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ABSTRACT

Objective: Cardiovascular disease (CVD) is a leading cause of death worldwide. Malfunctioning of genes that are responsible for several inflammatory 
processes is the major cause for its initiation. Cytokine genes are one such group of genes that are involved in the development of CVD. Hence, the 
prediction of potential point mutations in these genes is important for diagnostic purposes. Such mutations result in altered protein structure and 
function when compared to neutral ones.

Methods: In this study, interleukin factor 6 (IL6), tumor necrosis factor α (TNF-α), interleukin factor 4 (IL4), and interferon gamma have been 
analyzed using sorting intolerant from tolerant and PolyPhen 2.0 tools.

Results: Several single nucleotide polymorphisms (SNPs), in IL6, TNF-α, and IL4, are found to be potentially deleterious. In addition, bond analysis has 
also been performed on these SNPs. It has been predicted that L119P and R196H of IL6 as well as K87T and T181N of TNF-α are potential ns-SNP’s 
that may cause structural and functional variations in the corresponding proteins. The hydrogen and Cation-Pi bond analysis performed in this study 
provides molecular-based evidence that support the predicted deleterious potential of such SNPs for these CVD candidate genes along with other 
conventional in silico tools.

Conclusion: The study testifies the importance of adopting a computational approach to narrow down potential point mutants for disease predictions.
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INTRODUCTION

Globally, cardiovascular diseases (CVDs) have the highest mortality 
rate as compared to any other non-communicable diseases [1]. Their 
primary cause is the development of atherosclerosis that leads to its 
clinical precipitation as myocardial ischemia and infraction [2]. The 
pathophysiology of atherosclerosis implicates it partially to be an 
inflammatory disorder, resulting in elevated levels of specific circulatory 
cytokines. These, in turn, may be cautiously referred to as biomarkers 
for predicting the prevalence and progression of the disease in 
symptomatic as well as non-symptomatic individuals [3]. Cytokines are 
glycoproteins that play a pivotal role in mediating immune responses 
by activation of signal transduction pathways. They broadly include 
interferons, chemokines, members of tumor necrosis factor (TNF) 
family, and interleukins. Elevated levels of interleukin 6 (IL 6) and TNF-α 
along with cholesterol levels in serum have been detected consistently 
in CVD patients and are now recommended for use as biomarkers [4,5]. 
In addition, their respective genes are reported to be highly polymorphic 
and closely associated with immune or autoimmune disorders [6]. 
Non-synonymous single nucleotide polymorphisms (ns-SNPs) in their 
coding regions may alter some physiochemical properties of their 
native proteins [7]. These SNPs are of particular interest to both human 
geneticists and computational biologists, as one half of such known 
variations are related to human-inherited diseases [8]. Computational 
biology facilitates the screening and prediction of diseases associated 
with ns-SNPs through multiple tools that depend mainly on protein 
sequences and/or their structure [9-11]. Recent advances have now 
paved a way to understand the molecular level variations to a better 
extent. For example, changes in distances between hydrogen and 

Cation-Pi bonds help the researchers to explore causes behind such 
mutations, thus validating their predictions [12,13].

The present work focuses on the identification of deleterious SNPs in 
four cytokines, namely, IL6, IL4 (both isoforms 1 and 2), TNF-α, and 
interferon gamma (IFNg). An attempt has been made to understand 
the levels of structural and functional variations between the wild and 
mutant genes, using conventional computational tools. The results are 
validated using Salt Bridge, Hydrogen, and Cation-Pi bond analyses.

METHODS

SNP retrieval and prediction of deleterious effects
SNPs of the selected cytokines genes, namely, IL6, IL4, TNF-α, and IFNg 
were retrieved from the National Center for Biotechnology Information 
(NCBI) - dbSNP (http://www.ncbi.nlm.nih.gov/snp/) database [14,15], 
by limiting the studies to Homo Sapiens, SNPs, coding non-synonymous 
and synonymous regions, 5’ and 3’ untranslated region (UTR) and intron 
function classes. The ns-SNPs were investigated further for analyzing 
their deleterious effects using standard computational tools like SIFT-
Blink (http://sift.jcvi.org/www/SIFT_BLink_submit.html) [16,17] and 
polymorphism phenotype 2.0 (PolyPhen 2.0) (http://genetics.bwh.
harvard.edu/ph2/) [17].

Structure modeling and root mean square deviation (RMSD) 
calculations
These studies were carried out on ns-SNPs, identified to be deleterious, 
by both prediction tools. For mutant modeling, SWISS-MODEL (http://
swissmodel.expasy.org/) was used to obtain 3D structures [18] 
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and validated by PROCHECK (http://www.ebi.ac.uk/thornton-srv/
software/PROCHECK/) [19,20]. Validated structures were considered 
to generate mutant structures using Deepview/Swiss PdbViewer [21] 
and were energy minimized through normal mode analysis, 
deformation, and refinement (http://lorentz.immstr.pasteur.fr/index1.
php) [22], before calculation of RMSD values.

Trajectory analysis
Deleterious ns-SNPs, predicted by both SIFT and PolyPhen 2.0, were 
subjected to further investigations such as Solvent Accessibility using 
absolute surface area (ASA) View (http://gibk26.bio.kyutech.ac.jp/
jouhou/shandar/netasa/asaview) [23] and Evolutionary Conservation 
Position Analysis by ConSurf [24]. Identification of stabilizing residues 
was carried out by SRide (http://sride.enzim.hu/) [25,26].

Bond analysis
Salt Bridge Analysis was performed by evaluation of salt bridges 
in protein (ESBRI) (http://bioinformatica.isa.cnr.it/ESBRI/input.
html) [27,28]. Hydrogen Bond and Cation-Pi Bond Analysis were carried 
out through hydrogen bond analysis tool 1.1 (HBAT) and CAPTURE 
(http://capture.caltech.edu/) [29], respectively.

RESULTS

SNP retrieval and prediction of deleterious effects
A sum of 538 SNPs were obtained from NCBI database with functions 
limited to Homo Sapiens, SNPs, coding non-synonymous and 
synonymous, introns, and UTR 3’and 5’, for IL6 (139), TNF-α (109), 
IL4 (202) and IFNg (88). Total number of active SNPs is shown in Table 1.

Structure modeling and RMSD calculations
The SWISS-MODEL ExPASy used in modeling the native 3D structures 
for each of the cytokines provided the template id and modeled residue 
range (Table 2). The sequence identity percentage of modeled structure 
to native sequence and its QMEAN Z-score are given in Table 2. The genes 
IL6, TNF-α, and IL4 had 100% sequence identity and promising QMean 
Z-Score. The calculated RMSD values, obtained by superimposing the 
energy minimized native, over the mutant, are provided in Table 3. Only 
L119P and R196H of IL6 and K87T and T181N of TNF-α had significant 
RMSD values, and this makes them as highly deleterious ns-SNPs.

Trajectory analysis
Table 4 displays the ASA view values for the highly deleterious ns-SNPs 
of IL6 and TNF-α, along with the conserved regions and details on their 
secondary structure. The CONSURF value of ns-SNPS L119P and R196H 
in IL6 showed a significant change in their value. In case of TNF-α, a 
significant change in ASA view is noticed only for K87T. Similarly, 
Table 5 indicates the stabilizing residues identified through SRide for 
the same genes. R196H of IL6 and K87T and T181N of TNF-α showed 
the presence of one or more additional stabilizing residues.

Bond analysis

ESBRI predicted the formation of seven new salt bridges at various 
residue positions, in each of the IL6 mutants and the loss of six and 
five salt bridges in L119P and R196H, respectively, when compared 
with that of the native protein. In case of TNF-α, there were two new 
formations and no loss of salt bridges in K87T and five formations 

Table 1: Total number of active SNP’s

Cytokines Functions Introns UTR Total active SNPs

Codon 3’ 5’

Non-synonymous Synonymous

Total Highly deleterious by SIFT and PolyPhen
IL6 15 2 5 83 8 4 113
TNF-α 14 3 12 25 26 4 81
IL4 1 and 2 12 2, 1 (isoforms) 6 147 4 0 169
IFNg 4 0 2 59 13 1 79
Total 45 8 25 314 51 9 442
TNF: Tumor necrosis factor, IL: Interleukin, IFNg: Interferon gamma, SNPs: Single nucleotide polymorphisms, UT: 5’ and 3’ untranslated region, SIFT: Sorting intolerant 
from tolerant

Table 2: SWISS model report for cytokines

Cytokines Total residues Modeled residue range Template id Sequence identity % QMEAN Z-score
IL6 212 47-212 1il6 100 −1.586
TNF-α 233 85-233 3l9j 100 1.313
IL4 (isoform 1) 153 25-153 2b8u 100 −0.556
IL4 (isoform 2) 137 25-137 2b8u 87.6 −2.466
TNF: Tumor necrosis factor, IL: Interleukin

Table 3: RMSD value of cytokines

Cytokines Residue change (NCBI rs-id) RMSD value (Å) Total energy

Mutant (KJ/mol) Native (KJ/mol)
IL6 L119P (rs11544633) 0.81 −11.654 −11.005

R196H (rs143432552) 0.83 −11.475
TNF-α K87T (rs190788828) 1.60 −8.989 −8.978

T181N (rs140654183) 2.30 −9.275
I194N (rs147831616) 0.20 −9.209

IL4 (isoform 1) V53A (rs139863211) 0.64 −9.290 −9,266
K150M (rs149147538) 0.33 −9.279

IL4 (isoform 2) K134M (rs149147538) 0.34 −8.370 −8.360
TNF: Tumor necrosis factor, IL: Interleukin, RMSD: Root mean square deviation, NCBI: National Center for Biotechnology Information
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and seven deletions in T181N. Considerable variations in salt bridge 
distances were observed between other residue pairs in mutants 
and native proteins. The graphical representations are shown in 
Figs. 1 and 2.

The hydrogen bonds analyzed through HBAT and Cation-Pi bond 
Capture, for the same set of genes with highly deleterious ns-SNPs are 
given in Tables 6, 7a, and b, respectively.

DISCUSSION

SNP retrieval and prediction of deleterious effects
The ns-SNPs, with ID rs11544633 and rs143432552 for IL6, 
rs190788828, rs140654183, and rs147831616 for TNF-α, 
rs139863211, and rs149147538 for IL4 (isoform 1) and rs149147538 
for IL4 (isoform 2) were predicted, both by SIFT and PolyPhen 2.0, to be 
deleterious. Only deleterious ns-SNPs, predicted by SIFT and PolyPhen 
2.0, were further analyzed, as a combined prediction may increase the 
accuracy [30].

Structure modeling and RMSD calculations
Point mutations may have deleterious effects on structure-
function profile of proteins and may also affect their structural 

stabilities [31]. Functional changes can be understood by knowledge of 
their 3D structures. The total energy given in Table 3 depicts significant 
variations between the natives and mutants. Only deleterious ns-
SNPs, with RMSD >0.8Å were subjected to further analysis, as higher 
RMSD values indicate greater deviations between native and mutant 
structures, since they may result in functional changes of proteins [32]. 
Accordingly, two deleterious ns-SNPs, each of IL6 and TNF-α, were 
predicted to have RMSD >0.8Å. These are henceforth referred to as 
highly deleterious SNPs.

Trajectory analysis
Lee-Richard molecular surface area or ASA is a simple prediction 
tool that investigates the surface tension of an atom, in a protein 
molecule that is accessible to the solvent [33,23]. This analysis aids 
in understanding the background reasons and strengthens choice of 
predicted ns-SNPs as “deleterious” or “highly deleterious.” Accordingly, 
this study identified two ns-SNPs of IL6 (L119P and R196H) and TNF-α 
(K87T and T181N), each to be different from their respective natives, in 
any one of the prediction analysis. A similar trend was observed when 
checked for stabilizing residues in all of the highly deleterious ns-SNPs 
as seen from Table 5. To support and strengthen the trajectory tool 
findings, bond analyses were carried out for the highly deleterious ns-
SNPs of IL6 and TNF-α, to comprehend changes that may have occurred 
at the molecular level.

Bond analysis
Oppositely charged residues in a folded protein often form salt bridge 
bonds by Van der Waals interactions. Any significant variations 
observed in such residue pairs, between the native and mutants, may 
result in substantial changes at either structural or functional levels. 
Hydrogen bond analysis, performed using HBAT, evaluates the native 
and mutant proteins based on variations observed in any one or both of 
geometric criteria, namely, the distance between acceptor atom (X=C, 
N, O) - Hydrogen (H) (XH usually 3Å) and the angle formed between 
the donor-hydrogen-acceptor (angle XHA usually 120°). Table 6 briefs 
the variations obtained for IL6 and TNF-α. In IL6, the existence of two 
hydrogen bonds at 119th position was lost when leucine is mutated 
to proline. In TNF-α, four hydrogen bonds were reduced to two when 

Table 4: Trajectory analysis data of investigated cytokines

Cytokines Solvent 
accessibility (SA) (ASA 
view)

Conserved region 
color (CONSURF)

Native (Å2) Mutant (Å2) Native Mutant
IL6

L119P 0.000 0.014 9 (HC) 8 (C)
R196H 0.424 0.462 6 (A) 5 (V)

TNF-α
K87T 0.520 0.396 9 (HC) 9 (HC)
T181N 0.267 0.225 3 (V) 3 (V)

HC: Highly conserved, C: Conserved, A: Average, V: Variable, TNF: Tumor 
necrosis factor, IL: Interleukin, ASA: Absolute surface area

Table 5: Stabilizing residue analysis of investigated cytokines using SRide

Cytokines Residue change Stabilizing residues (SRide)
IL6 Native LEU112, THR147

L119P LEU112
R196H ILE70

TNF-α Native VAL89, TYR132, LEU133, ILE134, VAL138, ASP206, LEU218, GLY229, ILE230, ILE231, and ALA232
K87T TYR132, LEU133, ILE134, VAL138, LEU139, PHE140, GLY142, ASP206, LEU218, GLY229, ILE230, and ALA232
T181N VAL89, VAL93, TYR132, LEU133, ILE134, LEU139, ASP206, LEU218, GLY229, ILE230, and ALA232

Destabilising residues in bold. TNF: Tumor necrosis factor, IL: Interleukin

Table 6: Hydrogen bond analysis of IL6 and TNF-α

Cytokines Residue change Bond type Donor-CH_No. Acceptor CH_No. disXH disHA disXA angXHA
IL6 L119P Native N-H...O LEU-119 ILE-115 1.006 1.851 2.854 173.4

N-H...O LEU-119 ILE-116 1.006 2.845 3.163 99.01
Mutant - - - - - -

R196H Native N-H...O ARG-196 HIS-192 1.007 1.796 2.803 177.9
N-H...N ARG-196 LEU-195 1.007 2.654 2.879 92.43

Mutant N-H...O HIS-196 HIS-192 1.007 1.806 2.813 178
N-H...N HIS-196 LEU-195 1.007 2.721 2.933 91.83

TNF-α K87T Native N-H...O LYS-87 SER-85 1.003 1.995 2.966 162
N-H...N LYS-87 ASP-86 1.003 2.336 2.735 102.4
N-H...N LYS-87 ASN-115 1.003 2.869 3.101 93.74
N-H...O LYS-87 ALA-232 1.003 2.186 3.077 146.9

Mutant N-H...O THR-87 SER-85 1.003 2.031 3.021 168.3
N-H...N THR-87 ASP-86 1.003 2.323 2.749 104.3

T181N Native N-H...O THR-181 CYS-145 1.005 1.814 2.792 163.3
Mutant N-H...O ASN-181 ARG-179 1.001 2.104 2.894 134.2

TNF: Tumor necrosis factor, IL: Interleukin
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lysine at 87 is mutated to threonine. On combining the above two 
bond analyses, it is seen that L119P of IL6 and K87T of TNF-α scored a 
greater risk.

To increase the accuracy of prediction, Cation-Pi Bond analysis 
was also performed for these predicted highly deleterious mutants 
(Table 7a and b). Cation-Pi bonds present a strong non-covalent binding 
force that contributes highly to the secondary structures of proteins. 

Among them, the aromatic acid interactions, Phe/Trp/Tyr binding 
to Lys/Arg are common. It has also been reported that in structural 
biology, a protein structure includes one Cation-Pi interaction for every 
seventy seven amino acids and by default, arginine will be preferred 
over lysine [34]. In the present study, CAPTURE observed one Cation-Pi 
bond for every 166 amino acids in case of native IL6 and 83 amino acids, 
for both mutants L119P and R196H of IL6. The tool also predicted that 
the protein had 166 amino acids. Out of this, the native IL6, with an 

Table 7a: Cation-Pi interaction analysis of IL6

Residue change Interaction R1/R2 Interacting pairs # Energetically significant R1/R2 # E (total) = [E (es) +E (vdw)] kcal/mol)
Native ARG/PHE 0 0

ARG/TYR 1 0
ARG/TRP 0 0
LYS/PHE 1 1 156/153 −7.34 [(−6.47)+(−0.87)]
LYS/TYR 0 0
LYS/TRP 0 0

L119P ARG/PHE 1 0
ARG/TYR 1 1 132/128 −3.52 [(−1.61)+( −1.91)]
ARG/TRP 0 0
LYS/PHE 2 1 156/153 −7.38 [(−6.5)+( −0.88)]
LYS/TYR 1 0
LYS/TRP 0 0

R196H ARG/PHE 1 0
ARG/TYR 1 1 132/128 −4.31 [(−1.9)+( −2.41)]
ARG/TRP 0 0
LYS/PHE 2 1 156/153 −7.33 [(−6.46)+( −0.87)]
LYS/TYR 1 0
LYS/TRP 0 0

IL: Interleukin

 Fig. 1: Salt bridge analysis of interleukin 6

 Fig. 2: Salt bridge analysis of tumor necrosis factor α
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apparent molecular weight of 19086 D, contained 13 lysine residues 
(7.8%), eight arginine residues (4.8%), seven phenyl alanine residues 
(4.2%), three tyrosine residues (1.8%), and one tryptophan residue 
(0.6%). For the mutant L119P of IL6, the molecular weight reduced to 
19070D. However, the percentage of amino acids remained the same as 
in the native protein. However, in R196H, two variations were observed. 
Arginine residues were reduced to seven and its molecular weight 
dropped down to 19063D.

With TNF-α, both native and mutant K87T proteins do not have any 
Cation-Pi bond formation. However, the mutant T181N, on an average, 
has one Cation-Pi interaction for every 146 residues. In addition, 
variations in amino acid percentages, between native and mutants were 
also observed. Native TNF-α and T181N had 149 amino acid residues, 
out of which six lysine residues (4.0%), seven arginine residues (4.7%), 
four phenylalanine residues (2.7%), seven tyrosine residues (4.7%), 
and two tryptophan residues (1.3%) were present. Minor changes in 
molecular weight from 16635 D and 16648 D were also seen. For the 
mutant K87T, one lysine residue was less and a molecular weight of 
16608 D was obtained.

Table 7b: Cation-Pi interaction analysis of TNF-α

Residue change Interaction R1/R2 Interacting pairs # Energetically 
significant

R1/R2 # E (total) = [E (es) +E (vdw)] (kcal/mol)

Native and K87T ARG/PHE 1 0
ARG/TYR 1 0
ARG/TRP 0 0
LYS/PHE 0 0
LYS/TYR 1 0
LYS/TRP 0 0

T181N ARG/PHE 1 0
ARG/TYR 1 0
ARG/TRP 0 0
LYS/PHE 1 0
LYS/TYR 1 1 141/191 −2.22 [(−1.13)+(−1.09)]
LYS/TRP 0 0

TNF: Tumor necrosis factor

Trajectory analysis and bond analysis support and confirm the fact that 
the highly deleterious ns-SNPs L119P and R196H of IL6 and K87T and 
T181N of TNF-α are expected to cause major structural and functional 
variations in the respective proteins. For these proteins, 3D structures 
of both mutants and native forms were designed using PyMol. These are 
represented in Figs. 3a and b, 4a and b [35].

CONCLUSION

This study primarily focused on prioritizing functional SNPs of CVD 
candidate genes, IL6, TNF-α, IL4 (isoform 1 and 2), and IFNg. These 
genes play a major role in the onset and progression of CVD. Accordingly, 
four ns-SNPs were predicted as disease-related mutations and were 
strongly supported by various computational tools. The prioritization 
analyses performed in this study will help the molecular biologist 
narrow down the search from 538 SNPs to four highly deleterious ns-
SNPs with added benefits such as reduction in time and cost spent for 
this prediction.
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