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ABSTRACT

Objective: This study was undertaken to propose electro-oxidation mechanism and to develop a selective and sensitive method for the determinationof an anti-cancer drug, pemetrexed disodium (PTD).
Methods: The electrochemical oxidation of anti-cancer drug PTD has been investigated at glassy carbon electrode using voltammetric techniques. Thedependence of current on potential, pH, concentration, scan rate, and excipients were investigated to optimize the experimental conditions.
Results: According to the liner relation between peak potential, peak current, scan rate and PTD concentration, differential pulse voltammetricmethod for the quantitative determination in phosphate buffer solution was developed. The linear response was obtained in the range of 10 μM to0.75 μM with a detection limit of 0.19 μM. The electrochemical oxidation of mechanism of anti-cancer drug PTD was proposed.
Conclusion: The proposed method is rapid and does not include any time-consuming steps. The simplicity, sensitivity, and low cost of analysis are themain features of the proposed method for the determination of PTD.
Keywords: Pemetrexed disodium, Cyclic voltammetry, Electrochemical studies, Glassy carbon electrode.© 2017 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4. 0/) DOI: http://dx.doi.org/10.22159/ajpcr.2017.v10i3.15941
INTRODUCTIONPemetrexed disodium (PTD), an anticancer drug, is a folate anti-metabolitethat primarily inhibits thymidylate synthase (TS) [1]. Pemetrexed is usedfor the treatment of patients with lung cancer after prior chemotherapy.Pemetrexed shows activity against a variety of solid tumor in clinical trials,that is, non-small cell lung [2,3] and breast cancers [4,5]. It also inhibitsboth dihydro folatereductase and glycinamide ribonucleotide formyltransferase (GARFT) [6]. Mechanisms of action such as 5-fluorouraciland raltitrexed, pemetrexed primarily inhibits TS resulting in decreasedthymidine available for DNA synthesis. Pemetrexed also inhibitsdihydrofolatereductase and GARFT, which are key enzymes required forthe de novo bio-synthesis of thymidine and purine nucleotides [7-9]. Oncepemetrexed gains entry to the cell, through the reduced folate carrier,it is polyglutamated. Glutamation increases cellular retention and theintracellular half-life of pemetrexed, as well as making the polyglutamatedmetabolites greater than 60-fold more potent in their inhibition oftransferase. Pemetrexed is a radiation-sensitizing agent [10]. Pemetrexedinduces cell cycle arrest in the G1/S Phase 1.In February 2004, PTD was approved by the Food and DrugAdministration (FDA) for use in combination with cisplatin in thetreatment of mesothelioma. (US FDA News Online, February 5, 2004).On September 26, 2008, FDA approved PTD for injection for use incombination with cisplatin therapy for the initial treatment of patientswith locally advanced or metastatic non-squamous non-small cell lungcancer (NSCLC) and on July 2, 2009 the FDA approved PTD injection(Alimta, made by Eli Lilly and Company) for maintenance treatment ofpatients with locally advancedlocally advanced or metastaticmetastaticnon-squamous non-small cell lung cancerNSCLC whose disease has notprogressed after four cycles of platinum-based first-line chemotherapy.In preclinical studies, PTD showed activity against a wide range oftumor types including lung carcinoma, mesothelioma and breast,

colon, and bladder carcinomas [7,11-14]. A few analytical methods,high-performance liquid chromatography (HPLC) [15], reversed phase-HPLC [16], and LC [17] have been reported for the determination ofPTD. Besides, a few spectrophotometric methods were also reportedfor its determination in drug samples [18].Investigation of the redox behavior of biologically occurring compoundsby means of electrochemical techniques have the potential for providingvaluable insights into the biological redox reaction ofthesemolecules. Dueto their high sensitivity, voltammetric methods have been successfullyused to the redox behavior of various biological compounds [19-23].Since the development of modern computer based electrochemicalinstrumentation, electroanalytical techniques, especially modern pulsetechnique, such as differential pulse voltammetry (DPV) have been usedfor the sensitive determination of a wide range of pharmaceuticals. Theuse of carbon based electrodes for electroanalysis has gained popularityin recent years because of their applicability to the determination ofsubstances that undergo oxidation reaction [24,25].The purpose of this study is to investigate the electro-oxidationmechanism and the determination of an anticancer drug, PTD usingvoltammetric techniques. Determination of PTD in real samples withoutany time-consuming extraction or evaporation steps prior to PTD assay.The GCE has been widely used in electro analysis for various substratesfor a long time because of its stability, wide potential window, and fastelectron transfer rate. The influences of some interfering species willalso be investigated. In addition, an electrochemical behavior of PTD isinvestigated with cyclic voltammetry and DPV.
METHODS

ApparatusA stock solution of PTD (5×10−4 M) was prepared in milli-pore waterand stored in a refrigerator at 4°C. In this study, phosphate buffer
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(pH = 3-10) was used. All the solutions were prepared in milli-pore carbon electrode. A good linear relationship between E and pH ofwater and all other chemicals used were of analytical reagent grade [26].
InstrumentationThe voltammetric experiments were performed with instruments,USA (model CHI1112C Version 9.03). A three electrode systemincluding a glassy carbon electrode (3 mm diameter) as the workingelectrode, an Ag/AgCl (3M KCl) reference electrode and a platinumwire as the auxiliary electrode was used. To provide a reproducibleactive surface and to improve the sensitivity and resolution of thevoltammetric peaks, the glassy carbon electrode was polished to amirror finish with 0.3 micron alumina on a smooth polishing clothand then rinsed with milli-pore water before each electrochemicalmeasurement. The cleaning procedure of the electrode requiredless than 3 minutes. The solutions were purged with nitrogen gas.All measurements were carried out at room temperature 25°C. DPVconditions maintained were: Pulse amplitude 50 mV; pulse width 60ms and scan rate 20 mV/s.The area of the electrode was calculated using 1.0 mM K (Fe[CN] )

the medium at glassy carbon electrode was noticed and the same isshown in Fig. 3b.
Effect of scan rateThe effect of the potential scan rate (between 2.5 and 50 mV/s) onthe peak current was evaluated. Scan rate studies were carried out toassess whether the process at the glassy carbon electrode was underdiffusion or adsorption controlled. Cyclic voltammograms of 5×10−4 MPTD at different scan rates were recorded and are shown in Fig. 5. Itwas observed that when the scan rate was varied from 2.5 to 50 mV/s,a linear relationship dependence of the peak current I  (μA) on thesquare root of the scan rate, V1/2 mV/s (Fig. 6). The slope 0.0041 mV/sis close to theoretically expected value 0.005 mV/S with a correlationco-efficient of 0.9938 demonstrating that, the electrode process wasdiffusion controlled [36].

3 6as a probe at different scan rates [27]. For a reversible process, theRandles - Sevcik formula has been used [28-31].5 32 12 12 *Ip=(2.69×10 )n AD0 V C0 (8)Where, n = number of electrons transferred i.e., 1, A = surface area ofthe electrode, D* = diffusion coefficient, ν = sweep rate (0.1/Vs.) and
Scheme 1: Chemical structure of pemetrexed disodiumC0 = concentration of electro active species (1 mM). The surface area ofthe electrode was found to be 0.04 cm2.

Analytical procedureFor good reproducible results, improved sensitivity and resolution ofvoltammetric peaks, the working electrode was polished carefully with1 μm, 0.3 μm, 0.05 μm α-alumina on smooth polishing cloth and thenwashed in a milli-pore water. The 3 electrode system consisting of aglassy carbon electrode (3 mm diameter) as the working electrode,an Ag/AgCl (3 M KCl) reference electrode and a platinum wire as theauxiliary (counter) electrode was used. Electrolyte solutions wereprepared by  diluting  the  stock  solution  as required  with relevantbuffer  of required  pH. For  DPV  studies,  the following  parameterswere maintained: Sweep rate-20 mV/s, pulse amplitude-50 mV, pulsewidth-60 ms, pulse period-500 ms for analytical applications. Allexperiments were carried out at 25±1°C [32-35].
RESULT AND DISCUSSION

Voltammetric behavior of PTDWe have carried out the electrochemical oxidation of PTD in differentbuffers solutions. Acetate and phosphate were used in this study. Since,phosphate buffer gave a good peak response (peak shape and peakcurrent), it was selected for further studies. For this, we preparedphosphate buffers of different pH (2.68, 4.2, 4.43, 5.43, 6.5, 7.4, 8.07,9.27, and 10.4) [28]. The phosphate buffer solution of pH 2.68 (Fig. 2)offered improved sensitivity.
Effect of pHPTD exhibited oxidation peaks at 0.642V (a ) and 1.454V (a ) in

Fig. 1: Cyclic voltammograms of 5×10−4 M pemetrexed disodium
on glassy carbon electrode phosphate buffer (pH 7.4) at a scan

rate of 100 mVs−1

1 2phosphate buffer of pH 7.4 (Fig. 1). The pH of the electrolyte solutionsalso affected the PTD oxidation peak potential. With increase in pH(from 3 to 10), a rapid shift in peak potential toward more negativeside was observed. This indicated that the reduction  would occurwith difficulty. With increase in pH of the supporting electrolyte,the oxidation peak became weaker (Fig. 2). The plot of I of PTDversus pH showed maximum peak current at pH 2.68 with a scanrate of 100 mv/s (Fig. 3a). The results indicated the participation ofelectrons in the electrode process. Further, the shift in peak potentialwith increase in pH indicated that the pH of supporting electrolyteexerted a significant effect on electro-oxidation of PTD at glassy Fig. 2: Cyclic voltammograms of 5×10−4 M of pemetrexed disodium
in phosphate buffer of pH (1) 2.68, (2) 4.2, (3) 4.43, (4) 5.43,

(5) 6.5 and (6) 7.4 at a scan rate of 100 mV/s
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Fig. 3: (a) Influence of pH on the peak current I /μA of pemetrexed disodium, (b) Variation of peak potential E /V of pemetrexed disodiump p
with pH

dependent mechanism while in alkaline media protons were notinvolved in the rate determining step or before. In the acid media, anincrease of the peak current with the increase of pH was observed. Onthe other hand, in the basic media decrease in the peak current withthe increase of pH was observed. By the calculation, we found that theoxidation mechanism involves two proton- two electrons at GCE. Basedon all these observations, we postulated the mechanism as shown inScheme 2.

Fig. 4: ???

Fig. 5: Cyclic voltammograms of 5×10−4 M pemetrexed disodium in
phosphate buffer of pH 2.6 at different scan rates: (1) 2.5, (2) 5.0,
(3) 7.5, (4) 10, (5) 15, (6) 25, and (7) 50 mV/s (A) Dependence of

Peak Current I /μA on the scan rate υ/Vs

The corresponding equation is(μA) = 0.0051v1/2 (mV/s)1/2-0.0041Further, the linear relationship between square root of scan rate andpeak current also indicated irreversible nature of electrode processes(Fig. 6).
Electro-oxidation mechanismPTD showed two well resolved anodic signals in a limited range of pHstudied. In acid media, the oxidation of PTD at GCE follows a proton-

Calibration curve
Limit of detection (LOD) and limit of quantification (LOQ)Validation of the optimized procedure for the quantitative assay of PTDwas examined through evaluation of LOD, LOQ, accuracy, precision, andrecovery (Fig. 7). Values of LOD and LOQ were calculated based on thepeak current using the following equations [37].LOD = 3s/m LOQ=10s/mWhere, s is the standard deviation of the peak current (five replicates),m is the slope of the calibration plot (Fig. 8). The LOD and LOQ valueswere calculated to be 0.1918×10−6 M and 0.6396×10−6 M, respectively.Low values of both LOD and LOQ values confirmed the sensitivityof the proposed method. The process of validation was studied byanalyzing five replicates of 5×10−4 M PTD. The relative standarddeviation (RSD) values for intra- and inter-day assay were calculatedusing the relation
RSD= s ×100xWhere, s is standard deviation, x‾ is mean deviation. They are found tobe 3.4% and 2.88% respectively indicating good reproducibility of themethod. The corresponding results are shown in Table 1.
PrecisionTo examine the reproducibility of results on the same day and ondifferent days, cyclic voltammograms of PTD were recorded. Thecorresponding RSD values were calculated and these values are shownin Table 1. Low values of RSD highlighted the precision of the proposedmethod for the assay of PTD [38].
AccuracyAccuracy of the method was demonstrated at three differentconcentration  levels by  spiking  a  known  quantity  of  the  drug  intoa previously analyzed sample in triplicate. The results of analysisrevealed that the method was more accurate.
LinearityTo establish linearity of the proposed method, five separate sets ofdrug solutions were prepared and analysed. Calibration graph wasconstructed by plotting the values of peak current versus concentration.
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Scheme 2: Possible electrode reaction mechanism of pemetrexed disodium

Fig. 8: Plot of peak current versus concentration

Fig. 6: ??? Table 1: Characteristics of calibration plot for pemetrexed
disodium

Parameters DPVLinearity range (μM) 0.75-10LOD (μM) 0.1918LOQ (μM) 0.6396Intra-day assay RSD (%) 3.40Inter-day assay RSD (%) 2.88LOD: Limit of detection, LOQ: Limit of quantification, RSD: Relative standarddeviation, DPV: Differential pulse voltammetry
PTD and concentration in the range of 1×10−4 - 7.5×10−7 M was observed.In this concentration range, the response was found to be diffusioncontrolled. The analytical characteristics of the calibration plot aresummarized in Table 1.

Fig. 7: Differential pulse voltammetry for increasing
concentrations of drug, pemetrexed disodium in phosphate

buffer at pH 6.0. Scan rate, 20 mV s−1; pulse amplitude, 50 mV and
pulse width, 60 ms (1) Blank, concentration of drug: (2) 7.5×10−7,

(3) 1×10−6, (4) 2.5×10−6, (5) 7.5×10−6,(6) 1×10−5, (7) 2.5×10−5,
(8) 7.5×10−5, (9) 5×10−5 and (10) 1×10−4 M

Linearity was noticed between the peak current and concentrationin the concentration range of 1×10−4 to 7.5×10−7 M through whichslope (0.0136) intercept (3×10−8) and the correlation coefficent weredetermined, which can be used to determine unknown concentration.
Detection of PTD by DPVThe analytical method was developed involving DPV for thedetermination of the drug. For this, the variation of peak current (i )with the concentration of PTD was investigated. The DPV of differentconcentrations of PTD are shown in Fig. 8. Under the optimizedexperimental conditions, a linear relation between the peak current of

CONCLUSIONSThe electrochemical behavior of PTD on glassy carbon electrode wasstudied for the first time. The cyclic voltammogram was found to beirreversible and pH dependent. Two electrons were found to participatein the electrode process. By selecting the anodic peak of PTD, DPV wererecorded. The proposed method is rapid, requiring <3 minutes to runa sample and does not include time consuming steps. By the proposedmethod, as low as 7.5×10−7 M of PTD can be accurately determined withsufficient precision and accuracy. The simplicity, sensitivity and lowcost of analysis are the main features of the proposed method for thedetermination of PTD.
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