.850627 -1.415246962 0.162165666 -7756.19198 1328.563071 -7756.191976 1328.563071 A 0 0 65535 0 <t< td=""><td>Total</td><td>63</td><td></td><td>220724831.8</td><td>1113907.909</td><td></td><td></td><td></td><td></td></t<>	Total	63		220724831.8	1113907.909				
Coefficients errorStandard errort stat errorp valueLower 95%Upper 95.%Lower 95.0%Upper 95.0%Upper 95.0%Intercept A-3213.8144522270.850627-1.4152469620.162165666-7756.191981328.563071-7756.1919761328.563071A00655350.162178976-1179.936136887.874469000SIZE9.0487373510.8122509551.140322213.06063E-16742399354910.673481157.42399354910.67348115Residual outputProbability output11.9953159715.5445247990.0053831230.7936507944.3096977822-161.0446523168.78755180.1638741382.3809523816.28305806530.5475179955.735540070.005588783.908253986.9065147494-154.7105361163.697790.158257215.55555555.53555555.5398407215-190.0006118198.99156950.1931989157.1428571437.74289948161177.064348-935.6440353-0.098407318.73158738.9802317337-160.188515917.349821370.16844767110.32166428.99095752 </td <td></td> <td></td> <td></td> <td>220/210010</td> <td></td> <td></td> <td></td> <td></td> <td></td>				220/210010					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Coefficients	Standard	t stat	p value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Intercent		2270.850627	_1 /152/6962	0 162165666	_7756 10108	1228 562071	7756 101076	1228 562071
SF 2853.96917 2016.652366 1.41520136 0.162178976 -1179.93613 6887.874469 1179.936129 6887.874469 SIZE 9.048737351 0.812250955 11.14032221 3.06063E-16 7.423993549 10.67348115 7.423993549 10.67348115 Residual output Predicted estimated PM Precentile Estimated PM 1 1.995315971 5.544524749 0.005383123 0.793650794 4.309697782 2 -161.0446523 168.787518 0.163874138 2.380952381 6.283058065 3 0.547517995 5.73554007 0.005568578 3.968253968 6.906514749 4 -154.7105361 163.6907679 0.158925721 5.55555556 7.539840721 5 -190.0006118 198.9915695 0.193189915 7.142857143 7.742899481 6 1177.064348 -935.6440353 -0.098407391 8.73015873 8.980231733 7 -169.1885159 173.4982137 0.168447672 10.31746032 8.990957752 8 64.97452793 -24.61058797 -0.023894173 11.9047619 10.829	A	0	0	65535	0.102103000	0	0	0	0
SIZE 9.048737351 0.812250955 11.14032221 3.06063E-16 7.423993549 10.67348115 7.423993549 10.67348115 Residual output Probability output Probability output Probability output Observation Predicted estimated PM Residuals Standard residuals Percentile Estimated PM 1 1.995315971 5.544524749 0.005383123 0.793650794 4.309697782 2 -161.0446523 168.7875518 0.163874138 2.380952381 6.283058065 3 0.547517995 5.73554007 0.005586578 3.968253768 6.906514749 4 -154.7105361 166.907679 0.158925721 5.5555556 7.539840721 5 -190.0006118 198.9915695 0.193198915 7.142857143 7.74289481 6 1177.064348 -935.6440353 -0.908407391 8.73015873 8.980231733 7 -169.1885159 173.4982137 0.168447672 10.31746032 8.99057752 8 64.97452793 -24.61058797 -0.023894173 11.9047619 10.82916542 9 -72.36702623 <t< td=""><td>SF</td><td>2853.96917</td><td>2016.652366</td><td>1.41520136</td><td>0.162178976</td><td>-1179.93613</td><td>6887.874469</td><td>-1179.936129</td><td>6887.874469</td></t<>	SF	2853.96917	2016.652366	1.41520136	0.162178976	-1179.93613	6887.874469	-1179.936129	6887.874469
Residual output Probability output Observation estimated PM Residuals Standard residuals Percentile Estimated PM 1 1.995315971 5.544524749 0.005383123 0.793650794 4.309697782 2 -161.0446523 168.7875518 0.163874138 2.380952381 6.283058065 3 0.547517995 5.73554007 0.005568578 3.968253968 6.906514749 4 -154.7105361 163.6907679 0.158925721 5.5555556 7.539840721 5 -190.0006118 198.9915695 0.193198915 7.142857143 7.742899481 6 1177.064348 -935.6440353 -0.098407391 8.73015873 8.980231733 7 -169.1885159 173.4982137 0.16847672 10.31746032 8.99057752 8 64.97452793 -24.61058797 -0.023894173 11.9047619 10.82916542 9 -72.36702623 107.8229938 0.104684261 13.49206349 17.99188977 10 301.4359251 -283.4440354 -0.275192965	SIZE	9.048737351	0.812250955	11.14032221	3.06063E-16	7.423993549	10.67348115	7.423993549	10.67348115
output output Observation Predicted estimated PM Residuals Standard residuals Percentile Estimated PM 1 1.995315971 5.544524749 0.005383123 0.793650794 4.309697782 2 -161.0446523 168.7875518 0.163874138 2.380952381 6.283058065 3 0.547517995 5.73554007 0.005568578 3.968253968 6.906514749 4 -154.7105361 163.6907679 0.158925721 5.5555555 7.539840721 5 -190.0006118 198.9915695 0.193198915 7.142857143 7.742899481 6 1177.064348 -935.6440353 -0.908407391 8.73015873 8.980231733 7 -169.1885159 173.4982137 0.168447672 10.31746032 8.990957752 8 64.97452793 -24.61058797 -0.023894173 11.9047619 10.82916542 9 -72.36702623 107.8229938 0.14684261 13.49206349 17.99188977 10 301.4359251 -283.440354 -0.275192955	Residual						Probability		
Observation estimated PMResidualsStandard residualsPercentileEstimated PM11.9953159715.5445247490.0053831230.7936507944.3096977822-161.0446523168.78755180.1638741382.3809523816.28305806530.5475179955.735540070.0055685783.9682539686.9065147494-154.7105361163.69076790.1589257215.55555567.5398407215-190.0006118198.99156950.1931989157.1428571437.74289948161177.064348-935.6440353-0.9084073918.730158738.9802317337-169.1885159173.49821370.16844767210.317460328.990957752864.97452793-24.61058797-0.02389417311.904761910.829165429-72.36702623107.82299380.10468426113.4920634917.9918897710301.4359251-283.4440354-0.2751905515.0793650818.1175971411-142.9471776179.80043370.17456643416.666666721.9707895512428.118248-257.5350612-0.25003820318.2539682523.507019411399.558984330.7755697550.0075299319.8412698426.6305218814-9.02586477739.135483850.03799624821.4285714330.1096190815-9.02586477785.06443880.0826097323.0158730235.4559675916-81.4157635899.533360720.0966359424.603174636.853256	output						output		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Observation	Predicted estimated PM		Residuals	Standard residuals	Percentile	Estimated PM		
2-161.0446523168.78755180.1638741382.3809523816.28305806530.5475179955.735540070.0055685783.9682539686.9065147494-154.7105361163.69076790.1589257215.55555567.5398407215-190.0006118198.99156950.1931989157.1428571437.74289948161177.064348-935.6440353-0.9084073918.730158738.9802317337-169.1885159173.49821370.16844767210.317460328.990957752864.97452793-24.61058797-0.02389417311.904761910.829165429-72.36702623107.82299380.10468426113.4920634917.9918897710301.4359251-283.4440354-0.27519296515.0793650818.1175971411-142.9471776179.80043370.17456643416.666666721.9707895512428.118248-257.5350612-0.25003820318.2539682523.507019411399.558983430.7755697550.00075299319.8412698426.6305218814-9.02586477739.135483850.03799624821.4285714330.1096190815-9.02586477785.086443880.08260957323.0158730235.4559675916-81.4157635899.53360720.0966359424.603174636.853256141736.217821987.2112677670.00700134726.1904761938.95280218	1	1.995315971		5.544524749	0.005383123	0.793650794	4.309697782		
3 0.547517995 5.73554007 0.005568578 3.968253968 6.906514749 4 -154.7105361 163.6907679 0.158925721 5.5555556 7.539840721 5 -190.0006118 198.9915695 0.193198915 7.142857143 7.742899481 6 1177.064348 -935.6440353 -0.908407391 8.73015873 8.980231733 7 -169.1885159 173.4982137 0.168447672 10.31746032 8.990957752 8 64.97452793 -24.61058797 -0.023894173 11.9047619 10.82916542 9 -72.36702623 107.8229938 0.104684261 13.49206349 17.99188977 10 301.4359251 -283.4440354 -0.275192965 15.07936508 18.11759714 11 -142.9471776 179.804337 0.174566434 16.6666667 21.97078955 12 428.118248 -257.5350612 -0.250038203 18.25396825 23.50701941 13 99.55898343 0.775569755 0.000752993 19.84126984 26.63052188 14 -9.025864777 39.13548385 0.037996248 21.42857143 <t< td=""><td>2</td><td>-161.0446523</td><td></td><td>168.7875518</td><td>0.163874138</td><td>2.380952381</td><td>6.283058065</td><td></td><td></td></t<>	2	-161.0446523		168.7875518	0.163874138	2.380952381	6.283058065		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	0.547517995		5.73554007	0.005568578	3.968253968	6.906514749		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	-154.7105361		163.6907679	0.158925721	5.55555556	7.539840721		
6 1177.064348 -953.6440353 -0.908407391 8.7301873 8.980231733 7 -169.1885159 173.4982137 0.168447672 10.31746032 8.990957752 8 64.97452793 -24.61058797 -0.023894173 11.9047619 10.82916542 9 -72.36702623 107.8229938 0.104684261 13.49206349 17.99188977 10 301.4359251 -283.4440354 -0.275192965 15.07936508 18.11759714 11 -142.9471776 179.8004337 0.174566434 16.66666667 21.97078955 12 428.118248 -257.5350612 -0.250038203 18.25396825 23.50701941 13 99.55898343 0.775569755 0.000752993 19.84126984 26.63052188 14 -9.025864777 39.13548385 0.037996248 21.42857143 30.10961908 15 -9.025864777 85.08644388 0.082609573 23.01587302 35.45596759 16 -81.41576358 99.53336072 0.09663594 24.6031746 36.85325614 17 36.21782198 7.211267767 0.0070013477 26.19047619 38.95280218	5	-190.0006118		198.9915695	0.193198915	7.142857143	7.742899481		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 7	160 1005 150		-935.6440353	-0.908407391	8./30158/3	8.980231733		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	64 97452793		-24 61058797	-0.023894173	11 9047619	10 82916542		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	-72.36702623		107.8229938	0.104684261	13.49206349	17.99188977		
11-142.9471776179.80043370.17456643416.6666666721.9707895512428.118248-257.5350612-0.25003820318.2539682523.507019411399.558983430.7755697550.00075299319.8412698426.6305218814-9.02586477739.135483850.03799624821.4285714330.1096190815-9.02586477785.086443880.08260957323.0158730235.4559675916-81.4157635899.533360720.0966359424.603174636.853256141736.217821987.2112677670.00700134726.1904761938.95280218	10	301.4359251		-283.4440354	-0.275192965	15.07936508	18.11759714		
12428.118248-257.5350612-0.25003820318.2539682523.507019411399.558983430.7755697550.00075299319.8412698426.6305218814-9.02586477739.135483850.03799624821.4285714330.1096190815-9.02586477785.086443880.08260957323.0158730235.4559675916-81.4157635899.533360720.0966359424.603174636.853256141736.217821987.2112677670.00700134726.1904761938.95280218	11	-142.9471776		179.8004337	0.174566434	16.66666667	21.97078955		
1399.558983430.7755697550.00075299319.8412698426.6305218814-9.02586477739.135483850.03799624821.4285714330.1096190815-9.02586477785.086443880.08260957323.0158730235.4559675916-81.4157635899.533360720.0966359424.603174636.853256141736.217821987.2112677670.00700134726.1904761938.95280218	12	428.118248		-257.5350612	-0.250038203	18.25396825	23.50701941		
14 -9.025864777 39.13548385 0.037996248 21.42857143 30.10961908 15 -9.025864777 85.08644388 0.082609573 23.01587302 35.45596759 16 -81.41576358 99.53336072 0.09663594 24.6031746 36.85325614 17 36.21782198 7.211267767 0.007001347 26.19047619 38.95280218	13	99.55898343		0.775569755	0.000752993	19.84126984	26.63052188		
15 -9.025864777 85.08644388 0.082609573 23.01587302 35.45596759 16 -81.41576358 99.53336072 0.09663594 24.6031746 36.85325614 17 36.21782198 7.211267767 0.007001347 26.19047619 38.95280218	14	-9.025864777		39.13548385	0.037996248	21.42857143	30.10961908		
10 -01.41570550 99.53330072 0.09063594 24.0031746 36.85325014 17 36.21782198 7.211267767 0.007001347 26.19047619 38.95280218	15	-9.025864777		85.08644388	0.082609573	23.01587302	35.45596759		
1/ 50.21702190 /.21120//0/ 0.00/00134/ 20.1304/017 50.73200210	10 17	-01.415/0358		77.533360/2 7711267767	0.09003594	24.0U31/40 26.10047610	30.83325614 38.05280210		
18 30 589326 -8 618536453 -0 00836765 27 7777778 40 36393996	18	30.21702190		-8 618536453	-0.00836765	20.1504/019	40 36393996		
	:	:		:	:	:	:		
: : : : :	:	:		:	:	:	:		

this question. Depending on the project and organization change in deadline is not considered explicitly. Graph 2 shows that resource loading decision-making can be complex, and incorporate evidence of uncertainty. Graph 3 shows that work hours with respect countries decisions are made implicitly by other decision-makers on a daily basis. Decisions based largely on personal experience are subject to many biases. Graph 4 shows that decision analysis and cost-effectiveness analysis are systematic approaches used to support decision-making under conditions of uncertainty that involve important adjustments.

Regression model(Table 5)

Effort = -433.25*TeamExp + 408.8057*ManagerExp + 201.2701*Length + 4.2361*Transactions + 7.9056*Entities + 4.4594*Points Adjust + 92.1389*Envergure + -1777.4579*Langage + -278.0786.

No two representatives have the very same abilities or longing to work a similar number of hours and in light of the fact that the administrator should likewise notice government controls, organization approaches,

Graph 1: Workforce scheuling outcome for SDLC activity planning

Graph 2: Resource loading chart

Graph 3: Approximate number of work hours per year in ten countries

Graph 4: International cost comparison for 1000 function points

and authoritative commitments. At any given minute, having an excessively couple of workers - or enough representatives, yet not the individuals who have the fundamental aptitudes - can bring about poor client benefit; disappointed, exhausted representatives; and lost deals. Then again, having excessively numerous representatives either lessens working edges, if additional hours are booked or brings about low worker assurance if representatives work less hours than they want in light of the fact that the accessible work is spread daintily among numerous workers. All most all cases plan to build up a "discovery" scheduler for a conspicuous organization that still uses it every week for planning a huge number of representatives.

CONCLUSION

In this case study, effort, schedule, and cost estimation for software development project discussed. During the software estimation, we

analyze and evaluate different existing techniques, and tools. A better comprehension of the unpredictability of the assignment, additionally that leaves away with a few thoughts regarding how to better deal with the booking procedure in any association. In light of what have seen, associations may have numerous chances to enhance their workforcebooking process. In this paper, the proposed estimation framework is well suited for application and embedded software development and maintenance projects. Nowadays, the open source software development impact is more on the development. Off-the-shelf products and shirk-wrapped projects are not considered for this purpose. In the future, we need to focus on that area.

REFERENCES

- Dejaeger K, Verbeke W, Martens D, Baesens B. Data mining techniques for software effort estimation: A comparative study. IEEE Trans Softw Eng 2012;38(2):375-97.
- Rao BV, Ramaiah PS. Software effort estimation framework to improve organizational productivity using emotion recognition of software engineers in spontaneous speech. J Soft Comput 2015;6(1):1076-82.
- Cunha JC, Cruz S, Costa M, Rodrigues AR, Vieira M. Implementing Software Effort Estimation in a Medium-sized Company. 2011 34th IEEE Software Engineering Workshop, SEW.2011.19, IEEE Computer Society, 1550-6215/11. p. 92-6.
- Rao BV, Seetharamaiah P. Organizational strategies and social interaction influence in software development effort estimation. J Comput Eng 2014;16(2):29-40.
- Le-Do TK, Yoon KA, Seo YS, Bae DH. Filtering of Inconsistent Software Project Data for Analogy-based Effort Estimation. 2010 34th Annual IEEE Computer Software and Applications Conference, COMPSAC.2010.56, IEEE Computer Society, 0730-3157/10; 2010. p. 503-8.
- Nadgeri SM, Hulsure VP, Gawande AD. Comparative Study of Various Regression Methods for Software Effort Estimation. Third International Conference on Emerging Trends in Engineering and Technology, ICETER.2010.22, IEEE Computer Society, 978-0-7695-4246-1/10 2010; 2010. p. 642-5.
- Hsu CJ, Rodas NU, Huang CY, Peng KL. A Study of Improving the Accuracy of Software Effort Estimation Using Linearly Weighted Combinations. 2010 34th Annual IEEE Computer Software and Applications Conference Workshops, COMPSACW.2010.27, IEEE Computer Society, 978-0-7695-4105-1/10; 2010. p. 98-103.
- Attarzadeh I, Ow SH. A Novel Soft Computing Model to Increase the Accuracy of Software Development Cost Estimation. IEEE, 978-1-4244-5586-7/10. Vol. 3; 2010. p. 603-7.
- 9. Rao BV, Ramaiah PS. Adaptive system for estimating development effort. J CNS 2011;1(1):52-6.
- Keung J. Software Development Cost Estimation using Analogy: A Review. 2009 Australian Software Engineering Conference, ASWEC.2009.32, IEEE Computer Society, 1530-0803/09; 2009. p. 327-36.
- Zhang B, Zhang R. Evaluation Model of Software Cost Estimation Methods Based on Fuzzy-Grey Theory, 2009 Fourth International Conference on Internet Computing for Science and Engineering, ICICSE.2009.63, IEEE Computer Society, 978-0-7695-4027-6/10; 2009. p. 52-5.
- Rao BV, Ramaiah PS. A novel approach to design neuro-fuzzy expert system for software estimation. Int J Eng Res Technol 2013;2(13):3012-7.
- Keung J, Jeffery R. Automated Support for Software Cost Estimation using Web-CoBRA, IEEE Computer Society, APSEC.2008.44, 1530-1362/08; 2008. p. 519-26.
- Rao BV, Ramaiah PS. Software size estimation using fuzzy backpropagation network method. Int J Comput Sci 2012;9(1):339-48.
- Idri A, Elyassami S. Applying fuzzy ID3 decision tree for software effort estimation. Int J Comput Sci 2011;8(4)131-8.
- Nassif BA, Ho D, Capretz LF. Towards an early software estimation using log-linear regression and multilayer perceptron model. J Syst Softw 2013;86:144-60.
- Parthasarathy MA. Practical Software Estimation Function Point Methods for Insourced and Outsourced Projects. Saddle River, NJ: Infosys Press, Pearson, First Impression; 2007.
- Thompson GM. Workforce Scheduling: A Guide for the Hospitality Industry by The Center for Hospitality Research at Cornell University. Cornell CHR Reports. Vol. 4. April; 2004.